X86ISelLowering.cpp revision e915047fed99221afb8c540d8a7e81038a6483f1
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "Utils/X86ShuffleDecode.h"
18#include "X86.h"
19#include "X86InstrBuilder.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/VariadicFunction.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/IR/CallingConv.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/GlobalAlias.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/MC/MCContext.h"
44#include "llvm/MC/MCExpr.h"
45#include "llvm/MC/MCSymbol.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  // If the input is a buildvector just emit a smaller one.
89  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
90    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
91                       Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk);
92
93  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
94  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
95                               VecIdx);
96
97  return Result;
98}
99
100/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
101/// sets things up to match to an AVX VINSERTF128 instruction or a
102/// simple superregister reference.  Idx is an index in the 128 bits
103/// we want.  It need not be aligned to a 128-bit bounday.  That makes
104/// lowering INSERT_VECTOR_ELT operations easier.
105static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
106                                  unsigned IdxVal, SelectionDAG &DAG,
107                                  DebugLoc dl) {
108  // Inserting UNDEF is Result
109  if (Vec.getOpcode() == ISD::UNDEF)
110    return Result;
111
112  EVT VT = Vec.getValueType();
113  assert(VT.is128BitVector() && "Unexpected vector size!");
114
115  EVT ElVT = VT.getVectorElementType();
116  EVT ResultVT = Result.getValueType();
117
118  // Insert the relevant 128 bits.
119  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
120
121  // This is the index of the first element of the 128-bit chunk
122  // we want.
123  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
124                               * ElemsPerChunk);
125
126  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
127  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
128                     VecIdx);
129}
130
131/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
132/// instructions. This is used because creating CONCAT_VECTOR nodes of
133/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
134/// large BUILD_VECTORS.
135static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
136                                   unsigned NumElems, SelectionDAG &DAG,
137                                   DebugLoc dl) {
138  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
139  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
140}
141
142static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
143  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
144  bool is64Bit = Subtarget->is64Bit();
145
146  if (Subtarget->isTargetEnvMacho()) {
147    if (is64Bit)
148      return new X86_64MachoTargetObjectFile();
149    return new TargetLoweringObjectFileMachO();
150  }
151
152  if (Subtarget->isTargetLinux())
153    return new X86LinuxTargetObjectFile();
154  if (Subtarget->isTargetELF())
155    return new TargetLoweringObjectFileELF();
156  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
157    return new TargetLoweringObjectFileCOFF();
158  llvm_unreachable("unknown subtarget type");
159}
160
161X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
162  : TargetLowering(TM, createTLOF(TM)) {
163  Subtarget = &TM.getSubtarget<X86Subtarget>();
164  X86ScalarSSEf64 = Subtarget->hasSSE2();
165  X86ScalarSSEf32 = Subtarget->hasSSE1();
166
167  RegInfo = TM.getRegisterInfo();
168  TD = getDataLayout();
169
170  // Set up the TargetLowering object.
171  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
172
173  // X86 is weird, it always uses i8 for shift amounts and setcc results.
174  setBooleanContents(ZeroOrOneBooleanContent);
175  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
176  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
177
178  // For 64-bit since we have so many registers use the ILP scheduler, for
179  // 32-bit code use the register pressure specific scheduling.
180  // For Atom, always use ILP scheduling.
181  if (Subtarget->isAtom())
182    setSchedulingPreference(Sched::ILP);
183  else if (Subtarget->is64Bit())
184    setSchedulingPreference(Sched::ILP);
185  else
186    setSchedulingPreference(Sched::RegPressure);
187  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
188
189  // Bypass expensive divides on Atom when compiling with O2
190  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
191    addBypassSlowDiv(32, 8);
192    if (Subtarget->is64Bit())
193      addBypassSlowDiv(64, 16);
194  }
195
196  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
197    // Setup Windows compiler runtime calls.
198    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
199    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
200    setLibcallName(RTLIB::SREM_I64, "_allrem");
201    setLibcallName(RTLIB::UREM_I64, "_aullrem");
202    setLibcallName(RTLIB::MUL_I64, "_allmul");
203    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
208
209    // The _ftol2 runtime function has an unusual calling conv, which
210    // is modeled by a special pseudo-instruction.
211    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
212    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
213    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
214    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
215  }
216
217  if (Subtarget->isTargetDarwin()) {
218    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
219    setUseUnderscoreSetJmp(false);
220    setUseUnderscoreLongJmp(false);
221  } else if (Subtarget->isTargetMingw()) {
222    // MS runtime is weird: it exports _setjmp, but longjmp!
223    setUseUnderscoreSetJmp(true);
224    setUseUnderscoreLongJmp(false);
225  } else {
226    setUseUnderscoreSetJmp(true);
227    setUseUnderscoreLongJmp(true);
228  }
229
230  // Set up the register classes.
231  addRegisterClass(MVT::i8, &X86::GR8RegClass);
232  addRegisterClass(MVT::i16, &X86::GR16RegClass);
233  addRegisterClass(MVT::i32, &X86::GR32RegClass);
234  if (Subtarget->is64Bit())
235    addRegisterClass(MVT::i64, &X86::GR64RegClass);
236
237  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
238
239  // We don't accept any truncstore of integer registers.
240  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
241  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
242  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
243  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
244  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
245  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
246
247  // SETOEQ and SETUNE require checking two conditions.
248  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
249  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
250  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
251  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
252  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
253  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
254
255  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
256  // operation.
257  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
258  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
259  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
260
261  if (Subtarget->is64Bit()) {
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
264  } else if (!TM.Options.UseSoftFloat) {
265    // We have an algorithm for SSE2->double, and we turn this into a
266    // 64-bit FILD followed by conditional FADD for other targets.
267    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
268    // We have an algorithm for SSE2, and we turn this into a 64-bit
269    // FILD for other targets.
270    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
271  }
272
273  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
274  // this operation.
275  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
276  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
277
278  if (!TM.Options.UseSoftFloat) {
279    // SSE has no i16 to fp conversion, only i32
280    if (X86ScalarSSEf32) {
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
282      // f32 and f64 cases are Legal, f80 case is not
283      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
284    } else {
285      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
286      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
287    }
288  } else {
289    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
290    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
291  }
292
293  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
294  // are Legal, f80 is custom lowered.
295  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
296  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
297
298  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
299  // this operation.
300  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
301  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
302
303  if (X86ScalarSSEf32) {
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
305    // f32 and f64 cases are Legal, f80 case is not
306    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
307  } else {
308    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
309    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
310  }
311
312  // Handle FP_TO_UINT by promoting the destination to a larger signed
313  // conversion.
314  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
315  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
316  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
317
318  if (Subtarget->is64Bit()) {
319    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
320    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
321  } else if (!TM.Options.UseSoftFloat) {
322    // Since AVX is a superset of SSE3, only check for SSE here.
323    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
324      // Expand FP_TO_UINT into a select.
325      // FIXME: We would like to use a Custom expander here eventually to do
326      // the optimal thing for SSE vs. the default expansion in the legalizer.
327      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
328    else
329      // With SSE3 we can use fisttpll to convert to a signed i64; without
330      // SSE, we're stuck with a fistpll.
331      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
332  }
333
334  if (isTargetFTOL()) {
335    // Use the _ftol2 runtime function, which has a pseudo-instruction
336    // to handle its weird calling convention.
337    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
338  }
339
340  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
341  if (!X86ScalarSSEf64) {
342    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
343    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
344    if (Subtarget->is64Bit()) {
345      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
346      // Without SSE, i64->f64 goes through memory.
347      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
348    }
349  }
350
351  // Scalar integer divide and remainder are lowered to use operations that
352  // produce two results, to match the available instructions. This exposes
353  // the two-result form to trivial CSE, which is able to combine x/y and x%y
354  // into a single instruction.
355  //
356  // Scalar integer multiply-high is also lowered to use two-result
357  // operations, to match the available instructions. However, plain multiply
358  // (low) operations are left as Legal, as there are single-result
359  // instructions for this in x86. Using the two-result multiply instructions
360  // when both high and low results are needed must be arranged by dagcombine.
361  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
362    MVT VT = IntVTs[i];
363    setOperationAction(ISD::MULHS, VT, Expand);
364    setOperationAction(ISD::MULHU, VT, Expand);
365    setOperationAction(ISD::SDIV, VT, Expand);
366    setOperationAction(ISD::UDIV, VT, Expand);
367    setOperationAction(ISD::SREM, VT, Expand);
368    setOperationAction(ISD::UREM, VT, Expand);
369
370    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
371    setOperationAction(ISD::ADDC, VT, Custom);
372    setOperationAction(ISD::ADDE, VT, Custom);
373    setOperationAction(ISD::SUBC, VT, Custom);
374    setOperationAction(ISD::SUBE, VT, Custom);
375  }
376
377  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
378  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
379  setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
380  setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
381  setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
382  setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
383  setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
384  setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
385  setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
386  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
387  if (Subtarget->is64Bit())
388    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
389  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
390  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
391  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
392  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
393  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
394  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
395  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
396  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
397
398  // Promote the i8 variants and force them on up to i32 which has a shorter
399  // encoding.
400  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
401  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
402  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
403  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
404  if (Subtarget->hasBMI()) {
405    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
406    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
407    if (Subtarget->is64Bit())
408      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
409  } else {
410    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
411    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
412    if (Subtarget->is64Bit())
413      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
414  }
415
416  if (Subtarget->hasLZCNT()) {
417    // When promoting the i8 variants, force them to i32 for a shorter
418    // encoding.
419    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
420    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
421    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
422    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
423    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
424    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
425    if (Subtarget->is64Bit())
426      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
427  } else {
428    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
429    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
430    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
431    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
432    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
433    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
434    if (Subtarget->is64Bit()) {
435      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
436      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
437    }
438  }
439
440  if (Subtarget->hasPOPCNT()) {
441    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
442  } else {
443    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
444    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
445    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
446    if (Subtarget->is64Bit())
447      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
448  }
449
450  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
451  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
452
453  // These should be promoted to a larger select which is supported.
454  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
455  // X86 wants to expand cmov itself.
456  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
457  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
458  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
459  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
460  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
461  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
462  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
463  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
464  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
465  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
466  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
467  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
468  if (Subtarget->is64Bit()) {
469    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
470    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
471  }
472  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
473  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
474  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
475  // support continuation, user-level threading, and etc.. As a result, no
476  // other SjLj exception interfaces are implemented and please don't build
477  // your own exception handling based on them.
478  // LLVM/Clang supports zero-cost DWARF exception handling.
479  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
480  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
481
482  // Darwin ABI issue.
483  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
484  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
485  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
486  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
487  if (Subtarget->is64Bit())
488    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
489  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
490  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
491  if (Subtarget->is64Bit()) {
492    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
493    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
494    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
495    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
496    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
497  }
498  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
499  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
500  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
501  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
502  if (Subtarget->is64Bit()) {
503    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
504    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
505    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
506  }
507
508  if (Subtarget->hasSSE1())
509    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
510
511  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
512  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
513
514  // On X86 and X86-64, atomic operations are lowered to locked instructions.
515  // Locked instructions, in turn, have implicit fence semantics (all memory
516  // operations are flushed before issuing the locked instruction, and they
517  // are not buffered), so we can fold away the common pattern of
518  // fence-atomic-fence.
519  setShouldFoldAtomicFences(true);
520
521  // Expand certain atomics
522  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
523    MVT VT = IntVTs[i];
524    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
525    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
526    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
527  }
528
529  if (!Subtarget->is64Bit()) {
530    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
531    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
532    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
533    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
534    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
535    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
536    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
537    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
538    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
539    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
540    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
541    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
542  }
543
544  if (Subtarget->hasCmpxchg16b()) {
545    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
546  }
547
548  // FIXME - use subtarget debug flags
549  if (!Subtarget->isTargetDarwin() &&
550      !Subtarget->isTargetELF() &&
551      !Subtarget->isTargetCygMing()) {
552    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
553  }
554
555  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
556  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
557  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
558  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
559  if (Subtarget->is64Bit()) {
560    setExceptionPointerRegister(X86::RAX);
561    setExceptionSelectorRegister(X86::RDX);
562  } else {
563    setExceptionPointerRegister(X86::EAX);
564    setExceptionSelectorRegister(X86::EDX);
565  }
566  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
567  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
568
569  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
570  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
571
572  setOperationAction(ISD::TRAP, MVT::Other, Legal);
573  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
574
575  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
576  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
577  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
578  if (Subtarget->is64Bit()) {
579    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
580    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
581  } else {
582    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
583    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
584  }
585
586  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
587  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
588
589  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
590    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
591                       MVT::i64 : MVT::i32, Custom);
592  else if (TM.Options.EnableSegmentedStacks)
593    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
594                       MVT::i64 : MVT::i32, Custom);
595  else
596    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
597                       MVT::i64 : MVT::i32, Expand);
598
599  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
600    // f32 and f64 use SSE.
601    // Set up the FP register classes.
602    addRegisterClass(MVT::f32, &X86::FR32RegClass);
603    addRegisterClass(MVT::f64, &X86::FR64RegClass);
604
605    // Use ANDPD to simulate FABS.
606    setOperationAction(ISD::FABS , MVT::f64, Custom);
607    setOperationAction(ISD::FABS , MVT::f32, Custom);
608
609    // Use XORP to simulate FNEG.
610    setOperationAction(ISD::FNEG , MVT::f64, Custom);
611    setOperationAction(ISD::FNEG , MVT::f32, Custom);
612
613    // Use ANDPD and ORPD to simulate FCOPYSIGN.
614    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
615    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
616
617    // Lower this to FGETSIGNx86 plus an AND.
618    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
619    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
620
621    // We don't support sin/cos/fmod
622    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
623    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
624    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
625    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
626    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
627    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
628
629    // Expand FP immediates into loads from the stack, except for the special
630    // cases we handle.
631    addLegalFPImmediate(APFloat(+0.0)); // xorpd
632    addLegalFPImmediate(APFloat(+0.0f)); // xorps
633  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
634    // Use SSE for f32, x87 for f64.
635    // Set up the FP register classes.
636    addRegisterClass(MVT::f32, &X86::FR32RegClass);
637    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
638
639    // Use ANDPS to simulate FABS.
640    setOperationAction(ISD::FABS , MVT::f32, Custom);
641
642    // Use XORP to simulate FNEG.
643    setOperationAction(ISD::FNEG , MVT::f32, Custom);
644
645    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
646
647    // Use ANDPS and ORPS to simulate FCOPYSIGN.
648    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
649    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
650
651    // We don't support sin/cos/fmod
652    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
653    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
654    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
655
656    // Special cases we handle for FP constants.
657    addLegalFPImmediate(APFloat(+0.0f)); // xorps
658    addLegalFPImmediate(APFloat(+0.0)); // FLD0
659    addLegalFPImmediate(APFloat(+1.0)); // FLD1
660    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
661    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
662
663    if (!TM.Options.UnsafeFPMath) {
664      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
665      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
666      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
667    }
668  } else if (!TM.Options.UseSoftFloat) {
669    // f32 and f64 in x87.
670    // Set up the FP register classes.
671    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
672    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
673
674    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
675    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
676    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
677    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
678
679    if (!TM.Options.UnsafeFPMath) {
680      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
681      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
682      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
683      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
684      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
685      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
686    }
687    addLegalFPImmediate(APFloat(+0.0)); // FLD0
688    addLegalFPImmediate(APFloat(+1.0)); // FLD1
689    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
690    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
691    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
692    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
693    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
694    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
695  }
696
697  // We don't support FMA.
698  setOperationAction(ISD::FMA, MVT::f64, Expand);
699  setOperationAction(ISD::FMA, MVT::f32, Expand);
700
701  // Long double always uses X87.
702  if (!TM.Options.UseSoftFloat) {
703    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
704    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
705    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
706    {
707      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
708      addLegalFPImmediate(TmpFlt);  // FLD0
709      TmpFlt.changeSign();
710      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
711
712      bool ignored;
713      APFloat TmpFlt2(+1.0);
714      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
715                      &ignored);
716      addLegalFPImmediate(TmpFlt2);  // FLD1
717      TmpFlt2.changeSign();
718      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
719    }
720
721    if (!TM.Options.UnsafeFPMath) {
722      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
723      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
724      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
725    }
726
727    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
728    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
729    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
730    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
731    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
732    setOperationAction(ISD::FMA, MVT::f80, Expand);
733  }
734
735  // Always use a library call for pow.
736  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
737  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
738  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
739
740  setOperationAction(ISD::FLOG, MVT::f80, Expand);
741  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
742  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
743  setOperationAction(ISD::FEXP, MVT::f80, Expand);
744  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
745
746  // First set operation action for all vector types to either promote
747  // (for widening) or expand (for scalarization). Then we will selectively
748  // turn on ones that can be effectively codegen'd.
749  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
750           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
751    MVT VT = (MVT::SimpleValueType)i;
752    setOperationAction(ISD::ADD , VT, Expand);
753    setOperationAction(ISD::SUB , VT, Expand);
754    setOperationAction(ISD::FADD, VT, Expand);
755    setOperationAction(ISD::FNEG, VT, Expand);
756    setOperationAction(ISD::FSUB, VT, Expand);
757    setOperationAction(ISD::MUL , VT, Expand);
758    setOperationAction(ISD::FMUL, VT, Expand);
759    setOperationAction(ISD::SDIV, VT, Expand);
760    setOperationAction(ISD::UDIV, VT, Expand);
761    setOperationAction(ISD::FDIV, VT, Expand);
762    setOperationAction(ISD::SREM, VT, Expand);
763    setOperationAction(ISD::UREM, VT, Expand);
764    setOperationAction(ISD::LOAD, VT, Expand);
765    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
766    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
767    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
768    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
769    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
770    setOperationAction(ISD::FABS, VT, Expand);
771    setOperationAction(ISD::FSIN, VT, Expand);
772    setOperationAction(ISD::FSINCOS, VT, Expand);
773    setOperationAction(ISD::FCOS, VT, Expand);
774    setOperationAction(ISD::FSINCOS, VT, Expand);
775    setOperationAction(ISD::FREM, VT, Expand);
776    setOperationAction(ISD::FMA,  VT, Expand);
777    setOperationAction(ISD::FPOWI, VT, Expand);
778    setOperationAction(ISD::FSQRT, VT, Expand);
779    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
780    setOperationAction(ISD::FFLOOR, VT, Expand);
781    setOperationAction(ISD::FCEIL, VT, Expand);
782    setOperationAction(ISD::FTRUNC, VT, Expand);
783    setOperationAction(ISD::FRINT, VT, Expand);
784    setOperationAction(ISD::FNEARBYINT, VT, Expand);
785    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
786    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
787    setOperationAction(ISD::SDIVREM, VT, Expand);
788    setOperationAction(ISD::UDIVREM, VT, Expand);
789    setOperationAction(ISD::FPOW, VT, Expand);
790    setOperationAction(ISD::CTPOP, VT, Expand);
791    setOperationAction(ISD::CTTZ, VT, Expand);
792    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
793    setOperationAction(ISD::CTLZ, VT, Expand);
794    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
795    setOperationAction(ISD::SHL, VT, Expand);
796    setOperationAction(ISD::SRA, VT, Expand);
797    setOperationAction(ISD::SRL, VT, Expand);
798    setOperationAction(ISD::ROTL, VT, Expand);
799    setOperationAction(ISD::ROTR, VT, Expand);
800    setOperationAction(ISD::BSWAP, VT, Expand);
801    setOperationAction(ISD::SETCC, VT, Expand);
802    setOperationAction(ISD::FLOG, VT, Expand);
803    setOperationAction(ISD::FLOG2, VT, Expand);
804    setOperationAction(ISD::FLOG10, VT, Expand);
805    setOperationAction(ISD::FEXP, VT, Expand);
806    setOperationAction(ISD::FEXP2, VT, Expand);
807    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
808    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
809    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
810    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
811    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
812    setOperationAction(ISD::TRUNCATE, VT, Expand);
813    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
814    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
815    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
816    setOperationAction(ISD::VSELECT, VT, Expand);
817    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
818             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
819      setTruncStoreAction(VT,
820                          (MVT::SimpleValueType)InnerVT, Expand);
821    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
822    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
823    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
824  }
825
826  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
827  // with -msoft-float, disable use of MMX as well.
828  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
829    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
830    // No operations on x86mmx supported, everything uses intrinsics.
831  }
832
833  // MMX-sized vectors (other than x86mmx) are expected to be expanded
834  // into smaller operations.
835  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
836  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
837  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
838  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
839  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
840  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
841  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
842  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
843  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
844  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
845  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
846  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
847  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
848  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
849  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
850  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
851  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
852  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
853  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
854  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
855  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
856  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
857  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
858  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
859  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
860  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
861  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
862  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
863  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
864
865  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
866    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
867
868    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
869    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
870    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
871    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
872    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
873    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
874    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
875    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
876    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
877    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
878    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
879    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
880  }
881
882  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
883    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
884
885    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
886    // registers cannot be used even for integer operations.
887    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
888    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
889    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
890    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
891
892    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
893    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
894    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
895    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
896    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
897    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
898    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
899    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
900    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
901    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
902    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
903    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
904    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
905    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
906    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
907    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
908    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
909    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
910
911    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
912    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
913    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
914    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
915
916    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
917    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
918    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
919    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
920    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
921
922    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
923    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
924      MVT VT = (MVT::SimpleValueType)i;
925      // Do not attempt to custom lower non-power-of-2 vectors
926      if (!isPowerOf2_32(VT.getVectorNumElements()))
927        continue;
928      // Do not attempt to custom lower non-128-bit vectors
929      if (!VT.is128BitVector())
930        continue;
931      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
932      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
933      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
934    }
935
936    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
937    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
938    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
939    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
940    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
941    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
942
943    if (Subtarget->is64Bit()) {
944      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
945      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
946    }
947
948    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
949    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
950      MVT VT = (MVT::SimpleValueType)i;
951
952      // Do not attempt to promote non-128-bit vectors
953      if (!VT.is128BitVector())
954        continue;
955
956      setOperationAction(ISD::AND,    VT, Promote);
957      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
958      setOperationAction(ISD::OR,     VT, Promote);
959      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
960      setOperationAction(ISD::XOR,    VT, Promote);
961      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
962      setOperationAction(ISD::LOAD,   VT, Promote);
963      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
964      setOperationAction(ISD::SELECT, VT, Promote);
965      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
966    }
967
968    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
969
970    // Custom lower v2i64 and v2f64 selects.
971    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
972    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
973    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
974    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
975
976    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
977    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
978
979    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
980    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
981    // As there is no 64-bit GPR available, we need build a special custom
982    // sequence to convert from v2i32 to v2f32.
983    if (!Subtarget->is64Bit())
984      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
985
986    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
987    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
988
989    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
990  }
991
992  if (Subtarget->hasSSE41()) {
993    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
994    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
995    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
996    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
997    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
998    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
999    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
1000    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
1001    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
1002    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
1003
1004    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
1005    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
1006    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
1007    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
1008    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
1009    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
1010    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
1011    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
1012    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
1013    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
1014
1015    // FIXME: Do we need to handle scalar-to-vector here?
