X86ISelLowering.cpp revision e80aa7c783ab27711505b540597d83e038fc6900
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// Forward declarations.
57static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
58                       SDValue V2);
59
60/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
61/// sets things up to match to an AVX VEXTRACTF128 instruction or a
62/// simple subregister reference.  Idx is an index in the 128 bits we
63/// want.  It need not be aligned to a 128-bit bounday.  That makes
64/// lowering EXTRACT_VECTOR_ELT operations easier.
65static SDValue Extract128BitVector(SDValue Vec,
66                                   SDValue Idx,
67                                   SelectionDAG &DAG,
68                                   DebugLoc dl) {
69  EVT VT = Vec.getValueType();
70  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
71  EVT ElVT = VT.getVectorElementType();
72  int Factor = VT.getSizeInBits()/128;
73  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
74                                  VT.getVectorNumElements()/Factor);
75
76  // Extract from UNDEF is UNDEF.
77  if (Vec.getOpcode() == ISD::UNDEF)
78    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
79
80  if (isa<ConstantSDNode>(Idx)) {
81    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
82
83    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
84    // we can match to VEXTRACTF128.
85    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
86
87    // This is the index of the first element of the 128-bit chunk
88    // we want.
89    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
90                                 * ElemsPerChunk);
91
92    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
93    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
94                                 VecIdx);
95
96    return Result;
97  }
98
99  return SDValue();
100}
101
102/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
103/// sets things up to match to an AVX VINSERTF128 instruction or a
104/// simple superregister reference.  Idx is an index in the 128 bits
105/// we want.  It need not be aligned to a 128-bit bounday.  That makes
106/// lowering INSERT_VECTOR_ELT operations easier.
107static SDValue Insert128BitVector(SDValue Result,
108                                  SDValue Vec,
109                                  SDValue Idx,
110                                  SelectionDAG &DAG,
111                                  DebugLoc dl) {
112  if (isa<ConstantSDNode>(Idx)) {
113    EVT VT = Vec.getValueType();
114    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
115
116    EVT ElVT = VT.getVectorElementType();
117    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
118    EVT ResultVT = Result.getValueType();
119
120    // Insert the relevant 128 bits.
121    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
122
123    // This is the index of the first element of the 128-bit chunk
124    // we want.
125    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
126                                 * ElemsPerChunk);
127
128    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
129    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
130                         VecIdx);
131    return Result;
132  }
133
134  return SDValue();
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X8664_MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetELF())
148    return new TargetLoweringObjectFileELF();
149  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
150    return new TargetLoweringObjectFileCOFF();
151  llvm_unreachable("unknown subtarget type");
152}
153
154X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
155  : TargetLowering(TM, createTLOF(TM)) {
156  Subtarget = &TM.getSubtarget<X86Subtarget>();
157  X86ScalarSSEf64 = Subtarget->hasSSE2();
158  X86ScalarSSEf32 = Subtarget->hasSSE1();
159  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
160
161  RegInfo = TM.getRegisterInfo();
162  TD = getTargetData();
163
164  // Set up the TargetLowering object.
165  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
166
167  // X86 is weird, it always uses i8 for shift amounts and setcc results.
168  setBooleanContents(ZeroOrOneBooleanContent);
169  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
170  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
171
172  // For 64-bit since we have so many registers use the ILP scheduler, for
173  // 32-bit code use the register pressure specific scheduling.
174  // For 32 bit Atom, use Hybrid (register pressure + latency) scheduling.
175  if (Subtarget->is64Bit())
176    setSchedulingPreference(Sched::ILP);
177  else if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::Hybrid);
179  else
180    setSchedulingPreference(Sched::RegPressure);
181  setStackPointerRegisterToSaveRestore(X86StackPtr);
182
183  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
184    // Setup Windows compiler runtime calls.
185    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
186    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
187    setLibcallName(RTLIB::SREM_I64, "_allrem");
188    setLibcallName(RTLIB::UREM_I64, "_aullrem");
189    setLibcallName(RTLIB::MUL_I64, "_allmul");
190    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
191    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
192    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
193    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
194    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
195
196    // The _ftol2 runtime function has an unusual calling conv, which
197    // is modeled by a special pseudo-instruction.
198    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
199    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
200    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
201    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
202  }
203
204  if (Subtarget->isTargetDarwin()) {
205    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
206    setUseUnderscoreSetJmp(false);
207    setUseUnderscoreLongJmp(false);
208  } else if (Subtarget->isTargetMingw()) {
209    // MS runtime is weird: it exports _setjmp, but longjmp!
210    setUseUnderscoreSetJmp(true);
211    setUseUnderscoreLongJmp(false);
212  } else {
213    setUseUnderscoreSetJmp(true);
214    setUseUnderscoreLongJmp(true);
215  }
216
217  // Set up the register classes.
218  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
219  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
220  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
221  if (Subtarget->is64Bit())
222    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
223
224  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
225
226  // We don't accept any truncstore of integer registers.
227  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
228  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
229  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
230  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
231  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
232  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
233
234  // SETOEQ and SETUNE require checking two conditions.
235  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
236  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
237  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
238  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
241
242  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
243  // operation.
244  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
245  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
247
248  if (Subtarget->is64Bit()) {
249    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
251  } else if (!TM.Options.UseSoftFloat) {
252    // We have an algorithm for SSE2->double, and we turn this into a
253    // 64-bit FILD followed by conditional FADD for other targets.
254    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
255    // We have an algorithm for SSE2, and we turn this into a 64-bit
256    // FILD for other targets.
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
258  }
259
260  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
261  // this operation.
262  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
263  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
264
265  if (!TM.Options.UseSoftFloat) {
266    // SSE has no i16 to fp conversion, only i32
267    if (X86ScalarSSEf32) {
268      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
269      // f32 and f64 cases are Legal, f80 case is not
270      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
271    } else {
272      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
274    }
275  } else {
276    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
278  }
279
280  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
281  // are Legal, f80 is custom lowered.
282  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
283  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
284
285  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
286  // this operation.
287  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
288  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
289
290  if (X86ScalarSSEf32) {
291    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
292    // f32 and f64 cases are Legal, f80 case is not
293    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
294  } else {
295    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
297  }
298
299  // Handle FP_TO_UINT by promoting the destination to a larger signed
300  // conversion.
301  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
302  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
304
305  if (Subtarget->is64Bit()) {
306    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
307    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
308  } else if (!TM.Options.UseSoftFloat) {
309    // Since AVX is a superset of SSE3, only check for SSE here.
310    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
311      // Expand FP_TO_UINT into a select.
312      // FIXME: We would like to use a Custom expander here eventually to do
313      // the optimal thing for SSE vs. the default expansion in the legalizer.
314      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
315    else
316      // With SSE3 we can use fisttpll to convert to a signed i64; without
317      // SSE, we're stuck with a fistpll.
318      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
319  }
320
321  if (isTargetFTOL()) {
322    // Use the _ftol2 runtime function, which has a pseudo-instruction
323    // to handle its weird calling convention.
324    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
325  }
326
327  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
328  if (!X86ScalarSSEf64) {
329    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
330    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
331    if (Subtarget->is64Bit()) {
332      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
333      // Without SSE, i64->f64 goes through memory.
334      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
335    }
336  }
337
338  // Scalar integer divide and remainder are lowered to use operations that
339  // produce two results, to match the available instructions. This exposes
340  // the two-result form to trivial CSE, which is able to combine x/y and x%y
341  // into a single instruction.
342  //
343  // Scalar integer multiply-high is also lowered to use two-result
344  // operations, to match the available instructions. However, plain multiply
345  // (low) operations are left as Legal, as there are single-result
346  // instructions for this in x86. Using the two-result multiply instructions
347  // when both high and low results are needed must be arranged by dagcombine.
348  for (unsigned i = 0, e = 4; i != e; ++i) {
349    MVT VT = IntVTs[i];
350    setOperationAction(ISD::MULHS, VT, Expand);
351    setOperationAction(ISD::MULHU, VT, Expand);
352    setOperationAction(ISD::SDIV, VT, Expand);
353    setOperationAction(ISD::UDIV, VT, Expand);
354    setOperationAction(ISD::SREM, VT, Expand);
355    setOperationAction(ISD::UREM, VT, Expand);
356
357    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
358    setOperationAction(ISD::ADDC, VT, Custom);
359    setOperationAction(ISD::ADDE, VT, Custom);
360    setOperationAction(ISD::SUBC, VT, Custom);
361    setOperationAction(ISD::SUBE, VT, Custom);
362  }
363
364  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
365  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
366  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
367  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
368  if (Subtarget->is64Bit())
369    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
373  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
377  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
378
379  // Promote the i8 variants and force them on up to i32 which has a shorter
380  // encoding.
381  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
382  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
383  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
384  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
385  if (Subtarget->hasBMI()) {
386    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
387    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
388    if (Subtarget->is64Bit())
389      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
390  } else {
391    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
392    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
393    if (Subtarget->is64Bit())
394      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
395  }
396
397  if (Subtarget->hasLZCNT()) {
398    // When promoting the i8 variants, force them to i32 for a shorter
399    // encoding.
400    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
401    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
402    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
403    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
404    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
405    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
406    if (Subtarget->is64Bit())
407      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
408  } else {
409    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
410    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
411    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
412    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
413    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
415    if (Subtarget->is64Bit()) {
416      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
417      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
418    }
419  }
420
421  if (Subtarget->hasPOPCNT()) {
422    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
423  } else {
424    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
425    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
426    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
427    if (Subtarget->is64Bit())
428      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
429  }
430
431  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
432  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
433
434  // These should be promoted to a larger select which is supported.
435  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
436  // X86 wants to expand cmov itself.
437  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
438  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
439  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
440  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
444  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
446  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
449  if (Subtarget->is64Bit()) {
450    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
451    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
452  }
453  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
454
455  // Darwin ABI issue.
456  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
457  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
458  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
459  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
460  if (Subtarget->is64Bit())
461    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
462  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
463  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
464  if (Subtarget->is64Bit()) {
465    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
466    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
467    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
468    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
469    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
470  }
471  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
472  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
473  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
474  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
475  if (Subtarget->is64Bit()) {
476    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
477    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
478    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
479  }
480
481  if (Subtarget->hasSSE1())
482    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
483
484  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
485  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
486
487  // On X86 and X86-64, atomic operations are lowered to locked instructions.
488  // Locked instructions, in turn, have implicit fence semantics (all memory
489  // operations are flushed before issuing the locked instruction, and they
490  // are not buffered), so we can fold away the common pattern of
491  // fence-atomic-fence.
492  setShouldFoldAtomicFences(true);
493
494  // Expand certain atomics
495  for (unsigned i = 0, e = 4; i != e; ++i) {
496    MVT VT = IntVTs[i];
497    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
498    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
499    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
500  }
501
502  if (!Subtarget->is64Bit()) {
503    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
511  }
512
513  if (Subtarget->hasCmpxchg16b()) {
514    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
515  }
516
517  // FIXME - use subtarget debug flags
518  if (!Subtarget->isTargetDarwin() &&
519      !Subtarget->isTargetELF() &&
520      !Subtarget->isTargetCygMing()) {
521    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
522  }
523
524  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
525  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
526  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
527  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
528  if (Subtarget->is64Bit()) {
529    setExceptionPointerRegister(X86::RAX);
530    setExceptionSelectorRegister(X86::RDX);
531  } else {
532    setExceptionPointerRegister(X86::EAX);
533    setExceptionSelectorRegister(X86::EDX);
534  }
535  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
536  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
537
538  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
539  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
540
541  setOperationAction(ISD::TRAP, MVT::Other, Legal);
542
543  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
544  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
545  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
546  if (Subtarget->is64Bit()) {
547    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
548    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
549  } else {
550    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
551    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
552  }
553
554  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
555  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
556
557  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
558    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
559                       MVT::i64 : MVT::i32, Custom);
560  else if (TM.Options.EnableSegmentedStacks)
561    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
562                       MVT::i64 : MVT::i32, Custom);
563  else
564    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565                       MVT::i64 : MVT::i32, Expand);
566
567  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
568    // f32 and f64 use SSE.
569    // Set up the FP register classes.
570    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
571    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
572
573    // Use ANDPD to simulate FABS.
574    setOperationAction(ISD::FABS , MVT::f64, Custom);
575    setOperationAction(ISD::FABS , MVT::f32, Custom);
576
577    // Use XORP to simulate FNEG.
578    setOperationAction(ISD::FNEG , MVT::f64, Custom);
579    setOperationAction(ISD::FNEG , MVT::f32, Custom);
580
581    // Use ANDPD and ORPD to simulate FCOPYSIGN.
582    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
583    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
584
585    // Lower this to FGETSIGNx86 plus an AND.
586    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
587    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
588
589    // We don't support sin/cos/fmod
590    setOperationAction(ISD::FSIN , MVT::f64, Expand);
591    setOperationAction(ISD::FCOS , MVT::f64, Expand);
592    setOperationAction(ISD::FSIN , MVT::f32, Expand);
593    setOperationAction(ISD::FCOS , MVT::f32, Expand);
594
595    // Expand FP immediates into loads from the stack, except for the special
596    // cases we handle.
597    addLegalFPImmediate(APFloat(+0.0)); // xorpd
598    addLegalFPImmediate(APFloat(+0.0f)); // xorps
599  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
600    // Use SSE for f32, x87 for f64.
601    // Set up the FP register classes.
602    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
603    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
604
605    // Use ANDPS to simulate FABS.
606    setOperationAction(ISD::FABS , MVT::f32, Custom);
607
608    // Use XORP to simulate FNEG.
609    setOperationAction(ISD::FNEG , MVT::f32, Custom);
610
611    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
612
613    // Use ANDPS and ORPS to simulate FCOPYSIGN.
614    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
615    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
616
617    // We don't support sin/cos/fmod
618    setOperationAction(ISD::FSIN , MVT::f32, Expand);
619    setOperationAction(ISD::FCOS , MVT::f32, Expand);
620
621    // Special cases we handle for FP constants.
622    addLegalFPImmediate(APFloat(+0.0f)); // xorps
623    addLegalFPImmediate(APFloat(+0.0)); // FLD0
624    addLegalFPImmediate(APFloat(+1.0)); // FLD1
625    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
626    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
627
628    if (!TM.Options.UnsafeFPMath) {
629      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
630      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
631    }
632  } else if (!TM.Options.UseSoftFloat) {
633    // f32 and f64 in x87.
634    // Set up the FP register classes.
635    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
636    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
637
638    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
639    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
640    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
641    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
642
643    if (!TM.Options.UnsafeFPMath) {
644      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
645      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
646    }
647    addLegalFPImmediate(APFloat(+0.0)); // FLD0
648    addLegalFPImmediate(APFloat(+1.0)); // FLD1
649    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
650    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
651    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
652    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
653    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
654    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
655  }
656
657  // We don't support FMA.
658  setOperationAction(ISD::FMA, MVT::f64, Expand);
659  setOperationAction(ISD::FMA, MVT::f32, Expand);
660
661  // Long double always uses X87.
662  if (!TM.Options.UseSoftFloat) {
663    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
664    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
665    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
666    {
667      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
668      addLegalFPImmediate(TmpFlt);  // FLD0
669      TmpFlt.changeSign();
670      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
671
672      bool ignored;
673      APFloat TmpFlt2(+1.0);
674      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
675                      &ignored);
676      addLegalFPImmediate(TmpFlt2);  // FLD1
677      TmpFlt2.changeSign();
678      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
679    }
680
681    if (!TM.Options.UnsafeFPMath) {
682      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
683      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
684    }
685
686    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
687    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
688    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
689    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
690    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
691    setOperationAction(ISD::FMA, MVT::f80, Expand);
692  }
693
694  // Always use a library call for pow.
695  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
696  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
697  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
698
699  setOperationAction(ISD::FLOG, MVT::f80, Expand);
700  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
701  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
702  setOperationAction(ISD::FEXP, MVT::f80, Expand);
703  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
704
705  // First set operation action for all vector types to either promote
706  // (for widening) or expand (for scalarization). Then we will selectively
707  // turn on ones that can be effectively codegen'd.
708  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
709       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
710    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
725    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
728    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
762    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
767    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
768         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
769      setTruncStoreAction((MVT::SimpleValueType)VT,
770                          (MVT::SimpleValueType)InnerVT, Expand);
771    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
772    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
773    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
774  }
775
776  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
777  // with -msoft-float, disable use of MMX as well.
778  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
779    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
780    // No operations on x86mmx supported, everything uses intrinsics.
781  }
782
783  // MMX-sized vectors (other than x86mmx) are expected to be expanded
784  // into smaller operations.
785  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
786  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
787  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
788  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
789  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
790  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
791  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
792  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
793  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
794  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
795  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
796  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
797  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
798  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
799  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
800  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
801  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
802  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
803  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
805  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
806  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
807  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
808  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
809  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
810  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
811  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
812  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
814
815  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
816    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
817
818    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
819    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
820    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
821    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
823    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
824    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
825    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
826    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
827    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
828    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
829    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
830  }
831
832  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
833    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
834
835    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
836    // registers cannot be used even for integer operations.
837    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
838    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
839    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
840    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
841
842    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
843    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
844    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
845    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
846    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
847    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
848    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
849    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
850    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
851    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
852    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
853    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
854    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
857    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
858
859    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
860    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
861    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
862    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
863
864    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
865    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
866    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
867    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
869
870    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
871    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
872    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
875
876    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
877    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
878      EVT VT = (MVT::SimpleValueType)i;
879      // Do not attempt to custom lower non-power-of-2 vectors
880      if (!isPowerOf2_32(VT.getVectorNumElements()))
881        continue;
882      // Do not attempt to custom lower non-128-bit vectors
883      if (!VT.is128BitVector())
884        continue;
885      setOperationAction(ISD::BUILD_VECTOR,
886                         VT.getSimpleVT().SimpleTy, Custom);
887      setOperationAction(ISD::VECTOR_SHUFFLE,
888                         VT.getSimpleVT().SimpleTy, Custom);
889      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
890                         VT.getSimpleVT().SimpleTy, Custom);
891    }
892
893    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
894    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
895    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
896    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
897    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
898    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
899
900    if (Subtarget->is64Bit()) {
901      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
902      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
903    }
904
905    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
906    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
907      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
908      EVT VT = SVT;
909
910      // Do not attempt to promote non-128-bit vectors
911      if (!VT.is128BitVector())
912        continue;
913
914      setOperationAction(ISD::AND,    SVT, Promote);
915      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
916      setOperationAction(ISD::OR,     SVT, Promote);
917      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
918      setOperationAction(ISD::XOR,    SVT, Promote);
919      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
920      setOperationAction(ISD::LOAD,   SVT, Promote);
921      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
922      setOperationAction(ISD::SELECT, SVT, Promote);
923      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
924    }
925
926    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
927
928    // Custom lower v2i64 and v2f64 selects.
929    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
930    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
931    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
932    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
933
934    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
935    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
936  }
937
938  if (Subtarget->hasSSE41()) {
939    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
940    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
941    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
942    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
943    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
944    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
945    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
946    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
947    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
948    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
949
950    // FIXME: Do we need to handle scalar-to-vector here?
951    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
952
953    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
954    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
955    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
956    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
958
959    // i8 and i16 vectors are custom , because the source register and source
960    // source memory operand types are not the same width.  f32 vectors are
961    // custom since the immediate controlling the insert encodes additional
962    // information.
963    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
967
968    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
969    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
970    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
972
973    // FIXME: these should be Legal but thats only for the case where
974    // the index is constant.  For now custom expand to deal with that.
975    if (Subtarget->is64Bit()) {
976      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
977      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
978    }
979  }
980
981  if (Subtarget->hasSSE2()) {
982    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
983    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
984
985    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
986    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
987
988    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
989    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
990
991    if (Subtarget->hasAVX2()) {
992      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
993      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
994
995      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
996      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
997
998      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
999    } else {
1000      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1001      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1002
1003      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1004      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1005
1006      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1007    }
1008  }
1009
1010  if (Subtarget->hasSSE42())
1011    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1012
1013  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1014    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1015    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1016    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1017    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1018    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1019    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1020
1021    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1023    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1024
1025    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1026    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1027    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1030    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1031
1032    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1033    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1034    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1035    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1037    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1038
1039    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1040    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1041    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1042
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1045    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1048    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1049
1050    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1051    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1052
1053    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1054    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1055
1056    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1057    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1058
1059    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1060    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1061    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1063
1064    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1065    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1066    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1067
1068    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1069    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1070    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1072
1073    if (Subtarget->hasAVX2()) {
1074      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1075      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1076      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1077      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1078
1079      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1080      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1081      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1082      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1083
1084      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1085      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1086      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1087      // Don't lower v32i8 because there is no 128-bit byte mul
1088
1089      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1090
1091      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1092      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1093
1094      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1095      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1096
1097      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1098    } else {
1099      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1100      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1101      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1102      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1103
1104      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1105      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1106      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1107      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1108
1109      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1110      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1111      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1112      // Don't lower v32i8 because there is no 128-bit byte mul
1113
1114      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1115      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1116
1117      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1118      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1119
1120      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1121    }
1122
1123    // Custom lower several nodes for 256-bit types.
1124    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1125                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1126      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1127      EVT VT = SVT;
1128
1129      // Extract subvector is special because the value type
1130      // (result) is 128-bit but the source is 256-bit wide.
1131      if (VT.is128BitVector())
1132        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1133
1134      // Do not attempt to custom lower other non-256-bit vectors
1135      if (!VT.is256BitVector())
1136        continue;
1137
1138      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1139      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1140      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1141      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1142      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1143      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1144    }
1145
1146    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1147    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1148      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1149      EVT VT = SVT;
1150
1151      // Do not attempt to promote non-256-bit vectors
1152      if (!VT.is256BitVector())
1153        continue;
1154
1155      setOperationAction(ISD::AND,    SVT, Promote);
1156      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1157      setOperationAction(ISD::OR,     SVT, Promote);
1158      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1159      setOperationAction(ISD::XOR,    SVT, Promote);
1160      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1161      setOperationAction(ISD::LOAD,   SVT, Promote);
1162      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1163      setOperationAction(ISD::SELECT, SVT, Promote);
1164      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1165    }
1166  }
1167
1168  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1169  // of this type with custom code.
1170  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1171         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1172    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1173                       Custom);
1174  }
1175
1176  // We want to custom lower some of our intrinsics.
1177  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1178
1179
1180  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1181  // handle type legalization for these operations here.
1182  //
1183  // FIXME: We really should do custom legalization for addition and
1184  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1185  // than generic legalization for 64-bit multiplication-with-overflow, though.
1186  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1187    // Add/Sub/Mul with overflow operations are custom lowered.
1188    MVT VT = IntVTs[i];
1189    setOperationAction(ISD::SADDO, VT, Custom);
1190    setOperationAction(ISD::UADDO, VT, Custom);
1191    setOperationAction(ISD::SSUBO, VT, Custom);
1192    setOperationAction(ISD::USUBO, VT, Custom);
1193    setOperationAction(ISD::SMULO, VT, Custom);
1194    setOperationAction(ISD::UMULO, VT, Custom);
1195  }
1196
1197  // There are no 8-bit 3-address imul/mul instructions
1198  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1199  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1200
1201  if (!Subtarget->is64Bit()) {
1202    // These libcalls are not available in 32-bit.
1203    setLibcallName(RTLIB::SHL_I128, 0);
1204    setLibcallName(RTLIB::SRL_I128, 0);
1205    setLibcallName(RTLIB::SRA_I128, 0);
1206  }
1207
1208  // We have target-specific dag combine patterns for the following nodes:
1209  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1210  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1211  setTargetDAGCombine(ISD::VSELECT);
1212  setTargetDAGCombine(ISD::SELECT);
1213  setTargetDAGCombine(ISD::SHL);
1214  setTargetDAGCombine(ISD::SRA);
1215  setTargetDAGCombine(ISD::SRL);
1216  setTargetDAGCombine(ISD::OR);
1217  setTargetDAGCombine(ISD::AND);
1218  setTargetDAGCombine(ISD::ADD);
1219  setTargetDAGCombine(ISD::FADD);
1220  setTargetDAGCombine(ISD::FSUB);
1221  setTargetDAGCombine(ISD::SUB);
1222  setTargetDAGCombine(ISD::LOAD);
1223  setTargetDAGCombine(ISD::STORE);
1224  setTargetDAGCombine(ISD::ZERO_EXTEND);
1225  setTargetDAGCombine(ISD::SIGN_EXTEND);
1226  setTargetDAGCombine(ISD::TRUNCATE);
1227  setTargetDAGCombine(ISD::SINT_TO_FP);
1228  if (Subtarget->is64Bit())
1229    setTargetDAGCombine(ISD::MUL);
1230  if (Subtarget->hasBMI())
1231    setTargetDAGCombine(ISD::XOR);
1232
1233  computeRegisterProperties();
1234
1235  // On Darwin, -Os means optimize for size without hurting performance,
1236  // do not reduce the limit.
1237  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243  setPrefLoopAlignment(4); // 2^4 bytes.
1244  benefitFromCodePlacementOpt = true;
1245
1246  setPrefFunctionAlignment(4); // 2^4 bytes.
1247}
1248
1249
1250EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1251  if (!VT.isVector()) return MVT::i8;
1252  return VT.changeVectorElementTypeToInteger();
1253}
1254
1255
1256/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1257/// the desired ByVal argument alignment.
1258static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1259  if (MaxAlign == 16)
1260    return;
1261  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1262    if (VTy->getBitWidth() == 128)
1263      MaxAlign = 16;
1264  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1265    unsigned EltAlign = 0;
1266    getMaxByValAlign(ATy->getElementType(), EltAlign);
1267    if (EltAlign > MaxAlign)
1268      MaxAlign = EltAlign;
1269  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1270    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1271      unsigned EltAlign = 0;
1272      getMaxByValAlign(STy->getElementType(i), EltAlign);
1273      if (EltAlign > MaxAlign)
1274        MaxAlign = EltAlign;
1275      if (MaxAlign == 16)
1276        break;
1277    }
1278  }
1279  return;
1280}
1281
1282/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1283/// function arguments in the caller parameter area. For X86, aggregates
1284/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1285/// are at 4-byte boundaries.
1286unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1287  if (Subtarget->is64Bit()) {
1288    // Max of 8 and alignment of type.
1289    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1290    if (TyAlign > 8)
1291      return TyAlign;
1292    return 8;
1293  }
1294
1295  unsigned Align = 4;
1296  if (Subtarget->hasSSE1())
1297    getMaxByValAlign(Ty, Align);
1298  return Align;
1299}
1300
1301/// getOptimalMemOpType - Returns the target specific optimal type for load
1302/// and store operations as a result of memset, memcpy, and memmove
1303/// lowering. If DstAlign is zero that means it's safe to destination
1304/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1305/// means there isn't a need to check it against alignment requirement,
1306/// probably because the source does not need to be loaded. If
1307/// 'IsZeroVal' is true, that means it's safe to return a
1308/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1309/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1310/// constant so it does not need to be loaded.
1311/// It returns EVT::Other if the type should be determined using generic
1312/// target-independent logic.
1313EVT
1314X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1315                                       unsigned DstAlign, unsigned SrcAlign,
1316                                       bool IsZeroVal,
1317                                       bool MemcpyStrSrc,
1318                                       MachineFunction &MF) const {
1319  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1320  // linux.  This is because the stack realignment code can't handle certain
1321  // cases like PR2962.  This should be removed when PR2962 is fixed.
1322  const Function *F = MF.getFunction();
1323  if (IsZeroVal &&
1324      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1325    if (Size >= 16 &&
1326        (Subtarget->isUnalignedMemAccessFast() ||
1327         ((DstAlign == 0 || DstAlign >= 16) &&
1328          (SrcAlign == 0 || SrcAlign >= 16))) &&
1329        Subtarget->getStackAlignment() >= 16) {
1330      if (Subtarget->getStackAlignment() >= 32) {
1331        if (Subtarget->hasAVX2())
1332          return MVT::v8i32;
1333        if (Subtarget->hasAVX())
1334          return MVT::v8f32;
1335      }
1336      if (Subtarget->hasSSE2())
1337        return MVT::v4i32;
1338      if (Subtarget->hasSSE1())
1339        return MVT::v4f32;
1340    } else if (!MemcpyStrSrc && Size >= 8 &&
1341               !Subtarget->is64Bit() &&
1342               Subtarget->getStackAlignment() >= 8 &&
1343               Subtarget->hasSSE2()) {
1344      // Do not use f64 to lower memcpy if source is string constant. It's
1345      // better to use i32 to avoid the loads.
1346      return MVT::f64;
1347    }
1348  }
1349  if (Subtarget->is64Bit() && Size >= 8)
1350    return MVT::i64;
1351  return MVT::i32;
1352}
1353
1354/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1355/// current function.  The returned value is a member of the
1356/// MachineJumpTableInfo::JTEntryKind enum.
1357unsigned X86TargetLowering::getJumpTableEncoding() const {
1358  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1359  // symbol.
1360  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1361      Subtarget->isPICStyleGOT())
1362    return MachineJumpTableInfo::EK_Custom32;
1363
1364  // Otherwise, use the normal jump table encoding heuristics.
1365  return TargetLowering::getJumpTableEncoding();
1366}
1367
1368const MCExpr *
1369X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1370                                             const MachineBasicBlock *MBB,
1371                                             unsigned uid,MCContext &Ctx) const{
1372  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1373         Subtarget->isPICStyleGOT());
1374  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1375  // entries.
1376  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1377                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1378}
1379
1380/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1381/// jumptable.
1382SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1383                                                    SelectionDAG &DAG) const {
1384  if (!Subtarget->is64Bit())
1385    // This doesn't have DebugLoc associated with it, but is not really the
1386    // same as a Register.
1387    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1388  return Table;
1389}
1390
1391/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1392/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1393/// MCExpr.
1394const MCExpr *X86TargetLowering::
1395getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1396                             MCContext &Ctx) const {
1397  // X86-64 uses RIP relative addressing based on the jump table label.
1398  if (Subtarget->isPICStyleRIPRel())
1399    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1400
1401  // Otherwise, the reference is relative to the PIC base.
1402  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1403}
1404
1405// FIXME: Why this routine is here? Move to RegInfo!
1406std::pair<const TargetRegisterClass*, uint8_t>
1407X86TargetLowering::findRepresentativeClass(EVT VT) const{
1408  const TargetRegisterClass *RRC = 0;
1409  uint8_t Cost = 1;
1410  switch (VT.getSimpleVT().SimpleTy) {
1411  default:
1412    return TargetLowering::findRepresentativeClass(VT);
1413  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1414    RRC = (Subtarget->is64Bit()
1415           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1416    break;
1417  case MVT::x86mmx:
1418    RRC = X86::VR64RegisterClass;
1419    break;
1420  case MVT::f32: case MVT::f64:
1421  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1422  case MVT::v4f32: case MVT::v2f64:
1423  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1424  case MVT::v4f64:
1425    RRC = X86::VR128RegisterClass;
1426    break;
1427  }
1428  return std::make_pair(RRC, Cost);
1429}
1430
1431bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1432                                               unsigned &Offset) const {
1433  if (!Subtarget->isTargetLinux())
1434    return false;
1435
1436  if (Subtarget->is64Bit()) {
1437    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1438    Offset = 0x28;
1439    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1440      AddressSpace = 256;
1441    else
1442      AddressSpace = 257;
1443  } else {
1444    // %gs:0x14 on i386
1445    Offset = 0x14;
1446    AddressSpace = 256;
1447  }
1448  return true;
1449}
1450
1451
1452//===----------------------------------------------------------------------===//
1453//               Return Value Calling Convention Implementation
1454//===----------------------------------------------------------------------===//
1455
1456#include "X86GenCallingConv.inc"
1457
1458bool
1459X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1460				  MachineFunction &MF, bool isVarArg,
1461                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1462                        LLVMContext &Context) const {
1463  SmallVector<CCValAssign, 16> RVLocs;
1464  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1465                 RVLocs, Context);
1466  return CCInfo.CheckReturn(Outs, RetCC_X86);
1467}
1468
1469SDValue
1470X86TargetLowering::LowerReturn(SDValue Chain,
1471                               CallingConv::ID CallConv, bool isVarArg,
1472                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1473                               const SmallVectorImpl<SDValue> &OutVals,
1474                               DebugLoc dl, SelectionDAG &DAG) const {
1475  MachineFunction &MF = DAG.getMachineFunction();
1476  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1477
1478  SmallVector<CCValAssign, 16> RVLocs;
1479  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1480                 RVLocs, *DAG.getContext());
1481  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1482
1483  // Add the regs to the liveout set for the function.
1484  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1485  for (unsigned i = 0; i != RVLocs.size(); ++i)
1486    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1487      MRI.addLiveOut(RVLocs[i].getLocReg());
1488
1489  SDValue Flag;
1490
1491  SmallVector<SDValue, 6> RetOps;
1492  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1493  // Operand #1 = Bytes To Pop
1494  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1495                   MVT::i16));
1496
1497  // Copy the result values into the output registers.
1498  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1499    CCValAssign &VA = RVLocs[i];
1500    assert(VA.isRegLoc() && "Can only return in registers!");
1501    SDValue ValToCopy = OutVals[i];
1502    EVT ValVT = ValToCopy.getValueType();
1503
1504    // If this is x86-64, and we disabled SSE, we can't return FP values,
1505    // or SSE or MMX vectors.
1506    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1507         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1508          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1509      report_fatal_error("SSE register return with SSE disabled");
1510    }
1511    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1512    // llvm-gcc has never done it right and no one has noticed, so this
1513    // should be OK for now.
1514    if (ValVT == MVT::f64 &&
1515        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1516      report_fatal_error("SSE2 register return with SSE2 disabled");
1517
1518    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1519    // the RET instruction and handled by the FP Stackifier.
1520    if (VA.getLocReg() == X86::ST0 ||
1521        VA.getLocReg() == X86::ST1) {
1522      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1523      // change the value to the FP stack register class.
1524      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1525        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1526      RetOps.push_back(ValToCopy);
1527      // Don't emit a copytoreg.
1528      continue;
1529    }
1530
1531    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1532    // which is returned in RAX / RDX.
1533    if (Subtarget->is64Bit()) {
1534      if (ValVT == MVT::x86mmx) {
1535        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1536          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1537          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1538                                  ValToCopy);
1539          // If we don't have SSE2 available, convert to v4f32 so the generated
1540          // register is legal.
1541          if (!Subtarget->hasSSE2())
1542            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1543        }
1544      }
1545    }
1546
1547    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1548    Flag = Chain.getValue(1);
1549  }
1550
1551  // The x86-64 ABI for returning structs by value requires that we copy
1552  // the sret argument into %rax for the return. We saved the argument into
1553  // a virtual register in the entry block, so now we copy the value out
1554  // and into %rax.
1555  if (Subtarget->is64Bit() &&
1556      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1557    MachineFunction &MF = DAG.getMachineFunction();
1558    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1559    unsigned Reg = FuncInfo->getSRetReturnReg();
1560    assert(Reg &&
1561           "SRetReturnReg should have been set in LowerFormalArguments().");
1562    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1563
1564    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1565    Flag = Chain.getValue(1);
1566
1567    // RAX now acts like a return value.
1568    MRI.addLiveOut(X86::RAX);
1569  }
1570
1571  RetOps[0] = Chain;  // Update chain.
1572
1573  // Add the flag if we have it.
1574  if (Flag.getNode())
1575    RetOps.push_back(Flag);
1576
1577  return DAG.getNode(X86ISD::RET_FLAG, dl,
1578                     MVT::Other, &RetOps[0], RetOps.size());
1579}
1580
1581bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1582  if (N->getNumValues() != 1)
1583    return false;
1584  if (!N->hasNUsesOfValue(1, 0))
1585    return false;
1586
1587  SDNode *Copy = *N->use_begin();
1588  if (Copy->getOpcode() == ISD::CopyToReg) {
1589    // If the copy has a glue operand, we conservatively assume it isn't safe to
1590    // perform a tail call.
1591    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1592      return false;
1593  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1594    return false;
1595
1596  bool HasRet = false;
1597  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1598       UI != UE; ++UI) {
1599    if (UI->getOpcode() != X86ISD::RET_FLAG)
1600      return false;
1601    HasRet = true;
1602  }
1603
1604  return HasRet;
1605}
1606
1607EVT
1608X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1609                                            ISD::NodeType ExtendKind) const {
1610  MVT ReturnMVT;
1611  // TODO: Is this also valid on 32-bit?
1612  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1613    ReturnMVT = MVT::i8;
1614  else
1615    ReturnMVT = MVT::i32;
1616
1617  EVT MinVT = getRegisterType(Context, ReturnMVT);
1618  return VT.bitsLT(MinVT) ? MinVT : VT;
1619}
1620
1621/// LowerCallResult - Lower the result values of a call into the
1622/// appropriate copies out of appropriate physical registers.
1623///
1624SDValue
1625X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1626                                   CallingConv::ID CallConv, bool isVarArg,
1627                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1628                                   DebugLoc dl, SelectionDAG &DAG,
1629                                   SmallVectorImpl<SDValue> &InVals) const {
1630
1631  // Assign locations to each value returned by this call.
1632  SmallVector<CCValAssign, 16> RVLocs;
1633  bool Is64Bit = Subtarget->is64Bit();
1634  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1635		 getTargetMachine(), RVLocs, *DAG.getContext());
1636  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1637
1638  // Copy all of the result registers out of their specified physreg.
1639  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1640    CCValAssign &VA = RVLocs[i];
1641    EVT CopyVT = VA.getValVT();
1642
1643    // If this is x86-64, and we disabled SSE, we can't return FP values
1644    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1645        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1646      report_fatal_error("SSE register return with SSE disabled");
1647    }
1648
1649    SDValue Val;
1650
1651    // If this is a call to a function that returns an fp value on the floating
1652    // point stack, we must guarantee the the value is popped from the stack, so
1653    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1654    // if the return value is not used. We use the FpPOP_RETVAL instruction
1655    // instead.
1656    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1657      // If we prefer to use the value in xmm registers, copy it out as f80 and
1658      // use a truncate to move it from fp stack reg to xmm reg.
1659      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1660      SDValue Ops[] = { Chain, InFlag };
1661      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1662                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1663      Val = Chain.getValue(0);
1664
1665      // Round the f80 to the right size, which also moves it to the appropriate
1666      // xmm register.
1667      if (CopyVT != VA.getValVT())
1668        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1669                          // This truncation won't change the value.
1670                          DAG.getIntPtrConstant(1));
1671    } else {
1672      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1673                                 CopyVT, InFlag).getValue(1);
1674      Val = Chain.getValue(0);
1675    }
1676    InFlag = Chain.getValue(2);
1677    InVals.push_back(Val);
1678  }
1679
1680  return Chain;
1681}
1682
1683
1684//===----------------------------------------------------------------------===//
1685//                C & StdCall & Fast Calling Convention implementation
1686//===----------------------------------------------------------------------===//
1687//  StdCall calling convention seems to be standard for many Windows' API
1688//  routines and around. It differs from C calling convention just a little:
1689//  callee should clean up the stack, not caller. Symbols should be also
1690//  decorated in some fancy way :) It doesn't support any vector arguments.
1691//  For info on fast calling convention see Fast Calling Convention (tail call)
1692//  implementation LowerX86_32FastCCCallTo.
1693
1694/// CallIsStructReturn - Determines whether a call uses struct return
1695/// semantics.
1696static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1697  if (Outs.empty())
1698    return false;
1699
1700  return Outs[0].Flags.isSRet();
1701}
1702
1703/// ArgsAreStructReturn - Determines whether a function uses struct
1704/// return semantics.
1705static bool
1706ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1707  if (Ins.empty())
1708    return false;
1709
1710  return Ins[0].Flags.isSRet();
1711}
1712
1713/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1714/// by "Src" to address "Dst" with size and alignment information specified by
1715/// the specific parameter attribute. The copy will be passed as a byval
1716/// function parameter.
1717static SDValue
1718CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1719                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1720                          DebugLoc dl) {
1721  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1722
1723  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1724                       /*isVolatile*/false, /*AlwaysInline=*/true,
1725                       MachinePointerInfo(), MachinePointerInfo());
1726}
1727
1728/// IsTailCallConvention - Return true if the calling convention is one that
1729/// supports tail call optimization.
1730static bool IsTailCallConvention(CallingConv::ID CC) {
1731  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1732}
1733
1734bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1735  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1736    return false;
1737
1738  CallSite CS(CI);
1739  CallingConv::ID CalleeCC = CS.getCallingConv();
1740  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1741    return false;
1742
1743  return true;
1744}
1745
1746/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1747/// a tailcall target by changing its ABI.
1748static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1749                                   bool GuaranteedTailCallOpt) {
1750  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1751}
1752
1753SDValue
1754X86TargetLowering::LowerMemArgument(SDValue Chain,
1755                                    CallingConv::ID CallConv,
1756                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1757                                    DebugLoc dl, SelectionDAG &DAG,
1758                                    const CCValAssign &VA,
1759                                    MachineFrameInfo *MFI,
1760                                    unsigned i) const {
1761  // Create the nodes corresponding to a load from this parameter slot.
1762  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1763  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1764                              getTargetMachine().Options.GuaranteedTailCallOpt);
1765  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1766  EVT ValVT;
1767
1768  // If value is passed by pointer we have address passed instead of the value
1769  // itself.
1770  if (VA.getLocInfo() == CCValAssign::Indirect)
1771    ValVT = VA.getLocVT();
1772  else
1773    ValVT = VA.getValVT();
1774
1775  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1776  // changed with more analysis.
1777  // In case of tail call optimization mark all arguments mutable. Since they
1778  // could be overwritten by lowering of arguments in case of a tail call.
1779  if (Flags.isByVal()) {
1780    unsigned Bytes = Flags.getByValSize();
1781    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1782    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1783    return DAG.getFrameIndex(FI, getPointerTy());
1784  } else {
1785    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1786                                    VA.getLocMemOffset(), isImmutable);
1787    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1788    return DAG.getLoad(ValVT, dl, Chain, FIN,
1789                       MachinePointerInfo::getFixedStack(FI),
1790                       false, false, false, 0);
1791  }
1792}
1793
1794SDValue
1795X86TargetLowering::LowerFormalArguments(SDValue Chain,
1796                                        CallingConv::ID CallConv,
1797                                        bool isVarArg,
1798                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1799                                        DebugLoc dl,
1800                                        SelectionDAG &DAG,
1801                                        SmallVectorImpl<SDValue> &InVals)
1802                                          const {
1803  MachineFunction &MF = DAG.getMachineFunction();
1804  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1805
1806  const Function* Fn = MF.getFunction();
1807  if (Fn->hasExternalLinkage() &&
1808      Subtarget->isTargetCygMing() &&
1809      Fn->getName() == "main")
1810    FuncInfo->setForceFramePointer(true);
1811
1812  MachineFrameInfo *MFI = MF.getFrameInfo();
1813  bool Is64Bit = Subtarget->is64Bit();
1814  bool IsWindows = Subtarget->isTargetWindows();
1815  bool IsWin64 = Subtarget->isTargetWin64();
1816
1817  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1818         "Var args not supported with calling convention fastcc or ghc");
1819
1820  // Assign locations to all of the incoming arguments.
1821  SmallVector<CCValAssign, 16> ArgLocs;
1822  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1823                 ArgLocs, *DAG.getContext());
1824
1825  // Allocate shadow area for Win64
1826  if (IsWin64) {
1827    CCInfo.AllocateStack(32, 8);
1828  }
1829
1830  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1831
1832  unsigned LastVal = ~0U;
1833  SDValue ArgValue;
1834  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1835    CCValAssign &VA = ArgLocs[i];
1836    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1837    // places.
1838    assert(VA.getValNo() != LastVal &&
1839           "Don't support value assigned to multiple locs yet");
1840    (void)LastVal;
1841    LastVal = VA.getValNo();
1842
1843    if (VA.isRegLoc()) {
1844      EVT RegVT = VA.getLocVT();
1845      const TargetRegisterClass *RC;
1846      if (RegVT == MVT::i32)
1847        RC = X86::GR32RegisterClass;
1848      else if (Is64Bit && RegVT == MVT::i64)
1849        RC = X86::GR64RegisterClass;
1850      else if (RegVT == MVT::f32)
1851        RC = X86::FR32RegisterClass;
1852      else if (RegVT == MVT::f64)
1853        RC = X86::FR64RegisterClass;
1854      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1855        RC = X86::VR256RegisterClass;
1856      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1857        RC = X86::VR128RegisterClass;
1858      else if (RegVT == MVT::x86mmx)
1859        RC = X86::VR64RegisterClass;
1860      else
1861        llvm_unreachable("Unknown argument type!");
1862
1863      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1864      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1865
1866      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1867      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1868      // right size.
1869      if (VA.getLocInfo() == CCValAssign::SExt)
1870        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1871                               DAG.getValueType(VA.getValVT()));
1872      else if (VA.getLocInfo() == CCValAssign::ZExt)
1873        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1874                               DAG.getValueType(VA.getValVT()));
1875      else if (VA.getLocInfo() == CCValAssign::BCvt)
1876        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1877
1878      if (VA.isExtInLoc()) {
1879        // Handle MMX values passed in XMM regs.
1880        if (RegVT.isVector()) {
1881          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1882                                 ArgValue);
1883        } else
1884          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1885      }
1886    } else {
1887      assert(VA.isMemLoc());
1888      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1889    }
1890
1891    // If value is passed via pointer - do a load.
1892    if (VA.getLocInfo() == CCValAssign::Indirect)
1893      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1894                             MachinePointerInfo(), false, false, false, 0);
1895
1896    InVals.push_back(ArgValue);
1897  }
1898
1899  // The x86-64 ABI for returning structs by value requires that we copy
1900  // the sret argument into %rax for the return. Save the argument into
1901  // a virtual register so that we can access it from the return points.
1902  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1903    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1904    unsigned Reg = FuncInfo->getSRetReturnReg();
1905    if (!Reg) {
1906      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1907      FuncInfo->setSRetReturnReg(Reg);
1908    }
1909    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1910    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1911  }
1912
1913  unsigned StackSize = CCInfo.getNextStackOffset();
1914  // Align stack specially for tail calls.
1915  if (FuncIsMadeTailCallSafe(CallConv,
1916                             MF.getTarget().Options.GuaranteedTailCallOpt))
1917    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1918
1919  // If the function takes variable number of arguments, make a frame index for
1920  // the start of the first vararg value... for expansion of llvm.va_start.
1921  if (isVarArg) {
1922    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1923                    CallConv != CallingConv::X86_ThisCall)) {
1924      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1925    }
1926    if (Is64Bit) {
1927      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1928
1929      // FIXME: We should really autogenerate these arrays
1930      static const uint16_t GPR64ArgRegsWin64[] = {
1931        X86::RCX, X86::RDX, X86::R8,  X86::R9
1932      };
1933      static const uint16_t GPR64ArgRegs64Bit[] = {
1934        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1935      };
1936      static const uint16_t XMMArgRegs64Bit[] = {
1937        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1938        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1939      };
1940      const uint16_t *GPR64ArgRegs;
1941      unsigned NumXMMRegs = 0;
1942
1943      if (IsWin64) {
1944        // The XMM registers which might contain var arg parameters are shadowed
1945        // in their paired GPR.  So we only need to save the GPR to their home
1946        // slots.
1947        TotalNumIntRegs = 4;
1948        GPR64ArgRegs = GPR64ArgRegsWin64;
1949      } else {
1950        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1951        GPR64ArgRegs = GPR64ArgRegs64Bit;
1952
1953        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1954                                                TotalNumXMMRegs);
1955      }
1956      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1957                                                       TotalNumIntRegs);
1958
1959      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1960      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1961             "SSE register cannot be used when SSE is disabled!");
1962      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1963               NoImplicitFloatOps) &&
1964             "SSE register cannot be used when SSE is disabled!");
1965      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1966          !Subtarget->hasSSE1())
1967        // Kernel mode asks for SSE to be disabled, so don't push them
1968        // on the stack.
1969        TotalNumXMMRegs = 0;
1970
1971      if (IsWin64) {
1972        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1973        // Get to the caller-allocated home save location.  Add 8 to account
1974        // for the return address.
1975        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1976        FuncInfo->setRegSaveFrameIndex(
1977          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1978        // Fixup to set vararg frame on shadow area (4 x i64).
1979        if (NumIntRegs < 4)
1980          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1981      } else {
1982        // For X86-64, if there are vararg parameters that are passed via
1983        // registers, then we must store them to their spots on the stack so
1984        // they may be loaded by deferencing the result of va_next.
1985        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1986        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1987        FuncInfo->setRegSaveFrameIndex(
1988          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1989                               false));
1990      }
1991
1992      // Store the integer parameter registers.
1993      SmallVector<SDValue, 8> MemOps;
1994      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1995                                        getPointerTy());
1996      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1997      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1998        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1999                                  DAG.getIntPtrConstant(Offset));
2000        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2001                                     X86::GR64RegisterClass);
2002        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2003        SDValue Store =
2004          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2005                       MachinePointerInfo::getFixedStack(
2006                         FuncInfo->getRegSaveFrameIndex(), Offset),
2007                       false, false, 0);
2008        MemOps.push_back(Store);
2009        Offset += 8;
2010      }
2011
2012      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2013        // Now store the XMM (fp + vector) parameter registers.
2014        SmallVector<SDValue, 11> SaveXMMOps;
2015        SaveXMMOps.push_back(Chain);
2016
2017        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2018        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2019        SaveXMMOps.push_back(ALVal);
2020
2021        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2022                               FuncInfo->getRegSaveFrameIndex()));
2023        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2024                               FuncInfo->getVarArgsFPOffset()));
2025
2026        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2027          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2028                                       X86::VR128RegisterClass);
2029          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2030          SaveXMMOps.push_back(Val);
2031        }
2032        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2033                                     MVT::Other,
2034                                     &SaveXMMOps[0], SaveXMMOps.size()));
2035      }
2036
2037      if (!MemOps.empty())
2038        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2039                            &MemOps[0], MemOps.size());
2040    }
2041  }
2042
2043  // Some CCs need callee pop.
2044  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2045                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2046    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2047  } else {
2048    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2049    // If this is an sret function, the return should pop the hidden pointer.
2050    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2051        ArgsAreStructReturn(Ins))
2052      FuncInfo->setBytesToPopOnReturn(4);
2053  }
2054
2055  if (!Is64Bit) {
2056    // RegSaveFrameIndex is X86-64 only.
2057    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2058    if (CallConv == CallingConv::X86_FastCall ||
2059        CallConv == CallingConv::X86_ThisCall)
2060      // fastcc functions can't have varargs.
2061      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2062  }
2063
2064  FuncInfo->setArgumentStackSize(StackSize);
2065
2066  return Chain;
2067}
2068
2069SDValue
2070X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2071                                    SDValue StackPtr, SDValue Arg,
2072                                    DebugLoc dl, SelectionDAG &DAG,
2073                                    const CCValAssign &VA,
2074                                    ISD::ArgFlagsTy Flags) const {
2075  unsigned LocMemOffset = VA.getLocMemOffset();
2076  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2077  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2078  if (Flags.isByVal())
2079    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2080
2081  return DAG.getStore(Chain, dl, Arg, PtrOff,
2082                      MachinePointerInfo::getStack(LocMemOffset),
2083                      false, false, 0);
2084}
2085
2086/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2087/// optimization is performed and it is required.
2088SDValue
2089X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2090                                           SDValue &OutRetAddr, SDValue Chain,
2091                                           bool IsTailCall, bool Is64Bit,
2092                                           int FPDiff, DebugLoc dl) const {
2093  // Adjust the Return address stack slot.
2094  EVT VT = getPointerTy();
2095  OutRetAddr = getReturnAddressFrameIndex(DAG);
2096
2097  // Load the "old" Return address.
2098  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2099                           false, false, false, 0);
2100  return SDValue(OutRetAddr.getNode(), 1);
2101}
2102
2103/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2104/// optimization is performed and it is required (FPDiff!=0).
2105static SDValue
2106EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2107                         SDValue Chain, SDValue RetAddrFrIdx,
2108                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2109  // Store the return address to the appropriate stack slot.
2110  if (!FPDiff) return Chain;
2111  // Calculate the new stack slot for the return address.
2112  int SlotSize = Is64Bit ? 8 : 4;
2113  int NewReturnAddrFI =
2114    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2115  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2116  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2117  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2118                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2119                       false, false, 0);
2120  return Chain;
2121}
2122
2123SDValue
2124X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2125                             CallingConv::ID CallConv, bool isVarArg,
2126                             bool doesNotRet, bool &isTailCall,
2127                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2128                             const SmallVectorImpl<SDValue> &OutVals,
2129                             const SmallVectorImpl<ISD::InputArg> &Ins,
2130                             DebugLoc dl, SelectionDAG &DAG,
2131                             SmallVectorImpl<SDValue> &InVals) const {
2132  MachineFunction &MF = DAG.getMachineFunction();
2133  bool Is64Bit        = Subtarget->is64Bit();
2134  bool IsWin64        = Subtarget->isTargetWin64();
2135  bool IsWindows      = Subtarget->isTargetWindows();
2136  bool IsStructRet    = CallIsStructReturn(Outs);
2137  bool IsSibcall      = false;
2138
2139  if (MF.getTarget().Options.DisableTailCalls)
2140    isTailCall = false;
2141
2142  if (isTailCall) {
2143    // Check if it's really possible to do a tail call.
2144    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2145                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2146                                                   Outs, OutVals, Ins, DAG);
2147
2148    // Sibcalls are automatically detected tailcalls which do not require
2149    // ABI changes.
2150    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2151      IsSibcall = true;
2152
2153    if (isTailCall)
2154      ++NumTailCalls;
2155  }
2156
2157  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2158         "Var args not supported with calling convention fastcc or ghc");
2159
2160  // Analyze operands of the call, assigning locations to each operand.
2161  SmallVector<CCValAssign, 16> ArgLocs;
2162  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2163                 ArgLocs, *DAG.getContext());
2164
2165  // Allocate shadow area for Win64
2166  if (IsWin64) {
2167    CCInfo.AllocateStack(32, 8);
2168  }
2169
2170  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2171
2172  // Get a count of how many bytes are to be pushed on the stack.
2173  unsigned NumBytes = CCInfo.getNextStackOffset();
2174  if (IsSibcall)
2175    // This is a sibcall. The memory operands are available in caller's
2176    // own caller's stack.
2177    NumBytes = 0;
2178  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2179           IsTailCallConvention(CallConv))
2180    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2181
2182  int FPDiff = 0;
2183  if (isTailCall && !IsSibcall) {
2184    // Lower arguments at fp - stackoffset + fpdiff.
2185    unsigned NumBytesCallerPushed =
2186      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2187    FPDiff = NumBytesCallerPushed - NumBytes;
2188
2189    // Set the delta of movement of the returnaddr stackslot.
2190    // But only set if delta is greater than previous delta.
2191    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2192      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2193  }
2194
2195  if (!IsSibcall)
2196    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2197
2198  SDValue RetAddrFrIdx;
2199  // Load return address for tail calls.
2200  if (isTailCall && FPDiff)
2201    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2202                                    Is64Bit, FPDiff, dl);
2203
2204  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2205  SmallVector<SDValue, 8> MemOpChains;
2206  SDValue StackPtr;
2207
2208  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2209  // of tail call optimization arguments are handle later.
2210  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2211    CCValAssign &VA = ArgLocs[i];
2212    EVT RegVT = VA.getLocVT();
2213    SDValue Arg = OutVals[i];
2214    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2215    bool isByVal = Flags.isByVal();
2216
2217    // Promote the value if needed.
2218    switch (VA.getLocInfo()) {
2219    default: llvm_unreachable("Unknown loc info!");
2220    case CCValAssign::Full: break;
2221    case CCValAssign::SExt:
2222      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2223      break;
2224    case CCValAssign::ZExt:
2225      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2226      break;
2227    case CCValAssign::AExt:
2228      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2229        // Special case: passing MMX values in XMM registers.
2230        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2231        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2232        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2233      } else
2234        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2235      break;
2236    case CCValAssign::BCvt:
2237      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2238      break;
2239    case CCValAssign::Indirect: {
2240      // Store the argument.
2241      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2242      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2243      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2244                           MachinePointerInfo::getFixedStack(FI),
2245                           false, false, 0);
2246      Arg = SpillSlot;
2247      break;
2248    }
2249    }
2250
2251    if (VA.isRegLoc()) {
2252      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2253      if (isVarArg && IsWin64) {
2254        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2255        // shadow reg if callee is a varargs function.
2256        unsigned ShadowReg = 0;
2257        switch (VA.getLocReg()) {
2258        case X86::XMM0: ShadowReg = X86::RCX; break;
2259        case X86::XMM1: ShadowReg = X86::RDX; break;
2260        case X86::XMM2: ShadowReg = X86::R8; break;
2261        case X86::XMM3: ShadowReg = X86::R9; break;
2262        }
2263        if (ShadowReg)
2264          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2265      }
2266    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2267      assert(VA.isMemLoc());
2268      if (StackPtr.getNode() == 0)
2269        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2270      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2271                                             dl, DAG, VA, Flags));
2272    }
2273  }
2274
2275  if (!MemOpChains.empty())
2276    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2277                        &MemOpChains[0], MemOpChains.size());
2278
2279  // Build a sequence of copy-to-reg nodes chained together with token chain
2280  // and flag operands which copy the outgoing args into registers.
2281  SDValue InFlag;
2282  // Tail call byval lowering might overwrite argument registers so in case of
2283  // tail call optimization the copies to registers are lowered later.
2284  if (!isTailCall)
2285    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2286      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2287                               RegsToPass[i].second, InFlag);
2288      InFlag = Chain.getValue(1);
2289    }
2290
2291  if (Subtarget->isPICStyleGOT()) {
2292    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2293    // GOT pointer.
2294    if (!isTailCall) {
2295      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2296                               DAG.getNode(X86ISD::GlobalBaseReg,
2297                                           DebugLoc(), getPointerTy()),
2298                               InFlag);
2299      InFlag = Chain.getValue(1);
2300    } else {
2301      // If we are tail calling and generating PIC/GOT style code load the
2302      // address of the callee into ECX. The value in ecx is used as target of
2303      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2304      // for tail calls on PIC/GOT architectures. Normally we would just put the
2305      // address of GOT into ebx and then call target@PLT. But for tail calls
2306      // ebx would be restored (since ebx is callee saved) before jumping to the
2307      // target@PLT.
2308
2309      // Note: The actual moving to ECX is done further down.
2310      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2311      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2312          !G->getGlobal()->hasProtectedVisibility())
2313        Callee = LowerGlobalAddress(Callee, DAG);
2314      else if (isa<ExternalSymbolSDNode>(Callee))
2315        Callee = LowerExternalSymbol(Callee, DAG);
2316    }
2317  }
2318
2319  if (Is64Bit && isVarArg && !IsWin64) {
2320    // From AMD64 ABI document:
2321    // For calls that may call functions that use varargs or stdargs
2322    // (prototype-less calls or calls to functions containing ellipsis (...) in
2323    // the declaration) %al is used as hidden argument to specify the number
2324    // of SSE registers used. The contents of %al do not need to match exactly
2325    // the number of registers, but must be an ubound on the number of SSE
2326    // registers used and is in the range 0 - 8 inclusive.
2327
2328    // Count the number of XMM registers allocated.
2329    static const uint16_t XMMArgRegs[] = {
2330      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2331      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2332    };
2333    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2334    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2335           && "SSE registers cannot be used when SSE is disabled");
2336
2337    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2338                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2339    InFlag = Chain.getValue(1);
2340  }
2341
2342
2343  // For tail calls lower the arguments to the 'real' stack slot.
2344  if (isTailCall) {
2345    // Force all the incoming stack arguments to be loaded from the stack
2346    // before any new outgoing arguments are stored to the stack, because the
2347    // outgoing stack slots may alias the incoming argument stack slots, and
2348    // the alias isn't otherwise explicit. This is slightly more conservative
2349    // than necessary, because it means that each store effectively depends
2350    // on every argument instead of just those arguments it would clobber.
2351    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2352
2353    SmallVector<SDValue, 8> MemOpChains2;
2354    SDValue FIN;
2355    int FI = 0;
2356    // Do not flag preceding copytoreg stuff together with the following stuff.
2357    InFlag = SDValue();
2358    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2359      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2360        CCValAssign &VA = ArgLocs[i];
2361        if (VA.isRegLoc())
2362          continue;
2363        assert(VA.isMemLoc());
2364        SDValue Arg = OutVals[i];
2365        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2366        // Create frame index.
2367        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2368        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2369        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2370        FIN = DAG.getFrameIndex(FI, getPointerTy());
2371
2372        if (Flags.isByVal()) {
2373          // Copy relative to framepointer.
2374          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2375          if (StackPtr.getNode() == 0)
2376            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2377                                          getPointerTy());
2378          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2379
2380          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2381                                                           ArgChain,
2382                                                           Flags, DAG, dl));
2383        } else {
2384          // Store relative to framepointer.
2385          MemOpChains2.push_back(
2386            DAG.getStore(ArgChain, dl, Arg, FIN,
2387                         MachinePointerInfo::getFixedStack(FI),
2388                         false, false, 0));
2389        }
2390      }
2391    }
2392
2393    if (!MemOpChains2.empty())
2394      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2395                          &MemOpChains2[0], MemOpChains2.size());
2396
2397    // Copy arguments to their registers.
2398    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2399      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2400                               RegsToPass[i].second, InFlag);
2401      InFlag = Chain.getValue(1);
2402    }
2403    InFlag =SDValue();
2404
2405    // Store the return address to the appropriate stack slot.
2406    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2407                                     FPDiff, dl);
2408  }
2409
2410  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2411    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2412    // In the 64-bit large code model, we have to make all calls
2413    // through a register, since the call instruction's 32-bit
2414    // pc-relative offset may not be large enough to hold the whole
2415    // address.
2416  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2417    // If the callee is a GlobalAddress node (quite common, every direct call
2418    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2419    // it.
2420
2421    // We should use extra load for direct calls to dllimported functions in
2422    // non-JIT mode.
2423    const GlobalValue *GV = G->getGlobal();
2424    if (!GV->hasDLLImportLinkage()) {
2425      unsigned char OpFlags = 0;
2426      bool ExtraLoad = false;
2427      unsigned WrapperKind = ISD::DELETED_NODE;
2428
2429      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2430      // external symbols most go through the PLT in PIC mode.  If the symbol
2431      // has hidden or protected visibility, or if it is static or local, then
2432      // we don't need to use the PLT - we can directly call it.
2433      if (Subtarget->isTargetELF() &&
2434          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2435          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2436        OpFlags = X86II::MO_PLT;
2437      } else if (Subtarget->isPICStyleStubAny() &&
2438                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2439                 (!Subtarget->getTargetTriple().isMacOSX() ||
2440                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2441        // PC-relative references to external symbols should go through $stub,
2442        // unless we're building with the leopard linker or later, which
2443        // automatically synthesizes these stubs.
2444        OpFlags = X86II::MO_DARWIN_STUB;
2445      } else if (Subtarget->isPICStyleRIPRel() &&
2446                 isa<Function>(GV) &&
2447                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2448        // If the function is marked as non-lazy, generate an indirect call
2449        // which loads from the GOT directly. This avoids runtime overhead
2450        // at the cost of eager binding (and one extra byte of encoding).
2451        OpFlags = X86II::MO_GOTPCREL;
2452        WrapperKind = X86ISD::WrapperRIP;
2453        ExtraLoad = true;
2454      }
2455
2456      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2457                                          G->getOffset(), OpFlags);
2458
2459      // Add a wrapper if needed.
2460      if (WrapperKind != ISD::DELETED_NODE)
2461        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2462      // Add extra indirection if needed.
2463      if (ExtraLoad)
2464        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2465                             MachinePointerInfo::getGOT(),
2466                             false, false, false, 0);
2467    }
2468  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2469    unsigned char OpFlags = 0;
2470
2471    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2472    // external symbols should go through the PLT.
2473    if (Subtarget->isTargetELF() &&
2474        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2475      OpFlags = X86II::MO_PLT;
2476    } else if (Subtarget->isPICStyleStubAny() &&
2477               (!Subtarget->getTargetTriple().isMacOSX() ||
2478                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2479      // PC-relative references to external symbols should go through $stub,
2480      // unless we're building with the leopard linker or later, which
2481      // automatically synthesizes these stubs.
2482      OpFlags = X86II::MO_DARWIN_STUB;
2483    }
2484
2485    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2486                                         OpFlags);
2487  }
2488
2489  // Returns a chain & a flag for retval copy to use.
2490  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2491  SmallVector<SDValue, 8> Ops;
2492
2493  if (!IsSibcall && isTailCall) {
2494    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2495                           DAG.getIntPtrConstant(0, true), InFlag);
2496    InFlag = Chain.getValue(1);
2497  }
2498
2499  Ops.push_back(Chain);
2500  Ops.push_back(Callee);
2501
2502  if (isTailCall)
2503    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2504
2505  // Add argument registers to the end of the list so that they are known live
2506  // into the call.
2507  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2508    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2509                                  RegsToPass[i].second.getValueType()));
2510
2511  // Add an implicit use GOT pointer in EBX.
2512  if (!isTailCall && Subtarget->isPICStyleGOT())
2513    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2514
2515  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2516  if (Is64Bit && isVarArg && !IsWin64)
2517    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2518
2519  // Add a register mask operand representing the call-preserved registers.
2520  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2521  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2522  assert(Mask && "Missing call preserved mask for calling convention");
2523  Ops.push_back(DAG.getRegisterMask(Mask));
2524
2525  if (InFlag.getNode())
2526    Ops.push_back(InFlag);
2527
2528  if (isTailCall) {
2529    // We used to do:
2530    //// If this is the first return lowered for this function, add the regs
2531    //// to the liveout set for the function.
2532    // This isn't right, although it's probably harmless on x86; liveouts
2533    // should be computed from returns not tail calls.  Consider a void
2534    // function making a tail call to a function returning int.
2535    return DAG.getNode(X86ISD::TC_RETURN, dl,
2536                       NodeTys, &Ops[0], Ops.size());
2537  }
2538
2539  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2540  InFlag = Chain.getValue(1);
2541
2542  // Create the CALLSEQ_END node.
2543  unsigned NumBytesForCalleeToPush;
2544  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2545                       getTargetMachine().Options.GuaranteedTailCallOpt))
2546    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2547  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2548           IsStructRet)
2549    // If this is a call to a struct-return function, the callee
2550    // pops the hidden struct pointer, so we have to push it back.
2551    // This is common for Darwin/X86, Linux & Mingw32 targets.
2552    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2553    NumBytesForCalleeToPush = 4;
2554  else
2555    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2556
2557  // Returns a flag for retval copy to use.
2558  if (!IsSibcall) {
2559    Chain = DAG.getCALLSEQ_END(Chain,
2560                               DAG.getIntPtrConstant(NumBytes, true),
2561                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2562                                                     true),
2563                               InFlag);
2564    InFlag = Chain.getValue(1);
2565  }
2566
2567  // Handle result values, copying them out of physregs into vregs that we
2568  // return.
2569  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2570                         Ins, dl, DAG, InVals);
2571}
2572
2573
2574//===----------------------------------------------------------------------===//
2575//                Fast Calling Convention (tail call) implementation
2576//===----------------------------------------------------------------------===//
2577
2578//  Like std call, callee cleans arguments, convention except that ECX is
2579//  reserved for storing the tail called function address. Only 2 registers are
2580//  free for argument passing (inreg). Tail call optimization is performed
2581//  provided:
2582//                * tailcallopt is enabled
2583//                * caller/callee are fastcc
2584//  On X86_64 architecture with GOT-style position independent code only local
2585//  (within module) calls are supported at the moment.
2586//  To keep the stack aligned according to platform abi the function
2587//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2588//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2589//  If a tail called function callee has more arguments than the caller the
2590//  caller needs to make sure that there is room to move the RETADDR to. This is
2591//  achieved by reserving an area the size of the argument delta right after the
2592//  original REtADDR, but before the saved framepointer or the spilled registers
2593//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2594//  stack layout:
2595//    arg1
2596//    arg2
2597//    RETADDR
2598//    [ new RETADDR
2599//      move area ]
2600//    (possible EBP)
2601//    ESI
2602//    EDI
2603//    local1 ..
2604
2605/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2606/// for a 16 byte align requirement.
2607unsigned
2608X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2609                                               SelectionDAG& DAG) const {
2610  MachineFunction &MF = DAG.getMachineFunction();
2611  const TargetMachine &TM = MF.getTarget();
2612  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2613  unsigned StackAlignment = TFI.getStackAlignment();
2614  uint64_t AlignMask = StackAlignment - 1;
2615  int64_t Offset = StackSize;
2616  uint64_t SlotSize = TD->getPointerSize();
2617  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2618    // Number smaller than 12 so just add the difference.
2619    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2620  } else {
2621    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2622    Offset = ((~AlignMask) & Offset) + StackAlignment +
2623      (StackAlignment-SlotSize);
2624  }
2625  return Offset;
2626}
2627
2628/// MatchingStackOffset - Return true if the given stack call argument is
2629/// already available in the same position (relatively) of the caller's
2630/// incoming argument stack.
2631static
2632bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2633                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2634                         const X86InstrInfo *TII) {
2635  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2636  int FI = INT_MAX;
2637  if (Arg.getOpcode() == ISD::CopyFromReg) {
2638    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2639    if (!TargetRegisterInfo::isVirtualRegister(VR))
2640      return false;
2641    MachineInstr *Def = MRI->getVRegDef(VR);
2642    if (!Def)
2643      return false;
2644    if (!Flags.isByVal()) {
2645      if (!TII->isLoadFromStackSlot(Def, FI))
2646        return false;
2647    } else {
2648      unsigned Opcode = Def->getOpcode();
2649      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2650          Def->getOperand(1).isFI()) {
2651        FI = Def->getOperand(1).getIndex();
2652        Bytes = Flags.getByValSize();
2653      } else
2654        return false;
2655    }
2656  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2657    if (Flags.isByVal())
2658      // ByVal argument is passed in as a pointer but it's now being
2659      // dereferenced. e.g.
2660      // define @foo(%struct.X* %A) {
2661      //   tail call @bar(%struct.X* byval %A)
2662      // }
2663      return false;
2664    SDValue Ptr = Ld->getBasePtr();
2665    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2666    if (!FINode)
2667      return false;
2668    FI = FINode->getIndex();
2669  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2670    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2671    FI = FINode->getIndex();
2672    Bytes = Flags.getByValSize();
2673  } else
2674    return false;
2675
2676  assert(FI != INT_MAX);
2677  if (!MFI->isFixedObjectIndex(FI))
2678    return false;
2679  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2680}
2681
2682/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2683/// for tail call optimization. Targets which want to do tail call
2684/// optimization should implement this function.
2685bool
2686X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2687                                                     CallingConv::ID CalleeCC,
2688                                                     bool isVarArg,
2689                                                     bool isCalleeStructRet,
2690                                                     bool isCallerStructRet,
2691                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2692                                    const SmallVectorImpl<SDValue> &OutVals,
2693                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2694                                                     SelectionDAG& DAG) const {
2695  if (!IsTailCallConvention(CalleeCC) &&
2696      CalleeCC != CallingConv::C)
2697    return false;
2698
2699  // If -tailcallopt is specified, make fastcc functions tail-callable.
2700  const MachineFunction &MF = DAG.getMachineFunction();
2701  const Function *CallerF = DAG.getMachineFunction().getFunction();
2702  CallingConv::ID CallerCC = CallerF->getCallingConv();
2703  bool CCMatch = CallerCC == CalleeCC;
2704
2705  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2706    if (IsTailCallConvention(CalleeCC) && CCMatch)
2707      return true;
2708    return false;
2709  }
2710
2711  // Look for obvious safe cases to perform tail call optimization that do not
2712  // require ABI changes. This is what gcc calls sibcall.
2713
2714  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2715  // emit a special epilogue.
2716  if (RegInfo->needsStackRealignment(MF))
2717    return false;
2718
2719  // Also avoid sibcall optimization if either caller or callee uses struct
2720  // return semantics.
2721  if (isCalleeStructRet || isCallerStructRet)
2722    return false;
2723
2724  // An stdcall caller is expected to clean up its arguments; the callee
2725  // isn't going to do that.
2726  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2727    return false;
2728
2729  // Do not sibcall optimize vararg calls unless all arguments are passed via
2730  // registers.
2731  if (isVarArg && !Outs.empty()) {
2732
2733    // Optimizing for varargs on Win64 is unlikely to be safe without
2734    // additional testing.
2735    if (Subtarget->isTargetWin64())
2736      return false;
2737
2738    SmallVector<CCValAssign, 16> ArgLocs;
2739    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2740		   getTargetMachine(), ArgLocs, *DAG.getContext());
2741
2742    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2743    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2744      if (!ArgLocs[i].isRegLoc())
2745        return false;
2746  }
2747
2748  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2749  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2750  // this into a sibcall.
2751  bool Unused = false;
2752  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2753    if (!Ins[i].Used) {
2754      Unused = true;
2755      break;
2756    }
2757  }
2758  if (Unused) {
2759    SmallVector<CCValAssign, 16> RVLocs;
2760    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2761		   getTargetMachine(), RVLocs, *DAG.getContext());
2762    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2763    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2764      CCValAssign &VA = RVLocs[i];
2765      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2766        return false;
2767    }
2768  }
2769
2770  // If the calling conventions do not match, then we'd better make sure the
2771  // results are returned in the same way as what the caller expects.
2772  if (!CCMatch) {
2773    SmallVector<CCValAssign, 16> RVLocs1;
2774    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2775		    getTargetMachine(), RVLocs1, *DAG.getContext());
2776    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2777
2778    SmallVector<CCValAssign, 16> RVLocs2;
2779    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2780		    getTargetMachine(), RVLocs2, *DAG.getContext());
2781    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2782
2783    if (RVLocs1.size() != RVLocs2.size())
2784      return false;
2785    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2786      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2787        return false;
2788      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2789        return false;
2790      if (RVLocs1[i].isRegLoc()) {
2791        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2792          return false;
2793      } else {
2794        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2795          return false;
2796      }
2797    }
2798  }
2799
2800  // If the callee takes no arguments then go on to check the results of the
2801  // call.
2802  if (!Outs.empty()) {
2803    // Check if stack adjustment is needed. For now, do not do this if any
2804    // argument is passed on the stack.
2805    SmallVector<CCValAssign, 16> ArgLocs;
2806    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2807		   getTargetMachine(), ArgLocs, *DAG.getContext());
2808
2809    // Allocate shadow area for Win64
2810    if (Subtarget->isTargetWin64()) {
2811      CCInfo.AllocateStack(32, 8);
2812    }
2813
2814    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2815    if (CCInfo.getNextStackOffset()) {
2816      MachineFunction &MF = DAG.getMachineFunction();
2817      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2818        return false;
2819
2820      // Check if the arguments are already laid out in the right way as
2821      // the caller's fixed stack objects.
2822      MachineFrameInfo *MFI = MF.getFrameInfo();
2823      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2824      const X86InstrInfo *TII =
2825        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2826      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2827        CCValAssign &VA = ArgLocs[i];
2828        SDValue Arg = OutVals[i];
2829        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2830        if (VA.getLocInfo() == CCValAssign::Indirect)
2831          return false;
2832        if (!VA.isRegLoc()) {
2833          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2834                                   MFI, MRI, TII))
2835            return false;
2836        }
2837      }
2838    }
2839
2840    // If the tailcall address may be in a register, then make sure it's
2841    // possible to register allocate for it. In 32-bit, the call address can
2842    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2843    // callee-saved registers are restored. These happen to be the same
2844    // registers used to pass 'inreg' arguments so watch out for those.
2845    if (!Subtarget->is64Bit() &&
2846        !isa<GlobalAddressSDNode>(Callee) &&
2847        !isa<ExternalSymbolSDNode>(Callee)) {
2848      unsigned NumInRegs = 0;
2849      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2850        CCValAssign &VA = ArgLocs[i];
2851        if (!VA.isRegLoc())
2852          continue;
2853        unsigned Reg = VA.getLocReg();
2854        switch (Reg) {
2855        default: break;
2856        case X86::EAX: case X86::EDX: case X86::ECX:
2857          if (++NumInRegs == 3)
2858            return false;
2859          break;
2860        }
2861      }
2862    }
2863  }
2864
2865  return true;
2866}
2867
2868FastISel *
2869X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2870  return X86::createFastISel(funcInfo);
2871}
2872
2873
2874//===----------------------------------------------------------------------===//
2875//                           Other Lowering Hooks
2876//===----------------------------------------------------------------------===//
2877
2878static bool MayFoldLoad(SDValue Op) {
2879  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2880}
2881
2882static bool MayFoldIntoStore(SDValue Op) {
2883  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2884}
2885
2886static bool isTargetShuffle(unsigned Opcode) {
2887  switch(Opcode) {
2888  default: return false;
2889  case X86ISD::PSHUFD:
2890  case X86ISD::PSHUFHW:
2891  case X86ISD::PSHUFLW:
2892  case X86ISD::SHUFP:
2893  case X86ISD::PALIGN:
2894  case X86ISD::MOVLHPS:
2895  case X86ISD::MOVLHPD:
2896  case X86ISD::MOVHLPS:
2897  case X86ISD::MOVLPS:
2898  case X86ISD::MOVLPD:
2899  case X86ISD::MOVSHDUP:
2900  case X86ISD::MOVSLDUP:
2901  case X86ISD::MOVDDUP:
2902  case X86ISD::MOVSS:
2903  case X86ISD::MOVSD:
2904  case X86ISD::UNPCKL:
2905  case X86ISD::UNPCKH:
2906  case X86ISD::VPERMILP:
2907  case X86ISD::VPERM2X128:
2908    return true;
2909  }
2910}
2911
2912static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2913                                    SDValue V1, SelectionDAG &DAG) {
2914  switch(Opc) {
2915  default: llvm_unreachable("Unknown x86 shuffle node");
2916  case X86ISD::MOVSHDUP:
2917  case X86ISD::MOVSLDUP:
2918  case X86ISD::MOVDDUP:
2919    return DAG.getNode(Opc, dl, VT, V1);
2920  }
2921}
2922
2923static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2924                                    SDValue V1, unsigned TargetMask,
2925                                    SelectionDAG &DAG) {
2926  switch(Opc) {
2927  default: llvm_unreachable("Unknown x86 shuffle node");
2928  case X86ISD::PSHUFD:
2929  case X86ISD::PSHUFHW:
2930  case X86ISD::PSHUFLW:
2931  case X86ISD::VPERMILP:
2932    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2933  }
2934}
2935
2936static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2937                                    SDValue V1, SDValue V2, unsigned TargetMask,
2938                                    SelectionDAG &DAG) {
2939  switch(Opc) {
2940  default: llvm_unreachable("Unknown x86 shuffle node");
2941  case X86ISD::PALIGN:
2942  case X86ISD::SHUFP:
2943  case X86ISD::VPERM2X128:
2944    return DAG.getNode(Opc, dl, VT, V1, V2,
2945                       DAG.getConstant(TargetMask, MVT::i8));
2946  }
2947}
2948
2949static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2950                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2951  switch(Opc) {
2952  default: llvm_unreachable("Unknown x86 shuffle node");
2953  case X86ISD::MOVLHPS:
2954  case X86ISD::MOVLHPD:
2955  case X86ISD::MOVHLPS:
2956  case X86ISD::MOVLPS:
2957  case X86ISD::MOVLPD:
2958  case X86ISD::MOVSS:
2959  case X86ISD::MOVSD:
2960  case X86ISD::UNPCKL:
2961  case X86ISD::UNPCKH:
2962    return DAG.getNode(Opc, dl, VT, V1, V2);
2963  }
2964}
2965
2966SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2967  MachineFunction &MF = DAG.getMachineFunction();
2968  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2969  int ReturnAddrIndex = FuncInfo->getRAIndex();
2970
2971  if (ReturnAddrIndex == 0) {
2972    // Set up a frame object for the return address.
2973    uint64_t SlotSize = TD->getPointerSize();
2974    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2975                                                           false);
2976    FuncInfo->setRAIndex(ReturnAddrIndex);
2977  }
2978
2979  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2980}
2981
2982
2983bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2984                                       bool hasSymbolicDisplacement) {
2985  // Offset should fit into 32 bit immediate field.
2986  if (!isInt<32>(Offset))
2987    return false;
2988
2989  // If we don't have a symbolic displacement - we don't have any extra
2990  // restrictions.
2991  if (!hasSymbolicDisplacement)
2992    return true;
2993
2994  // FIXME: Some tweaks might be needed for medium code model.
2995  if (M != CodeModel::Small && M != CodeModel::Kernel)
2996    return false;
2997
2998  // For small code model we assume that latest object is 16MB before end of 31
2999  // bits boundary. We may also accept pretty large negative constants knowing
3000  // that all objects are in the positive half of address space.
3001  if (M == CodeModel::Small && Offset < 16*1024*1024)
3002    return true;
3003
3004  // For kernel code model we know that all object resist in the negative half
3005  // of 32bits address space. We may not accept negative offsets, since they may
3006  // be just off and we may accept pretty large positive ones.
3007  if (M == CodeModel::Kernel && Offset > 0)
3008    return true;
3009
3010  return false;
3011}
3012
3013/// isCalleePop - Determines whether the callee is required to pop its
3014/// own arguments. Callee pop is necessary to support tail calls.
3015bool X86::isCalleePop(CallingConv::ID CallingConv,
3016                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3017  if (IsVarArg)
3018    return false;
3019
3020  switch (CallingConv) {
3021  default:
3022    return false;
3023  case CallingConv::X86_StdCall:
3024    return !is64Bit;
3025  case CallingConv::X86_FastCall:
3026    return !is64Bit;
3027  case CallingConv::X86_ThisCall:
3028    return !is64Bit;
3029  case CallingConv::Fast:
3030    return TailCallOpt;
3031  case CallingConv::GHC:
3032    return TailCallOpt;
3033  }
3034}
3035
3036/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3037/// specific condition code, returning the condition code and the LHS/RHS of the
3038/// comparison to make.
3039static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3040                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3041  if (!isFP) {
3042    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3043      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3044        // X > -1   -> X == 0, jump !sign.
3045        RHS = DAG.getConstant(0, RHS.getValueType());
3046        return X86::COND_NS;
3047      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3048        // X < 0   -> X == 0, jump on sign.
3049        return X86::COND_S;
3050      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3051        // X < 1   -> X <= 0
3052        RHS = DAG.getConstant(0, RHS.getValueType());
3053        return X86::COND_LE;
3054      }
3055    }
3056
3057    switch (SetCCOpcode) {
3058    default: llvm_unreachable("Invalid integer condition!");
3059    case ISD::SETEQ:  return X86::COND_E;
3060    case ISD::SETGT:  return X86::COND_G;
3061    case ISD::SETGE:  return X86::COND_GE;
3062    case ISD::SETLT:  return X86::COND_L;
3063    case ISD::SETLE:  return X86::COND_LE;
3064    case ISD::SETNE:  return X86::COND_NE;
3065    case ISD::SETULT: return X86::COND_B;
3066    case ISD::SETUGT: return X86::COND_A;
3067    case ISD::SETULE: return X86::COND_BE;
3068    case ISD::SETUGE: return X86::COND_AE;
3069    }
3070  }
3071
3072  // First determine if it is required or is profitable to flip the operands.
3073
3074  // If LHS is a foldable load, but RHS is not, flip the condition.
3075  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3076      !ISD::isNON_EXTLoad(RHS.getNode())) {
3077    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3078    std::swap(LHS, RHS);
3079  }
3080
3081  switch (SetCCOpcode) {
3082  default: break;
3083  case ISD::SETOLT:
3084  case ISD::SETOLE:
3085  case ISD::SETUGT:
3086  case ISD::SETUGE:
3087    std::swap(LHS, RHS);
3088    break;
3089  }
3090
3091  // On a floating point condition, the flags are set as follows:
3092  // ZF  PF  CF   op
3093  //  0 | 0 | 0 | X > Y
3094  //  0 | 0 | 1 | X < Y
3095  //  1 | 0 | 0 | X == Y
3096  //  1 | 1 | 1 | unordered
3097  switch (SetCCOpcode) {
3098  default: llvm_unreachable("Condcode should be pre-legalized away");
3099  case ISD::SETUEQ:
3100  case ISD::SETEQ:   return X86::COND_E;
3101  case ISD::SETOLT:              // flipped
3102  case ISD::SETOGT:
3103  case ISD::SETGT:   return X86::COND_A;
3104  case ISD::SETOLE:              // flipped
3105  case ISD::SETOGE:
3106  case ISD::SETGE:   return X86::COND_AE;
3107  case ISD::SETUGT:              // flipped
3108  case ISD::SETULT:
3109  case ISD::SETLT:   return X86::COND_B;
3110  case ISD::SETUGE:              // flipped
3111  case ISD::SETULE:
3112  case ISD::SETLE:   return X86::COND_BE;
3113  case ISD::SETONE:
3114  case ISD::SETNE:   return X86::COND_NE;
3115  case ISD::SETUO:   return X86::COND_P;
3116  case ISD::SETO:    return X86::COND_NP;
3117  case ISD::SETOEQ:
3118  case ISD::SETUNE:  return X86::COND_INVALID;
3119  }
3120}
3121
3122/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3123/// code. Current x86 isa includes the following FP cmov instructions:
3124/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3125static bool hasFPCMov(unsigned X86CC) {
3126  switch (X86CC) {
3127  default:
3128    return false;
3129  case X86::COND_B:
3130  case X86::COND_BE:
3131  case X86::COND_E:
3132  case X86::COND_P:
3133  case X86::COND_A:
3134  case X86::COND_AE:
3135  case X86::COND_NE:
3136  case X86::COND_NP:
3137    return true;
3138  }
3139}
3140
3141/// isFPImmLegal - Returns true if the target can instruction select the
3142/// specified FP immediate natively. If false, the legalizer will
3143/// materialize the FP immediate as a load from a constant pool.
3144bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3145  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3146    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3147      return true;
3148  }
3149  return false;
3150}
3151
3152/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3153/// the specified range (L, H].
3154static bool isUndefOrInRange(int Val, int Low, int Hi) {
3155  return (Val < 0) || (Val >= Low && Val < Hi);
3156}
3157
3158/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3159/// specified value.
3160static bool isUndefOrEqual(int Val, int CmpVal) {
3161  if (Val < 0 || Val == CmpVal)
3162    return true;
3163  return false;
3164}
3165
3166/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3167/// from position Pos and ending in Pos+Size, falls within the specified
3168/// sequential range (L, L+Pos]. or is undef.
3169static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3170                                       int Pos, int Size, int Low) {
3171  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3172    if (!isUndefOrEqual(Mask[i], Low))
3173      return false;
3174  return true;
3175}
3176
3177/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3178/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3179/// the second operand.
3180static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3181  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3182    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3183  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3184    return (Mask[0] < 2 && Mask[1] < 2);
3185  return false;
3186}
3187
3188/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3189/// is suitable for input to PSHUFHW.
3190static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3191  if (VT != MVT::v8i16)
3192    return false;
3193
3194  // Lower quadword copied in order or undef.
3195  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3196    return false;
3197
3198  // Upper quadword shuffled.
3199  for (unsigned i = 4; i != 8; ++i)
3200    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3201      return false;
3202
3203  return true;
3204}
3205
3206/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3207/// is suitable for input to PSHUFLW.
3208static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3209  if (VT != MVT::v8i16)
3210    return false;
3211
3212  // Upper quadword copied in order.
3213  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3214    return false;
3215
3216  // Lower quadword shuffled.
3217  for (unsigned i = 0; i != 4; ++i)
3218    if (Mask[i] >= 4)
3219      return false;
3220
3221  return true;
3222}
3223
3224/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3225/// is suitable for input to PALIGNR.
3226static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3227                          const X86Subtarget *Subtarget) {
3228  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3229      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3230    return false;
3231
3232  unsigned NumElts = VT.getVectorNumElements();
3233  unsigned NumLanes = VT.getSizeInBits()/128;
3234  unsigned NumLaneElts = NumElts/NumLanes;
3235
3236  // Do not handle 64-bit element shuffles with palignr.
3237  if (NumLaneElts == 2)
3238    return false;
3239
3240  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3241    unsigned i;
3242    for (i = 0; i != NumLaneElts; ++i) {
3243      if (Mask[i+l] >= 0)
3244        break;
3245    }
3246
3247    // Lane is all undef, go to next lane
3248    if (i == NumLaneElts)
3249      continue;
3250
3251    int Start = Mask[i+l];
3252
3253    // Make sure its in this lane in one of the sources
3254    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3255        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3256      return false;
3257
3258    // If not lane 0, then we must match lane 0
3259    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3260      return false;
3261
3262    // Correct second source to be contiguous with first source
3263    if (Start >= (int)NumElts)
3264      Start -= NumElts - NumLaneElts;
3265
3266    // Make sure we're shifting in the right direction.
3267    if (Start <= (int)(i+l))
3268      return false;
3269
3270    Start -= i;
3271
3272    // Check the rest of the elements to see if they are consecutive.
3273    for (++i; i != NumLaneElts; ++i) {
3274      int Idx = Mask[i+l];
3275
3276      // Make sure its in this lane
3277      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3278          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3279        return false;
3280
3281      // If not lane 0, then we must match lane 0
3282      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3283        return false;
3284
3285      if (Idx >= (int)NumElts)
3286        Idx -= NumElts - NumLaneElts;
3287
3288      if (!isUndefOrEqual(Idx, Start+i))
3289        return false;
3290
3291    }
3292  }
3293
3294  return true;
3295}
3296
3297/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3298/// the two vector operands have swapped position.
3299static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3300                                     unsigned NumElems) {
3301  for (unsigned i = 0; i != NumElems; ++i) {
3302    int idx = Mask[i];
3303    if (idx < 0)
3304      continue;
3305    else if (idx < (int)NumElems)
3306      Mask[i] = idx + NumElems;
3307    else
3308      Mask[i] = idx - NumElems;
3309  }
3310}
3311
3312/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3313/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3314/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3315/// reverse of what x86 shuffles want.
3316static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3317                        bool Commuted = false) {
3318  if (!HasAVX && VT.getSizeInBits() == 256)
3319    return false;
3320
3321  unsigned NumElems = VT.getVectorNumElements();
3322  unsigned NumLanes = VT.getSizeInBits()/128;
3323  unsigned NumLaneElems = NumElems/NumLanes;
3324
3325  if (NumLaneElems != 2 && NumLaneElems != 4)
3326    return false;
3327
3328  // VSHUFPSY divides the resulting vector into 4 chunks.
3329  // The sources are also splitted into 4 chunks, and each destination
3330  // chunk must come from a different source chunk.
3331  //
3332  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3333  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3334  //
3335  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3336  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3337  //
3338  // VSHUFPDY divides the resulting vector into 4 chunks.
3339  // The sources are also splitted into 4 chunks, and each destination
3340  // chunk must come from a different source chunk.
3341  //
3342  //  SRC1 =>      X3       X2       X1       X0
3343  //  SRC2 =>      Y3       Y2       Y1       Y0
3344  //
3345  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3346  //
3347  unsigned HalfLaneElems = NumLaneElems/2;
3348  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3349    for (unsigned i = 0; i != NumLaneElems; ++i) {
3350      int Idx = Mask[i+l];
3351      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3352      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3353        return false;
3354      // For VSHUFPSY, the mask of the second half must be the same as the
3355      // first but with the appropriate offsets. This works in the same way as
3356      // VPERMILPS works with masks.
3357      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3358        continue;
3359      if (!isUndefOrEqual(Idx, Mask[i]+l))
3360        return false;
3361    }
3362  }
3363
3364  return true;
3365}
3366
3367/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3368/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3369static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3370  unsigned NumElems = VT.getVectorNumElements();
3371
3372  if (VT.getSizeInBits() != 128)
3373    return false;
3374
3375  if (NumElems != 4)
3376    return false;
3377
3378  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3379  return isUndefOrEqual(Mask[0], 6) &&
3380         isUndefOrEqual(Mask[1], 7) &&
3381         isUndefOrEqual(Mask[2], 2) &&
3382         isUndefOrEqual(Mask[3], 3);
3383}
3384
3385/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3386/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3387/// <2, 3, 2, 3>
3388static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3389  unsigned NumElems = VT.getVectorNumElements();
3390
3391  if (VT.getSizeInBits() != 128)
3392    return false;
3393
3394  if (NumElems != 4)
3395    return false;
3396
3397  return isUndefOrEqual(Mask[0], 2) &&
3398         isUndefOrEqual(Mask[1], 3) &&
3399         isUndefOrEqual(Mask[2], 2) &&
3400         isUndefOrEqual(Mask[3], 3);
3401}
3402
3403/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3404/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3405static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3406  if (VT.getSizeInBits() != 128)
3407    return false;
3408
3409  unsigned NumElems = VT.getVectorNumElements();
3410
3411  if (NumElems != 2 && NumElems != 4)
3412    return false;
3413
3414  for (unsigned i = 0; i != NumElems/2; ++i)
3415    if (!isUndefOrEqual(Mask[i], i + NumElems))
3416      return false;
3417
3418  for (unsigned i = NumElems/2; i != NumElems; ++i)
3419    if (!isUndefOrEqual(Mask[i], i))
3420      return false;
3421
3422  return true;
3423}
3424
3425/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3426/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3427static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3428  unsigned NumElems = VT.getVectorNumElements();
3429
3430  if ((NumElems != 2 && NumElems != 4)
3431      || VT.getSizeInBits() > 128)
3432    return false;
3433
3434  for (unsigned i = 0; i != NumElems/2; ++i)
3435    if (!isUndefOrEqual(Mask[i], i))
3436      return false;
3437
3438  for (unsigned i = 0; i != NumElems/2; ++i)
3439    if (!isUndefOrEqual(Mask[i + NumElems/2], i + NumElems))
3440      return false;
3441
3442  return true;
3443}
3444
3445/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3446/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3447static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3448                         bool HasAVX2, bool V2IsSplat = false) {
3449  unsigned NumElts = VT.getVectorNumElements();
3450
3451  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3452         "Unsupported vector type for unpckh");
3453
3454  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3455      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3456    return false;
3457
3458  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3459  // independently on 128-bit lanes.
3460  unsigned NumLanes = VT.getSizeInBits()/128;
3461  unsigned NumLaneElts = NumElts/NumLanes;
3462
3463  for (unsigned l = 0; l != NumLanes; ++l) {
3464    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3465         i != (l+1)*NumLaneElts;
3466         i += 2, ++j) {
3467      int BitI  = Mask[i];
3468      int BitI1 = Mask[i+1];
3469      if (!isUndefOrEqual(BitI, j))
3470        return false;
3471      if (V2IsSplat) {
3472        if (!isUndefOrEqual(BitI1, NumElts))
3473          return false;
3474      } else {
3475        if (!isUndefOrEqual(BitI1, j + NumElts))
3476          return false;
3477      }
3478    }
3479  }
3480
3481  return true;
3482}
3483
3484/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3485/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3486static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3487                         bool HasAVX2, bool V2IsSplat = false) {
3488  unsigned NumElts = VT.getVectorNumElements();
3489
3490  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3491         "Unsupported vector type for unpckh");
3492
3493  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3494      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3495    return false;
3496
3497  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3498  // independently on 128-bit lanes.
3499  unsigned NumLanes = VT.getSizeInBits()/128;
3500  unsigned NumLaneElts = NumElts/NumLanes;
3501
3502  for (unsigned l = 0; l != NumLanes; ++l) {
3503    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3504         i != (l+1)*NumLaneElts; i += 2, ++j) {
3505      int BitI  = Mask[i];
3506      int BitI1 = Mask[i+1];
3507      if (!isUndefOrEqual(BitI, j))
3508        return false;
3509      if (V2IsSplat) {
3510        if (isUndefOrEqual(BitI1, NumElts))
3511          return false;
3512      } else {
3513        if (!isUndefOrEqual(BitI1, j+NumElts))
3514          return false;
3515      }
3516    }
3517  }
3518  return true;
3519}
3520
3521/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3522/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3523/// <0, 0, 1, 1>
3524static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3525                                  bool HasAVX2) {
3526  unsigned NumElts = VT.getVectorNumElements();
3527
3528  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3529         "Unsupported vector type for unpckh");
3530
3531  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3532      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3533    return false;
3534
3535  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3536  // FIXME: Need a better way to get rid of this, there's no latency difference
3537  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3538  // the former later. We should also remove the "_undef" special mask.
3539  if (NumElts == 4 && VT.getSizeInBits() == 256)
3540    return false;
3541
3542  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3543  // independently on 128-bit lanes.
3544  unsigned NumLanes = VT.getSizeInBits()/128;
3545  unsigned NumLaneElts = NumElts/NumLanes;
3546
3547  for (unsigned l = 0; l != NumLanes; ++l) {
3548    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3549         i != (l+1)*NumLaneElts;
3550         i += 2, ++j) {
3551      int BitI  = Mask[i];
3552      int BitI1 = Mask[i+1];
3553
3554      if (!isUndefOrEqual(BitI, j))
3555        return false;
3556      if (!isUndefOrEqual(BitI1, j))
3557        return false;
3558    }
3559  }
3560
3561  return true;
3562}
3563
3564/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3565/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3566/// <2, 2, 3, 3>
3567static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3568  unsigned NumElts = VT.getVectorNumElements();
3569
3570  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3571         "Unsupported vector type for unpckh");
3572
3573  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3574      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3575    return false;
3576
3577  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3578  // independently on 128-bit lanes.
3579  unsigned NumLanes = VT.getSizeInBits()/128;
3580  unsigned NumLaneElts = NumElts/NumLanes;
3581
3582  for (unsigned l = 0; l != NumLanes; ++l) {
3583    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3584         i != (l+1)*NumLaneElts; i += 2, ++j) {
3585      int BitI  = Mask[i];
3586      int BitI1 = Mask[i+1];
3587      if (!isUndefOrEqual(BitI, j))
3588        return false;
3589      if (!isUndefOrEqual(BitI1, j))
3590        return false;
3591    }
3592  }
3593  return true;
3594}
3595
3596/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3597/// specifies a shuffle of elements that is suitable for input to MOVSS,
3598/// MOVSD, and MOVD, i.e. setting the lowest element.
3599static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3600  if (VT.getVectorElementType().getSizeInBits() < 32)
3601    return false;
3602  if (VT.getSizeInBits() == 256)
3603    return false;
3604
3605  unsigned NumElts = VT.getVectorNumElements();
3606
3607  if (!isUndefOrEqual(Mask[0], NumElts))
3608    return false;
3609
3610  for (unsigned i = 1; i != NumElts; ++i)
3611    if (!isUndefOrEqual(Mask[i], i))
3612      return false;
3613
3614  return true;
3615}
3616
3617/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3618/// as permutations between 128-bit chunks or halves. As an example: this
3619/// shuffle bellow:
3620///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3621/// The first half comes from the second half of V1 and the second half from the
3622/// the second half of V2.
3623static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3624  if (!HasAVX || VT.getSizeInBits() != 256)
3625    return false;
3626
3627  // The shuffle result is divided into half A and half B. In total the two
3628  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3629  // B must come from C, D, E or F.
3630  unsigned HalfSize = VT.getVectorNumElements()/2;
3631  bool MatchA = false, MatchB = false;
3632
3633  // Check if A comes from one of C, D, E, F.
3634  for (unsigned Half = 0; Half != 4; ++Half) {
3635    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3636      MatchA = true;
3637      break;
3638    }
3639  }
3640
3641  // Check if B comes from one of C, D, E, F.
3642  for (unsigned Half = 0; Half != 4; ++Half) {
3643    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3644      MatchB = true;
3645      break;
3646    }
3647  }
3648
3649  return MatchA && MatchB;
3650}
3651
3652/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3653/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3654static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3655  EVT VT = SVOp->getValueType(0);
3656
3657  unsigned HalfSize = VT.getVectorNumElements()/2;
3658
3659  unsigned FstHalf = 0, SndHalf = 0;
3660  for (unsigned i = 0; i < HalfSize; ++i) {
3661    if (SVOp->getMaskElt(i) > 0) {
3662      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3663      break;
3664    }
3665  }
3666  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3667    if (SVOp->getMaskElt(i) > 0) {
3668      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3669      break;
3670    }
3671  }
3672
3673  return (FstHalf | (SndHalf << 4));
3674}
3675
3676/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3677/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3678/// Note that VPERMIL mask matching is different depending whether theunderlying
3679/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3680/// to the same elements of the low, but to the higher half of the source.
3681/// In VPERMILPD the two lanes could be shuffled independently of each other
3682/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3683static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3684  if (!HasAVX)
3685    return false;
3686
3687  unsigned NumElts = VT.getVectorNumElements();
3688  // Only match 256-bit with 32/64-bit types
3689  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3690    return false;
3691
3692  unsigned NumLanes = VT.getSizeInBits()/128;
3693  unsigned LaneSize = NumElts/NumLanes;
3694  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3695    for (unsigned i = 0; i != LaneSize; ++i) {
3696      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3697        return false;
3698      if (NumElts != 8 || l == 0)
3699        continue;
3700      // VPERMILPS handling
3701      if (Mask[i] < 0)
3702        continue;
3703      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3704        return false;
3705    }
3706  }
3707
3708  return true;
3709}
3710
3711/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3712/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3713/// element of vector 2 and the other elements to come from vector 1 in order.
3714static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3715                               bool V2IsSplat = false, bool V2IsUndef = false) {
3716  unsigned NumOps = VT.getVectorNumElements();
3717  if (VT.getSizeInBits() == 256)
3718    return false;
3719  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3720    return false;
3721
3722  if (!isUndefOrEqual(Mask[0], 0))
3723    return false;
3724
3725  for (unsigned i = 1; i != NumOps; ++i)
3726    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3727          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3728          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3729      return false;
3730
3731  return true;
3732}
3733
3734/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3735/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3736/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3737static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3738                           const X86Subtarget *Subtarget) {
3739  if (!Subtarget->hasSSE3())
3740    return false;
3741
3742  unsigned NumElems = VT.getVectorNumElements();
3743
3744  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3745      (VT.getSizeInBits() == 256 && NumElems != 8))
3746    return false;
3747
3748  // "i+1" is the value the indexed mask element must have
3749  for (unsigned i = 0; i != NumElems; i += 2)
3750    if (!isUndefOrEqual(Mask[i], i+1) ||
3751        !isUndefOrEqual(Mask[i+1], i+1))
3752      return false;
3753
3754  return true;
3755}
3756
3757/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3758/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3759/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3760static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3761                           const X86Subtarget *Subtarget) {
3762  if (!Subtarget->hasSSE3())
3763    return false;
3764
3765  unsigned NumElems = VT.getVectorNumElements();
3766
3767  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3768      (VT.getSizeInBits() == 256 && NumElems != 8))
3769    return false;
3770
3771  // "i" is the value the indexed mask element must have
3772  for (unsigned i = 0; i != NumElems; i += 2)
3773    if (!isUndefOrEqual(Mask[i], i) ||
3774        !isUndefOrEqual(Mask[i+1], i))
3775      return false;
3776
3777  return true;
3778}
3779
3780/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3781/// specifies a shuffle of elements that is suitable for input to 256-bit
3782/// version of MOVDDUP.
3783static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3784  unsigned NumElts = VT.getVectorNumElements();
3785
3786  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3787    return false;
3788
3789  for (unsigned i = 0; i != NumElts/2; ++i)
3790    if (!isUndefOrEqual(Mask[i], 0))
3791      return false;
3792  for (unsigned i = NumElts/2; i != NumElts; ++i)
3793    if (!isUndefOrEqual(Mask[i], NumElts/2))
3794      return false;
3795  return true;
3796}
3797
3798/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3799/// specifies a shuffle of elements that is suitable for input to 128-bit
3800/// version of MOVDDUP.
3801static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3802  if (VT.getSizeInBits() != 128)
3803    return false;
3804
3805  unsigned e = VT.getVectorNumElements() / 2;
3806  for (unsigned i = 0; i != e; ++i)
3807    if (!isUndefOrEqual(Mask[i], i))
3808      return false;
3809  for (unsigned i = 0; i != e; ++i)
3810    if (!isUndefOrEqual(Mask[e+i], i))
3811      return false;
3812  return true;
3813}
3814
3815/// isVEXTRACTF128Index - Return true if the specified
3816/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3817/// suitable for input to VEXTRACTF128.
3818bool X86::isVEXTRACTF128Index(SDNode *N) {
3819  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3820    return false;
3821
3822  // The index should be aligned on a 128-bit boundary.
3823  uint64_t Index =
3824    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3825
3826  unsigned VL = N->getValueType(0).getVectorNumElements();
3827  unsigned VBits = N->getValueType(0).getSizeInBits();
3828  unsigned ElSize = VBits / VL;
3829  bool Result = (Index * ElSize) % 128 == 0;
3830
3831  return Result;
3832}
3833
3834/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3835/// operand specifies a subvector insert that is suitable for input to
3836/// VINSERTF128.
3837bool X86::isVINSERTF128Index(SDNode *N) {
3838  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3839    return false;
3840
3841  // The index should be aligned on a 128-bit boundary.
3842  uint64_t Index =
3843    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3844
3845  unsigned VL = N->getValueType(0).getVectorNumElements();
3846  unsigned VBits = N->getValueType(0).getSizeInBits();
3847  unsigned ElSize = VBits / VL;
3848  bool Result = (Index * ElSize) % 128 == 0;
3849
3850  return Result;
3851}
3852
3853/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3854/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3855/// Handles 128-bit and 256-bit.
3856static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3857  EVT VT = N->getValueType(0);
3858
3859  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3860         "Unsupported vector type for PSHUF/SHUFP");
3861
3862  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3863  // independently on 128-bit lanes.
3864  unsigned NumElts = VT.getVectorNumElements();
3865  unsigned NumLanes = VT.getSizeInBits()/128;
3866  unsigned NumLaneElts = NumElts/NumLanes;
3867
3868  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3869         "Only supports 2 or 4 elements per lane");
3870
3871  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3872  unsigned Mask = 0;
3873  for (unsigned i = 0; i != NumElts; ++i) {
3874    int Elt = N->getMaskElt(i);
3875    if (Elt < 0) continue;
3876    Elt %= NumLaneElts;
3877    unsigned ShAmt = i << Shift;
3878    if (ShAmt >= 8) ShAmt -= 8;
3879    Mask |= Elt << ShAmt;
3880  }
3881
3882  return Mask;
3883}
3884
3885/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3886/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3887static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3888  unsigned Mask = 0;
3889  // 8 nodes, but we only care about the last 4.
3890  for (unsigned i = 7; i >= 4; --i) {
3891    int Val = N->getMaskElt(i);
3892    if (Val >= 0)
3893      Mask |= (Val - 4);
3894    if (i != 4)
3895      Mask <<= 2;
3896  }
3897  return Mask;
3898}
3899
3900/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3901/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3902static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
3903  unsigned Mask = 0;
3904  // 8 nodes, but we only care about the first 4.
3905  for (int i = 3; i >= 0; --i) {
3906    int Val = N->getMaskElt(i);
3907    if (Val >= 0)
3908      Mask |= Val;
3909    if (i != 0)
3910      Mask <<= 2;
3911  }
3912  return Mask;
3913}
3914
3915/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3916/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3917static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3918  EVT VT = SVOp->getValueType(0);
3919  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3920
3921  unsigned NumElts = VT.getVectorNumElements();
3922  unsigned NumLanes = VT.getSizeInBits()/128;
3923  unsigned NumLaneElts = NumElts/NumLanes;
3924
3925  int Val = 0;
3926  unsigned i;
3927  for (i = 0; i != NumElts; ++i) {
3928    Val = SVOp->getMaskElt(i);
3929    if (Val >= 0)
3930      break;
3931  }
3932  if (Val >= (int)NumElts)
3933    Val -= NumElts - NumLaneElts;
3934
3935  assert(Val - i > 0 && "PALIGNR imm should be positive");
3936  return (Val - i) * EltSize;
3937}
3938
3939/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3940/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3941/// instructions.
3942unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3943  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3944    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3945
3946  uint64_t Index =
3947    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3948
3949  EVT VecVT = N->getOperand(0).getValueType();
3950  EVT ElVT = VecVT.getVectorElementType();
3951
3952  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3953  return Index / NumElemsPerChunk;
3954}
3955
3956/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3957/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3958/// instructions.
3959unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3960  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3961    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3962
3963  uint64_t Index =
3964    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3965
3966  EVT VecVT = N->getValueType(0);
3967  EVT ElVT = VecVT.getVectorElementType();
3968
3969  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3970  return Index / NumElemsPerChunk;
3971}
3972
3973/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3974/// constant +0.0.
3975bool X86::isZeroNode(SDValue Elt) {
3976  return ((isa<ConstantSDNode>(Elt) &&
3977           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3978          (isa<ConstantFPSDNode>(Elt) &&
3979           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3980}
3981
3982/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3983/// their permute mask.
3984static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3985                                    SelectionDAG &DAG) {
3986  EVT VT = SVOp->getValueType(0);
3987  unsigned NumElems = VT.getVectorNumElements();
3988  SmallVector<int, 8> MaskVec;
3989
3990  for (unsigned i = 0; i != NumElems; ++i) {
3991    int idx = SVOp->getMaskElt(i);
3992    if (idx < 0)
3993      MaskVec.push_back(idx);
3994    else if (idx < (int)NumElems)
3995      MaskVec.push_back(idx + NumElems);
3996    else
3997      MaskVec.push_back(idx - NumElems);
3998  }
3999  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4000                              SVOp->getOperand(0), &MaskVec[0]);
4001}
4002
4003/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4004/// match movhlps. The lower half elements should come from upper half of
4005/// V1 (and in order), and the upper half elements should come from the upper
4006/// half of V2 (and in order).
4007static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4008  if (VT.getSizeInBits() != 128)
4009    return false;
4010  if (VT.getVectorNumElements() != 4)
4011    return false;
4012  for (unsigned i = 0, e = 2; i != e; ++i)
4013    if (!isUndefOrEqual(Mask[i], i+2))
4014      return false;
4015  for (unsigned i = 2; i != 4; ++i)
4016    if (!isUndefOrEqual(Mask[i], i+4))
4017      return false;
4018  return true;
4019}
4020
4021/// isScalarLoadToVector - Returns true if the node is a scalar load that
4022/// is promoted to a vector. It also returns the LoadSDNode by reference if
4023/// required.
4024static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4025  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4026    return false;
4027  N = N->getOperand(0).getNode();
4028  if (!ISD::isNON_EXTLoad(N))
4029    return false;
4030  if (LD)
4031    *LD = cast<LoadSDNode>(N);
4032  return true;
4033}
4034
4035// Test whether the given value is a vector value which will be legalized
4036// into a load.
4037static bool WillBeConstantPoolLoad(SDNode *N) {
4038  if (N->getOpcode() != ISD::BUILD_VECTOR)
4039    return false;
4040
4041  // Check for any non-constant elements.
4042  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4043    switch (N->getOperand(i).getNode()->getOpcode()) {
4044    case ISD::UNDEF:
4045    case ISD::ConstantFP:
4046    case ISD::Constant:
4047      break;
4048    default:
4049      return false;
4050    }
4051
4052  // Vectors of all-zeros and all-ones are materialized with special
4053  // instructions rather than being loaded.
4054  return !ISD::isBuildVectorAllZeros(N) &&
4055         !ISD::isBuildVectorAllOnes(N);
4056}
4057
4058/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4059/// match movlp{s|d}. The lower half elements should come from lower half of
4060/// V1 (and in order), and the upper half elements should come from the upper
4061/// half of V2 (and in order). And since V1 will become the source of the
4062/// MOVLP, it must be either a vector load or a scalar load to vector.
4063static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4064                               ArrayRef<int> Mask, EVT VT) {
4065  if (VT.getSizeInBits() != 128)
4066    return false;
4067
4068  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4069    return false;
4070  // Is V2 is a vector load, don't do this transformation. We will try to use
4071  // load folding shufps op.
4072  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4073    return false;
4074
4075  unsigned NumElems = VT.getVectorNumElements();
4076
4077  if (NumElems != 2 && NumElems != 4)
4078    return false;
4079  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4080    if (!isUndefOrEqual(Mask[i], i))
4081      return false;
4082  for (unsigned i = NumElems/2; i != NumElems; ++i)
4083    if (!isUndefOrEqual(Mask[i], i+NumElems))
4084      return false;
4085  return true;
4086}
4087
4088/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4089/// all the same.
4090static bool isSplatVector(SDNode *N) {
4091  if (N->getOpcode() != ISD::BUILD_VECTOR)
4092    return false;
4093
4094  SDValue SplatValue = N->getOperand(0);
4095  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4096    if (N->getOperand(i) != SplatValue)
4097      return false;
4098  return true;
4099}
4100
4101/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4102/// to an zero vector.
4103/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4104static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4105  SDValue V1 = N->getOperand(0);
4106  SDValue V2 = N->getOperand(1);
4107  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4108  for (unsigned i = 0; i != NumElems; ++i) {
4109    int Idx = N->getMaskElt(i);
4110    if (Idx >= (int)NumElems) {
4111      unsigned Opc = V2.getOpcode();
4112      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4113        continue;
4114      if (Opc != ISD::BUILD_VECTOR ||
4115          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4116        return false;
4117    } else if (Idx >= 0) {
4118      unsigned Opc = V1.getOpcode();
4119      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4120        continue;
4121      if (Opc != ISD::BUILD_VECTOR ||
4122          !X86::isZeroNode(V1.getOperand(Idx)))
4123        return false;
4124    }
4125  }
4126  return true;
4127}
4128
4129/// getZeroVector - Returns a vector of specified type with all zero elements.
4130///
4131static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4132                             SelectionDAG &DAG, DebugLoc dl) {
4133  assert(VT.isVector() && "Expected a vector type");
4134
4135  // Always build SSE zero vectors as <4 x i32> bitcasted
4136  // to their dest type. This ensures they get CSE'd.
4137  SDValue Vec;
4138  if (VT.getSizeInBits() == 128) {  // SSE
4139    if (Subtarget->hasSSE2()) {  // SSE2
4140      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4141      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4142    } else { // SSE1
4143      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4144      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4145    }
4146  } else if (VT.getSizeInBits() == 256) { // AVX
4147    if (Subtarget->hasAVX2()) { // AVX2
4148      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4149      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4150      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4151    } else {
4152      // 256-bit logic and arithmetic instructions in AVX are all
4153      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4154      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4155      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4156      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4157    }
4158  }
4159  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4160}
4161
4162/// getOnesVector - Returns a vector of specified type with all bits set.
4163/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4164/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4165/// Then bitcast to their original type, ensuring they get CSE'd.
4166static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4167                             DebugLoc dl) {
4168  assert(VT.isVector() && "Expected a vector type");
4169  assert((VT.is128BitVector() || VT.is256BitVector())
4170         && "Expected a 128-bit or 256-bit vector type");
4171
4172  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4173  SDValue Vec;
4174  if (VT.getSizeInBits() == 256) {
4175    if (HasAVX2) { // AVX2
4176      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4177      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4178    } else { // AVX
4179      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4180      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4181                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4182      Vec = Insert128BitVector(InsV, Vec,
4183                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4184    }
4185  } else {
4186    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4187  }
4188
4189  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4190}
4191
4192/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4193/// that point to V2 points to its first element.
4194static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4195  for (unsigned i = 0; i != NumElems; ++i) {
4196    if (Mask[i] > (int)NumElems) {
4197      Mask[i] = NumElems;
4198    }
4199  }
4200}
4201
4202/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4203/// operation of specified width.
4204static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4205                       SDValue V2) {
4206  unsigned NumElems = VT.getVectorNumElements();
4207  SmallVector<int, 8> Mask;
4208  Mask.push_back(NumElems);
4209  for (unsigned i = 1; i != NumElems; ++i)
4210    Mask.push_back(i);
4211  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4212}
4213
4214/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4215static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4216                          SDValue V2) {
4217  unsigned NumElems = VT.getVectorNumElements();
4218  SmallVector<int, 8> Mask;
4219  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4220    Mask.push_back(i);
4221    Mask.push_back(i + NumElems);
4222  }
4223  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4224}
4225
4226/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4227static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4228                          SDValue V2) {
4229  unsigned NumElems = VT.getVectorNumElements();
4230  unsigned Half = NumElems/2;
4231  SmallVector<int, 8> Mask;
4232  for (unsigned i = 0; i != Half; ++i) {
4233    Mask.push_back(i + Half);
4234    Mask.push_back(i + NumElems + Half);
4235  }
4236  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4237}
4238
4239// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4240// a generic shuffle instruction because the target has no such instructions.
4241// Generate shuffles which repeat i16 and i8 several times until they can be
4242// represented by v4f32 and then be manipulated by target suported shuffles.
4243static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4244  EVT VT = V.getValueType();
4245  int NumElems = VT.getVectorNumElements();
4246  DebugLoc dl = V.getDebugLoc();
4247
4248  while (NumElems > 4) {
4249    if (EltNo < NumElems/2) {
4250      V = getUnpackl(DAG, dl, VT, V, V);
4251    } else {
4252      V = getUnpackh(DAG, dl, VT, V, V);
4253      EltNo -= NumElems/2;
4254    }
4255    NumElems >>= 1;
4256  }
4257  return V;
4258}
4259
4260/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4261static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4262  EVT VT = V.getValueType();
4263  DebugLoc dl = V.getDebugLoc();
4264  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4265         && "Vector size not supported");
4266
4267  if (VT.getSizeInBits() == 128) {
4268    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4269    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4270    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4271                             &SplatMask[0]);
4272  } else {
4273    // To use VPERMILPS to splat scalars, the second half of indicies must
4274    // refer to the higher part, which is a duplication of the lower one,
4275    // because VPERMILPS can only handle in-lane permutations.
4276    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4277                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4278
4279    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4280    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4281                             &SplatMask[0]);
4282  }
4283
4284  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4285}
4286
4287/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4288static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4289  EVT SrcVT = SV->getValueType(0);
4290  SDValue V1 = SV->getOperand(0);
4291  DebugLoc dl = SV->getDebugLoc();
4292
4293  int EltNo = SV->getSplatIndex();
4294  int NumElems = SrcVT.getVectorNumElements();
4295  unsigned Size = SrcVT.getSizeInBits();
4296
4297  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4298          "Unknown how to promote splat for type");
4299
4300  // Extract the 128-bit part containing the splat element and update
4301  // the splat element index when it refers to the higher register.
4302  if (Size == 256) {
4303    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4304    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4305    if (Idx > 0)
4306      EltNo -= NumElems/2;
4307  }
4308
4309  // All i16 and i8 vector types can't be used directly by a generic shuffle
4310  // instruction because the target has no such instruction. Generate shuffles
4311  // which repeat i16 and i8 several times until they fit in i32, and then can
4312  // be manipulated by target suported shuffles.