1016    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
1017
1018    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
1019    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
1020    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
1021    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
1022    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
1023
1024    // i8 and i16 vectors are custom , because the source register and source
1025    // source memory operand types are not the same width.  f32 vectors are
1026    // custom since the immediate controlling the insert encodes additional
1027    // information.
1028    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1029    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1030    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1031    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1032
1033    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1034    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1035    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1036    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1037
1038    // FIXME: these should be Legal but thats only for the case where
1039    // the index is constant.  For now custom expand to deal with that.
1040    if (Subtarget->is64Bit()) {
1041      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1042      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1043    }
1044  }
1045
1046  if (Subtarget->hasSSE2()) {
1047    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1048    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1049
1050    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1051    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1052
1053    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1054    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1055
1056    // In the customized shift lowering, the legal cases in AVX2 will be
1057    // recognized.
1058    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
1059    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
1060
1061    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
1062    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
1063
1064    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
1065
1066    setOperationAction(ISD::SDIV,              MVT::v8i16, Custom);
1067    setOperationAction(ISD::SDIV,              MVT::v4i32, Custom);
1068  }
1069
1070  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1071    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1072    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1073    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1074    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1075    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1076    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1077
1078    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1079    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1080    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1081
1082    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1083    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1084    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1085    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1086    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1087    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1088    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1089    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1090    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1091    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1092    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1093    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1094
1095    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1096    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1097    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1098    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1099    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1100    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1101    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1102    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1103    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1104    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1105    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1106    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1107
1108    setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
1109    setOperationAction(ISD::TRUNCATE,           MVT::v4i32, Custom);
1110
1111    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1112
1113    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1114    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1115    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1116
1117    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i32, Custom);
1118    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1119    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1120
1121    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1122
1123    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1124    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1125
1126    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1127    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1128
1129    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1130    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1131
1132    setOperationAction(ISD::SDIV,              MVT::v16i16, Custom);
1133
1134    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1135    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1136    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1137    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1138
1139    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1140    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1141    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1142
1143    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1144    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1145    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1146    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1147
1148    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1149    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1150    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1151    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1152    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1153    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1154
1155    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1156      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1157      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1158      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1159      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1160      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1161      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1162    }
1163
1164    if (Subtarget->hasInt256()) {
1165      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1166      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1167      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1168      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1169
1170      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1171      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1172      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1173      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1174
1175      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1176      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1177      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1178      // Don't lower v32i8 because there is no 128-bit byte mul
1179
1180      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1181
1182      setOperationAction(ISD::SDIV,            MVT::v8i32, Custom);
1183    } else {
1184      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1185      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1186      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1187      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1188
1189      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1190      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1191      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1192      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1193
1194      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1195      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1196      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1197      // Don't lower v32i8 because there is no 128-bit byte mul
1198    }
1199
1200    // In the customized shift lowering, the legal cases in AVX2 will be
1201    // recognized.
1202    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1203    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1204
1205    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1206    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1207
1208    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1209
1210    // Custom lower several nodes for 256-bit types.
1211    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1212             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1213      MVT VT = (MVT::SimpleValueType)i;
1214
1215      // Extract subvector is special because the value type
1216      // (result) is 128-bit but the source is 256-bit wide.
1217      if (VT.is128BitVector())
1218        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1219
1220      // Do not attempt to custom lower other non-256-bit vectors
1221      if (!VT.is256BitVector())
1222        continue;
1223
1224      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1225      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1226      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1227      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1228      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1229      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1230      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1231    }
1232
1233    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1234    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1235      MVT VT = (MVT::SimpleValueType)i;
1236
1237      // Do not attempt to promote non-256-bit vectors
1238      if (!VT.is256BitVector())
1239        continue;
1240
1241      setOperationAction(ISD::AND,    VT, Promote);
1242      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1243      setOperationAction(ISD::OR,     VT, Promote);
1244      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1245      setOperationAction(ISD::XOR,    VT, Promote);
1246      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1247      setOperationAction(ISD::LOAD,   VT, Promote);
1248      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1249      setOperationAction(ISD::SELECT, VT, Promote);
1250      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1251    }
1252  }
1253
1254  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1255  // of this type with custom code.
1256  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1257           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1258    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1259                       Custom);
1260  }
1261
1262  // We want to custom lower some of our intrinsics.
1263  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1264  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1265
1266  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1267  // handle type legalization for these operations here.
1268  //
1269  // FIXME: We really should do custom legalization for addition and
1270  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1271  // than generic legalization for 64-bit multiplication-with-overflow, though.
1272  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1273    // Add/Sub/Mul with overflow operations are custom lowered.
1274    MVT VT = IntVTs[i];
1275    setOperationAction(ISD::SADDO, VT, Custom);
1276    setOperationAction(ISD::UADDO, VT, Custom);
1277    setOperationAction(ISD::SSUBO, VT, Custom);
1278    setOperationAction(ISD::USUBO, VT, Custom);
1279    setOperationAction(ISD::SMULO, VT, Custom);
1280    setOperationAction(ISD::UMULO, VT, Custom);
1281  }
1282
1283  // There are no 8-bit 3-address imul/mul instructions
1284  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1285  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1286
1287  if (!Subtarget->is64Bit()) {
1288    // These libcalls are not available in 32-bit.
1289    setLibcallName(RTLIB::SHL_I128, 0);
1290    setLibcallName(RTLIB::SRL_I128, 0);
1291    setLibcallName(RTLIB::SRA_I128, 0);
1292  }
1293
1294  // Combine sin / cos into one node or libcall if possible.
1295  if (Subtarget->hasSinCos()) {
1296    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1297    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1298    if (Subtarget->isTargetDarwin()) {
1299      // For MacOSX, we don't want to the normal expansion of a libcall to
1300      // sincos. We want to issue a libcall to __sincos_stret to avoid memory
1301      // traffic.
1302      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1303      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1304    }
1305  }
1306
1307  // We have target-specific dag combine patterns for the following nodes:
1308  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1309  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1310  setTargetDAGCombine(ISD::VSELECT);
1311  setTargetDAGCombine(ISD::SELECT);
1312  setTargetDAGCombine(ISD::SHL);
1313  setTargetDAGCombine(ISD::SRA);
1314  setTargetDAGCombine(ISD::SRL);
1315  setTargetDAGCombine(ISD::OR);
1316  setTargetDAGCombine(ISD::AND);
1317  setTargetDAGCombine(ISD::ADD);
1318  setTargetDAGCombine(ISD::FADD);
1319  setTargetDAGCombine(ISD::FSUB);
1320  setTargetDAGCombine(ISD::FMA);
1321  setTargetDAGCombine(ISD::SUB);
1322  setTargetDAGCombine(ISD::LOAD);
1323  setTargetDAGCombine(ISD::STORE);
1324  setTargetDAGCombine(ISD::ZERO_EXTEND);
1325  setTargetDAGCombine(ISD::ANY_EXTEND);
1326  setTargetDAGCombine(ISD::SIGN_EXTEND);
1327  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1328  setTargetDAGCombine(ISD::TRUNCATE);
1329  setTargetDAGCombine(ISD::SINT_TO_FP);
1330  setTargetDAGCombine(ISD::SETCC);
1331  if (Subtarget->is64Bit())
1332    setTargetDAGCombine(ISD::MUL);
1333  setTargetDAGCombine(ISD::XOR);
1334
1335  computeRegisterProperties();
1336
1337  // On Darwin, -Os means optimize for size without hurting performance,
1338  // do not reduce the limit.
1339  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1340  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1341  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1342  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1343  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1344  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1345  setPrefLoopAlignment(4); // 2^4 bytes.
1346  BenefitFromCodePlacementOpt = true;
1347
1348  // Predictable cmov don't hurt on atom because it's in-order.
1349  PredictableSelectIsExpensive = !Subtarget->isAtom();
1350
1351  setPrefFunctionAlignment(4); // 2^4 bytes.
1352}
1353
1354EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1355  if (!VT.isVector()) return MVT::i8;
1356  return VT.changeVectorElementTypeToInteger();
1357}
1358
1359/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1360/// the desired ByVal argument alignment.
1361static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1362  if (MaxAlign == 16)
1363    return;
1364  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1365    if (VTy->getBitWidth() == 128)
1366      MaxAlign = 16;
1367  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1368    unsigned EltAlign = 0;
1369    getMaxByValAlign(ATy->getElementType(), EltAlign);
1370    if (EltAlign > MaxAlign)
1371      MaxAlign = EltAlign;
1372  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1373    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1374      unsigned EltAlign = 0;
1375      getMaxByValAlign(STy->getElementType(i), EltAlign);
1376      if (EltAlign > MaxAlign)
1377        MaxAlign = EltAlign;
1378      if (MaxAlign == 16)
1379        break;
1380    }
1381  }
1382}
1383
1384/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1385/// function arguments in the caller parameter area. For X86, aggregates
1386/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1387/// are at 4-byte boundaries.
1388unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1389  if (Subtarget->is64Bit()) {
1390    // Max of 8 and alignment of type.
1391    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1392    if (TyAlign > 8)
1393      return TyAlign;
1394    return 8;
1395  }
1396
1397  unsigned Align = 4;
1398  if (Subtarget->hasSSE1())
1399    getMaxByValAlign(Ty, Align);
1400  return Align;
1401}
1402
1403/// getOptimalMemOpType - Returns the target specific optimal type for load
1404/// and store operations as a result of memset, memcpy, and memmove
1405/// lowering. If DstAlign is zero that means it's safe to destination
1406/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1407/// means there isn't a need to check it against alignment requirement,
1408/// probably because the source does not need to be loaded. If 'IsMemset' is
1409/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1410/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1411/// source is constant so it does not need to be loaded.
1412/// It returns EVT::Other if the type should be determined using generic
1413/// target-independent logic.
1414EVT
1415X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1416                                       unsigned DstAlign, unsigned SrcAlign,
1417                                       bool IsMemset, bool ZeroMemset,
1418                                       bool MemcpyStrSrc,
1419                                       MachineFunction &MF) const {
1420  const Function *F = MF.getFunction();
1421  if ((!IsMemset || ZeroMemset) &&
1422      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1423                                       Attribute::NoImplicitFloat)) {
1424    if (Size >= 16 &&
1425        (Subtarget->isUnalignedMemAccessFast() ||
1426         ((DstAlign == 0 || DstAlign >= 16) &&
1427          (SrcAlign == 0 || SrcAlign >= 16)))) {
1428      if (Size >= 32) {
1429        if (Subtarget->hasInt256())
1430          return MVT::v8i32;
1431        if (Subtarget->hasFp256())
1432          return MVT::v8f32;
1433      }
1434      if (Subtarget->hasSSE2())
1435        return MVT::v4i32;
1436      if (Subtarget->hasSSE1())
1437        return MVT::v4f32;
1438    } else if (!MemcpyStrSrc && Size >= 8 &&
1439               !Subtarget->is64Bit() &&
1440               Subtarget->hasSSE2()) {
1441      // Do not use f64 to lower memcpy if source is string constant. It's
1442      // better to use i32 to avoid the loads.
1443      return MVT::f64;
1444    }
1445  }
1446  if (Subtarget->is64Bit() && Size >= 8)
1447    return MVT::i64;
1448  return MVT::i32;
1449}
1450
1451bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1452  if (VT == MVT::f32)
1453    return X86ScalarSSEf32;
1454  else if (VT == MVT::f64)
1455    return X86ScalarSSEf64;
1456  return true;
1457}
1458
1459bool
1460X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
1461  if (Fast)
1462    *Fast = Subtarget->isUnalignedMemAccessFast();
1463  return true;
1464}
1465
1466/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1467/// current function.  The returned value is a member of the
1468/// MachineJumpTableInfo::JTEntryKind enum.
1469unsigned X86TargetLowering::getJumpTableEncoding() const {
1470  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1471  // symbol.
1472  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1473      Subtarget->isPICStyleGOT())
1474    return MachineJumpTableInfo::EK_Custom32;
1475
1476  // Otherwise, use the normal jump table encoding heuristics.
1477  return TargetLowering::getJumpTableEncoding();
1478}
1479
1480const MCExpr *
1481X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1482                                             const MachineBasicBlock *MBB,
1483                                             unsigned uid,MCContext &Ctx) const{
1484  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1485         Subtarget->isPICStyleGOT());
1486  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1487  // entries.
1488  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1489                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1490}
1491
1492/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1493/// jumptable.
1494SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1495                                                    SelectionDAG &DAG) const {
1496  if (!Subtarget->is64Bit())
1497    // This doesn't have DebugLoc associated with it, but is not really the
1498    // same as a Register.
1499    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1500  return Table;
1501}
1502
1503/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1504/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1505/// MCExpr.
1506const MCExpr *X86TargetLowering::
1507getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1508                             MCContext &Ctx) const {
1509  // X86-64 uses RIP relative addressing based on the jump table label.
1510  if (Subtarget->isPICStyleRIPRel())
1511    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1512
1513  // Otherwise, the reference is relative to the PIC base.
1514  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1515}
1516
1517// FIXME: Why this routine is here? Move to RegInfo!
1518std::pair<const TargetRegisterClass*, uint8_t>
1519X86TargetLowering::findRepresentativeClass(MVT VT) const{
1520  const TargetRegisterClass *RRC = 0;
1521  uint8_t Cost = 1;
1522  switch (VT.SimpleTy) {
1523  default:
1524    return TargetLowering::findRepresentativeClass(VT);
1525  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1526    RRC = Subtarget->is64Bit() ?
1527      (const TargetRegisterClass*)&X86::GR64RegClass :
1528      (const TargetRegisterClass*)&X86::GR32RegClass;
1529    break;
1530  case MVT::x86mmx:
1531    RRC = &X86::VR64RegClass;
1532    break;
1533  case MVT::f32: case MVT::f64:
1534  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1535  case MVT::v4f32: case MVT::v2f64:
1536  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1537  case MVT::v4f64:
1538    RRC = &X86::VR128RegClass;
1539    break;
1540  }
1541  return std::make_pair(RRC, Cost);
1542}
1543
1544bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1545                                               unsigned &Offset) const {
1546  if (!Subtarget->isTargetLinux())
1547    return false;
1548
1549  if (Subtarget->is64Bit()) {
1550    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1551    Offset = 0x28;
1552    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1553      AddressSpace = 256;
1554    else
1555      AddressSpace = 257;
1556  } else {
1557    // %gs:0x14 on i386
1558    Offset = 0x14;
1559    AddressSpace = 256;
1560  }
1561  return true;
1562}
1563
1564//===----------------------------------------------------------------------===//
1565//               Return Value Calling Convention Implementation
1566//===----------------------------------------------------------------------===//
1567
1568#include "X86GenCallingConv.inc"
1569
1570bool
1571X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1572                                  MachineFunction &MF, bool isVarArg,
1573                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1574                        LLVMContext &Context) const {
1575  SmallVector<CCValAssign, 16> RVLocs;
1576  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1577                 RVLocs, Context);
1578  return CCInfo.CheckReturn(Outs, RetCC_X86);
1579}
1580
1581SDValue
1582X86TargetLowering::LowerReturn(SDValue Chain,
1583                               CallingConv::ID CallConv, bool isVarArg,
1584                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1585                               const SmallVectorImpl<SDValue> &OutVals,
1586                               DebugLoc dl, SelectionDAG &DAG) const {
1587  MachineFunction &MF = DAG.getMachineFunction();
1588  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1589
1590  SmallVector<CCValAssign, 16> RVLocs;
1591  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1592                 RVLocs, *DAG.getContext());
1593  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1594
1595  SDValue Flag;
1596  SmallVector<SDValue, 6> RetOps;
1597  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1598  // Operand #1 = Bytes To Pop
1599  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1600                   MVT::i16));
1601
1602  // Copy the result values into the output registers.
1603  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1604    CCValAssign &VA = RVLocs[i];
1605    assert(VA.isRegLoc() && "Can only return in registers!");
1606    SDValue ValToCopy = OutVals[i];
1607    EVT ValVT = ValToCopy.getValueType();
1608
1609    // Promote values to the appropriate types
1610    if (VA.getLocInfo() == CCValAssign::SExt)
1611      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1612    else if (VA.getLocInfo() == CCValAssign::ZExt)
1613      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1614    else if (VA.getLocInfo() == CCValAssign::AExt)
1615      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1616    else if (VA.getLocInfo() == CCValAssign::BCvt)
1617      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1618
1619    // If this is x86-64, and we disabled SSE, we can't return FP values,
1620    // or SSE or MMX vectors.
1621    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1622         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1623          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1624      report_fatal_error("SSE register return with SSE disabled");
1625    }
1626    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1627    // llvm-gcc has never done it right and no one has noticed, so this
1628    // should be OK for now.
1629    if (ValVT == MVT::f64 &&
1630        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1631      report_fatal_error("SSE2 register return with SSE2 disabled");
1632
1633    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1634    // the RET instruction and handled by the FP Stackifier.
1635    if (VA.getLocReg() == X86::ST0 ||
1636        VA.getLocReg() == X86::ST1) {
1637      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1638      // change the value to the FP stack register class.
1639      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1640        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1641      RetOps.push_back(ValToCopy);
1642      // Don't emit a copytoreg.
1643      continue;
1644    }
1645
1646    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1647    // which is returned in RAX / RDX.
1648    if (Subtarget->is64Bit()) {
1649      if (ValVT == MVT::x86mmx) {
1650        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1651          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1652          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1653                                  ValToCopy);
1654          // If we don't have SSE2 available, convert to v4f32 so the generated
1655          // register is legal.
1656          if (!Subtarget->hasSSE2())
1657            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1658        }
1659      }
1660    }
1661
1662    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1663    Flag = Chain.getValue(1);
1664    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1665  }
1666
1667  // The x86-64 ABIs require that for returning structs by value we copy
1668  // the sret argument into %rax/%eax (depending on ABI) for the return.
1669  // We saved the argument into a virtual register in the entry block,
1670  // so now we copy the value out and into %rax/%eax.
1671  if (Subtarget->is64Bit() &&
1672      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1673    MachineFunction &MF = DAG.getMachineFunction();
1674    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1675    unsigned Reg = FuncInfo->getSRetReturnReg();
1676    assert(Reg &&
1677           "SRetReturnReg should have been set in LowerFormalArguments().");
1678    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1679
1680    unsigned RetValReg = Subtarget->isTarget64BitILP32() ? X86::EAX : X86::RAX;
1681    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
1682    Flag = Chain.getValue(1);
1683
1684    // RAX/EAX now acts like a return value.
1685    RetOps.push_back(DAG.getRegister(RetValReg, MVT::i64));
1686  }
1687
1688  RetOps[0] = Chain;  // Update chain.
1689
1690  // Add the flag if we have it.
1691  if (Flag.getNode())
1692    RetOps.push_back(Flag);
1693
1694  return DAG.getNode(X86ISD::RET_FLAG, dl,
1695                     MVT::Other, &RetOps[0], RetOps.size());
1696}
1697
1698bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1699  if (N->getNumValues() != 1)
1700    return false;
1701  if (!N->hasNUsesOfValue(1, 0))
1702    return false;
1703
1704  SDValue TCChain = Chain;
1705  SDNode *Copy = *N->use_begin();
1706  if (Copy->getOpcode() == ISD::CopyToReg) {
1707    // If the copy has a glue operand, we conservatively assume it isn't safe to
1708    // perform a tail call.
1709    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1710      return false;
1711    TCChain = Copy->getOperand(0);
1712  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1713    return false;
1714
1715  bool HasRet = false;
1716  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1717       UI != UE; ++UI) {
1718    if (UI->getOpcode() != X86ISD::RET_FLAG)
1719      return false;
1720    HasRet = true;
1721  }
1722
1723  if (!HasRet)
1724    return false;
1725
1726  Chain = TCChain;
1727  return true;
1728}
1729
1730MVT
1731X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
1732                                            ISD::NodeType ExtendKind) const {
1733  MVT ReturnMVT;
1734  // TODO: Is this also valid on 32-bit?
1735  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1736    ReturnMVT = MVT::i8;
1737  else
1738    ReturnMVT = MVT::i32;
1739
1740  MVT MinVT = getRegisterType(ReturnMVT);
1741  return VT.bitsLT(MinVT) ? MinVT : VT;
1742}
1743
1744/// LowerCallResult - Lower the result values of a call into the
1745/// appropriate copies out of appropriate physical registers.
1746///
1747SDValue
1748X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1749                                   CallingConv::ID CallConv, bool isVarArg,
1750                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1751                                   DebugLoc dl, SelectionDAG &DAG,
1752                                   SmallVectorImpl<SDValue> &InVals) const {
1753
1754  // Assign locations to each value returned by this call.
1755  SmallVector<CCValAssign, 16> RVLocs;
1756  bool Is64Bit = Subtarget->is64Bit();
1757  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1758                 getTargetMachine(), RVLocs, *DAG.getContext());
1759  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1760
1761  // Copy all of the result registers out of their specified physreg.
1762  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1763    CCValAssign &VA = RVLocs[i];
1764    EVT CopyVT = VA.getValVT();
1765
1766    // If this is x86-64, and we disabled SSE, we can't return FP values
1767    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1768        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1769      report_fatal_error("SSE register return with SSE disabled");
1770    }
1771
1772    SDValue Val;
1773
1774    // If this is a call to a function that returns an fp value on the floating
1775    // point stack, we must guarantee the value is popped from the stack, so
1776    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1777    // if the return value is not used. We use the FpPOP_RETVAL instruction
1778    // instead.
1779    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1780      // If we prefer to use the value in xmm registers, copy it out as f80 and
1781      // use a truncate to move it from fp stack reg to xmm reg.
1782      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1783      SDValue Ops[] = { Chain, InFlag };
1784      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1785                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1786      Val = Chain.getValue(0);
1787
1788      // Round the f80 to the right size, which also moves it to the appropriate
1789      // xmm register.
1790      if (CopyVT != VA.getValVT())
1791        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1792                          // This truncation won't change the value.
1793                          DAG.getIntPtrConstant(1));
1794    } else {
1795      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1796                                 CopyVT, InFlag).getValue(1);
1797      Val = Chain.getValue(0);
1798    }
1799    InFlag = Chain.getValue(2);
1800    InVals.push_back(Val);
1801  }
1802
1803  return Chain;
1804}
1805
1806//===----------------------------------------------------------------------===//
1807//                C & StdCall & Fast Calling Convention implementation
1808//===----------------------------------------------------------------------===//
1809//  StdCall calling convention seems to be standard for many Windows' API
1810//  routines and around. It differs from C calling convention just a little:
1811//  callee should clean up the stack, not caller. Symbols should be also
1812//  decorated in some fancy way :) It doesn't support any vector arguments.
1813//  For info on fast calling convention see Fast Calling Convention (tail call)
1814//  implementation LowerX86_32FastCCCallTo.
1815
1816/// CallIsStructReturn - Determines whether a call uses struct return
1817/// semantics.