4313  EVT EltVT = SrcVT.getVectorElementType();
4314  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4315    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4316
4317  // Recreate the 256-bit vector and place the same 128-bit vector
4318  // into the low and high part. This is necessary because we want
4319  // to use VPERM* to shuffle the vectors
4320  if (Size == 256) {
4321    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4322                         DAG.getConstant(0, MVT::i32), DAG, dl);
4323    V1 = Insert128BitVector(InsV, V1,
4324               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4325  }
4326
4327  return getLegalSplat(DAG, V1, EltNo);
4328}
4329
4330/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4331/// vector of zero or undef vector.  This produces a shuffle where the low
4332/// element of V2 is swizzled into the zero/undef vector, landing at element
4333/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4334static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4335                                           bool IsZero,
4336                                           const X86Subtarget *Subtarget,
4337                                           SelectionDAG &DAG) {
4338  EVT VT = V2.getValueType();
4339  SDValue V1 = IsZero
4340    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4341  unsigned NumElems = VT.getVectorNumElements();
4342  SmallVector<int, 16> MaskVec;
4343  for (unsigned i = 0; i != NumElems; ++i)
4344    // If this is the insertion idx, put the low elt of V2 here.
4345    MaskVec.push_back(i == Idx ? NumElems : i);
4346  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4347}
4348
4349/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4350/// target specific opcode. Returns true if the Mask could be calculated.
4351/// Sets IsUnary to true if only uses one source.
4352static bool getTargetShuffleMask(SDNode *N, EVT VT,
4353                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4354  unsigned NumElems = VT.getVectorNumElements();
4355  SDValue ImmN;
4356
4357  IsUnary = false;
4358  switch(N->getOpcode()) {
4359  case X86ISD::SHUFP:
4360    ImmN = N->getOperand(N->getNumOperands()-1);
4361    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4362    break;
4363  case X86ISD::UNPCKH:
4364    DecodeUNPCKHMask(VT, Mask);
4365    break;
4366  case X86ISD::UNPCKL:
4367    DecodeUNPCKLMask(VT, Mask);
4368    break;
4369  case X86ISD::MOVHLPS:
4370    DecodeMOVHLPSMask(NumElems, Mask);
4371    break;
4372  case X86ISD::MOVLHPS:
4373    DecodeMOVLHPSMask(NumElems, Mask);
4374    break;
4375  case X86ISD::PSHUFD:
4376  case X86ISD::VPERMILP:
4377    ImmN = N->getOperand(N->getNumOperands()-1);
4378    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4379    IsUnary = true;
4380    break;
4381  case X86ISD::PSHUFHW:
4382    ImmN = N->getOperand(N->getNumOperands()-1);
4383    DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4384    IsUnary = true;
4385    break;
4386  case X86ISD::PSHUFLW:
4387    ImmN = N->getOperand(N->getNumOperands()-1);
4388    DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4389    IsUnary = true;
4390    break;
4391  case X86ISD::MOVSS:
4392  case X86ISD::MOVSD: {
4393    // The index 0 always comes from the first element of the second source,
4394    // this is why MOVSS and MOVSD are used in the first place. The other
4395    // elements come from the other positions of the first source vector
4396    Mask.push_back(NumElems);
4397    for (unsigned i = 1; i != NumElems; ++i) {
4398      Mask.push_back(i);
4399    }
4400    break;
4401  }
4402  case X86ISD::VPERM2X128:
4403    ImmN = N->getOperand(N->getNumOperands()-1);
4404    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4405    break;
4406  case X86ISD::MOVDDUP:
4407  case X86ISD::MOVLHPD:
4408  case X86ISD::MOVLPD:
4409  case X86ISD::MOVLPS:
4410  case X86ISD::MOVSHDUP:
4411  case X86ISD::MOVSLDUP:
4412  case X86ISD::PALIGN:
4413    // Not yet implemented
4414    return false;
4415  default: llvm_unreachable("unknown target shuffle node");
4416  }
4417
4418  return true;
4419}
4420
4421/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4422/// element of the result of the vector shuffle.
4423static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4424                                   unsigned Depth) {
4425  if (Depth == 6)
4426    return SDValue();  // Limit search depth.
4427
4428  SDValue V = SDValue(N, 0);
4429  EVT VT = V.getValueType();
4430  unsigned Opcode = V.getOpcode();
4431
4432  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4433  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4434    int Elt = SV->getMaskElt(Index);
4435
4436    if (Elt < 0)
4437      return DAG.getUNDEF(VT.getVectorElementType());
4438
4439    unsigned NumElems = VT.getVectorNumElements();
4440    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4441                                         : SV->getOperand(1);
4442    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4443  }
4444
4445  // Recurse into target specific vector shuffles to find scalars.
4446  if (isTargetShuffle(Opcode)) {
4447    unsigned NumElems = VT.getVectorNumElements();
4448    SmallVector<int, 16> ShuffleMask;
4449    SDValue ImmN;
4450    bool IsUnary;
4451
4452    if (!getTargetShuffleMask(N, VT, ShuffleMask, IsUnary))
4453      return SDValue();
4454
4455    int Elt = ShuffleMask[Index];
4456    if (Elt < 0)
4457      return DAG.getUNDEF(VT.getVectorElementType());
4458
4459    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4460                                           : N->getOperand(1);
4461    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4462                               Depth+1);
4463  }
4464
4465  // Actual nodes that may contain scalar elements
4466  if (Opcode == ISD::BITCAST) {
4467    V = V.getOperand(0);
4468    EVT SrcVT = V.getValueType();
4469    unsigned NumElems = VT.getVectorNumElements();
4470
4471    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4472      return SDValue();
4473  }
4474
4475  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4476    return (Index == 0) ? V.getOperand(0)
4477                        : DAG.getUNDEF(VT.getVectorElementType());
4478
4479  if (V.getOpcode() == ISD::BUILD_VECTOR)
4480    return V.getOperand(Index);
4481
4482  return SDValue();
4483}
4484
4485/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4486/// shuffle operation which come from a consecutively from a zero. The
4487/// search can start in two different directions, from left or right.
4488static
4489unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4490                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4491  unsigned i;
4492  for (i = 0; i != NumElems; ++i) {
4493    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4494    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4495    if (!(Elt.getNode() &&
4496         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4497      break;
4498  }
4499
4500  return i;
4501}
4502
4503/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4504/// correspond consecutively to elements from one of the vector operands,
4505/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4506static
4507bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4508                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4509                              unsigned NumElems, unsigned &OpNum) {
4510  bool SeenV1 = false;
4511  bool SeenV2 = false;
4512
4513  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4514    int Idx = SVOp->getMaskElt(i);
4515    // Ignore undef indicies
4516    if (Idx < 0)
4517      continue;
4518
4519    if (Idx < (int)NumElems)
4520      SeenV1 = true;
4521    else
4522      SeenV2 = true;
4523
4524    // Only accept consecutive elements from the same vector
4525    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4526      return false;
4527  }
4528
4529  OpNum = SeenV1 ? 0 : 1;
4530  return true;
4531}
4532
4533/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4534/// logical left shift of a vector.
4535static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4536                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4537  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4538  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4539              false /* check zeros from right */, DAG);
4540  unsigned OpSrc;
4541
4542  if (!NumZeros)
4543    return false;
4544
4545  // Considering the elements in the mask that are not consecutive zeros,
4546  // check if they consecutively come from only one of the source vectors.
4547  //
4548  //               V1 = {X, A, B, C}     0
4549  //                         \  \  \    /
4550  //   vector_shuffle V1, V2 <1, 2, 3, X>
4551  //
4552  if (!isShuffleMaskConsecutive(SVOp,
4553            0,                   // Mask Start Index
4554            NumElems-NumZeros,   // Mask End Index(exclusive)
4555            NumZeros,            // Where to start looking in the src vector
4556            NumElems,            // Number of elements in vector
4557            OpSrc))              // Which source operand ?
4558    return false;
4559
4560  isLeft = false;
4561  ShAmt = NumZeros;
4562  ShVal = SVOp->getOperand(OpSrc);
4563  return true;
4564}
4565
4566/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4567/// logical left shift of a vector.
4568static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4569                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4570  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4571  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4572              true /* check zeros from left */, DAG);
4573  unsigned OpSrc;
4574
4575  if (!NumZeros)
4576    return false;
4577
4578  // Considering the elements in the mask that are not consecutive zeros,
4579  // check if they consecutively come from only one of the source vectors.
4580  //
4581  //                           0    { A, B, X, X } = V2
4582  //                          / \    /  /
4583  //   vector_shuffle V1, V2 <X, X, 4, 5>
4584  //
4585  if (!isShuffleMaskConsecutive(SVOp,
4586            NumZeros,     // Mask Start Index
4587            NumElems,     // Mask End Index(exclusive)
4588            0,            // Where to start looking in the src vector
4589            NumElems,     // Number of elements in vector
4590            OpSrc))       // Which source operand ?
4591    return false;
4592
4593  isLeft = true;
4594  ShAmt = NumZeros;
4595  ShVal = SVOp->getOperand(OpSrc);
4596  return true;
4597}
4598
4599/// isVectorShift - Returns true if the shuffle can be implemented as a
4600/// logical left or right shift of a vector.
4601static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4602                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4603  // Although the logic below support any bitwidth size, there are no
4604  // shift instructions which handle more than 128-bit vectors.
4605  if (SVOp->getValueType(0).getSizeInBits() > 128)
4606    return false;
4607
4608  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4609      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4610    return true;
4611
4612  return false;
4613}
4614
4615/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4616///
4617static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4618                                       unsigned NumNonZero, unsigned NumZero,
4619                                       SelectionDAG &DAG,
4620                                       const X86Subtarget* Subtarget,
4621                                       const TargetLowering &TLI) {
4622  if (NumNonZero > 8)
4623    return SDValue();
4624
4625  DebugLoc dl = Op.getDebugLoc();
4626  SDValue V(0, 0);
4627  bool First = true;
4628  for (unsigned i = 0; i < 16; ++i) {
4629    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4630    if (ThisIsNonZero && First) {
4631      if (NumZero)
4632        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4633      else
4634        V = DAG.getUNDEF(MVT::v8i16);
4635      First = false;
4636    }
4637
4638    if ((i & 1) != 0) {
4639      SDValue ThisElt(0, 0), LastElt(0, 0);
4640      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4641      if (LastIsNonZero) {
4642        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4643                              MVT::i16, Op.getOperand(i-1));
4644      }
4645      if (ThisIsNonZero) {
4646        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4647        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4648                              ThisElt, DAG.getConstant(8, MVT::i8));
4649        if (LastIsNonZero)
4650          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4651      } else
4652        ThisElt = LastElt;
4653
4654      if (ThisElt.getNode())
4655        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4656                        DAG.getIntPtrConstant(i/2));
4657    }
4658  }
4659
4660  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4661}
4662
4663/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4664///
4665static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4666                                     unsigned NumNonZero, unsigned NumZero,
4667                                     SelectionDAG &DAG,
4668                                     const X86Subtarget* Subtarget,
4669                                     const TargetLowering &TLI) {
4670  if (NumNonZero > 4)
4671    return SDValue();
4672
4673  DebugLoc dl = Op.getDebugLoc();
4674  SDValue V(0, 0);
4675  bool First = true;
4676  for (unsigned i = 0; i < 8; ++i) {
4677    bool isNonZero = (NonZeros & (1 << i)) != 0;
4678    if (isNonZero) {
4679      if (First) {
4680        if (NumZero)
4681          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4682        else
4683          V = DAG.getUNDEF(MVT::v8i16);
4684        First = false;
4685      }
4686      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4687                      MVT::v8i16, V, Op.getOperand(i),
4688                      DAG.getIntPtrConstant(i));
4689    }
4690  }
4691
4692  return V;
4693}
4694
4695/// getVShift - Return a vector logical shift node.
4696///
4697static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4698                         unsigned NumBits, SelectionDAG &DAG,
4699                         const TargetLowering &TLI, DebugLoc dl) {
4700  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4701  EVT ShVT = MVT::v2i64;
4702  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4703  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4704  return DAG.getNode(ISD::BITCAST, dl, VT,
4705                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4706                             DAG.getConstant(NumBits,
4707                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4708}
4709
4710SDValue
4711X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4712                                          SelectionDAG &DAG) const {
4713
4714  // Check if the scalar load can be widened into a vector load. And if
4715  // the address is "base + cst" see if the cst can be "absorbed" into
4716  // the shuffle mask.
4717  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4718    SDValue Ptr = LD->getBasePtr();
4719    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4720      return SDValue();
4721    EVT PVT = LD->getValueType(0);
4722    if (PVT != MVT::i32 && PVT != MVT::f32)
4723      return SDValue();
4724
4725    int FI = -1;
4726    int64_t Offset = 0;
4727    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4728      FI = FINode->getIndex();
4729      Offset = 0;
4730    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4731               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4732      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4733      Offset = Ptr.getConstantOperandVal(1);
4734      Ptr = Ptr.getOperand(0);
4735    } else {
4736      return SDValue();
4737    }
4738
4739    // FIXME: 256-bit vector instructions don't require a strict alignment,
4740    // improve this code to support it better.
4741    unsigned RequiredAlign = VT.getSizeInBits()/8;
4742    SDValue Chain = LD->getChain();
4743    // Make sure the stack object alignment is at least 16 or 32.
4744    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4745    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4746      if (MFI->isFixedObjectIndex(FI)) {
4747        // Can't change the alignment. FIXME: It's possible to compute
4748        // the exact stack offset and reference FI + adjust offset instead.
4749        // If someone *really* cares about this. That's the way to implement it.
4750        return SDValue();
4751      } else {
4752        MFI->setObjectAlignment(FI, RequiredAlign);
4753      }
4754    }
4755
4756    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4757    // Ptr + (Offset & ~15).
4758    if (Offset < 0)
4759      return SDValue();
4760    if ((Offset % RequiredAlign) & 3)
4761      return SDValue();
4762    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4763    if (StartOffset)
4764      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4765                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4766
4767    int EltNo = (Offset - StartOffset) >> 2;
4768    int NumElems = VT.getVectorNumElements();
4769
4770    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4771    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4772                             LD->getPointerInfo().getWithOffset(StartOffset),
4773                             false, false, false, 0);
4774
4775    SmallVector<int, 8> Mask;
4776    for (int i = 0; i < NumElems; ++i)
4777      Mask.push_back(EltNo);
4778
4779    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4780  }
4781
4782  return SDValue();
4783}
4784
4785/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4786/// vector of type 'VT', see if the elements can be replaced by a single large
4787/// load which has the same value as a build_vector whose operands are 'elts'.
4788///
4789/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4790///
4791/// FIXME: we'd also like to handle the case where the last elements are zero
4792/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4793/// There's even a handy isZeroNode for that purpose.
4794static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4795                                        DebugLoc &DL, SelectionDAG &DAG) {
4796  EVT EltVT = VT.getVectorElementType();
4797  unsigned NumElems = Elts.size();
4798
4799  LoadSDNode *LDBase = NULL;
4800  unsigned LastLoadedElt = -1U;
4801
4802  // For each element in the initializer, see if we've found a load or an undef.
4803  // If we don't find an initial load element, or later load elements are
4804  // non-consecutive, bail out.
4805  for (unsigned i = 0; i < NumElems; ++i) {
4806    SDValue Elt = Elts[i];
4807
4808    if (!Elt.getNode() ||
4809        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4810      return SDValue();
4811    if (!LDBase) {
4812      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4813        return SDValue();
4814      LDBase = cast<LoadSDNode>(Elt.getNode());
4815      LastLoadedElt = i;
4816      continue;
4817    }
4818    if (Elt.getOpcode() == ISD::UNDEF)
4819      continue;
4820
4821    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4822    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4823      return SDValue();
4824    LastLoadedElt = i;
4825  }
4826
4827  // If we have found an entire vector of loads and undefs, then return a large
4828  // load of the entire vector width starting at the base pointer.  If we found
4829  // consecutive loads for the low half, generate a vzext_load node.
4830  if (LastLoadedElt == NumElems - 1) {
4831    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4832      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4833                         LDBase->getPointerInfo(),
4834                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4835                         LDBase->isInvariant(), 0);
4836    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4837                       LDBase->getPointerInfo(),
4838                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4839                       LDBase->isInvariant(), LDBase->getAlignment());
4840  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4841             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4842    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4843    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4844    SDValue ResNode =
4845        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4846                                LDBase->getPointerInfo(),
4847                                LDBase->getAlignment(),
4848                                false/*isVolatile*/, true/*ReadMem*/,
4849                                false/*WriteMem*/);
4850    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4851  }
4852  return SDValue();
4853}
4854
4855/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
4856/// to generate a splat value for the following cases:
4857/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
4858/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4859/// a scalar load, or a constant.
4860/// The VBROADCAST node is returned when a pattern is found,
4861/// or SDValue() otherwise.
4862SDValue
4863X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
4864  if (!Subtarget->hasAVX())
4865    return SDValue();
4866
4867  EVT VT = Op.getValueType();
4868  DebugLoc dl = Op.getDebugLoc();
4869
4870  SDValue Ld;
4871  bool ConstSplatVal;
4872
4873  switch (Op.getOpcode()) {
4874    default:
4875      // Unknown pattern found.
4876      return SDValue();
4877
4878    case ISD::BUILD_VECTOR: {
4879      // The BUILD_VECTOR node must be a splat.
4880      if (!isSplatVector(Op.getNode()))
4881        return SDValue();
4882
4883      Ld = Op.getOperand(0);
4884      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4885                     Ld.getOpcode() == ISD::ConstantFP);
4886
4887      // The suspected load node has several users. Make sure that all
4888      // of its users are from the BUILD_VECTOR node.
4889      // Constants may have multiple users.
4890      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4891        return SDValue();
4892      break;
4893    }
4894
4895    case ISD::VECTOR_SHUFFLE: {
4896      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4897
4898      // Shuffles must have a splat mask where the first element is
4899      // broadcasted.
4900      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4901        return SDValue();
4902
4903      SDValue Sc = Op.getOperand(0);
4904      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4905        return SDValue();
4906
4907      Ld = Sc.getOperand(0);
4908      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4909                       Ld.getOpcode() == ISD::ConstantFP);
4910
4911      // The scalar_to_vector node and the suspected
4912      // load node must have exactly one user.
4913      // Constants may have multiple users.
4914      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
4915        return SDValue();
4916      break;
4917    }
4918  }
4919
4920  bool Is256 = VT.getSizeInBits() == 256;
4921  bool Is128 = VT.getSizeInBits() == 128;
4922
4923  // Handle the broadcasting a single constant scalar from the constant pool
4924  // into a vector. On Sandybridge it is still better to load a constant vector
4925  // from the constant pool and not to broadcast it from a scalar.
4926  if (ConstSplatVal && Subtarget->hasAVX2()) {
4927    EVT CVT = Ld.getValueType();
4928    assert(!CVT.isVector() && "Must not broadcast a vector type");
4929    unsigned ScalarSize = CVT.getSizeInBits();
4930
4931    if ((Is256 && (ScalarSize == 32 || ScalarSize == 64)) ||
4932        (Is128 && (ScalarSize == 32))) {
4933
4934      const Constant *C = 0;
4935      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
4936        C = CI->getConstantIntValue();
4937      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
4938        C = CF->getConstantFPValue();
4939
4940      assert(C && "Invalid constant type");
4941
4942      SDValue CP = DAG.getConstantPool(C, getPointerTy());
4943      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
4944      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
4945                         MachinePointerInfo::getConstantPool(),
4946                         false, false, false, Alignment);
4947
4948      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4949    }
4950  }
4951
4952  // The scalar source must be a normal load.
4953  if (!ISD::isNormalLoad(Ld.getNode()))
4954    return SDValue();
4955
4956  // Reject loads that have uses of the chain result
4957  if (Ld->hasAnyUseOfValue(1))
4958    return SDValue();
4959
4960  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
4961
4962  // VBroadcast to YMM
4963  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
4964    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4965
4966  // VBroadcast to XMM
4967  if (Is128 && (ScalarSize == 32))
4968    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4969
4970  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
4971  // double since there is vbroadcastsd xmm
4972  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
4973    // VBroadcast to YMM
4974    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
4975      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4976
4977    // VBroadcast to XMM
4978    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
4979      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4980  }
4981
4982  // Unsupported broadcast.
4983  return SDValue();
4984}
4985
4986SDValue
4987X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4988  DebugLoc dl = Op.getDebugLoc();
4989
4990  EVT VT = Op.getValueType();
4991  EVT ExtVT = VT.getVectorElementType();
4992  unsigned NumElems = Op.getNumOperands();
4993
4994  // Vectors containing all zeros can be matched by pxor and xorps later
4995  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
4996    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
4997    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
4998    if (VT == MVT::v4i32 || VT == MVT::v8i32)
4999      return Op;
5000
5001    return getZeroVector(VT, Subtarget, DAG, dl);
5002  }
5003
5004  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5005  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5006  // vpcmpeqd on 256-bit vectors.
5007  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5008    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5009      return Op;
5010
5011    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5012  }
5013
5014  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5015  if (Broadcast.getNode())
5016    return Broadcast;
5017
5018  unsigned EVTBits = ExtVT.getSizeInBits();
5019
5020  unsigned NumZero  = 0;
5021  unsigned NumNonZero = 0;
5022  unsigned NonZeros = 0;
5023  bool IsAllConstants = true;
5024  SmallSet<SDValue, 8> Values;
5025  for (unsigned i = 0; i < NumElems; ++i) {
5026    SDValue Elt = Op.getOperand(i);
5027    if (Elt.getOpcode() == ISD::UNDEF)
5028      continue;
5029    Values.insert(Elt);
5030    if (Elt.getOpcode() != ISD::Constant &&
5031        Elt.getOpcode() != ISD::ConstantFP)
5032      IsAllConstants = false;
5033    if (X86::isZeroNode(Elt))
5034      NumZero++;
5035    else {
5036      NonZeros |= (1 << i);
5037      NumNonZero++;
5038    }
5039  }
5040
5041  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5042  if (NumNonZero == 0)
5043    return DAG.getUNDEF(VT);
5044
5045  // Special case for single non-zero, non-undef, element.
5046  if (NumNonZero == 1) {
5047    unsigned Idx = CountTrailingZeros_32(NonZeros);
5048    SDValue Item = Op.getOperand(Idx);
5049
5050    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5051    // the value are obviously zero, truncate the value to i32 and do the
5052    // insertion that way.  Only do this if the value is non-constant or if the
5053    // value is a constant being inserted into element 0.  It is cheaper to do
5054    // a constant pool load than it is to do a movd + shuffle.
5055    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5056        (!IsAllConstants || Idx == 0)) {
5057      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5058        // Handle SSE only.
5059        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5060        EVT VecVT = MVT::v4i32;
5061        unsigned VecElts = 4;
5062
5063        // Truncate the value (which may itself be a constant) to i32, and
5064        // convert it to a vector with movd (S2V+shuffle to zero extend).
5065        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5066        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5067        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5068
5069        // Now we have our 32-bit value zero extended in the low element of
5070        // a vector.  If Idx != 0, swizzle it into place.
5071        if (Idx != 0) {
5072          SmallVector<int, 4> Mask;
5073          Mask.push_back(Idx);
5074          for (unsigned i = 1; i != VecElts; ++i)
5075            Mask.push_back(i);
5076          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5077                                      DAG.getUNDEF(Item.getValueType()),
5078                                      &Mask[0]);
5079        }
5080        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5081      }
5082    }
5083
5084    // If we have a constant or non-constant insertion into the low element of
5085    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5086    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5087    // depending on what the source datatype is.
5088    if (Idx == 0) {
5089      if (NumZero == 0)
5090        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5091
5092      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5093          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5094        if (VT.getSizeInBits() == 256) {
5095          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5096          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5097                             Item, DAG.getIntPtrConstant(0));
5098        }
5099        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5100        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5101        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5102        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5103      }
5104
5105      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5106        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5107        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5108        if (VT.getSizeInBits() == 256) {
5109          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5110          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5111                                    DAG, dl);
5112        } else {
5113          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5114          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5115        }
5116        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5117      }
5118    }
5119
5120    // Is it a vector logical left shift?
5121    if (NumElems == 2 && Idx == 1 &&
5122        X86::isZeroNode(Op.getOperand(0)) &&
5123        !X86::isZeroNode(Op.getOperand(1))) {
5124      unsigned NumBits = VT.getSizeInBits();
5125      return getVShift(true, VT,
5126                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5127                                   VT, Op.getOperand(1)),
5128                       NumBits/2, DAG, *this, dl);
5129    }
5130
5131    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5132      return SDValue();
5133
5134    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5135    // is a non-constant being inserted into an element other than the low one,
5136    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5137    // movd/movss) to move this into the low element, then shuffle it into
5138    // place.
5139    if (EVTBits == 32) {
5140      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5141
5142      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5143      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5144      SmallVector<int, 8> MaskVec;
5145      for (unsigned i = 0; i < NumElems; i++)
5146        MaskVec.push_back(i == Idx ? 0 : 1);
5147      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5148    }
5149  }
5150
5151  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5152  if (Values.size() == 1) {
5153    if (EVTBits == 32) {
5154      // Instead of a shuffle like this:
5155      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5156      // Check if it's possible to issue this instead.
5157      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5158      unsigned Idx = CountTrailingZeros_32(NonZeros);
5159      SDValue Item = Op.getOperand(Idx);
5160      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5161        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5162    }
5163    return SDValue();
5164  }
5165
5166  // A vector full of immediates; various special cases are already
5167  // handled, so this is best done with a single constant-pool load.
5168  if (IsAllConstants)
5169    return SDValue();
5170
5171  // For AVX-length vectors, build the individual 128-bit pieces and use
5172  // shuffles to put them in place.
5173  if (VT.getSizeInBits() == 256) {
5174    SmallVector<SDValue, 32> V;
5175    for (unsigned i = 0; i != NumElems; ++i)
5176      V.push_back(Op.getOperand(i));
5177
5178    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5179
5180    // Build both the lower and upper subvector.
5181    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5182    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5183                                NumElems/2);
5184
5185    // Recreate the wider vector with the lower and upper part.
5186    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5187                                DAG.getConstant(0, MVT::i32), DAG, dl);
5188    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5189                              DAG, dl);
5190  }
5191
5192  // Let legalizer expand 2-wide build_vectors.
5193  if (EVTBits == 64) {
5194    if (NumNonZero == 1) {
5195      // One half is zero or undef.
5196      unsigned Idx = CountTrailingZeros_32(NonZeros);
5197      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5198                                 Op.getOperand(Idx));
5199      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5200    }
5201    return SDValue();
5202  }
5203
5204  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5205  if (EVTBits == 8 && NumElems == 16) {
5206    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5207                                        Subtarget, *this);
5208    if (V.getNode()) return V;
5209  }
5210
5211  if (EVTBits == 16 && NumElems == 8) {
5212    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5213                                      Subtarget, *this);
5214    if (V.getNode()) return V;
5215  }
5216
5217  // If element VT is == 32 bits, turn it into a number of shuffles.
5218  SmallVector<SDValue, 8> V(NumElems);
5219  if (NumElems == 4 && NumZero > 0) {
5220    for (unsigned i = 0; i < 4; ++i) {
5221      bool isZero = !(NonZeros & (1 << i));
5222      if (isZero)
5223        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5224      else
5225        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5226    }
5227
5228    for (unsigned i = 0; i < 2; ++i) {
5229      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5230        default: break;
5231        case 0:
5232          V[i] = V[i*2];  // Must be a zero vector.
5233          break;
5234        case 1:
5235          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5236          break;
5237        case 2:
5238          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5239          break;
5240        case 3:
5241          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5242          break;
5243      }
5244    }
5245
5246    bool Reverse1 = (NonZeros & 0x3) == 2;
5247    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5248    int MaskVec[] = {
5249      Reverse1 ? 1 : 0,
5250      Reverse1 ? 0 : 1,
5251      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5252      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5253    };
5254    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5255  }
5256
5257  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5258    // Check for a build vector of consecutive loads.
5259    for (unsigned i = 0; i < NumElems; ++i)
5260      V[i] = Op.getOperand(i);
5261
5262    // Check for elements which are consecutive loads.
5263    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5264    if (LD.getNode())
5265      return LD;
5266
5267    // For SSE 4.1, use insertps to put the high elements into the low element.
5268    if (getSubtarget()->hasSSE41()) {
5269      SDValue Result;
5270      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5271        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5272      else
5273        Result = DAG.getUNDEF(VT);
5274
5275      for (unsigned i = 1; i < NumElems; ++i) {
5276        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5277        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5278                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5279      }
5280      return Result;
5281    }
5282
5283    // Otherwise, expand into a number of unpckl*, start by extending each of
5284    // our (non-undef) elements to the full vector width with the element in the
5285    // bottom slot of the vector (which generates no code for SSE).
5286    for (unsigned i = 0; i < NumElems; ++i) {
5287      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5288        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5289      else
5290        V[i] = DAG.getUNDEF(VT);
5291    }
5292
5293    // Next, we iteratively mix elements, e.g. for v4f32:
5294    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5295    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5296    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5297    unsigned EltStride = NumElems >> 1;
5298    while (EltStride != 0) {
5299      for (unsigned i = 0; i < EltStride; ++i) {
5300        // If V[i+EltStride] is undef and this is the first round of mixing,
5301        // then it is safe to just drop this shuffle: V[i] is already in the
5302        // right place, the one element (since it's the first round) being
5303        // inserted as undef can be dropped.  This isn't safe for successive
5304        // rounds because they will permute elements within both vectors.
5305        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5306            EltStride == NumElems/2)
5307          continue;
5308
5309        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5310      }
5311      EltStride >>= 1;
5312    }
5313    return V[0];
5314  }
5315  return SDValue();
5316}
5317
5318// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5319// them in a MMX register.  This is better than doing a stack convert.
5320static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5321  DebugLoc dl = Op.getDebugLoc();
5322  EVT ResVT = Op.getValueType();
5323
5324  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5325         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5326  int Mask[2];
5327  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5328  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5329  InVec = Op.getOperand(1);
5330  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5331    unsigned NumElts = ResVT.getVectorNumElements();
5332    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5333    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5334                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5335  } else {
5336    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5337    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5338    Mask[0] = 0; Mask[1] = 2;
5339    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5340  }
5341  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5342}
5343
5344// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5345// to create 256-bit vectors from two other 128-bit ones.
5346static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5347  DebugLoc dl = Op.getDebugLoc();
5348  EVT ResVT = Op.getValueType();
5349
5350  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5351
5352  SDValue V1 = Op.getOperand(0);
5353  SDValue V2 = Op.getOperand(1);
5354  unsigned NumElems = ResVT.getVectorNumElements();
5355
5356  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5357                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5358  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5359                            DAG, dl);
5360}
5361
5362SDValue
5363X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5364  EVT ResVT = Op.getValueType();
5365
5366  assert(Op.getNumOperands() == 2);
5367  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5368         "Unsupported CONCAT_VECTORS for value type");
5369
5370  // We support concatenate two MMX registers and place them in a MMX register.
5371  // This is better than doing a stack convert.
5372  if (ResVT.is128BitVector())
5373    return LowerMMXCONCAT_VECTORS(Op, DAG);
5374
5375  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5376  // from two other 128-bit ones.
5377  return LowerAVXCONCAT_VECTORS(Op, DAG);
5378}
5379
5380// Try to lower a shuffle node into a simple blend instruction.
5381static SDValue LowerVECTOR_SHUFFLEtoBlend(SDValue Op,
5382                                          const X86Subtarget *Subtarget,
5383                                          SelectionDAG &DAG, EVT PtrTy) {
5384  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5385  SDValue V1 = SVOp->getOperand(0);
5386  SDValue V2 = SVOp->getOperand(1);
5387  DebugLoc dl = SVOp->getDebugLoc();
5388  LLVMContext *Context = DAG.getContext();
5389  EVT VT = Op.getValueType();
5390  EVT InVT = V1.getValueType();
5391  EVT EltVT = VT.getVectorElementType();
5392  unsigned EltSize = EltVT.getSizeInBits();
5393  int MaskSize = VT.getVectorNumElements();
5394  int InSize = InVT.getVectorNumElements();
5395
5396  // TODO: At the moment we only use AVX blends. We could also use SSE4 blends.
5397  if (!Subtarget->hasAVX())
5398    return SDValue();
5399
5400  if (MaskSize != InSize)
5401    return SDValue();
5402
5403  SmallVector<Constant*,2> MaskVals;
5404  ConstantInt *Zero = ConstantInt::get(*Context, APInt(EltSize, 0));
5405  ConstantInt *NegOne = ConstantInt::get(*Context, APInt(EltSize, -1));
5406
5407  for (int i = 0; i < MaskSize; ++i) {
5408    int EltIdx = SVOp->getMaskElt(i);
5409    if (EltIdx == i || EltIdx == -1)
5410      MaskVals.push_back(NegOne);
5411    else if (EltIdx == (i + MaskSize))
5412      MaskVals.push_back(Zero);
5413    else return SDValue();
5414  }
5415
5416  Constant *MaskC = ConstantVector::get(MaskVals);
5417  EVT MaskTy = EVT::getEVT(MaskC->getType());
5418  assert(MaskTy.getSizeInBits() == VT.getSizeInBits() && "Invalid mask size");
5419  SDValue MaskIdx = DAG.getConstantPool(MaskC, PtrTy);
5420  unsigned Alignment = cast<ConstantPoolSDNode>(MaskIdx)->getAlignment();
5421  SDValue Mask = DAG.getLoad(MaskTy, dl, DAG.getEntryNode(), MaskIdx,
5422                             MachinePointerInfo::getConstantPool(),
5423                             false, false, false, Alignment);
5424
5425  if (Subtarget->hasAVX2() && MaskTy == MVT::v32i8)
5426    return DAG.getNode(ISD::VSELECT, dl, VT, Mask, V1, V2);
5427
5428  if (Subtarget->hasAVX()) {
5429    switch (MaskTy.getSimpleVT().SimpleTy) {
5430    default: return SDValue();
5431    case MVT::v16i8:
5432    case MVT::v4i32:
5433    case MVT::v2i64:
5434    case MVT::v8i32:
5435    case MVT::v4i64:
5436             return DAG.getNode(ISD::VSELECT, dl, VT, Mask, V1, V2);
5437    }
5438  }
5439
5440  return SDValue();
5441}
5442
5443// v8i16 shuffles - Prefer shuffles in the following order:
5444// 1. [all]   pshuflw, pshufhw, optional move
5445// 2. [ssse3] 1 x pshufb
5446// 3. [ssse3] 2 x pshufb + 1 x por
5447// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5448SDValue
5449X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5450                                            SelectionDAG &DAG) const {
5451  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5452  SDValue V1 = SVOp->getOperand(0);
5453  SDValue V2 = SVOp->getOperand(1);
5454  DebugLoc dl = SVOp->getDebugLoc();
5455  SmallVector<int, 8> MaskVals;
5456
5457  // Determine if more than 1 of the words in each of the low and high quadwords
5458  // of the result come from the same quadword of one of the two inputs.  Undef
5459  // mask values count as coming from any quadword, for better codegen.
5460  unsigned LoQuad[] = { 0, 0, 0, 0 };
5461  unsigned HiQuad[] = { 0, 0, 0, 0 };
5462  std::bitset<4> InputQuads;
5463  for (unsigned i = 0; i < 8; ++i) {
5464    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5465    int EltIdx = SVOp->getMaskElt(i);
5466    MaskVals.push_back(EltIdx);
5467    if (EltIdx < 0) {
5468      ++Quad[0];
5469      ++Quad[1];
5470      ++Quad[2];
5471      ++Quad[3];
5472      continue;
5473    }
5474    ++Quad[EltIdx / 4];
5475    InputQuads.set(EltIdx / 4);
5476  }
5477
5478  int BestLoQuad = -1;
5479  unsigned MaxQuad = 1;
5480  for (unsigned i = 0; i < 4; ++i) {
5481    if (LoQuad[i] > MaxQuad) {
5482      BestLoQuad = i;
5483      MaxQuad = LoQuad[i];
5484    }
5485  }
5486
5487  int BestHiQuad = -1;
5488  MaxQuad = 1;
5489  for (unsigned i = 0; i < 4; ++i) {
5490    if (HiQuad[i] > MaxQuad) {
5491      BestHiQuad = i;
5492      MaxQuad = HiQuad[i];
5493    }
5494  }
5495
5496  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5497  // of the two input vectors, shuffle them into one input vector so only a
5498  // single pshufb instruction is necessary. If There are more than 2 input
5499  // quads, disable the next transformation since it does not help SSSE3.
5500  bool V1Used = InputQuads[0] || InputQuads[1];
5501  bool V2Used = InputQuads[2] || InputQuads[3];
5502  if (Subtarget->hasSSSE3()) {
5503    if (InputQuads.count() == 2 && V1Used && V2Used) {
5504      BestLoQuad = InputQuads[0] ? 0 : 1;
5505      BestHiQuad = InputQuads[2] ? 2 : 3;
5506    }
5507    if (InputQuads.count() > 2) {
5508      BestLoQuad = -1;
5509      BestHiQuad = -1;
5510    }
5511  }
5512
5513  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5514  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5515  // words from all 4 input quadwords.
5516  SDValue NewV;
5517  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5518    int MaskV[] = {
5519      BestLoQuad < 0 ? 0 : BestLoQuad,
5520      BestHiQuad < 0 ? 1 : BestHiQuad
5521    };
5522    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5523                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5524                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5525    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5526
5527    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5528    // source words for the shuffle, to aid later transformations.
5529    bool AllWordsInNewV = true;
5530    bool InOrder[2] = { true, true };
5531    for (unsigned i = 0; i != 8; ++i) {
5532      int idx = MaskVals[i];
5533      if (idx != (int)i)
5534        InOrder[i/4] = false;
5535      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5536        continue;
5537      AllWordsInNewV = false;
5538      break;
5539    }
5540
5541    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5542    if (AllWordsInNewV) {
5543      for (int i = 0; i != 8; ++i) {
5544        int idx = MaskVals[i];
5545        if (idx < 0)
5546          continue;
5547        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5548        if ((idx != i) && idx < 4)
5549          pshufhw = false;
5550        if ((idx != i) && idx > 3)
5551          pshuflw = false;
5552      }
5553      V1 = NewV;
5554      V2Used = false;
5555      BestLoQuad = 0;
5556      BestHiQuad = 1;
5557    }
5558
5559    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5560    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5561    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5562      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5563      unsigned TargetMask = 0;
5564      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5565                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5566      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5567      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5568                             getShufflePSHUFLWImmediate(SVOp);
5569      V1 = NewV.getOperand(0);
5570      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5571    }
5572  }
5573
5574  // If we have SSSE3, and all words of the result are from 1 input vector,
5575  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5576  // is present, fall back to case 4.
5577  if (Subtarget->hasSSSE3()) {
5578    SmallVector<SDValue,16> pshufbMask;
5579
5580    // If we have elements from both input vectors, set the high bit of the
5581    // shuffle mask element to zero out elements that come from V2 in the V1
5582    // mask, and elements that come from V1 in the V2 mask, so that the two
5583    // results can be OR'd together.
5584    bool TwoInputs = V1Used && V2Used;
5585    for (unsigned i = 0; i != 8; ++i) {
5586      int EltIdx = MaskVals[i] * 2;
5587      if (TwoInputs && (EltIdx >= 16)) {
5588        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5589        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5590        continue;
5591      }
5592      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5593      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5594    }
5595    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5596    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5597                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5598                                 MVT::v16i8, &pshufbMask[0], 16));
5599    if (!TwoInputs)
5600      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5601
5602    // Calculate the shuffle mask for the second input, shuffle it, and
5603    // OR it with the first shuffled input.
5604    pshufbMask.clear();
5605    for (unsigned i = 0; i != 8; ++i) {
5606      int EltIdx = MaskVals[i] * 2;
5607      if (EltIdx < 16) {
5608        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5609        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5610        continue;
5611      }
5612      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5613      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5614    }
5615    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5616    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5617                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5618                                 MVT::v16i8, &pshufbMask[0], 16));
5619    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5620    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5621  }
5622
5623  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5624  // and update MaskVals with new element order.
5625  std::bitset<8> InOrder;
5626  if (BestLoQuad >= 0) {
5627    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5628    for (int i = 0; i != 4; ++i) {
5629      int idx = MaskVals[i];
5630      if (idx < 0) {
5631        InOrder.set(i);
5632      } else if ((idx / 4) == BestLoQuad) {
5633        MaskV[i] = idx & 3;
5634        InOrder.set(i);
5635      }
5636    }
5637    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5638                                &MaskV[0]);
5639
5640    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5641      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5642      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5643                                  NewV.getOperand(0),
5644                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5645    }
5646  }
5647
5648  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5649  // and update MaskVals with the new element order.
5650  if (BestHiQuad >= 0) {
5651    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5652    for (unsigned i = 4; i != 8; ++i) {
5653      int idx = MaskVals[i];
5654      if (idx < 0) {
5655        InOrder.set(i);
5656      } else if ((idx / 4) == BestHiQuad) {
5657        MaskV[i] = (idx & 3) + 4;
5658        InOrder.set(i);
5659      }
5660    }
5661    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5662                                &MaskV[0]);
5663
5664    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5665      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5666      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5667                                  NewV.getOperand(0),
5668                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5669    }
5670  }
5671
5672  // In case BestHi & BestLo were both -1, which means each quadword has a word
5673  // from each of the four input quadwords, calculate the InOrder bitvector now
5674  // before falling through to the insert/extract cleanup.
5675  if (BestLoQuad == -1 && BestHiQuad == -1) {
5676    NewV = V1;
5677    for (int i = 0; i != 8; ++i)
5678      if (MaskVals[i] < 0 || MaskVals[i] == i)
5679        InOrder.set(i);
5680  }
5681
5682  // The other elements are put in the right place using pextrw and pinsrw.
5683  for (unsigned i = 0; i != 8; ++i) {
5684    if (InOrder[i])
5685      continue;
5686    int EltIdx = MaskVals[i];
5687    if (EltIdx < 0)
5688      continue;
5689    SDValue ExtOp = (EltIdx < 8)
5690    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5691                  DAG.getIntPtrConstant(EltIdx))
5692    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5693                  DAG.getIntPtrConstant(EltIdx - 8));
5694    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5695                       DAG.getIntPtrConstant(i));
5696  }
5697  return NewV;
5698}
5699
5700// v16i8 shuffles - Prefer shuffles in the following order:
5701// 1. [ssse3] 1 x pshufb
5702// 2. [ssse3] 2 x pshufb + 1 x por
5703// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5704static
5705SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5706                                 SelectionDAG &DAG,
5707                                 const X86TargetLowering &TLI) {
5708  SDValue V1 = SVOp->getOperand(0);
5709  SDValue V2 = SVOp->getOperand(1);
5710  DebugLoc dl = SVOp->getDebugLoc();
5711  ArrayRef<int> MaskVals = SVOp->getMask();
5712
5713  // If we have SSSE3, case 1 is generated when all result bytes come from
5714  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5715  // present, fall back to case 3.
5716  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5717  bool V1Only = true;
5718  bool V2Only = true;
5719  for (unsigned i = 0; i < 16; ++i) {
5720    int EltIdx = MaskVals[i];
5721    if (EltIdx < 0)
5722      continue;
5723    if (EltIdx < 16)
5724      V2Only = false;
5725    else
5726      V1Only = false;
5727  }
5728
5729  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5730  if (TLI.getSubtarget()->hasSSSE3()) {
5731    SmallVector<SDValue,16> pshufbMask;
5732
5733    // If all result elements are from one input vector, then only translate
5734    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5735    //
5736    // Otherwise, we have elements from both input vectors, and must zero out
5737    // elements that come from V2 in the first mask, and V1 in the second mask
5738    // so that we can OR them together.
5739    bool TwoInputs = !(V1Only || V2Only);
5740    for (unsigned i = 0; i != 16; ++i) {
5741      int EltIdx = MaskVals[i];
5742      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5743        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5744        continue;
5745      }
5746      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5747    }
5748    // If all the elements are from V2, assign it to V1 and return after
5749    // building the first pshufb.
5750    if (V2Only)
5751      V1 = V2;
5752    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5753                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5754                                 MVT::v16i8, &pshufbMask[0], 16));
5755    if (!TwoInputs)
5756      return V1;
5757
5758    // Calculate the shuffle mask for the second input, shuffle it, and
5759    // OR it with the first shuffled input.
5760    pshufbMask.clear();
5761    for (unsigned i = 0; i != 16; ++i) {
5762      int EltIdx = MaskVals[i];
5763      if (EltIdx < 16) {
5764        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5765        continue;
5766      }
5767      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5768    }
5769    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5770                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5771                                 MVT::v16i8, &pshufbMask[0], 16));
5772    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5773  }
5774
5775  // No SSSE3 - Calculate in place words and then fix all out of place words
5776  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5777  // the 16 different words that comprise the two doublequadword input vectors.
5778  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5779  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5780  SDValue NewV = V2Only ? V2 : V1;
5781  for (int i = 0; i != 8; ++i) {
5782    int Elt0 = MaskVals[i*2];
5783    int Elt1 = MaskVals[i*2+1];
5784
5785    // This word of the result is all undef, skip it.
5786    if (Elt0 < 0 && Elt1 < 0)
5787      continue;
5788
5789    // This word of the result is already in the correct place, skip it.
5790    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5791      continue;
5792    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5793      continue;
5794
5795    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5796    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5797    SDValue InsElt;
5798
5799    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5800    // using a single extract together, load it and store it.
5801    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5802      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5803                           DAG.getIntPtrConstant(Elt1 / 2));
5804      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5805                        DAG.getIntPtrConstant(i));
5806      continue;
5807    }
5808
5809    // If Elt1 is defined, extract it from the appropriate source.  If the
5810    // source byte is not also odd, shift the extracted word left 8 bits
5811    // otherwise clear the bottom 8 bits if we need to do an or.
5812    if (Elt1 >= 0) {
5813      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5814                           DAG.getIntPtrConstant(Elt1 / 2));
5815      if ((Elt1 & 1) == 0)
5816        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5817                             DAG.getConstant(8,
5818                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5819      else if (Elt0 >= 0)
5820        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5821                             DAG.getConstant(0xFF00, MVT::i16));
5822    }
5823    // If Elt0 is defined, extract it from the appropriate source.  If the
5824    // source byte is not also even, shift the extracted word right 8 bits. If
5825    // Elt1 was also defined, OR the extracted values together before
5826    // inserting them in the result.
5827    if (Elt0 >= 0) {
5828      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5829                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5830      if ((Elt0 & 1) != 0)
5831        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5832                              DAG.getConstant(8,
5833                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5834      else if (Elt1 >= 0)
5835        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5836                             DAG.getConstant(0x00FF, MVT::i16));
5837      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5838                         : InsElt0;
5839    }
5840    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5841                       DAG.getIntPtrConstant(i));
5842  }
5843  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5844}
5845
5846/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5847/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5848/// done when every pair / quad of shuffle mask elements point to elements in
5849/// the right sequence. e.g.
5850/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5851static
5852SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5853                                 SelectionDAG &DAG, DebugLoc dl) {
5854  EVT VT = SVOp->getValueType(0);
5855  SDValue V1 = SVOp->getOperand(0);
5856  SDValue V2 = SVOp->getOperand(1);
5857  unsigned NumElems = VT.getVectorNumElements();
5858  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5859  EVT NewVT;
5860  switch (VT.getSimpleVT().SimpleTy) {
5861  default: llvm_unreachable("Unexpected!");
5862  case MVT::v4f32: NewVT = MVT::v2f64; break;
5863  case MVT::v4i32: NewVT = MVT::v2i64; break;
5864  case MVT::v8i16: NewVT = MVT::v4i32; break;
5865  case MVT::v16i8: NewVT = MVT::v4i32; break;
5866  }
5867
5868  int Scale = NumElems / NewWidth;
5869  SmallVector<int, 8> MaskVec;
5870  for (unsigned i = 0; i < NumElems; i += Scale) {
5871    int StartIdx = -1;
5872    for (int j = 0; j < Scale; ++j) {
5873      int EltIdx = SVOp->getMaskElt(i+j);
5874      if (EltIdx < 0)
5875        continue;
5876      if (StartIdx == -1)
5877        StartIdx = EltIdx - (EltIdx % Scale);
5878      if (EltIdx != StartIdx + j)
5879        return SDValue();
5880    }
5881    if (StartIdx == -1)
5882      MaskVec.push_back(-1);
5883    else
5884      MaskVec.push_back(StartIdx / Scale);
5885  }
5886
5887  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5888  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5889  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5890}
5891
5892/// getVZextMovL - Return a zero-extending vector move low node.
5893///
5894static SDValue getVZextMovL(EVT VT, EVT OpVT,
5895                            SDValue SrcOp, SelectionDAG &DAG,
5896                            const X86Subtarget *Subtarget, DebugLoc dl) {
5897  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5898    LoadSDNode *LD = NULL;
5899    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5900      LD = dyn_cast<LoadSDNode>(SrcOp);
5901    if (!LD) {
5902      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5903      // instead.
5904      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5905      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5906          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5907          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5908          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5909        // PR2108
5910        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5911        return DAG.getNode(ISD::BITCAST, dl, VT,
5912                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5913                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5914                                                   OpVT,
5915                                                   SrcOp.getOperand(0)
5916                                                          .getOperand(0))));
5917      }
5918    }
5919  }
5920
5921  return DAG.getNode(ISD::BITCAST, dl, VT,
5922                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5923                                 DAG.getNode(ISD::BITCAST, dl,
5924                                             OpVT, SrcOp)));
5925}
5926
5927/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5928/// which could not be matched by any known target speficic shuffle
5929static SDValue
5930LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5931  EVT VT = SVOp->getValueType(0);
5932
5933  unsigned NumElems = VT.getVectorNumElements();
5934  unsigned NumLaneElems = NumElems / 2;
5935
5936  DebugLoc dl = SVOp->getDebugLoc();
5937  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5938  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
5939  SDValue Shufs[2];
5940
5941  SmallVector<int, 16> Mask;
5942  for (unsigned l = 0; l < 2; ++l) {
5943    // Build a shuffle mask for the output, discovering on the fly which
5944    // input vectors to use as shuffle operands (recorded in InputUsed).
5945    // If building a suitable shuffle vector proves too hard, then bail
5946    // out with useBuildVector set.
5947    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
5948    unsigned LaneStart = l * NumLaneElems;
5949    for (unsigned i = 0; i != NumLaneElems; ++i) {
5950      // The mask element.  This indexes into the input.
5951      int Idx = SVOp->getMaskElt(i+LaneStart);
5952      if (Idx < 0) {
5953        // the mask element does not index into any input vector.
5954        Mask.push_back(-1);
5955        continue;
5956      }
5957
5958      // The input vector this mask element indexes into.
5959      int Input = Idx / NumLaneElems;
5960
5961      // Turn the index into an offset from the start of the input vector.
5962      Idx -= Input * NumLaneElems;
5963
5964      // Find or create a shuffle vector operand to hold this input.
5965      unsigned OpNo;
5966      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
5967        if (InputUsed[OpNo] == Input)
5968          // This input vector is already an operand.
5969          break;
5970        if (InputUsed[OpNo] < 0) {
5971          // Create a new operand for this input vector.
5972          InputUsed[OpNo] = Input;
5973          break;
5974        }
5975      }
5976
5977      if (OpNo >= array_lengthof(InputUsed)) {
5978        // More than two input vectors used! Give up.
5979        return SDValue();
5980      }
5981
5982      // Add the mask index for the new shuffle vector.
5983      Mask.push_back(Idx + OpNo * NumLaneElems);
5984    }
5985
5986    if (InputUsed[0] < 0) {
5987      // No input vectors were used! The result is undefined.
5988      Shufs[l] = DAG.getUNDEF(NVT);
5989    } else {
5990      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
5991                   DAG.getConstant((InputUsed[0] % 2) * NumLaneElems, MVT::i32),
5992                                   DAG, dl);
5993      // If only one input was used, use an undefined vector for the other.
5994      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
5995        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
5996                   DAG.getConstant((InputUsed[1] % 2) * NumLaneElems, MVT::i32),
5997                                   DAG, dl);
5998      // At least one input vector was used. Create a new shuffle vector.
5999      Shufs[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6000    }
6001
6002    Mask.clear();
6003  }
6004
6005  // Concatenate the result back
6006  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shufs[0],
6007                                 DAG.getConstant(0, MVT::i32), DAG, dl);
6008  return Insert128BitVector(V, Shufs[1],DAG.getConstant(NumLaneElems, MVT::i32),
6009                            DAG, dl);
6010}
6011
6012/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6013/// 4 elements, and match them with several different shuffle types.
6014static SDValue
6015LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6016  SDValue V1 = SVOp->getOperand(0);
6017  SDValue V2 = SVOp->getOperand(1);
6018  DebugLoc dl = SVOp->getDebugLoc();
6019  EVT VT = SVOp->getValueType(0);
6020
6021  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6022
6023  std::pair<int, int> Locs[4];
6024  int Mask1[] = { -1, -1, -1, -1 };
6025  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6026
6027  unsigned NumHi = 0;
6028  unsigned NumLo = 0;
6029  for (unsigned i = 0; i != 4; ++i) {
6030    int Idx = PermMask[i];
6031    if (Idx < 0) {
6032      Locs[i] = std::make_pair(-1, -1);
6033    } else {
6034      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6035      if (Idx < 4) {
6036        Locs[i] = std::make_pair(0, NumLo);
6037        Mask1[NumLo] = Idx;
6038        NumLo++;
6039      } else {
6040        Locs[i] = std::make_pair(1, NumHi);
6041        if (2+NumHi < 4)
6042          Mask1[2+NumHi] = Idx;
6043        NumHi++;
6044      }
6045    }
6046  }
6047
6048  if (NumLo <= 2 && NumHi <= 2) {
6049    // If no more than two elements come from either vector. This can be
6050    // implemented with two shuffles. First shuffle gather the elements.
6051    // The second shuffle, which takes the first shuffle as both of its
6052    // vector operands, put the elements into the right order.
6053    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6054
6055    int Mask2[] = { -1, -1, -1, -1 };
6056
6057    for (unsigned i = 0; i != 4; ++i)
6058      if (Locs[i].first != -1) {
6059        unsigned Idx = (i < 2) ? 0 : 4;
6060        Idx += Locs[i].first * 2 + Locs[i].second;
6061        Mask2[i] = Idx;
6062      }
6063
6064    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6065  } else if (NumLo == 3 || NumHi == 3) {
6066    // Otherwise, we must have three elements from one vector, call it X, and
6067    // one element from the other, call it Y.  First, use a shufps to build an
6068    // intermediate vector with the one element from Y and the element from X
6069    // that will be in the same half in the final destination (the indexes don't
6070    // matter). Then, use a shufps to build the final vector, taking the half
6071    // containing the element from Y from the intermediate, and the other half
6072    // from X.
6073    if (NumHi == 3) {
6074      // Normalize it so the 3 elements come from V1.
6075      CommuteVectorShuffleMask(PermMask, 4);
6076      std::swap(V1, V2);
6077    }
6078
6079    // Find the element from V2.
6080    unsigned HiIndex;
6081    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6082      int Val = PermMask[HiIndex];
6083      if (Val < 0)
6084        continue;
6085      if (Val >= 4)
6086        break;
6087    }
6088
6089    Mask1[0] = PermMask[HiIndex];
6090    Mask1[1] = -1;
6091    Mask1[2] = PermMask[HiIndex^1];
6092    Mask1[3] = -1;
6093    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6094
6095    if (HiIndex >= 2) {
6096      Mask1[0] = PermMask[0];
6097      Mask1[1] = PermMask[1];
6098      Mask1[2] = HiIndex & 1 ? 6 : 4;
6099      Mask1[3] = HiIndex & 1 ? 4 : 6;
6100      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6101    } else {
6102      Mask1[0] = HiIndex & 1 ? 2 : 0;
6103      Mask1[1] = HiIndex & 1 ? 0 : 2;
6104      Mask1[2] = PermMask[2];
6105      Mask1[3] = PermMask[3];
6106      if (Mask1[2] >= 0)
6107        Mask1[2] += 4;
6108      if (Mask1[3] >= 0)
6109        Mask1[3] += 4;
6110      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6111    }
6112  }
6113
6114  // Break it into (shuffle shuffle_hi, shuffle_lo).
6115  int LoMask[] = { -1, -1, -1, -1 };
6116  int HiMask[] = { -1, -1, -1, -1 };
6117
6118  int *MaskPtr = LoMask;
6119  unsigned MaskIdx = 0;
6120  unsigned LoIdx = 0;
6121  unsigned HiIdx = 2;
6122  for (unsigned i = 0; i != 4; ++i) {
6123    if (i == 2) {
6124      MaskPtr = HiMask;
6125      MaskIdx = 1;
6126      LoIdx = 0;
6127      HiIdx = 2;
6128    }
6129    int Idx = PermMask[i];
6130    if (Idx < 0) {
6131      Locs[i] = std::make_pair(-1, -1);
6132    } else if (Idx < 4) {
6133      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6134      MaskPtr[LoIdx] = Idx;
6135      LoIdx++;
6136    } else {
6137      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6138      MaskPtr[HiIdx] = Idx;
6139      HiIdx++;
6140    }
6141  }
6142
6143  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6144  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6145  int MaskOps[] = { -1, -1, -1, -1 };
6146  for (unsigned i = 0; i != 4; ++i)
6147    if (Locs[i].first != -1)
6148      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6149  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6150}
6151
6152static bool MayFoldVectorLoad(SDValue V) {
6153  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6154    V = V.getOperand(0);
6155  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6156    V = V.getOperand(0);
6157  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6158      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6159    // BUILD_VECTOR (load), undef
6160    V = V.getOperand(0);
6161  if (MayFoldLoad(V))
6162    return true;
6163  return false;
6164}
6165
6166// FIXME: the version above should always be used. Since there's
6167// a bug where several vector shuffles can't be folded because the
6168// DAG is not updated during lowering and a node claims to have two
6169// uses while it only has one, use this version, and let isel match
6170// another instruction if the load really happens to have more than
6171// one use. Remove this version after this bug get fixed.
6172// rdar://8434668, PR8156
6173static bool RelaxedMayFoldVectorLoad(SDValue V) {
6174  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6175    V = V.getOperand(0);
6176  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6177    V = V.getOperand(0);
6178  if (ISD::isNormalLoad(V.getNode()))
6179    return true;
6180  return false;
6181}
6182
6183static
6184SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6185  EVT VT = Op.getValueType();
6186
6187  // Canonizalize to v2f64.
6188  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6189  return DAG.getNode(ISD::BITCAST, dl, VT,
6190                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6191                                          V1, DAG));
6192}
6193
6194static
6195SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6196                        bool HasSSE2) {
6197  SDValue V1 = Op.getOperand(0);
6198  SDValue V2 = Op.getOperand(1);
6199  EVT VT = Op.getValueType();
6200
6201  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6202
6203  if (HasSSE2 && VT == MVT::v2f64)
6204    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6205
6206  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6207  return DAG.getNode(ISD::BITCAST, dl, VT,
6208                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6209                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6210                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6211}
6212
6213static
6214SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6215  SDValue V1 = Op.getOperand(0);
6216  SDValue V2 = Op.getOperand(1);
6217  EVT VT = Op.getValueType();
6218
6219  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6220         "unsupported shuffle type");
6221
6222  if (V2.getOpcode() == ISD::UNDEF)
6223    V2 = V1;
6224
6225  // v4i32 or v4f32
6226  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6227}
6228
6229static
6230SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6231  SDValue V1 = Op.getOperand(0);
6232  SDValue V2 = Op.getOperand(1);
6233  EVT VT = Op.getValueType();
6234  unsigned NumElems = VT.getVectorNumElements();
6235
6236  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6237  // operand of these instructions is only memory, so check if there's a
6238  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6239  // same masks.
6240  bool CanFoldLoad = false;
6241
6242  // Trivial case, when V2 comes from a load.
6243  if (MayFoldVectorLoad(V2))
6244    CanFoldLoad = true;
6245
6246  // When V1 is a load, it can be folded later into a store in isel, example:
6247  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6248  //    turns into:
6249  //  (MOVLPSmr addr:$src1, VR128:$src2)
6250  // So, recognize this potential and also use MOVLPS or MOVLPD
6251  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6252    CanFoldLoad = true;
6253
6254  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6255  if (CanFoldLoad) {
6256    if (HasSSE2 && NumElems == 2)
6257      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6258
6259    if (NumElems == 4)
6260      // If we don't care about the second element, procede to use movss.
6261      if (SVOp->getMaskElt(1) != -1)
6262        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6263  }
6264
6265  // movl and movlp will both match v2i64, but v2i64 is never matched by
6266  // movl earlier because we make it strict to avoid messing with the movlp load
6267  // folding logic (see the code above getMOVLP call). Match it here then,
6268  // this is horrible, but will stay like this until we move all shuffle
6269  // matching to x86 specific nodes. Note that for the 1st condition all
6270  // types are matched with movsd.
6271  if (HasSSE2) {
6272    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6273    // as to remove this logic from here, as much as possible
6274    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6275      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6276    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6277  }
6278
6279  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6280
6281  // Invert the operand order and use SHUFPS to match it.
6282  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6283                              getShuffleSHUFImmediate(SVOp), DAG);
6284}
6285
6286SDValue
6287X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6288  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6289  EVT VT = Op.getValueType();
6290  DebugLoc dl = Op.getDebugLoc();
6291  SDValue V1 = Op.getOperand(0);
6292  SDValue V2 = Op.getOperand(1);
6293
6294  if (isZeroShuffle(SVOp))
6295    return getZeroVector(VT, Subtarget, DAG, dl);
6296
6297  // Handle splat operations
6298  if (SVOp->isSplat()) {
6299    unsigned NumElem = VT.getVectorNumElements();
6300    int Size = VT.getSizeInBits();
6301
6302    // Use vbroadcast whenever the splat comes from a foldable load
6303    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6304    if (Broadcast.getNode())
6305      return Broadcast;
6306
6307    // Handle splats by matching through known shuffle masks
6308    if ((Size == 128 && NumElem <= 4) ||
6309        (Size == 256 && NumElem < 8))
6310      return SDValue();
6311
6312    // All remaning splats are promoted to target supported vector shuffles.
6313    return PromoteSplat(SVOp, DAG);
6314  }
6315
6316  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6317  // do it!
6318  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6319    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6320    if (NewOp.getNode())
6321      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6322  } else if ((VT == MVT::v4i32 ||
6323             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6324    // FIXME: Figure out a cleaner way to do this.
6325    // Try to make use of movq to zero out the top part.
6326    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6327      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6328      if (NewOp.getNode()) {
6329        EVT NewVT = NewOp.getValueType();
6330        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6331                               NewVT, true, false))
6332          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6333                              DAG, Subtarget, dl);
6334      }
6335    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6336      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6337      if (NewOp.getNode()) {
6338        EVT NewVT = NewOp.getValueType();
6339        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6340          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6341                              DAG, Subtarget, dl);
6342      }
6343    }
6344  }
6345  return SDValue();
6346}
6347
6348SDValue
6349X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6350  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6351  SDValue V1 = Op.getOperand(0);
6352  SDValue V2 = Op.getOperand(1);
6353  EVT VT = Op.getValueType();
6354  DebugLoc dl = Op.getDebugLoc();
6355  unsigned NumElems = VT.getVectorNumElements();
6356  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6357  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6358  bool V1IsSplat = false;
6359  bool V2IsSplat = false;
6360  bool HasSSE2 = Subtarget->hasSSE2();
6361  bool HasAVX    = Subtarget->hasAVX();
6362  bool HasAVX2   = Subtarget->hasAVX2();
6363  MachineFunction &MF = DAG.getMachineFunction();
6364  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6365
6366  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6367
6368  if (V1IsUndef && V2IsUndef)
6369    return DAG.getUNDEF(VT);
6370
6371  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6372
6373  // Vector shuffle lowering takes 3 steps:
6374  //
6375  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6376  //    narrowing and commutation of operands should be handled.
6377  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6378  //    shuffle nodes.
6379  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6380  //    so the shuffle can be broken into other shuffles and the legalizer can
6381  //    try the lowering again.
6382  //
6383  // The general idea is that no vector_shuffle operation should be left to
6384  // be matched during isel, all of them must be converted to a target specific
6385  // node here.
6386
6387  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6388  // narrowing and commutation of operands should be handled. The actual code
6389  // doesn't include all of those, work in progress...
6390  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6391  if (NewOp.getNode())
6392    return NewOp;
6393
6394  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6395
6396  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6397  // unpckh_undef). Only use pshufd if speed is more important than size.
6398  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6399    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6400  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6401    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6402
6403  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6404      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6405    return getMOVDDup(Op, dl, V1, DAG);
6406
6407  if (isMOVHLPS_v_undef_Mask(M, VT))
6408    return getMOVHighToLow(Op, dl, DAG);
6409
6410  // Use to match splats
6411  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6412      (VT == MVT::v2f64 || VT == MVT::v2i64))
6413    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6414
6415  if (isPSHUFDMask(M, VT)) {
6416    // The actual implementation will match the mask in the if above and then
6417    // during isel it can match several different instructions, not only pshufd
6418    // as its name says, sad but true, emulate the behavior for now...
6419    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6420      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6421
6422    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6423
6424    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6425      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6426
6427    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6428      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6429
6430    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6431                                TargetMask, DAG);
6432  }
6433
6434  // Check if this can be converted into a logical shift.
6435  bool isLeft = false;
6436  unsigned ShAmt = 0;
6437  SDValue ShVal;
6438  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6439  if (isShift && ShVal.hasOneUse()) {
6440    // If the shifted value has multiple uses, it may be cheaper to use
6441    // v_set0 + movlhps or movhlps, etc.
6442    EVT EltVT = VT.getVectorElementType();
6443    ShAmt *= EltVT.getSizeInBits();
6444    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6445  }
6446
6447  if (isMOVLMask(M, VT)) {
6448    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6449      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6450    if (!isMOVLPMask(M, VT)) {
6451      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6452        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6453
6454      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6455        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6456    }
6457  }
6458
6459  // FIXME: fold these into legal mask.
6460  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6461    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6462
6463  if (isMOVHLPSMask(M, VT))
6464    return getMOVHighToLow(Op, dl, DAG);
6465
6466  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6467    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6468
6469  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6470    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6471
6472  if (isMOVLPMask(M, VT))
6473    return getMOVLP(Op, dl, DAG, HasSSE2);
6474
6475  if (ShouldXformToMOVHLPS(M, VT) ||
6476      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6477    return CommuteVectorShuffle(SVOp, DAG);
6478
6479  if (isShift) {
6480    // No better options. Use a vshldq / vsrldq.
6481    EVT EltVT = VT.getVectorElementType();
6482    ShAmt *= EltVT.getSizeInBits();
6483    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6484  }
6485
6486  bool Commuted = false;
6487  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6488  // 1,1,1,1 -> v8i16 though.
6489  V1IsSplat = isSplatVector(V1.getNode());
6490  V2IsSplat = isSplatVector(V2.getNode());
6491
6492  // Canonicalize the splat or undef, if present, to be on the RHS.
6493  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6494    CommuteVectorShuffleMask(M, NumElems);
6495    std::swap(V1, V2);
6496    std::swap(V1IsSplat, V2IsSplat);
6497    Commuted = true;
6498  }
6499
6500  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6501    // Shuffling low element of v1 into undef, just return v1.
6502    if (V2IsUndef)
6503      return V1;
6504    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6505    // the instruction selector will not match, so get a canonical MOVL with
6506    // swapped operands to undo the commute.
6507    return getMOVL(DAG, dl, VT, V2, V1);
6508  }
6509
6510  if (isUNPCKLMask(M, VT, HasAVX2))
6511    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6512
6513  if (isUNPCKHMask(M, VT, HasAVX2))
6514    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6515
6516  if (V2IsSplat) {
6517    // Normalize mask so all entries that point to V2 points to its first
6518    // element then try to match unpck{h|l} again. If match, return a
6519    // new vector_shuffle with the corrected mask.p
6520    SmallVector<int, 8> NewMask(M.begin(), M.end());
6521    NormalizeMask(NewMask, NumElems);
6522    if (isUNPCKLMask(NewMask, VT, HasAVX2, true)) {
6523      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6524    } else if (isUNPCKHMask(NewMask, VT, HasAVX2, true)) {
6525      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6526    }
6527  }
6528
6529  if (Commuted) {
6530    // Commute is back and try unpck* again.
6531    // FIXME: this seems wrong.
6532    CommuteVectorShuffleMask(M, NumElems);
6533    std::swap(V1, V2);
6534    std::swap(V1IsSplat, V2IsSplat);
6535    Commuted = false;
6536
6537    if (isUNPCKLMask(M, VT, HasAVX2))
6538      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6539
6540    if (isUNPCKHMask(M, VT, HasAVX2))
6541      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6542  }
6543
6544  // Normalize the node to match x86 shuffle ops if needed
6545  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6546    return CommuteVectorShuffle(SVOp, DAG);
6547
6548  // The checks below are all present in isShuffleMaskLegal, but they are
6549  // inlined here right now to enable us to directly emit target specific
6550  // nodes, and remove one by one until they don't return Op anymore.
6551
6552  if (isPALIGNRMask(M, VT, Subtarget))
6553    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6554                                getShufflePALIGNRImmediate(SVOp),
6555                                DAG);
6556
6557  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6558      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6559    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6560      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6561  }
6562
6563  if (isPSHUFHWMask(M, VT))
6564    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6565                                getShufflePSHUFHWImmediate(SVOp),
6566                                DAG);
6567
6568  if (isPSHUFLWMask(M, VT))
6569    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6570                                getShufflePSHUFLWImmediate(SVOp),
6571                                DAG);
6572
6573  if (isSHUFPMask(M, VT, HasAVX))
6574    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6575                                getShuffleSHUFImmediate(SVOp), DAG);
6576
6577  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6578    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6579  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6580    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6581
6582  //===--------------------------------------------------------------------===//
6583  // Generate target specific nodes for 128 or 256-bit shuffles only
6584  // supported in the AVX instruction set.
6585  //
6586
6587  // Handle VMOVDDUPY permutations
6588  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6589    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6590
6591  // Handle VPERMILPS/D* permutations
6592  if (isVPERMILPMask(M, VT, HasAVX)) {
6593    if (HasAVX2 && VT == MVT::v8i32)
6594      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6595                                  getShuffleSHUFImmediate(SVOp), DAG);
6596    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6597                                getShuffleSHUFImmediate(SVOp), DAG);
6598  }
6599
6600  // Handle VPERM2F128/VPERM2I128 permutations
6601  if (isVPERM2X128Mask(M, VT, HasAVX))
6602    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6603                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6604
6605  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(Op, Subtarget, DAG, getPointerTy());
6606  if (BlendOp.getNode())
6607    return BlendOp;
6608
6609  //===--------------------------------------------------------------------===//
6610  // Since no target specific shuffle was selected for this generic one,
6611  // lower it into other known shuffles. FIXME: this isn't true yet, but
6612  // this is the plan.
6613  //
6614
6615  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6616  if (VT == MVT::v8i16) {
6617    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6618    if (NewOp.getNode())
6619      return NewOp;
6620  }
6621
6622  if (VT == MVT::v16i8) {
6623    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6624    if (NewOp.getNode())
6625      return NewOp;
6626  }
6627
6628  // Handle all 128-bit wide vectors with 4 elements, and match them with
6629  // several different shuffle types.
6630  if (NumElems == 4 && VT.getSizeInBits() == 128)
6631    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6632
6633  // Handle general 256-bit shuffles
6634  if (VT.is256BitVector())
6635    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6636
6637  return SDValue();
6638}
6639
6640SDValue
6641X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6642                                                SelectionDAG &DAG) const {
6643  EVT VT = Op.getValueType();
6644  DebugLoc dl = Op.getDebugLoc();
6645
6646  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6647    return SDValue();
6648
6649  if (VT.getSizeInBits() == 8) {
6650    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6651                                    Op.getOperand(0), Op.getOperand(1));
6652    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6653                                    DAG.getValueType(VT));
6654    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6655  } else if (VT.getSizeInBits() == 16) {
6656    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6657    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6658    if (Idx == 0)
6659      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6660                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6661                                     DAG.getNode(ISD::BITCAST, dl,
6662                                                 MVT::v4i32,
6663                                                 Op.getOperand(0)),
6664                                     Op.getOperand(1)));
6665    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6666                                    Op.getOperand(0), Op.getOperand(1));
6667    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6668                                    DAG.getValueType(VT));
6669    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6670  } else if (VT == MVT::f32) {
6671    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6672    // the result back to FR32 register. It's only worth matching if the
6673    // result has a single use which is a store or a bitcast to i32.  And in
6674    // the case of a store, it's not worth it if the index is a constant 0,
6675    // because a MOVSSmr can be used instead, which is smaller and faster.
6676    if (!Op.hasOneUse())
6677      return SDValue();
6678    SDNode *User = *Op.getNode()->use_begin();
6679    if ((User->getOpcode() != ISD::STORE ||
6680         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6681          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6682        (User->getOpcode() != ISD::BITCAST ||
6683         User->getValueType(0) != MVT::i32))
6684      return SDValue();
6685    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6686                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6687                                              Op.getOperand(0)),
6688                                              Op.getOperand(1));
6689    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6690  } else if (VT == MVT::i32 || VT == MVT::i64) {
6691    // ExtractPS/pextrq works with constant index.
6692    if (isa<ConstantSDNode>(Op.getOperand(1)))
6693      return Op;
6694  }
6695  return SDValue();
6696}
6697
6698
6699SDValue
6700X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6701                                           SelectionDAG &DAG) const {
6702  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6703    return SDValue();
6704
6705  SDValue Vec = Op.getOperand(0);
6706  EVT VecVT = Vec.getValueType();
6707
6708  // If this is a 256-bit vector result, first extract the 128-bit vector and
6709  // then extract the element from the 128-bit vector.
6710  if (VecVT.getSizeInBits() == 256) {
6711    DebugLoc dl = Op.getNode()->getDebugLoc();
6712    unsigned NumElems = VecVT.getVectorNumElements();
6713    SDValue Idx = Op.getOperand(1);
6714    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6715
6716    // Get the 128-bit vector.
6717    bool Upper = IdxVal >= NumElems/2;
6718    Vec = Extract128BitVector(Vec,
6719                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6720
6721    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6722                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6723  }
6724
6725  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6726
6727  if (Subtarget->hasSSE41()) {
6728    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6729    if (Res.getNode())
6730      return Res;
6731  }
6732
6733  EVT VT = Op.getValueType();
6734  DebugLoc dl = Op.getDebugLoc();
6735  // TODO: handle v16i8.
6736  if (VT.getSizeInBits() == 16) {
6737    SDValue Vec = Op.getOperand(0);
6738    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6739    if (Idx == 0)
6740      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6741                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6742                                     DAG.getNode(ISD::BITCAST, dl,
6743                                                 MVT::v4i32, Vec),
6744                                     Op.getOperand(1)));
6745    // Transform it so it match pextrw which produces a 32-bit result.
6746    EVT EltVT = MVT::i32;
6747    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6748                                    Op.getOperand(0), Op.getOperand(1));
6749    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6750                                    DAG.getValueType(VT));
6751    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6752  } else if (VT.getSizeInBits() == 32) {
6753    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6754    if (Idx == 0)
6755      return Op;
6756
6757    // SHUFPS the element to the lowest double word, then movss.
6758    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6759    EVT VVT = Op.getOperand(0).getValueType();
6760    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6761                                       DAG.getUNDEF(VVT), Mask);
6762    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6763                       DAG.getIntPtrConstant(0));
6764  } else if (VT.getSizeInBits() == 64) {
6765    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6766    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6767    //        to match extract_elt for f64.
6768    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6769    if (Idx == 0)
6770      return Op;
6771
6772    // UNPCKHPD the element to the lowest double word, then movsd.
6773    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6774    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6775    int Mask[2] = { 1, -1 };
6776    EVT VVT = Op.getOperand(0).getValueType();
6777    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6778                                       DAG.getUNDEF(VVT), Mask);
6779    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6780                       DAG.getIntPtrConstant(0));
6781  }
6782
6783  return SDValue();
6784}
6785
6786SDValue
6787X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6788                                               SelectionDAG &DAG) const {
6789  EVT VT = Op.getValueType();
6790  EVT EltVT = VT.getVectorElementType();
6791  DebugLoc dl = Op.getDebugLoc();
6792
6793  SDValue N0 = Op.getOperand(0);
6794  SDValue N1 = Op.getOperand(1);
6795  SDValue N2 = Op.getOperand(2);
6796
6797  if (VT.getSizeInBits() == 256)
6798    return SDValue();
6799
6800  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6801      isa<ConstantSDNode>(N2)) {
6802    unsigned Opc;
6803    if (VT == MVT::v8i16)
6804      Opc = X86ISD::PINSRW;
6805    else if (VT == MVT::v16i8)
6806      Opc = X86ISD::PINSRB;
6807    else
6808      Opc = X86ISD::PINSRB;
6809
6810    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6811    // argument.
6812    if (N1.getValueType() != MVT::i32)
6813      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6814    if (N2.getValueType() != MVT::i32)
6815      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6816    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6817  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6818    // Bits [7:6] of the constant are the source select.  This will always be
6819    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6820    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6821    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6822    // Bits [5:4] of the constant are the destination select.  This is the
6823    //  value of the incoming immediate.
6824    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6825    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6826    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6827    // Create this as a scalar to vector..
6828    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6829    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6830  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6831             isa<ConstantSDNode>(N2)) {
6832    // PINSR* works with constant index.
6833    return Op;
6834  }
6835  return SDValue();
6836}
6837
6838SDValue
6839X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6840  EVT VT = Op.getValueType();
6841  EVT EltVT = VT.getVectorElementType();
6842
6843  DebugLoc dl = Op.getDebugLoc();
6844  SDValue N0 = Op.getOperand(0);
6845  SDValue N1 = Op.getOperand(1);
6846  SDValue N2 = Op.getOperand(2);
6847
6848  // If this is a 256-bit vector result, first extract the 128-bit vector,
6849  // insert the element into the extracted half and then place it back.
6850  if (VT.getSizeInBits() == 256) {
6851    if (!isa<ConstantSDNode>(N2))
6852      return SDValue();
6853
6854    // Get the desired 128-bit vector half.
6855    unsigned NumElems = VT.getVectorNumElements();
6856    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6857    bool Upper = IdxVal >= NumElems/2;
6858    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6859    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6860
6861    // Insert the element into the desired half.
6862    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6863                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6864
6865    // Insert the changed part back to the 256-bit vector
6866    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6867  }
6868
6869  if (Subtarget->hasSSE41())
6870    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6871
6872  if (EltVT == MVT::i8)
6873    return SDValue();
6874
6875  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6876    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6877    // as its second argument.
6878    if (N1.getValueType() != MVT::i32)
6879      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6880    if (N2.getValueType() != MVT::i32)
6881      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6882    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6883  }
6884  return SDValue();
6885}
6886
6887SDValue
6888X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6889  LLVMContext *Context = DAG.getContext();
6890  DebugLoc dl = Op.getDebugLoc();
6891  EVT OpVT = Op.getValueType();
6892
6893  // If this is a 256-bit vector result, first insert into a 128-bit
6894  // vector and then insert into the 256-bit vector.
6895  if (OpVT.getSizeInBits() > 128) {
6896    // Insert into a 128-bit vector.
6897    EVT VT128 = EVT::getVectorVT(*Context,
6898                                 OpVT.getVectorElementType(),
6899                                 OpVT.getVectorNumElements() / 2);
6900
6901    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6902
6903    // Insert the 128-bit vector.
6904    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6905                              DAG.getConstant(0, MVT::i32),
6906                              DAG, dl);
6907  }
6908
6909  if (Op.getValueType() == MVT::v1i64 &&
6910      Op.getOperand(0).getValueType() == MVT::i64)
6911    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6912
6913  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6914  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6915         "Expected an SSE type!");
6916  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6917                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6918}
6919
6920// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6921// a simple subregister reference or explicit instructions to grab
6922// upper bits of a vector.
6923SDValue
6924X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6925  if (Subtarget->hasAVX()) {
6926    DebugLoc dl = Op.getNode()->getDebugLoc();
6927    SDValue Vec = Op.getNode()->getOperand(0);
6928    SDValue Idx = Op.getNode()->getOperand(1);
6929
6930    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6931        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6932        return Extract128BitVector(Vec, Idx, DAG, dl);
6933    }
6934  }
6935  return SDValue();
6936}
6937
6938// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6939// simple superregister reference or explicit instructions to insert
6940// the upper bits of a vector.
6941SDValue
6942X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6943  if (Subtarget->hasAVX()) {
6944    DebugLoc dl = Op.getNode()->getDebugLoc();
6945    SDValue Vec = Op.getNode()->getOperand(0);
6946    SDValue SubVec = Op.getNode()->getOperand(1);
6947    SDValue Idx = Op.getNode()->getOperand(2);
6948
6949    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6950        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6951      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6952    }
6953  }
6954  return SDValue();
6955}
6956
6957// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6958// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6959// one of the above mentioned nodes. It has to be wrapped because otherwise
6960// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6961// be used to form addressing mode. These wrapped nodes will be selected
6962// into MOV32ri.
6963SDValue
6964X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6965  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6966
6967  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6968  // global base reg.
6969  unsigned char OpFlag = 0;
6970  unsigned WrapperKind = X86ISD::Wrapper;
6971  CodeModel::Model M = getTargetMachine().getCodeModel();
6972
6973  if (Subtarget->isPICStyleRIPRel() &&
6974      (M == CodeModel::Small || M == CodeModel::Kernel))
6975    WrapperKind = X86ISD::WrapperRIP;
6976  else if (Subtarget->isPICStyleGOT())
6977    OpFlag = X86II::MO_GOTOFF;
6978  else if (Subtarget->isPICStyleStubPIC())
6979    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6980
6981  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6982                                             CP->getAlignment(),
6983                                             CP->getOffset(), OpFlag);
6984  DebugLoc DL = CP->getDebugLoc();
6985  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6986  // With PIC, the address is actually $g + Offset.
6987  if (OpFlag) {
6988    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6989                         DAG.getNode(X86ISD::GlobalBaseReg,
6990                                     DebugLoc(), getPointerTy()),
6991                         Result);
6992  }
6993
6994  return Result;
6995}
6996
6997SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6998  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6999
7000  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7001  // global base reg.
7002  unsigned char OpFlag = 0;
7003  unsigned WrapperKind = X86ISD::Wrapper;
7004  CodeModel::Model M = getTargetMachine().getCodeModel();
7005
7006  if (Subtarget->isPICStyleRIPRel() &&
7007      (M == CodeModel::Small || M == CodeModel::Kernel))
7008    WrapperKind = X86ISD::WrapperRIP;
7009  else if (Subtarget->isPICStyleGOT())
7010    OpFlag = X86II::MO_GOTOFF;
7011  else if (Subtarget->isPICStyleStubPIC())
7012    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7013
7014  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7015                                          OpFlag);
7016  DebugLoc DL = JT->getDebugLoc();
7017  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7018
7019  // With PIC, the address is actually $g + Offset.
7020  if (OpFlag)
7021    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7022                         DAG.getNode(X86ISD::GlobalBaseReg,
7023                                     DebugLoc(), getPointerTy()),
7024                         Result);
7025
7026  return Result;
7027}
7028
7029SDValue
7030X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7031  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7032
7033  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7034  // global base reg.
7035  unsigned char OpFlag = 0;
7036  unsigned WrapperKind = X86ISD::Wrapper;
7037  CodeModel::Model M = getTargetMachine().getCodeModel();
7038
7039  if (Subtarget->isPICStyleRIPRel() &&
7040      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7041    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7042      OpFlag = X86II::MO_GOTPCREL;
7043    WrapperKind = X86ISD::WrapperRIP;
7044  } else if (Subtarget->isPICStyleGOT()) {
7045    OpFlag = X86II::MO_GOT;
7046  } else if (Subtarget->isPICStyleStubPIC()) {
7047    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7048  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7049    OpFlag = X86II::MO_DARWIN_NONLAZY;
7050  }
7051
7052  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7053
7054  DebugLoc DL = Op.getDebugLoc();
7055  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7056
7057
7058  // With PIC, the address is actually $g + Offset.
7059  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7060      !Subtarget->is64Bit()) {
7061    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7062                         DAG.getNode(X86ISD::GlobalBaseReg,
7063                                     DebugLoc(), getPointerTy()),
7064                         Result);
7065  }
7066
7067  // For symbols that require a load from a stub to get the address, emit the
7068  // load.
7069  if (isGlobalStubReference(OpFlag))
7070    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7071                         MachinePointerInfo::getGOT(), false, false, false, 0);
7072
7073  return Result;
7074}
7075
7076SDValue
7077X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7078  // Create the TargetBlockAddressAddress node.
7079  unsigned char OpFlags =
7080    Subtarget->ClassifyBlockAddressReference();
7081  CodeModel::Model M = getTargetMachine().getCodeModel();
7082  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7083  DebugLoc dl = Op.getDebugLoc();
7084  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7085                                       /*isTarget=*/true, OpFlags);
7086
7087  if (Subtarget->isPICStyleRIPRel() &&
7088      (M == CodeModel::Small || M == CodeModel::Kernel))
7089    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7090  else
7091    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7092
7093  // With PIC, the address is actually $g + Offset.
7094  if (isGlobalRelativeToPICBase(OpFlags)) {
7095    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7096                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7097                         Result);
7098  }
7099
7100  return Result;
7101}
7102
7103SDValue
7104X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7105                                      int64_t Offset,
7106                                      SelectionDAG &DAG) const {
7107  // Create the TargetGlobalAddress node, folding in the constant
7108  // offset if it is legal.
7109  unsigned char OpFlags =
7110    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7111  CodeModel::Model M = getTargetMachine().getCodeModel();
7112  SDValue Result;
7113  if (OpFlags == X86II::MO_NO_FLAG &&
7114      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7115    // A direct static reference to a global.
7116    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7117    Offset = 0;
7118  } else {
7119    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7120  }
7121
7122  if (Subtarget->isPICStyleRIPRel() &&
7123      (M == CodeModel::Small || M == CodeModel::Kernel))
7124    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7125  else
7126    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7127
7128  // With PIC, the address is actually $g + Offset.
7129  if (isGlobalRelativeToPICBase(OpFlags)) {
7130    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7131                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7132                         Result);
7133  }
7134
7135  // For globals that require a load from a stub to get the address, emit the
7136  // load.
7137  if (isGlobalStubReference(OpFlags))
7138    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7139                         MachinePointerInfo::getGOT(), false, false, false, 0);
7140
7141  // If there was a non-zero offset that we didn't fold, create an explicit
7142  // addition for it.
7143  if (Offset != 0)
7144    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7145                         DAG.getConstant(Offset, getPointerTy()));
7146
7147  return Result;
7148}
7149
7150SDValue
7151X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7152  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7153  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7154  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7155}
7156
7157static SDValue
7158GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7159           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7160           unsigned char OperandFlags) {
7161  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7162  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7163  DebugLoc dl = GA->getDebugLoc();
7164  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7165                                           GA->getValueType(0),
7166                                           GA->getOffset(),
7167                                           OperandFlags);
7168  if (InFlag) {
7169    SDValue Ops[] = { Chain,  TGA, *InFlag };
7170    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7171  } else {
7172    SDValue Ops[]  = { Chain, TGA };
7173    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7174  }
7175
7176  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7177  MFI->setAdjustsStack(true);
7178
7179  SDValue Flag = Chain.getValue(1);
7180  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7181}
7182
7183// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7184static SDValue
7185LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7186                                const EVT PtrVT) {
7187  SDValue InFlag;
7188  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7189  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7190                                     DAG.getNode(X86ISD::GlobalBaseReg,
7191                                                 DebugLoc(), PtrVT), InFlag);
7192  InFlag = Chain.getValue(1);
7193
7194  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7195}
7196
7197// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7198static SDValue
7199LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7200                                const EVT PtrVT) {
7201  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7202                    X86::RAX, X86II::MO_TLSGD);
7203}
7204
7205// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7206// "local exec" model.
7207static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7208                                   const EVT PtrVT, TLSModel::Model model,
7209                                   bool is64Bit) {
7210  DebugLoc dl = GA->getDebugLoc();
7211
7212  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7213  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7214                                                         is64Bit ? 257 : 256));
7215
7216  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7217                                      DAG.getIntPtrConstant(0),
7218                                      MachinePointerInfo(Ptr),
7219                                      false, false, false, 0);
7220
7221  unsigned char OperandFlags = 0;
7222  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7223  // initialexec.
7224  unsigned WrapperKind = X86ISD::Wrapper;
7225  if (model == TLSModel::LocalExec) {
7226    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7227  } else if (is64Bit) {
7228    assert(model == TLSModel::InitialExec);
7229    OperandFlags = X86II::MO_GOTTPOFF;
7230    WrapperKind = X86ISD::WrapperRIP;
7231  } else {
7232    assert(model == TLSModel::InitialExec);
7233    OperandFlags = X86II::MO_INDNTPOFF;
7234  }
7235
7236  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7237  // exec)
7238  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7239                                           GA->getValueType(0),
7240                                           GA->getOffset(), OperandFlags);
7241  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7242
7243  if (model == TLSModel::InitialExec)
7244    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7245                         MachinePointerInfo::getGOT(), false, false, false, 0);
7246
7247  // The address of the thread local variable is the add of the thread
7248  // pointer with the offset of the variable.
7249  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7250}
7251
7252SDValue
7253X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7254
7255  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7256  const GlobalValue *GV = GA->getGlobal();
7257
7258  if (Subtarget->isTargetELF()) {
7259    // TODO: implement the "local dynamic" model
7260    // TODO: implement the "initial exec"model for pic executables
7261
7262    // If GV is an alias then use the aliasee for determining
7263    // thread-localness.
7264    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7265      GV = GA->resolveAliasedGlobal(false);
7266
7267    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7268
7269    switch (model) {
7270      case TLSModel::GeneralDynamic:
7271      case TLSModel::LocalDynamic: // not implemented
7272        if (Subtarget->is64Bit())
7273          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7274        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7275
7276      case TLSModel::InitialExec:
7277      case TLSModel::LocalExec:
7278        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7279                                   Subtarget->is64Bit());
7280    }
7281  } else if (Subtarget->isTargetDarwin()) {
7282    // Darwin only has one model of TLS.  Lower to that.
7283    unsigned char OpFlag = 0;
7284    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7285                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7286
7287    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7288    // global base reg.
7289    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7290                  !Subtarget->is64Bit();
7291    if (PIC32)
7292      OpFlag = X86II::MO_TLVP_PIC_BASE;
7293    else
7294      OpFlag = X86II::MO_TLVP;
7295    DebugLoc DL = Op.getDebugLoc();
7296    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7297                                                GA->getValueType(0),
7298                                                GA->getOffset(), OpFlag);
7299    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7300
7301    // With PIC32, the address is actually $g + Offset.
7302    if (PIC32)
7303      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7304                           DAG.getNode(X86ISD::GlobalBaseReg,
7305                                       DebugLoc(), getPointerTy()),
7306                           Offset);
7307
7308    // Lowering the machine isd will make sure everything is in the right
7309    // location.
7310    SDValue Chain = DAG.getEntryNode();
7311    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7312    SDValue Args[] = { Chain, Offset };
7313    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7314
7315    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7316    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7317    MFI->setAdjustsStack(true);
7318
7319    // And our return value (tls address) is in the standard call return value
7320    // location.
7321    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7322    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7323                              Chain.getValue(1));
7324  } else if (Subtarget->isTargetWindows()) {
7325    // Just use the implicit TLS architecture
7326    // Need to generate someting similar to:
7327    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7328    //                                  ; from TEB
7329    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7330    //   mov     rcx, qword [rdx+rcx*8]
7331    //   mov     eax, .tls$:tlsvar
7332    //   [rax+rcx] contains the address
7333    // Windows 64bit: gs:0x58
7334    // Windows 32bit: fs:__tls_array
7335
7336    // If GV is an alias then use the aliasee for determining
7337    // thread-localness.
7338    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7339      GV = GA->resolveAliasedGlobal(false);
7340    DebugLoc dl = GA->getDebugLoc();
7341    SDValue Chain = DAG.getEntryNode();
7342
7343    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7344    // %gs:0x58 (64-bit).
7345    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7346                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7347                                                             256)
7348                                        : Type::getInt32PtrTy(*DAG.getContext(),
7349                                                              257));
7350
7351    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7352                                        Subtarget->is64Bit()
7353                                        ? DAG.getIntPtrConstant(0x58)
7354                                        : DAG.getExternalSymbol("_tls_array",
7355                                                                getPointerTy()),
7356                                        MachinePointerInfo(Ptr),
7357                                        false, false, false, 0);
7358
7359    // Load the _tls_index variable
7360    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7361    if (Subtarget->is64Bit())
7362      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7363                           IDX, MachinePointerInfo(), MVT::i32,
7364                           false, false, 0);
7365    else
7366      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7367                        false, false, false, 0);
7368
7369    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7370		                            getPointerTy());
7371    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7372
7373    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7374    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7375                      false, false, false, 0);
7376
7377    // Get the offset of start of .tls section
7378    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7379                                             GA->getValueType(0),
7380                                             GA->getOffset(), X86II::MO_SECREL);
7381    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7382
7383    // The address of the thread local variable is the add of the thread
7384    // pointer with the offset of the variable.
7385    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7386  }
7387
7388  llvm_unreachable("TLS not implemented for this target.");
7389}
7390
7391
7392/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7393/// and take a 2 x i32 value to shift plus a shift amount.
7394SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7395  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7396  EVT VT = Op.getValueType();
7397  unsigned VTBits = VT.getSizeInBits();
7398  DebugLoc dl = Op.getDebugLoc();
7399  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7400  SDValue ShOpLo = Op.getOperand(0);
7401  SDValue ShOpHi = Op.getOperand(1);
7402  SDValue ShAmt  = Op.getOperand(2);
7403  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7404                                     DAG.getConstant(VTBits - 1, MVT::i8))
7405                       : DAG.getConstant(0, VT);
7406
7407  SDValue Tmp2, Tmp3;
7408  if (Op.getOpcode() == ISD::SHL_PARTS) {
7409    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7410    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7411  } else {
7412    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7413    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7414  }
7415
7416  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7417                                DAG.getConstant(VTBits, MVT::i8));
7418  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7419                             AndNode, DAG.getConstant(0, MVT::i8));
7420
7421  SDValue Hi, Lo;
7422  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7423  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7424  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7425
7426  if (Op.getOpcode() == ISD::SHL_PARTS) {
7427    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7428    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7429  } else {
7430    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7431    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7432  }
7433
7434  SDValue Ops[2] = { Lo, Hi };
7435  return DAG.getMergeValues(Ops, 2, dl);
7436}
7437
7438SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7439                                           SelectionDAG &DAG) const {
7440  EVT SrcVT = Op.getOperand(0).getValueType();
7441
7442  if (SrcVT.isVector())
7443    return SDValue();
7444
7445  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7446         "Unknown SINT_TO_FP to lower!");
7447
7448  // These are really Legal; return the operand so the caller accepts it as
7449  // Legal.
7450  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7451    return Op;
7452  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7453      Subtarget->is64Bit()) {
7454    return Op;
7455  }
7456
7457  DebugLoc dl = Op.getDebugLoc();
7458  unsigned Size = SrcVT.getSizeInBits()/8;
7459  MachineFunction &MF = DAG.getMachineFunction();
7460  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7461  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7462  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7463                               StackSlot,
7464                               MachinePointerInfo::getFixedStack(SSFI),
7465                               false, false, 0);
7466  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7467}
7468
7469SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7470                                     SDValue StackSlot,
7471                                     SelectionDAG &DAG) const {
7472  // Build the FILD
7473  DebugLoc DL = Op.getDebugLoc();
7474  SDVTList Tys;
7475  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7476  if (useSSE)
7477    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7478  else
7479    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7480
7481  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7482
7483  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7484  MachineMemOperand *MMO;
7485  if (FI) {
7486    int SSFI = FI->getIndex();
7487    MMO =
7488      DAG.getMachineFunction()
7489      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7490                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7491  } else {
7492    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7493    StackSlot = StackSlot.getOperand(1);
7494  }
7495  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7496  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7497                                           X86ISD::FILD, DL,
7498                                           Tys, Ops, array_lengthof(Ops),
7499                                           SrcVT, MMO);
7500
7501  if (useSSE) {
7502    Chain = Result.getValue(1);
7503    SDValue InFlag = Result.getValue(2);
7504
7505    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7506    // shouldn't be necessary except that RFP cannot be live across
7507    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7508    MachineFunction &MF = DAG.getMachineFunction();
7509    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7510    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7511    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7512    Tys = DAG.getVTList(MVT::Other);
7513    SDValue Ops[] = {
7514      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7515    };
7516    MachineMemOperand *MMO =
7517      DAG.getMachineFunction()
7518      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7519                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7520
7521    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7522                                    Ops, array_lengthof(Ops),
7523                                    Op.getValueType(), MMO);
7524    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7525                         MachinePointerInfo::getFixedStack(SSFI),
7526                         false, false, false, 0);
7527  }
7528
7529  return Result;
7530}
7531
7532// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7533SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7534                                               SelectionDAG &DAG) const {
7535  // This algorithm is not obvious. Here it is what we're trying to output:
7536  /*
7537     movq       %rax,  %xmm0
7538     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7539     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7540     #ifdef __SSE3__
7541       haddpd   %xmm0, %xmm0
7542     #else
7543       pshufd   $0x4e, %xmm0, %xmm1
7544       addpd    %xmm1, %xmm0
7545     #endif
7546  */
7547
7548  DebugLoc dl = Op.getDebugLoc();
7549  LLVMContext *Context = DAG.getContext();
7550
7551  // Build some magic constants.
7552  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7553  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7554  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7555
7556  SmallVector<Constant*,2> CV1;
7557  CV1.push_back(
7558        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7559  CV1.push_back(
7560        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7561  Constant *C1 = ConstantVector::get(CV1);
7562  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7563
7564  // Load the 64-bit value into an XMM register.
7565  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7566                            Op.getOperand(0));
7567  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7568                              MachinePointerInfo::getConstantPool(),
7569                              false, false, false, 16);
7570  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7571                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7572                              CLod0);
7573
7574  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7575                              MachinePointerInfo::getConstantPool(),
7576                              false, false, false, 16);
7577  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7578  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7579  SDValue Result;
7580
7581  if (Subtarget->hasSSE3()) {
7582    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7583    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7584  } else {
7585    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7586    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7587                                           S2F, 0x4E, DAG);
7588    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7589                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7590                         Sub);
7591  }
7592
7593  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7594                     DAG.getIntPtrConstant(0));
7595}
7596
7597// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7598SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7599                                               SelectionDAG &DAG) const {
7600  DebugLoc dl = Op.getDebugLoc();
7601  // FP constant to bias correct the final result.
7602  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7603                                   MVT::f64);
7604
7605  // Load the 32-bit value into an XMM register.
7606  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7607                             Op.getOperand(0));
7608
7609  // Zero out the upper parts of the register.
7610  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7611
7612  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7613                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7614                     DAG.getIntPtrConstant(0));
7615
7616  // Or the load with the bias.
7617  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7618                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7619                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7620                                                   MVT::v2f64, Load)),
7621                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7622                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7623                                                   MVT::v2f64, Bias)));
7624  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7625                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7626                   DAG.getIntPtrConstant(0));
7627
7628  // Subtract the bias.
7629  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7630
7631  // Handle final rounding.
7632  EVT DestVT = Op.getValueType();
7633
7634  if (DestVT.bitsLT(MVT::f64)) {
7635    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7636                       DAG.getIntPtrConstant(0));
7637  } else if (DestVT.bitsGT(MVT::f64)) {
7638    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7639  }
7640
7641  // Handle final rounding.
7642  return Sub;
7643}
7644
7645SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7646                                           SelectionDAG &DAG) const {
7647  SDValue N0 = Op.getOperand(0);
7648  DebugLoc dl = Op.getDebugLoc();
7649
7650  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7651  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7652  // the optimization here.
7653  if (DAG.SignBitIsZero(N0))
7654    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7655
7656  EVT SrcVT = N0.getValueType();
7657  EVT DstVT = Op.getValueType();
7658  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7659    return LowerUINT_TO_FP_i64(Op, DAG);
7660  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7661    return LowerUINT_TO_FP_i32(Op, DAG);
7662  else if (Subtarget->is64Bit() &&
7663           SrcVT == MVT::i64 && DstVT == MVT::f32)
7664    return SDValue();
7665
7666  // Make a 64-bit buffer, and use it to build an FILD.
7667  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7668  if (SrcVT == MVT::i32) {
7669    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7670    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7671                                     getPointerTy(), StackSlot, WordOff);
7672    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7673                                  StackSlot, MachinePointerInfo(),
7674                                  false, false, 0);
7675    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7676                                  OffsetSlot, MachinePointerInfo(),
7677                                  false, false, 0);
7678    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7679    return Fild;
7680  }
7681
7682  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7683  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7684                               StackSlot, MachinePointerInfo(),
7685                               false, false, 0);
7686  // For i64 source, we need to add the appropriate power of 2 if the input
7687  // was negative.  This is the same as the optimization in
7688  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7689  // we must be careful to do the computation in x87 extended precision, not
7690  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7691  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7692  MachineMemOperand *MMO =
7693    DAG.getMachineFunction()
7694    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7695                          MachineMemOperand::MOLoad, 8, 8);
7696
7697  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7698  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7699  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7700                                         MVT::i64, MMO);
7701
7702  APInt FF(32, 0x5F800000ULL);
7703
7704  // Check whether the sign bit is set.
7705  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7706                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7707                                 ISD::SETLT);
7708
7709  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7710  SDValue FudgePtr = DAG.getConstantPool(
7711                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7712                                         getPointerTy());
7713
7714  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7715  SDValue Zero = DAG.getIntPtrConstant(0);
7716  SDValue Four = DAG.getIntPtrConstant(4);
7717  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7718                               Zero, Four);
7719  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7720
7721  // Load the value out, extending it from f32 to f80.
7722  // FIXME: Avoid the extend by constructing the right constant pool?
7723  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7724                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7725                                 MVT::f32, false, false, 4);
7726  // Extend everything to 80 bits to force it to be done on x87.
7727  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7728  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7729}
7730
7731std::pair<SDValue,SDValue> X86TargetLowering::
7732FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7733  DebugLoc DL = Op.getDebugLoc();
7734
7735  EVT DstTy = Op.getValueType();
7736
7737  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7738    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7739    DstTy = MVT::i64;
7740  }
7741
7742  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7743         DstTy.getSimpleVT() >= MVT::i16 &&
7744         "Unknown FP_TO_INT to lower!");
7745
7746  // These are really Legal.
7747  if (DstTy == MVT::i32 &&
7748      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7749    return std::make_pair(SDValue(), SDValue());
7750  if (Subtarget->is64Bit() &&
7751      DstTy == MVT::i64 &&
7752      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7753    return std::make_pair(SDValue(), SDValue());
7754
7755  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7756  // stack slot, or into the FTOL runtime function.
7757  MachineFunction &MF = DAG.getMachineFunction();
7758  unsigned MemSize = DstTy.getSizeInBits()/8;
7759  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7760  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7761
7762  unsigned Opc;
7763  if (!IsSigned && isIntegerTypeFTOL(DstTy))
7764    Opc = X86ISD::WIN_FTOL;
7765  else
7766    switch (DstTy.getSimpleVT().SimpleTy) {
7767    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7768    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7769    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7770    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7771    }
7772
7773  SDValue Chain = DAG.getEntryNode();
7774  SDValue Value = Op.getOperand(0);
7775  EVT TheVT = Op.getOperand(0).getValueType();
7776  // FIXME This causes a redundant load/store if the SSE-class value is already
7777  // in memory, such as if it is on the callstack.
7778  if (isScalarFPTypeInSSEReg(TheVT)) {
7779    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7780    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7781                         MachinePointerInfo::getFixedStack(SSFI),
7782                         false, false, 0);
7783    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7784    SDValue Ops[] = {
7785      Chain, StackSlot, DAG.getValueType(TheVT)
7786    };
7787
7788    MachineMemOperand *MMO =
7789      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7790                              MachineMemOperand::MOLoad, MemSize, MemSize);
7791    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7792                                    DstTy, MMO);
7793    Chain = Value.getValue(1);
7794    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7795    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7796  }
7797
7798  MachineMemOperand *MMO =
7799    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7800                            MachineMemOperand::MOStore, MemSize, MemSize);
7801
7802  if (Opc != X86ISD::WIN_FTOL) {
7803    // Build the FP_TO_INT*_IN_MEM
7804    SDValue Ops[] = { Chain, Value, StackSlot };
7805    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7806                                           Ops, 3, DstTy, MMO);
7807    return std::make_pair(FIST, StackSlot);
7808  } else {
7809    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
7810      DAG.getVTList(MVT::Other, MVT::Glue),
7811      Chain, Value);
7812    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
7813      MVT::i32, ftol.getValue(1));
7814    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
7815      MVT::i32, eax.getValue(2));
7816    SDValue Ops[] = { eax, edx };
7817    SDValue pair = IsReplace
7818      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
7819      : DAG.getMergeValues(Ops, 2, DL);
7820    return std::make_pair(pair, SDValue());
7821  }
7822}
7823
7824SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7825                                           SelectionDAG &DAG) const {
7826  if (Op.getValueType().isVector())
7827    return SDValue();
7828
7829  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7830    /*IsSigned=*/ true, /*IsReplace=*/ false);
7831  SDValue FIST = Vals.first, StackSlot = Vals.second;
7832  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7833  if (FIST.getNode() == 0) return Op;
7834
7835  if (StackSlot.getNode())
7836    // Load the result.
7837    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7838                       FIST, StackSlot, MachinePointerInfo(),
7839                       false, false, false, 0);
7840  else
7841    // The node is the result.
7842    return FIST;
7843}
7844
7845SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7846                                           SelectionDAG &DAG) const {
7847  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7848    /*IsSigned=*/ false, /*IsReplace=*/ false);
7849  SDValue FIST = Vals.first, StackSlot = Vals.second;
7850  assert(FIST.getNode() && "Unexpected failure");
7851
7852  if (StackSlot.getNode())
7853    // Load the result.
7854    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7855                       FIST, StackSlot, MachinePointerInfo(),
7856                       false, false, false, 0);
7857  else
7858    // The node is the result.
7859    return FIST;
7860}
7861
7862SDValue X86TargetLowering::LowerFABS(SDValue Op,
7863                                     SelectionDAG &DAG) const {
7864  LLVMContext *Context = DAG.getContext();
7865  DebugLoc dl = Op.getDebugLoc();
7866  EVT VT = Op.getValueType();
7867  EVT EltVT = VT;
7868  if (VT.isVector())
7869    EltVT = VT.getVectorElementType();
7870  Constant *C;
7871  if (EltVT == MVT::f64) {
7872    C = ConstantVector::getSplat(2,
7873                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7874  } else {
7875    C = ConstantVector::getSplat(4,
7876               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7877  }
7878  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7879  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7880                             MachinePointerInfo::getConstantPool(),
7881                             false, false, false, 16);
7882  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7883}
7884
7885SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7886  LLVMContext *Context = DAG.getContext();
7887  DebugLoc dl = Op.getDebugLoc();
7888  EVT VT = Op.getValueType();
7889  EVT EltVT = VT;
7890  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7891  if (VT.isVector()) {
7892    EltVT = VT.getVectorElementType();
7893    NumElts = VT.getVectorNumElements();
7894  }
7895  Constant *C;
7896  if (EltVT == MVT::f64)
7897    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7898  else
7899    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7900  C = ConstantVector::getSplat(NumElts, C);
7901  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7902  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7903                             MachinePointerInfo::getConstantPool(),
7904                             false, false, false, 16);
7905  if (VT.isVector()) {
7906    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7907    return DAG.getNode(ISD::BITCAST, dl, VT,
7908                       DAG.getNode(ISD::XOR, dl, XORVT,
7909                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7910                                Op.getOperand(0)),
7911                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7912  } else {
7913    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7914  }
7915}
7916
7917SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7918  LLVMContext *Context = DAG.getContext();
7919  SDValue Op0 = Op.getOperand(0);
7920  SDValue Op1 = Op.getOperand(1);
7921  DebugLoc dl = Op.getDebugLoc();
7922  EVT VT = Op.getValueType();
7923  EVT SrcVT = Op1.getValueType();
7924
7925  // If second operand is smaller, extend it first.
7926  if (SrcVT.bitsLT(VT)) {
7927    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7928    SrcVT = VT;
7929  }
7930  // And if it is bigger, shrink it first.
7931  if (SrcVT.bitsGT(VT)) {
7932    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7933    SrcVT = VT;
7934  }
7935
7936  // At this point the operands and the result should have the same
7937  // type, and that won't be f80 since that is not custom lowered.
7938
7939  // First get the sign bit of second operand.
7940  SmallVector<Constant*,4> CV;
7941  if (SrcVT == MVT::f64) {
7942    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7943    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7944  } else {
7945    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7946    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7947    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7948    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7949  }
7950  Constant *C = ConstantVector::get(CV);
7951  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7952  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7953                              MachinePointerInfo::getConstantPool(),
7954                              false, false, false, 16);
7955  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7956
7957  // Shift sign bit right or left if the two operands have different types.
7958  if (SrcVT.bitsGT(VT)) {
7959    // Op0 is MVT::f32, Op1 is MVT::f64.
7960    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7961    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7962                          DAG.getConstant(32, MVT::i32));
7963    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7964    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7965                          DAG.getIntPtrConstant(0));
7966  }
7967
7968  // Clear first operand sign bit.
7969  CV.clear();
7970  if (VT == MVT::f64) {
7971    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7972    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7973  } else {
7974    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7975    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7976    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7977    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7978  }
7979  C = ConstantVector::get(CV);
7980  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7981  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7982                              MachinePointerInfo::getConstantPool(),
7983                              false, false, false, 16);
7984  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7985
7986  // Or the value with the sign bit.
7987  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7988}
7989
7990SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7991  SDValue N0 = Op.getOperand(0);
7992  DebugLoc dl = Op.getDebugLoc();
7993  EVT VT = Op.getValueType();
7994
7995  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7996  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7997                                  DAG.getConstant(1, VT));
7998  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7999}
8000
8001/// Emit nodes that will be selected as "test Op0,Op0", or something
8002/// equivalent.
8003SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8004                                    SelectionDAG &DAG) const {
8005  DebugLoc dl = Op.getDebugLoc();
8006
8007  // CF and OF aren't always set the way we want. Determine which
8008  // of these we need.
8009  bool NeedCF = false;
8010  bool NeedOF = false;
8011  switch (X86CC) {
8012  default: break;
8013  case X86::COND_A: case X86::COND_AE:
8014  case X86::COND_B: case X86::COND_BE:
8015    NeedCF = true;
8016    break;
8017  case X86::COND_G: case X86::COND_GE:
8018  case X86::COND_L: case X86::COND_LE:
8019  case X86::COND_O: case X86::COND_NO:
8020    NeedOF = true;
8021    break;
8022  }
8023
8024  // See if we can use the EFLAGS value from the operand instead of
8025  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8026  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8027  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8028    // Emit a CMP with 0, which is the TEST pattern.
8029    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8030                       DAG.getConstant(0, Op.getValueType()));
8031
8032  unsigned Opcode = 0;
8033  unsigned NumOperands = 0;
8034  switch (Op.getNode()->getOpcode()) {
8035  case ISD::ADD:
8036    // Due to an isel shortcoming, be conservative if this add is likely to be
8037    // selected as part of a load-modify-store instruction. When the root node
8038    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8039    // uses of other nodes in the match, such as the ADD in this case. This
8040    // leads to the ADD being left around and reselected, with the result being
8041    // two adds in the output.  Alas, even if none our users are stores, that
8042    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8043    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8044    // climbing the DAG back to the root, and it doesn't seem to be worth the
8045    // effort.
8046    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8047         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8048      if (UI->getOpcode() != ISD::CopyToReg &&
8049          UI->getOpcode() != ISD::SETCC &&
8050          UI->getOpcode() != ISD::STORE)
8051        goto default_case;
8052
8053    if (ConstantSDNode *C =
8054        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8055      // An add of one will be selected as an INC.
8056      if (C->getAPIntValue() == 1) {
8057        Opcode = X86ISD::INC;
8058        NumOperands = 1;
8059        break;
8060      }
8061
8062      // An add of negative one (subtract of one) will be selected as a DEC.
8063      if (C->getAPIntValue().isAllOnesValue()) {
8064        Opcode = X86ISD::DEC;
8065        NumOperands = 1;
8066        break;
8067      }
8068    }
8069
8070    // Otherwise use a regular EFLAGS-setting add.
8071    Opcode = X86ISD::ADD;
8072    NumOperands = 2;
8073    break;
8074  case ISD::AND: {
8075    // If the primary and result isn't used, don't bother using X86ISD::AND,
8076    // because a TEST instruction will be better.
8077    bool NonFlagUse = false;
8078    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8079           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8080      SDNode *User = *UI;
8081      unsigned UOpNo = UI.getOperandNo();
8082      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8083        // Look pass truncate.
8084        UOpNo = User->use_begin().getOperandNo();
8085        User = *User->use_begin();
8086      }
8087
8088      if (User->getOpcode() != ISD::BRCOND &&
8089          User->getOpcode() != ISD::SETCC &&
8090          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8091        NonFlagUse = true;
8092        break;
8093      }
8094    }
8095
8096    if (!NonFlagUse)
8097      break;
8098  }
8099    // FALL THROUGH
8100  case ISD::SUB:
8101  case ISD::OR:
8102  case ISD::XOR:
8103    // Due to the ISEL shortcoming noted above, be conservative if this op is
8104    // likely to be selected as part of a load-modify-store instruction.
8105    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8106           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8107      if (UI->getOpcode() == ISD::STORE)
8108        goto default_case;
8109
8110    // Otherwise use a regular EFLAGS-setting instruction.
8111    switch (Op.getNode()->getOpcode()) {
8112    default: llvm_unreachable("unexpected operator!");
8113    case ISD::SUB: Opcode = X86ISD::SUB; break;
8114    case ISD::OR:  Opcode = X86ISD::OR;  break;
8115    case ISD::XOR: Opcode = X86ISD::XOR; break;
8116    case ISD::AND: Opcode = X86ISD::AND; break;
8117    }
8118
8119    NumOperands = 2;
8120    break;
8121  case X86ISD::ADD:
8122  case X86ISD::SUB:
8123  case X86ISD::INC:
8124  case X86ISD::DEC:
8125  case X86ISD::OR:
8126  case X86ISD::XOR:
8127  case X86ISD::AND:
8128    return SDValue(Op.getNode(), 1);
8129  default:
8130  default_case:
8131    break;
8132  }
8133
8134  if (Opcode == 0)
8135    // Emit a CMP with 0, which is the TEST pattern.
8136    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8137                       DAG.getConstant(0, Op.getValueType()));
8138
8139  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8140  SmallVector<SDValue, 4> Ops;
8141  for (unsigned i = 0; i != NumOperands; ++i)
8142    Ops.push_back(Op.getOperand(i));
8143
8144  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8145  DAG.ReplaceAllUsesWith(Op, New);
8146  return SDValue(New.getNode(), 1);
8147}
8148
8149/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8150/// equivalent.
8151SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8152                                   SelectionDAG &DAG) const {
8153  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8154    if (C->getAPIntValue() == 0)
8155      return EmitTest(Op0, X86CC, DAG);
8156
8157  DebugLoc dl = Op0.getDebugLoc();
8158  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8159}
8160
8161/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8162/// if it's possible.
8163SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8164                                     DebugLoc dl, SelectionDAG &DAG) const {
8165  SDValue Op0 = And.getOperand(0);
8166  SDValue Op1 = And.getOperand(1);
8167  if (Op0.getOpcode() == ISD::TRUNCATE)
8168    Op0 = Op0.getOperand(0);
8169  if (Op1.getOpcode() == ISD::TRUNCATE)
8170    Op1 = Op1.getOperand(0);
8171
8172  SDValue LHS, RHS;
8173  if (Op1.getOpcode() == ISD::SHL)
8174    std::swap(Op0, Op1);
8175  if (Op0.getOpcode() == ISD::SHL) {
8176    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8177      if (And00C->getZExtValue() == 1) {
8178        // If we looked past a truncate, check that it's only truncating away
8179        // known zeros.
8180        unsigned BitWidth = Op0.getValueSizeInBits();
8181        unsigned AndBitWidth = And.getValueSizeInBits();
8182        if (BitWidth > AndBitWidth) {
8183          APInt Zeros, Ones;
8184          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8185          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8186            return SDValue();
8187        }
8188        LHS = Op1;
8189        RHS = Op0.getOperand(1);
8190      }
8191  } else if (Op1.getOpcode() == ISD::Constant) {
8192    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8193    uint64_t AndRHSVal = AndRHS->getZExtValue();
8194    SDValue AndLHS = Op0;
8195
8196    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8197      LHS = AndLHS.getOperand(0);
8198      RHS = AndLHS.getOperand(1);
8199    }
8200
8201    // Use BT if the immediate can't be encoded in a TEST instruction.
8202    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8203      LHS = AndLHS;
8204      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8205    }
8206  }
8207
8208  if (LHS.getNode()) {
8209    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8210    // instruction.  Since the shift amount is in-range-or-undefined, we know
8211    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8212    // the encoding for the i16 version is larger than the i32 version.
8213    // Also promote i16 to i32 for performance / code size reason.
8214    if (LHS.getValueType() == MVT::i8 ||
8215        LHS.getValueType() == MVT::i16)
8216      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8217
8218    // If the operand types disagree, extend the shift amount to match.  Since
8219    // BT ignores high bits (like shifts) we can use anyextend.
8220    if (LHS.getValueType() != RHS.getValueType())
8221      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8222
8223    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8224    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8225    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8226                       DAG.getConstant(Cond, MVT::i8), BT);
8227  }
8228
8229  return SDValue();
8230}
8231
8232SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8233
8234  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8235
8236  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8237  SDValue Op0 = Op.getOperand(0);
8238  SDValue Op1 = Op.getOperand(1);
8239  DebugLoc dl = Op.getDebugLoc();
8240  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8241
8242  // Optimize to BT if possible.
8243  // Lower (X & (1 << N)) == 0 to BT(X, N).