1818enum StructReturnType {
1819  NotStructReturn,
1820  RegStructReturn,
1821  StackStructReturn
1822};
1823static StructReturnType
1824callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1825  if (Outs.empty())
1826    return NotStructReturn;
1827
1828  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1829  if (!Flags.isSRet())
1830    return NotStructReturn;
1831  if (Flags.isInReg())
1832    return RegStructReturn;
1833  return StackStructReturn;
1834}
1835
1836/// ArgsAreStructReturn - Determines whether a function uses struct
1837/// return semantics.
1838static StructReturnType
1839argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1840  if (Ins.empty())
1841    return NotStructReturn;
1842
1843  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1844  if (!Flags.isSRet())
1845    return NotStructReturn;
1846  if (Flags.isInReg())
1847    return RegStructReturn;
1848  return StackStructReturn;
1849}
1850
1851/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1852/// by "Src" to address "Dst" with size and alignment information specified by
1853/// the specific parameter attribute. The copy will be passed as a byval
1854/// function parameter.
1855static SDValue
1856CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1857                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1858                          DebugLoc dl) {
1859  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1860
1861  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1862                       /*isVolatile*/false, /*AlwaysInline=*/true,
1863                       MachinePointerInfo(), MachinePointerInfo());
1864}
1865
1866/// IsTailCallConvention - Return true if the calling convention is one that
1867/// supports tail call optimization.
1868static bool IsTailCallConvention(CallingConv::ID CC) {
1869  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
1870          CC == CallingConv::HiPE);
1871}
1872
1873bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1874  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1875    return false;
1876
1877  CallSite CS(CI);
1878  CallingConv::ID CalleeCC = CS.getCallingConv();
1879  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1880    return false;
1881
1882  return true;
1883}
1884
1885/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1886/// a tailcall target by changing its ABI.
1887static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1888                                   bool GuaranteedTailCallOpt) {
1889  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1890}
1891
1892SDValue
1893X86TargetLowering::LowerMemArgument(SDValue Chain,
1894                                    CallingConv::ID CallConv,
1895                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1896                                    DebugLoc dl, SelectionDAG &DAG,
1897                                    const CCValAssign &VA,
1898                                    MachineFrameInfo *MFI,
1899                                    unsigned i) const {
1900  // Create the nodes corresponding to a load from this parameter slot.
1901  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1902  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1903                              getTargetMachine().Options.GuaranteedTailCallOpt);
1904  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1905  EVT ValVT;
1906
1907  // If value is passed by pointer we have address passed instead of the value
1908  // itself.
1909  if (VA.getLocInfo() == CCValAssign::Indirect)
1910    ValVT = VA.getLocVT();
1911  else
1912    ValVT = VA.getValVT();
1913
1914  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1915  // changed with more analysis.
1916  // In case of tail call optimization mark all arguments mutable. Since they
1917  // could be overwritten by lowering of arguments in case of a tail call.
1918  if (Flags.isByVal()) {
1919    unsigned Bytes = Flags.getByValSize();
1920    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1921    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1922    return DAG.getFrameIndex(FI, getPointerTy());
1923  } else {
1924    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1925                                    VA.getLocMemOffset(), isImmutable);
1926    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1927    return DAG.getLoad(ValVT, dl, Chain, FIN,
1928                       MachinePointerInfo::getFixedStack(FI),
1929                       false, false, false, 0);
1930  }
1931}
1932
1933SDValue
1934X86TargetLowering::LowerFormalArguments(SDValue Chain,
1935                                        CallingConv::ID CallConv,
1936                                        bool isVarArg,
1937                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1938                                        DebugLoc dl,
1939                                        SelectionDAG &DAG,
1940                                        SmallVectorImpl<SDValue> &InVals)
1941                                          const {
1942  MachineFunction &MF = DAG.getMachineFunction();
1943  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1944
1945  const Function* Fn = MF.getFunction();
1946  if (Fn->hasExternalLinkage() &&
1947      Subtarget->isTargetCygMing() &&
1948      Fn->getName() == "main")
1949    FuncInfo->setForceFramePointer(true);
1950
1951  MachineFrameInfo *MFI = MF.getFrameInfo();
1952  bool Is64Bit = Subtarget->is64Bit();
1953  bool IsWindows = Subtarget->isTargetWindows();
1954  bool IsWin64 = Subtarget->isTargetWin64();
1955
1956  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1957         "Var args not supported with calling convention fastcc, ghc or hipe");
1958
1959  // Assign locations to all of the incoming arguments.
1960  SmallVector<CCValAssign, 16> ArgLocs;
1961  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1962                 ArgLocs, *DAG.getContext());
1963
1964  // Allocate shadow area for Win64
1965  if (IsWin64) {
1966    CCInfo.AllocateStack(32, 8);
1967  }
1968
1969  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1970
1971  unsigned LastVal = ~0U;
1972  SDValue ArgValue;
1973  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1974    CCValAssign &VA = ArgLocs[i];
1975    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1976    // places.
1977    assert(VA.getValNo() != LastVal &&
1978           "Don't support value assigned to multiple locs yet");
1979    (void)LastVal;
1980    LastVal = VA.getValNo();
1981
1982    if (VA.isRegLoc()) {
1983      EVT RegVT = VA.getLocVT();
1984      const TargetRegisterClass *RC;
1985      if (RegVT == MVT::i32)
1986        RC = &X86::GR32RegClass;
1987      else if (Is64Bit && RegVT == MVT::i64)
1988        RC = &X86::GR64RegClass;
1989      else if (RegVT == MVT::f32)
1990        RC = &X86::FR32RegClass;
1991      else if (RegVT == MVT::f64)
1992        RC = &X86::FR64RegClass;
1993      else if (RegVT.is256BitVector())
1994        RC = &X86::VR256RegClass;
1995      else if (RegVT.is128BitVector())
1996        RC = &X86::VR128RegClass;
1997      else if (RegVT == MVT::x86mmx)
1998        RC = &X86::VR64RegClass;
1999      else
2000        llvm_unreachable("Unknown argument type!");
2001
2002      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2003      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2004
2005      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2006      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2007      // right size.
2008      if (VA.getLocInfo() == CCValAssign::SExt)
2009        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2010                               DAG.getValueType(VA.getValVT()));
2011      else if (VA.getLocInfo() == CCValAssign::ZExt)
2012        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2013                               DAG.getValueType(VA.getValVT()));
2014      else if (VA.getLocInfo() == CCValAssign::BCvt)
2015        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2016
2017      if (VA.isExtInLoc()) {
2018        // Handle MMX values passed in XMM regs.
2019        if (RegVT.isVector())
2020          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2021        else
2022          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2023      }
2024    } else {
2025      assert(VA.isMemLoc());
2026      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2027    }
2028
2029    // If value is passed via pointer - do a load.
2030    if (VA.getLocInfo() == CCValAssign::Indirect)
2031      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2032                             MachinePointerInfo(), false, false, false, 0);
2033
2034    InVals.push_back(ArgValue);
2035  }
2036
2037  // The x86-64 ABIs require that for returning structs by value we copy
2038  // the sret argument into %rax/%eax (depending on ABI) for the return.
2039  // Save the argument into a virtual register so that we can access it
2040  // from the return points.
2041  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
2042    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2043    unsigned Reg = FuncInfo->getSRetReturnReg();
2044    if (!Reg) {
2045      MVT PtrTy = getPointerTy();
2046      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2047      FuncInfo->setSRetReturnReg(Reg);
2048    }
2049    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2050    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2051  }
2052
2053  unsigned StackSize = CCInfo.getNextStackOffset();
2054  // Align stack specially for tail calls.
2055  if (FuncIsMadeTailCallSafe(CallConv,
2056                             MF.getTarget().Options.GuaranteedTailCallOpt))
2057    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2058
2059  // If the function takes variable number of arguments, make a frame index for
2060  // the start of the first vararg value... for expansion of llvm.va_start.
2061  if (isVarArg) {
2062    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2063                    CallConv != CallingConv::X86_ThisCall)) {
2064      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2065    }
2066    if (Is64Bit) {
2067      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2068
2069      // FIXME: We should really autogenerate these arrays
2070      static const uint16_t GPR64ArgRegsWin64[] = {
2071        X86::RCX, X86::RDX, X86::R8,  X86::R9
2072      };
2073      static const uint16_t GPR64ArgRegs64Bit[] = {
2074        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2075      };
2076      static const uint16_t XMMArgRegs64Bit[] = {
2077        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2078        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2079      };
2080      const uint16_t *GPR64ArgRegs;
2081      unsigned NumXMMRegs = 0;
2082
2083      if (IsWin64) {
2084        // The XMM registers which might contain var arg parameters are shadowed
2085        // in their paired GPR.  So we only need to save the GPR to their home
2086        // slots.
2087        TotalNumIntRegs = 4;
2088        GPR64ArgRegs = GPR64ArgRegsWin64;
2089      } else {
2090        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2091        GPR64ArgRegs = GPR64ArgRegs64Bit;
2092
2093        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2094                                                TotalNumXMMRegs);
2095      }
2096      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2097                                                       TotalNumIntRegs);
2098
2099      bool NoImplicitFloatOps = Fn->getAttributes().
2100        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2101      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2102             "SSE register cannot be used when SSE is disabled!");
2103      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2104               NoImplicitFloatOps) &&
2105             "SSE register cannot be used when SSE is disabled!");
2106      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2107          !Subtarget->hasSSE1())
2108        // Kernel mode asks for SSE to be disabled, so don't push them
2109        // on the stack.
2110        TotalNumXMMRegs = 0;
2111
2112      if (IsWin64) {
2113        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2114        // Get to the caller-allocated home save location.  Add 8 to account
2115        // for the return address.
2116        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2117        FuncInfo->setRegSaveFrameIndex(
2118          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2119        // Fixup to set vararg frame on shadow area (4 x i64).
2120        if (NumIntRegs < 4)
2121          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2122      } else {
2123        // For X86-64, if there are vararg parameters that are passed via
2124        // registers, then we must store them to their spots on the stack so
2125        // they may be loaded by deferencing the result of va_next.
2126        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2127        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2128        FuncInfo->setRegSaveFrameIndex(
2129          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2130                               false));
2131      }
2132
2133      // Store the integer parameter registers.
2134      SmallVector<SDValue, 8> MemOps;
2135      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2136                                        getPointerTy());
2137      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2138      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2139        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2140                                  DAG.getIntPtrConstant(Offset));
2141        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2142                                     &X86::GR64RegClass);
2143        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2144        SDValue Store =
2145          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2146                       MachinePointerInfo::getFixedStack(
2147                         FuncInfo->getRegSaveFrameIndex(), Offset),
2148                       false, false, 0);
2149        MemOps.push_back(Store);
2150        Offset += 8;
2151      }
2152
2153      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2154        // Now store the XMM (fp + vector) parameter registers.
2155        SmallVector<SDValue, 11> SaveXMMOps;
2156        SaveXMMOps.push_back(Chain);
2157
2158        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2159        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2160        SaveXMMOps.push_back(ALVal);
2161
2162        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2163                               FuncInfo->getRegSaveFrameIndex()));
2164        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2165                               FuncInfo->getVarArgsFPOffset()));
2166
2167        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2168          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2169                                       &X86::VR128RegClass);
2170          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2171          SaveXMMOps.push_back(Val);
2172        }
2173        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2174                                     MVT::Other,
2175                                     &SaveXMMOps[0], SaveXMMOps.size()));
2176      }
2177
2178      if (!MemOps.empty())
2179        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2180                            &MemOps[0], MemOps.size());
2181    }
2182  }
2183
2184  // Some CCs need callee pop.
2185  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2186                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2187    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2188  } else {
2189    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2190    // If this is an sret function, the return should pop the hidden pointer.
2191    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2192        argsAreStructReturn(Ins) == StackStructReturn)
2193      FuncInfo->setBytesToPopOnReturn(4);
2194  }
2195
2196  if (!Is64Bit) {
2197    // RegSaveFrameIndex is X86-64 only.
2198    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2199    if (CallConv == CallingConv::X86_FastCall ||
2200        CallConv == CallingConv::X86_ThisCall)
2201      // fastcc functions can't have varargs.
2202      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2203  }
2204
2205  FuncInfo->setArgumentStackSize(StackSize);
2206
2207  return Chain;
2208}
2209
2210SDValue
2211X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2212                                    SDValue StackPtr, SDValue Arg,
2213                                    DebugLoc dl, SelectionDAG &DAG,
2214                                    const CCValAssign &VA,
2215                                    ISD::ArgFlagsTy Flags) const {
2216  unsigned LocMemOffset = VA.getLocMemOffset();
2217  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2218  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2219  if (Flags.isByVal())
2220    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2221
2222  return DAG.getStore(Chain, dl, Arg, PtrOff,
2223                      MachinePointerInfo::getStack(LocMemOffset),
2224                      false, false, 0);
2225}
2226
2227/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2228/// optimization is performed and it is required.
2229SDValue
2230X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2231                                           SDValue &OutRetAddr, SDValue Chain,
2232                                           bool IsTailCall, bool Is64Bit,
2233                                           int FPDiff, DebugLoc dl) const {
2234  // Adjust the Return address stack slot.
2235  EVT VT = getPointerTy();
2236  OutRetAddr = getReturnAddressFrameIndex(DAG);
2237
2238  // Load the "old" Return address.
2239  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2240                           false, false, false, 0);
2241  return SDValue(OutRetAddr.getNode(), 1);
2242}
2243
2244/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2245/// optimization is performed and it is required (FPDiff!=0).
2246static SDValue
2247EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2248                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2249                         unsigned SlotSize, int FPDiff, DebugLoc dl) {
2250  // Store the return address to the appropriate stack slot.
2251  if (!FPDiff) return Chain;
2252  // Calculate the new stack slot for the return address.
2253  int NewReturnAddrFI =
2254    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2255  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2256  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2257                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2258                       false, false, 0);
2259  return Chain;
2260}
2261
2262SDValue
2263X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2264                             SmallVectorImpl<SDValue> &InVals) const {
2265  SelectionDAG &DAG                     = CLI.DAG;
2266  DebugLoc &dl                          = CLI.DL;
2267  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2268  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2269  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2270  SDValue Chain                         = CLI.Chain;
2271  SDValue Callee                        = CLI.Callee;
2272  CallingConv::ID CallConv              = CLI.CallConv;
2273  bool &isTailCall                      = CLI.IsTailCall;
2274  bool isVarArg                         = CLI.IsVarArg;
2275
2276  MachineFunction &MF = DAG.getMachineFunction();
2277  bool Is64Bit        = Subtarget->is64Bit();
2278  bool IsWin64        = Subtarget->isTargetWin64();
2279  bool IsWindows      = Subtarget->isTargetWindows();
2280  StructReturnType SR = callIsStructReturn(Outs);
2281  bool IsSibcall      = false;
2282
2283  if (MF.getTarget().Options.DisableTailCalls)
2284    isTailCall = false;
2285
2286  if (isTailCall) {
2287    // Check if it's really possible to do a tail call.
2288    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2289                    isVarArg, SR != NotStructReturn,
2290                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2291                    Outs, OutVals, Ins, DAG);
2292
2293    // Sibcalls are automatically detected tailcalls which do not require
2294    // ABI changes.
2295    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2296      IsSibcall = true;
2297
2298    if (isTailCall)
2299      ++NumTailCalls;
2300  }
2301
2302  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2303         "Var args not supported with calling convention fastcc, ghc or hipe");
2304
2305  // Analyze operands of the call, assigning locations to each operand.
2306  SmallVector<CCValAssign, 16> ArgLocs;
2307  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2308                 ArgLocs, *DAG.getContext());
2309
2310  // Allocate shadow area for Win64
2311  if (IsWin64) {
2312    CCInfo.AllocateStack(32, 8);
2313  }
2314
2315  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2316
2317  // Get a count of how many bytes are to be pushed on the stack.
2318  unsigned NumBytes = CCInfo.getNextStackOffset();
2319  if (IsSibcall)
2320    // This is a sibcall. The memory operands are available in caller's
2321    // own caller's stack.
2322    NumBytes = 0;
2323  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2324           IsTailCallConvention(CallConv))
2325    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2326
2327  int FPDiff = 0;
2328  if (isTailCall && !IsSibcall) {
2329    // Lower arguments at fp - stackoffset + fpdiff.
2330    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2331    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2332
2333    FPDiff = NumBytesCallerPushed - NumBytes;
2334
2335    // Set the delta of movement of the returnaddr stackslot.
2336    // But only set if delta is greater than previous delta.
2337    if (FPDiff < X86Info->getTCReturnAddrDelta())
2338      X86Info->setTCReturnAddrDelta(FPDiff);
2339  }
2340
2341  if (!IsSibcall)
2342    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2343
2344  SDValue RetAddrFrIdx;
2345  // Load return address for tail calls.
2346  if (isTailCall && FPDiff)
2347    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2348                                    Is64Bit, FPDiff, dl);
2349
2350  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2351  SmallVector<SDValue, 8> MemOpChains;
2352  SDValue StackPtr;
2353
2354  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2355  // of tail call optimization arguments are handle later.
2356  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2357    CCValAssign &VA = ArgLocs[i];
2358    EVT RegVT = VA.getLocVT();
2359    SDValue Arg = OutVals[i];
2360    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2361    bool isByVal = Flags.isByVal();
2362
2363    // Promote the value if needed.
2364    switch (VA.getLocInfo()) {
2365    default: llvm_unreachable("Unknown loc info!");
2366    case CCValAssign::Full: break;
2367    case CCValAssign::SExt:
2368      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2369      break;
2370    case CCValAssign::ZExt:
2371      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2372      break;
2373    case CCValAssign::AExt:
2374      if (RegVT.is128BitVector()) {
2375        // Special case: passing MMX values in XMM registers.
2376        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2377        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2378        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2379      } else
2380        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2381      break;
2382    case CCValAssign::BCvt:
2383      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2384      break;
2385    case CCValAssign::Indirect: {
2386      // Store the argument.
2387      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2388      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2389      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2390                           MachinePointerInfo::getFixedStack(FI),
2391                           false, false, 0);
2392      Arg = SpillSlot;
2393      break;
2394    }
2395    }
2396
2397    if (VA.isRegLoc()) {
2398      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2399      if (isVarArg && IsWin64) {
2400        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2401        // shadow reg if callee is a varargs function.
2402        unsigned ShadowReg = 0;
2403        switch (VA.getLocReg()) {
2404        case X86::XMM0: ShadowReg = X86::RCX; break;
2405        case X86::XMM1: ShadowReg = X86::RDX; break;
2406        case X86::XMM2: ShadowReg = X86::R8; break;
2407        case X86::XMM3: ShadowReg = X86::R9; break;
2408        }
2409        if (ShadowReg)
2410          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2411      }
2412    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2413      assert(VA.isMemLoc());
2414      if (StackPtr.getNode() == 0)
2415        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2416                                      getPointerTy());
2417      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2418                                             dl, DAG, VA, Flags));
2419    }
2420  }
2421
2422  if (!MemOpChains.empty())
2423    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2424                        &MemOpChains[0], MemOpChains.size());
2425
2426  if (Subtarget->isPICStyleGOT()) {
2427    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2428    // GOT pointer.
2429    if (!isTailCall) {
2430      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2431               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2432    } else {
2433      // If we are tail calling and generating PIC/GOT style code load the
2434      // address of the callee into ECX. The value in ecx is used as target of
2435      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2436      // for tail calls on PIC/GOT architectures. Normally we would just put the
2437      // address of GOT into ebx and then call target@PLT. But for tail calls
2438      // ebx would be restored (since ebx is callee saved) before jumping to the
2439      // target@PLT.
2440
2441      // Note: The actual moving to ECX is done further down.
2442      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2443      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2444          !G->getGlobal()->hasProtectedVisibility())
2445        Callee = LowerGlobalAddress(Callee, DAG);
2446      else if (isa<ExternalSymbolSDNode>(Callee))
2447        Callee = LowerExternalSymbol(Callee, DAG);
2448    }
2449  }
2450
2451  if (Is64Bit && isVarArg && !IsWin64) {
2452    // From AMD64 ABI document:
2453    // For calls that may call functions that use varargs or stdargs
2454    // (prototype-less calls or calls to functions containing ellipsis (...) in
2455    // the declaration) %al is used as hidden argument to specify the number
2456    // of SSE registers used. The contents of %al do not need to match exactly
2457    // the number of registers, but must be an ubound on the number of SSE
2458    // registers used and is in the range 0 - 8 inclusive.
2459
2460    // Count the number of XMM registers allocated.
2461    static const uint16_t XMMArgRegs[] = {
2462      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2463      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2464    };
2465    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2466    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2467           && "SSE registers cannot be used when SSE is disabled");
2468
2469    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2470                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2471  }
2472
2473  // For tail calls lower the arguments to the 'real' stack slot.
2474  if (isTailCall) {
2475    // Force all the incoming stack arguments to be loaded from the stack
2476    // before any new outgoing arguments are stored to the stack, because the
2477    // outgoing stack slots may alias the incoming argument stack slots, and
2478    // the alias isn't otherwise explicit. This is slightly more conservative
2479    // than necessary, because it means that each store effectively depends
2480    // on every argument instead of just those arguments it would clobber.
2481    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2482
2483    SmallVector<SDValue, 8> MemOpChains2;
2484    SDValue FIN;
2485    int FI = 0;
2486    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2487      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2488        CCValAssign &VA = ArgLocs[i];
2489        if (VA.isRegLoc())
2490          continue;
2491        assert(VA.isMemLoc());
2492        SDValue Arg = OutVals[i];
2493        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2494        // Create frame index.
2495        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2496        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2497        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2498        FIN = DAG.getFrameIndex(FI, getPointerTy());
2499
2500        if (Flags.isByVal()) {
2501          // Copy relative to framepointer.
2502          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2503          if (StackPtr.getNode() == 0)
2504            StackPtr = DAG.getCopyFromReg(Chain, dl,
2505                                          RegInfo->getStackRegister(),
2506                                          getPointerTy());
2507          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2508
2509          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2510                                                           ArgChain,
2511                                                           Flags, DAG, dl));
2512        } else {
2513          // Store relative to framepointer.
2514          MemOpChains2.push_back(
2515            DAG.getStore(ArgChain, dl, Arg, FIN,
2516                         MachinePointerInfo::getFixedStack(FI),
2517                         false, false, 0));
2518        }
2519      }
2520    }
2521
2522    if (!MemOpChains2.empty())
2523      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2524                          &MemOpChains2[0], MemOpChains2.size());
2525
2526    // Store the return address to the appropriate stack slot.
2527    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2528                                     getPointerTy(), RegInfo->getSlotSize(),
2529                                     FPDiff, dl);
2530  }
2531
2532  // Build a sequence of copy-to-reg nodes chained together with token chain
2533  // and flag operands which copy the outgoing args into registers.
2534  SDValue InFlag;
2535  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2536    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2537                             RegsToPass[i].second, InFlag);
2538    InFlag = Chain.getValue(1);
2539  }
2540
2541  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2542    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2543    // In the 64-bit large code model, we have to make all calls
2544    // through a register, since the call instruction's 32-bit
2545    // pc-relative offset may not be large enough to hold the whole
2546    // address.
2547  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2548    // If the callee is a GlobalAddress node (quite common, every direct call
2549    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2550    // it.