8244  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8245  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8246  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8247      Op1.getOpcode() == ISD::Constant &&
8248      cast<ConstantSDNode>(Op1)->isNullValue() &&
8249      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8250    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8251    if (NewSetCC.getNode())
8252      return NewSetCC;
8253  }
8254
8255  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8256  // these.
8257  if (Op1.getOpcode() == ISD::Constant &&
8258      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8259       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8260      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8261
8262    // If the input is a setcc, then reuse the input setcc or use a new one with
8263    // the inverted condition.
8264    if (Op0.getOpcode() == X86ISD::SETCC) {
8265      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8266      bool Invert = (CC == ISD::SETNE) ^
8267        cast<ConstantSDNode>(Op1)->isNullValue();
8268      if (!Invert) return Op0;
8269
8270      CCode = X86::GetOppositeBranchCondition(CCode);
8271      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8272                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8273    }
8274  }
8275
8276  bool isFP = Op1.getValueType().isFloatingPoint();
8277  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8278  if (X86CC == X86::COND_INVALID)
8279    return SDValue();
8280
8281  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8282  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8283                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8284}
8285
8286// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8287// ones, and then concatenate the result back.
8288static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8289  EVT VT = Op.getValueType();
8290
8291  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8292         "Unsupported value type for operation");
8293
8294  int NumElems = VT.getVectorNumElements();
8295  DebugLoc dl = Op.getDebugLoc();
8296  SDValue CC = Op.getOperand(2);
8297  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8298  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8299
8300  // Extract the LHS vectors
8301  SDValue LHS = Op.getOperand(0);
8302  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8303  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8304
8305  // Extract the RHS vectors
8306  SDValue RHS = Op.getOperand(1);
8307  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8308  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8309
8310  // Issue the operation on the smaller types and concatenate the result back
8311  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8312  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8313  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8314                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8315                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8316}
8317
8318
8319SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8320  SDValue Cond;
8321  SDValue Op0 = Op.getOperand(0);
8322  SDValue Op1 = Op.getOperand(1);
8323  SDValue CC = Op.getOperand(2);
8324  EVT VT = Op.getValueType();
8325  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8326  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8327  DebugLoc dl = Op.getDebugLoc();
8328
8329  if (isFP) {
8330    unsigned SSECC = 8;
8331    EVT EltVT = Op0.getValueType().getVectorElementType();
8332    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8333
8334    bool Swap = false;
8335
8336    // SSE Condition code mapping:
8337    //  0 - EQ
8338    //  1 - LT
8339    //  2 - LE
8340    //  3 - UNORD
8341    //  4 - NEQ
8342    //  5 - NLT
8343    //  6 - NLE
8344    //  7 - ORD
8345    switch (SetCCOpcode) {
8346    default: break;
8347    case ISD::SETOEQ:
8348    case ISD::SETEQ:  SSECC = 0; break;
8349    case ISD::SETOGT:
8350    case ISD::SETGT: Swap = true; // Fallthrough
8351    case ISD::SETLT:
8352    case ISD::SETOLT: SSECC = 1; break;
8353    case ISD::SETOGE:
8354    case ISD::SETGE: Swap = true; // Fallthrough
8355    case ISD::SETLE:
8356    case ISD::SETOLE: SSECC = 2; break;
8357    case ISD::SETUO:  SSECC = 3; break;
8358    case ISD::SETUNE:
8359    case ISD::SETNE:  SSECC = 4; break;
8360    case ISD::SETULE: Swap = true;
8361    case ISD::SETUGE: SSECC = 5; break;
8362    case ISD::SETULT: Swap = true;
8363    case ISD::SETUGT: SSECC = 6; break;
8364    case ISD::SETO:   SSECC = 7; break;
8365    }
8366    if (Swap)
8367      std::swap(Op0, Op1);
8368
8369    // In the two special cases we can't handle, emit two comparisons.
8370    if (SSECC == 8) {
8371      if (SetCCOpcode == ISD::SETUEQ) {
8372        SDValue UNORD, EQ;
8373        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8374                            DAG.getConstant(3, MVT::i8));
8375        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8376                         DAG.getConstant(0, MVT::i8));
8377        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8378      } else if (SetCCOpcode == ISD::SETONE) {
8379        SDValue ORD, NEQ;
8380        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8381                          DAG.getConstant(7, MVT::i8));
8382        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8383                          DAG.getConstant(4, MVT::i8));
8384        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8385      }
8386      llvm_unreachable("Illegal FP comparison");
8387    }
8388    // Handle all other FP comparisons here.
8389    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8390                       DAG.getConstant(SSECC, MVT::i8));
8391  }
8392
8393  // Break 256-bit integer vector compare into smaller ones.
8394  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8395    return Lower256IntVSETCC(Op, DAG);
8396
8397  // We are handling one of the integer comparisons here.  Since SSE only has
8398  // GT and EQ comparisons for integer, swapping operands and multiple
8399  // operations may be required for some comparisons.
8400  unsigned Opc = 0;
8401  bool Swap = false, Invert = false, FlipSigns = false;
8402
8403  switch (SetCCOpcode) {
8404  default: break;
8405  case ISD::SETNE:  Invert = true;
8406  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8407  case ISD::SETLT:  Swap = true;
8408  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8409  case ISD::SETGE:  Swap = true;
8410  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8411  case ISD::SETULT: Swap = true;
8412  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8413  case ISD::SETUGE: Swap = true;
8414  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8415  }
8416  if (Swap)
8417    std::swap(Op0, Op1);
8418
8419  // Check that the operation in question is available (most are plain SSE2,
8420  // but PCMPGTQ and PCMPEQQ have different requirements).
8421  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8422    return SDValue();
8423  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8424    return SDValue();
8425
8426  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8427  // bits of the inputs before performing those operations.
8428  if (FlipSigns) {
8429    EVT EltVT = VT.getVectorElementType();
8430    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8431                                      EltVT);
8432    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8433    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8434                                    SignBits.size());
8435    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8436    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8437  }
8438
8439  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8440
8441  // If the logical-not of the result is required, perform that now.
8442  if (Invert)
8443    Result = DAG.getNOT(dl, Result, VT);
8444
8445  return Result;
8446}
8447
8448// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8449static bool isX86LogicalCmp(SDValue Op) {
8450  unsigned Opc = Op.getNode()->getOpcode();
8451  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8452    return true;
8453  if (Op.getResNo() == 1 &&
8454      (Opc == X86ISD::ADD ||
8455       Opc == X86ISD::SUB ||
8456       Opc == X86ISD::ADC ||
8457       Opc == X86ISD::SBB ||
8458       Opc == X86ISD::SMUL ||
8459       Opc == X86ISD::UMUL ||
8460       Opc == X86ISD::INC ||
8461       Opc == X86ISD::DEC ||
8462       Opc == X86ISD::OR ||
8463       Opc == X86ISD::XOR ||
8464       Opc == X86ISD::AND))
8465    return true;
8466
8467  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8468    return true;
8469
8470  return false;
8471}
8472
8473static bool isZero(SDValue V) {
8474  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8475  return C && C->isNullValue();
8476}
8477
8478static bool isAllOnes(SDValue V) {
8479  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8480  return C && C->isAllOnesValue();
8481}
8482
8483SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8484  bool addTest = true;
8485  SDValue Cond  = Op.getOperand(0);
8486  SDValue Op1 = Op.getOperand(1);
8487  SDValue Op2 = Op.getOperand(2);
8488  DebugLoc DL = Op.getDebugLoc();
8489  SDValue CC;
8490
8491  if (Cond.getOpcode() == ISD::SETCC) {
8492    SDValue NewCond = LowerSETCC(Cond, DAG);
8493    if (NewCond.getNode())
8494      Cond = NewCond;
8495  }
8496
8497  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8498  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8499  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8500  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8501  if (Cond.getOpcode() == X86ISD::SETCC &&
8502      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8503      isZero(Cond.getOperand(1).getOperand(1))) {
8504    SDValue Cmp = Cond.getOperand(1);
8505
8506    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8507
8508    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8509        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8510      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8511
8512      SDValue CmpOp0 = Cmp.getOperand(0);
8513      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8514                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8515
8516      SDValue Res =   // Res = 0 or -1.
8517        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8518                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8519
8520      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8521        Res = DAG.getNOT(DL, Res, Res.getValueType());
8522
8523      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8524      if (N2C == 0 || !N2C->isNullValue())
8525        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8526      return Res;
8527    }
8528  }
8529
8530  // Look past (and (setcc_carry (cmp ...)), 1).
8531  if (Cond.getOpcode() == ISD::AND &&
8532      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8533    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8534    if (C && C->getAPIntValue() == 1)
8535      Cond = Cond.getOperand(0);
8536  }
8537
8538  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8539  // setting operand in place of the X86ISD::SETCC.
8540  unsigned CondOpcode = Cond.getOpcode();
8541  if (CondOpcode == X86ISD::SETCC ||
8542      CondOpcode == X86ISD::SETCC_CARRY) {
8543    CC = Cond.getOperand(0);
8544
8545    SDValue Cmp = Cond.getOperand(1);
8546    unsigned Opc = Cmp.getOpcode();
8547    EVT VT = Op.getValueType();
8548
8549    bool IllegalFPCMov = false;
8550    if (VT.isFloatingPoint() && !VT.isVector() &&
8551        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8552      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8553
8554    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8555        Opc == X86ISD::BT) { // FIXME
8556      Cond = Cmp;
8557      addTest = false;
8558    }
8559  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8560             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8561             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8562              Cond.getOperand(0).getValueType() != MVT::i8)) {
8563    SDValue LHS = Cond.getOperand(0);
8564    SDValue RHS = Cond.getOperand(1);
8565    unsigned X86Opcode;
8566    unsigned X86Cond;
8567    SDVTList VTs;
8568    switch (CondOpcode) {
8569    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8570    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8571    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8572    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8573    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8574    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8575    default: llvm_unreachable("unexpected overflowing operator");
8576    }
8577    if (CondOpcode == ISD::UMULO)
8578      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8579                          MVT::i32);
8580    else
8581      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8582
8583    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8584
8585    if (CondOpcode == ISD::UMULO)
8586      Cond = X86Op.getValue(2);
8587    else
8588      Cond = X86Op.getValue(1);
8589
8590    CC = DAG.getConstant(X86Cond, MVT::i8);
8591    addTest = false;
8592  }
8593
8594  if (addTest) {
8595    // Look pass the truncate.
8596    if (Cond.getOpcode() == ISD::TRUNCATE)
8597      Cond = Cond.getOperand(0);
8598
8599    // We know the result of AND is compared against zero. Try to match
8600    // it to BT.
8601    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8602      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8603      if (NewSetCC.getNode()) {
8604        CC = NewSetCC.getOperand(0);
8605        Cond = NewSetCC.getOperand(1);
8606        addTest = false;
8607      }
8608    }
8609  }
8610
8611  if (addTest) {
8612    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8613    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8614  }
8615
8616  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8617  // a <  b ?  0 : -1 -> RES = setcc_carry
8618  // a >= b ? -1 :  0 -> RES = setcc_carry
8619  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8620  if (Cond.getOpcode() == X86ISD::CMP) {
8621    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8622
8623    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8624        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8625      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8626                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8627      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8628        return DAG.getNOT(DL, Res, Res.getValueType());
8629      return Res;
8630    }
8631  }
8632
8633  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8634  // condition is true.
8635  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8636  SDValue Ops[] = { Op2, Op1, CC, Cond };
8637  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8638}
8639
8640// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8641// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8642// from the AND / OR.
8643static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8644  Opc = Op.getOpcode();
8645  if (Opc != ISD::OR && Opc != ISD::AND)
8646    return false;
8647  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8648          Op.getOperand(0).hasOneUse() &&
8649          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8650          Op.getOperand(1).hasOneUse());
8651}
8652
8653// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8654// 1 and that the SETCC node has a single use.
8655static bool isXor1OfSetCC(SDValue Op) {
8656  if (Op.getOpcode() != ISD::XOR)
8657    return false;
8658  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8659  if (N1C && N1C->getAPIntValue() == 1) {
8660    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8661      Op.getOperand(0).hasOneUse();
8662  }
8663  return false;
8664}
8665
8666SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8667  bool addTest = true;
8668  SDValue Chain = Op.getOperand(0);
8669  SDValue Cond  = Op.getOperand(1);
8670  SDValue Dest  = Op.getOperand(2);
8671  DebugLoc dl = Op.getDebugLoc();
8672  SDValue CC;
8673  bool Inverted = false;
8674
8675  if (Cond.getOpcode() == ISD::SETCC) {
8676    // Check for setcc([su]{add,sub,mul}o == 0).
8677    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8678        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8679        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8680        Cond.getOperand(0).getResNo() == 1 &&
8681        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8682         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8683         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8684         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8685         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8686         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8687      Inverted = true;
8688      Cond = Cond.getOperand(0);
8689    } else {
8690      SDValue NewCond = LowerSETCC(Cond, DAG);
8691      if (NewCond.getNode())
8692        Cond = NewCond;
8693    }
8694  }
8695#if 0
8696  // FIXME: LowerXALUO doesn't handle these!!
8697  else if (Cond.getOpcode() == X86ISD::ADD  ||
8698           Cond.getOpcode() == X86ISD::SUB  ||
8699           Cond.getOpcode() == X86ISD::SMUL ||
8700           Cond.getOpcode() == X86ISD::UMUL)
8701    Cond = LowerXALUO(Cond, DAG);
8702#endif
8703
8704  // Look pass (and (setcc_carry (cmp ...)), 1).
8705  if (Cond.getOpcode() == ISD::AND &&
8706      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8707    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8708    if (C && C->getAPIntValue() == 1)
8709      Cond = Cond.getOperand(0);
8710  }
8711
8712  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8713  // setting operand in place of the X86ISD::SETCC.
8714  unsigned CondOpcode = Cond.getOpcode();
8715  if (CondOpcode == X86ISD::SETCC ||
8716      CondOpcode == X86ISD::SETCC_CARRY) {
8717    CC = Cond.getOperand(0);
8718
8719    SDValue Cmp = Cond.getOperand(1);
8720    unsigned Opc = Cmp.getOpcode();
8721    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8722    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8723      Cond = Cmp;
8724      addTest = false;
8725    } else {
8726      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8727      default: break;
8728      case X86::COND_O:
8729      case X86::COND_B:
8730        // These can only come from an arithmetic instruction with overflow,
8731        // e.g. SADDO, UADDO.
8732        Cond = Cond.getNode()->getOperand(1);
8733        addTest = false;
8734        break;
8735      }
8736    }
8737  }
8738  CondOpcode = Cond.getOpcode();
8739  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8740      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8741      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8742       Cond.getOperand(0).getValueType() != MVT::i8)) {
8743    SDValue LHS = Cond.getOperand(0);
8744    SDValue RHS = Cond.getOperand(1);
8745    unsigned X86Opcode;
8746    unsigned X86Cond;
8747    SDVTList VTs;
8748    switch (CondOpcode) {
8749    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8750    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8751    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8752    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8753    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8754    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8755    default: llvm_unreachable("unexpected overflowing operator");
8756    }
8757    if (Inverted)
8758      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8759    if (CondOpcode == ISD::UMULO)
8760      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8761                          MVT::i32);
8762    else
8763      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8764
8765    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8766
8767    if (CondOpcode == ISD::UMULO)
8768      Cond = X86Op.getValue(2);
8769    else
8770      Cond = X86Op.getValue(1);
8771
8772    CC = DAG.getConstant(X86Cond, MVT::i8);
8773    addTest = false;
8774  } else {
8775    unsigned CondOpc;
8776    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8777      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8778      if (CondOpc == ISD::OR) {
8779        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8780        // two branches instead of an explicit OR instruction with a
8781        // separate test.
8782        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8783            isX86LogicalCmp(Cmp)) {
8784          CC = Cond.getOperand(0).getOperand(0);
8785          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8786                              Chain, Dest, CC, Cmp);
8787          CC = Cond.getOperand(1).getOperand(0);
8788          Cond = Cmp;
8789          addTest = false;
8790        }
8791      } else { // ISD::AND
8792        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8793        // two branches instead of an explicit AND instruction with a
8794        // separate test. However, we only do this if this block doesn't
8795        // have a fall-through edge, because this requires an explicit
8796        // jmp when the condition is false.
8797        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8798            isX86LogicalCmp(Cmp) &&
8799            Op.getNode()->hasOneUse()) {
8800          X86::CondCode CCode =
8801            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8802          CCode = X86::GetOppositeBranchCondition(CCode);
8803          CC = DAG.getConstant(CCode, MVT::i8);
8804          SDNode *User = *Op.getNode()->use_begin();
8805          // Look for an unconditional branch following this conditional branch.
8806          // We need this because we need to reverse the successors in order
8807          // to implement FCMP_OEQ.
8808          if (User->getOpcode() == ISD::BR) {
8809            SDValue FalseBB = User->getOperand(1);
8810            SDNode *NewBR =
8811              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8812            assert(NewBR == User);
8813            (void)NewBR;
8814            Dest = FalseBB;
8815
8816            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8817                                Chain, Dest, CC, Cmp);
8818            X86::CondCode CCode =
8819              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8820            CCode = X86::GetOppositeBranchCondition(CCode);
8821            CC = DAG.getConstant(CCode, MVT::i8);
8822            Cond = Cmp;
8823            addTest = false;
8824          }
8825        }
8826      }
8827    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8828      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8829      // It should be transformed during dag combiner except when the condition
8830      // is set by a arithmetics with overflow node.
8831      X86::CondCode CCode =
8832        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8833      CCode = X86::GetOppositeBranchCondition(CCode);
8834      CC = DAG.getConstant(CCode, MVT::i8);
8835      Cond = Cond.getOperand(0).getOperand(1);
8836      addTest = false;
8837    } else if (Cond.getOpcode() == ISD::SETCC &&
8838               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8839      // For FCMP_OEQ, we can emit
8840      // two branches instead of an explicit AND instruction with a
8841      // separate test. However, we only do this if this block doesn't
8842      // have a fall-through edge, because this requires an explicit
8843      // jmp when the condition is false.
8844      if (Op.getNode()->hasOneUse()) {
8845        SDNode *User = *Op.getNode()->use_begin();
8846        // Look for an unconditional branch following this conditional branch.
8847        // We need this because we need to reverse the successors in order
8848        // to implement FCMP_OEQ.
8849        if (User->getOpcode() == ISD::BR) {
8850          SDValue FalseBB = User->getOperand(1);
8851          SDNode *NewBR =
8852            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8853          assert(NewBR == User);
8854          (void)NewBR;
8855          Dest = FalseBB;
8856
8857          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8858                                    Cond.getOperand(0), Cond.getOperand(1));
8859          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8860          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8861                              Chain, Dest, CC, Cmp);
8862          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8863          Cond = Cmp;
8864          addTest = false;
8865        }
8866      }
8867    } else if (Cond.getOpcode() == ISD::SETCC &&
8868               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8869      // For FCMP_UNE, we can emit
8870      // two branches instead of an explicit AND instruction with a
8871      // separate test. However, we only do this if this block doesn't
8872      // have a fall-through edge, because this requires an explicit
8873      // jmp when the condition is false.
8874      if (Op.getNode()->hasOneUse()) {
8875        SDNode *User = *Op.getNode()->use_begin();
8876        // Look for an unconditional branch following this conditional branch.
8877        // We need this because we need to reverse the successors in order
8878        // to implement FCMP_UNE.
8879        if (User->getOpcode() == ISD::BR) {
8880          SDValue FalseBB = User->getOperand(1);
8881          SDNode *NewBR =
8882            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8883          assert(NewBR == User);
8884          (void)NewBR;
8885
8886          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8887                                    Cond.getOperand(0), Cond.getOperand(1));
8888          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8889          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8890                              Chain, Dest, CC, Cmp);
8891          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8892          Cond = Cmp;
8893          addTest = false;
8894          Dest = FalseBB;
8895        }
8896      }
8897    }
8898  }
8899
8900  if (addTest) {
8901    // Look pass the truncate.
8902    if (Cond.getOpcode() == ISD::TRUNCATE)
8903      Cond = Cond.getOperand(0);
8904
8905    // We know the result of AND is compared against zero. Try to match
8906    // it to BT.
8907    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8908      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8909      if (NewSetCC.getNode()) {
8910        CC = NewSetCC.getOperand(0);
8911        Cond = NewSetCC.getOperand(1);
8912        addTest = false;
8913      }
8914    }
8915  }
8916
8917  if (addTest) {
8918    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8919    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8920  }
8921  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8922                     Chain, Dest, CC, Cond);
8923}
8924
8925
8926// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8927// Calls to _alloca is needed to probe the stack when allocating more than 4k
8928// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8929// that the guard pages used by the OS virtual memory manager are allocated in
8930// correct sequence.
8931SDValue
8932X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8933                                           SelectionDAG &DAG) const {
8934  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8935          getTargetMachine().Options.EnableSegmentedStacks) &&
8936         "This should be used only on Windows targets or when segmented stacks "
8937         "are being used");
8938  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8939  DebugLoc dl = Op.getDebugLoc();
8940
8941  // Get the inputs.
8942  SDValue Chain = Op.getOperand(0);
8943  SDValue Size  = Op.getOperand(1);
8944  // FIXME: Ensure alignment here
8945
8946  bool Is64Bit = Subtarget->is64Bit();
8947  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8948
8949  if (getTargetMachine().Options.EnableSegmentedStacks) {
8950    MachineFunction &MF = DAG.getMachineFunction();
8951    MachineRegisterInfo &MRI = MF.getRegInfo();
8952
8953    if (Is64Bit) {
8954      // The 64 bit implementation of segmented stacks needs to clobber both r10
8955      // r11. This makes it impossible to use it along with nested parameters.
8956      const Function *F = MF.getFunction();
8957
8958      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8959           I != E; I++)
8960        if (I->hasNestAttr())
8961          report_fatal_error("Cannot use segmented stacks with functions that "
8962                             "have nested arguments.");
8963    }
8964
8965    const TargetRegisterClass *AddrRegClass =
8966      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8967    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8968    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8969    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8970                                DAG.getRegister(Vreg, SPTy));
8971    SDValue Ops1[2] = { Value, Chain };
8972    return DAG.getMergeValues(Ops1, 2, dl);
8973  } else {
8974    SDValue Flag;
8975    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8976
8977    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8978    Flag = Chain.getValue(1);
8979    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8980
8981    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8982    Flag = Chain.getValue(1);
8983
8984    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8985
8986    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8987    return DAG.getMergeValues(Ops1, 2, dl);
8988  }
8989}
8990
8991SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8992  MachineFunction &MF = DAG.getMachineFunction();
8993  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8994
8995  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8996  DebugLoc DL = Op.getDebugLoc();
8997
8998  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8999    // vastart just stores the address of the VarArgsFrameIndex slot into the
9000    // memory location argument.
9001    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9002                                   getPointerTy());
9003    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9004                        MachinePointerInfo(SV), false, false, 0);
9005  }
9006
9007  // __va_list_tag:
9008  //   gp_offset         (0 - 6 * 8)
9009  //   fp_offset         (48 - 48 + 8 * 16)
9010  //   overflow_arg_area (point to parameters coming in memory).
9011  //   reg_save_area
9012  SmallVector<SDValue, 8> MemOps;
9013  SDValue FIN = Op.getOperand(1);
9014  // Store gp_offset
9015  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9016                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9017                                               MVT::i32),
9018                               FIN, MachinePointerInfo(SV), false, false, 0);
9019  MemOps.push_back(Store);
9020
9021  // Store fp_offset
9022  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9023                    FIN, DAG.getIntPtrConstant(4));
9024  Store = DAG.getStore(Op.getOperand(0), DL,
9025                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9026                                       MVT::i32),
9027                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9028  MemOps.push_back(Store);
9029
9030  // Store ptr to overflow_arg_area
9031  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9032                    FIN, DAG.getIntPtrConstant(4));
9033  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9034                                    getPointerTy());
9035  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9036                       MachinePointerInfo(SV, 8),
9037                       false, false, 0);
9038  MemOps.push_back(Store);
9039
9040  // Store ptr to reg_save_area.
9041  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9042                    FIN, DAG.getIntPtrConstant(8));
9043  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9044                                    getPointerTy());
9045  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9046                       MachinePointerInfo(SV, 16), false, false, 0);
9047  MemOps.push_back(Store);
9048  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9049                     &MemOps[0], MemOps.size());
9050}
9051
9052SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9053  assert(Subtarget->is64Bit() &&
9054         "LowerVAARG only handles 64-bit va_arg!");
9055  assert((Subtarget->isTargetLinux() ||
9056          Subtarget->isTargetDarwin()) &&
9057          "Unhandled target in LowerVAARG");
9058  assert(Op.getNode()->getNumOperands() == 4);
9059  SDValue Chain = Op.getOperand(0);
9060  SDValue SrcPtr = Op.getOperand(1);
9061  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9062  unsigned Align = Op.getConstantOperandVal(3);
9063  DebugLoc dl = Op.getDebugLoc();
9064
9065  EVT ArgVT = Op.getNode()->getValueType(0);
9066  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9067  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9068  uint8_t ArgMode;
9069
9070  // Decide which area this value should be read from.
9071  // TODO: Implement the AMD64 ABI in its entirety. This simple
9072  // selection mechanism works only for the basic types.
9073  if (ArgVT == MVT::f80) {
9074    llvm_unreachable("va_arg for f80 not yet implemented");
9075  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9076    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9077  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9078    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9079  } else {
9080    llvm_unreachable("Unhandled argument type in LowerVAARG");
9081  }
9082
9083  if (ArgMode == 2) {
9084    // Sanity Check: Make sure using fp_offset makes sense.
9085    assert(!getTargetMachine().Options.UseSoftFloat &&
9086           !(DAG.getMachineFunction()
9087                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9088           Subtarget->hasSSE1());
9089  }
9090
9091  // Insert VAARG_64 node into the DAG
9092  // VAARG_64 returns two values: Variable Argument Address, Chain
9093  SmallVector<SDValue, 11> InstOps;
9094  InstOps.push_back(Chain);
9095  InstOps.push_back(SrcPtr);
9096  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9097  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9098  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9099  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9100  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9101                                          VTs, &InstOps[0], InstOps.size(),
9102                                          MVT::i64,
9103                                          MachinePointerInfo(SV),
9104                                          /*Align=*/0,
9105                                          /*Volatile=*/false,
9106                                          /*ReadMem=*/true,
9107                                          /*WriteMem=*/true);
9108  Chain = VAARG.getValue(1);
9109
9110  // Load the next argument and return it
9111  return DAG.getLoad(ArgVT, dl,
9112                     Chain,
9113                     VAARG,
9114                     MachinePointerInfo(),
9115                     false, false, false, 0);
9116}
9117
9118SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9119  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9120  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9121  SDValue Chain = Op.getOperand(0);
9122  SDValue DstPtr = Op.getOperand(1);
9123  SDValue SrcPtr = Op.getOperand(2);
9124  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9125  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9126  DebugLoc DL = Op.getDebugLoc();
9127
9128  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9129                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9130                       false,
9131                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9132}
9133
9134// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9135// may or may not be a constant. Takes immediate version of shift as input.
9136static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9137                                   SDValue SrcOp, SDValue ShAmt,
9138                                   SelectionDAG &DAG) {
9139  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9140
9141  if (isa<ConstantSDNode>(ShAmt)) {
9142    switch (Opc) {
9143      default: llvm_unreachable("Unknown target vector shift node");
9144      case X86ISD::VSHLI:
9145      case X86ISD::VSRLI:
9146      case X86ISD::VSRAI:
9147        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9148    }
9149  }
9150
9151  // Change opcode to non-immediate version
9152  switch (Opc) {
9153    default: llvm_unreachable("Unknown target vector shift node");
9154    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9155    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9156    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9157  }
9158
9159  // Need to build a vector containing shift amount
9160  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9161  SDValue ShOps[4];
9162  ShOps[0] = ShAmt;
9163  ShOps[1] = DAG.getConstant(0, MVT::i32);
9164  ShOps[2] = DAG.getUNDEF(MVT::i32);
9165  ShOps[3] = DAG.getUNDEF(MVT::i32);
9166  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9167  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9168  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9169}
9170
9171SDValue
9172X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9173  DebugLoc dl = Op.getDebugLoc();
9174  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9175  switch (IntNo) {
9176  default: return SDValue();    // Don't custom lower most intrinsics.
9177  // Comparison intrinsics.
9178  case Intrinsic::x86_sse_comieq_ss:
9179  case Intrinsic::x86_sse_comilt_ss:
9180  case Intrinsic::x86_sse_comile_ss:
9181  case Intrinsic::x86_sse_comigt_ss:
9182  case Intrinsic::x86_sse_comige_ss:
9183  case Intrinsic::x86_sse_comineq_ss:
9184  case Intrinsic::x86_sse_ucomieq_ss:
9185  case Intrinsic::x86_sse_ucomilt_ss:
9186  case Intrinsic::x86_sse_ucomile_ss:
9187  case Intrinsic::x86_sse_ucomigt_ss:
9188  case Intrinsic::x86_sse_ucomige_ss:
9189  case Intrinsic::x86_sse_ucomineq_ss:
9190  case Intrinsic::x86_sse2_comieq_sd:
9191  case Intrinsic::x86_sse2_comilt_sd:
9192  case Intrinsic::x86_sse2_comile_sd:
9193  case Intrinsic::x86_sse2_comigt_sd:
9194  case Intrinsic::x86_sse2_comige_sd:
9195  case Intrinsic::x86_sse2_comineq_sd:
9196  case Intrinsic::x86_sse2_ucomieq_sd:
9197  case Intrinsic::x86_sse2_ucomilt_sd:
9198  case Intrinsic::x86_sse2_ucomile_sd:
9199  case Intrinsic::x86_sse2_ucomigt_sd:
9200  case Intrinsic::x86_sse2_ucomige_sd:
9201  case Intrinsic::x86_sse2_ucomineq_sd: {
9202    unsigned Opc = 0;
9203    ISD::CondCode CC = ISD::SETCC_INVALID;
9204    switch (IntNo) {
9205    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9206    case Intrinsic::x86_sse_comieq_ss:
9207    case Intrinsic::x86_sse2_comieq_sd:
9208      Opc = X86ISD::COMI;
9209      CC = ISD::SETEQ;
9210      break;
9211    case Intrinsic::x86_sse_comilt_ss:
9212    case Intrinsic::x86_sse2_comilt_sd:
9213      Opc = X86ISD::COMI;
9214      CC = ISD::SETLT;
9215      break;
9216    case Intrinsic::x86_sse_comile_ss:
9217    case Intrinsic::x86_sse2_comile_sd:
9218      Opc = X86ISD::COMI;
9219      CC = ISD::SETLE;
9220      break;
9221    case Intrinsic::x86_sse_comigt_ss:
9222    case Intrinsic::x86_sse2_comigt_sd:
9223      Opc = X86ISD::COMI;
9224      CC = ISD::SETGT;
9225      break;
9226    case Intrinsic::x86_sse_comige_ss:
9227    case Intrinsic::x86_sse2_comige_sd:
9228      Opc = X86ISD::COMI;
9229      CC = ISD::SETGE;
9230      break;
9231    case Intrinsic::x86_sse_comineq_ss:
9232    case Intrinsic::x86_sse2_comineq_sd:
9233      Opc = X86ISD::COMI;
9234      CC = ISD::SETNE;
9235      break;
9236    case Intrinsic::x86_sse_ucomieq_ss:
9237    case Intrinsic::x86_sse2_ucomieq_sd:
9238      Opc = X86ISD::UCOMI;
9239      CC = ISD::SETEQ;
9240      break;
9241    case Intrinsic::x86_sse_ucomilt_ss:
9242    case Intrinsic::x86_sse2_ucomilt_sd:
9243      Opc = X86ISD::UCOMI;
9244      CC = ISD::SETLT;
9245      break;
9246    case Intrinsic::x86_sse_ucomile_ss:
9247    case Intrinsic::x86_sse2_ucomile_sd:
9248      Opc = X86ISD::UCOMI;
9249      CC = ISD::SETLE;
9250      break;
9251    case Intrinsic::x86_sse_ucomigt_ss:
9252    case Intrinsic::x86_sse2_ucomigt_sd:
9253      Opc = X86ISD::UCOMI;
9254      CC = ISD::SETGT;
9255      break;
9256    case Intrinsic::x86_sse_ucomige_ss:
9257    case Intrinsic::x86_sse2_ucomige_sd:
9258      Opc = X86ISD::UCOMI;
9259      CC = ISD::SETGE;
9260      break;
9261    case Intrinsic::x86_sse_ucomineq_ss:
9262    case Intrinsic::x86_sse2_ucomineq_sd:
9263      Opc = X86ISD::UCOMI;
9264      CC = ISD::SETNE;
9265      break;
9266    }
9267
9268    SDValue LHS = Op.getOperand(1);
9269    SDValue RHS = Op.getOperand(2);
9270    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9271    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9272    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9273    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9274                                DAG.getConstant(X86CC, MVT::i8), Cond);
9275    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9276  }
9277  // XOP comparison intrinsics
9278  case Intrinsic::x86_xop_vpcomltb:
9279  case Intrinsic::x86_xop_vpcomltw:
9280  case Intrinsic::x86_xop_vpcomltd:
9281  case Intrinsic::x86_xop_vpcomltq:
9282  case Intrinsic::x86_xop_vpcomltub:
9283  case Intrinsic::x86_xop_vpcomltuw:
9284  case Intrinsic::x86_xop_vpcomltud:
9285  case Intrinsic::x86_xop_vpcomltuq:
9286  case Intrinsic::x86_xop_vpcomleb:
9287  case Intrinsic::x86_xop_vpcomlew:
9288  case Intrinsic::x86_xop_vpcomled:
9289  case Intrinsic::x86_xop_vpcomleq:
9290  case Intrinsic::x86_xop_vpcomleub:
9291  case Intrinsic::x86_xop_vpcomleuw:
9292  case Intrinsic::x86_xop_vpcomleud:
9293  case Intrinsic::x86_xop_vpcomleuq:
9294  case Intrinsic::x86_xop_vpcomgtb:
9295  case Intrinsic::x86_xop_vpcomgtw:
9296  case Intrinsic::x86_xop_vpcomgtd:
9297  case Intrinsic::x86_xop_vpcomgtq:
9298  case Intrinsic::x86_xop_vpcomgtub:
9299  case Intrinsic::x86_xop_vpcomgtuw:
9300  case Intrinsic::x86_xop_vpcomgtud:
9301  case Intrinsic::x86_xop_vpcomgtuq:
9302  case Intrinsic::x86_xop_vpcomgeb:
9303  case Intrinsic::x86_xop_vpcomgew:
9304  case Intrinsic::x86_xop_vpcomged:
9305  case Intrinsic::x86_xop_vpcomgeq:
9306  case Intrinsic::x86_xop_vpcomgeub:
9307  case Intrinsic::x86_xop_vpcomgeuw:
9308  case Intrinsic::x86_xop_vpcomgeud:
9309  case Intrinsic::x86_xop_vpcomgeuq:
9310  case Intrinsic::x86_xop_vpcomeqb:
9311  case Intrinsic::x86_xop_vpcomeqw:
9312  case Intrinsic::x86_xop_vpcomeqd:
9313  case Intrinsic::x86_xop_vpcomeqq:
9314  case Intrinsic::x86_xop_vpcomequb:
9315  case Intrinsic::x86_xop_vpcomequw:
9316  case Intrinsic::x86_xop_vpcomequd:
9317  case Intrinsic::x86_xop_vpcomequq:
9318  case Intrinsic::x86_xop_vpcomneb:
9319  case Intrinsic::x86_xop_vpcomnew:
9320  case Intrinsic::x86_xop_vpcomned:
9321  case Intrinsic::x86_xop_vpcomneq:
9322  case Intrinsic::x86_xop_vpcomneub:
9323  case Intrinsic::x86_xop_vpcomneuw:
9324  case Intrinsic::x86_xop_vpcomneud:
9325  case Intrinsic::x86_xop_vpcomneuq:
9326  case Intrinsic::x86_xop_vpcomfalseb:
9327  case Intrinsic::x86_xop_vpcomfalsew:
9328  case Intrinsic::x86_xop_vpcomfalsed:
9329  case Intrinsic::x86_xop_vpcomfalseq:
9330  case Intrinsic::x86_xop_vpcomfalseub:
9331  case Intrinsic::x86_xop_vpcomfalseuw:
9332  case Intrinsic::x86_xop_vpcomfalseud:
9333  case Intrinsic::x86_xop_vpcomfalseuq:
9334  case Intrinsic::x86_xop_vpcomtrueb:
9335  case Intrinsic::x86_xop_vpcomtruew:
9336  case Intrinsic::x86_xop_vpcomtrued:
9337  case Intrinsic::x86_xop_vpcomtrueq:
9338  case Intrinsic::x86_xop_vpcomtrueub:
9339  case Intrinsic::x86_xop_vpcomtrueuw:
9340  case Intrinsic::x86_xop_vpcomtrueud:
9341  case Intrinsic::x86_xop_vpcomtrueuq: {
9342    unsigned CC = 0;
9343    unsigned Opc = 0;
9344
9345    switch (IntNo) {
9346    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9347    case Intrinsic::x86_xop_vpcomltb:
9348    case Intrinsic::x86_xop_vpcomltw:
9349    case Intrinsic::x86_xop_vpcomltd:
9350    case Intrinsic::x86_xop_vpcomltq:
9351      CC = 0;
9352      Opc = X86ISD::VPCOM;
9353      break;
9354    case Intrinsic::x86_xop_vpcomltub:
9355    case Intrinsic::x86_xop_vpcomltuw:
9356    case Intrinsic::x86_xop_vpcomltud:
9357    case Intrinsic::x86_xop_vpcomltuq:
9358      CC = 0;
9359      Opc = X86ISD::VPCOMU;
9360      break;
9361    case Intrinsic::x86_xop_vpcomleb:
9362    case Intrinsic::x86_xop_vpcomlew:
9363    case Intrinsic::x86_xop_vpcomled:
9364    case Intrinsic::x86_xop_vpcomleq:
9365      CC = 1;
9366      Opc = X86ISD::VPCOM;
9367      break;
9368    case Intrinsic::x86_xop_vpcomleub:
9369    case Intrinsic::x86_xop_vpcomleuw:
9370    case Intrinsic::x86_xop_vpcomleud:
9371    case Intrinsic::x86_xop_vpcomleuq:
9372      CC = 1;
9373      Opc = X86ISD::VPCOMU;
9374      break;
9375    case Intrinsic::x86_xop_vpcomgtb:
9376    case Intrinsic::x86_xop_vpcomgtw:
9377    case Intrinsic::x86_xop_vpcomgtd:
9378    case Intrinsic::x86_xop_vpcomgtq:
9379      CC = 2;
9380      Opc = X86ISD::VPCOM;
9381      break;
9382    case Intrinsic::x86_xop_vpcomgtub:
9383    case Intrinsic::x86_xop_vpcomgtuw:
9384    case Intrinsic::x86_xop_vpcomgtud:
9385    case Intrinsic::x86_xop_vpcomgtuq:
9386      CC = 2;
9387      Opc = X86ISD::VPCOMU;
9388      break;
9389    case Intrinsic::x86_xop_vpcomgeb:
9390    case Intrinsic::x86_xop_vpcomgew:
9391    case Intrinsic::x86_xop_vpcomged:
9392    case Intrinsic::x86_xop_vpcomgeq:
9393      CC = 3;
9394      Opc = X86ISD::VPCOM;
9395      break;
9396    case Intrinsic::x86_xop_vpcomgeub:
9397    case Intrinsic::x86_xop_vpcomgeuw:
9398    case Intrinsic::x86_xop_vpcomgeud:
9399    case Intrinsic::x86_xop_vpcomgeuq:
9400      CC = 3;
9401      Opc = X86ISD::VPCOMU;
9402      break;
9403    case Intrinsic::x86_xop_vpcomeqb:
9404    case Intrinsic::x86_xop_vpcomeqw:
9405    case Intrinsic::x86_xop_vpcomeqd:
9406    case Intrinsic::x86_xop_vpcomeqq:
9407      CC = 4;
9408      Opc = X86ISD::VPCOM;
9409      break;
9410    case Intrinsic::x86_xop_vpcomequb:
9411    case Intrinsic::x86_xop_vpcomequw:
9412    case Intrinsic::x86_xop_vpcomequd:
9413    case Intrinsic::x86_xop_vpcomequq:
9414      CC = 4;
9415      Opc = X86ISD::VPCOMU;
9416      break;
9417    case Intrinsic::x86_xop_vpcomneb:
9418    case Intrinsic::x86_xop_vpcomnew:
9419    case Intrinsic::x86_xop_vpcomned:
9420    case Intrinsic::x86_xop_vpcomneq:
9421      CC = 5;
9422      Opc = X86ISD::VPCOM;
9423      break;
9424    case Intrinsic::x86_xop_vpcomneub:
9425    case Intrinsic::x86_xop_vpcomneuw:
9426    case Intrinsic::x86_xop_vpcomneud:
9427    case Intrinsic::x86_xop_vpcomneuq:
9428      CC = 5;
9429      Opc = X86ISD::VPCOMU;
9430      break;
9431    case Intrinsic::x86_xop_vpcomfalseb:
9432    case Intrinsic::x86_xop_vpcomfalsew:
9433    case Intrinsic::x86_xop_vpcomfalsed:
9434    case Intrinsic::x86_xop_vpcomfalseq:
9435      CC = 6;
9436      Opc = X86ISD::VPCOM;
9437      break;
9438    case Intrinsic::x86_xop_vpcomfalseub:
9439    case Intrinsic::x86_xop_vpcomfalseuw:
9440    case Intrinsic::x86_xop_vpcomfalseud:
9441    case Intrinsic::x86_xop_vpcomfalseuq:
9442      CC = 6;
9443      Opc = X86ISD::VPCOMU;
9444      break;
9445    case Intrinsic::x86_xop_vpcomtrueb:
9446    case Intrinsic::x86_xop_vpcomtruew:
9447    case Intrinsic::x86_xop_vpcomtrued:
9448    case Intrinsic::x86_xop_vpcomtrueq:
9449      CC = 7;
9450      Opc = X86ISD::VPCOM;
9451      break;
9452    case Intrinsic::x86_xop_vpcomtrueub:
9453    case Intrinsic::x86_xop_vpcomtrueuw:
9454    case Intrinsic::x86_xop_vpcomtrueud:
9455    case Intrinsic::x86_xop_vpcomtrueuq:
9456      CC = 7;
9457      Opc = X86ISD::VPCOMU;
9458      break;
9459    }
9460
9461    SDValue LHS = Op.getOperand(1);
9462    SDValue RHS = Op.getOperand(2);
9463    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9464                       DAG.getConstant(CC, MVT::i8));
9465  }
9466
9467  // Arithmetic intrinsics.
9468  case Intrinsic::x86_sse2_pmulu_dq:
9469  case Intrinsic::x86_avx2_pmulu_dq:
9470    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9471                       Op.getOperand(1), Op.getOperand(2));
9472  case Intrinsic::x86_sse3_hadd_ps:
9473  case Intrinsic::x86_sse3_hadd_pd:
9474  case Intrinsic::x86_avx_hadd_ps_256:
9475  case Intrinsic::x86_avx_hadd_pd_256:
9476    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9477                       Op.getOperand(1), Op.getOperand(2));
9478  case Intrinsic::x86_sse3_hsub_ps:
9479  case Intrinsic::x86_sse3_hsub_pd:
9480  case Intrinsic::x86_avx_hsub_ps_256:
9481  case Intrinsic::x86_avx_hsub_pd_256:
9482    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9483                       Op.getOperand(1), Op.getOperand(2));
9484  case Intrinsic::x86_ssse3_phadd_w_128:
9485  case Intrinsic::x86_ssse3_phadd_d_128:
9486  case Intrinsic::x86_avx2_phadd_w:
9487  case Intrinsic::x86_avx2_phadd_d:
9488    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9489                       Op.getOperand(1), Op.getOperand(2));
9490  case Intrinsic::x86_ssse3_phsub_w_128:
9491  case Intrinsic::x86_ssse3_phsub_d_128:
9492  case Intrinsic::x86_avx2_phsub_w:
9493  case Intrinsic::x86_avx2_phsub_d:
9494    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9495                       Op.getOperand(1), Op.getOperand(2));
9496  case Intrinsic::x86_avx2_psllv_d:
9497  case Intrinsic::x86_avx2_psllv_q:
9498  case Intrinsic::x86_avx2_psllv_d_256:
9499  case Intrinsic::x86_avx2_psllv_q_256:
9500    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9501                      Op.getOperand(1), Op.getOperand(2));
9502  case Intrinsic::x86_avx2_psrlv_d:
9503  case Intrinsic::x86_avx2_psrlv_q:
9504  case Intrinsic::x86_avx2_psrlv_d_256:
9505  case Intrinsic::x86_avx2_psrlv_q_256:
9506    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9507                      Op.getOperand(1), Op.getOperand(2));
9508  case Intrinsic::x86_avx2_psrav_d:
9509  case Intrinsic::x86_avx2_psrav_d_256:
9510    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9511                      Op.getOperand(1), Op.getOperand(2));
9512  case Intrinsic::x86_ssse3_pshuf_b_128:
9513  case Intrinsic::x86_avx2_pshuf_b:
9514    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9515                       Op.getOperand(1), Op.getOperand(2));
9516  case Intrinsic::x86_ssse3_psign_b_128:
9517  case Intrinsic::x86_ssse3_psign_w_128:
9518  case Intrinsic::x86_ssse3_psign_d_128:
9519  case Intrinsic::x86_avx2_psign_b:
9520  case Intrinsic::x86_avx2_psign_w:
9521  case Intrinsic::x86_avx2_psign_d:
9522    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9523                       Op.getOperand(1), Op.getOperand(2));
9524  case Intrinsic::x86_sse41_insertps:
9525    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9526                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9527  case Intrinsic::x86_avx_vperm2f128_ps_256:
9528  case Intrinsic::x86_avx_vperm2f128_pd_256:
9529  case Intrinsic::x86_avx_vperm2f128_si_256:
9530  case Intrinsic::x86_avx2_vperm2i128:
9531    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9532                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9533  case Intrinsic::x86_avx_vpermil_ps:
9534  case Intrinsic::x86_avx_vpermil_pd:
9535  case Intrinsic::x86_avx_vpermil_ps_256:
9536  case Intrinsic::x86_avx_vpermil_pd_256:
9537    return DAG.getNode(X86ISD::VPERMILP, dl, Op.getValueType(),
9538                       Op.getOperand(1), Op.getOperand(2));
9539
9540  // ptest and testp intrinsics. The intrinsic these come from are designed to
9541  // return an integer value, not just an instruction so lower it to the ptest
9542  // or testp pattern and a setcc for the result.
9543  case Intrinsic::x86_sse41_ptestz:
9544  case Intrinsic::x86_sse41_ptestc:
9545  case Intrinsic::x86_sse41_ptestnzc:
9546  case Intrinsic::x86_avx_ptestz_256:
9547  case Intrinsic::x86_avx_ptestc_256:
9548  case Intrinsic::x86_avx_ptestnzc_256:
9549  case Intrinsic::x86_avx_vtestz_ps:
9550  case Intrinsic::x86_avx_vtestc_ps:
9551  case Intrinsic::x86_avx_vtestnzc_ps:
9552  case Intrinsic::x86_avx_vtestz_pd:
9553  case Intrinsic::x86_avx_vtestc_pd:
9554  case Intrinsic::x86_avx_vtestnzc_pd:
9555  case Intrinsic::x86_avx_vtestz_ps_256:
9556  case Intrinsic::x86_avx_vtestc_ps_256:
9557  case Intrinsic::x86_avx_vtestnzc_ps_256:
9558  case Intrinsic::x86_avx_vtestz_pd_256:
9559  case Intrinsic::x86_avx_vtestc_pd_256:
9560  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9561    bool IsTestPacked = false;
9562    unsigned X86CC = 0;
9563    switch (IntNo) {
9564    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9565    case Intrinsic::x86_avx_vtestz_ps:
9566    case Intrinsic::x86_avx_vtestz_pd:
9567    case Intrinsic::x86_avx_vtestz_ps_256:
9568    case Intrinsic::x86_avx_vtestz_pd_256:
9569      IsTestPacked = true; // Fallthrough
9570    case Intrinsic::x86_sse41_ptestz:
9571    case Intrinsic::x86_avx_ptestz_256:
9572      // ZF = 1
9573      X86CC = X86::COND_E;
9574      break;
9575    case Intrinsic::x86_avx_vtestc_ps:
9576    case Intrinsic::x86_avx_vtestc_pd:
9577    case Intrinsic::x86_avx_vtestc_ps_256:
9578    case Intrinsic::x86_avx_vtestc_pd_256:
9579      IsTestPacked = true; // Fallthrough
9580    case Intrinsic::x86_sse41_ptestc:
9581    case Intrinsic::x86_avx_ptestc_256:
9582      // CF = 1
9583      X86CC = X86::COND_B;
9584      break;
9585    case Intrinsic::x86_avx_vtestnzc_ps:
9586    case Intrinsic::x86_avx_vtestnzc_pd:
9587    case Intrinsic::x86_avx_vtestnzc_ps_256:
9588    case Intrinsic::x86_avx_vtestnzc_pd_256:
9589      IsTestPacked = true; // Fallthrough
9590    case Intrinsic::x86_sse41_ptestnzc:
9591    case Intrinsic::x86_avx_ptestnzc_256:
9592      // ZF and CF = 0
9593      X86CC = X86::COND_A;
9594      break;
9595    }
9596
9597    SDValue LHS = Op.getOperand(1);
9598    SDValue RHS = Op.getOperand(2);
9599    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9600    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9601    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9602    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9603    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9604  }
9605
9606  // SSE/AVX shift intrinsics
9607  case Intrinsic::x86_sse2_psll_w:
9608  case Intrinsic::x86_sse2_psll_d:
9609  case Intrinsic::x86_sse2_psll_q:
9610  case Intrinsic::x86_avx2_psll_w:
9611  case Intrinsic::x86_avx2_psll_d:
9612  case Intrinsic::x86_avx2_psll_q:
9613    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9614                       Op.getOperand(1), Op.getOperand(2));
9615  case Intrinsic::x86_sse2_psrl_w:
9616  case Intrinsic::x86_sse2_psrl_d:
9617  case Intrinsic::x86_sse2_psrl_q:
9618  case Intrinsic::x86_avx2_psrl_w:
9619  case Intrinsic::x86_avx2_psrl_d:
9620  case Intrinsic::x86_avx2_psrl_q:
9621    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9622                       Op.getOperand(1), Op.getOperand(2));
9623  case Intrinsic::x86_sse2_psra_w:
9624  case Intrinsic::x86_sse2_psra_d:
9625  case Intrinsic::x86_avx2_psra_w:
9626  case Intrinsic::x86_avx2_psra_d:
9627    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9628                       Op.getOperand(1), Op.getOperand(2));
9629  case Intrinsic::x86_sse2_pslli_w:
9630  case Intrinsic::x86_sse2_pslli_d:
9631  case Intrinsic::x86_sse2_pslli_q:
9632  case Intrinsic::x86_avx2_pslli_w:
9633  case Intrinsic::x86_avx2_pslli_d:
9634  case Intrinsic::x86_avx2_pslli_q:
9635    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9636                               Op.getOperand(1), Op.getOperand(2), DAG);
9637  case Intrinsic::x86_sse2_psrli_w:
9638  case Intrinsic::x86_sse2_psrli_d:
9639  case Intrinsic::x86_sse2_psrli_q:
9640  case Intrinsic::x86_avx2_psrli_w:
9641  case Intrinsic::x86_avx2_psrli_d:
9642  case Intrinsic::x86_avx2_psrli_q:
9643    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9644                               Op.getOperand(1), Op.getOperand(2), DAG);
9645  case Intrinsic::x86_sse2_psrai_w:
9646  case Intrinsic::x86_sse2_psrai_d:
9647  case Intrinsic::x86_avx2_psrai_w:
9648  case Intrinsic::x86_avx2_psrai_d:
9649    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9650                               Op.getOperand(1), Op.getOperand(2), DAG);
9651  // Fix vector shift instructions where the last operand is a non-immediate
9652  // i32 value.
9653  case Intrinsic::x86_mmx_pslli_w:
9654  case Intrinsic::x86_mmx_pslli_d:
9655  case Intrinsic::x86_mmx_pslli_q:
9656  case Intrinsic::x86_mmx_psrli_w:
9657  case Intrinsic::x86_mmx_psrli_d:
9658  case Intrinsic::x86_mmx_psrli_q:
9659  case Intrinsic::x86_mmx_psrai_w:
9660  case Intrinsic::x86_mmx_psrai_d: {
9661    SDValue ShAmt = Op.getOperand(2);
9662    if (isa<ConstantSDNode>(ShAmt))
9663      return SDValue();
9664
9665    unsigned NewIntNo = 0;
9666    switch (IntNo) {
9667    case Intrinsic::x86_mmx_pslli_w:
9668      NewIntNo = Intrinsic::x86_mmx_psll_w;
9669      break;
9670    case Intrinsic::x86_mmx_pslli_d:
9671      NewIntNo = Intrinsic::x86_mmx_psll_d;
9672      break;
9673    case Intrinsic::x86_mmx_pslli_q:
9674      NewIntNo = Intrinsic::x86_mmx_psll_q;
9675      break;
9676    case Intrinsic::x86_mmx_psrli_w:
9677      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9678      break;
9679    case Intrinsic::x86_mmx_psrli_d:
9680      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9681      break;
9682    case Intrinsic::x86_mmx_psrli_q:
9683      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9684      break;
9685    case Intrinsic::x86_mmx_psrai_w:
9686      NewIntNo = Intrinsic::x86_mmx_psra_w;
9687      break;
9688    case Intrinsic::x86_mmx_psrai_d:
9689      NewIntNo = Intrinsic::x86_mmx_psra_d;
9690      break;
9691    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9692    }
9693
9694    // The vector shift intrinsics with scalars uses 32b shift amounts but
9695    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9696    // to be zero.
9697    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9698                         DAG.getConstant(0, MVT::i32));
9699// FIXME this must be lowered to get rid of the invalid type.
9700
9701    EVT VT = Op.getValueType();
9702    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9703    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9704                       DAG.getConstant(NewIntNo, MVT::i32),
9705                       Op.getOperand(1), ShAmt);
9706  }
9707  }
9708}
9709
9710SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9711                                           SelectionDAG &DAG) const {
9712  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9713  MFI->setReturnAddressIsTaken(true);
9714
9715  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9716  DebugLoc dl = Op.getDebugLoc();
9717
9718  if (Depth > 0) {
9719    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9720    SDValue Offset =
9721      DAG.getConstant(TD->getPointerSize(),
9722                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9723    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9724                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9725                                   FrameAddr, Offset),
9726                       MachinePointerInfo(), false, false, false, 0);
9727  }
9728
9729  // Just load the return address.
9730  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9731  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9732                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9733}
9734
9735SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9736  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9737  MFI->setFrameAddressIsTaken(true);
9738
9739  EVT VT = Op.getValueType();
9740  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9741  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9742  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9743  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9744  while (Depth--)
9745    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9746                            MachinePointerInfo(),
9747                            false, false, false, 0);
9748  return FrameAddr;
9749}
9750
9751SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9752                                                     SelectionDAG &DAG) const {
9753  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9754}
9755
9756SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9757  MachineFunction &MF = DAG.getMachineFunction();
9758  SDValue Chain     = Op.getOperand(0);
9759  SDValue Offset    = Op.getOperand(1);
9760  SDValue Handler   = Op.getOperand(2);
9761  DebugLoc dl       = Op.getDebugLoc();
9762
9763  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9764                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9765                                     getPointerTy());
9766  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9767
9768  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9769                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9770  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9771  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9772                       false, false, 0);
9773  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9774  MF.getRegInfo().addLiveOut(StoreAddrReg);
9775
9776  return DAG.getNode(X86ISD::EH_RETURN, dl,
9777                     MVT::Other,
9778                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9779}
9780
9781SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9782                                                  SelectionDAG &DAG) const {
9783  return Op.getOperand(0);
9784}
9785
9786SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9787                                                SelectionDAG &DAG) const {
9788  SDValue Root = Op.getOperand(0);
9789  SDValue Trmp = Op.getOperand(1); // trampoline
9790  SDValue FPtr = Op.getOperand(2); // nested function
9791  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9792  DebugLoc dl  = Op.getDebugLoc();
9793
9794  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9795
9796  if (Subtarget->is64Bit()) {
9797    SDValue OutChains[6];
9798
9799    // Large code-model.
9800    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9801    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9802
9803    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9804    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9805
9806    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9807
9808    // Load the pointer to the nested function into R11.
9809    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9810    SDValue Addr = Trmp;
9811    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9812                                Addr, MachinePointerInfo(TrmpAddr),
9813                                false, false, 0);
9814
9815    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9816                       DAG.getConstant(2, MVT::i64));
9817    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9818                                MachinePointerInfo(TrmpAddr, 2),
9819                                false, false, 2);
9820
9821    // Load the 'nest' parameter value into R10.
9822    // R10 is specified in X86CallingConv.td
9823    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9824    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9825                       DAG.getConstant(10, MVT::i64));
9826    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9827                                Addr, MachinePointerInfo(TrmpAddr, 10),
9828                                false, false, 0);
9829
9830    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9831                       DAG.getConstant(12, MVT::i64));
9832    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9833                                MachinePointerInfo(TrmpAddr, 12),
9834                                false, false, 2);
9835
9836    // Jump to the nested function.
9837    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9838    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9839                       DAG.getConstant(20, MVT::i64));
9840    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9841                                Addr, MachinePointerInfo(TrmpAddr, 20),
9842                                false, false, 0);
9843
9844    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9845    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9846                       DAG.getConstant(22, MVT::i64));
9847    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9848                                MachinePointerInfo(TrmpAddr, 22),
9849                                false, false, 0);
9850
9851    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9852  } else {
9853    const Function *Func =
9854      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9855    CallingConv::ID CC = Func->getCallingConv();
9856    unsigned NestReg;
9857
9858    switch (CC) {
9859    default:
9860      llvm_unreachable("Unsupported calling convention");
9861    case CallingConv::C:
9862    case CallingConv::X86_StdCall: {
9863      // Pass 'nest' parameter in ECX.
9864      // Must be kept in sync with X86CallingConv.td
9865      NestReg = X86::ECX;
9866
9867      // Check that ECX wasn't needed by an 'inreg' parameter.
9868      FunctionType *FTy = Func->getFunctionType();
9869      const AttrListPtr &Attrs = Func->getAttributes();
9870
9871      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9872        unsigned InRegCount = 0;
9873        unsigned Idx = 1;
9874
9875        for (FunctionType::param_iterator I = FTy->param_begin(),
9876             E = FTy->param_end(); I != E; ++I, ++Idx)
9877          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9878            // FIXME: should only count parameters that are lowered to integers.
9879            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9880
9881        if (InRegCount > 2) {
9882          report_fatal_error("Nest register in use - reduce number of inreg"
9883                             " parameters!");
9884        }
9885      }
9886      break;
9887    }
9888    case CallingConv::X86_FastCall:
9889    case CallingConv::X86_ThisCall:
9890    case CallingConv::Fast:
9891      // Pass 'nest' parameter in EAX.