2551
2552    // We should use extra load for direct calls to dllimported functions in
2553    // non-JIT mode.
2554    const GlobalValue *GV = G->getGlobal();
2555    if (!GV->hasDLLImportLinkage()) {
2556      unsigned char OpFlags = 0;
2557      bool ExtraLoad = false;
2558      unsigned WrapperKind = ISD::DELETED_NODE;
2559
2560      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2561      // external symbols most go through the PLT in PIC mode.  If the symbol
2562      // has hidden or protected visibility, or if it is static or local, then
2563      // we don't need to use the PLT - we can directly call it.
2564      if (Subtarget->isTargetELF() &&
2565          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2566          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2567        OpFlags = X86II::MO_PLT;
2568      } else if (Subtarget->isPICStyleStubAny() &&
2569                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2570                 (!Subtarget->getTargetTriple().isMacOSX() ||
2571                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2572        // PC-relative references to external symbols should go through $stub,
2573        // unless we're building with the leopard linker or later, which
2574        // automatically synthesizes these stubs.
2575        OpFlags = X86II::MO_DARWIN_STUB;
2576      } else if (Subtarget->isPICStyleRIPRel() &&
2577                 isa<Function>(GV) &&
2578                 cast<Function>(GV)->getAttributes().
2579                   hasAttribute(AttributeSet::FunctionIndex,
2580                                Attribute::NonLazyBind)) {
2581        // If the function is marked as non-lazy, generate an indirect call
2582        // which loads from the GOT directly. This avoids runtime overhead
2583        // at the cost of eager binding (and one extra byte of encoding).
2584        OpFlags = X86II::MO_GOTPCREL;
2585        WrapperKind = X86ISD::WrapperRIP;
2586        ExtraLoad = true;
2587      }
2588
2589      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2590                                          G->getOffset(), OpFlags);
2591
2592      // Add a wrapper if needed.
2593      if (WrapperKind != ISD::DELETED_NODE)
2594        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2595      // Add extra indirection if needed.
2596      if (ExtraLoad)
2597        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2598                             MachinePointerInfo::getGOT(),
2599                             false, false, false, 0);
2600    }
2601  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2602    unsigned char OpFlags = 0;
2603
2604    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2605    // external symbols should go through the PLT.
2606    if (Subtarget->isTargetELF() &&
2607        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2608      OpFlags = X86II::MO_PLT;
2609    } else if (Subtarget->isPICStyleStubAny() &&
2610               (!Subtarget->getTargetTriple().isMacOSX() ||
2611                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2612      // PC-relative references to external symbols should go through $stub,
2613      // unless we're building with the leopard linker or later, which
2614      // automatically synthesizes these stubs.
2615      OpFlags = X86II::MO_DARWIN_STUB;
2616    }
2617
2618    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2619                                         OpFlags);
2620  }
2621
2622  // Returns a chain & a flag for retval copy to use.
2623  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2624  SmallVector<SDValue, 8> Ops;
2625
2626  if (!IsSibcall && isTailCall) {
2627    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2628                           DAG.getIntPtrConstant(0, true), InFlag);
2629    InFlag = Chain.getValue(1);
2630  }
2631
2632  Ops.push_back(Chain);
2633  Ops.push_back(Callee);
2634
2635  if (isTailCall)
2636    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2637
2638  // Add argument registers to the end of the list so that they are known live
2639  // into the call.
2640  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2641    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2642                                  RegsToPass[i].second.getValueType()));
2643
2644  // Add a register mask operand representing the call-preserved registers.
2645  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2646  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2647  assert(Mask && "Missing call preserved mask for calling convention");
2648  Ops.push_back(DAG.getRegisterMask(Mask));
2649
2650  if (InFlag.getNode())
2651    Ops.push_back(InFlag);
2652
2653  if (isTailCall) {
2654    // We used to do:
2655    //// If this is the first return lowered for this function, add the regs
2656    //// to the liveout set for the function.
2657    // This isn't right, although it's probably harmless on x86; liveouts
2658    // should be computed from returns not tail calls.  Consider a void
2659    // function making a tail call to a function returning int.
2660    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
2661  }
2662
2663  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2664  InFlag = Chain.getValue(1);
2665
2666  // Create the CALLSEQ_END node.
2667  unsigned NumBytesForCalleeToPush;
2668  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2669                       getTargetMachine().Options.GuaranteedTailCallOpt))
2670    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2671  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2672           SR == StackStructReturn)
2673    // If this is a call to a struct-return function, the callee
2674    // pops the hidden struct pointer, so we have to push it back.
2675    // This is common for Darwin/X86, Linux & Mingw32 targets.
2676    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2677    NumBytesForCalleeToPush = 4;
2678  else
2679    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2680
2681  // Returns a flag for retval copy to use.
2682  if (!IsSibcall) {
2683    Chain = DAG.getCALLSEQ_END(Chain,
2684                               DAG.getIntPtrConstant(NumBytes, true),
2685                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2686                                                     true),
2687                               InFlag);
2688    InFlag = Chain.getValue(1);
2689  }
2690
2691  // Handle result values, copying them out of physregs into vregs that we
2692  // return.
2693  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2694                         Ins, dl, DAG, InVals);
2695}
2696
2697//===----------------------------------------------------------------------===//
2698//                Fast Calling Convention (tail call) implementation
2699//===----------------------------------------------------------------------===//
2700
2701//  Like std call, callee cleans arguments, convention except that ECX is
2702//  reserved for storing the tail called function address. Only 2 registers are
2703//  free for argument passing (inreg). Tail call optimization is performed
2704//  provided:
2705//                * tailcallopt is enabled
2706//                * caller/callee are fastcc
2707//  On X86_64 architecture with GOT-style position independent code only local
2708//  (within module) calls are supported at the moment.
2709//  To keep the stack aligned according to platform abi the function
2710//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2711//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2712//  If a tail called function callee has more arguments than the caller the
2713//  caller needs to make sure that there is room to move the RETADDR to. This is
2714//  achieved by reserving an area the size of the argument delta right after the
2715//  original REtADDR, but before the saved framepointer or the spilled registers
2716//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2717//  stack layout:
2718//    arg1
2719//    arg2
2720//    RETADDR
2721//    [ new RETADDR
2722//      move area ]
2723//    (possible EBP)
2724//    ESI
2725//    EDI
2726//    local1 ..
2727
2728/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2729/// for a 16 byte align requirement.
2730unsigned
2731X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2732                                               SelectionDAG& DAG) const {
2733  MachineFunction &MF = DAG.getMachineFunction();
2734  const TargetMachine &TM = MF.getTarget();
2735  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2736  unsigned StackAlignment = TFI.getStackAlignment();
2737  uint64_t AlignMask = StackAlignment - 1;
2738  int64_t Offset = StackSize;
2739  unsigned SlotSize = RegInfo->getSlotSize();
2740  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2741    // Number smaller than 12 so just add the difference.
2742    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2743  } else {
2744    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2745    Offset = ((~AlignMask) & Offset) + StackAlignment +
2746      (StackAlignment-SlotSize);
2747  }
2748  return Offset;
2749}
2750
2751/// MatchingStackOffset - Return true if the given stack call argument is
2752/// already available in the same position (relatively) of the caller's
2753/// incoming argument stack.
2754static
2755bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2756                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2757                         const X86InstrInfo *TII) {
2758  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2759  int FI = INT_MAX;
2760  if (Arg.getOpcode() == ISD::CopyFromReg) {
2761    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2762    if (!TargetRegisterInfo::isVirtualRegister(VR))
2763      return false;
2764    MachineInstr *Def = MRI->getVRegDef(VR);
2765    if (!Def)
2766      return false;
2767    if (!Flags.isByVal()) {
2768      if (!TII->isLoadFromStackSlot(Def, FI))
2769        return false;
2770    } else {
2771      unsigned Opcode = Def->getOpcode();
2772      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2773          Def->getOperand(1).isFI()) {
2774        FI = Def->getOperand(1).getIndex();
2775        Bytes = Flags.getByValSize();
2776      } else
2777        return false;
2778    }
2779  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2780    if (Flags.isByVal())
2781      // ByVal argument is passed in as a pointer but it's now being
2782      // dereferenced. e.g.
2783      // define @foo(%struct.X* %A) {
2784      //   tail call @bar(%struct.X* byval %A)
2785      // }
2786      return false;
2787    SDValue Ptr = Ld->getBasePtr();
2788    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2789    if (!FINode)
2790      return false;
2791    FI = FINode->getIndex();
2792  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2793    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2794    FI = FINode->getIndex();
2795    Bytes = Flags.getByValSize();
2796  } else
2797    return false;
2798
2799  assert(FI != INT_MAX);
2800  if (!MFI->isFixedObjectIndex(FI))
2801    return false;
2802  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2803}
2804
2805/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2806/// for tail call optimization. Targets which want to do tail call
2807/// optimization should implement this function.
2808bool
2809X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2810                                                     CallingConv::ID CalleeCC,
2811                                                     bool isVarArg,
2812                                                     bool isCalleeStructRet,
2813                                                     bool isCallerStructRet,
2814                                                     Type *RetTy,
2815                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2816                                    const SmallVectorImpl<SDValue> &OutVals,
2817                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2818                                                     SelectionDAG &DAG) const {
2819  if (!IsTailCallConvention(CalleeCC) &&
2820      CalleeCC != CallingConv::C)
2821    return false;
2822
2823  // If -tailcallopt is specified, make fastcc functions tail-callable.
2824  const MachineFunction &MF = DAG.getMachineFunction();
2825  const Function *CallerF = DAG.getMachineFunction().getFunction();
2826
2827  // If the function return type is x86_fp80 and the callee return type is not,
2828  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2829  // perform a tailcall optimization here.
2830  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2831    return false;
2832
2833  CallingConv::ID CallerCC = CallerF->getCallingConv();
2834  bool CCMatch = CallerCC == CalleeCC;
2835
2836  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2837    if (IsTailCallConvention(CalleeCC) && CCMatch)
2838      return true;
2839    return false;
2840  }
2841
2842  // Look for obvious safe cases to perform tail call optimization that do not
2843  // require ABI changes. This is what gcc calls sibcall.
2844
2845  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2846  // emit a special epilogue.
2847  if (RegInfo->needsStackRealignment(MF))
2848    return false;
2849
2850  // Also avoid sibcall optimization if either caller or callee uses struct
2851  // return semantics.
2852  if (isCalleeStructRet || isCallerStructRet)
2853    return false;
2854
2855  // An stdcall caller is expected to clean up its arguments; the callee
2856  // isn't going to do that.
2857  if (!CCMatch && CallerCC == CallingConv::X86_StdCall)
2858    return false;
2859
2860  // Do not sibcall optimize vararg calls unless all arguments are passed via
2861  // registers.
2862  if (isVarArg && !Outs.empty()) {
2863
2864    // Optimizing for varargs on Win64 is unlikely to be safe without
2865    // additional testing.
2866    if (Subtarget->isTargetWin64())
2867      return false;
2868
2869    SmallVector<CCValAssign, 16> ArgLocs;
2870    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2871                   getTargetMachine(), ArgLocs, *DAG.getContext());
2872
2873    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2874    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2875      if (!ArgLocs[i].isRegLoc())
2876        return false;
2877  }
2878
2879  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2880  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2881  // this into a sibcall.
2882  bool Unused = false;
2883  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2884    if (!Ins[i].Used) {
2885      Unused = true;
2886      break;
2887    }
2888  }
2889  if (Unused) {
2890    SmallVector<CCValAssign, 16> RVLocs;
2891    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2892                   getTargetMachine(), RVLocs, *DAG.getContext());
2893    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2894    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2895      CCValAssign &VA = RVLocs[i];
2896      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2897        return false;
2898    }
2899  }
2900
2901  // If the calling conventions do not match, then we'd better make sure the
2902  // results are returned in the same way as what the caller expects.
2903  if (!CCMatch) {
2904    SmallVector<CCValAssign, 16> RVLocs1;
2905    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2906                    getTargetMachine(), RVLocs1, *DAG.getContext());
2907    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2908
2909    SmallVector<CCValAssign, 16> RVLocs2;
2910    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2911                    getTargetMachine(), RVLocs2, *DAG.getContext());
2912    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2913
2914    if (RVLocs1.size() != RVLocs2.size())
2915      return false;
2916    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2917      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2918        return false;
2919      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2920        return false;
2921      if (RVLocs1[i].isRegLoc()) {
2922        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2923          return false;
2924      } else {
2925        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2926          return false;
2927      }
2928    }
2929  }
2930
2931  // If the callee takes no arguments then go on to check the results of the
2932  // call.
2933  if (!Outs.empty()) {
2934    // Check if stack adjustment is needed. For now, do not do this if any
2935    // argument is passed on the stack.
2936    SmallVector<CCValAssign, 16> ArgLocs;
2937    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2938                   getTargetMachine(), ArgLocs, *DAG.getContext());
2939
2940    // Allocate shadow area for Win64
2941    if (Subtarget->isTargetWin64()) {
2942      CCInfo.AllocateStack(32, 8);
2943    }
2944
2945    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2946    if (CCInfo.getNextStackOffset()) {
2947      MachineFunction &MF = DAG.getMachineFunction();
2948      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2949        return false;
2950
2951      // Check if the arguments are already laid out in the right way as
2952      // the caller's fixed stack objects.
2953      MachineFrameInfo *MFI = MF.getFrameInfo();
2954      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2955      const X86InstrInfo *TII =
2956        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2957      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2958        CCValAssign &VA = ArgLocs[i];
2959        SDValue Arg = OutVals[i];
2960        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2961        if (VA.getLocInfo() == CCValAssign::Indirect)
2962          return false;
2963        if (!VA.isRegLoc()) {
2964          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2965                                   MFI, MRI, TII))
2966            return false;
2967        }
2968      }
2969    }
2970
2971    // If the tailcall address may be in a register, then make sure it's
2972    // possible to register allocate for it. In 32-bit, the call address can
2973    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2974    // callee-saved registers are restored. These happen to be the same
2975    // registers used to pass 'inreg' arguments so watch out for those.
2976    if (!Subtarget->is64Bit() &&
2977        ((!isa<GlobalAddressSDNode>(Callee) &&
2978          !isa<ExternalSymbolSDNode>(Callee)) ||
2979         getTargetMachine().getRelocationModel() == Reloc::PIC_)) {
2980      unsigned NumInRegs = 0;
2981      // In PIC we need an extra register to formulate the address computation
2982      // for the callee.
2983      unsigned MaxInRegs =
2984          (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
2985
2986      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2987        CCValAssign &VA = ArgLocs[i];
2988        if (!VA.isRegLoc())
2989          continue;
2990        unsigned Reg = VA.getLocReg();
2991        switch (Reg) {
2992        default: break;
2993        case X86::EAX: case X86::EDX: case X86::ECX:
2994          if (++NumInRegs == MaxInRegs)
2995            return false;
2996          break;
2997        }
2998      }
2999    }
3000  }
3001
3002  return true;
3003}
3004
3005FastISel *
3006X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3007                                  const TargetLibraryInfo *libInfo) const {
3008  return X86::createFastISel(funcInfo, libInfo);
3009}
3010
3011//===----------------------------------------------------------------------===//
3012//                           Other Lowering Hooks
3013//===----------------------------------------------------------------------===//
3014
3015static bool MayFoldLoad(SDValue Op) {
3016  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3017}
3018
3019static bool MayFoldIntoStore(SDValue Op) {
3020  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3021}
3022
3023static bool isTargetShuffle(unsigned Opcode) {
3024  switch(Opcode) {
3025  default: return false;
3026  case X86ISD::PSHUFD:
3027  case X86ISD::PSHUFHW:
3028  case X86ISD::PSHUFLW:
3029  case X86ISD::SHUFP:
3030  case X86ISD::PALIGNR:
3031  case X86ISD::MOVLHPS:
3032  case X86ISD::MOVLHPD:
3033  case X86ISD::MOVHLPS:
3034  case X86ISD::MOVLPS:
3035  case X86ISD::MOVLPD:
3036  case X86ISD::MOVSHDUP:
3037  case X86ISD::MOVSLDUP:
3038  case X86ISD::MOVDDUP:
3039  case X86ISD::MOVSS:
3040  case X86ISD::MOVSD:
3041  case X86ISD::UNPCKL:
3042  case X86ISD::UNPCKH:
3043  case X86ISD::VPERMILP:
3044  case X86ISD::VPERM2X128:
3045  case X86ISD::VPERMI:
3046    return true;
3047  }
3048}
3049
3050static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3051                                    SDValue V1, SelectionDAG &DAG) {
3052  switch(Opc) {
3053  default: llvm_unreachable("Unknown x86 shuffle node");
3054  case X86ISD::MOVSHDUP:
3055  case X86ISD::MOVSLDUP:
3056  case X86ISD::MOVDDUP:
3057    return DAG.getNode(Opc, dl, VT, V1);
3058  }
3059}
3060
3061static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3062                                    SDValue V1, unsigned TargetMask,
3063                                    SelectionDAG &DAG) {
3064  switch(Opc) {
3065  default: llvm_unreachable("Unknown x86 shuffle node");
3066  case X86ISD::PSHUFD:
3067  case X86ISD::PSHUFHW:
3068  case X86ISD::PSHUFLW:
3069  case X86ISD::VPERMILP:
3070  case X86ISD::VPERMI:
3071    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3072  }
3073}
3074
3075static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3076                                    SDValue V1, SDValue V2, unsigned TargetMask,
3077                                    SelectionDAG &DAG) {
3078  switch(Opc) {
3079  default: llvm_unreachable("Unknown x86 shuffle node");
3080  case X86ISD::PALIGNR:
3081  case X86ISD::SHUFP:
3082  case X86ISD::VPERM2X128:
3083    return DAG.getNode(Opc, dl, VT, V1, V2,
3084                       DAG.getConstant(TargetMask, MVT::i8));
3085  }
3086}
3087
3088static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3089                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3090  switch(Opc) {
3091  default: llvm_unreachable("Unknown x86 shuffle node");
3092  case X86ISD::MOVLHPS:
3093  case X86ISD::MOVLHPD:
3094  case X86ISD::MOVHLPS:
3095  case X86ISD::MOVLPS:
3096  case X86ISD::MOVLPD:
3097  case X86ISD::MOVSS:
3098  case X86ISD::MOVSD:
3099  case X86ISD::UNPCKL:
3100  case X86ISD::UNPCKH:
3101    return DAG.getNode(Opc, dl, VT, V1, V2);
3102  }
3103}
3104
3105SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3106  MachineFunction &MF = DAG.getMachineFunction();
3107  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3108  int ReturnAddrIndex = FuncInfo->getRAIndex();
3109
3110  if (ReturnAddrIndex == 0) {
3111    // Set up a frame object for the return address.
3112    unsigned SlotSize = RegInfo->getSlotSize();
3113    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3114                                                           false);
3115    FuncInfo->setRAIndex(ReturnAddrIndex);
3116  }
3117
3118  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3119}
3120
3121bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3122                                       bool hasSymbolicDisplacement) {
3123  // Offset should fit into 32 bit immediate field.
3124  if (!isInt<32>(Offset))
3125    return false;
3126
3127  // If we don't have a symbolic displacement - we don't have any extra
3128  // restrictions.
3129  if (!hasSymbolicDisplacement)
3130    return true;
3131
3132  // FIXME: Some tweaks might be needed for medium code model.
3133  if (M != CodeModel::Small && M != CodeModel::Kernel)
3134    return false;
3135
3136  // For small code model we assume that latest object is 16MB before end of 31
3137  // bits boundary. We may also accept pretty large negative constants knowing
3138  // that all objects are in the positive half of address space.
3139  if (M == CodeModel::Small && Offset < 16*1024*1024)
3140    return true;
3141
3142  // For kernel code model we know that all object resist in the negative half
3143  // of 32bits address space. We may not accept negative offsets, since they may
3144  // be just off and we may accept pretty large positive ones.
3145  if (M == CodeModel::Kernel && Offset > 0)
3146    return true;
3147
3148  return false;
3149}
3150
3151/// isCalleePop - Determines whether the callee is required to pop its
3152/// own arguments. Callee pop is necessary to support tail calls.
3153bool X86::isCalleePop(CallingConv::ID CallingConv,
3154                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3155  if (IsVarArg)
3156    return false;
3157
3158  switch (CallingConv) {
3159  default:
3160    return false;
3161  case CallingConv::X86_StdCall:
3162    return !is64Bit;
3163  case CallingConv::X86_FastCall:
3164    return !is64Bit;
3165  case CallingConv::X86_ThisCall:
3166    return !is64Bit;
3167  case CallingConv::Fast:
3168    return TailCallOpt;
3169  case CallingConv::GHC:
3170    return TailCallOpt;
3171  case CallingConv::HiPE:
3172    return TailCallOpt;
3173  }
3174}
3175
3176/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3177/// specific condition code, returning the condition code and the LHS/RHS of the
3178/// comparison to make.
3179static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3180                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3181  if (!isFP) {
3182    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3183      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3184        // X > -1   -> X == 0, jump !sign.
3185        RHS = DAG.getConstant(0, RHS.getValueType());
3186        return X86::COND_NS;
3187      }
3188      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3189        // X < 0   -> X == 0, jump on sign.
3190        return X86::COND_S;
3191      }
3192      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3193        // X < 1   -> X <= 0
3194        RHS = DAG.getConstant(0, RHS.getValueType());
3195        return X86::COND_LE;
3196      }
3197    }
3198
3199    switch (SetCCOpcode) {
3200    default: llvm_unreachable("Invalid integer condition!");
3201    case ISD::SETEQ:  return X86::COND_E;
3202    case ISD::SETGT:  return X86::COND_G;
3203    case ISD::SETGE:  return X86::COND_GE;
3204    case ISD::SETLT:  return X86::COND_L;
3205    case ISD::SETLE:  return X86::COND_LE;
3206    case ISD::SETNE:  return X86::COND_NE;
3207    case ISD::SETULT: return X86::COND_B;
3208    case ISD::SETUGT: return X86::COND_A;
3209    case ISD::SETULE: return X86::COND_BE;
3210    case ISD::SETUGE: return X86::COND_AE;
3211    }
3212  }
3213
3214  // First determine if it is required or is profitable to flip the operands.
3215
3216  // If LHS is a foldable load, but RHS is not, flip the condition.
3217  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3218      !ISD::isNON_EXTLoad(RHS.getNode())) {
3219    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3220    std::swap(LHS, RHS);
3221  }
3222
3223  switch (SetCCOpcode) {
3224  default: break;
3225  case ISD::SETOLT:
3226  case ISD::SETOLE:
3227  case ISD::SETUGT:
3228  case ISD::SETUGE:
3229    std::swap(LHS, RHS);
3230    break;
3231  }
3232
3233  // On a floating point condition, the flags are set as follows:
3234  // ZF  PF  CF   op
3235  //  0 | 0 | 0 | X > Y
3236  //  0 | 0 | 1 | X < Y
3237  //  1 | 0 | 0 | X == Y
3238  //  1 | 1 | 1 | unordered
3239  switch (SetCCOpcode) {
3240  default: llvm_unreachable("Condcode should be pre-legalized away");
3241  case ISD::SETUEQ:
3242  case ISD::SETEQ:   return X86::COND_E;
3243  case ISD::SETOLT:              // flipped
3244  case ISD::SETOGT:
3245  case ISD::SETGT:   return X86::COND_A;
3246  case ISD::SETOLE:              // flipped
3247  case ISD::SETOGE:
3248  case ISD::SETGE:   return X86::COND_AE;
3249  case ISD::SETUGT:              // flipped
3250  case ISD::SETULT:
3251  case ISD::SETLT:   return X86::COND_B;
3252  case ISD::SETUGE:              // flipped
3253  case ISD::SETULE:
3254  case ISD::SETLE:   return X86::COND_BE;
3255  case ISD::SETONE:
3256  case ISD::SETNE:   return X86::COND_NE;
3257  case ISD::SETUO:   return X86::COND_P;
3258  case ISD::SETO:    return X86::COND_NP;
3259  case ISD::SETOEQ:
3260  case ISD::SETUNE:  return X86::COND_INVALID;
3261  }
3262}
3263
3264/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3265/// code. Current x86 isa includes the following FP cmov instructions:
3266/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3267static bool hasFPCMov(unsigned X86CC) {
3268  switch (X86CC) {
3269  default:
3270    return false;
3271  case X86::COND_B:
3272  case X86::COND_BE:
3273  case X86::COND_E:
3274  case X86::COND_P:
3275  case X86::COND_A:
3276  case X86::COND_AE:
3277  case X86::COND_NE:
3278  case X86::COND_NP:
3279    return true;
3280  }
3281}
3282
3283/// isFPImmLegal - Returns true if the target can instruction select the
3284/// specified FP immediate natively. If false, the legalizer will
3285/// materialize the FP immediate as a load from a constant pool.
3286bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3287  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3288    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3289      return true;
3290  }
3291  return false;
3292}
3293
3294/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3295/// the specified range (L, H].
3296static bool isUndefOrInRange(int Val, int Low, int Hi) {
3297  return (Val < 0) || (Val >= Low && Val < Hi);
3298}
3299
3300/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3301/// specified value.
3302static bool isUndefOrEqual(int Val, int CmpVal) {
3303  return (Val < 0 || Val == CmpVal);
3304}
3305
3306/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3307/// from position Pos and ending in Pos+Size, falls within the specified
3308/// sequential range (L, L+Pos]. or is undef.
3309static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3310                                       unsigned Pos, unsigned Size, int Low) {
3311  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3312    if (!isUndefOrEqual(Mask[i], Low))
3313      return false;
3314  return true;
3315}
3316
3317/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3318/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3319/// the second operand.
3320static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3321  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3322    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3323  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3324    return (Mask[0] < 2 && Mask[1] < 2);
3325  return false;
3326}
3327
3328/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3329/// is suitable for input to PSHUFHW.
3330static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3331  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3332    return false;
3333
3334  // Lower quadword copied in order or undef.
3335  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3336    return false;
3337
3338  // Upper quadword shuffled.
3339  for (unsigned i = 4; i != 8; ++i)
3340    if (!isUndefOrInRange(Mask[i], 4, 8))
3341      return false;
3342
3343  if (VT == MVT::v16i16) {
3344    // Lower quadword copied in order or undef.
3345    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3346      return false;
3347
3348    // Upper quadword shuffled.
3349    for (unsigned i = 12; i != 16; ++i)
3350      if (!isUndefOrInRange(Mask[i], 12, 16))
3351        return false;
3352  }
3353
3354  return true;
3355}
3356
3357/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3358/// is suitable for input to PSHUFLW.
3359static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3360  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3361    return false;
3362
3363  // Upper quadword copied in order.
3364  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3365    return false;
3366
3367  // Lower quadword shuffled.
3368  for (unsigned i = 0; i != 4; ++i)
3369    if (!isUndefOrInRange(Mask[i], 0, 4))
3370      return false;
3371
3372  if (VT == MVT::v16i16) {
3373    // Upper quadword copied in order.
3374    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3375      return false;
3376
3377    // Lower quadword shuffled.
3378    for (unsigned i = 8; i != 12; ++i)
3379      if (!isUndefOrInRange(Mask[i], 8, 12))
3380        return false;
3381  }
3382
3383  return true;
3384}
3385
3386/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3387/// is suitable for input to PALIGNR.
3388static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3389                          const X86Subtarget *Subtarget) {
3390  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3391      (VT.is256BitVector() && !Subtarget->hasInt256()))
3392    return false;
3393
3394  unsigned NumElts = VT.getVectorNumElements();
3395  unsigned NumLanes = VT.getSizeInBits()/128;
3396  unsigned NumLaneElts = NumElts/NumLanes;
3397
3398  // Do not handle 64-bit element shuffles with palignr.
3399  if (NumLaneElts == 2)
3400    return false;
3401
3402  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3403    unsigned i;
3404    for (i = 0; i != NumLaneElts; ++i) {
3405      if (Mask[i+l] >= 0)
3406        break;
3407    }
3408
3409    // Lane is all undef, go to next lane
3410    if (i == NumLaneElts)
3411      continue;
3412
3413    int Start = Mask[i+l];
3414
3415    // Make sure its in this lane in one of the sources
3416    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3417        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3418      return false;
3419
3420    // If not lane 0, then we must match lane 0
3421    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3422      return false;
3423
3424    // Correct second source to be contiguous with first source
3425    if (Start >= (int)NumElts)
3426      Start -= NumElts - NumLaneElts;
3427
3428    // Make sure we're shifting in the right direction.
3429    if (Start <= (int)(i+l))
3430      return false;
3431
3432    Start -= i;
3433
3434    // Check the rest of the elements to see if they are consecutive.
3435    for (++i; i != NumLaneElts; ++i) {
3436      int Idx = Mask[i+l];
3437
3438      // Make sure its in this lane
3439      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3440          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3441        return false;
3442
3443      // If not lane 0, then we must match lane 0
3444      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3445        return false;
3446
3447      if (Idx >= (int)NumElts)
3448        Idx -= NumElts - NumLaneElts;
3449
3450      if (!isUndefOrEqual(Idx, Start+i))
3451        return false;
3452
3453    }
3454  }
3455
3456  return true;
3457}
3458
3459/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3460/// the two vector operands have swapped position.
3461static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3462                                     unsigned NumElems) {
3463  for (unsigned i = 0; i != NumElems; ++i) {
3464    int idx = Mask[i];
3465    if (idx < 0)
3466      continue;
3467    else if (idx < (int)NumElems)
3468      Mask[i] = idx + NumElems;
3469    else
3470      Mask[i] = idx - NumElems;
3471  }
3472}
3473
3474/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3475/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3476/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3477/// reverse of what x86 shuffles want.
3478static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
3479                        bool Commuted = false) {
3480  if (!HasFp256 && VT.is256BitVector())
3481    return false;
3482
3483  unsigned NumElems = VT.getVectorNumElements();
3484  unsigned NumLanes = VT.getSizeInBits()/128;
3485  unsigned NumLaneElems = NumElems/NumLanes;
3486
3487  if (NumLaneElems != 2 && NumLaneElems != 4)
3488    return false;
3489
3490  // VSHUFPSY divides the resulting vector into 4 chunks.
3491  // The sources are also splitted into 4 chunks, and each destination
3492  // chunk must come from a different source chunk.
3493  //
3494  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3495  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3496  //
3497  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3498  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3499  //
3500  // VSHUFPDY divides the resulting vector into 4 chunks.
3501  // The sources are also splitted into 4 chunks, and each destination
3502  // chunk must come from a different source chunk.
3503  //
3504  //  SRC1 =>      X3       X2       X1       X0
3505  //  SRC2 =>      Y3       Y2       Y1       Y0
3506  //
3507  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3508  //
3509  unsigned HalfLaneElems = NumLaneElems/2;
3510  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3511    for (unsigned i = 0; i != NumLaneElems; ++i) {
3512      int Idx = Mask[i+l];
3513      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3514      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3515        return false;
3516      // For VSHUFPSY, the mask of the second half must be the same as the
3517      // first but with the appropriate offsets. This works in the same way as
3518      // VPERMILPS works with masks.
3519      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3520        continue;
3521      if (!isUndefOrEqual(Idx, Mask[i]+l))
3522        return false;
3523    }
3524  }
3525
3526  return true;
3527}
3528
3529/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3530/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3531static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3532  if (!VT.is128BitVector())
3533    return false;
3534
3535  unsigned NumElems = VT.getVectorNumElements();
3536
3537  if (NumElems != 4)
3538    return false;
3539
3540  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3541  return isUndefOrEqual(Mask[0], 6) &&
3542         isUndefOrEqual(Mask[1], 7) &&
3543         isUndefOrEqual(Mask[2], 2) &&
3544         isUndefOrEqual(Mask[3], 3);
3545}
3546
3547/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3548/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3549/// <2, 3, 2, 3>
3550static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3551  if (!VT.is128BitVector())
3552    return false;
3553
3554  unsigned NumElems = VT.getVectorNumElements();
3555
3556  if (NumElems != 4)
3557    return false;
3558
3559  return isUndefOrEqual(Mask[0], 2) &&
3560         isUndefOrEqual(Mask[1], 3) &&
3561         isUndefOrEqual(Mask[2], 2) &&
3562         isUndefOrEqual(Mask[3], 3);
3563}
3564
3565/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3566/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3567static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3568  if (!VT.is128BitVector())
3569    return false;
3570
3571  unsigned NumElems = VT.getVectorNumElements();
3572
3573  if (NumElems != 2 && NumElems != 4)
3574    return false;
3575
3576  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3577    if (!isUndefOrEqual(Mask[i], i + NumElems))
3578      return false;
3579
3580  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3581    if (!isUndefOrEqual(Mask[i], i))
3582      return false;
3583
3584  return true;
3585}
3586
3587/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3588/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3589static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3590  if (!VT.is128BitVector())
3591    return false;
3592
3593  unsigned NumElems = VT.getVectorNumElements();
3594
3595  if (NumElems != 2 && NumElems != 4)
3596    return false;
3597
3598  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3599    if (!isUndefOrEqual(Mask[i], i))
3600      return false;
3601
3602  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3603    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3604      return false;
3605
3606  return true;
3607}
3608
3609//
3610// Some special combinations that can be optimized.
3611//
3612static
3613SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3614                               SelectionDAG &DAG) {
3615  MVT VT = SVOp->getValueType(0).getSimpleVT();
3616  DebugLoc dl = SVOp->getDebugLoc();
3617
3618  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3619    return SDValue();
3620
3621  ArrayRef<int> Mask = SVOp->getMask();
3622
3623  // These are the special masks that may be optimized.
3624  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3625  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3626  bool MatchEvenMask = true;
3627  bool MatchOddMask  = true;
3628  for (int i=0; i<8; ++i) {
3629    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3630      MatchEvenMask = false;
3631    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3632      MatchOddMask = false;
3633  }
3634
3635  if (!MatchEvenMask && !MatchOddMask)
3636    return SDValue();
3637
3638  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3639
3640  SDValue Op0 = SVOp->getOperand(0);
3641  SDValue Op1 = SVOp->getOperand(1);
3642
3643  if (MatchEvenMask) {
3644    // Shift the second operand right to 32 bits.
3645    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3646    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3647  } else {
3648    // Shift the first operand left to 32 bits.
3649    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3650    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3651  }
3652  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3653  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3654}
3655
3656/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3657/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3658static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3659                         bool HasInt256, bool V2IsSplat = false) {
3660  unsigned NumElts = VT.getVectorNumElements();
3661
3662  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3663         "Unsupported vector type for unpckh");
3664
3665  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3666      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3667    return false;
3668
3669  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3670  // independently on 128-bit lanes.
3671  unsigned NumLanes = VT.getSizeInBits()/128;
3672  unsigned NumLaneElts = NumElts/NumLanes;
3673
3674  for (unsigned l = 0; l != NumLanes; ++l) {
3675    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3676         i != (l+1)*NumLaneElts;
3677         i += 2, ++j) {
3678      int BitI  = Mask[i];
3679      int BitI1 = Mask[i+1];
3680      if (!isUndefOrEqual(BitI, j))
3681        return false;
3682      if (V2IsSplat) {
3683        if (!isUndefOrEqual(BitI1, NumElts))
3684          return false;
3685      } else {
3686        if (!isUndefOrEqual(BitI1, j + NumElts))
3687          return false;
3688      }
3689    }
3690  }
3691
3692  return true;
3693}
3694
3695/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3696/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3697static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3698                         bool HasInt256, bool V2IsSplat = false) {
3699  unsigned NumElts = VT.getVectorNumElements();
3700
3701  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3702         "Unsupported vector type for unpckh");
3703
3704  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3705      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3706    return false;
3707
3708  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3709  // independently on 128-bit lanes.
3710  unsigned NumLanes = VT.getSizeInBits()/128;
3711  unsigned NumLaneElts = NumElts/NumLanes;
3712
3713  for (unsigned l = 0; l != NumLanes; ++l) {
3714    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3715         i != (l+1)*NumLaneElts; i += 2, ++j) {
3716      int BitI  = Mask[i];
3717      int BitI1 = Mask[i+1];
3718      if (!isUndefOrEqual(BitI, j))
3719        return false;
3720      if (V2IsSplat) {
3721        if (isUndefOrEqual(BitI1, NumElts))
3722          return false;
3723      } else {
3724        if (!isUndefOrEqual(BitI1, j+NumElts))
3725          return false;
3726      }
3727    }
3728  }
3729  return true;
3730}
3731
3732/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3733/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3734/// <0, 0, 1, 1>
3735static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3736  unsigned NumElts = VT.getVectorNumElements();
3737  bool Is256BitVec = VT.is256BitVector();
3738
3739  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3740         "Unsupported vector type for unpckh");
3741
3742  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
3743      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3744    return false;
3745
3746  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3747  // FIXME: Need a better way to get rid of this, there's no latency difference
3748  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3749  // the former later. We should also remove the "_undef" special mask.
3750  if (NumElts == 4 && Is256BitVec)
3751    return false;
3752
3753  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3754  // independently on 128-bit lanes.
3755  unsigned NumLanes = VT.getSizeInBits()/128;
3756  unsigned NumLaneElts = NumElts/NumLanes;
3757
3758  for (unsigned l = 0; l != NumLanes; ++l) {
3759    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3760         i != (l+1)*NumLaneElts;
3761         i += 2, ++j) {
3762      int BitI  = Mask[i];
3763      int BitI1 = Mask[i+1];
3764
3765      if (!isUndefOrEqual(BitI, j))
3766        return false;
3767      if (!isUndefOrEqual(BitI1, j))
3768        return false;
3769    }
3770  }
3771
3772  return true;
3773}
3774
3775/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3776/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3777/// <2, 2, 3, 3>
3778static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3779  unsigned NumElts = VT.getVectorNumElements();
3780
3781  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3782         "Unsupported vector type for unpckh");
3783
3784  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3785      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3786    return false;
3787
3788  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3789  // independently on 128-bit lanes.
3790  unsigned NumLanes = VT.getSizeInBits()/128;
3791  unsigned NumLaneElts = NumElts/NumLanes;
3792
3793  for (unsigned l = 0; l != NumLanes; ++l) {
3794    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3795         i != (l+1)*NumLaneElts; i += 2, ++j) {
3796      int BitI  = Mask[i];
3797      int BitI1 = Mask[i+1];
3798      if (!isUndefOrEqual(BitI, j))
3799        return false;
3800      if (!isUndefOrEqual(BitI1, j))
3801        return false;
3802    }
3803  }
3804  return true;
3805}
3806
3807/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3808/// specifies a shuffle of elements that is suitable for input to MOVSS,
3809/// MOVSD, and MOVD, i.e. setting the lowest element.
3810static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3811  if (VT.getVectorElementType().getSizeInBits() < 32)
3812    return false;
3813  if (!VT.is128BitVector())
3814    return false;
3815
3816  unsigned NumElts = VT.getVectorNumElements();
3817
3818  if (!isUndefOrEqual(Mask[0], NumElts))
3819    return false;
3820
3821  for (unsigned i = 1; i != NumElts; ++i)
3822    if (!isUndefOrEqual(Mask[i], i))
3823      return false;
3824
3825  return true;
3826}
3827
3828/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3829/// as permutations between 128-bit chunks or halves. As an example: this
3830/// shuffle bellow:
3831///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3832/// The first half comes from the second half of V1 and the second half from the
3833/// the second half of V2.
3834static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3835  if (!HasFp256 || !VT.is256BitVector())
3836    return false;
3837
3838  // The shuffle result is divided into half A and half B. In total the two
3839  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3840  // B must come from C, D, E or F.
3841  unsigned HalfSize = VT.getVectorNumElements()/2;
3842  bool MatchA = false, MatchB = false;
3843
3844  // Check if A comes from one of C, D, E, F.
3845  for (unsigned Half = 0; Half != 4; ++Half) {
3846    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3847      MatchA = true;
3848      break;
3849    }
3850  }
3851
3852  // Check if B comes from one of C, D, E, F.
3853  for (unsigned Half = 0; Half != 4; ++Half) {
3854    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3855      MatchB = true;
3856      break;
3857    }
3858  }
3859
3860  return MatchA && MatchB;
3861}
3862
3863/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3864/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3865static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3866  MVT VT = SVOp->getValueType(0).getSimpleVT();
3867
3868  unsigned HalfSize = VT.getVectorNumElements()/2;
3869
3870  unsigned FstHalf = 0, SndHalf = 0;
3871  for (unsigned i = 0; i < HalfSize; ++i) {
3872    if (SVOp->getMaskElt(i) > 0) {
3873      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3874      break;
3875    }
3876  }
3877  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3878    if (SVOp->getMaskElt(i) > 0) {
3879      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3880      break;
3881    }
3882  }
3883
3884  return (FstHalf | (SndHalf << 4));
3885}
3886
3887/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3888/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3889/// Note that VPERMIL mask matching is different depending whether theunderlying
3890/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3891/// to the same elements of the low, but to the higher half of the source.
3892/// In VPERMILPD the two lanes could be shuffled independently of each other
3893/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3894static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3895  if (!HasFp256)
3896    return false;
3897
3898  unsigned NumElts = VT.getVectorNumElements();
3899  // Only match 256-bit with 32/64-bit types
3900  if (!VT.is256BitVector() || (NumElts != 4 && NumElts != 8))
3901    return false;
3902
3903  unsigned NumLanes = VT.getSizeInBits()/128;
3904  unsigned LaneSize = NumElts/NumLanes;
3905  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3906    for (unsigned i = 0; i != LaneSize; ++i) {
3907      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3908        return false;
3909      if (NumElts != 8 || l == 0)
3910        continue;
3911      // VPERMILPS handling
3912      if (Mask[i] < 0)
3913        continue;
3914      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3915        return false;
3916    }
3917  }
3918
3919  return true;
3920}
3921
3922/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3923/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3924/// element of vector 2 and the other elements to come from vector 1 in order.
3925static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3926                               bool V2IsSplat = false, bool V2IsUndef = false) {
3927  if (!VT.is128BitVector())
3928    return false;
3929
3930  unsigned NumOps = VT.getVectorNumElements();
3931  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3932    return false;
3933
3934  if (!isUndefOrEqual(Mask[0], 0))
3935    return false;
3936
3937  for (unsigned i = 1; i != NumOps; ++i)
3938    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3939          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3940          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3941      return false;
3942
3943  return true;
3944}
3945
3946/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3947/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3948/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3949static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3950                           const X86Subtarget *Subtarget) {
3951  if (!Subtarget->hasSSE3())
3952    return false;
3953
3954  unsigned NumElems = VT.getVectorNumElements();
3955
3956  if ((VT.is128BitVector() && NumElems != 4) ||
3957      (VT.is256BitVector() && NumElems != 8))
3958    return false;
3959
3960  // "i+1" is the value the indexed mask element must have
3961  for (unsigned i = 0; i != NumElems; i += 2)
3962    if (!isUndefOrEqual(Mask[i], i+1) ||
3963        !isUndefOrEqual(Mask[i+1], i+1))
3964      return false;
3965
3966  return true;
3967}
3968
3969/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3970/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3971/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3972static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3973                           const X86Subtarget *Subtarget) {
3974  if (!Subtarget->hasSSE3())
3975    return false;
3976
3977  unsigned NumElems = VT.getVectorNumElements();
3978
3979  if ((VT.is128BitVector() && NumElems != 4) ||
3980      (VT.is256BitVector() && NumElems != 8))
3981    return false;
3982
3983  // "i" is the value the indexed mask element must have
3984  for (unsigned i = 0; i != NumElems; i += 2)
3985    if (!isUndefOrEqual(Mask[i], i) ||
3986        !isUndefOrEqual(Mask[i+1], i))
3987      return false;
3988
3989  return true;
3990}
3991
3992/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3993/// specifies a shuffle of elements that is suitable for input to 256-bit
3994/// version of MOVDDUP.
3995static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3996  if (!HasFp256 || !VT.is256BitVector())
3997    return false;
3998
3999  unsigned NumElts = VT.getVectorNumElements();
4000  if (NumElts != 4)
4001    return false;
4002
4003  for (unsigned i = 0; i != NumElts/2; ++i)
4004    if (!isUndefOrEqual(Mask[i], 0))
4005      return false;
4006  for (unsigned i = NumElts/2; i != NumElts; ++i)
4007    if (!isUndefOrEqual(Mask[i], NumElts/2))
4008      return false;
4009  return true;
4010}
4011
4012/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4013/// specifies a shuffle of elements that is suitable for input to 128-bit
4014/// version of MOVDDUP.
4015static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
4016  if (!VT.is128BitVector())
4017    return false;
4018
4019  unsigned e = VT.getVectorNumElements() / 2;
4020  for (unsigned i = 0; i != e; ++i)
4021    if (!isUndefOrEqual(Mask[i], i))
4022      return false;
4023  for (unsigned i = 0; i != e; ++i)
4024    if (!isUndefOrEqual(Mask[e+i], i))
4025      return false;
4026  return true;
4027}
4028
4029/// isVEXTRACTF128Index - Return true if the specified
4030/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4031/// suitable for input to VEXTRACTF128.
4032bool X86::isVEXTRACTF128Index(SDNode *N) {
4033  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4034    return false;
4035
4036  // The index should be aligned on a 128-bit boundary.
4037  uint64_t Index =
4038    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4039
4040  MVT VT = N->getValueType(0).getSimpleVT();
4041  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4042  bool Result = (Index * ElSize) % 128 == 0;
4043
4044  return Result;
4045}
4046
4047/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4048/// operand specifies a subvector insert that is suitable for input to
4049/// VINSERTF128.
4050bool X86::isVINSERTF128Index(SDNode *N) {
4051  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4052    return false;
4053
4054  // The index should be aligned on a 128-bit boundary.
4055  uint64_t Index =
4056    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4057
4058  MVT VT = N->getValueType(0).getSimpleVT();
4059  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4060  bool Result = (Index * ElSize) % 128 == 0;
4061
4062  return Result;
4063}
4064
4065/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4066/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4067/// Handles 128-bit and 256-bit.