9892      // Must be kept in sync with X86CallingConv.td
9893      NestReg = X86::EAX;
9894      break;
9895    }
9896
9897    SDValue OutChains[4];
9898    SDValue Addr, Disp;
9899
9900    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9901                       DAG.getConstant(10, MVT::i32));
9902    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9903
9904    // This is storing the opcode for MOV32ri.
9905    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9906    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9907    OutChains[0] = DAG.getStore(Root, dl,
9908                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9909                                Trmp, MachinePointerInfo(TrmpAddr),
9910                                false, false, 0);
9911
9912    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9913                       DAG.getConstant(1, MVT::i32));
9914    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9915                                MachinePointerInfo(TrmpAddr, 1),
9916                                false, false, 1);
9917
9918    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9919    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9920                       DAG.getConstant(5, MVT::i32));
9921    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9922                                MachinePointerInfo(TrmpAddr, 5),
9923                                false, false, 1);
9924
9925    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9926                       DAG.getConstant(6, MVT::i32));
9927    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9928                                MachinePointerInfo(TrmpAddr, 6),
9929                                false, false, 1);
9930
9931    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9932  }
9933}
9934
9935SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9936                                            SelectionDAG &DAG) const {
9937  /*
9938   The rounding mode is in bits 11:10 of FPSR, and has the following
9939   settings:
9940     00 Round to nearest
9941     01 Round to -inf
9942     10 Round to +inf
9943     11 Round to 0
9944
9945  FLT_ROUNDS, on the other hand, expects the following:
9946    -1 Undefined
9947     0 Round to 0
9948     1 Round to nearest
9949     2 Round to +inf
9950     3 Round to -inf
9951
9952  To perform the conversion, we do:
9953    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9954  */
9955
9956  MachineFunction &MF = DAG.getMachineFunction();
9957  const TargetMachine &TM = MF.getTarget();
9958  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9959  unsigned StackAlignment = TFI.getStackAlignment();
9960  EVT VT = Op.getValueType();
9961  DebugLoc DL = Op.getDebugLoc();
9962
9963  // Save FP Control Word to stack slot
9964  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9965  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9966
9967
9968  MachineMemOperand *MMO =
9969   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9970                           MachineMemOperand::MOStore, 2, 2);
9971
9972  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9973  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9974                                          DAG.getVTList(MVT::Other),
9975                                          Ops, 2, MVT::i16, MMO);
9976
9977  // Load FP Control Word from stack slot
9978  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9979                            MachinePointerInfo(), false, false, false, 0);
9980
9981  // Transform as necessary
9982  SDValue CWD1 =
9983    DAG.getNode(ISD::SRL, DL, MVT::i16,
9984                DAG.getNode(ISD::AND, DL, MVT::i16,
9985                            CWD, DAG.getConstant(0x800, MVT::i16)),
9986                DAG.getConstant(11, MVT::i8));
9987  SDValue CWD2 =
9988    DAG.getNode(ISD::SRL, DL, MVT::i16,
9989                DAG.getNode(ISD::AND, DL, MVT::i16,
9990                            CWD, DAG.getConstant(0x400, MVT::i16)),
9991                DAG.getConstant(9, MVT::i8));
9992
9993  SDValue RetVal =
9994    DAG.getNode(ISD::AND, DL, MVT::i16,
9995                DAG.getNode(ISD::ADD, DL, MVT::i16,
9996                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9997                            DAG.getConstant(1, MVT::i16)),
9998                DAG.getConstant(3, MVT::i16));
9999
10000
10001  return DAG.getNode((VT.getSizeInBits() < 16 ?
10002                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10003}
10004
10005SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10006  EVT VT = Op.getValueType();
10007  EVT OpVT = VT;
10008  unsigned NumBits = VT.getSizeInBits();
10009  DebugLoc dl = Op.getDebugLoc();
10010
10011  Op = Op.getOperand(0);
10012  if (VT == MVT::i8) {
10013    // Zero extend to i32 since there is not an i8 bsr.
10014    OpVT = MVT::i32;
10015    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10016  }
10017
10018  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10019  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10020  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10021
10022  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10023  SDValue Ops[] = {
10024    Op,
10025    DAG.getConstant(NumBits+NumBits-1, OpVT),
10026    DAG.getConstant(X86::COND_E, MVT::i8),
10027    Op.getValue(1)
10028  };
10029  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10030
10031  // Finally xor with NumBits-1.
10032  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10033
10034  if (VT == MVT::i8)
10035    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10036  return Op;
10037}
10038
10039SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10040                                                SelectionDAG &DAG) const {
10041  EVT VT = Op.getValueType();
10042  EVT OpVT = VT;
10043  unsigned NumBits = VT.getSizeInBits();
10044  DebugLoc dl = Op.getDebugLoc();
10045
10046  Op = Op.getOperand(0);
10047  if (VT == MVT::i8) {
10048    // Zero extend to i32 since there is not an i8 bsr.
10049    OpVT = MVT::i32;
10050    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10051  }
10052
10053  // Issue a bsr (scan bits in reverse).
10054  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10055  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10056
10057  // And xor with NumBits-1.
10058  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10059
10060  if (VT == MVT::i8)
10061    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10062  return Op;
10063}
10064
10065SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10066  EVT VT = Op.getValueType();
10067  unsigned NumBits = VT.getSizeInBits();
10068  DebugLoc dl = Op.getDebugLoc();
10069  Op = Op.getOperand(0);
10070
10071  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10072  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10073  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10074
10075  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10076  SDValue Ops[] = {
10077    Op,
10078    DAG.getConstant(NumBits, VT),
10079    DAG.getConstant(X86::COND_E, MVT::i8),
10080    Op.getValue(1)
10081  };
10082  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10083}
10084
10085// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10086// ones, and then concatenate the result back.
10087static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10088  EVT VT = Op.getValueType();
10089
10090  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10091         "Unsupported value type for operation");
10092
10093  int NumElems = VT.getVectorNumElements();
10094  DebugLoc dl = Op.getDebugLoc();
10095  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10096  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10097
10098  // Extract the LHS vectors
10099  SDValue LHS = Op.getOperand(0);
10100  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10101  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10102
10103  // Extract the RHS vectors
10104  SDValue RHS = Op.getOperand(1);
10105  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10106  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10107
10108  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10109  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10110
10111  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10112                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10113                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10114}
10115
10116SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10117  assert(Op.getValueType().getSizeInBits() == 256 &&
10118         Op.getValueType().isInteger() &&
10119         "Only handle AVX 256-bit vector integer operation");
10120  return Lower256IntArith(Op, DAG);
10121}
10122
10123SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10124  assert(Op.getValueType().getSizeInBits() == 256 &&
10125         Op.getValueType().isInteger() &&
10126         "Only handle AVX 256-bit vector integer operation");
10127  return Lower256IntArith(Op, DAG);
10128}
10129
10130SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10131  EVT VT = Op.getValueType();
10132
10133  // Decompose 256-bit ops into smaller 128-bit ops.
10134  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10135    return Lower256IntArith(Op, DAG);
10136
10137  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10138         "Only know how to lower V2I64/V4I64 multiply");
10139
10140  DebugLoc dl = Op.getDebugLoc();
10141
10142  //  Ahi = psrlqi(a, 32);
10143  //  Bhi = psrlqi(b, 32);
10144  //
10145  //  AloBlo = pmuludq(a, b);
10146  //  AloBhi = pmuludq(a, Bhi);
10147  //  AhiBlo = pmuludq(Ahi, b);
10148
10149  //  AloBhi = psllqi(AloBhi, 32);
10150  //  AhiBlo = psllqi(AhiBlo, 32);
10151  //  return AloBlo + AloBhi + AhiBlo;
10152
10153  SDValue A = Op.getOperand(0);
10154  SDValue B = Op.getOperand(1);
10155
10156  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10157
10158  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10159  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10160
10161  // Bit cast to 32-bit vectors for MULUDQ
10162  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10163  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10164  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10165  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10166  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10167
10168  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10169  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10170  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10171
10172  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10173  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10174
10175  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10176  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10177}
10178
10179SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10180
10181  EVT VT = Op.getValueType();
10182  DebugLoc dl = Op.getDebugLoc();
10183  SDValue R = Op.getOperand(0);
10184  SDValue Amt = Op.getOperand(1);
10185  LLVMContext *Context = DAG.getContext();
10186
10187  if (!Subtarget->hasSSE2())
10188    return SDValue();
10189
10190  // Optimize shl/srl/sra with constant shift amount.
10191  if (isSplatVector(Amt.getNode())) {
10192    SDValue SclrAmt = Amt->getOperand(0);
10193    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10194      uint64_t ShiftAmt = C->getZExtValue();
10195
10196      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10197          (Subtarget->hasAVX2() &&
10198           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10199        if (Op.getOpcode() == ISD::SHL)
10200          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10201                             DAG.getConstant(ShiftAmt, MVT::i32));
10202        if (Op.getOpcode() == ISD::SRL)
10203          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10204                             DAG.getConstant(ShiftAmt, MVT::i32));
10205        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10206          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10207                             DAG.getConstant(ShiftAmt, MVT::i32));
10208      }
10209
10210      if (VT == MVT::v16i8) {
10211        if (Op.getOpcode() == ISD::SHL) {
10212          // Make a large shift.
10213          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10214                                    DAG.getConstant(ShiftAmt, MVT::i32));
10215          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10216          // Zero out the rightmost bits.
10217          SmallVector<SDValue, 16> V(16,
10218                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10219                                                     MVT::i8));
10220          return DAG.getNode(ISD::AND, dl, VT, SHL,
10221                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10222        }
10223        if (Op.getOpcode() == ISD::SRL) {
10224          // Make a large shift.
10225          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10226                                    DAG.getConstant(ShiftAmt, MVT::i32));
10227          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10228          // Zero out the leftmost bits.
10229          SmallVector<SDValue, 16> V(16,
10230                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10231                                                     MVT::i8));
10232          return DAG.getNode(ISD::AND, dl, VT, SRL,
10233                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10234        }
10235        if (Op.getOpcode() == ISD::SRA) {
10236          if (ShiftAmt == 7) {
10237            // R s>> 7  ===  R s< 0
10238            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10239            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10240          }
10241
10242          // R s>> a === ((R u>> a) ^ m) - m
10243          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10244          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10245                                                         MVT::i8));
10246          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10247          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10248          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10249          return Res;
10250        }
10251      }
10252
10253      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10254        if (Op.getOpcode() == ISD::SHL) {
10255          // Make a large shift.
10256          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10257                                    DAG.getConstant(ShiftAmt, MVT::i32));
10258          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10259          // Zero out the rightmost bits.
10260          SmallVector<SDValue, 32> V(32,
10261                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10262                                                     MVT::i8));
10263          return DAG.getNode(ISD::AND, dl, VT, SHL,
10264                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10265        }
10266        if (Op.getOpcode() == ISD::SRL) {
10267          // Make a large shift.
10268          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10269                                    DAG.getConstant(ShiftAmt, MVT::i32));
10270          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10271          // Zero out the leftmost bits.
10272          SmallVector<SDValue, 32> V(32,
10273                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10274                                                     MVT::i8));
10275          return DAG.getNode(ISD::AND, dl, VT, SRL,
10276                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10277        }
10278        if (Op.getOpcode() == ISD::SRA) {
10279          if (ShiftAmt == 7) {
10280            // R s>> 7  ===  R s< 0
10281            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10282            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10283          }
10284
10285          // R s>> a === ((R u>> a) ^ m) - m
10286          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10287          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10288                                                         MVT::i8));
10289          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10290          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10291          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10292          return Res;
10293        }
10294      }
10295    }
10296  }
10297
10298  // Lower SHL with variable shift amount.
10299  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10300    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10301                     DAG.getConstant(23, MVT::i32));
10302
10303    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10304    Constant *C = ConstantDataVector::get(*Context, CV);
10305    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10306    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10307                                 MachinePointerInfo::getConstantPool(),
10308                                 false, false, false, 16);
10309
10310    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10311    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10312    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10313    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10314  }
10315  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10316    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10317
10318    // a = a << 5;
10319    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10320                     DAG.getConstant(5, MVT::i32));
10321    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10322
10323    // Turn 'a' into a mask suitable for VSELECT
10324    SDValue VSelM = DAG.getConstant(0x80, VT);
10325    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10326    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10327
10328    SDValue CM1 = DAG.getConstant(0x0f, VT);
10329    SDValue CM2 = DAG.getConstant(0x3f, VT);
10330
10331    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10332    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10333    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10334                            DAG.getConstant(4, MVT::i32), DAG);
10335    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10336    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10337
10338    // a += a
10339    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10340    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10341    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10342
10343    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10344    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10345    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10346                            DAG.getConstant(2, MVT::i32), DAG);
10347    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10348    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10349
10350    // a += a
10351    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10352    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10353    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10354
10355    // return VSELECT(r, r+r, a);
10356    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10357                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10358    return R;
10359  }
10360
10361  // Decompose 256-bit shifts into smaller 128-bit shifts.
10362  if (VT.getSizeInBits() == 256) {
10363    unsigned NumElems = VT.getVectorNumElements();
10364    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10365    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10366
10367    // Extract the two vectors
10368    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10369    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10370                                     DAG, dl);
10371
10372    // Recreate the shift amount vectors
10373    SDValue Amt1, Amt2;
10374    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10375      // Constant shift amount
10376      SmallVector<SDValue, 4> Amt1Csts;
10377      SmallVector<SDValue, 4> Amt2Csts;
10378      for (unsigned i = 0; i != NumElems/2; ++i)
10379        Amt1Csts.push_back(Amt->getOperand(i));
10380      for (unsigned i = NumElems/2; i != NumElems; ++i)
10381        Amt2Csts.push_back(Amt->getOperand(i));
10382
10383      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10384                                 &Amt1Csts[0], NumElems/2);
10385      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10386                                 &Amt2Csts[0], NumElems/2);
10387    } else {
10388      // Variable shift amount
10389      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10390      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10391                                 DAG, dl);
10392    }
10393
10394    // Issue new vector shifts for the smaller types
10395    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10396    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10397
10398    // Concatenate the result back
10399    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10400  }
10401
10402  return SDValue();
10403}
10404
10405SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10406  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10407  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10408  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10409  // has only one use.
10410  SDNode *N = Op.getNode();
10411  SDValue LHS = N->getOperand(0);
10412  SDValue RHS = N->getOperand(1);
10413  unsigned BaseOp = 0;
10414  unsigned Cond = 0;
10415  DebugLoc DL = Op.getDebugLoc();
10416  switch (Op.getOpcode()) {
10417  default: llvm_unreachable("Unknown ovf instruction!");
10418  case ISD::SADDO:
10419    // A subtract of one will be selected as a INC. Note that INC doesn't
10420    // set CF, so we can't do this for UADDO.
10421    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10422      if (C->isOne()) {
10423        BaseOp = X86ISD::INC;
10424        Cond = X86::COND_O;
10425        break;
10426      }
10427    BaseOp = X86ISD::ADD;
10428    Cond = X86::COND_O;
10429    break;
10430  case ISD::UADDO:
10431    BaseOp = X86ISD::ADD;
10432    Cond = X86::COND_B;
10433    break;
10434  case ISD::SSUBO:
10435    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10436    // set CF, so we can't do this for USUBO.
10437    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10438      if (C->isOne()) {
10439        BaseOp = X86ISD::DEC;
10440        Cond = X86::COND_O;
10441        break;
10442      }
10443    BaseOp = X86ISD::SUB;
10444    Cond = X86::COND_O;
10445    break;
10446  case ISD::USUBO:
10447    BaseOp = X86ISD::SUB;
10448    Cond = X86::COND_B;
10449    break;
10450  case ISD::SMULO:
10451    BaseOp = X86ISD::SMUL;
10452    Cond = X86::COND_O;
10453    break;
10454  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10455    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10456                                 MVT::i32);
10457    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10458
10459    SDValue SetCC =
10460      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10461                  DAG.getConstant(X86::COND_O, MVT::i32),
10462                  SDValue(Sum.getNode(), 2));
10463
10464    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10465  }
10466  }
10467
10468  // Also sets EFLAGS.
10469  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10470  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10471
10472  SDValue SetCC =
10473    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10474                DAG.getConstant(Cond, MVT::i32),
10475                SDValue(Sum.getNode(), 1));
10476
10477  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10478}
10479
10480SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10481                                                  SelectionDAG &DAG) const {
10482  DebugLoc dl = Op.getDebugLoc();
10483  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10484  EVT VT = Op.getValueType();
10485
10486  if (!Subtarget->hasSSE2() || !VT.isVector())
10487    return SDValue();
10488
10489  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10490                      ExtraVT.getScalarType().getSizeInBits();
10491  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10492
10493  switch (VT.getSimpleVT().SimpleTy) {
10494    default: return SDValue();
10495    case MVT::v8i32:
10496    case MVT::v16i16:
10497      if (!Subtarget->hasAVX())
10498        return SDValue();
10499      if (!Subtarget->hasAVX2()) {
10500        // needs to be split
10501        int NumElems = VT.getVectorNumElements();
10502        SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10503        SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10504
10505        // Extract the LHS vectors
10506        SDValue LHS = Op.getOperand(0);
10507        SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10508        SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10509
10510        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10511        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10512
10513        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10514        int ExtraNumElems = ExtraVT.getVectorNumElements();
10515        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10516                                   ExtraNumElems/2);
10517        SDValue Extra = DAG.getValueType(ExtraVT);
10518
10519        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10520        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10521
10522        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10523      }
10524      // fall through
10525    case MVT::v4i32:
10526    case MVT::v8i16: {
10527      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10528                                         Op.getOperand(0), ShAmt, DAG);
10529      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10530    }
10531  }
10532}
10533
10534
10535SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10536  DebugLoc dl = Op.getDebugLoc();
10537
10538  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10539  // There isn't any reason to disable it if the target processor supports it.
10540  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10541    SDValue Chain = Op.getOperand(0);
10542    SDValue Zero = DAG.getConstant(0, MVT::i32);
10543    SDValue Ops[] = {
10544      DAG.getRegister(X86::ESP, MVT::i32), // Base
10545      DAG.getTargetConstant(1, MVT::i8),   // Scale
10546      DAG.getRegister(0, MVT::i32),        // Index
10547      DAG.getTargetConstant(0, MVT::i32),  // Disp
10548      DAG.getRegister(0, MVT::i32),        // Segment.
10549      Zero,
10550      Chain
10551    };
10552    SDNode *Res =
10553      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10554                          array_lengthof(Ops));
10555    return SDValue(Res, 0);
10556  }
10557
10558  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10559  if (!isDev)
10560    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10561
10562  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10563  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10564  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10565  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10566
10567  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10568  if (!Op1 && !Op2 && !Op3 && Op4)
10569    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10570
10571  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10572  if (Op1 && !Op2 && !Op3 && !Op4)
10573    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10574
10575  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10576  //           (MFENCE)>;
10577  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10578}
10579
10580SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10581                                             SelectionDAG &DAG) const {
10582  DebugLoc dl = Op.getDebugLoc();
10583  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10584    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10585  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10586    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10587
10588  // The only fence that needs an instruction is a sequentially-consistent
10589  // cross-thread fence.
10590  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10591    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10592    // no-sse2). There isn't any reason to disable it if the target processor
10593    // supports it.
10594    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10595      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10596
10597    SDValue Chain = Op.getOperand(0);
10598    SDValue Zero = DAG.getConstant(0, MVT::i32);
10599    SDValue Ops[] = {
10600      DAG.getRegister(X86::ESP, MVT::i32), // Base
10601      DAG.getTargetConstant(1, MVT::i8),   // Scale
10602      DAG.getRegister(0, MVT::i32),        // Index
10603      DAG.getTargetConstant(0, MVT::i32),  // Disp
10604      DAG.getRegister(0, MVT::i32),        // Segment.
10605      Zero,
10606      Chain
10607    };
10608    SDNode *Res =
10609      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10610                         array_lengthof(Ops));
10611    return SDValue(Res, 0);
10612  }
10613
10614  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10615  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10616}
10617
10618
10619SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10620  EVT T = Op.getValueType();
10621  DebugLoc DL = Op.getDebugLoc();
10622  unsigned Reg = 0;
10623  unsigned size = 0;
10624  switch(T.getSimpleVT().SimpleTy) {
10625  default: llvm_unreachable("Invalid value type!");
10626  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10627  case MVT::i16: Reg = X86::AX;  size = 2; break;
10628  case MVT::i32: Reg = X86::EAX; size = 4; break;
10629  case MVT::i64:
10630    assert(Subtarget->is64Bit() && "Node not type legal!");
10631    Reg = X86::RAX; size = 8;
10632    break;
10633  }
10634  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10635                                    Op.getOperand(2), SDValue());
10636  SDValue Ops[] = { cpIn.getValue(0),
10637                    Op.getOperand(1),
10638                    Op.getOperand(3),
10639                    DAG.getTargetConstant(size, MVT::i8),
10640                    cpIn.getValue(1) };
10641  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10642  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10643  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10644                                           Ops, 5, T, MMO);
10645  SDValue cpOut =
10646    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10647  return cpOut;
10648}
10649
10650SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10651                                                 SelectionDAG &DAG) const {
10652  assert(Subtarget->is64Bit() && "Result not type legalized?");
10653  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10654  SDValue TheChain = Op.getOperand(0);
10655  DebugLoc dl = Op.getDebugLoc();
10656  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10657  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10658  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10659                                   rax.getValue(2));
10660  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10661                            DAG.getConstant(32, MVT::i8));
10662  SDValue Ops[] = {
10663    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10664    rdx.getValue(1)
10665  };
10666  return DAG.getMergeValues(Ops, 2, dl);
10667}
10668
10669SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10670                                            SelectionDAG &DAG) const {
10671  EVT SrcVT = Op.getOperand(0).getValueType();
10672  EVT DstVT = Op.getValueType();
10673  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10674         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10675  assert((DstVT == MVT::i64 ||
10676          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10677         "Unexpected custom BITCAST");
10678  // i64 <=> MMX conversions are Legal.
10679  if (SrcVT==MVT::i64 && DstVT.isVector())
10680    return Op;
10681  if (DstVT==MVT::i64 && SrcVT.isVector())
10682    return Op;
10683  // MMX <=> MMX conversions are Legal.
10684  if (SrcVT.isVector() && DstVT.isVector())
10685    return Op;
10686  // All other conversions need to be expanded.
10687  return SDValue();
10688}
10689
10690SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10691  SDNode *Node = Op.getNode();
10692  DebugLoc dl = Node->getDebugLoc();
10693  EVT T = Node->getValueType(0);
10694  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10695                              DAG.getConstant(0, T), Node->getOperand(2));
10696  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10697                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10698                       Node->getOperand(0),
10699                       Node->getOperand(1), negOp,
10700                       cast<AtomicSDNode>(Node)->getSrcValue(),
10701                       cast<AtomicSDNode>(Node)->getAlignment(),
10702                       cast<AtomicSDNode>(Node)->getOrdering(),
10703                       cast<AtomicSDNode>(Node)->getSynchScope());
10704}
10705
10706static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10707  SDNode *Node = Op.getNode();
10708  DebugLoc dl = Node->getDebugLoc();
10709  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10710
10711  // Convert seq_cst store -> xchg
10712  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10713  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10714  //        (The only way to get a 16-byte store is cmpxchg16b)
10715  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10716  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10717      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10718    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10719                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10720                                 Node->getOperand(0),
10721                                 Node->getOperand(1), Node->getOperand(2),
10722                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10723                                 cast<AtomicSDNode>(Node)->getOrdering(),
10724                                 cast<AtomicSDNode>(Node)->getSynchScope());
10725    return Swap.getValue(1);
10726  }
10727  // Other atomic stores have a simple pattern.
10728  return Op;
10729}
10730
10731static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10732  EVT VT = Op.getNode()->getValueType(0);
10733
10734  // Let legalize expand this if it isn't a legal type yet.
10735  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10736    return SDValue();
10737
10738  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10739
10740  unsigned Opc;
10741  bool ExtraOp = false;
10742  switch (Op.getOpcode()) {
10743  default: llvm_unreachable("Invalid code");
10744  case ISD::ADDC: Opc = X86ISD::ADD; break;
10745  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10746  case ISD::SUBC: Opc = X86ISD::SUB; break;
10747  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10748  }
10749
10750  if (!ExtraOp)
10751    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10752                       Op.getOperand(1));
10753  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10754                     Op.getOperand(1), Op.getOperand(2));
10755}
10756
10757/// LowerOperation - Provide custom lowering hooks for some operations.
10758///
10759SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10760  switch (Op.getOpcode()) {
10761  default: llvm_unreachable("Should not custom lower this!");
10762  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10763  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10764  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10765  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10766  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10767  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10768  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10769  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10770  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10771  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10772  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10773  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10774  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10775  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10776  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10777  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10778  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10779  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10780  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10781  case ISD::SHL_PARTS:
10782  case ISD::SRA_PARTS:
10783  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10784  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10785  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10786  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10787  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10788  case ISD::FABS:               return LowerFABS(Op, DAG);
10789  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10790  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10791  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10792  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10793  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10794  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10795  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10796  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10797  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10798  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10799  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10800  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10801  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10802  case ISD::FRAME_TO_ARGS_OFFSET:
10803                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10804  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10805  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10806  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10807  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10808  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10809  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10810  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10811  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10812  case ISD::MUL:                return LowerMUL(Op, DAG);
10813  case ISD::SRA:
10814  case ISD::SRL:
10815  case ISD::SHL:                return LowerShift(Op, DAG);
10816  case ISD::SADDO:
10817  case ISD::UADDO:
10818  case ISD::SSUBO:
10819  case ISD::USUBO:
10820  case ISD::SMULO:
10821  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10822  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10823  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10824  case ISD::ADDC:
10825  case ISD::ADDE:
10826  case ISD::SUBC:
10827  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10828  case ISD::ADD:                return LowerADD(Op, DAG);
10829  case ISD::SUB:                return LowerSUB(Op, DAG);
10830  }
10831}
10832
10833static void ReplaceATOMIC_LOAD(SDNode *Node,
10834                                  SmallVectorImpl<SDValue> &Results,
10835                                  SelectionDAG &DAG) {
10836  DebugLoc dl = Node->getDebugLoc();
10837  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10838
10839  // Convert wide load -> cmpxchg8b/cmpxchg16b
10840  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10841  //        (The only way to get a 16-byte load is cmpxchg16b)
10842  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10843  SDValue Zero = DAG.getConstant(0, VT);
10844  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10845                               Node->getOperand(0),
10846                               Node->getOperand(1), Zero, Zero,
10847                               cast<AtomicSDNode>(Node)->getMemOperand(),
10848                               cast<AtomicSDNode>(Node)->getOrdering(),
10849                               cast<AtomicSDNode>(Node)->getSynchScope());
10850  Results.push_back(Swap.getValue(0));
10851  Results.push_back(Swap.getValue(1));
10852}
10853
10854void X86TargetLowering::
10855ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10856                        SelectionDAG &DAG, unsigned NewOp) const {
10857  DebugLoc dl = Node->getDebugLoc();
10858  assert (Node->getValueType(0) == MVT::i64 &&
10859          "Only know how to expand i64 atomics");
10860
10861  SDValue Chain = Node->getOperand(0);
10862  SDValue In1 = Node->getOperand(1);
10863  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10864                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10865  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10866                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10867  SDValue Ops[] = { Chain, In1, In2L, In2H };
10868  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10869  SDValue Result =
10870    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10871                            cast<MemSDNode>(Node)->getMemOperand());
10872  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10873  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10874  Results.push_back(Result.getValue(2));
10875}
10876
10877/// ReplaceNodeResults - Replace a node with an illegal result type
10878/// with a new node built out of custom code.
10879void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10880                                           SmallVectorImpl<SDValue>&Results,
10881                                           SelectionDAG &DAG) const {
10882  DebugLoc dl = N->getDebugLoc();
10883  switch (N->getOpcode()) {
10884  default:
10885    llvm_unreachable("Do not know how to custom type legalize this operation!");
10886  case ISD::SIGN_EXTEND_INREG:
10887  case ISD::ADDC:
10888  case ISD::ADDE:
10889  case ISD::SUBC:
10890  case ISD::SUBE:
10891    // We don't want to expand or promote these.
10892    return;
10893  case ISD::FP_TO_SINT:
10894  case ISD::FP_TO_UINT: {
10895    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
10896
10897    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
10898      return;
10899
10900    std::pair<SDValue,SDValue> Vals =
10901        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
10902    SDValue FIST = Vals.first, StackSlot = Vals.second;
10903    if (FIST.getNode() != 0) {
10904      EVT VT = N->getValueType(0);
10905      // Return a load from the stack slot.
10906      if (StackSlot.getNode() != 0)
10907        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10908                                      MachinePointerInfo(),
10909                                      false, false, false, 0));
10910      else
10911        Results.push_back(FIST);
10912    }
10913    return;
10914  }
10915  case ISD::READCYCLECOUNTER: {
10916    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10917    SDValue TheChain = N->getOperand(0);
10918    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10919    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10920                                     rd.getValue(1));
10921    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10922                                     eax.getValue(2));
10923    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10924    SDValue Ops[] = { eax, edx };
10925    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10926    Results.push_back(edx.getValue(1));
10927    return;
10928  }
10929  case ISD::ATOMIC_CMP_SWAP: {
10930    EVT T = N->getValueType(0);
10931    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10932    bool Regs64bit = T == MVT::i128;
10933    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10934    SDValue cpInL, cpInH;
10935    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10936                        DAG.getConstant(0, HalfT));
10937    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10938                        DAG.getConstant(1, HalfT));
10939    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10940                             Regs64bit ? X86::RAX : X86::EAX,
10941                             cpInL, SDValue());
10942    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10943                             Regs64bit ? X86::RDX : X86::EDX,
10944                             cpInH, cpInL.getValue(1));
10945    SDValue swapInL, swapInH;
10946    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10947                          DAG.getConstant(0, HalfT));
10948    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10949                          DAG.getConstant(1, HalfT));
10950    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10951                               Regs64bit ? X86::RBX : X86::EBX,
10952                               swapInL, cpInH.getValue(1));
10953    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10954                               Regs64bit ? X86::RCX : X86::ECX,
10955                               swapInH, swapInL.getValue(1));
10956    SDValue Ops[] = { swapInH.getValue(0),
10957                      N->getOperand(1),
10958                      swapInH.getValue(1) };
10959    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10960    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10961    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10962                                  X86ISD::LCMPXCHG8_DAG;
10963    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10964                                             Ops, 3, T, MMO);
10965    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10966                                        Regs64bit ? X86::RAX : X86::EAX,
10967                                        HalfT, Result.getValue(1));
10968    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10969                                        Regs64bit ? X86::RDX : X86::EDX,
10970                                        HalfT, cpOutL.getValue(2));
10971    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10972    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10973    Results.push_back(cpOutH.getValue(1));
10974    return;
10975  }
10976  case ISD::ATOMIC_LOAD_ADD:
10977    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10978    return;
10979  case ISD::ATOMIC_LOAD_AND:
10980    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10981    return;
10982  case ISD::ATOMIC_LOAD_NAND:
10983    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10984    return;
10985  case ISD::ATOMIC_LOAD_OR:
10986    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10987    return;
10988  case ISD::ATOMIC_LOAD_SUB:
10989    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10990    return;
10991  case ISD::ATOMIC_LOAD_XOR:
10992    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10993    return;
10994  case ISD::ATOMIC_SWAP:
10995    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10996    return;
10997  case ISD::ATOMIC_LOAD:
10998    ReplaceATOMIC_LOAD(N, Results, DAG);
10999  }
11000}
11001
11002const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11003  switch (Opcode) {
11004  default: return NULL;
11005  case X86ISD::BSF:                return "X86ISD::BSF";
11006  case X86ISD::BSR:                return "X86ISD::BSR";
11007  case X86ISD::SHLD:               return "X86ISD::SHLD";
11008  case X86ISD::SHRD:               return "X86ISD::SHRD";
11009  case X86ISD::FAND:               return "X86ISD::FAND";
11010  case X86ISD::FOR:                return "X86ISD::FOR";
11011  case X86ISD::FXOR:               return "X86ISD::FXOR";
11012  case X86ISD::FSRL:               return "X86ISD::FSRL";
11013  case X86ISD::FILD:               return "X86ISD::FILD";
11014  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11015  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11016  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11017  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11018  case X86ISD::FLD:                return "X86ISD::FLD";
11019  case X86ISD::FST:                return "X86ISD::FST";
11020  case X86ISD::CALL:               return "X86ISD::CALL";
11021  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11022  case X86ISD::BT:                 return "X86ISD::BT";
11023  case X86ISD::CMP:                return "X86ISD::CMP";
11024  case X86ISD::COMI:               return "X86ISD::COMI";
11025  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11026  case X86ISD::SETCC:              return "X86ISD::SETCC";
11027  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11028  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11029  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11030  case X86ISD::CMOV:               return "X86ISD::CMOV";
11031  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11032  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11033  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11034  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11035  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11036  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11037  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11038  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11039  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11040  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11041  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11042  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11043  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11044  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11045  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11046  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11047  case X86ISD::HADD:               return "X86ISD::HADD";
11048  case X86ISD::HSUB:               return "X86ISD::HSUB";
11049  case X86ISD::FHADD:              return "X86ISD::FHADD";
11050  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11051  case X86ISD::FMAX:               return "X86ISD::FMAX";
11052  case X86ISD::FMIN:               return "X86ISD::FMIN";
11053  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11054  case X86ISD::FRCP:               return "X86ISD::FRCP";
11055  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11056  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11057  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11058  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11059  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11060  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11061  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11062  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11063  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11064  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11065  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11066  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11067  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11068  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11069  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11070  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11071  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11072  case X86ISD::VSHL:               return "X86ISD::VSHL";
11073  case X86ISD::VSRL:               return "X86ISD::VSRL";
11074  case X86ISD::VSRA:               return "X86ISD::VSRA";
11075  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11076  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11077  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11078  case X86ISD::CMPP:               return "X86ISD::CMPP";
11079  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11080  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11081  case X86ISD::ADD:                return "X86ISD::ADD";
11082  case X86ISD::SUB:                return "X86ISD::SUB";
11083  case X86ISD::ADC:                return "X86ISD::ADC";
11084  case X86ISD::SBB:                return "X86ISD::SBB";
11085  case X86ISD::SMUL:               return "X86ISD::SMUL";
11086  case X86ISD::UMUL:               return "X86ISD::UMUL";
11087  case X86ISD::INC:                return "X86ISD::INC";
11088  case X86ISD::DEC:                return "X86ISD::DEC";
11089  case X86ISD::OR:                 return "X86ISD::OR";
11090  case X86ISD::XOR:                return "X86ISD::XOR";
11091  case X86ISD::AND:                return "X86ISD::AND";
11092  case X86ISD::ANDN:               return "X86ISD::ANDN";
11093  case X86ISD::BLSI:               return "X86ISD::BLSI";
11094  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11095  case X86ISD::BLSR:               return "X86ISD::BLSR";
11096  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11097  case X86ISD::PTEST:              return "X86ISD::PTEST";
11098  case X86ISD::TESTP:              return "X86ISD::TESTP";
11099  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11100  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11101  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11102  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11103  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11104  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11105  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11106  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11107  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11108  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11109  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11110  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11111  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11112  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11113  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11114  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11115  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11116  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11117  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11118  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11119  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11120  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11121  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11122  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11123  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11124  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11125  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11126  }
11127}
11128
11129// isLegalAddressingMode - Return true if the addressing mode represented
11130// by AM is legal for this target, for a load/store of the specified type.
11131bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11132                                              Type *Ty) const {
11133  // X86 supports extremely general addressing modes.
11134  CodeModel::Model M = getTargetMachine().getCodeModel();
11135  Reloc::Model R = getTargetMachine().getRelocationModel();
11136
11137  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11138  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11139    return false;
11140
11141  if (AM.BaseGV) {
11142    unsigned GVFlags =
11143      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11144
11145    // If a reference to this global requires an extra load, we can't fold it.
11146    if (isGlobalStubReference(GVFlags))
11147      return false;
11148
11149    // If BaseGV requires a register for the PIC base, we cannot also have a
11150    // BaseReg specified.
11151    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11152      return false;
11153
11154    // If lower 4G is not available, then we must use rip-relative addressing.
11155    if ((M != CodeModel::Small || R != Reloc::Static) &&
11156        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11157      return false;
11158  }
11159
11160  switch (AM.Scale) {
11161  case 0:
11162  case 1:
11163  case 2:
11164  case 4:
11165  case 8:
11166    // These scales always work.
11167    break;
11168  case 3:
11169  case 5:
11170  case 9:
11171    // These scales are formed with basereg+scalereg.  Only accept if there is
11172    // no basereg yet.
11173    if (AM.HasBaseReg)
11174      return false;
11175    break;
11176  default:  // Other stuff never works.
11177    return false;
11178  }
11179
11180  return true;
11181}
11182
11183
11184bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11185  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11186    return false;
11187  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11188  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11189  if (NumBits1 <= NumBits2)
11190    return false;
11191  return true;
11192}
11193
11194bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11195  if (!VT1.isInteger() || !VT2.isInteger())
11196    return false;
11197  unsigned NumBits1 = VT1.getSizeInBits();
11198  unsigned NumBits2 = VT2.getSizeInBits();
11199  if (NumBits1 <= NumBits2)
11200    return false;
11201  return true;
11202}
11203
11204bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11205  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11206  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11207}
11208
11209bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11210  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11211  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11212}
11213
11214bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11215  // i16 instructions are longer (0x66 prefix) and potentially slower.
11216  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11217}
11218
11219/// isShuffleMaskLegal - Targets can use this to indicate that they only
11220/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11221/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11222/// are assumed to be legal.
11223bool
11224X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11225                                      EVT VT) const {
11226  // Very little shuffling can be done for 64-bit vectors right now.
11227  if (VT.getSizeInBits() == 64)
11228    return false;
11229
11230  // FIXME: pshufb, blends, shifts.
11231  return (VT.getVectorNumElements() == 2 ||
11232          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11233          isMOVLMask(M, VT) ||
11234          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11235          isPSHUFDMask(M, VT) ||
11236          isPSHUFHWMask(M, VT) ||
11237          isPSHUFLWMask(M, VT) ||
11238          isPALIGNRMask(M, VT, Subtarget) ||
11239          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11240          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11241          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11242          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11243}
11244
11245bool
11246X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11247                                          EVT VT) const {
11248  unsigned NumElts = VT.getVectorNumElements();
11249  // FIXME: This collection of masks seems suspect.
11250  if (NumElts == 2)
11251    return true;
11252  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11253    return (isMOVLMask(Mask, VT)  ||
11254            isCommutedMOVLMask(Mask, VT, true) ||
11255            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11256            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11257  }
11258  return false;
11259}
11260
11261//===----------------------------------------------------------------------===//
11262//                           X86 Scheduler Hooks
11263//===----------------------------------------------------------------------===//
11264
11265// private utility function
11266MachineBasicBlock *
11267X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11268                                                       MachineBasicBlock *MBB,
11269                                                       unsigned regOpc,
11270                                                       unsigned immOpc,
11271                                                       unsigned LoadOpc,
11272                                                       unsigned CXchgOpc,
11273                                                       unsigned notOpc,
11274                                                       unsigned EAXreg,
11275                                                 const TargetRegisterClass *RC,
11276                                                       bool invSrc) const {
11277  // For the atomic bitwise operator, we generate
11278  //   thisMBB:
11279  //   newMBB:
11280  //     ld  t1 = [bitinstr.addr]
11281  //     op  t2 = t1, [bitinstr.val]
11282  //     mov EAX = t1
11283  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11284  //     bz  newMBB
11285  //     fallthrough -->nextMBB
11286  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11287  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11288  MachineFunction::iterator MBBIter = MBB;
11289  ++MBBIter;
11290
11291  /// First build the CFG
11292  MachineFunction *F = MBB->getParent();
11293  MachineBasicBlock *thisMBB = MBB;
11294  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11295  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11296  F->insert(MBBIter, newMBB);
11297  F->insert(MBBIter, nextMBB);
11298
11299  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11300  nextMBB->splice(nextMBB->begin(), thisMBB,
11301                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11302                  thisMBB->end());
11303  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11304
11305  // Update thisMBB to fall through to newMBB
11306  thisMBB->addSuccessor(newMBB);
11307
11308  // newMBB jumps to itself and fall through to nextMBB
11309  newMBB->addSuccessor(nextMBB);
11310  newMBB->addSuccessor(newMBB);
11311
11312  // Insert instructions into newMBB based on incoming instruction
11313  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11314         "unexpected number of operands");
11315  DebugLoc dl = bInstr->getDebugLoc();
11316  MachineOperand& destOper = bInstr->getOperand(0);
11317  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11318  int numArgs = bInstr->getNumOperands() - 1;
11319  for (int i=0; i < numArgs; ++i)
11320    argOpers[i] = &bInstr->getOperand(i+1);
11321
11322  // x86 address has 4 operands: base, index, scale, and displacement
11323  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11324  int valArgIndx = lastAddrIndx + 1;
11325
11326  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11327  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11328  for (int i=0; i <= lastAddrIndx; ++i)
11329    (*MIB).addOperand(*argOpers[i]);
11330
11331  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11332  if (invSrc) {
11333    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11334  }
11335  else
11336    tt = t1;
11337
11338  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11339  assert((argOpers[valArgIndx]->isReg() ||
11340          argOpers[valArgIndx]->isImm()) &&
11341         "invalid operand");
11342  if (argOpers[valArgIndx]->isReg())
11343    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11344  else
11345    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11346  MIB.addReg(tt);
11347  (*MIB).addOperand(*argOpers[valArgIndx]);
11348
11349  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11350  MIB.addReg(t1);
11351
11352  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11353  for (int i=0; i <= lastAddrIndx; ++i)
11354    (*MIB).addOperand(*argOpers[i]);
11355  MIB.addReg(t2);
11356  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11357  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11358                    bInstr->memoperands_end());
11359
11360  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11361  MIB.addReg(EAXreg);
11362
11363  // insert branch
11364  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11365
11366  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11367  return nextMBB;
11368}
11369
11370// private utility function:  64 bit atomics on 32 bit host.
11371MachineBasicBlock *
11372X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11373                                                       MachineBasicBlock *MBB,
11374                                                       unsigned regOpcL,
11375                                                       unsigned regOpcH,
11376                                                       unsigned immOpcL,
11377                                                       unsigned immOpcH,
11378                                                       bool invSrc) const {
11379  // For the atomic bitwise operator, we generate
11380  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11381  //     ld t1,t2 = [bitinstr.addr]
11382  //   newMBB:
11383  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11384  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11385  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11386  //     mov ECX, EBX <- t5, t6
11387  //     mov EAX, EDX <- t1, t2
11388  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11389  //     mov t3, t4 <- EAX, EDX
11390  //     bz  newMBB
11391  //     result in out1, out2
11392  //     fallthrough -->nextMBB
11393
11394  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11395  const unsigned LoadOpc = X86::MOV32rm;
11396  const unsigned NotOpc = X86::NOT32r;
11397  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11398  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11399  MachineFunction::iterator MBBIter = MBB;
11400  ++MBBIter;
11401
11402  /// First build the CFG
11403  MachineFunction *F = MBB->getParent();
11404  MachineBasicBlock *thisMBB = MBB;
11405  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11406  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11407  F->insert(MBBIter, newMBB);
11408  F->insert(MBBIter, nextMBB);
11409
11410  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11411  nextMBB->splice(nextMBB->begin(), thisMBB,
11412                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11413                  thisMBB->end());
11414  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11415
11416  // Update thisMBB to fall through to newMBB
11417  thisMBB->addSuccessor(newMBB);
11418
11419  // newMBB jumps to itself and fall through to nextMBB
11420  newMBB->addSuccessor(nextMBB);
11421  newMBB->addSuccessor(newMBB);
11422
11423  DebugLoc dl = bInstr->getDebugLoc();
11424  // Insert instructions into newMBB based on incoming instruction
11425  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11426  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11427         "unexpected number of operands");
11428  MachineOperand& dest1Oper = bInstr->getOperand(0);
11429  MachineOperand& dest2Oper = bInstr->getOperand(1);
11430  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11431  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11432    argOpers[i] = &bInstr->getOperand(i+2);
11433
11434    // We use some of the operands multiple times, so conservatively just
11435    // clear any kill flags that might be present.
11436    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11437      argOpers[i]->setIsKill(false);
11438  }
11439
11440  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11441  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11442
11443  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11444  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11445  for (int i=0; i <= lastAddrIndx; ++i)
11446    (*MIB).addOperand(*argOpers[i]);
11447  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11448  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11449  // add 4 to displacement.
11450  for (int i=0; i <= lastAddrIndx-2; ++i)
11451    (*MIB).addOperand(*argOpers[i]);
11452  MachineOperand newOp3 = *(argOpers[3]);
11453  if (newOp3.isImm())
11454    newOp3.setImm(newOp3.getImm()+4);
11455  else
11456    newOp3.setOffset(newOp3.getOffset()+4);
11457  (*MIB).addOperand(newOp3);
11458  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11459
11460  // t3/4 are defined later, at the bottom of the loop
11461  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11462  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11463  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11464    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11465  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11466    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11467
11468  // The subsequent operations should be using the destination registers of
11469  //the PHI instructions.
11470  if (invSrc) {
11471    t1 = F->getRegInfo().createVirtualRegister(RC);
11472    t2 = F->getRegInfo().createVirtualRegister(RC);
11473    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11474    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11475  } else {
11476    t1 = dest1Oper.getReg();
11477    t2 = dest2Oper.getReg();
11478  }
11479
11480  int valArgIndx = lastAddrIndx + 1;
11481  assert((argOpers[valArgIndx]->isReg() ||
11482          argOpers[valArgIndx]->isImm()) &&
11483         "invalid operand");
11484  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11485  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11486  if (argOpers[valArgIndx]->isReg())
11487    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11488  else
11489    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11490  if (regOpcL != X86::MOV32rr)
11491    MIB.addReg(t1);
11492  (*MIB).addOperand(*argOpers[valArgIndx]);
11493  assert(argOpers[valArgIndx + 1]->isReg() ==
11494         argOpers[valArgIndx]->isReg());
11495  assert(argOpers[valArgIndx + 1]->isImm() ==
11496         argOpers[valArgIndx]->isImm());
11497  if (argOpers[valArgIndx + 1]->isReg())
11498    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11499  else
11500    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11501  if (regOpcH != X86::MOV32rr)
11502    MIB.addReg(t2);
11503  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11504
11505  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11506  MIB.addReg(t1);
11507  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11508  MIB.addReg(t2);
11509
11510  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11511  MIB.addReg(t5);
11512  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11513  MIB.addReg(t6);
11514
11515  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11516  for (int i=0; i <= lastAddrIndx; ++i)
11517    (*MIB).addOperand(*argOpers[i]);
11518
11519  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11520  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11521                    bInstr->memoperands_end());
11522
11523  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11524  MIB.addReg(X86::EAX);
11525  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11526  MIB.addReg(X86::EDX);
11527
11528  // insert branch
11529  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11530
11531  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11532  return nextMBB;
11533}
11534
11535// private utility function
11536MachineBasicBlock *
11537X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11538                                                      MachineBasicBlock *MBB,
11539                                                      unsigned cmovOpc) const {
11540  // For the atomic min/max operator, we generate
11541  //   thisMBB:
11542  //   newMBB:
11543  //     ld t1 = [min/max.addr]
11544  //     mov t2 = [min/max.val]
11545  //     cmp  t1, t2
11546  //     cmov[cond] t2 = t1
11547  //     mov EAX = t1
11548  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11549  //     bz   newMBB
11550  //     fallthrough -->nextMBB
11551  //
11552  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11553  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11554  MachineFunction::iterator MBBIter = MBB;
11555  ++MBBIter;
11556
11557  /// First build the CFG
11558  MachineFunction *F = MBB->getParent();
11559  MachineBasicBlock *thisMBB = MBB;
11560  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11561  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11562  F->insert(MBBIter, newMBB);
11563  F->insert(MBBIter, nextMBB);
11564
11565  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11566  nextMBB->splice(nextMBB->begin(), thisMBB,
11567                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11568                  thisMBB->end());
11569  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11570
11571  // Update thisMBB to fall through to newMBB
11572  thisMBB->addSuccessor(newMBB);
11573
11574  // newMBB jumps to newMBB and fall through to nextMBB
11575  newMBB->addSuccessor(nextMBB);
11576  newMBB->addSuccessor(newMBB);
11577
11578  DebugLoc dl = mInstr->getDebugLoc();
11579  // Insert instructions into newMBB based on incoming instruction
11580  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11581         "unexpected number of operands");
11582  MachineOperand& destOper = mInstr->getOperand(0);
11583  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11584  int numArgs = mInstr->getNumOperands() - 1;
11585  for (int i=0; i < numArgs; ++i)
11586    argOpers[i] = &mInstr->getOperand(i+1);
11587
11588  // x86 address has 4 operands: base, index, scale, and displacement
11589  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11590  int valArgIndx = lastAddrIndx + 1;
11591
11592  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11593  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11594  for (int i=0; i <= lastAddrIndx; ++i)
11595    (*MIB).addOperand(*argOpers[i]);
11596
11597  // We only support register and immediate values
11598  assert((argOpers[valArgIndx]->isReg() ||
11599          argOpers[valArgIndx]->isImm()) &&
11600         "invalid operand");
11601
11602  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11603  if (argOpers[valArgIndx]->isReg())
11604    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11605  else
11606    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11607  (*MIB).addOperand(*argOpers[valArgIndx]);
11608
11609  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11610  MIB.addReg(t1);
11611
11612  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11613  MIB.addReg(t1);
11614  MIB.addReg(t2);
11615
11616  // Generate movc
11617  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11618  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11619  MIB.addReg(t2);
11620  MIB.addReg(t1);
11621
11622  // Cmp and exchange if none has modified the memory location
11623  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11624  for (int i=0; i <= lastAddrIndx; ++i)
11625    (*MIB).addOperand(*argOpers[i]);
11626  MIB.addReg(t3);
11627  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11628  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11629                    mInstr->memoperands_end());
11630
11631  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11632  MIB.addReg(X86::EAX);
11633
11634  // insert branch
11635  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11636
11637  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11638  return nextMBB;
11639}
11640
11641// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11642// or XMM0_V32I8 in AVX all of this code can be replaced with that
11643// in the .td file.
11644MachineBasicBlock *
11645X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11646                            unsigned numArgs, bool memArg) const {
11647  assert(Subtarget->hasSSE42() &&
11648         "Target must have SSE4.2 or AVX features enabled");
11649
11650  DebugLoc dl = MI->getDebugLoc();
11651  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11652  unsigned Opc;
11653  if (!Subtarget->hasAVX()) {
11654    if (memArg)
11655      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11656    else
11657      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11658  } else {
11659    if (memArg)
11660      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11661    else
11662      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11663  }
11664
11665  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11666  for (unsigned i = 0; i < numArgs; ++i) {
11667    MachineOperand &Op = MI->getOperand(i+1);
11668    if (!(Op.isReg() && Op.isImplicit()))
11669      MIB.addOperand(Op);
11670  }
11671  BuildMI(*BB, MI, dl,
11672    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11673             MI->getOperand(0).getReg())
11674    .addReg(X86::XMM0);
11675
11676  MI->eraseFromParent();
11677  return BB;
11678}
11679
11680MachineBasicBlock *
11681X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11682  DebugLoc dl = MI->getDebugLoc();
11683  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11684
11685  // Address into RAX/EAX, other two args into ECX, EDX.
11686  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11687  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11688  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11689  for (int i = 0; i < X86::AddrNumOperands; ++i)
11690    MIB.addOperand(MI->getOperand(i));
11691
11692  unsigned ValOps = X86::AddrNumOperands;
11693  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11694    .addReg(MI->getOperand(ValOps).getReg());
11695  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11696    .addReg(MI->getOperand(ValOps+1).getReg());
11697
11698  // The instruction doesn't actually take any operands though.
11699  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11700
11701  MI->eraseFromParent(); // The pseudo is gone now.
11702  return BB;
11703}
11704
11705MachineBasicBlock *
11706X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11707  DebugLoc dl = MI->getDebugLoc();
11708  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11709
11710  // First arg in ECX, the second in EAX.
11711  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11712    .addReg(MI->getOperand(0).getReg());
11713  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11714    .addReg(MI->getOperand(1).getReg());
11715
11716  // The instruction doesn't actually take any operands though.
11717  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11718
11719  MI->eraseFromParent(); // The pseudo is gone now.
11720  return BB;
11721}
11722
11723MachineBasicBlock *
11724X86TargetLowering::EmitVAARG64WithCustomInserter(
11725                   MachineInstr *MI,
11726                   MachineBasicBlock *MBB) const {
11727  // Emit va_arg instruction on X86-64.
11728
11729  // Operands to this pseudo-instruction:
11730  // 0  ) Output        : destination address (reg)
11731  // 1-5) Input         : va_list address (addr, i64mem)
11732  // 6  ) ArgSize       : Size (in bytes) of vararg type
11733  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11734  // 8  ) Align         : Alignment of type
11735  // 9  ) EFLAGS (implicit-def)
11736
11737  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11738  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11739
11740  unsigned DestReg = MI->getOperand(0).getReg();
11741  MachineOperand &Base = MI->getOperand(1);
11742  MachineOperand &Scale = MI->getOperand(2);
11743  MachineOperand &Index = MI->getOperand(3);
11744  MachineOperand &Disp = MI->getOperand(4);
11745  MachineOperand &Segment = MI->getOperand(5);
11746  unsigned ArgSize = MI->getOperand(6).getImm();
11747  unsigned ArgMode = MI->getOperand(7).getImm();
11748  unsigned Align = MI->getOperand(8).getImm();
11749
11750  // Memory Reference
11751  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11752  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11753  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11754
11755  // Machine Information
11756  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11757  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11758  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11759  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11760  DebugLoc DL = MI->getDebugLoc();
11761
11762  // struct va_list {
11763  //   i32   gp_offset
11764  //   i32   fp_offset
11765  //   i64   overflow_area (address)
11766  //   i64   reg_save_area (address)
11767  // }
11768  // sizeof(va_list) = 24
11769  // alignment(va_list) = 8
11770
11771  unsigned TotalNumIntRegs = 6;
11772  unsigned TotalNumXMMRegs = 8;
11773  bool UseGPOffset = (ArgMode == 1);
11774  bool UseFPOffset = (ArgMode == 2);
11775  unsigned MaxOffset = TotalNumIntRegs * 8 +
11776                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11777
11778  /* Align ArgSize to a multiple of 8 */
11779  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11780  bool NeedsAlign = (Align > 8);
11781
11782  MachineBasicBlock *thisMBB = MBB;
11783  MachineBasicBlock *overflowMBB;
11784  MachineBasicBlock *offsetMBB;
11785  MachineBasicBlock *endMBB;
11786
11787  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11788  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11789  unsigned OffsetReg = 0;
11790
11791  if (!UseGPOffset && !UseFPOffset) {
11792    // If we only pull from the overflow region, we don't create a branch.
11793    // We don't need to alter control flow.
11794    OffsetDestReg = 0; // unused
11795    OverflowDestReg = DestReg;
11796
11797    offsetMBB = NULL;
11798    overflowMBB = thisMBB;
11799    endMBB = thisMBB;
11800  } else {
11801    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11802    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11803    // If not, pull from overflow_area. (branch to overflowMBB)
11804    //
11805    //       thisMBB
11806    //         |     .
11807    //         |        .
11808    //     offsetMBB   overflowMBB
11809    //         |        .
11810    //         |     .
11811    //        endMBB
11812
11813    // Registers for the PHI in endMBB
11814    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11815    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11816
11817    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11818    MachineFunction *MF = MBB->getParent();
11819    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11820    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11821    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11822
11823    MachineFunction::iterator MBBIter = MBB;
11824    ++MBBIter;
11825
11826    // Insert the new basic blocks
11827    MF->insert(MBBIter, offsetMBB);
11828    MF->insert(MBBIter, overflowMBB);
11829    MF->insert(MBBIter, endMBB);
11830
11831    // Transfer the remainder of MBB and its successor edges to endMBB.
11832    endMBB->splice(endMBB->begin(), thisMBB,
11833                    llvm::next(MachineBasicBlock::iterator(MI)),
11834                    thisMBB->end());
11835    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11836
11837    // Make offsetMBB and overflowMBB successors of thisMBB
11838    thisMBB->addSuccessor(offsetMBB);
11839    thisMBB->addSuccessor(overflowMBB);
11840
11841    // endMBB is a successor of both offsetMBB and overflowMBB
11842    offsetMBB->addSuccessor(endMBB);
11843    overflowMBB->addSuccessor(endMBB);
11844
11845    // Load the offset value into a register
11846    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11847    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11848      .addOperand(Base)
11849      .addOperand(Scale)
11850      .addOperand(Index)
11851      .addDisp(Disp, UseFPOffset ? 4 : 0)
11852      .addOperand(Segment)
11853      .setMemRefs(MMOBegin, MMOEnd);
11854
11855    // Check if there is enough room left to pull this argument.
11856    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11857      .addReg(OffsetReg)
11858      .addImm(MaxOffset + 8 - ArgSizeA8);
11859
11860    // Branch to "overflowMBB" if offset >= max
11861    // Fall through to "offsetMBB" otherwise
11862    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11863      .addMBB(overflowMBB);
11864  }
11865
11866  // In offsetMBB, emit code to use the reg_save_area.
11867  if (offsetMBB) {
11868    assert(OffsetReg != 0);
11869
11870    // Read the reg_save_area address.
11871    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11872    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11873      .addOperand(Base)
11874      .addOperand(Scale)
11875      .addOperand(Index)
11876      .addDisp(Disp, 16)
11877      .addOperand(Segment)
11878      .setMemRefs(MMOBegin, MMOEnd);
11879
11880    // Zero-extend the offset
11881    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11882      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11883        .addImm(0)
11884        .addReg(OffsetReg)
11885        .addImm(X86::sub_32bit);
11886
11887    // Add the offset to the reg_save_area to get the final address.
11888    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11889      .addReg(OffsetReg64)
11890      .addReg(RegSaveReg);
11891
11892    // Compute the offset for the next argument
11893    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11894    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11895      .addReg(OffsetReg)
11896      .addImm(UseFPOffset ? 16 : 8);
11897
11898    // Store it back into the va_list.
11899    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11900      .addOperand(Base)
11901      .addOperand(Scale)
11902      .addOperand(Index)
11903      .addDisp(Disp, UseFPOffset ? 4 : 0)
11904      .addOperand(Segment)
11905      .addReg(NextOffsetReg)
11906      .setMemRefs(MMOBegin, MMOEnd);
11907
11908    // Jump to endMBB
11909    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11910      .addMBB(endMBB);
11911  }
11912
11913  //
11914  // Emit code to use overflow area
11915  //
11916
11917  // Load the overflow_area address into a register.
11918  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11919  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11920    .addOperand(Base)
11921    .addOperand(Scale)
11922    .addOperand(Index)
11923    .addDisp(Disp, 8)
11924    .addOperand(Segment)
11925    .setMemRefs(MMOBegin, MMOEnd);
11926
11927  // If we need to align it, do so. Otherwise, just copy the address
11928  // to OverflowDestReg.
11929  if (NeedsAlign) {
11930    // Align the overflow address
11931    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11932    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11933
11934    // aligned_addr = (addr + (align-1)) & ~(align-1)
11935    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11936      .addReg(OverflowAddrReg)
11937      .addImm(Align-1);
11938
11939    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11940      .addReg(TmpReg)
11941      .addImm(~(uint64_t)(Align-1));
11942  } else {
11943    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11944      .addReg(OverflowAddrReg);
11945  }
11946
11947  // Compute the next overflow address after this argument.