4068static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4069  MVT VT = N->getValueType(0).getSimpleVT();
4070
4071  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4072         "Unsupported vector type for PSHUF/SHUFP");
4073
4074  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4075  // independently on 128-bit lanes.
4076  unsigned NumElts = VT.getVectorNumElements();
4077  unsigned NumLanes = VT.getSizeInBits()/128;
4078  unsigned NumLaneElts = NumElts/NumLanes;
4079
4080  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
4081         "Only supports 2 or 4 elements per lane");
4082
4083  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
4084  unsigned Mask = 0;
4085  for (unsigned i = 0; i != NumElts; ++i) {
4086    int Elt = N->getMaskElt(i);
4087    if (Elt < 0) continue;
4088    Elt &= NumLaneElts - 1;
4089    unsigned ShAmt = (i << Shift) % 8;
4090    Mask |= Elt << ShAmt;
4091  }
4092
4093  return Mask;
4094}
4095
4096/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4097/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4098static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4099  MVT VT = N->getValueType(0).getSimpleVT();
4100
4101  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4102         "Unsupported vector type for PSHUFHW");
4103
4104  unsigned NumElts = VT.getVectorNumElements();
4105
4106  unsigned Mask = 0;
4107  for (unsigned l = 0; l != NumElts; l += 8) {
4108    // 8 nodes per lane, but we only care about the last 4.
4109    for (unsigned i = 0; i < 4; ++i) {
4110      int Elt = N->getMaskElt(l+i+4);
4111      if (Elt < 0) continue;
4112      Elt &= 0x3; // only 2-bits.
4113      Mask |= Elt << (i * 2);
4114    }
4115  }
4116
4117  return Mask;
4118}
4119
4120/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4121/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4122static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4123  MVT VT = N->getValueType(0).getSimpleVT();
4124
4125  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4126         "Unsupported vector type for PSHUFHW");
4127
4128  unsigned NumElts = VT.getVectorNumElements();
4129
4130  unsigned Mask = 0;
4131  for (unsigned l = 0; l != NumElts; l += 8) {
4132    // 8 nodes per lane, but we only care about the first 4.
4133    for (unsigned i = 0; i < 4; ++i) {
4134      int Elt = N->getMaskElt(l+i);
4135      if (Elt < 0) continue;
4136      Elt &= 0x3; // only 2-bits
4137      Mask |= Elt << (i * 2);
4138    }
4139  }
4140
4141  return Mask;
4142}
4143
4144/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4145/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4146static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4147  MVT VT = SVOp->getValueType(0).getSimpleVT();
4148  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4149
4150  unsigned NumElts = VT.getVectorNumElements();
4151  unsigned NumLanes = VT.getSizeInBits()/128;
4152  unsigned NumLaneElts = NumElts/NumLanes;
4153
4154  int Val = 0;
4155  unsigned i;
4156  for (i = 0; i != NumElts; ++i) {
4157    Val = SVOp->getMaskElt(i);
4158    if (Val >= 0)
4159      break;
4160  }
4161  if (Val >= (int)NumElts)
4162    Val -= NumElts - NumLaneElts;
4163
4164  assert(Val - i > 0 && "PALIGNR imm should be positive");
4165  return (Val - i) * EltSize;
4166}
4167
4168/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4169/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4170/// instructions.
4171unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4172  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4173    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4174
4175  uint64_t Index =
4176    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4177
4178  MVT VecVT = N->getOperand(0).getValueType().getSimpleVT();
4179  MVT ElVT = VecVT.getVectorElementType();
4180
4181  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4182  return Index / NumElemsPerChunk;
4183}
4184
4185/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4186/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4187/// instructions.
4188unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4189  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4190    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4191
4192  uint64_t Index =
4193    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4194
4195  MVT VecVT = N->getValueType(0).getSimpleVT();
4196  MVT ElVT = VecVT.getVectorElementType();
4197
4198  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4199  return Index / NumElemsPerChunk;
4200}
4201
4202/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4203/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4204/// Handles 256-bit.
4205static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4206  MVT VT = N->getValueType(0).getSimpleVT();
4207
4208  unsigned NumElts = VT.getVectorNumElements();
4209
4210  assert((VT.is256BitVector() && NumElts == 4) &&
4211         "Unsupported vector type for VPERMQ/VPERMPD");
4212
4213  unsigned Mask = 0;
4214  for (unsigned i = 0; i != NumElts; ++i) {
4215    int Elt = N->getMaskElt(i);
4216    if (Elt < 0)
4217      continue;
4218    Mask |= Elt << (i*2);
4219  }
4220
4221  return Mask;
4222}
4223/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4224/// constant +0.0.
4225bool X86::isZeroNode(SDValue Elt) {
4226  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Elt))
4227    return CN->isNullValue();
4228  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
4229    return CFP->getValueAPF().isPosZero();
4230  return false;
4231}
4232
4233/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4234/// their permute mask.
4235static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4236                                    SelectionDAG &DAG) {
4237  MVT VT = SVOp->getValueType(0).getSimpleVT();
4238  unsigned NumElems = VT.getVectorNumElements();
4239  SmallVector<int, 8> MaskVec;
4240
4241  for (unsigned i = 0; i != NumElems; ++i) {
4242    int Idx = SVOp->getMaskElt(i);
4243    if (Idx >= 0) {
4244      if (Idx < (int)NumElems)
4245        Idx += NumElems;
4246      else
4247        Idx -= NumElems;
4248    }
4249    MaskVec.push_back(Idx);
4250  }
4251  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4252                              SVOp->getOperand(0), &MaskVec[0]);
4253}
4254
4255/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4256/// match movhlps. The lower half elements should come from upper half of
4257/// V1 (and in order), and the upper half elements should come from the upper
4258/// half of V2 (and in order).
4259static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4260  if (!VT.is128BitVector())
4261    return false;
4262  if (VT.getVectorNumElements() != 4)
4263    return false;
4264  for (unsigned i = 0, e = 2; i != e; ++i)
4265    if (!isUndefOrEqual(Mask[i], i+2))
4266      return false;
4267  for (unsigned i = 2; i != 4; ++i)
4268    if (!isUndefOrEqual(Mask[i], i+4))
4269      return false;
4270  return true;
4271}
4272
4273/// isScalarLoadToVector - Returns true if the node is a scalar load that
4274/// is promoted to a vector. It also returns the LoadSDNode by reference if
4275/// required.
4276static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4277  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4278    return false;
4279  N = N->getOperand(0).getNode();
4280  if (!ISD::isNON_EXTLoad(N))
4281    return false;
4282  if (LD)
4283    *LD = cast<LoadSDNode>(N);
4284  return true;
4285}
4286
4287// Test whether the given value is a vector value which will be legalized
4288// into a load.
4289static bool WillBeConstantPoolLoad(SDNode *N) {
4290  if (N->getOpcode() != ISD::BUILD_VECTOR)
4291    return false;
4292
4293  // Check for any non-constant elements.
4294  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4295    switch (N->getOperand(i).getNode()->getOpcode()) {
4296    case ISD::UNDEF:
4297    case ISD::ConstantFP:
4298    case ISD::Constant:
4299      break;
4300    default:
4301      return false;
4302    }
4303
4304  // Vectors of all-zeros and all-ones are materialized with special
4305  // instructions rather than being loaded.
4306  return !ISD::isBuildVectorAllZeros(N) &&
4307         !ISD::isBuildVectorAllOnes(N);
4308}
4309
4310/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4311/// match movlp{s|d}. The lower half elements should come from lower half of
4312/// V1 (and in order), and the upper half elements should come from the upper
4313/// half of V2 (and in order). And since V1 will become the source of the
4314/// MOVLP, it must be either a vector load or a scalar load to vector.
4315static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4316                               ArrayRef<int> Mask, EVT VT) {
4317  if (!VT.is128BitVector())
4318    return false;
4319
4320  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4321    return false;
4322  // Is V2 is a vector load, don't do this transformation. We will try to use
4323  // load folding shufps op.
4324  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4325    return false;
4326
4327  unsigned NumElems = VT.getVectorNumElements();
4328
4329  if (NumElems != 2 && NumElems != 4)
4330    return false;
4331  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4332    if (!isUndefOrEqual(Mask[i], i))
4333      return false;
4334  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4335    if (!isUndefOrEqual(Mask[i], i+NumElems))
4336      return false;
4337  return true;
4338}
4339
4340/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4341/// all the same.
4342static bool isSplatVector(SDNode *N) {
4343  if (N->getOpcode() != ISD::BUILD_VECTOR)
4344    return false;
4345
4346  SDValue SplatValue = N->getOperand(0);
4347  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4348    if (N->getOperand(i) != SplatValue)
4349      return false;
4350  return true;
4351}
4352
4353/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4354/// to an zero vector.
4355/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4356static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4357  SDValue V1 = N->getOperand(0);
4358  SDValue V2 = N->getOperand(1);
4359  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4360  for (unsigned i = 0; i != NumElems; ++i) {
4361    int Idx = N->getMaskElt(i);
4362    if (Idx >= (int)NumElems) {
4363      unsigned Opc = V2.getOpcode();
4364      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4365        continue;
4366      if (Opc != ISD::BUILD_VECTOR ||
4367          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4368        return false;
4369    } else if (Idx >= 0) {
4370      unsigned Opc = V1.getOpcode();
4371      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4372        continue;
4373      if (Opc != ISD::BUILD_VECTOR ||
4374          !X86::isZeroNode(V1.getOperand(Idx)))
4375        return false;
4376    }
4377  }
4378  return true;
4379}
4380
4381/// getZeroVector - Returns a vector of specified type with all zero elements.
4382///
4383static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4384                             SelectionDAG &DAG, DebugLoc dl) {
4385  assert(VT.isVector() && "Expected a vector type");
4386
4387  // Always build SSE zero vectors as <4 x i32> bitcasted
4388  // to their dest type. This ensures they get CSE'd.
4389  SDValue Vec;
4390  if (VT.is128BitVector()) {  // SSE
4391    if (Subtarget->hasSSE2()) {  // SSE2
4392      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4393      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4394    } else { // SSE1
4395      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4396      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4397    }
4398  } else if (VT.is256BitVector()) { // AVX
4399    if (Subtarget->hasInt256()) { // AVX2
4400      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4401      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4402      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4403    } else {
4404      // 256-bit logic and arithmetic instructions in AVX are all
4405      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4406      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4407      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4408      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4409    }
4410  } else
4411    llvm_unreachable("Unexpected vector type");
4412
4413  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4414}
4415
4416/// getOnesVector - Returns a vector of specified type with all bits set.
4417/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4418/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4419/// Then bitcast to their original type, ensuring they get CSE'd.
4420static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4421                             DebugLoc dl) {
4422  assert(VT.isVector() && "Expected a vector type");
4423
4424  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4425  SDValue Vec;
4426  if (VT.is256BitVector()) {
4427    if (HasInt256) { // AVX2
4428      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4429      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4430    } else { // AVX
4431      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4432      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4433    }
4434  } else if (VT.is128BitVector()) {
4435    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4436  } else
4437    llvm_unreachable("Unexpected vector type");
4438
4439  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4440}
4441
4442/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4443/// that point to V2 points to its first element.
4444static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4445  for (unsigned i = 0; i != NumElems; ++i) {
4446    if (Mask[i] > (int)NumElems) {
4447      Mask[i] = NumElems;
4448    }
4449  }
4450}
4451
4452/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4453/// operation of specified width.
4454static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4455                       SDValue V2) {
4456  unsigned NumElems = VT.getVectorNumElements();
4457  SmallVector<int, 8> Mask;
4458  Mask.push_back(NumElems);
4459  for (unsigned i = 1; i != NumElems; ++i)
4460    Mask.push_back(i);
4461  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4462}
4463
4464/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4465static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4466                          SDValue V2) {
4467  unsigned NumElems = VT.getVectorNumElements();
4468  SmallVector<int, 8> Mask;
4469  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4470    Mask.push_back(i);
4471    Mask.push_back(i + NumElems);
4472  }
4473  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4474}
4475
4476/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4477static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4478                          SDValue V2) {
4479  unsigned NumElems = VT.getVectorNumElements();
4480  SmallVector<int, 8> Mask;
4481  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4482    Mask.push_back(i + Half);
4483    Mask.push_back(i + NumElems + Half);
4484  }
4485  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4486}
4487
4488// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4489// a generic shuffle instruction because the target has no such instructions.
4490// Generate shuffles which repeat i16 and i8 several times until they can be
4491// represented by v4f32 and then be manipulated by target suported shuffles.
4492static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4493  EVT VT = V.getValueType();
4494  int NumElems = VT.getVectorNumElements();
4495  DebugLoc dl = V.getDebugLoc();
4496
4497  while (NumElems > 4) {
4498    if (EltNo < NumElems/2) {
4499      V = getUnpackl(DAG, dl, VT, V, V);
4500    } else {
4501      V = getUnpackh(DAG, dl, VT, V, V);
4502      EltNo -= NumElems/2;
4503    }
4504    NumElems >>= 1;
4505  }
4506  return V;
4507}
4508
4509/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4510static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4511  EVT VT = V.getValueType();
4512  DebugLoc dl = V.getDebugLoc();
4513
4514  if (VT.is128BitVector()) {
4515    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4516    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4517    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4518                             &SplatMask[0]);
4519  } else if (VT.is256BitVector()) {
4520    // To use VPERMILPS to splat scalars, the second half of indicies must
4521    // refer to the higher part, which is a duplication of the lower one,
4522    // because VPERMILPS can only handle in-lane permutations.
4523    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4524                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4525
4526    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4527    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4528                             &SplatMask[0]);
4529  } else
4530    llvm_unreachable("Vector size not supported");
4531
4532  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4533}
4534
4535/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4536static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4537  EVT SrcVT = SV->getValueType(0);
4538  SDValue V1 = SV->getOperand(0);
4539  DebugLoc dl = SV->getDebugLoc();
4540
4541  int EltNo = SV->getSplatIndex();
4542  int NumElems = SrcVT.getVectorNumElements();
4543  bool Is256BitVec = SrcVT.is256BitVector();
4544
4545  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
4546         "Unknown how to promote splat for type");
4547
4548  // Extract the 128-bit part containing the splat element and update
4549  // the splat element index when it refers to the higher register.
4550  if (Is256BitVec) {
4551    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4552    if (EltNo >= NumElems/2)
4553      EltNo -= NumElems/2;
4554  }
4555
4556  // All i16 and i8 vector types can't be used directly by a generic shuffle
4557  // instruction because the target has no such instruction. Generate shuffles
4558  // which repeat i16 and i8 several times until they fit in i32, and then can
4559  // be manipulated by target suported shuffles.
4560  EVT EltVT = SrcVT.getVectorElementType();
4561  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4562    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4563
4564  // Recreate the 256-bit vector and place the same 128-bit vector
4565  // into the low and high part. This is necessary because we want
4566  // to use VPERM* to shuffle the vectors
4567  if (Is256BitVec) {
4568    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4569  }
4570
4571  return getLegalSplat(DAG, V1, EltNo);
4572}
4573
4574/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4575/// vector of zero or undef vector.  This produces a shuffle where the low
4576/// element of V2 is swizzled into the zero/undef vector, landing at element
4577/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4578static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4579                                           bool IsZero,
4580                                           const X86Subtarget *Subtarget,
4581                                           SelectionDAG &DAG) {
4582  EVT VT = V2.getValueType();
4583  SDValue V1 = IsZero
4584    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4585  unsigned NumElems = VT.getVectorNumElements();
4586  SmallVector<int, 16> MaskVec;
4587  for (unsigned i = 0; i != NumElems; ++i)
4588    // If this is the insertion idx, put the low elt of V2 here.
4589    MaskVec.push_back(i == Idx ? NumElems : i);
4590  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4591}
4592
4593/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4594/// target specific opcode. Returns true if the Mask could be calculated.
4595/// Sets IsUnary to true if only uses one source.
4596static bool getTargetShuffleMask(SDNode *N, MVT VT,
4597                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4598  unsigned NumElems = VT.getVectorNumElements();
4599  SDValue ImmN;
4600
4601  IsUnary = false;
4602  switch(N->getOpcode()) {
4603  case X86ISD::SHUFP:
4604    ImmN = N->getOperand(N->getNumOperands()-1);
4605    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4606    break;
4607  case X86ISD::UNPCKH:
4608    DecodeUNPCKHMask(VT, Mask);
4609    break;
4610  case X86ISD::UNPCKL:
4611    DecodeUNPCKLMask(VT, Mask);
4612    break;
4613  case X86ISD::MOVHLPS:
4614    DecodeMOVHLPSMask(NumElems, Mask);
4615    break;
4616  case X86ISD::MOVLHPS:
4617    DecodeMOVLHPSMask(NumElems, Mask);
4618    break;
4619  case X86ISD::PALIGNR:
4620    ImmN = N->getOperand(N->getNumOperands()-1);
4621    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4622    break;
4623  case X86ISD::PSHUFD:
4624  case X86ISD::VPERMILP:
4625    ImmN = N->getOperand(N->getNumOperands()-1);
4626    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4627    IsUnary = true;
4628    break;
4629  case X86ISD::PSHUFHW:
4630    ImmN = N->getOperand(N->getNumOperands()-1);
4631    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4632    IsUnary = true;
4633    break;
4634  case X86ISD::PSHUFLW:
4635    ImmN = N->getOperand(N->getNumOperands()-1);
4636    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4637    IsUnary = true;
4638    break;
4639  case X86ISD::VPERMI:
4640    ImmN = N->getOperand(N->getNumOperands()-1);
4641    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4642    IsUnary = true;
4643    break;
4644  case X86ISD::MOVSS:
4645  case X86ISD::MOVSD: {
4646    // The index 0 always comes from the first element of the second source,
4647    // this is why MOVSS and MOVSD are used in the first place. The other
4648    // elements come from the other positions of the first source vector
4649    Mask.push_back(NumElems);
4650    for (unsigned i = 1; i != NumElems; ++i) {
4651      Mask.push_back(i);
4652    }
4653    break;
4654  }
4655  case X86ISD::VPERM2X128:
4656    ImmN = N->getOperand(N->getNumOperands()-1);
4657    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4658    if (Mask.empty()) return false;
4659    break;
4660  case X86ISD::MOVDDUP:
4661  case X86ISD::MOVLHPD:
4662  case X86ISD::MOVLPD:
4663  case X86ISD::MOVLPS:
4664  case X86ISD::MOVSHDUP:
4665  case X86ISD::MOVSLDUP:
4666    // Not yet implemented
4667    return false;
4668  default: llvm_unreachable("unknown target shuffle node");
4669  }
4670
4671  return true;
4672}
4673
4674/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4675/// element of the result of the vector shuffle.
4676static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4677                                   unsigned Depth) {
4678  if (Depth == 6)
4679    return SDValue();  // Limit search depth.
4680
4681  SDValue V = SDValue(N, 0);
4682  EVT VT = V.getValueType();
4683  unsigned Opcode = V.getOpcode();
4684
4685  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4686  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4687    int Elt = SV->getMaskElt(Index);
4688
4689    if (Elt < 0)
4690      return DAG.getUNDEF(VT.getVectorElementType());
4691
4692    unsigned NumElems = VT.getVectorNumElements();
4693    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4694                                         : SV->getOperand(1);
4695    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4696  }
4697
4698  // Recurse into target specific vector shuffles to find scalars.
4699  if (isTargetShuffle(Opcode)) {
4700    MVT ShufVT = V.getValueType().getSimpleVT();
4701    unsigned NumElems = ShufVT.getVectorNumElements();
4702    SmallVector<int, 16> ShuffleMask;
4703    bool IsUnary;
4704
4705    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4706      return SDValue();
4707
4708    int Elt = ShuffleMask[Index];
4709    if (Elt < 0)
4710      return DAG.getUNDEF(ShufVT.getVectorElementType());
4711
4712    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4713                                         : N->getOperand(1);
4714    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4715                               Depth+1);
4716  }
4717
4718  // Actual nodes that may contain scalar elements
4719  if (Opcode == ISD::BITCAST) {
4720    V = V.getOperand(0);
4721    EVT SrcVT = V.getValueType();
4722    unsigned NumElems = VT.getVectorNumElements();
4723
4724    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4725      return SDValue();
4726  }
4727
4728  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4729    return (Index == 0) ? V.getOperand(0)
4730                        : DAG.getUNDEF(VT.getVectorElementType());
4731
4732  if (V.getOpcode() == ISD::BUILD_VECTOR)
4733    return V.getOperand(Index);
4734
4735  return SDValue();
4736}
4737
4738/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4739/// shuffle operation which come from a consecutively from a zero. The
4740/// search can start in two different directions, from left or right.
4741static
4742unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4743                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4744  unsigned i;
4745  for (i = 0; i != NumElems; ++i) {
4746    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4747    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4748    if (!(Elt.getNode() &&
4749         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4750      break;
4751  }
4752
4753  return i;
4754}
4755
4756/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4757/// correspond consecutively to elements from one of the vector operands,
4758/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4759static
4760bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4761                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4762                              unsigned NumElems, unsigned &OpNum) {
4763  bool SeenV1 = false;
4764  bool SeenV2 = false;
4765
4766  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4767    int Idx = SVOp->getMaskElt(i);
4768    // Ignore undef indicies
4769    if (Idx < 0)
4770      continue;
4771
4772    if (Idx < (int)NumElems)
4773      SeenV1 = true;
4774    else
4775      SeenV2 = true;
4776
4777    // Only accept consecutive elements from the same vector
4778    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4779      return false;
4780  }
4781
4782  OpNum = SeenV1 ? 0 : 1;
4783  return true;
4784}
4785
4786/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4787/// logical left shift of a vector.
4788static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4789                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4790  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4791  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4792              false /* check zeros from right */, DAG);
4793  unsigned OpSrc;
4794
4795  if (!NumZeros)
4796    return false;
4797
4798  // Considering the elements in the mask that are not consecutive zeros,
4799  // check if they consecutively come from only one of the source vectors.
4800  //
4801  //               V1 = {X, A, B, C}     0
4802  //                         \  \  \    /
4803  //   vector_shuffle V1, V2 <1, 2, 3, X>
4804  //
4805  if (!isShuffleMaskConsecutive(SVOp,
4806            0,                   // Mask Start Index
4807            NumElems-NumZeros,   // Mask End Index(exclusive)
4808            NumZeros,            // Where to start looking in the src vector
4809            NumElems,            // Number of elements in vector
4810            OpSrc))              // Which source operand ?
4811    return false;
4812
4813  isLeft = false;
4814  ShAmt = NumZeros;
4815  ShVal = SVOp->getOperand(OpSrc);
4816  return true;
4817}
4818
4819/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4820/// logical left shift of a vector.
4821static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4822                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4823  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4824  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4825              true /* check zeros from left */, DAG);
4826  unsigned OpSrc;
4827
4828  if (!NumZeros)
4829    return false;
4830
4831  // Considering the elements in the mask that are not consecutive zeros,
4832  // check if they consecutively come from only one of the source vectors.