11948  // (the overflow address should be kept 8-byte aligned)
11949  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11950  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11951    .addReg(OverflowDestReg)
11952    .addImm(ArgSizeA8);
11953
11954  // Store the new overflow address.
11955  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11956    .addOperand(Base)
11957    .addOperand(Scale)
11958    .addOperand(Index)
11959    .addDisp(Disp, 8)
11960    .addOperand(Segment)
11961    .addReg(NextAddrReg)
11962    .setMemRefs(MMOBegin, MMOEnd);
11963
11964  // If we branched, emit the PHI to the front of endMBB.
11965  if (offsetMBB) {
11966    BuildMI(*endMBB, endMBB->begin(), DL,
11967            TII->get(X86::PHI), DestReg)
11968      .addReg(OffsetDestReg).addMBB(offsetMBB)
11969      .addReg(OverflowDestReg).addMBB(overflowMBB);
11970  }
11971
11972  // Erase the pseudo instruction
11973  MI->eraseFromParent();
11974
11975  return endMBB;
11976}
11977
11978MachineBasicBlock *
11979X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11980                                                 MachineInstr *MI,
11981                                                 MachineBasicBlock *MBB) const {
11982  // Emit code to save XMM registers to the stack. The ABI says that the
11983  // number of registers to save is given in %al, so it's theoretically
11984  // possible to do an indirect jump trick to avoid saving all of them,
11985  // however this code takes a simpler approach and just executes all
11986  // of the stores if %al is non-zero. It's less code, and it's probably
11987  // easier on the hardware branch predictor, and stores aren't all that
11988  // expensive anyway.
11989
11990  // Create the new basic blocks. One block contains all the XMM stores,
11991  // and one block is the final destination regardless of whether any
11992  // stores were performed.
11993  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11994  MachineFunction *F = MBB->getParent();
11995  MachineFunction::iterator MBBIter = MBB;
11996  ++MBBIter;
11997  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11998  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11999  F->insert(MBBIter, XMMSaveMBB);
12000  F->insert(MBBIter, EndMBB);
12001
12002  // Transfer the remainder of MBB and its successor edges to EndMBB.
12003  EndMBB->splice(EndMBB->begin(), MBB,
12004                 llvm::next(MachineBasicBlock::iterator(MI)),
12005                 MBB->end());
12006  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12007
12008  // The original block will now fall through to the XMM save block.
12009  MBB->addSuccessor(XMMSaveMBB);
12010  // The XMMSaveMBB will fall through to the end block.
12011  XMMSaveMBB->addSuccessor(EndMBB);
12012
12013  // Now add the instructions.
12014  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12015  DebugLoc DL = MI->getDebugLoc();
12016
12017  unsigned CountReg = MI->getOperand(0).getReg();
12018  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12019  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12020
12021  if (!Subtarget->isTargetWin64()) {
12022    // If %al is 0, branch around the XMM save block.
12023    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12024    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12025    MBB->addSuccessor(EndMBB);
12026  }
12027
12028  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12029  // In the XMM save block, save all the XMM argument registers.
12030  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12031    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12032    MachineMemOperand *MMO =
12033      F->getMachineMemOperand(
12034          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12035        MachineMemOperand::MOStore,
12036        /*Size=*/16, /*Align=*/16);
12037    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12038      .addFrameIndex(RegSaveFrameIndex)
12039      .addImm(/*Scale=*/1)
12040      .addReg(/*IndexReg=*/0)
12041      .addImm(/*Disp=*/Offset)
12042      .addReg(/*Segment=*/0)
12043      .addReg(MI->getOperand(i).getReg())
12044      .addMemOperand(MMO);
12045  }
12046
12047  MI->eraseFromParent();   // The pseudo instruction is gone now.
12048
12049  return EndMBB;
12050}
12051
12052// The EFLAGS operand of SelectItr might be missing a kill marker
12053// because there were multiple uses of EFLAGS, and ISel didn't know
12054// which to mark. Figure out whether SelectItr should have had a
12055// kill marker, and set it if it should. Returns the correct kill
12056// marker value.
12057static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12058                                     MachineBasicBlock* BB,
12059                                     const TargetRegisterInfo* TRI) {
12060  // Scan forward through BB for a use/def of EFLAGS.
12061  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12062  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12063    const MachineInstr& mi = *miI;
12064    if (mi.readsRegister(X86::EFLAGS))
12065      return false;
12066    if (mi.definesRegister(X86::EFLAGS))
12067      break; // Should have kill-flag - update below.
12068  }
12069
12070  // If we hit the end of the block, check whether EFLAGS is live into a
12071  // successor.
12072  if (miI == BB->end()) {
12073    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12074                                          sEnd = BB->succ_end();
12075         sItr != sEnd; ++sItr) {
12076      MachineBasicBlock* succ = *sItr;
12077      if (succ->isLiveIn(X86::EFLAGS))
12078        return false;
12079    }
12080  }
12081
12082  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12083  // out. SelectMI should have a kill flag on EFLAGS.
12084  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12085  return true;
12086}
12087
12088MachineBasicBlock *
12089X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12090                                     MachineBasicBlock *BB) const {
12091  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12092  DebugLoc DL = MI->getDebugLoc();
12093
12094  // To "insert" a SELECT_CC instruction, we actually have to insert the
12095  // diamond control-flow pattern.  The incoming instruction knows the
12096  // destination vreg to set, the condition code register to branch on, the
12097  // true/false values to select between, and a branch opcode to use.
12098  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12099  MachineFunction::iterator It = BB;
12100  ++It;
12101
12102  //  thisMBB:
12103  //  ...
12104  //   TrueVal = ...
12105  //   cmpTY ccX, r1, r2
12106  //   bCC copy1MBB
12107  //   fallthrough --> copy0MBB
12108  MachineBasicBlock *thisMBB = BB;
12109  MachineFunction *F = BB->getParent();
12110  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12111  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12112  F->insert(It, copy0MBB);
12113  F->insert(It, sinkMBB);
12114
12115  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12116  // live into the sink and copy blocks.
12117  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12118  if (!MI->killsRegister(X86::EFLAGS) &&
12119      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12120    copy0MBB->addLiveIn(X86::EFLAGS);
12121    sinkMBB->addLiveIn(X86::EFLAGS);
12122  }
12123
12124  // Transfer the remainder of BB and its successor edges to sinkMBB.
12125  sinkMBB->splice(sinkMBB->begin(), BB,
12126                  llvm::next(MachineBasicBlock::iterator(MI)),
12127                  BB->end());
12128  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12129
12130  // Add the true and fallthrough blocks as its successors.
12131  BB->addSuccessor(copy0MBB);
12132  BB->addSuccessor(sinkMBB);
12133
12134  // Create the conditional branch instruction.
12135  unsigned Opc =
12136    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12137  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12138
12139  //  copy0MBB:
12140  //   %FalseValue = ...
12141  //   # fallthrough to sinkMBB
12142  copy0MBB->addSuccessor(sinkMBB);
12143
12144  //  sinkMBB:
12145  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12146  //  ...
12147  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12148          TII->get(X86::PHI), MI->getOperand(0).getReg())
12149    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12150    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12151
12152  MI->eraseFromParent();   // The pseudo instruction is gone now.
12153  return sinkMBB;
12154}
12155
12156MachineBasicBlock *
12157X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12158                                        bool Is64Bit) const {
12159  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12160  DebugLoc DL = MI->getDebugLoc();
12161  MachineFunction *MF = BB->getParent();
12162  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12163
12164  assert(getTargetMachine().Options.EnableSegmentedStacks);
12165
12166  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12167  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12168
12169  // BB:
12170  //  ... [Till the alloca]
12171  // If stacklet is not large enough, jump to mallocMBB
12172  //
12173  // bumpMBB:
12174  //  Allocate by subtracting from RSP
12175  //  Jump to continueMBB
12176  //
12177  // mallocMBB:
12178  //  Allocate by call to runtime
12179  //
12180  // continueMBB:
12181  //  ...
12182  //  [rest of original BB]
12183  //
12184
12185  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12186  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12187  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12188
12189  MachineRegisterInfo &MRI = MF->getRegInfo();
12190  const TargetRegisterClass *AddrRegClass =
12191    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12192
12193  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12194    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12195    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12196    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12197    sizeVReg = MI->getOperand(1).getReg(),
12198    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12199
12200  MachineFunction::iterator MBBIter = BB;
12201  ++MBBIter;
12202
12203  MF->insert(MBBIter, bumpMBB);
12204  MF->insert(MBBIter, mallocMBB);
12205  MF->insert(MBBIter, continueMBB);
12206
12207  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12208                      (MachineBasicBlock::iterator(MI)), BB->end());
12209  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12210
12211  // Add code to the main basic block to check if the stack limit has been hit,
12212  // and if so, jump to mallocMBB otherwise to bumpMBB.
12213  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12214  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12215    .addReg(tmpSPVReg).addReg(sizeVReg);
12216  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12217    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12218    .addReg(SPLimitVReg);
12219  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12220
12221  // bumpMBB simply decreases the stack pointer, since we know the current
12222  // stacklet has enough space.
12223  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12224    .addReg(SPLimitVReg);
12225  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12226    .addReg(SPLimitVReg);
12227  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12228
12229  // Calls into a routine in libgcc to allocate more space from the heap.
12230  const uint32_t *RegMask =
12231    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12232  if (Is64Bit) {
12233    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12234      .addReg(sizeVReg);
12235    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12236      .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
12237      .addRegMask(RegMask)
12238      .addReg(X86::RAX, RegState::ImplicitDefine);
12239  } else {
12240    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12241      .addImm(12);
12242    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12243    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12244      .addExternalSymbol("__morestack_allocate_stack_space")
12245      .addRegMask(RegMask)
12246      .addReg(X86::EAX, RegState::ImplicitDefine);
12247  }
12248
12249  if (!Is64Bit)
12250    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12251      .addImm(16);
12252
12253  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12254    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12255  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12256
12257  // Set up the CFG correctly.
12258  BB->addSuccessor(bumpMBB);
12259  BB->addSuccessor(mallocMBB);
12260  mallocMBB->addSuccessor(continueMBB);
12261  bumpMBB->addSuccessor(continueMBB);
12262
12263  // Take care of the PHI nodes.
12264  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12265          MI->getOperand(0).getReg())
12266    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12267    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12268
12269  // Delete the original pseudo instruction.
12270  MI->eraseFromParent();
12271
12272  // And we're done.
12273  return continueMBB;
12274}
12275
12276MachineBasicBlock *
12277X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12278                                          MachineBasicBlock *BB) const {
12279  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12280  DebugLoc DL = MI->getDebugLoc();
12281
12282  assert(!Subtarget->isTargetEnvMacho());
12283
12284  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12285  // non-trivial part is impdef of ESP.
12286
12287  if (Subtarget->isTargetWin64()) {
12288    if (Subtarget->isTargetCygMing()) {
12289      // ___chkstk(Mingw64):
12290      // Clobbers R10, R11, RAX and EFLAGS.
12291      // Updates RSP.
12292      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12293        .addExternalSymbol("___chkstk")
12294        .addReg(X86::RAX, RegState::Implicit)
12295        .addReg(X86::RSP, RegState::Implicit)
12296        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12297        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12298        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12299    } else {
12300      // __chkstk(MSVCRT): does not update stack pointer.
12301      // Clobbers R10, R11 and EFLAGS.
12302      // FIXME: RAX(allocated size) might be reused and not killed.
12303      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12304        .addExternalSymbol("__chkstk")
12305        .addReg(X86::RAX, RegState::Implicit)
12306        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12307      // RAX has the offset to subtracted from RSP.
12308      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12309        .addReg(X86::RSP)
12310        .addReg(X86::RAX);
12311    }
12312  } else {
12313    const char *StackProbeSymbol =
12314      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12315
12316    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12317      .addExternalSymbol(StackProbeSymbol)
12318      .addReg(X86::EAX, RegState::Implicit)
12319      .addReg(X86::ESP, RegState::Implicit)
12320      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12321      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12322      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12323  }
12324
12325  MI->eraseFromParent();   // The pseudo instruction is gone now.
12326  return BB;
12327}
12328
12329MachineBasicBlock *
12330X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12331                                      MachineBasicBlock *BB) const {
12332  // This is pretty easy.  We're taking the value that we received from
12333  // our load from the relocation, sticking it in either RDI (x86-64)
12334  // or EAX and doing an indirect call.  The return value will then
12335  // be in the normal return register.
12336  const X86InstrInfo *TII
12337    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12338  DebugLoc DL = MI->getDebugLoc();
12339  MachineFunction *F = BB->getParent();
12340
12341  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12342  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12343
12344  // Get a register mask for the lowered call.
12345  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12346  // proper register mask.
12347  const uint32_t *RegMask =
12348    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12349  if (Subtarget->is64Bit()) {
12350    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12351                                      TII->get(X86::MOV64rm), X86::RDI)
12352    .addReg(X86::RIP)
12353    .addImm(0).addReg(0)
12354    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12355                      MI->getOperand(3).getTargetFlags())
12356    .addReg(0);
12357    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12358    addDirectMem(MIB, X86::RDI);
12359    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12360  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12361    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12362                                      TII->get(X86::MOV32rm), X86::EAX)
12363    .addReg(0)
12364    .addImm(0).addReg(0)
12365    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12366                      MI->getOperand(3).getTargetFlags())
12367    .addReg(0);
12368    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12369    addDirectMem(MIB, X86::EAX);
12370    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12371  } else {
12372    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12373                                      TII->get(X86::MOV32rm), X86::EAX)
12374    .addReg(TII->getGlobalBaseReg(F))
12375    .addImm(0).addReg(0)
12376    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12377                      MI->getOperand(3).getTargetFlags())
12378    .addReg(0);
12379    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12380    addDirectMem(MIB, X86::EAX);
12381    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12382  }
12383
12384  MI->eraseFromParent(); // The pseudo instruction is gone now.
12385  return BB;
12386}
12387
12388MachineBasicBlock *
12389X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12390                                               MachineBasicBlock *BB) const {
12391  switch (MI->getOpcode()) {
12392  default: llvm_unreachable("Unexpected instr type to insert");
12393  case X86::TAILJMPd64:
12394  case X86::TAILJMPr64:
12395  case X86::TAILJMPm64:
12396    llvm_unreachable("TAILJMP64 would not be touched here.");
12397  case X86::TCRETURNdi64:
12398  case X86::TCRETURNri64:
12399  case X86::TCRETURNmi64:
12400    return BB;
12401  case X86::WIN_ALLOCA:
12402    return EmitLoweredWinAlloca(MI, BB);
12403  case X86::SEG_ALLOCA_32:
12404    return EmitLoweredSegAlloca(MI, BB, false);
12405  case X86::SEG_ALLOCA_64:
12406    return EmitLoweredSegAlloca(MI, BB, true);
12407  case X86::TLSCall_32:
12408  case X86::TLSCall_64:
12409    return EmitLoweredTLSCall(MI, BB);
12410  case X86::CMOV_GR8:
12411  case X86::CMOV_FR32:
12412  case X86::CMOV_FR64:
12413  case X86::CMOV_V4F32:
12414  case X86::CMOV_V2F64:
12415  case X86::CMOV_V2I64:
12416  case X86::CMOV_V8F32:
12417  case X86::CMOV_V4F64:
12418  case X86::CMOV_V4I64:
12419  case X86::CMOV_GR16:
12420  case X86::CMOV_GR32:
12421  case X86::CMOV_RFP32:
12422  case X86::CMOV_RFP64:
12423  case X86::CMOV_RFP80:
12424    return EmitLoweredSelect(MI, BB);
12425
12426  case X86::FP32_TO_INT16_IN_MEM:
12427  case X86::FP32_TO_INT32_IN_MEM:
12428  case X86::FP32_TO_INT64_IN_MEM:
12429  case X86::FP64_TO_INT16_IN_MEM:
12430  case X86::FP64_TO_INT32_IN_MEM:
12431  case X86::FP64_TO_INT64_IN_MEM:
12432  case X86::FP80_TO_INT16_IN_MEM:
12433  case X86::FP80_TO_INT32_IN_MEM:
12434  case X86::FP80_TO_INT64_IN_MEM: {
12435    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12436    DebugLoc DL = MI->getDebugLoc();
12437
12438    // Change the floating point control register to use "round towards zero"
12439    // mode when truncating to an integer value.
12440    MachineFunction *F = BB->getParent();
12441    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12442    addFrameReference(BuildMI(*BB, MI, DL,
12443                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12444
12445    // Load the old value of the high byte of the control word...
12446    unsigned OldCW =
12447      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12448    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12449                      CWFrameIdx);
12450
12451    // Set the high part to be round to zero...
12452    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12453      .addImm(0xC7F);
12454
12455    // Reload the modified control word now...
12456    addFrameReference(BuildMI(*BB, MI, DL,
12457                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12458
12459    // Restore the memory image of control word to original value
12460    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12461      .addReg(OldCW);
12462
12463    // Get the X86 opcode to use.
12464    unsigned Opc;
12465    switch (MI->getOpcode()) {
12466    default: llvm_unreachable("illegal opcode!");
12467    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12468    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12469    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12470    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12471    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12472    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12473    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12474    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12475    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12476    }
12477
12478    X86AddressMode AM;
12479    MachineOperand &Op = MI->getOperand(0);
12480    if (Op.isReg()) {
12481      AM.BaseType = X86AddressMode::RegBase;
12482      AM.Base.Reg = Op.getReg();
12483    } else {
12484      AM.BaseType = X86AddressMode::FrameIndexBase;
12485      AM.Base.FrameIndex = Op.getIndex();
12486    }
12487    Op = MI->getOperand(1);
12488    if (Op.isImm())
12489      AM.Scale = Op.getImm();
12490    Op = MI->getOperand(2);
12491    if (Op.isImm())
12492      AM.IndexReg = Op.getImm();
12493    Op = MI->getOperand(3);
12494    if (Op.isGlobal()) {
12495      AM.GV = Op.getGlobal();
12496    } else {
12497      AM.Disp = Op.getImm();
12498    }
12499    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12500                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12501
12502    // Reload the original control word now.
12503    addFrameReference(BuildMI(*BB, MI, DL,
12504                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12505
12506    MI->eraseFromParent();   // The pseudo instruction is gone now.
12507    return BB;
12508  }
12509    // String/text processing lowering.
12510  case X86::PCMPISTRM128REG:
12511  case X86::VPCMPISTRM128REG:
12512    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12513  case X86::PCMPISTRM128MEM:
12514  case X86::VPCMPISTRM128MEM:
12515    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12516  case X86::PCMPESTRM128REG:
12517  case X86::VPCMPESTRM128REG:
12518    return EmitPCMP(MI, BB, 5, false /* in mem */);
12519  case X86::PCMPESTRM128MEM:
12520  case X86::VPCMPESTRM128MEM:
12521    return EmitPCMP(MI, BB, 5, true /* in mem */);
12522
12523    // Thread synchronization.
12524  case X86::MONITOR:
12525    return EmitMonitor(MI, BB);
12526  case X86::MWAIT:
12527    return EmitMwait(MI, BB);
12528
12529    // Atomic Lowering.
12530  case X86::ATOMAND32:
12531    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12532                                               X86::AND32ri, X86::MOV32rm,
12533                                               X86::LCMPXCHG32,
12534                                               X86::NOT32r, X86::EAX,
12535                                               X86::GR32RegisterClass);
12536  case X86::ATOMOR32:
12537    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12538                                               X86::OR32ri, X86::MOV32rm,
12539                                               X86::LCMPXCHG32,
12540                                               X86::NOT32r, X86::EAX,
12541                                               X86::GR32RegisterClass);
12542  case X86::ATOMXOR32:
12543    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12544                                               X86::XOR32ri, X86::MOV32rm,
12545                                               X86::LCMPXCHG32,
12546                                               X86::NOT32r, X86::EAX,
12547                                               X86::GR32RegisterClass);
12548  case X86::ATOMNAND32:
12549    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12550                                               X86::AND32ri, X86::MOV32rm,
12551                                               X86::LCMPXCHG32,
12552                                               X86::NOT32r, X86::EAX,
12553                                               X86::GR32RegisterClass, true);
12554  case X86::ATOMMIN32:
12555    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12556  case X86::ATOMMAX32:
12557    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12558  case X86::ATOMUMIN32:
12559    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12560  case X86::ATOMUMAX32:
12561    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12562
12563  case X86::ATOMAND16:
12564    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12565                                               X86::AND16ri, X86::MOV16rm,
12566                                               X86::LCMPXCHG16,
12567                                               X86::NOT16r, X86::AX,
12568                                               X86::GR16RegisterClass);
12569  case X86::ATOMOR16:
12570    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12571                                               X86::OR16ri, X86::MOV16rm,
12572                                               X86::LCMPXCHG16,
12573                                               X86::NOT16r, X86::AX,
12574                                               X86::GR16RegisterClass);
12575  case X86::ATOMXOR16:
12576    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12577                                               X86::XOR16ri, X86::MOV16rm,
12578                                               X86::LCMPXCHG16,
12579                                               X86::NOT16r, X86::AX,
12580                                               X86::GR16RegisterClass);
12581  case X86::ATOMNAND16:
12582    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12583                                               X86::AND16ri, X86::MOV16rm,
12584                                               X86::LCMPXCHG16,
12585                                               X86::NOT16r, X86::AX,
12586                                               X86::GR16RegisterClass, true);
12587  case X86::ATOMMIN16:
12588    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12589  case X86::ATOMMAX16:
12590    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12591  case X86::ATOMUMIN16:
12592    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12593  case X86::ATOMUMAX16:
12594    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12595
12596  case X86::ATOMAND8:
12597    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12598                                               X86::AND8ri, X86::MOV8rm,
12599                                               X86::LCMPXCHG8,
12600                                               X86::NOT8r, X86::AL,
12601                                               X86::GR8RegisterClass);
12602  case X86::ATOMOR8:
12603    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12604                                               X86::OR8ri, X86::MOV8rm,
12605                                               X86::LCMPXCHG8,
12606                                               X86::NOT8r, X86::AL,
12607                                               X86::GR8RegisterClass);
12608  case X86::ATOMXOR8:
12609    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12610                                               X86::XOR8ri, X86::MOV8rm,
12611                                               X86::LCMPXCHG8,
12612                                               X86::NOT8r, X86::AL,
12613                                               X86::GR8RegisterClass);
12614  case X86::ATOMNAND8:
12615    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12616                                               X86::AND8ri, X86::MOV8rm,
12617                                               X86::LCMPXCHG8,
12618                                               X86::NOT8r, X86::AL,
12619                                               X86::GR8RegisterClass, true);
12620  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12621  // This group is for 64-bit host.
12622  case X86::ATOMAND64:
12623    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12624                                               X86::AND64ri32, X86::MOV64rm,
12625                                               X86::LCMPXCHG64,
12626                                               X86::NOT64r, X86::RAX,
12627                                               X86::GR64RegisterClass);
12628  case X86::ATOMOR64:
12629    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12630                                               X86::OR64ri32, X86::MOV64rm,
12631                                               X86::LCMPXCHG64,
12632                                               X86::NOT64r, X86::RAX,
12633                                               X86::GR64RegisterClass);
12634  case X86::ATOMXOR64:
12635    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12636                                               X86::XOR64ri32, X86::MOV64rm,
12637                                               X86::LCMPXCHG64,
12638                                               X86::NOT64r, X86::RAX,
12639                                               X86::GR64RegisterClass);
12640  case X86::ATOMNAND64:
12641    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12642                                               X86::AND64ri32, X86::MOV64rm,
12643                                               X86::LCMPXCHG64,
12644                                               X86::NOT64r, X86::RAX,
12645                                               X86::GR64RegisterClass, true);
12646  case X86::ATOMMIN64:
12647    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12648  case X86::ATOMMAX64:
12649    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12650  case X86::ATOMUMIN64:
12651    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12652  case X86::ATOMUMAX64:
12653    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12654
12655  // This group does 64-bit operations on a 32-bit host.
12656  case X86::ATOMAND6432:
12657    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12658                                               X86::AND32rr, X86::AND32rr,
12659                                               X86::AND32ri, X86::AND32ri,
12660                                               false);
12661  case X86::ATOMOR6432:
12662    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12663                                               X86::OR32rr, X86::OR32rr,
12664                                               X86::OR32ri, X86::OR32ri,
12665                                               false);
12666  case X86::ATOMXOR6432:
12667    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12668                                               X86::XOR32rr, X86::XOR32rr,
12669                                               X86::XOR32ri, X86::XOR32ri,
12670                                               false);
12671  case X86::ATOMNAND6432:
12672    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12673                                               X86::AND32rr, X86::AND32rr,
12674                                               X86::AND32ri, X86::AND32ri,
12675                                               true);
12676  case X86::ATOMADD6432:
12677    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12678                                               X86::ADD32rr, X86::ADC32rr,
12679                                               X86::ADD32ri, X86::ADC32ri,
12680                                               false);
12681  case X86::ATOMSUB6432:
12682    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12683                                               X86::SUB32rr, X86::SBB32rr,
12684                                               X86::SUB32ri, X86::SBB32ri,
12685                                               false);
12686  case X86::ATOMSWAP6432:
12687    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12688                                               X86::MOV32rr, X86::MOV32rr,
12689                                               X86::MOV32ri, X86::MOV32ri,
12690                                               false);
12691  case X86::VASTART_SAVE_XMM_REGS:
12692    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12693
12694  case X86::VAARG_64:
12695    return EmitVAARG64WithCustomInserter(MI, BB);
12696  }
12697}
12698
12699//===----------------------------------------------------------------------===//
12700//                           X86 Optimization Hooks
12701//===----------------------------------------------------------------------===//
12702
12703void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12704                                                       APInt &KnownZero,
12705                                                       APInt &KnownOne,
12706                                                       const SelectionDAG &DAG,
12707                                                       unsigned Depth) const {
12708  unsigned BitWidth = KnownZero.getBitWidth();
12709  unsigned Opc = Op.getOpcode();
12710  assert((Opc >= ISD::BUILTIN_OP_END ||
12711          Opc == ISD::INTRINSIC_WO_CHAIN ||
12712          Opc == ISD::INTRINSIC_W_CHAIN ||
12713          Opc == ISD::INTRINSIC_VOID) &&
12714         "Should use MaskedValueIsZero if you don't know whether Op"
12715         " is a target node!");
12716
12717  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
12718  switch (Opc) {
12719  default: break;
12720  case X86ISD::ADD:
12721  case X86ISD::SUB:
12722  case X86ISD::ADC:
12723  case X86ISD::SBB:
12724  case X86ISD::SMUL:
12725  case X86ISD::UMUL:
12726  case X86ISD::INC:
12727  case X86ISD::DEC:
12728  case X86ISD::OR:
12729  case X86ISD::XOR:
12730  case X86ISD::AND:
12731    // These nodes' second result is a boolean.
12732    if (Op.getResNo() == 0)
12733      break;
12734    // Fallthrough
12735  case X86ISD::SETCC:
12736    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12737    break;
12738  case ISD::INTRINSIC_WO_CHAIN: {
12739    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12740    unsigned NumLoBits = 0;
12741    switch (IntId) {
12742    default: break;
12743    case Intrinsic::x86_sse_movmsk_ps:
12744    case Intrinsic::x86_avx_movmsk_ps_256:
12745    case Intrinsic::x86_sse2_movmsk_pd:
12746    case Intrinsic::x86_avx_movmsk_pd_256:
12747    case Intrinsic::x86_mmx_pmovmskb:
12748    case Intrinsic::x86_sse2_pmovmskb_128:
12749    case Intrinsic::x86_avx2_pmovmskb: {
12750      // High bits of movmskp{s|d}, pmovmskb are known zero.
12751      switch (IntId) {
12752        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12753        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12754        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12755        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12756        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12757        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12758        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12759        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12760      }
12761      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
12762      break;
12763    }
12764    }
12765    break;
12766  }
12767  }
12768}
12769
12770unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12771                                                         unsigned Depth) const {
12772  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12773  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12774    return Op.getValueType().getScalarType().getSizeInBits();
12775
12776  // Fallback case.
12777  return 1;
12778}
12779
12780/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12781/// node is a GlobalAddress + offset.
12782bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12783                                       const GlobalValue* &GA,
12784                                       int64_t &Offset) const {
12785  if (N->getOpcode() == X86ISD::Wrapper) {
12786    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12787      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12788      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12789      return true;
12790    }
12791  }
12792  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12793}
12794
12795/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12796/// same as extracting the high 128-bit part of 256-bit vector and then
12797/// inserting the result into the low part of a new 256-bit vector
12798static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12799  EVT VT = SVOp->getValueType(0);
12800  int NumElems = VT.getVectorNumElements();
12801
12802  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12803  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12804    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12805        SVOp->getMaskElt(j) >= 0)
12806      return false;
12807
12808  return true;
12809}
12810
12811/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12812/// same as extracting the low 128-bit part of 256-bit vector and then
12813/// inserting the result into the high part of a new 256-bit vector
12814static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12815  EVT VT = SVOp->getValueType(0);
12816  int NumElems = VT.getVectorNumElements();
12817
12818  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12819  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12820    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12821        SVOp->getMaskElt(j) >= 0)
12822      return false;
12823
12824  return true;
12825}
12826
12827/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12828static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12829                                        TargetLowering::DAGCombinerInfo &DCI,
12830                                        const X86Subtarget* Subtarget) {
12831  DebugLoc dl = N->getDebugLoc();
12832  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12833  SDValue V1 = SVOp->getOperand(0);
12834  SDValue V2 = SVOp->getOperand(1);
12835  EVT VT = SVOp->getValueType(0);
12836  int NumElems = VT.getVectorNumElements();
12837
12838  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12839      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12840    //
12841    //                   0,0,0,...
12842    //                      |
12843    //    V      UNDEF    BUILD_VECTOR    UNDEF
12844    //     \      /           \           /
12845    //  CONCAT_VECTOR         CONCAT_VECTOR
12846    //         \                  /
12847    //          \                /
12848    //          RESULT: V + zero extended
12849    //
12850    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12851        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12852        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12853      return SDValue();
12854
12855    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12856      return SDValue();
12857
12858    // To match the shuffle mask, the first half of the mask should
12859    // be exactly the first vector, and all the rest a splat with the
12860    // first element of the second one.
12861    for (int i = 0; i < NumElems/2; ++i)
12862      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12863          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12864        return SDValue();
12865
12866    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12867    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12868      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12869      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12870      SDValue ResNode =
12871        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12872                                Ld->getMemoryVT(),
12873                                Ld->getPointerInfo(),
12874                                Ld->getAlignment(),
12875                                false/*isVolatile*/, true/*ReadMem*/,
12876                                false/*WriteMem*/);
12877      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12878    }
12879
12880    // Emit a zeroed vector and insert the desired subvector on its
12881    // first half.
12882    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12883    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12884                         DAG.getConstant(0, MVT::i32), DAG, dl);
12885    return DCI.CombineTo(N, InsV);
12886  }
12887
12888  //===--------------------------------------------------------------------===//
12889  // Combine some shuffles into subvector extracts and inserts:
12890  //
12891
12892  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12893  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12894    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12895                                    DAG, dl);
12896    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12897                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12898    return DCI.CombineTo(N, InsV);
12899  }
12900
12901  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12902  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12903    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12904    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12905                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12906    return DCI.CombineTo(N, InsV);
12907  }
12908
12909  return SDValue();
12910}
12911
12912/// PerformShuffleCombine - Performs several different shuffle combines.
12913static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12914                                     TargetLowering::DAGCombinerInfo &DCI,
12915                                     const X86Subtarget *Subtarget) {
12916  DebugLoc dl = N->getDebugLoc();
12917  EVT VT = N->getValueType(0);
12918
12919  // Don't create instructions with illegal types after legalize types has run.
12920  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12921  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12922    return SDValue();
12923
12924  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12925  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12926      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12927    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
12928
12929  // Only handle 128 wide vector from here on.
12930  if (VT.getSizeInBits() != 128)
12931    return SDValue();
12932
12933  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12934  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12935  // consecutive, non-overlapping, and in the right order.
12936  SmallVector<SDValue, 16> Elts;
12937  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12938    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12939
12940  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12941}
12942
12943
12944/// PerformTruncateCombine - Converts truncate operation to
12945/// a sequence of vector shuffle operations.
12946/// It is possible when we truncate 256-bit vector to 128-bit vector
12947
12948SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
12949                                                  DAGCombinerInfo &DCI) const {
12950  if (!DCI.isBeforeLegalizeOps())
12951    return SDValue();
12952
12953  if (!Subtarget->hasAVX()) return SDValue();
12954
12955  EVT VT = N->getValueType(0);
12956  SDValue Op = N->getOperand(0);
12957  EVT OpVT = Op.getValueType();
12958  DebugLoc dl = N->getDebugLoc();
12959
12960  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
12961
12962    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12963                          DAG.getIntPtrConstant(0));
12964
12965    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12966                          DAG.getIntPtrConstant(2));
12967
12968    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12969    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12970
12971    // PSHUFD
12972    int ShufMask1[] = {0, 2, 0, 0};
12973
12974    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT),
12975                                ShufMask1);
12976    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT),
12977                                ShufMask1);
12978
12979    // MOVLHPS
12980    int ShufMask2[] = {0, 1, 4, 5};
12981
12982    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
12983  }
12984  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
12985
12986    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12987                          DAG.getIntPtrConstant(0));
12988
12989    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12990                          DAG.getIntPtrConstant(4));
12991
12992    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
12993    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
12994
12995    // PSHUFB
12996    int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
12997                      -1, -1, -1, -1, -1, -1, -1, -1};
12998
12999    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo,
13000                                DAG.getUNDEF(MVT::v16i8),
13001                                ShufMask1);
13002    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi,
13003                                DAG.getUNDEF(MVT::v16i8),
13004                                ShufMask1);
13005
13006    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13007    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13008
13009    // MOVLHPS
13010    int ShufMask2[] = {0, 1, 4, 5};
13011
13012    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13013    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13014  }
13015
13016  return SDValue();
13017}
13018
13019/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13020/// specific shuffle of a load can be folded into a single element load.
13021/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13022/// shuffles have been customed lowered so we need to handle those here.
13023static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13024                                         TargetLowering::DAGCombinerInfo &DCI) {
13025  if (DCI.isBeforeLegalizeOps())
13026    return SDValue();
13027
13028  SDValue InVec = N->getOperand(0);
13029  SDValue EltNo = N->getOperand(1);
13030
13031  if (!isa<ConstantSDNode>(EltNo))
13032    return SDValue();
13033
13034  EVT VT = InVec.getValueType();
13035
13036  bool HasShuffleIntoBitcast = false;
13037  if (InVec.getOpcode() == ISD::BITCAST) {
13038    // Don't duplicate a load with other uses.
13039    if (!InVec.hasOneUse())
13040      return SDValue();
13041    EVT BCVT = InVec.getOperand(0).getValueType();
13042    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13043      return SDValue();
13044    InVec = InVec.getOperand(0);
13045    HasShuffleIntoBitcast = true;
13046  }
13047
13048  if (!isTargetShuffle(InVec.getOpcode()))
13049    return SDValue();
13050
13051  // Don't duplicate a load with other uses.
13052  if (!InVec.hasOneUse())
13053    return SDValue();
13054
13055  SmallVector<int, 16> ShuffleMask;
13056  bool UnaryShuffle;
13057  if (!getTargetShuffleMask(InVec.getNode(), VT, ShuffleMask, UnaryShuffle))
13058    return SDValue();
13059
13060  // Select the input vector, guarding against out of range extract vector.
13061  unsigned NumElems = VT.getVectorNumElements();
13062  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13063  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13064  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13065                                         : InVec.getOperand(1);
13066
13067  // If inputs to shuffle are the same for both ops, then allow 2 uses
13068  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13069
13070  if (LdNode.getOpcode() == ISD::BITCAST) {
13071    // Don't duplicate a load with other uses.
13072    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13073      return SDValue();
13074
13075    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13076    LdNode = LdNode.getOperand(0);
13077  }
13078
13079  if (!ISD::isNormalLoad(LdNode.getNode()))
13080    return SDValue();
13081
13082  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13083
13084  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13085    return SDValue();
13086
13087  if (HasShuffleIntoBitcast) {
13088    // If there's a bitcast before the shuffle, check if the load type and
13089    // alignment is valid.
13090    unsigned Align = LN0->getAlignment();
13091    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13092    unsigned NewAlign = TLI.getTargetData()->
13093      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13094
13095    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13096      return SDValue();
13097  }
13098
13099  // All checks match so transform back to vector_shuffle so that DAG combiner
13100  // can finish the job
13101  DebugLoc dl = N->getDebugLoc();
13102
13103  // Create shuffle node taking into account the case that its a unary shuffle
13104  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13105  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13106                                 InVec.getOperand(0), Shuffle,
13107                                 &ShuffleMask[0]);
13108  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13109  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13110                     EltNo);
13111}
13112
13113/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13114/// generation and convert it from being a bunch of shuffles and extracts
13115/// to a simple store and scalar loads to extract the elements.
13116static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13117                                         TargetLowering::DAGCombinerInfo &DCI) {
13118  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13119  if (NewOp.getNode())
13120    return NewOp;
13121
13122  SDValue InputVector = N->getOperand(0);
13123
13124  // Only operate on vectors of 4 elements, where the alternative shuffling
13125  // gets to be more expensive.
13126  if (InputVector.getValueType() != MVT::v4i32)
13127    return SDValue();
13128
13129  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13130  // single use which is a sign-extend or zero-extend, and all elements are
13131  // used.
13132  SmallVector<SDNode *, 4> Uses;
13133  unsigned ExtractedElements = 0;
13134  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13135       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13136    if (UI.getUse().getResNo() != InputVector.getResNo())
13137      return SDValue();
13138
13139    SDNode *Extract = *UI;
13140    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13141      return SDValue();
13142
13143    if (Extract->getValueType(0) != MVT::i32)
13144      return SDValue();
13145    if (!Extract->hasOneUse())
13146      return SDValue();
13147    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13148        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13149      return SDValue();
13150    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13151      return SDValue();
13152
13153    // Record which element was extracted.
13154    ExtractedElements |=
13155      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13156
13157    Uses.push_back(Extract);
13158  }
13159
13160  // If not all the elements were used, this may not be worthwhile.
13161  if (ExtractedElements != 15)
13162    return SDValue();
13163
13164  // Ok, we've now decided to do the transformation.
13165  DebugLoc dl = InputVector.getDebugLoc();
13166
13167  // Store the value to a temporary stack slot.
13168  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13169  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13170                            MachinePointerInfo(), false, false, 0);
13171
13172  // Replace each use (extract) with a load of the appropriate element.
13173  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13174       UE = Uses.end(); UI != UE; ++UI) {
13175    SDNode *Extract = *UI;
13176
13177    // cOMpute the element's address.
13178    SDValue Idx = Extract->getOperand(1);
13179    unsigned EltSize =
13180        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13181    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13182    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13183    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13184
13185    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13186                                     StackPtr, OffsetVal);
13187
13188    // Load the scalar.
13189    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13190                                     ScalarAddr, MachinePointerInfo(),
13191                                     false, false, false, 0);
13192
13193    // Replace the exact with the load.
13194    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13195  }
13196
13197  // The replacement was made in place; don't return anything.
13198  return SDValue();
13199}
13200
13201/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13202/// nodes.
13203static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13204                                    TargetLowering::DAGCombinerInfo &DCI,
13205                                    const X86Subtarget *Subtarget) {
13206
13207
13208  DebugLoc DL = N->getDebugLoc();
13209  SDValue Cond = N->getOperand(0);
13210  // Get the LHS/RHS of the select.
13211  SDValue LHS = N->getOperand(1);
13212  SDValue RHS = N->getOperand(2);
13213  EVT VT = LHS.getValueType();
13214
13215  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13216  // instructions match the semantics of the common C idiom x<y?x:y but not
13217  // x<=y?x:y, because of how they handle negative zero (which can be
13218  // ignored in unsafe-math mode).
13219  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13220      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13221      (Subtarget->hasSSE2() ||
13222       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13223    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13224
13225    unsigned Opcode = 0;
13226    // Check for x CC y ? x : y.
13227    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13228        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13229      switch (CC) {
13230      default: break;
13231      case ISD::SETULT:
13232        // Converting this to a min would handle NaNs incorrectly, and swapping
13233        // the operands would cause it to handle comparisons between positive
13234        // and negative zero incorrectly.
13235        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13236          if (!DAG.getTarget().Options.UnsafeFPMath &&
13237              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13238            break;
13239          std::swap(LHS, RHS);
13240        }
13241        Opcode = X86ISD::FMIN;
13242        break;
13243      case ISD::SETOLE:
13244        // Converting this to a min would handle comparisons between positive
13245        // and negative zero incorrectly.
13246        if (!DAG.getTarget().Options.UnsafeFPMath &&
13247            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13248          break;
13249        Opcode = X86ISD::FMIN;
13250        break;
13251      case ISD::SETULE:
13252        // Converting this to a min would handle both negative zeros and NaNs
13253        // incorrectly, but we can swap the operands to fix both.
13254        std::swap(LHS, RHS);
13255      case ISD::SETOLT:
13256      case ISD::SETLT:
13257      case ISD::SETLE:
13258        Opcode = X86ISD::FMIN;
13259        break;
13260
13261      case ISD::SETOGE:
13262        // Converting this to a max would handle comparisons between positive
13263        // and negative zero incorrectly.
13264        if (!DAG.getTarget().Options.UnsafeFPMath &&
13265            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13266          break;
13267        Opcode = X86ISD::FMAX;
13268        break;
13269      case ISD::SETUGT:
13270        // Converting this to a max would handle NaNs incorrectly, and swapping
13271        // the operands would cause it to handle comparisons between positive
13272        // and negative zero incorrectly.
13273        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13274          if (!DAG.getTarget().Options.UnsafeFPMath &&
13275              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13276            break;
13277          std::swap(LHS, RHS);
13278        }
13279        Opcode = X86ISD::FMAX;
13280        break;
13281      case ISD::SETUGE:
13282        // Converting this to a max would handle both negative zeros and NaNs
13283        // incorrectly, but we can swap the operands to fix both.
13284        std::swap(LHS, RHS);
13285      case ISD::SETOGT:
13286      case ISD::SETGT:
13287      case ISD::SETGE:
13288        Opcode = X86ISD::FMAX;
13289        break;
13290      }
13291    // Check for x CC y ? y : x -- a min/max with reversed arms.
13292    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13293               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13294      switch (CC) {
13295      default: break;
13296      case ISD::SETOGE:
13297        // Converting this to a min would handle comparisons between positive
13298        // and negative zero incorrectly, and swapping the operands would
13299        // cause it to handle NaNs incorrectly.
13300        if (!DAG.getTarget().Options.UnsafeFPMath &&
13301            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13302          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13303            break;
13304          std::swap(LHS, RHS);
13305        }
13306        Opcode = X86ISD::FMIN;
13307        break;
13308      case ISD::SETUGT:
13309        // Converting this to a min would handle NaNs incorrectly.
13310        if (!DAG.getTarget().Options.UnsafeFPMath &&
13311            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13312          break;
13313        Opcode = X86ISD::FMIN;
13314        break;
13315      case ISD::SETUGE:
13316        // Converting this to a min would handle both negative zeros and NaNs
13317        // incorrectly, but we can swap the operands to fix both.
13318        std::swap(LHS, RHS);
13319      case ISD::SETOGT:
13320      case ISD::SETGT:
13321      case ISD::SETGE:
13322        Opcode = X86ISD::FMIN;
13323        break;
13324
13325      case ISD::SETULT:
13326        // Converting this to a max would handle NaNs incorrectly.
13327        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13328          break;
13329        Opcode = X86ISD::FMAX;
13330        break;
13331      case ISD::SETOLE:
13332        // Converting this to a max would handle comparisons between positive
13333        // and negative zero incorrectly, and swapping the operands would
13334        // cause it to handle NaNs incorrectly.
13335        if (!DAG.getTarget().Options.UnsafeFPMath &&
13336            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13337          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13338            break;
13339          std::swap(LHS, RHS);
13340        }
13341        Opcode = X86ISD::FMAX;
13342        break;
13343      case ISD::SETULE:
13344        // Converting this to a max would handle both negative zeros and NaNs
13345        // incorrectly, but we can swap the operands to fix both.
13346        std::swap(LHS, RHS);
13347      case ISD::SETOLT:
13348      case ISD::SETLT:
13349      case ISD::SETLE:
13350        Opcode = X86ISD::FMAX;
13351        break;
13352      }
13353    }
13354
13355    if (Opcode)
13356      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13357  }
13358
13359  // If this is a select between two integer constants, try to do some
13360  // optimizations.
13361  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13362    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13363      // Don't do this for crazy integer types.
13364      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13365        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13366        // so that TrueC (the true value) is larger than FalseC.
13367        bool NeedsCondInvert = false;
13368
13369        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13370            // Efficiently invertible.
13371            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13372             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13373              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13374          NeedsCondInvert = true;
13375          std::swap(TrueC, FalseC);
13376        }
13377
13378        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13379        if (FalseC->getAPIntValue() == 0 &&
13380            TrueC->getAPIntValue().isPowerOf2()) {
13381          if (NeedsCondInvert) // Invert the condition if needed.
13382            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13383                               DAG.getConstant(1, Cond.getValueType()));
13384
13385          // Zero extend the condition if needed.
13386          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13387
13388          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13389          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13390                             DAG.getConstant(ShAmt, MVT::i8));
13391        }
13392
13393        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13394        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13395          if (NeedsCondInvert) // Invert the condition if needed.
13396            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13397                               DAG.getConstant(1, Cond.getValueType()));
13398
13399          // Zero extend the condition if needed.
13400          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13401                             FalseC->getValueType(0), Cond);
13402          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13403                             SDValue(FalseC, 0));
13404        }
13405
13406        // Optimize cases that will turn into an LEA instruction.  This requires
13407        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13408        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13409          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13410          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13411
13412          bool isFastMultiplier = false;
13413          if (Diff < 10) {
13414            switch ((unsigned char)Diff) {
13415              default: break;
13416              case 1:  // result = add base, cond
13417              case 2:  // result = lea base(    , cond*2)
13418              case 3:  // result = lea base(cond, cond*2)
13419              case 4:  // result = lea base(    , cond*4)
13420              case 5:  // result = lea base(cond, cond*4)
13421              case 8:  // result = lea base(    , cond*8)
13422              case 9:  // result = lea base(cond, cond*8)
13423                isFastMultiplier = true;
13424                break;
13425            }
13426          }
13427
13428          if (isFastMultiplier) {
13429            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13430            if (NeedsCondInvert) // Invert the condition if needed.
13431              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13432                                 DAG.getConstant(1, Cond.getValueType()));
13433
13434            // Zero extend the condition if needed.
13435            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13436                               Cond);
13437            // Scale the condition by the difference.
13438            if (Diff != 1)
13439              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13440                                 DAG.getConstant(Diff, Cond.getValueType()));
13441
13442            // Add the base if non-zero.
13443            if (FalseC->getAPIntValue() != 0)
13444              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13445                                 SDValue(FalseC, 0));
13446            return Cond;
13447          }
13448        }
13449      }
13450  }
13451
13452  // Canonicalize max and min:
13453  // (x > y) ? x : y -> (x >= y) ? x : y
13454  // (x < y) ? x : y -> (x <= y) ? x : y
13455  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13456  // the need for an extra compare
13457  // against zero. e.g.
13458  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13459  // subl   %esi, %edi
13460  // testl  %edi, %edi
13461  // movl   $0, %eax
13462  // cmovgl %edi, %eax
13463  // =>
13464  // xorl   %eax, %eax
13465  // subl   %esi, $edi
13466  // cmovsl %eax, %edi
13467  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13468      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13469      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13470    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13471    switch (CC) {
13472    default: break;
13473    case ISD::SETLT:
13474    case ISD::SETGT: {
13475      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13476      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13477                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13478      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13479    }
13480    }
13481  }
13482
13483  // If we know that this node is legal then we know that it is going to be
13484  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13485  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13486  // to simplify previous instructions.
13487  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13488  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13489      !DCI.isBeforeLegalize() &&
13490      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13491    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13492    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13493    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13494
13495    APInt KnownZero, KnownOne;
13496    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13497                                          DCI.isBeforeLegalizeOps());
13498    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13499        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13500      DCI.CommitTargetLoweringOpt(TLO);
13501  }
13502
13503  return SDValue();
13504}
13505
13506/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13507static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13508                                  TargetLowering::DAGCombinerInfo &DCI) {
13509  DebugLoc DL = N->getDebugLoc();
13510
13511  // If the flag operand isn't dead, don't touch this CMOV.
13512  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13513    return SDValue();
13514
13515  SDValue FalseOp = N->getOperand(0);
13516  SDValue TrueOp = N->getOperand(1);
13517  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13518  SDValue Cond = N->getOperand(3);
13519  if (CC == X86::COND_E || CC == X86::COND_NE) {
13520    switch (Cond.getOpcode()) {
13521    default: break;
13522    case X86ISD::BSR:
13523    case X86ISD::BSF:
13524      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13525      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13526        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13527    }
13528  }
13529
13530  // If this is a select between two integer constants, try to do some
13531  // optimizations.  Note that the operands are ordered the opposite of SELECT
13532  // operands.
13533  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13534    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13535      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13536      // larger than FalseC (the false value).
13537      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13538        CC = X86::GetOppositeBranchCondition(CC);
13539        std::swap(TrueC, FalseC);
13540      }
13541
13542      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13543      // This is efficient for any integer data type (including i8/i16) and
13544      // shift amount.
13545      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13546        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13547                           DAG.getConstant(CC, MVT::i8), Cond);
13548
13549        // Zero extend the condition if needed.
13550        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13551
13552        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13553        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13554                           DAG.getConstant(ShAmt, MVT::i8));
13555        if (N->getNumValues() == 2)  // Dead flag value?
13556          return DCI.CombineTo(N, Cond, SDValue());
13557        return Cond;
13558      }
13559
13560      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13561      // for any integer data type, including i8/i16.
13562      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13563        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13564                           DAG.getConstant(CC, MVT::i8), Cond);
13565
13566        // Zero extend the condition if needed.
13567        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13568                           FalseC->getValueType(0), Cond);
13569        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13570                           SDValue(FalseC, 0));
13571
13572        if (N->getNumValues() == 2)  // Dead flag value?
13573          return DCI.CombineTo(N, Cond, SDValue());
13574        return Cond;
13575      }
13576
13577      // Optimize cases that will turn into an LEA instruction.  This requires
13578      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13579      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13580        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13581        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13582
13583        bool isFastMultiplier = false;
13584        if (Diff < 10) {
13585          switch ((unsigned char)Diff) {
13586          default: break;
13587          case 1:  // result = add base, cond
13588          case 2:  // result = lea base(    , cond*2)
13589          case 3:  // result = lea base(cond, cond*2)
13590          case 4:  // result = lea base(    , cond*4)
13591          case 5:  // result = lea base(cond, cond*4)
13592          case 8:  // result = lea base(    , cond*8)
13593          case 9:  // result = lea base(cond, cond*8)
13594            isFastMultiplier = true;
13595            break;
13596          }
13597        }
13598
13599        if (isFastMultiplier) {
13600          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13601          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13602                             DAG.getConstant(CC, MVT::i8), Cond);
13603          // Zero extend the condition if needed.
13604          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13605                             Cond);
13606          // Scale the condition by the difference.
13607          if (Diff != 1)
13608            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13609                               DAG.getConstant(Diff, Cond.getValueType()));
13610
13611          // Add the base if non-zero.
13612          if (FalseC->getAPIntValue() != 0)
13613            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13614                               SDValue(FalseC, 0));
13615          if (N->getNumValues() == 2)  // Dead flag value?
13616            return DCI.CombineTo(N, Cond, SDValue());
13617          return Cond;
13618        }
13619      }
13620    }
13621  }
13622  return SDValue();
13623}
13624
13625
13626/// PerformMulCombine - Optimize a single multiply with constant into two
13627/// in order to implement it with two cheaper instructions, e.g.
13628/// LEA + SHL, LEA + LEA.
13629static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13630                                 TargetLowering::DAGCombinerInfo &DCI) {
13631  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13632    return SDValue();
13633
13634  EVT VT = N->getValueType(0);
13635  if (VT != MVT::i64)
13636    return SDValue();
13637
13638  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13639  if (!C)
13640    return SDValue();
13641  uint64_t MulAmt = C->getZExtValue();
13642  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13643    return SDValue();
13644
13645  uint64_t MulAmt1 = 0;
13646  uint64_t MulAmt2 = 0;
13647  if ((MulAmt % 9) == 0) {
13648    MulAmt1 = 9;
13649    MulAmt2 = MulAmt / 9;
13650  } else if ((MulAmt % 5) == 0) {
13651    MulAmt1 = 5;
13652    MulAmt2 = MulAmt / 5;
13653  } else if ((MulAmt % 3) == 0) {
13654    MulAmt1 = 3;
13655    MulAmt2 = MulAmt / 3;
13656  }
13657  if (MulAmt2 &&
13658      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13659    DebugLoc DL = N->getDebugLoc();
13660
13661    if (isPowerOf2_64(MulAmt2) &&
13662        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13663      // If second multiplifer is pow2, issue it first. We want the multiply by
13664      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13665      // is an add.
13666      std::swap(MulAmt1, MulAmt2);
13667
13668    SDValue NewMul;
13669    if (isPowerOf2_64(MulAmt1))
13670      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13671                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13672    else
13673      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13674                           DAG.getConstant(MulAmt1, VT));
13675
13676    if (isPowerOf2_64(MulAmt2))
13677      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13678                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13679    else
13680      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13681                           DAG.getConstant(MulAmt2, VT));
13682
13683    // Do not add new nodes to DAG combiner worklist.
13684    DCI.CombineTo(N, NewMul, false);
13685  }
13686  return SDValue();
13687}
13688
13689static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13690  SDValue N0 = N->getOperand(0);
13691  SDValue N1 = N->getOperand(1);
13692  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13693  EVT VT = N0.getValueType();
13694
13695  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13696  // since the result of setcc_c is all zero's or all ones.
13697  if (VT.isInteger() && !VT.isVector() &&
13698      N1C && N0.getOpcode() == ISD::AND &&
13699      N0.getOperand(1).getOpcode() == ISD::Constant) {
13700    SDValue N00 = N0.getOperand(0);
13701    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13702        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13703          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13704         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13705      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13706      APInt ShAmt = N1C->getAPIntValue();
13707      Mask = Mask.shl(ShAmt);
13708      if (Mask != 0)
13709        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13710                           N00, DAG.getConstant(Mask, VT));
13711    }
13712  }
13713
13714
13715  // Hardware support for vector shifts is sparse which makes us scalarize the
13716  // vector operations in many cases. Also, on sandybridge ADD is faster than
13717  // shl.
13718  // (shl V, 1) -> add V,V
13719  if (isSplatVector(N1.getNode())) {
13720    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13721    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13722    // We shift all of the values by one. In many cases we do not have
13723    // hardware support for this operation. This is better expressed as an ADD
13724    // of two values.
13725    if (N1C && (1 == N1C->getZExtValue())) {
13726      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13727    }
13728  }
13729
13730  return SDValue();
13731}
13732
13733/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13734///                       when possible.
13735static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13736                                   TargetLowering::DAGCombinerInfo &DCI,
13737                                   const X86Subtarget *Subtarget) {
13738  EVT VT = N->getValueType(0);
13739  if (N->getOpcode() == ISD::SHL) {
13740    SDValue V = PerformSHLCombine(N, DAG);
13741    if (V.getNode()) return V;
13742  }
13743
13744  // On X86 with SSE2 support, we can transform this to a vector shift if
13745  // all elements are shifted by the same amount.  We can't do this in legalize
13746  // because the a constant vector is typically transformed to a constant pool
13747  // so we have no knowledge of the shift amount.
13748  if (!Subtarget->hasSSE2())
13749    return SDValue();
13750
13751  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13752      (!Subtarget->hasAVX2() ||
13753       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13754    return SDValue();
13755
13756  SDValue ShAmtOp = N->getOperand(1);
13757  EVT EltVT = VT.getVectorElementType();
13758  DebugLoc DL = N->getDebugLoc();
13759  SDValue BaseShAmt = SDValue();
13760  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13761    unsigned NumElts = VT.getVectorNumElements();
13762    unsigned i = 0;
13763    for (; i != NumElts; ++i) {
13764      SDValue Arg = ShAmtOp.getOperand(i);
13765      if (Arg.getOpcode() == ISD::UNDEF) continue;
13766      BaseShAmt = Arg;
13767      break;
13768    }
13769    // Handle the case where the build_vector is all undef
13770    // FIXME: Should DAG allow this?
13771    if (i == NumElts)
13772      return SDValue();
13773
13774    for (; i != NumElts; ++i) {
13775      SDValue Arg = ShAmtOp.getOperand(i);
13776      if (Arg.getOpcode() == ISD::UNDEF) continue;
13777      if (Arg != BaseShAmt) {
13778        return SDValue();
13779      }
13780    }
13781  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13782             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13783    SDValue InVec = ShAmtOp.getOperand(0);
13784    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13785      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13786      unsigned i = 0;
13787      for (; i != NumElts; ++i) {
13788        SDValue Arg = InVec.getOperand(i);
13789        if (Arg.getOpcode() == ISD::UNDEF) continue;
13790        BaseShAmt = Arg;
13791        break;
13792      }
13793    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13794       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13795         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13796         if (C->getZExtValue() == SplatIdx)
13797           BaseShAmt = InVec.getOperand(1);
13798       }
13799    }
13800    if (BaseShAmt.getNode() == 0) {
13801      // Don't create instructions with illegal types after legalize
13802      // types has run.
13803      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
13804          !DCI.isBeforeLegalize())
13805        return SDValue();
13806
13807      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13808                              DAG.getIntPtrConstant(0));
13809    }
13810  } else
13811    return SDValue();
13812
13813  // The shift amount is an i32.
13814  if (EltVT.bitsGT(MVT::i32))
13815    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13816  else if (EltVT.bitsLT(MVT::i32))
13817    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13818
13819  // The shift amount is identical so we can do a vector shift.
13820  SDValue  ValOp = N->getOperand(0);
13821  switch (N->getOpcode()) {
13822  default:
13823    llvm_unreachable("Unknown shift opcode!");
13824  case ISD::SHL:
13825    switch (VT.getSimpleVT().SimpleTy) {
13826    default: return SDValue();
13827    case MVT::v2i64:
13828    case MVT::v4i32:
13829    case MVT::v8i16:
13830    case MVT::v4i64:
13831    case MVT::v8i32:
13832    case MVT::v16i16:
13833      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13834    }
13835  case ISD::SRA:
13836    switch (VT.getSimpleVT().SimpleTy) {
13837    default: return SDValue();
13838    case MVT::v4i32:
13839    case MVT::v8i16:
13840    case MVT::v8i32:
13841    case MVT::v16i16:
13842      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13843    }
13844  case ISD::SRL:
13845    switch (VT.getSimpleVT().SimpleTy) {
13846    default: return SDValue();
13847    case MVT::v2i64:
13848    case MVT::v4i32:
13849    case MVT::v8i16:
13850    case MVT::v4i64:
13851    case MVT::v8i32:
13852    case MVT::v16i16:
13853      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13854    }
13855  }
13856}
13857
13858
13859// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13860// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13861// and friends.  Likewise for OR -> CMPNEQSS.
13862static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13863                            TargetLowering::DAGCombinerInfo &DCI,
13864                            const X86Subtarget *Subtarget) {
13865  unsigned opcode;
13866
13867  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13868  // we're requiring SSE2 for both.
13869  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13870    SDValue N0 = N->getOperand(0);
13871    SDValue N1 = N->getOperand(1);
13872    SDValue CMP0 = N0->getOperand(1);
13873    SDValue CMP1 = N1->getOperand(1);
13874    DebugLoc DL = N->getDebugLoc();
13875
13876    // The SETCCs should both refer to the same CMP.
13877    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13878      return SDValue();
13879
13880    SDValue CMP00 = CMP0->getOperand(0);
13881    SDValue CMP01 = CMP0->getOperand(1);
13882    EVT     VT    = CMP00.getValueType();
13883
13884    if (VT == MVT::f32 || VT == MVT::f64) {
13885      bool ExpectingFlags = false;
13886      // Check for any users that want flags:
13887      for (SDNode::use_iterator UI = N->use_begin(),
13888             UE = N->use_end();
13889           !ExpectingFlags && UI != UE; ++UI)
13890        switch (UI->getOpcode()) {
13891        default:
13892        case ISD::BR_CC:
13893        case ISD::BRCOND:
13894        case ISD::SELECT:
13895          ExpectingFlags = true;
13896          break;
13897        case ISD::CopyToReg:
13898        case ISD::SIGN_EXTEND:
13899        case ISD::ZERO_EXTEND:
13900        case ISD::ANY_EXTEND:
13901          break;
13902        }
13903
13904      if (!ExpectingFlags) {
13905        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13906        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13907
13908        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13909          X86::CondCode tmp = cc0;
13910          cc0 = cc1;
13911          cc1 = tmp;
13912        }
13913
13914        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13915            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13916          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13917          X86ISD::NodeType NTOperator = is64BitFP ?
13918            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13919          // FIXME: need symbolic constants for these magic numbers.
13920          // See X86ATTInstPrinter.cpp:printSSECC().
13921          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13922          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13923                                              DAG.getConstant(x86cc, MVT::i8));
13924          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13925                                              OnesOrZeroesF);
13926          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13927                                      DAG.getConstant(1, MVT::i32));
13928          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13929          return OneBitOfTruth;
13930        }
13931      }
13932    }
13933  }
13934  return SDValue();
13935}
13936
13937/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13938/// so it can be folded inside ANDNP.
13939static bool CanFoldXORWithAllOnes(const SDNode *N) {
13940  EVT VT = N->getValueType(0);
13941
13942  // Match direct AllOnes for 128 and 256-bit vectors
13943  if (ISD::isBuildVectorAllOnes(N))
13944    return true;
13945
13946  // Look through a bit convert.
13947  if (N->getOpcode() == ISD::BITCAST)
13948    N = N->getOperand(0).getNode();
13949
13950  // Sometimes the operand may come from a insert_subvector building a 256-bit
13951  // allones vector
13952  if (VT.getSizeInBits() == 256 &&
13953      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13954    SDValue V1 = N->getOperand(0);
13955    SDValue V2 = N->getOperand(1);
13956
13957    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13958        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13959        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13960        ISD::isBuildVectorAllOnes(V2.getNode()))
13961      return true;
13962  }
13963
13964  return false;
13965}
13966
13967static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13968                                 TargetLowering::DAGCombinerInfo &DCI,
13969                                 const X86Subtarget *Subtarget) {
13970  if (DCI.isBeforeLegalizeOps())
13971    return SDValue();
13972
13973  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13974  if (R.getNode())
13975    return R;
13976
13977  EVT VT = N->getValueType(0);
13978
13979  // Create ANDN, BLSI, and BLSR instructions
13980  // BLSI is X & (-X)
13981  // BLSR is X & (X-1)
13982  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13983    SDValue N0 = N->getOperand(0);
13984    SDValue N1 = N->getOperand(1);
13985    DebugLoc DL = N->getDebugLoc();
13986
13987    // Check LHS for not
13988    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13989      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13990    // Check RHS for not
13991    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13992      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13993
13994    // Check LHS for neg
13995    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13996        isZero(N0.getOperand(0)))
13997      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13998
13999    // Check RHS for neg
14000    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14001        isZero(N1.getOperand(0)))
14002      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14003
14004    // Check LHS for X-1
14005    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14006        isAllOnes(N0.getOperand(1)))
14007      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14008
14009    // Check RHS for X-1
14010    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14011        isAllOnes(N1.getOperand(1)))
14012      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14013
14014    return SDValue();
14015  }
14016
14017  // Want to form ANDNP nodes:
14018  // 1) In the hopes of then easily combining them with OR and AND nodes
14019  //    to form PBLEND/PSIGN.
14020  // 2) To match ANDN packed intrinsics
14021  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14022    return SDValue();
14023
14024  SDValue N0 = N->getOperand(0);
14025  SDValue N1 = N->getOperand(1);
14026  DebugLoc DL = N->getDebugLoc();
14027
14028  // Check LHS for vnot
14029  if (N0.getOpcode() == ISD::XOR &&
14030      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14031      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14032    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14033
14034  // Check RHS for vnot
14035  if (N1.getOpcode() == ISD::XOR &&
14036      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14037      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14038    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14039
14040  return SDValue();
14041}
14042
14043static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14044                                TargetLowering::DAGCombinerInfo &DCI,
14045                                const X86Subtarget *Subtarget) {
14046  if (DCI.isBeforeLegalizeOps())
14047    return SDValue();
14048
14049  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14050  if (R.getNode())
14051    return R;
14052
14053  EVT VT = N->getValueType(0);
14054
14055  SDValue N0 = N->getOperand(0);
14056  SDValue N1 = N->getOperand(1);
14057
14058  // look for psign/blend
14059  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14060    if (!Subtarget->hasSSSE3() ||
14061        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14062      return SDValue();
14063
14064    // Canonicalize pandn to RHS
14065    if (N0.getOpcode() == X86ISD::ANDNP)
14066      std::swap(N0, N1);
14067    // or (and (m, y), (pandn m, x))
14068    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14069      SDValue Mask = N1.getOperand(0);
14070      SDValue X    = N1.getOperand(1);
14071      SDValue Y;
14072      if (N0.getOperand(0) == Mask)
14073        Y = N0.getOperand(1);
14074      if (N0.getOperand(1) == Mask)
14075        Y = N0.getOperand(0);
14076
14077      // Check to see if the mask appeared in both the AND and ANDNP and
14078      if (!Y.getNode())
14079        return SDValue();
14080
14081      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14082      // Look through mask bitcast.
14083      if (Mask.getOpcode() == ISD::BITCAST)
14084        Mask = Mask.getOperand(0);
14085      if (X.getOpcode() == ISD::BITCAST)
14086        X = X.getOperand(0);
14087      if (Y.getOpcode() == ISD::BITCAST)
14088        Y = Y.getOperand(0);
14089
14090      EVT MaskVT = Mask.getValueType();
14091
14092      // Validate that the Mask operand is a vector sra node.
14093      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14094      // there is no psrai.b
14095      if (Mask.getOpcode() != X86ISD::VSRAI)
14096        return SDValue();
14097
14098      // Check that the SRA is all signbits.
14099      SDValue SraC = Mask.getOperand(1);
14100      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14101      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14102      if ((SraAmt + 1) != EltBits)
14103        return SDValue();
14104
14105      DebugLoc DL = N->getDebugLoc();
14106
14107      // Now we know we at least have a plendvb with the mask val.  See if
14108      // we can form a psignb/w/d.
14109      // psign = x.type == y.type == mask.type && y = sub(0, x);
14110      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14111          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14112          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14113        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14114               "Unsupported VT for PSIGN");
14115        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14116        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14117      }
14118      // PBLENDVB only available on SSE 4.1
14119      if (!Subtarget->hasSSE41())
14120        return SDValue();
14121
14122      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14123
14124      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14125      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14126      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14127      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14128      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14129    }
14130  }
14131
14132  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14133    return SDValue();
14134
14135  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14136  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14137    std::swap(N0, N1);
14138  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14139    return SDValue();
14140  if (!N0.hasOneUse() || !N1.hasOneUse())
14141    return SDValue();
14142
14143  SDValue ShAmt0 = N0.getOperand(1);
14144  if (ShAmt0.getValueType() != MVT::i8)
14145    return SDValue();
14146  SDValue ShAmt1 = N1.getOperand(1);
14147  if (ShAmt1.getValueType() != MVT::i8)
14148    return SDValue();
14149  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14150    ShAmt0 = ShAmt0.getOperand(0);
14151  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14152    ShAmt1 = ShAmt1.getOperand(0);
14153
14154  DebugLoc DL = N->getDebugLoc();
14155  unsigned Opc = X86ISD::SHLD;
14156  SDValue Op0 = N0.getOperand(0);
14157  SDValue Op1 = N1.getOperand(0);
14158  if (ShAmt0.getOpcode() == ISD::SUB) {
14159    Opc = X86ISD::SHRD;
14160    std::swap(Op0, Op1);
14161    std::swap(ShAmt0, ShAmt1);
14162  }
14163
14164  unsigned Bits = VT.getSizeInBits();
14165  if (ShAmt1.getOpcode() == ISD::SUB) {
14166    SDValue Sum = ShAmt1.getOperand(0);
14167    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14168      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14169      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14170        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14171      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14172        return DAG.getNode(Opc, DL, VT,
14173                           Op0, Op1,
14174                           DAG.getNode(ISD::TRUNCATE, DL,
14175                                       MVT::i8, ShAmt0));
14176    }
14177  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14178    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14179    if (ShAmt0C &&
14180        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14181      return DAG.getNode(Opc, DL, VT,
14182                         N0.getOperand(0), N1.getOperand(0),
14183                         DAG.getNode(ISD::TRUNCATE, DL,
14184                                       MVT::i8, ShAmt0));
14185  }
14186
14187  return SDValue();
14188}
14189
14190// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14191static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14192                                 TargetLowering::DAGCombinerInfo &DCI,
14193                                 const X86Subtarget *Subtarget) {
14194  if (DCI.isBeforeLegalizeOps())
14195    return SDValue();
14196
14197  EVT VT = N->getValueType(0);
14198
14199  if (VT != MVT::i32 && VT != MVT::i64)
14200    return SDValue();
14201
14202  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14203
14204  // Create BLSMSK instructions by finding X ^ (X-1)
14205  SDValue N0 = N->getOperand(0);
14206  SDValue N1 = N->getOperand(1);
14207  DebugLoc DL = N->getDebugLoc();
14208
14209  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14210      isAllOnes(N0.getOperand(1)))
14211    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14212
14213  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14214      isAllOnes(N1.getOperand(1)))
14215    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14216
14217  return SDValue();
14218}
14219
14220/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14221static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14222                                   const X86Subtarget *Subtarget) {
14223  LoadSDNode *Ld = cast<LoadSDNode>(N);
14224  EVT RegVT = Ld->getValueType(0);
14225  EVT MemVT = Ld->getMemoryVT();
14226  DebugLoc dl = Ld->getDebugLoc();
14227  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14228
14229  ISD::LoadExtType Ext = Ld->getExtensionType();
14230
14231  // If this is a vector EXT Load then attempt to optimize it using a
14232  // shuffle. We need SSE4 for the shuffles.
14233  // TODO: It is possible to support ZExt by zeroing the undef values
14234  // during the shuffle phase or after the shuffle.
14235  if (RegVT.isVector() && RegVT.isInteger() &&
14236      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14237    assert(MemVT != RegVT && "Cannot extend to the same type");
14238    assert(MemVT.isVector() && "Must load a vector from memory");
14239
14240    unsigned NumElems = RegVT.getVectorNumElements();
14241    unsigned RegSz = RegVT.getSizeInBits();
14242    unsigned MemSz = MemVT.getSizeInBits();
14243    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14244    // All sizes must be a power of two
14245    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14246
14247    // Attempt to load the original value using a single load op.
14248    // Find a scalar type which is equal to the loaded word size.
14249    MVT SclrLoadTy = MVT::i8;
14250    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14251         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14252      MVT Tp = (MVT::SimpleValueType)tp;
14253      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14254        SclrLoadTy = Tp;
14255        break;
14256      }
14257    }
14258
14259    // Proceed if a load word is found.
14260    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14261
14262    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14263      RegSz/SclrLoadTy.getSizeInBits());
14264
14265    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14266                                  RegSz/MemVT.getScalarType().getSizeInBits());
14267    // Can't shuffle using an illegal type.
14268    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14269
14270    // Perform a single load.
14271    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14272                                  Ld->getBasePtr(),
14273                                  Ld->getPointerInfo(), Ld->isVolatile(),
14274                                  Ld->isNonTemporal(), Ld->isInvariant(),
14275                                  Ld->getAlignment());
14276
14277    // Insert the word loaded into a vector.
14278    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14279      LoadUnitVecVT, ScalarLoad);
14280
14281    // Bitcast the loaded value to a vector of the original element type, in
14282    // the size of the target vector type.
14283    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14284                                    ScalarInVector);
14285    unsigned SizeRatio = RegSz/MemSz;
14286
14287    // Redistribute the loaded elements into the different locations.
14288    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14289    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14290
14291    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14292                                DAG.getUNDEF(SlicedVec.getValueType()),
14293                                ShuffleVec.data());
14294
14295    // Bitcast to the requested type.
14296    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14297    // Replace the original load with the new sequence
14298    // and return the new chain.
14299    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14300    return SDValue(ScalarLoad.getNode(), 1);
14301  }
14302
14303  return SDValue();
14304}
14305
14306/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14307static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14308                                   const X86Subtarget *Subtarget) {
14309  StoreSDNode *St = cast<StoreSDNode>(N);
14310  EVT VT = St->getValue().getValueType();
14311  EVT StVT = St->getMemoryVT();
14312  DebugLoc dl = St->getDebugLoc();
14313  SDValue StoredVal = St->getOperand(1);
14314  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14315
14316  // If we are saving a concatenation of two XMM registers, perform two stores.
14317  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14318  // 128-bit ones. If in the future the cost becomes only one memory access the
14319  // first version would be better.
14320  if (VT.getSizeInBits() == 256 &&
14321    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14322    StoredVal.getNumOperands() == 2) {
14323
14324    SDValue Value0 = StoredVal.getOperand(0);
14325    SDValue Value1 = StoredVal.getOperand(1);
14326
14327    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14328    SDValue Ptr0 = St->getBasePtr();
14329    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14330
14331    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14332                                St->getPointerInfo(), St->isVolatile(),
14333                                St->isNonTemporal(), St->getAlignment());
14334    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14335                                St->getPointerInfo(), St->isVolatile(),
14336                                St->isNonTemporal(), St->getAlignment());
14337    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14338  }
14339
14340  // Optimize trunc store (of multiple scalars) to shuffle and store.
14341  // First, pack all of the elements in one place. Next, store to memory
14342  // in fewer chunks.
14343  if (St->isTruncatingStore() && VT.isVector()) {
14344    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14345    unsigned NumElems = VT.getVectorNumElements();
14346    assert(StVT != VT && "Cannot truncate to the same type");
14347    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14348    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14349
14350    // From, To sizes and ElemCount must be pow of two
14351    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14352    // We are going to use the original vector elt for storing.
14353    // Accumulated smaller vector elements must be a multiple of the store size.
14354    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14355
14356    unsigned SizeRatio  = FromSz / ToSz;
14357
14358    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14359
14360    // Create a type on which we perform the shuffle
14361    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14362            StVT.getScalarType(), NumElems*SizeRatio);
14363
14364    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14365
14366    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14367    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14368    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14369
14370    // Can't shuffle using an illegal type
14371    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14372
14373    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14374                                DAG.getUNDEF(WideVec.getValueType()),
14375                                ShuffleVec.data());
14376    // At this point all of the data is stored at the bottom of the
14377    // register. We now need to save it to mem.
14378
14379    // Find the largest store unit
14380    MVT StoreType = MVT::i8;
14381    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14382         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14383      MVT Tp = (MVT::SimpleValueType)tp;
14384      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14385        StoreType = Tp;
14386    }
14387
14388    // Bitcast the original vector into a vector of store-size units
14389    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14390            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14391    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14392    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14393    SmallVector<SDValue, 8> Chains;
14394    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14395                                        TLI.getPointerTy());
14396    SDValue Ptr = St->getBasePtr();
14397
14398    // Perform one or more big stores into memory.
14399    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14400      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14401                                   StoreType, ShuffWide,
14402                                   DAG.getIntPtrConstant(i));
14403      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14404                                St->getPointerInfo(), St->isVolatile(),
14405                                St->isNonTemporal(), St->getAlignment());
14406      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14407      Chains.push_back(Ch);
14408    }
14409
14410    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14411                               Chains.size());
14412  }
14413
14414
14415  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14416  // the FP state in cases where an emms may be missing.
14417  // A preferable solution to the general problem is to figure out the right
14418  // places to insert EMMS.  This qualifies as a quick hack.
14419
14420  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14421  if (VT.getSizeInBits() != 64)
14422    return SDValue();
14423
14424  const Function *F = DAG.getMachineFunction().getFunction();
14425  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14426  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14427                     && Subtarget->hasSSE2();
14428  if ((VT.isVector() ||
14429       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14430      isa<LoadSDNode>(St->getValue()) &&
14431      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14432      St->getChain().hasOneUse() && !St->isVolatile()) {
14433    SDNode* LdVal = St->getValue().getNode();
14434    LoadSDNode *Ld = 0;
14435    int TokenFactorIndex = -1;
14436    SmallVector<SDValue, 8> Ops;
14437    SDNode* ChainVal = St->getChain().getNode();
14438    // Must be a store of a load.  We currently handle two cases:  the load
14439    // is a direct child, and it's under an intervening TokenFactor.  It is
14440    // possible to dig deeper under nested TokenFactors.
14441    if (ChainVal == LdVal)
14442      Ld = cast<LoadSDNode>(St->getChain());
14443    else if (St->getValue().hasOneUse() &&
14444             ChainVal->getOpcode() == ISD::TokenFactor) {
14445      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14446        if (ChainVal->getOperand(i).getNode() == LdVal) {
14447          TokenFactorIndex = i;
14448          Ld = cast<LoadSDNode>(St->getValue());
14449        } else
14450          Ops.push_back(ChainVal->getOperand(i));
14451      }
14452    }
14453
14454    if (!Ld || !ISD::isNormalLoad(Ld))
14455      return SDValue();
14456
14457    // If this is not the MMX case, i.e. we are just turning i64 load/store
14458    // into f64 load/store, avoid the transformation if there are multiple
14459    // uses of the loaded value.
14460    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14461      return SDValue();
14462
14463    DebugLoc LdDL = Ld->getDebugLoc();
14464    DebugLoc StDL = N->getDebugLoc();
14465    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14466    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14467    // pair instead.
14468    if (Subtarget->is64Bit() || F64IsLegal) {
14469      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14470      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14471                                  Ld->getPointerInfo(), Ld->isVolatile(),
14472                                  Ld->isNonTemporal(), Ld->isInvariant(),
14473                                  Ld->getAlignment());
14474      SDValue NewChain = NewLd.getValue(1);
14475      if (TokenFactorIndex != -1) {
14476        Ops.push_back(NewChain);
14477        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14478                               Ops.size());
14479      }
14480      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14481                          St->getPointerInfo(),
14482                          St->isVolatile(), St->isNonTemporal(),
14483                          St->getAlignment());
14484    }
14485
14486    // Otherwise, lower to two pairs of 32-bit loads / stores.
14487    SDValue LoAddr = Ld->getBasePtr();
14488    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14489                                 DAG.getConstant(4, MVT::i32));
14490
14491    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14492                               Ld->getPointerInfo(),
14493                               Ld->isVolatile(), Ld->isNonTemporal(),
14494                               Ld->isInvariant(), Ld->getAlignment());
14495    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14496                               Ld->getPointerInfo().getWithOffset(4),
14497                               Ld->isVolatile(), Ld->isNonTemporal(),
14498                               Ld->isInvariant(),
14499                               MinAlign(Ld->getAlignment(), 4));
14500
14501    SDValue NewChain = LoLd.getValue(1);
14502    if (TokenFactorIndex != -1) {
14503      Ops.push_back(LoLd);
14504      Ops.push_back(HiLd);
14505      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14506                             Ops.size());
14507    }
14508
14509    LoAddr = St->getBasePtr();
14510    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14511                         DAG.getConstant(4, MVT::i32));
14512
14513    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14514                                St->getPointerInfo(),
14515                                St->isVolatile(), St->isNonTemporal(),
14516                                St->getAlignment());
14517    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14518                                St->getPointerInfo().getWithOffset(4),
14519                                St->isVolatile(),
14520                                St->isNonTemporal(),
14521                                MinAlign(St->getAlignment(), 4));
14522    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14523  }
14524  return SDValue();
14525}
14526
14527/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14528/// and return the operands for the horizontal operation in LHS and RHS.  A
14529/// horizontal operation performs the binary operation on successive elements
14530/// of its first operand, then on successive elements of its second operand,
14531/// returning the resulting values in a vector.  For example, if
14532///   A = < float a0, float a1, float a2, float a3 >
14533/// and
14534///   B = < float b0, float b1, float b2, float b3 >
14535/// then the result of doing a horizontal operation on A and B is
14536///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14537/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14538/// A horizontal-op B, for some already available A and B, and if so then LHS is
14539/// set to A, RHS to B, and the routine returns 'true'.
14540/// Note that the binary operation should have the property that if one of the
14541/// operands is UNDEF then the result is UNDEF.
14542static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14543  // Look for the following pattern: if
14544  //   A = < float a0, float a1, float a2, float a3 >
14545  //   B = < float b0, float b1, float b2, float b3 >
14546  // and
14547  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14548  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14549  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14550  // which is A horizontal-op B.
14551
14552  // At least one of the operands should be a vector shuffle.
14553  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14554      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14555    return false;
14556
14557  EVT VT = LHS.getValueType();
14558
14559  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14560         "Unsupported vector type for horizontal add/sub");
14561
14562  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14563  // operate independently on 128-bit lanes.
14564  unsigned NumElts = VT.getVectorNumElements();
14565  unsigned NumLanes = VT.getSizeInBits()/128;
14566  unsigned NumLaneElts = NumElts / NumLanes;
14567  assert((NumLaneElts % 2 == 0) &&
14568         "Vector type should have an even number of elements in each lane");
14569  unsigned HalfLaneElts = NumLaneElts/2;
14570
14571  // View LHS in the form
14572  //   LHS = VECTOR_SHUFFLE A, B, LMask
14573  // If LHS is not a shuffle then pretend it is the shuffle
14574  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14575  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14576  // type VT.
14577  SDValue A, B;
14578  SmallVector<int, 16> LMask(NumElts);
14579  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14580    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14581      A = LHS.getOperand(0);
14582    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14583      B = LHS.getOperand(1);
14584    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14585    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14586  } else {
14587    if (LHS.getOpcode() != ISD::UNDEF)
14588      A = LHS;
14589    for (unsigned i = 0; i != NumElts; ++i)
14590      LMask[i] = i;
14591  }
14592
14593  // Likewise, view RHS in the form
14594  //   RHS = VECTOR_SHUFFLE C, D, RMask
14595  SDValue C, D;
14596  SmallVector<int, 16> RMask(NumElts);
14597  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14598    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14599      C = RHS.getOperand(0);
14600    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14601      D = RHS.getOperand(1);
14602    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14603    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14604  } else {
14605    if (RHS.getOpcode() != ISD::UNDEF)
14606      C = RHS;
14607    for (unsigned i = 0; i != NumElts; ++i)
14608      RMask[i] = i;
14609  }
14610
14611  // Check that the shuffles are both shuffling the same vectors.
14612  if (!(A == C && B == D) && !(A == D && B == C))
14613    return false;
14614
14615  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14616  if (!A.getNode() && !B.getNode())
14617    return false;
14618
14619  // If A and B occur in reverse order in RHS, then "swap" them (which means
14620  // rewriting the mask).
14621  if (A != C)
14622    CommuteVectorShuffleMask(RMask, NumElts);
14623
14624  // At this point LHS and RHS are equivalent to
14625  //   LHS = VECTOR_SHUFFLE A, B, LMask
14626  //   RHS = VECTOR_SHUFFLE A, B, RMask
14627  // Check that the masks correspond to performing a horizontal operation.
14628  for (unsigned i = 0; i != NumElts; ++i) {
14629    int LIdx = LMask[i], RIdx = RMask[i];
14630
14631    // Ignore any UNDEF components.
14632    if (LIdx < 0 || RIdx < 0 ||
14633        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14634        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14635      continue;
14636
14637    // Check that successive elements are being operated on.  If not, this is
14638    // not a horizontal operation.
14639    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14640    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14641    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14642    if (!(LIdx == Index && RIdx == Index + 1) &&
14643        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14644      return false;
14645  }
14646
14647  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14648  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14649  return true;
14650}
14651
14652/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14653static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14654                                  const X86Subtarget *Subtarget) {
14655  EVT VT = N->getValueType(0);
14656  SDValue LHS = N->getOperand(0);
14657  SDValue RHS = N->getOperand(1);
14658
14659  // Try to synthesize horizontal adds from adds of shuffles.
14660  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14661       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14662      isHorizontalBinOp(LHS, RHS, true))
14663    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14664  return SDValue();
14665}
14666
14667/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14668static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14669                                  const X86Subtarget *Subtarget) {
14670  EVT VT = N->getValueType(0);
14671  SDValue LHS = N->getOperand(0);
14672  SDValue RHS = N->getOperand(1);
14673
14674  // Try to synthesize horizontal subs from subs of shuffles.
14675  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14676       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14677      isHorizontalBinOp(LHS, RHS, false))
14678    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14679  return SDValue();
14680}
14681
14682/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14683/// X86ISD::FXOR nodes.
14684static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14685  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14686  // F[X]OR(0.0, x) -> x
14687  // F[X]OR(x, 0.0) -> x
14688  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14689    if (C->getValueAPF().isPosZero())
14690      return N->getOperand(1);
14691  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14692    if (C->getValueAPF().isPosZero())
14693      return N->getOperand(0);
14694  return SDValue();
14695}
14696
14697/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14698static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14699  // FAND(0.0, x) -> 0.0
14700  // FAND(x, 0.0) -> 0.0
14701  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14702    if (C->getValueAPF().isPosZero())
14703      return N->getOperand(0);
14704  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14705    if (C->getValueAPF().isPosZero())
14706      return N->getOperand(1);
14707  return SDValue();
14708}
14709
14710static SDValue PerformBTCombine(SDNode *N,
14711                                SelectionDAG &DAG,
14712                                TargetLowering::DAGCombinerInfo &DCI) {
14713  // BT ignores high bits in the bit index operand.
14714  SDValue Op1 = N->getOperand(1);
14715  if (Op1.hasOneUse()) {
14716    unsigned BitWidth = Op1.getValueSizeInBits();
14717    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14718    APInt KnownZero, KnownOne;
14719    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14720                                          !DCI.isBeforeLegalizeOps());
14721    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14722    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14723        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14724      DCI.CommitTargetLoweringOpt(TLO);
14725  }
14726  return SDValue();
14727}
14728
14729static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14730  SDValue Op = N->getOperand(0);
14731  if (Op.getOpcode() == ISD::BITCAST)
14732    Op = Op.getOperand(0);
14733  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14734  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14735      VT.getVectorElementType().getSizeInBits() ==
14736      OpVT.getVectorElementType().getSizeInBits()) {
14737    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14738  }
14739  return SDValue();
14740}
14741
14742static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14743                                  TargetLowering::DAGCombinerInfo &DCI,
14744                                  const X86Subtarget *Subtarget) {
14745  if (!DCI.isBeforeLegalizeOps())
14746    return SDValue();
14747
14748  if (!Subtarget->hasAVX())
14749    return SDValue();
14750
14751  // Optimize vectors in AVX mode
14752  // Sign extend  v8i16 to v8i32 and
14753  //              v4i32 to v4i64
14754  //
14755  // Divide input vector into two parts
14756  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14757  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14758  // concat the vectors to original VT
14759
14760  EVT VT = N->getValueType(0);
14761  SDValue Op = N->getOperand(0);
14762  EVT OpVT = Op.getValueType();
14763  DebugLoc dl = N->getDebugLoc();
14764
14765  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
14766      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
14767
14768    unsigned NumElems = OpVT.getVectorNumElements();
14769    SmallVector<int,8> ShufMask1(NumElems, -1);
14770    for (unsigned i = 0; i < NumElems/2; i++) ShufMask1[i] = i;
14771
14772    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14773                                        ShufMask1.data());
14774
14775    SmallVector<int,8> ShufMask2(NumElems, -1);
14776    for (unsigned i = 0; i < NumElems/2; i++) ShufMask2[i] = i + NumElems/2;
14777
14778    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14779                                        ShufMask2.data());
14780
14781    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
14782                                  VT.getVectorNumElements()/2);
14783
14784    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
14785    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
14786
14787    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14788  }
14789  return SDValue();
14790}
14791
14792static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
14793                                  const X86Subtarget *Subtarget) {
14794  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14795  //           (and (i32 x86isd::setcc_carry), 1)
14796  // This eliminates the zext. This transformation is necessary because
14797  // ISD::SETCC is always legalized to i8.
14798  DebugLoc dl = N->getDebugLoc();
14799  SDValue N0 = N->getOperand(0);
14800  EVT VT = N->getValueType(0);
14801  EVT OpVT = N0.getValueType();
14802
14803  if (N0.getOpcode() == ISD::AND &&
14804      N0.hasOneUse() &&
14805      N0.getOperand(0).hasOneUse()) {
14806    SDValue N00 = N0.getOperand(0);
14807    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14808      return SDValue();
14809    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14810    if (!C || C->getZExtValue() != 1)
14811      return SDValue();
14812    return DAG.getNode(ISD::AND, dl, VT,
14813                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14814                                   N00.getOperand(0), N00.getOperand(1)),
14815                       DAG.getConstant(1, VT));
14816  }
14817  // Optimize vectors in AVX mode:
14818  //
14819  //   v8i16 -> v8i32
14820  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
14821  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
14822  //   Concat upper and lower parts.
14823  //
14824  //   v4i32 -> v4i64
14825  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
14826  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
14827  //   Concat upper and lower parts.
14828  //
14829  if (Subtarget->hasAVX()) {
14830
14831    if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16))  ||
14832      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
14833
14834      SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
14835      SDValue OpLo = getTargetShuffleNode(X86ISD::UNPCKL, dl, OpVT, N0, ZeroVec, DAG);
14836      SDValue OpHi = getTargetShuffleNode(X86ISD::UNPCKH, dl, OpVT, N0, ZeroVec, DAG);
14837
14838      EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
14839        VT.getVectorNumElements()/2);
14840
14841      OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
14842      OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
14843
14844      return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14845    }
14846  }
14847
14848
14849  return SDValue();
14850}
14851
14852// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14853static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14854  unsigned X86CC = N->getConstantOperandVal(0);
14855  SDValue EFLAG = N->getOperand(1);
14856  DebugLoc DL = N->getDebugLoc();
14857
14858  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14859  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14860  // cases.
14861  if (X86CC == X86::COND_B)
14862    return DAG.getNode(ISD::AND, DL, MVT::i8,
14863                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14864                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14865                       DAG.getConstant(1, MVT::i8));
14866
14867  return SDValue();
14868}
14869
14870static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14871                                        const X86TargetLowering *XTLI) {
14872  SDValue Op0 = N->getOperand(0);
14873  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14874  // a 32-bit target where SSE doesn't support i64->FP operations.
14875  if (Op0.getOpcode() == ISD::LOAD) {
14876    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14877    EVT VT = Ld->getValueType(0);
14878    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14879        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14880        !XTLI->getSubtarget()->is64Bit() &&
14881        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14882      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14883                                          Ld->getChain(), Op0, DAG);
14884      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14885      return FILDChain;
14886    }
14887  }
14888  return SDValue();
14889}
14890
14891// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14892static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14893                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14894  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14895  // the result is either zero or one (depending on the input carry bit).
14896  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14897  if (X86::isZeroNode(N->getOperand(0)) &&
14898      X86::isZeroNode(N->getOperand(1)) &&
14899      // We don't have a good way to replace an EFLAGS use, so only do this when
14900      // dead right now.
14901      SDValue(N, 1).use_empty()) {
14902    DebugLoc DL = N->getDebugLoc();
14903    EVT VT = N->getValueType(0);
14904    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14905    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14906                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14907                                           DAG.getConstant(X86::COND_B,MVT::i8),
14908                                           N->getOperand(2)),
14909                               DAG.getConstant(1, VT));
14910    return DCI.CombineTo(N, Res1, CarryOut);
14911  }
14912
14913  return SDValue();
14914}
14915
14916// fold (add Y, (sete  X, 0)) -> adc  0, Y
14917//      (add Y, (setne X, 0)) -> sbb -1, Y
14918//      (sub (sete  X, 0), Y) -> sbb  0, Y
14919//      (sub (setne X, 0), Y) -> adc -1, Y
14920static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14921  DebugLoc DL = N->getDebugLoc();
14922
14923  // Look through ZExts.
14924  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14925  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14926    return SDValue();
14927
14928  SDValue SetCC = Ext.getOperand(0);
14929  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14930    return SDValue();
14931
14932  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14933  if (CC != X86::COND_E && CC != X86::COND_NE)
14934    return SDValue();
14935
14936  SDValue Cmp = SetCC.getOperand(1);
14937  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14938      !X86::isZeroNode(Cmp.getOperand(1)) ||
14939      !Cmp.getOperand(0).getValueType().isInteger())
14940    return SDValue();
14941
14942  SDValue CmpOp0 = Cmp.getOperand(0);
14943  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14944                               DAG.getConstant(1, CmpOp0.getValueType()));
14945
14946  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14947  if (CC == X86::COND_NE)
14948    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14949                       DL, OtherVal.getValueType(), OtherVal,
14950                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14951  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14952                     DL, OtherVal.getValueType(), OtherVal,
14953                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14954}
14955
14956/// PerformADDCombine - Do target-specific dag combines on integer adds.
14957static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14958                                 const X86Subtarget *Subtarget) {
14959  EVT VT = N->getValueType(0);
14960  SDValue Op0 = N->getOperand(0);
14961  SDValue Op1 = N->getOperand(1);
14962
14963  // Try to synthesize horizontal adds from adds of shuffles.
14964  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14965       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14966      isHorizontalBinOp(Op0, Op1, true))
14967    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14968
14969  return OptimizeConditionalInDecrement(N, DAG);
14970}
14971
14972static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14973                                 const X86Subtarget *Subtarget) {
14974  SDValue Op0 = N->getOperand(0);
14975  SDValue Op1 = N->getOperand(1);
14976
14977  // X86 can't encode an immediate LHS of a sub. See if we can push the
14978  // negation into a preceding instruction.
14979  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14980    // If the RHS of the sub is a XOR with one use and a constant, invert the
14981    // immediate. Then add one to the LHS of the sub so we can turn
14982    // X-Y -> X+~Y+1, saving one register.
14983    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14984        isa<ConstantSDNode>(Op1.getOperand(1))) {
14985      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14986      EVT VT = Op0.getValueType();
14987      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14988                                   Op1.getOperand(0),
14989                                   DAG.getConstant(~XorC, VT));
14990      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14991                         DAG.getConstant(C->getAPIntValue()+1, VT));
14992    }
14993  }
14994
14995  // Try to synthesize horizontal adds from adds of shuffles.
14996  EVT VT = N->getValueType(0);
14997  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14998       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14999      isHorizontalBinOp(Op0, Op1, true))
15000    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
15001
15002  return OptimizeConditionalInDecrement(N, DAG);
15003}
15004
15005SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
15006                                             DAGCombinerInfo &DCI) const {
15007  SelectionDAG &DAG = DCI.DAG;
15008  switch (N->getOpcode()) {
15009  default: break;
15010  case ISD::EXTRACT_VECTOR_ELT:
15011    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
15012  case ISD::VSELECT:
15013  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
15014  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
15015  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
15016  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
15017  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
15018  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
15019  case ISD::SHL:
15020  case ISD::SRA:
15021  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
15022  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
15023  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
15024  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
15025  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
15026  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
15027  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
15028  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
15029  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
15030  case X86ISD::FXOR:
15031  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
15032  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
15033  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
15034  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
15035  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, Subtarget);
15036  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
15037  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
15038  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
15039  case X86ISD::SHUFP:       // Handle all target specific shuffles
15040  case X86ISD::PALIGN:
15041  case X86ISD::UNPCKH:
15042  case X86ISD::UNPCKL:
15043  case X86ISD::MOVHLPS:
15044  case X86ISD::MOVLHPS:
15045  case X86ISD::PSHUFD:
15046  case X86ISD::PSHUFHW:
15047  case X86ISD::PSHUFLW:
15048  case X86ISD::MOVSS:
15049  case X86ISD::MOVSD:
15050  case X86ISD::VPERMILP:
15051  case X86ISD::VPERM2X128:
15052  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
15053  }
15054
15055  return SDValue();
15056}
15057
15058/// isTypeDesirableForOp - Return true if the target has native support for
15059/// the specified value type and it is 'desirable' to use the type for the
15060/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
15061/// instruction encodings are longer and some i16 instructions are slow.
15062bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
15063  if (!isTypeLegal(VT))
15064    return false;
15065  if (VT != MVT::i16)
15066    return true;
15067
15068  switch (Opc) {
15069  default:
15070    return true;
15071  case ISD::LOAD:
15072  case ISD::SIGN_EXTEND:
15073  case ISD::ZERO_EXTEND:
15074  case ISD::ANY_EXTEND:
15075  case ISD::SHL:
15076  case ISD::SRL:
15077  case ISD::SUB:
15078  case ISD::ADD:
15079  case ISD::MUL:
15080  case ISD::AND:
15081  case ISD::OR:
15082  case ISD::XOR:
15083    return false;
15084  }
15085}
15086
15087/// IsDesirableToPromoteOp - This method query the target whether it is
15088/// beneficial for dag combiner to promote the specified node. If true, it
15089/// should return the desired promotion type by reference.
15090bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
15091  EVT VT = Op.getValueType();
15092  if (VT != MVT::i16)
15093    return false;
15094
15095  bool Promote = false;
15096  bool Commute = false;
15097  switch (Op.getOpcode()) {
15098  default: break;
15099  case ISD::LOAD: {
15100    LoadSDNode *LD = cast<LoadSDNode>(Op);
15101    // If the non-extending load has a single use and it's not live out, then it
15102    // might be folded.
15103    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15104                                                     Op.hasOneUse()*/) {
15105      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15106             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15107        // The only case where we'd want to promote LOAD (rather then it being
15108        // promoted as an operand is when it's only use is liveout.
15109        if (UI->getOpcode() != ISD::CopyToReg)
15110          return false;
15111      }
15112    }
15113    Promote = true;
15114    break;
15115  }
15116  case ISD::SIGN_EXTEND:
15117  case ISD::ZERO_EXTEND:
15118  case ISD::ANY_EXTEND:
15119    Promote = true;
15120    break;
15121  case ISD::SHL:
15122  case ISD::SRL: {
15123    SDValue N0 = Op.getOperand(0);
15124    // Look out for (store (shl (load), x)).
15125    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15126      return false;
15127    Promote = true;
15128    break;
15129  }
15130  case ISD::ADD:
15131  case ISD::MUL:
15132  case ISD::AND:
15133  case ISD::OR:
15134  case ISD::XOR:
15135    Commute = true;
15136    // fallthrough
15137  case ISD::SUB: {
15138    SDValue N0 = Op.getOperand(0);
15139    SDValue N1 = Op.getOperand(1);
15140    if (!Commute && MayFoldLoad(N1))
15141      return false;
15142    // Avoid disabling potential load folding opportunities.
15143    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15144      return false;
15145    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15146      return false;
15147    Promote = true;
15148  }
15149  }
15150
15151  PVT = MVT::i32;
15152  return Promote;
15153}
15154
15155//===----------------------------------------------------------------------===//
15156//                           X86 Inline Assembly Support
15157//===----------------------------------------------------------------------===//
15158
15159namespace {
15160  // Helper to match a string separated by whitespace.
15161  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15162    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15163
15164    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15165      StringRef piece(*args[i]);
15166      if (!s.startswith(piece)) // Check if the piece matches.
15167        return false;
15168
15169      s = s.substr(piece.size());
15170      StringRef::size_type pos = s.find_first_not_of(" \t");
15171      if (pos == 0) // We matched a prefix.
15172        return false;
15173
15174      s = s.substr(pos);
15175    }
15176
15177    return s.empty();
15178  }
15179  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15180}
15181
15182bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15183  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15184
15185  std::string AsmStr = IA->getAsmString();
15186
15187  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15188  if (!Ty || Ty->getBitWidth() % 16 != 0)
15189    return false;
15190
15191  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15192  SmallVector<StringRef, 4> AsmPieces;
15193  SplitString(AsmStr, AsmPieces, ";\n");
15194
15195  switch (AsmPieces.size()) {
15196  default: return false;
15197  case 1:
15198    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15199    // we will turn this bswap into something that will be lowered to logical
15200    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15201    // lower so don't worry about this.
15202    // bswap $0
15203    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15204        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15205        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15206        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15207        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15208        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15209      // No need to check constraints, nothing other than the equivalent of
15210      // "=r,0" would be valid here.
15211      return IntrinsicLowering::LowerToByteSwap(CI);
15212    }
15213
15214    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15215    if (CI->getType()->isIntegerTy(16) &&
15216        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15217        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15218         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15219      AsmPieces.clear();
15220      const std::string &ConstraintsStr = IA->getConstraintString();
15221      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15222      std::sort(AsmPieces.begin(), AsmPieces.end());
15223      if (AsmPieces.size() == 4 &&
15224          AsmPieces[0] == "~{cc}" &&
15225          AsmPieces[1] == "~{dirflag}" &&
15226          AsmPieces[2] == "~{flags}" &&
15227          AsmPieces[3] == "~{fpsr}")
15228      return IntrinsicLowering::LowerToByteSwap(CI);
15229    }
15230    break;
15231  case 3:
15232    if (CI->getType()->isIntegerTy(32) &&
15233        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15234        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15235        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15236        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15237      AsmPieces.clear();
15238      const std::string &ConstraintsStr = IA->getConstraintString();
15239      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15240      std::sort(AsmPieces.begin(), AsmPieces.end());
15241      if (AsmPieces.size() == 4 &&
15242          AsmPieces[0] == "~{cc}" &&
15243          AsmPieces[1] == "~{dirflag}" &&
15244          AsmPieces[2] == "~{flags}" &&
15245          AsmPieces[3] == "~{fpsr}")
15246        return IntrinsicLowering::LowerToByteSwap(CI);
15247    }
15248
15249    if (CI->getType()->isIntegerTy(64)) {
15250      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15251      if (Constraints.size() >= 2 &&
15252          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15253          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15254        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15255        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15256            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15257            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15258          return IntrinsicLowering::LowerToByteSwap(CI);
15259      }
15260    }
15261    break;
15262  }
15263  return false;
15264}
15265
15266
15267
15268/// getConstraintType - Given a constraint letter, return the type of
15269/// constraint it is for this target.
15270X86TargetLowering::ConstraintType
15271X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15272  if (Constraint.size() == 1) {
15273    switch (Constraint[0]) {
15274    case 'R':
15275    case 'q':
15276    case 'Q':
15277    case 'f':
15278    case 't':
15279    case 'u':
15280    case 'y':
15281    case 'x':
15282    case 'Y':
15283    case 'l':
15284      return C_RegisterClass;
15285    case 'a':
15286    case 'b':
15287    case 'c':
15288    case 'd':
15289    case 'S':
15290    case 'D':
15291    case 'A':
15292      return C_Register;
15293    case 'I':
15294    case 'J':
15295    case 'K':
15296    case 'L':
15297    case 'M':
15298    case 'N':
15299    case 'G':
15300    case 'C':
15301    case 'e':
15302    case 'Z':
15303      return C_Other;
15304    default:
15305      break;
15306    }
15307  }
15308  return TargetLowering::getConstraintType(Constraint);
15309}
15310
15311/// Examine constraint type and operand type and determine a weight value.
15312/// This object must already have been set up with the operand type
15313/// and the current alternative constraint selected.
15314TargetLowering::ConstraintWeight
15315  X86TargetLowering::getSingleConstraintMatchWeight(
15316    AsmOperandInfo &info, const char *constraint) const {
15317  ConstraintWeight weight = CW_Invalid;
15318  Value *CallOperandVal = info.CallOperandVal;
15319    // If we don't have a value, we can't do a match,
15320    // but allow it at the lowest weight.
15321  if (CallOperandVal == NULL)
15322    return CW_Default;
15323  Type *type = CallOperandVal->getType();
15324  // Look at the constraint type.
15325  switch (*constraint) {
15326  default:
15327    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15328  case 'R':
15329  case 'q':
15330  case 'Q':
15331  case 'a':
15332  case 'b':
15333  case 'c':
15334  case 'd':
15335  case 'S':
15336  case 'D':
15337  case 'A':
15338    if (CallOperandVal->getType()->isIntegerTy())
15339      weight = CW_SpecificReg;
15340    break;
15341  case 'f':
15342  case 't':
15343  case 'u':
15344      if (type->isFloatingPointTy())
15345        weight = CW_SpecificReg;
15346      break;
15347  case 'y':
15348      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15349        weight = CW_SpecificReg;
15350      break;
15351  case 'x':
15352  case 'Y':
15353    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15354        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15355      weight = CW_Register;
15356    break;
15357  case 'I':
15358    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15359      if (C->getZExtValue() <= 31)
15360        weight = CW_Constant;
15361    }
15362    break;
15363  case 'J':
15364    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15365      if (C->getZExtValue() <= 63)
15366        weight = CW_Constant;
15367    }
15368    break;
15369  case 'K':
15370    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15371      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15372        weight = CW_Constant;
15373    }
15374    break;
15375  case 'L':
15376    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15377      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15378        weight = CW_Constant;
15379    }
15380    break;
15381  case 'M':
15382    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15383      if (C->getZExtValue() <= 3)
15384        weight = CW_Constant;
15385    }
15386    break;
15387  case 'N':
15388    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15389      if (C->getZExtValue() <= 0xff)
15390        weight = CW_Constant;
15391    }
15392    break;
15393  case 'G':
15394  case 'C':
15395    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15396      weight = CW_Constant;
15397    }
15398    break;
15399  case 'e':
15400    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15401      if ((C->getSExtValue() >= -0x80000000LL) &&
15402          (C->getSExtValue() <= 0x7fffffffLL))
15403        weight = CW_Constant;
15404    }
15405    break;
15406  case 'Z':
15407    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15408      if (C->getZExtValue() <= 0xffffffff)
15409        weight = CW_Constant;
15410    }
15411    break;
15412  }
15413  return weight;
15414}
15415
15416/// LowerXConstraint - try to replace an X constraint, which matches anything,
15417/// with another that has more specific requirements based on the type of the
15418/// corresponding operand.
15419const char *X86TargetLowering::
15420LowerXConstraint(EVT ConstraintVT) const {
15421  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15422  // 'f' like normal targets.
15423  if (ConstraintVT.isFloatingPoint()) {
15424    if (Subtarget->hasSSE2())
15425      return "Y";
15426    if (Subtarget->hasSSE1())
15427      return "x";
15428  }
15429
15430  return TargetLowering::LowerXConstraint(ConstraintVT);
15431}
15432
15433/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15434/// vector.  If it is invalid, don't add anything to Ops.
15435void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15436                                                     std::string &Constraint,
15437                                                     std::vector<SDValue>&Ops,
15438                                                     SelectionDAG &DAG) const {
15439  SDValue Result(0, 0);
15440
15441  // Only support length 1 constraints for now.
15442  if (Constraint.length() > 1) return;
15443
15444  char ConstraintLetter = Constraint[0];
15445  switch (ConstraintLetter) {
15446  default: break;
15447  case 'I':
15448    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15449      if (C->getZExtValue() <= 31) {
15450        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15451        break;
15452      }
15453    }
15454    return;
15455  case 'J':
15456    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15457      if (C->getZExtValue() <= 63) {
15458        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15459        break;
15460      }
15461    }
15462    return;
15463  case 'K':
15464    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15465      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15466        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15467        break;
15468      }
15469    }
15470    return;
15471  case 'N':
15472    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15473      if (C->getZExtValue() <= 255) {
15474        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15475        break;
15476      }
15477    }
15478    return;
15479  case 'e': {
15480    // 32-bit signed value
15481    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15482      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15483                                           C->getSExtValue())) {
15484        // Widen to 64 bits here to get it sign extended.
15485        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15486        break;
15487      }
15488    // FIXME gcc accepts some relocatable values here too, but only in certain
15489    // memory models; it's complicated.
15490    }
15491    return;
15492  }
15493  case 'Z': {
15494    // 32-bit unsigned value
15495    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15496      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15497                                           C->getZExtValue())) {
15498        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15499        break;
15500      }
15501    }
15502    // FIXME gcc accepts some relocatable values here too, but only in certain
15503    // memory models; it's complicated.
15504    return;
15505  }
15506  case 'i': {
15507    // Literal immediates are always ok.
15508    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15509      // Widen to 64 bits here to get it sign extended.
15510      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15511      break;
15512    }
15513
15514    // In any sort of PIC mode addresses need to be computed at runtime by
15515    // adding in a register or some sort of table lookup.  These can't
15516    // be used as immediates.
15517    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15518      return;
15519
15520    // If we are in non-pic codegen mode, we allow the address of a global (with
15521    // an optional displacement) to be used with 'i'.
15522    GlobalAddressSDNode *GA = 0;
15523    int64_t Offset = 0;
15524
15525    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15526    while (1) {
15527      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15528        Offset += GA->getOffset();
15529        break;
15530      } else if (Op.getOpcode() == ISD::ADD) {
15531        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15532          Offset += C->getZExtValue();
15533          Op = Op.getOperand(0);
15534          continue;
15535        }
15536      } else if (Op.getOpcode() == ISD::SUB) {
15537        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15538          Offset += -C->getZExtValue();
15539          Op = Op.getOperand(0);
15540          continue;
15541        }
15542      }
15543
15544      // Otherwise, this isn't something we can handle, reject it.
15545      return;
15546    }
15547
15548    const GlobalValue *GV = GA->getGlobal();
15549    // If we require an extra load to get this address, as in PIC mode, we
15550    // can't accept it.
15551    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15552                                                        getTargetMachine())))
15553      return;
15554
15555    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15556                                        GA->getValueType(0), Offset);
15557    break;
15558  }
15559  }
15560
15561  if (Result.getNode()) {
15562    Ops.push_back(Result);
15563    return;
15564  }
15565  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15566}
15567
15568std::pair<unsigned, const TargetRegisterClass*>
15569X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15570                                                EVT VT) const {
15571  // First, see if this is a constraint that directly corresponds to an LLVM
15572  // register class.
15573  if (Constraint.size() == 1) {
15574    // GCC Constraint Letters
15575    switch (Constraint[0]) {
15576    default: break;
15577      // TODO: Slight differences here in allocation order and leaving
15578      // RIP in the class. Do they matter any more here than they do
15579      // in the normal allocation?
15580    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15581      if (Subtarget->is64Bit()) {
15582	if (VT == MVT::i32 || VT == MVT::f32)
15583	  return std::make_pair(0U, X86::GR32RegisterClass);
15584	else if (VT == MVT::i16)
15585	  return std::make_pair(0U, X86::GR16RegisterClass);
15586	else if (VT == MVT::i8 || VT == MVT::i1)
15587	  return std::make_pair(0U, X86::GR8RegisterClass);
15588	else if (VT == MVT::i64 || VT == MVT::f64)
15589	  return std::make_pair(0U, X86::GR64RegisterClass);
15590	break;
15591      }
15592      // 32-bit fallthrough
15593    case 'Q':   // Q_REGS
15594      if (VT == MVT::i32 || VT == MVT::f32)
15595	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15596      else if (VT == MVT::i16)
15597	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15598      else if (VT == MVT::i8 || VT == MVT::i1)
15599	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15600      else if (VT == MVT::i64)
15601	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15602      break;
15603    case 'r':   // GENERAL_REGS
15604    case 'l':   // INDEX_REGS
15605      if (VT == MVT::i8 || VT == MVT::i1)
15606        return std::make_pair(0U, X86::GR8RegisterClass);
15607      if (VT == MVT::i16)
15608        return std::make_pair(0U, X86::GR16RegisterClass);
15609      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15610        return std::make_pair(0U, X86::GR32RegisterClass);
15611      return std::make_pair(0U, X86::GR64RegisterClass);
15612    case 'R':   // LEGACY_REGS
15613      if (VT == MVT::i8 || VT == MVT::i1)
15614        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15615      if (VT == MVT::i16)
15616        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15617      if (VT == MVT::i32 || !Subtarget->is64Bit())
15618        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15619      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15620    case 'f':  // FP Stack registers.
15621      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15622      // value to the correct fpstack register class.
15623      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15624        return std::make_pair(0U, X86::RFP32RegisterClass);
15625      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15626        return std::make_pair(0U, X86::RFP64RegisterClass);
15627      return std::make_pair(0U, X86::RFP80RegisterClass);
15628    case 'y':   // MMX_REGS if MMX allowed.
15629      if (!Subtarget->hasMMX()) break;
15630      return std::make_pair(0U, X86::VR64RegisterClass);
15631    case 'Y':   // SSE_REGS if SSE2 allowed
15632      if (!Subtarget->hasSSE2()) break;
15633      // FALL THROUGH.
15634    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15635      if (!Subtarget->hasSSE1()) break;
15636
15637      switch (VT.getSimpleVT().SimpleTy) {
15638      default: break;
15639      // Scalar SSE types.
15640      case MVT::f32:
15641      case MVT::i32:
15642        return std::make_pair(0U, X86::FR32RegisterClass);
15643      case MVT::f64:
15644      case MVT::i64:
15645        return std::make_pair(0U, X86::FR64RegisterClass);
15646      // Vector types.
15647      case MVT::v16i8:
15648      case MVT::v8i16:
15649      case MVT::v4i32:
15650      case MVT::v2i64:
15651      case MVT::v4f32:
15652      case MVT::v2f64:
15653        return std::make_pair(0U, X86::VR128RegisterClass);
15654      // AVX types.
15655      case MVT::v32i8:
15656      case MVT::v16i16:
15657      case MVT::v8i32:
15658      case MVT::v4i64:
15659      case MVT::v8f32:
15660      case MVT::v4f64:
15661        return std::make_pair(0U, X86::VR256RegisterClass);
15662
15663      }
15664      break;
15665    }
15666  }
15667
15668  // Use the default implementation in TargetLowering to convert the register
15669  // constraint into a member of a register class.
15670  std::pair<unsigned, const TargetRegisterClass*> Res;
15671  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15672
15673  // Not found as a standard register?
15674  if (Res.second == 0) {
15675    // Map st(0) -> st(7) -> ST0
15676    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15677        tolower(Constraint[1]) == 's' &&
15678        tolower(Constraint[2]) == 't' &&
15679        Constraint[3] == '(' &&
15680        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15681        Constraint[5] == ')' &&
15682        Constraint[6] == '}') {
15683
15684      Res.first = X86::ST0+Constraint[4]-'0';
15685      Res.second = X86::RFP80RegisterClass;
15686      return Res;
15687    }
15688
15689    // GCC allows "st(0)" to be called just plain "st".
15690    if (StringRef("{st}").equals_lower(Constraint)) {
15691      Res.first = X86::ST0;
15692      Res.second = X86::RFP80RegisterClass;
15693      return Res;
15694    }
15695
15696    // flags -> EFLAGS
15697    if (StringRef("{flags}").equals_lower(Constraint)) {
15698      Res.first = X86::EFLAGS;
15699      Res.second = X86::CCRRegisterClass;
15700      return Res;
15701    }
15702
15703    // 'A' means EAX + EDX.
15704    if (Constraint == "A") {
15705      Res.first = X86::EAX;
15706      Res.second = X86::GR32_ADRegisterClass;
15707      return Res;
15708    }
15709    return Res;
15710  }
15711
15712  // Otherwise, check to see if this is a register class of the wrong value
15713  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15714  // turn into {ax},{dx}.
15715  if (Res.second->hasType(VT))
15716    return Res;   // Correct type already, nothing to do.
15717
15718  // All of the single-register GCC register classes map their values onto
15719  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15720  // really want an 8-bit or 32-bit register, map to the appropriate register
15721  // class and return the appropriate register.
15722  if (Res.second == X86::GR16RegisterClass) {
15723    if (VT == MVT::i8) {
15724      unsigned DestReg = 0;
15725      switch (Res.first) {
15726      default: break;
15727      case X86::AX: DestReg = X86::AL; break;
15728      case X86::DX: DestReg = X86::DL; break;
15729      case X86::CX: DestReg = X86::CL; break;
15730      case X86::BX: DestReg = X86::BL; break;
15731      }
15732      if (DestReg) {
15733        Res.first = DestReg;
15734        Res.second = X86::GR8RegisterClass;
15735      }
15736    } else if (VT == MVT::i32) {
15737      unsigned DestReg = 0;
15738      switch (Res.first) {
15739      default: break;
15740      case X86::AX: DestReg = X86::EAX; break;
15741      case X86::DX: DestReg = X86::EDX; break;
15742      case X86::CX: DestReg = X86::ECX; break;
15743      case X86::BX: DestReg = X86::EBX; break;
15744      case X86::SI: DestReg = X86::ESI; break;
15745      case X86::DI: DestReg = X86::EDI; break;
15746      case X86::BP: DestReg = X86::EBP; break;
15747      case X86::SP: DestReg = X86::ESP; break;
15748      }
15749      if (DestReg) {
15750        Res.first = DestReg;
15751        Res.second = X86::GR32RegisterClass;
15752      }
15753    } else if (VT == MVT::i64) {
15754      unsigned DestReg = 0;
15755      switch (Res.first) {
15756      default: break;
15757      case X86::AX: DestReg = X86::RAX; break;
15758      case X86::DX: DestReg = X86::RDX; break;
15759      case X86::CX: DestReg = X86::RCX; break;
15760      case X86::BX: DestReg = X86::RBX; break;
15761      case X86::SI: DestReg = X86::RSI; break;
15762      case X86::DI: DestReg = X86::RDI; break;
15763      case X86::BP: DestReg = X86::RBP; break;
15764      case X86::SP: DestReg = X86::RSP; break;
15765      }
15766      if (DestReg) {
15767        Res.first = DestReg;
15768        Res.second = X86::GR64RegisterClass;
15769      }
15770    }
15771  } else if (Res.second == X86::FR32RegisterClass ||
15772             Res.second == X86::FR64RegisterClass ||
15773             Res.second == X86::VR128RegisterClass) {
15774    // Handle references to XMM physical registers that got mapped into the
15775    // wrong class.  This can happen with constraints like {xmm0} where the
15776    // target independent register mapper will just pick the first match it can
15777    // find, ignoring the required type.
15778    if (VT == MVT::f32)
15779      Res.second = X86::FR32RegisterClass;
15780    else if (VT == MVT::f64)
15781      Res.second = X86::FR64RegisterClass;
15782    else if (X86::VR128RegisterClass->hasType(VT))
15783      Res.second = X86::VR128RegisterClass;
15784  }
15785
15786  return Res;
15787}
15788