4833  //
4834  //                           0    { A, B, X, X } = V2
4835  //                          / \    /  /
4836  //   vector_shuffle V1, V2 <X, X, 4, 5>
4837  //
4838  if (!isShuffleMaskConsecutive(SVOp,
4839            NumZeros,     // Mask Start Index
4840            NumElems,     // Mask End Index(exclusive)
4841            0,            // Where to start looking in the src vector
4842            NumElems,     // Number of elements in vector
4843            OpSrc))       // Which source operand ?
4844    return false;
4845
4846  isLeft = true;
4847  ShAmt = NumZeros;
4848  ShVal = SVOp->getOperand(OpSrc);
4849  return true;
4850}
4851
4852/// isVectorShift - Returns true if the shuffle can be implemented as a
4853/// logical left or right shift of a vector.
4854static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4855                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4856  // Although the logic below support any bitwidth size, there are no
4857  // shift instructions which handle more than 128-bit vectors.
4858  if (!SVOp->getValueType(0).is128BitVector())
4859    return false;
4860
4861  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4862      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4863    return true;
4864
4865  return false;
4866}
4867
4868/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4869///
4870static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4871                                       unsigned NumNonZero, unsigned NumZero,
4872                                       SelectionDAG &DAG,
4873                                       const X86Subtarget* Subtarget,
4874                                       const TargetLowering &TLI) {
4875  if (NumNonZero > 8)
4876    return SDValue();
4877
4878  DebugLoc dl = Op.getDebugLoc();
4879  SDValue V(0, 0);
4880  bool First = true;
4881  for (unsigned i = 0; i < 16; ++i) {
4882    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4883    if (ThisIsNonZero && First) {
4884      if (NumZero)
4885        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4886      else
4887        V = DAG.getUNDEF(MVT::v8i16);
4888      First = false;
4889    }
4890
4891    if ((i & 1) != 0) {
4892      SDValue ThisElt(0, 0), LastElt(0, 0);
4893      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4894      if (LastIsNonZero) {
4895        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4896                              MVT::i16, Op.getOperand(i-1));
4897      }
4898      if (ThisIsNonZero) {
4899        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4900        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4901                              ThisElt, DAG.getConstant(8, MVT::i8));
4902        if (LastIsNonZero)
4903          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4904      } else
4905        ThisElt = LastElt;
4906
4907      if (ThisElt.getNode())
4908        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4909                        DAG.getIntPtrConstant(i/2));
4910    }
4911  }
4912
4913  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4914}
4915
4916/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4917///
4918static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4919                                     unsigned NumNonZero, unsigned NumZero,
4920                                     SelectionDAG &DAG,
4921                                     const X86Subtarget* Subtarget,
4922                                     const TargetLowering &TLI) {
4923  if (NumNonZero > 4)
4924    return SDValue();
4925
4926  DebugLoc dl = Op.getDebugLoc();
4927  SDValue V(0, 0);
4928  bool First = true;
4929  for (unsigned i = 0; i < 8; ++i) {
4930    bool isNonZero = (NonZeros & (1 << i)) != 0;
4931    if (isNonZero) {
4932      if (First) {
4933        if (NumZero)
4934          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4935        else
4936          V = DAG.getUNDEF(MVT::v8i16);
4937        First = false;
4938      }
4939      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4940                      MVT::v8i16, V, Op.getOperand(i),
4941                      DAG.getIntPtrConstant(i));
4942    }
4943  }
4944
4945  return V;
4946}
4947
4948/// getVShift - Return a vector logical shift node.
4949///
4950static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4951                         unsigned NumBits, SelectionDAG &DAG,
4952                         const TargetLowering &TLI, DebugLoc dl) {
4953  assert(VT.is128BitVector() && "Unknown type for VShift");
4954  EVT ShVT = MVT::v2i64;
4955  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4956  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4957  return DAG.getNode(ISD::BITCAST, dl, VT,
4958                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4959                             DAG.getConstant(NumBits,
4960                                  TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
4961}
4962
4963SDValue
4964X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4965                                          SelectionDAG &DAG) const {
4966
4967  // Check if the scalar load can be widened into a vector load. And if
4968  // the address is "base + cst" see if the cst can be "absorbed" into
4969  // the shuffle mask.
4970  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4971    SDValue Ptr = LD->getBasePtr();
4972    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4973      return SDValue();
4974    EVT PVT = LD->getValueType(0);
4975    if (PVT != MVT::i32 && PVT != MVT::f32)
4976      return SDValue();
4977
4978    int FI = -1;
4979    int64_t Offset = 0;
4980    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4981      FI = FINode->getIndex();
4982      Offset = 0;
4983    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4984               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4985      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4986      Offset = Ptr.getConstantOperandVal(1);
4987      Ptr = Ptr.getOperand(0);
4988    } else {
4989      return SDValue();
4990    }
4991
4992    // FIXME: 256-bit vector instructions don't require a strict alignment,
4993    // improve this code to support it better.
4994    unsigned RequiredAlign = VT.getSizeInBits()/8;
4995    SDValue Chain = LD->getChain();
4996    // Make sure the stack object alignment is at least 16 or 32.
4997    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4998    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4999      if (MFI->isFixedObjectIndex(FI)) {
5000        // Can't change the alignment. FIXME: It's possible to compute
5001        // the exact stack offset and reference FI + adjust offset instead.
5002        // If someone *really* cares about this. That's the way to implement it.
5003        return SDValue();
5004      } else {
5005        MFI->setObjectAlignment(FI, RequiredAlign);
5006      }
5007    }
5008
5009    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5010    // Ptr + (Offset & ~15).
5011    if (Offset < 0)
5012      return SDValue();
5013    if ((Offset % RequiredAlign) & 3)
5014      return SDValue();
5015    int64_t StartOffset = Offset & ~(RequiredAlign-1);
5016    if (StartOffset)
5017      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
5018                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5019
5020    int EltNo = (Offset - StartOffset) >> 2;
5021    unsigned NumElems = VT.getVectorNumElements();
5022
5023    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5024    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5025                             LD->getPointerInfo().getWithOffset(StartOffset),
5026                             false, false, false, 0);
5027
5028    SmallVector<int, 8> Mask;
5029    for (unsigned i = 0; i != NumElems; ++i)
5030      Mask.push_back(EltNo);
5031
5032    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5033  }
5034
5035  return SDValue();
5036}
5037
5038/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5039/// vector of type 'VT', see if the elements can be replaced by a single large
5040/// load which has the same value as a build_vector whose operands are 'elts'.
5041///
5042/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5043///
5044/// FIXME: we'd also like to handle the case where the last elements are zero
5045/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5046/// There's even a handy isZeroNode for that purpose.
5047static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5048                                        DebugLoc &DL, SelectionDAG &DAG) {
5049  EVT EltVT = VT.getVectorElementType();
5050  unsigned NumElems = Elts.size();
5051
5052  LoadSDNode *LDBase = NULL;
5053  unsigned LastLoadedElt = -1U;
5054
5055  // For each element in the initializer, see if we've found a load or an undef.
5056  // If we don't find an initial load element, or later load elements are
5057  // non-consecutive, bail out.
5058  for (unsigned i = 0; i < NumElems; ++i) {
5059    SDValue Elt = Elts[i];
5060
5061    if (!Elt.getNode() ||
5062        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5063      return SDValue();
5064    if (!LDBase) {
5065      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5066        return SDValue();
5067      LDBase = cast<LoadSDNode>(Elt.getNode());
5068      LastLoadedElt = i;
5069      continue;
5070    }
5071    if (Elt.getOpcode() == ISD::UNDEF)
5072      continue;
5073
5074    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5075    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5076      return SDValue();
5077    LastLoadedElt = i;
5078  }
5079
5080  // If we have found an entire vector of loads and undefs, then return a large
5081  // load of the entire vector width starting at the base pointer.  If we found
5082  // consecutive loads for the low half, generate a vzext_load node.
5083  if (LastLoadedElt == NumElems - 1) {
5084    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5085      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5086                         LDBase->getPointerInfo(),
5087                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5088                         LDBase->isInvariant(), 0);
5089    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5090                       LDBase->getPointerInfo(),
5091                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5092                       LDBase->isInvariant(), LDBase->getAlignment());
5093  }
5094  if (NumElems == 4 && LastLoadedElt == 1 &&
5095      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5096    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5097    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5098    SDValue ResNode =
5099        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5100                                LDBase->getPointerInfo(),
5101                                LDBase->getAlignment(),
5102                                false/*isVolatile*/, true/*ReadMem*/,
5103                                false/*WriteMem*/);
5104
5105    // Make sure the newly-created LOAD is in the same position as LDBase in
5106    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5107    // update uses of LDBase's output chain to use the TokenFactor.
5108    if (LDBase->hasAnyUseOfValue(1)) {
5109      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5110                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5111      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5112      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5113                             SDValue(ResNode.getNode(), 1));
5114    }
5115
5116    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5117  }
5118  return SDValue();
5119}
5120
5121/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5122/// to generate a splat value for the following cases:
5123/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5124/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5125/// a scalar load, or a constant.
5126/// The VBROADCAST node is returned when a pattern is found,
5127/// or SDValue() otherwise.
5128SDValue
5129X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5130  if (!Subtarget->hasFp256())
5131    return SDValue();
5132
5133  MVT VT = Op.getValueType().getSimpleVT();
5134  DebugLoc dl = Op.getDebugLoc();
5135
5136  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5137         "Unsupported vector type for broadcast.");
5138
5139  SDValue Ld;
5140  bool ConstSplatVal;
5141
5142  switch (Op.getOpcode()) {
5143    default:
5144      // Unknown pattern found.
5145      return SDValue();
5146
5147    case ISD::BUILD_VECTOR: {
5148      // The BUILD_VECTOR node must be a splat.
5149      if (!isSplatVector(Op.getNode()))
5150        return SDValue();
5151
5152      Ld = Op.getOperand(0);
5153      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5154                     Ld.getOpcode() == ISD::ConstantFP);
5155
5156      // The suspected load node has several users. Make sure that all
5157      // of its users are from the BUILD_VECTOR node.
5158      // Constants may have multiple users.
5159      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5160        return SDValue();
5161      break;
5162    }
5163
5164    case ISD::VECTOR_SHUFFLE: {
5165      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5166
5167      // Shuffles must have a splat mask where the first element is
5168      // broadcasted.
5169      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5170        return SDValue();
5171
5172      SDValue Sc = Op.getOperand(0);
5173      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5174          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5175
5176        if (!Subtarget->hasInt256())
5177          return SDValue();
5178
5179        // Use the register form of the broadcast instruction available on AVX2.
5180        if (VT.is256BitVector())
5181          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5182        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5183      }
5184
5185      Ld = Sc.getOperand(0);
5186      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5187                       Ld.getOpcode() == ISD::ConstantFP);
5188
5189      // The scalar_to_vector node and the suspected
5190      // load node must have exactly one user.
5191      // Constants may have multiple users.
5192      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5193        return SDValue();
5194      break;
5195    }
5196  }
5197
5198  bool Is256 = VT.is256BitVector();
5199
5200  // Handle the broadcasting a single constant scalar from the constant pool
5201  // into a vector. On Sandybridge it is still better to load a constant vector
5202  // from the constant pool and not to broadcast it from a scalar.
5203  if (ConstSplatVal && Subtarget->hasInt256()) {
5204    EVT CVT = Ld.getValueType();
5205    assert(!CVT.isVector() && "Must not broadcast a vector type");
5206    unsigned ScalarSize = CVT.getSizeInBits();
5207
5208    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5209      const Constant *C = 0;
5210      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5211        C = CI->getConstantIntValue();
5212      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5213        C = CF->getConstantFPValue();
5214
5215      assert(C && "Invalid constant type");
5216
5217      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5218      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5219      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5220                       MachinePointerInfo::getConstantPool(),
5221                       false, false, false, Alignment);
5222
5223      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5224    }
5225  }
5226
5227  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5228  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5229
5230  // Handle AVX2 in-register broadcasts.
5231  if (!IsLoad && Subtarget->hasInt256() &&
5232      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5233    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5234
5235  // The scalar source must be a normal load.
5236  if (!IsLoad)
5237    return SDValue();
5238
5239  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5240    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5241
5242  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5243  // double since there is no vbroadcastsd xmm
5244  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5245    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5246      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5247  }
5248
5249  // Unsupported broadcast.
5250  return SDValue();
5251}
5252
5253SDValue
5254X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const {
5255  EVT VT = Op.getValueType();
5256
5257  // Skip if insert_vec_elt is not supported.
5258  if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5259    return SDValue();
5260
5261  DebugLoc DL = Op.getDebugLoc();
5262  unsigned NumElems = Op.getNumOperands();
5263
5264  SDValue VecIn1;
5265  SDValue VecIn2;
5266  SmallVector<unsigned, 4> InsertIndices;
5267  SmallVector<int, 8> Mask(NumElems, -1);
5268
5269  for (unsigned i = 0; i != NumElems; ++i) {
5270    unsigned Opc = Op.getOperand(i).getOpcode();
5271
5272    if (Opc == ISD::UNDEF)
5273      continue;
5274
5275    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5276      // Quit if more than 1 elements need inserting.
5277      if (InsertIndices.size() > 1)
5278        return SDValue();
5279
5280      InsertIndices.push_back(i);
5281      continue;
5282    }
5283
5284    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5285    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5286
5287    // Quit if extracted from vector of different type.
5288    if (ExtractedFromVec.getValueType() != VT)
5289      return SDValue();
5290
5291    // Quit if non-constant index.
5292    if (!isa<ConstantSDNode>(ExtIdx))
5293      return SDValue();
5294
5295    if (VecIn1.getNode() == 0)
5296      VecIn1 = ExtractedFromVec;
5297    else if (VecIn1 != ExtractedFromVec) {
5298      if (VecIn2.getNode() == 0)
5299        VecIn2 = ExtractedFromVec;
5300      else if (VecIn2 != ExtractedFromVec)
5301        // Quit if more than 2 vectors to shuffle
5302        return SDValue();
5303    }
5304
5305    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5306
5307    if (ExtractedFromVec == VecIn1)
5308      Mask[i] = Idx;
5309    else if (ExtractedFromVec == VecIn2)
5310      Mask[i] = Idx + NumElems;
5311  }
5312
5313  if (VecIn1.getNode() == 0)
5314    return SDValue();
5315
5316  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5317  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5318  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5319    unsigned Idx = InsertIndices[i];
5320    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5321                     DAG.getIntPtrConstant(Idx));
5322  }
5323
5324  return NV;
5325}
5326
5327SDValue
5328X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5329  DebugLoc dl = Op.getDebugLoc();
5330
5331  MVT VT = Op.getValueType().getSimpleVT();
5332  MVT ExtVT = VT.getVectorElementType();
5333  unsigned NumElems = Op.getNumOperands();
5334
5335  // Vectors containing all zeros can be matched by pxor and xorps later
5336  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5337    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5338    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5339    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5340      return Op;
5341
5342    return getZeroVector(VT, Subtarget, DAG, dl);
5343  }
5344
5345  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5346  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5347  // vpcmpeqd on 256-bit vectors.
5348  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
5349    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5350      return Op;
5351
5352    return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5353  }
5354
5355  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5356  if (Broadcast.getNode())
5357    return Broadcast;
5358
5359  unsigned EVTBits = ExtVT.getSizeInBits();
5360
5361  unsigned NumZero  = 0;
5362  unsigned NumNonZero = 0;
5363  unsigned NonZeros = 0;
5364  bool IsAllConstants = true;
5365  SmallSet<SDValue, 8> Values;
5366  for (unsigned i = 0; i < NumElems; ++i) {
5367    SDValue Elt = Op.getOperand(i);
5368    if (Elt.getOpcode() == ISD::UNDEF)
5369      continue;
5370    Values.insert(Elt);
5371    if (Elt.getOpcode() != ISD::Constant &&
5372        Elt.getOpcode() != ISD::ConstantFP)
5373      IsAllConstants = false;
5374    if (X86::isZeroNode(Elt))
5375      NumZero++;
5376    else {
5377      NonZeros |= (1 << i);
5378      NumNonZero++;
5379    }
5380  }
5381
5382  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5383  if (NumNonZero == 0)
5384    return DAG.getUNDEF(VT);
5385
5386  // Special case for single non-zero, non-undef, element.
5387  if (NumNonZero == 1) {
5388    unsigned Idx = CountTrailingZeros_32(NonZeros);
5389    SDValue Item = Op.getOperand(Idx);
5390
5391    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5392    // the value are obviously zero, truncate the value to i32 and do the
5393    // insertion that way.  Only do this if the value is non-constant or if the
5394    // value is a constant being inserted into element 0.  It is cheaper to do
5395    // a constant pool load than it is to do a movd + shuffle.
5396    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5397        (!IsAllConstants || Idx == 0)) {
5398      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5399        // Handle SSE only.
5400        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5401        EVT VecVT = MVT::v4i32;
5402        unsigned VecElts = 4;
5403
5404        // Truncate the value (which may itself be a constant) to i32, and
5405        // convert it to a vector with movd (S2V+shuffle to zero extend).
5406        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5407        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5408        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5409
5410        // Now we have our 32-bit value zero extended in the low element of
5411        // a vector.  If Idx != 0, swizzle it into place.
5412        if (Idx != 0) {
5413          SmallVector<int, 4> Mask;
5414          Mask.push_back(Idx);
5415          for (unsigned i = 1; i != VecElts; ++i)
5416            Mask.push_back(i);
5417          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5418                                      &Mask[0]);
5419        }
5420        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5421      }
5422    }
5423
5424    // If we have a constant or non-constant insertion into the low element of
5425    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5426    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5427    // depending on what the source datatype is.
5428    if (Idx == 0) {
5429      if (NumZero == 0)
5430        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5431
5432      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5433          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5434        if (VT.is256BitVector()) {
5435          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5436          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5437                             Item, DAG.getIntPtrConstant(0));
5438        }
5439        assert(VT.is128BitVector() && "Expected an SSE value type!");
5440        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5441        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5442        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5443      }
5444
5445      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5446        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5447        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5448        if (VT.is256BitVector()) {
5449          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5450          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5451        } else {
5452          assert(VT.is128BitVector() && "Expected an SSE value type!");
5453          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5454        }
5455        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5456      }
5457    }
5458
5459    // Is it a vector logical left shift?
5460    if (NumElems == 2 && Idx == 1 &&
5461        X86::isZeroNode(Op.getOperand(0)) &&
5462        !X86::isZeroNode(Op.getOperand(1))) {
5463      unsigned NumBits = VT.getSizeInBits();
5464      return getVShift(true, VT,
5465                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5466                                   VT, Op.getOperand(1)),
5467                       NumBits/2, DAG, *this, dl);
5468    }
5469
5470    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5471      return SDValue();
5472
5473    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5474    // is a non-constant being inserted into an element other than the low one,
5475    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5476    // movd/movss) to move this into the low element, then shuffle it into
5477    // place.
5478    if (EVTBits == 32) {
5479      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5480
5481      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5482      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5483      SmallVector<int, 8> MaskVec;
5484      for (unsigned i = 0; i != NumElems; ++i)
5485        MaskVec.push_back(i == Idx ? 0 : 1);
5486      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5487    }
5488  }
5489
5490  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5491  if (Values.size() == 1) {
5492    if (EVTBits == 32) {
5493      // Instead of a shuffle like this:
5494      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5495      // Check if it's possible to issue this instead.
5496      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5497      unsigned Idx = CountTrailingZeros_32(NonZeros);
5498      SDValue Item = Op.getOperand(Idx);
5499      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5500        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5501    }
5502    return SDValue();
5503  }
5504
5505  // A vector full of immediates; various special cases are already
5506  // handled, so this is best done with a single constant-pool load.
5507  if (IsAllConstants)
5508    return SDValue();
5509
5510  // For AVX-length vectors, build the individual 128-bit pieces and use
5511  // shuffles to put them in place.
5512  if (VT.is256BitVector()) {
5513    SmallVector<SDValue, 32> V;
5514    for (unsigned i = 0; i != NumElems; ++i)
5515      V.push_back(Op.getOperand(i));
5516
5517    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5518
5519    // Build both the lower and upper subvector.
5520    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5521    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5522                                NumElems/2);
5523
5524    // Recreate the wider vector with the lower and upper part.
5525    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5526  }
5527
5528  // Let legalizer expand 2-wide build_vectors.
5529  if (EVTBits == 64) {
5530    if (NumNonZero == 1) {
5531      // One half is zero or undef.
5532      unsigned Idx = CountTrailingZeros_32(NonZeros);
5533      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5534                                 Op.getOperand(Idx));
5535      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5536    }
5537    return SDValue();
5538  }
5539
5540  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5541  if (EVTBits == 8 && NumElems == 16) {
5542    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5543                                        Subtarget, *this);
5544    if (V.getNode()) return V;
5545  }
5546
5547  if (EVTBits == 16 && NumElems == 8) {
5548    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5549                                      Subtarget, *this);
5550    if (V.getNode()) return V;
5551  }
5552
5553  // If element VT is == 32 bits, turn it into a number of shuffles.
5554  SmallVector<SDValue, 8> V(NumElems);
5555  if (NumElems == 4 && NumZero > 0) {
5556    for (unsigned i = 0; i < 4; ++i) {
5557      bool isZero = !(NonZeros & (1 << i));
5558      if (isZero)
5559        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5560      else
5561        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5562    }
5563
5564    for (unsigned i = 0; i < 2; ++i) {
5565      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5566        default: break;
5567        case 0:
5568          V[i] = V[i*2];  // Must be a zero vector.
5569          break;
5570        case 1:
5571          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5572          break;
5573        case 2:
5574          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5575          break;
5576        case 3:
5577          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5578          break;
5579      }
5580    }
5581
5582    bool Reverse1 = (NonZeros & 0x3) == 2;
5583    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5584    int MaskVec[] = {
5585      Reverse1 ? 1 : 0,
5586      Reverse1 ? 0 : 1,
5587      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5588      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5589    };
5590    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5591  }
5592
5593  if (Values.size() > 1 && VT.is128BitVector()) {
5594    // Check for a build vector of consecutive loads.
5595    for (unsigned i = 0; i < NumElems; ++i)
5596      V[i] = Op.getOperand(i);
5597
5598    // Check for elements which are consecutive loads.
5599    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5600    if (LD.getNode())
5601      return LD;
5602
5603    // Check for a build vector from mostly shuffle plus few inserting.
5604    SDValue Sh = buildFromShuffleMostly(Op, DAG);
5605    if (Sh.getNode())
5606      return Sh;
5607
5608    // For SSE 4.1, use insertps to put the high elements into the low element.
5609    if (getSubtarget()->hasSSE41()) {
5610      SDValue Result;
5611      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5612        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5613      else
5614        Result = DAG.getUNDEF(VT);
5615
5616      for (unsigned i = 1; i < NumElems; ++i) {
5617        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5618        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5619                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5620      }
5621      return Result;
5622    }
5623
5624    // Otherwise, expand into a number of unpckl*, start by extending each of
5625    // our (non-undef) elements to the full vector width with the element in the
5626    // bottom slot of the vector (which generates no code for SSE).
5627    for (unsigned i = 0; i < NumElems; ++i) {
5628      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5629        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5630      else
5631        V[i] = DAG.getUNDEF(VT);
5632    }
5633
5634    // Next, we iteratively mix elements, e.g. for v4f32:
5635    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5636    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5637    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5638    unsigned EltStride = NumElems >> 1;
5639    while (EltStride != 0) {
5640      for (unsigned i = 0; i < EltStride; ++i) {
5641        // If V[i+EltStride] is undef and this is the first round of mixing,
5642        // then it is safe to just drop this shuffle: V[i] is already in the
5643        // right place, the one element (since it's the first round) being
5644        // inserted as undef can be dropped.  This isn't safe for successive
5645        // rounds because they will permute elements within both vectors.
5646        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5647            EltStride == NumElems/2)
5648          continue;
5649
5650        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5651      }
5652      EltStride >>= 1;
5653    }
5654    return V[0];
5655  }
5656  return SDValue();
5657}
5658
5659// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5660// to create 256-bit vectors from two other 128-bit ones.
5661static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5662  DebugLoc dl = Op.getDebugLoc();
5663  MVT ResVT = Op.getValueType().getSimpleVT();
5664
5665  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5666
5667  SDValue V1 = Op.getOperand(0);
5668  SDValue V2 = Op.getOperand(1);
5669  unsigned NumElems = ResVT.getVectorNumElements();
5670
5671  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5672}
5673
5674static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5675  assert(Op.getNumOperands() == 2);
5676
5677  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5678  // from two other 128-bit ones.
5679  return LowerAVXCONCAT_VECTORS(Op, DAG);
5680}
5681
5682// Try to lower a shuffle node into a simple blend instruction.
5683static SDValue
5684LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5685                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5686  SDValue V1 = SVOp->getOperand(0);
5687  SDValue V2 = SVOp->getOperand(1);
5688  DebugLoc dl = SVOp->getDebugLoc();
5689  MVT VT = SVOp->getValueType(0).getSimpleVT();
5690  MVT EltVT = VT.getVectorElementType();
5691  unsigned NumElems = VT.getVectorNumElements();
5692
5693  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
5694    return SDValue();
5695  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
5696    return SDValue();
5697
5698  // Check the mask for BLEND and build the value.
5699  unsigned MaskValue = 0;
5700  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
5701  unsigned NumLanes = (NumElems-1)/8 + 1;
5702  unsigned NumElemsInLane = NumElems / NumLanes;
5703
5704  // Blend for v16i16 should be symetric for the both lanes.
5705  for (unsigned i = 0; i < NumElemsInLane; ++i) {
5706
5707    int SndLaneEltIdx = (NumLanes == 2) ?
5708      SVOp->getMaskElt(i + NumElemsInLane) : -1;
5709    int EltIdx = SVOp->getMaskElt(i);
5710
5711    if ((EltIdx < 0 || EltIdx == (int)i) &&
5712        (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
5713      continue;
5714
5715    if (((unsigned)EltIdx == (i + NumElems)) &&
5716        (SndLaneEltIdx < 0 ||
5717         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
5718      MaskValue |= (1<<i);
5719    else
5720      return SDValue();
5721  }
5722
5723  // Convert i32 vectors to floating point if it is not AVX2.
5724  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
5725  MVT BlendVT = VT;
5726  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
5727    BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
5728                               NumElems);
5729    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
5730    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
5731  }
5732
5733  SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
5734                            DAG.getConstant(MaskValue, MVT::i32));
5735  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5736}
5737
5738// v8i16 shuffles - Prefer shuffles in the following order:
5739// 1. [all]   pshuflw, pshufhw, optional move
5740// 2. [ssse3] 1 x pshufb
5741// 3. [ssse3] 2 x pshufb + 1 x por
5742// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5743static SDValue
5744LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5745                         SelectionDAG &DAG) {
5746  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5747  SDValue V1 = SVOp->getOperand(0);
5748  SDValue V2 = SVOp->getOperand(1);
5749  DebugLoc dl = SVOp->getDebugLoc();
5750  SmallVector<int, 8> MaskVals;
5751
5752  // Determine if more than 1 of the words in each of the low and high quadwords
5753  // of the result come from the same quadword of one of the two inputs.  Undef
5754  // mask values count as coming from any quadword, for better codegen.
5755  unsigned LoQuad[] = { 0, 0, 0, 0 };
5756  unsigned HiQuad[] = { 0, 0, 0, 0 };
5757  std::bitset<4> InputQuads;
5758  for (unsigned i = 0; i < 8; ++i) {
5759    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5760    int EltIdx = SVOp->getMaskElt(i);
5761    MaskVals.push_back(EltIdx);
5762    if (EltIdx < 0) {
5763      ++Quad[0];
5764      ++Quad[1];
5765      ++Quad[2];
5766      ++Quad[3];
5767      continue;
5768    }
5769    ++Quad[EltIdx / 4];
5770    InputQuads.set(EltIdx / 4);
5771  }
5772
5773  int BestLoQuad = -1;
5774  unsigned MaxQuad = 1;
5775  for (unsigned i = 0; i < 4; ++i) {
5776    if (LoQuad[i] > MaxQuad) {
5777      BestLoQuad = i;
5778      MaxQuad = LoQuad[i];
5779    }
5780  }
5781
5782  int BestHiQuad = -1;
5783  MaxQuad = 1;
5784  for (unsigned i = 0; i < 4; ++i) {
5785    if (HiQuad[i] > MaxQuad) {
5786      BestHiQuad = i;
5787      MaxQuad = HiQuad[i];
5788    }
5789  }
5790
5791  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5792  // of the two input vectors, shuffle them into one input vector so only a
5793  // single pshufb instruction is necessary. If There are more than 2 input
5794  // quads, disable the next transformation since it does not help SSSE3.
5795  bool V1Used = InputQuads[0] || InputQuads[1];
5796  bool V2Used = InputQuads[2] || InputQuads[3];
5797  if (Subtarget->hasSSSE3()) {
5798    if (InputQuads.count() == 2 && V1Used && V2Used) {
5799      BestLoQuad = InputQuads[0] ? 0 : 1;
5800      BestHiQuad = InputQuads[2] ? 2 : 3;
5801    }
5802    if (InputQuads.count() > 2) {
5803      BestLoQuad = -1;
5804      BestHiQuad = -1;
5805    }
5806  }
5807
5808  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5809  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5810  // words from all 4 input quadwords.
5811  SDValue NewV;
5812  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5813    int MaskV[] = {
5814      BestLoQuad < 0 ? 0 : BestLoQuad,
5815      BestHiQuad < 0 ? 1 : BestHiQuad
5816    };
5817    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5818                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5819                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5820    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5821
5822    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5823    // source words for the shuffle, to aid later transformations.
5824    bool AllWordsInNewV = true;
5825    bool InOrder[2] = { true, true };
5826    for (unsigned i = 0; i != 8; ++i) {
5827      int idx = MaskVals[i];
5828      if (idx != (int)i)
5829        InOrder[i/4] = false;
5830      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5831        continue;
5832      AllWordsInNewV = false;
5833      break;
5834    }
5835
5836    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5837    if (AllWordsInNewV) {
5838      for (int i = 0; i != 8; ++i) {
5839        int idx = MaskVals[i];
5840        if (idx < 0)
5841          continue;
5842        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5843        if ((idx != i) && idx < 4)
5844          pshufhw = false;
5845        if ((idx != i) && idx > 3)
5846          pshuflw = false;
5847      }
5848      V1 = NewV;
5849      V2Used = false;
5850      BestLoQuad = 0;
5851      BestHiQuad = 1;
5852    }
5853
5854    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5855    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5856    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5857      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5858      unsigned TargetMask = 0;
5859      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5860                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5861      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5862      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5863                             getShufflePSHUFLWImmediate(SVOp);
5864      V1 = NewV.getOperand(0);
5865      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5866    }
5867  }
5868
5869  // Promote splats to a larger type which usually leads to more efficient code.
5870  // FIXME: Is this true if pshufb is available?
5871  if (SVOp->isSplat())
5872    return PromoteSplat(SVOp, DAG);
5873
5874  // If we have SSSE3, and all words of the result are from 1 input vector,
5875  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5876  // is present, fall back to case 4.
5877  if (Subtarget->hasSSSE3()) {
5878    SmallVector<SDValue,16> pshufbMask;
5879
5880    // If we have elements from both input vectors, set the high bit of the
5881    // shuffle mask element to zero out elements that come from V2 in the V1
5882    // mask, and elements that come from V1 in the V2 mask, so that the two
5883    // results can be OR'd together.
5884    bool TwoInputs = V1Used && V2Used;
5885    for (unsigned i = 0; i != 8; ++i) {
5886      int EltIdx = MaskVals[i] * 2;
5887      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5888      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5889      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5890      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5891    }
5892    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5893    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5894                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5895                                 MVT::v16i8, &pshufbMask[0], 16));
5896    if (!TwoInputs)
5897      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5898
5899    // Calculate the shuffle mask for the second input, shuffle it, and
5900    // OR it with the first shuffled input.
5901    pshufbMask.clear();
5902    for (unsigned i = 0; i != 8; ++i) {
5903      int EltIdx = MaskVals[i] * 2;
5904      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5905      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5906      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5907      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5908    }
5909    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5910    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5911                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5912                                 MVT::v16i8, &pshufbMask[0], 16));
5913    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5914    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5915  }
5916
5917  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5918  // and update MaskVals with new element order.
5919  std::bitset<8> InOrder;
5920  if (BestLoQuad >= 0) {
5921    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5922    for (int i = 0; i != 4; ++i) {
5923      int idx = MaskVals[i];
5924      if (idx < 0) {
5925        InOrder.set(i);
5926      } else if ((idx / 4) == BestLoQuad) {
5927        MaskV[i] = idx & 3;
5928        InOrder.set(i);
5929      }
5930    }
5931    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5932                                &MaskV[0]);
5933
5934    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5935      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5936      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5937                                  NewV.getOperand(0),
5938                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5939    }
5940  }
5941
5942  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5943  // and update MaskVals with the new element order.
5944  if (BestHiQuad >= 0) {
5945    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5946    for (unsigned i = 4; i != 8; ++i) {
5947      int idx = MaskVals[i];
5948      if (idx < 0) {
5949        InOrder.set(i);
5950      } else if ((idx / 4) == BestHiQuad) {
5951        MaskV[i] = (idx & 3) + 4;
5952        InOrder.set(i);
5953      }
5954    }
5955    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5956                                &MaskV[0]);
5957
5958    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5959      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5960      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5961                                  NewV.getOperand(0),
5962                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5963    }
5964  }
5965
5966  // In case BestHi & BestLo were both -1, which means each quadword has a word
5967  // from each of the four input quadwords, calculate the InOrder bitvector now
5968  // before falling through to the insert/extract cleanup.
5969  if (BestLoQuad == -1 && BestHiQuad == -1) {
5970    NewV = V1;
5971    for (int i = 0; i != 8; ++i)
5972      if (MaskVals[i] < 0 || MaskVals[i] == i)
5973        InOrder.set(i);
5974  }
5975
5976  // The other elements are put in the right place using pextrw and pinsrw.
5977  for (unsigned i = 0; i != 8; ++i) {
5978    if (InOrder[i])
5979      continue;
5980    int EltIdx = MaskVals[i];
5981    if (EltIdx < 0)
5982      continue;
5983    SDValue ExtOp = (EltIdx < 8) ?
5984      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5985                  DAG.getIntPtrConstant(EltIdx)) :
5986      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5987                  DAG.getIntPtrConstant(EltIdx - 8));
5988    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5989                       DAG.getIntPtrConstant(i));
5990  }
5991  return NewV;
5992}
5993
5994// v16i8 shuffles - Prefer shuffles in the following order:
5995// 1. [ssse3] 1 x pshufb
5996// 2. [ssse3] 2 x pshufb + 1 x por
5997// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5998static
5999SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
6000                                 SelectionDAG &DAG,
6001                                 const X86TargetLowering &TLI) {
6002  SDValue V1 = SVOp->getOperand(0);
6003  SDValue V2 = SVOp->getOperand(1);
6004  DebugLoc dl = SVOp->getDebugLoc();
6005  ArrayRef<int> MaskVals = SVOp->getMask();
6006
6007  // Promote splats to a larger type which usually leads to more efficient code.
6008  // FIXME: Is this true if pshufb is available?
6009  if (SVOp->isSplat())
6010    return PromoteSplat(SVOp, DAG);
6011
6012  // If we have SSSE3, case 1 is generated when all result bytes come from
6013  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
6014  // present, fall back to case 3.
6015
6016  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
6017  if (TLI.getSubtarget()->hasSSSE3()) {
6018    SmallVector<SDValue,16> pshufbMask;
6019
6020    // If all result elements are from one input vector, then only translate
6021    // undef mask values to 0x80 (zero out result) in the pshufb mask.
6022    //
6023    // Otherwise, we have elements from both input vectors, and must zero out
6024    // elements that come from V2 in the first mask, and V1 in the second mask
6025    // so that we can OR them together.
6026    for (unsigned i = 0; i != 16; ++i) {
6027      int EltIdx = MaskVals[i];
6028      if (EltIdx < 0 || EltIdx >= 16)
6029        EltIdx = 0x80;
6030      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6031    }
6032    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6033                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6034                                 MVT::v16i8, &pshufbMask[0], 16));
6035
6036    // As PSHUFB will zero elements with negative indices, it's safe to ignore
6037    // the 2nd operand if it's undefined or zero.
6038    if (V2.getOpcode() == ISD::UNDEF ||
6039        ISD::isBuildVectorAllZeros(V2.getNode()))
6040      return V1;
6041
6042    // Calculate the shuffle mask for the second input, shuffle it, and
6043    // OR it with the first shuffled input.
6044    pshufbMask.clear();
6045    for (unsigned i = 0; i != 16; ++i) {
6046      int EltIdx = MaskVals[i];
6047      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6048      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6049    }
6050    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6051                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6052                                 MVT::v16i8, &pshufbMask[0], 16));
6053    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6054  }
6055
6056  // No SSSE3 - Calculate in place words and then fix all out of place words
6057  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6058  // the 16 different words that comprise the two doublequadword input vectors.
6059  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6060  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6061  SDValue NewV = V1;
6062  for (int i = 0; i != 8; ++i) {
6063    int Elt0 = MaskVals[i*2];
6064    int Elt1 = MaskVals[i*2+1];
6065
6066    // This word of the result is all undef, skip it.
6067    if (Elt0 < 0 && Elt1 < 0)
6068      continue;
6069
6070    // This word of the result is already in the correct place, skip it.
6071    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6072      continue;
6073
6074    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6075    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6076    SDValue InsElt;
6077
6078    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6079    // using a single extract together, load it and store it.
6080    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6081      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6082                           DAG.getIntPtrConstant(Elt1 / 2));
6083      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6084                        DAG.getIntPtrConstant(i));
6085      continue;
6086    }
6087
6088    // If Elt1 is defined, extract it from the appropriate source.  If the
6089    // source byte is not also odd, shift the extracted word left 8 bits
6090    // otherwise clear the bottom 8 bits if we need to do an or.
6091    if (Elt1 >= 0) {
6092      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6093                           DAG.getIntPtrConstant(Elt1 / 2));
6094      if ((Elt1 & 1) == 0)
6095        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6096                             DAG.getConstant(8,
6097                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6098      else if (Elt0 >= 0)
6099        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6100                             DAG.getConstant(0xFF00, MVT::i16));
6101    }
6102    // If Elt0 is defined, extract it from the appropriate source.  If the
6103    // source byte is not also even, shift the extracted word right 8 bits. If
6104    // Elt1 was also defined, OR the extracted values together before
6105    // inserting them in the result.
6106    if (Elt0 >= 0) {
6107      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6108                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6109      if ((Elt0 & 1) != 0)
6110        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6111                              DAG.getConstant(8,
6112                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6113      else if (Elt1 >= 0)
6114        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6115                             DAG.getConstant(0x00FF, MVT::i16));
6116      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6117                         : InsElt0;
6118    }
6119    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6120                       DAG.getIntPtrConstant(i));
6121  }
6122  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6123}
6124
6125// v32i8 shuffles - Translate to VPSHUFB if possible.
6126static
6127SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6128                                 const X86Subtarget *Subtarget,
6129                                 SelectionDAG &DAG) {
6130  MVT VT = SVOp->getValueType(0).getSimpleVT();
6131  SDValue V1 = SVOp->getOperand(0);
6132  SDValue V2 = SVOp->getOperand(1);
6133  DebugLoc dl = SVOp->getDebugLoc();
6134  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6135
6136  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6137  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6138  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6139
6140  // VPSHUFB may be generated if
6141  // (1) one of input vector is undefined or zeroinitializer.
6142  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6143  // And (2) the mask indexes don't cross the 128-bit lane.
6144  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6145      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6146    return SDValue();
6147
6148  if (V1IsAllZero && !V2IsAllZero) {
6149    CommuteVectorShuffleMask(MaskVals, 32);
6150    V1 = V2;
6151  }
6152  SmallVector<SDValue, 32> pshufbMask;
6153  for (unsigned i = 0; i != 32; i++) {
6154    int EltIdx = MaskVals[i];
6155    if (EltIdx < 0 || EltIdx >= 32)
6156      EltIdx = 0x80;
6157    else {
6158      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6159        // Cross lane is not allowed.
6160        return SDValue();
6161      EltIdx &= 0xf;
6162    }
6163    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6164  }
6165  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6166                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6167                                  MVT::v32i8, &pshufbMask[0], 32));
6168}
6169
6170/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6171/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6172/// done when every pair / quad of shuffle mask elements point to elements in
6173/// the right sequence. e.g.
6174/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6175static
6176SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6177                                 SelectionDAG &DAG) {
6178  MVT VT = SVOp->getValueType(0).getSimpleVT();
6179  DebugLoc dl = SVOp->getDebugLoc();
6180  unsigned NumElems = VT.getVectorNumElements();
6181  MVT NewVT;
6182  unsigned Scale;
6183  switch (VT.SimpleTy) {
6184  default: llvm_unreachable("Unexpected!");
6185  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6186  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6187  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6188  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6189  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6190  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6191  }
6192
6193  SmallVector<int, 8> MaskVec;
6194  for (unsigned i = 0; i != NumElems; i += Scale) {
6195    int StartIdx = -1;
6196    for (unsigned j = 0; j != Scale; ++j) {
6197      int EltIdx = SVOp->getMaskElt(i+j);
6198      if (EltIdx < 0)
6199        continue;
6200      if (StartIdx < 0)
6201        StartIdx = (EltIdx / Scale);
6202      if (EltIdx != (int)(StartIdx*Scale + j))
6203        return SDValue();
6204    }
6205    MaskVec.push_back(StartIdx);
6206  }
6207
6208  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6209  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6210  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6211}
6212
6213/// getVZextMovL - Return a zero-extending vector move low node.
6214///
6215static SDValue getVZextMovL(MVT VT, EVT OpVT,
6216                            SDValue SrcOp, SelectionDAG &DAG,
6217                            const X86Subtarget *Subtarget, DebugLoc dl) {
6218  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6219    LoadSDNode *LD = NULL;
6220    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6221      LD = dyn_cast<LoadSDNode>(SrcOp);
6222    if (!LD) {
6223      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6224      // instead.
6225      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6226      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6227          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6228          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6229          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6230        // PR2108
6231        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6232        return DAG.getNode(ISD::BITCAST, dl, VT,
6233                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6234                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6235                                                   OpVT,
6236                                                   SrcOp.getOperand(0)
6237                                                          .getOperand(0))));
6238      }
6239    }
6240  }
6241
6242  return DAG.getNode(ISD::BITCAST, dl, VT,
6243                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6244                                 DAG.getNode(ISD::BITCAST, dl,
6245                                             OpVT, SrcOp)));
6246}
6247
6248/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6249/// which could not be matched by any known target speficic shuffle
6250static SDValue
6251LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6252
6253  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6254  if (NewOp.getNode())
6255    return NewOp;
6256
6257  MVT VT = SVOp->getValueType(0).getSimpleVT();
6258
6259  unsigned NumElems = VT.getVectorNumElements();
6260  unsigned NumLaneElems = NumElems / 2;
6261
6262  DebugLoc dl = SVOp->getDebugLoc();
6263  MVT EltVT = VT.getVectorElementType();
6264  MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6265  SDValue Output[2];
6266
6267  SmallVector<int, 16> Mask;
6268  for (unsigned l = 0; l < 2; ++l) {
6269    // Build a shuffle mask for the output, discovering on the fly which
6270    // input vectors to use as shuffle operands (recorded in InputUsed).
6271    // If building a suitable shuffle vector proves too hard, then bail
6272    // out with UseBuildVector set.
6273    bool UseBuildVector = false;
6274    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6275    unsigned LaneStart = l * NumLaneElems;
6276    for (unsigned i = 0; i != NumLaneElems; ++i) {
6277      // The mask element.  This indexes into the input.
6278      int Idx = SVOp->getMaskElt(i+LaneStart);
6279      if (Idx < 0) {
6280        // the mask element does not index into any input vector.
6281        Mask.push_back(-1);
6282        continue;
6283      }
6284
6285      // The input vector this mask element indexes into.
6286      int Input = Idx / NumLaneElems;
6287
6288      // Turn the index into an offset from the start of the input vector.
6289      Idx -= Input * NumLaneElems;
6290
6291      // Find or create a shuffle vector operand to hold this input.
6292      unsigned OpNo;
6293      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6294        if (InputUsed[OpNo] == Input)
6295          // This input vector is already an operand.
6296          break;
6297        if (InputUsed[OpNo] < 0) {
6298          // Create a new operand for this input vector.
6299          InputUsed[OpNo] = Input;
6300          break;
6301        }
6302      }
6303
6304      if (OpNo >= array_lengthof(InputUsed)) {
6305        // More than two input vectors used!  Give up on trying to create a
6306        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6307        UseBuildVector = true;
6308        break;
6309      }
6310
6311      // Add the mask index for the new shuffle vector.
6312      Mask.push_back(Idx + OpNo * NumLaneElems);
6313    }
6314
6315    if (UseBuildVector) {
6316      SmallVector<SDValue, 16> SVOps;
6317      for (unsigned i = 0; i != NumLaneElems; ++i) {
6318        // The mask element.  This indexes into the input.
6319        int Idx = SVOp->getMaskElt(i+LaneStart);
6320        if (Idx < 0) {
6321          SVOps.push_back(DAG.getUNDEF(EltVT));
6322          continue;
6323        }
6324
6325        // The input vector this mask element indexes into.
6326        int Input = Idx / NumElems;
6327
6328        // Turn the index into an offset from the start of the input vector.
6329        Idx -= Input * NumElems;
6330
6331        // Extract the vector element by hand.
6332        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6333                                    SVOp->getOperand(Input),
6334                                    DAG.getIntPtrConstant(Idx)));
6335      }
6336
6337      // Construct the output using a BUILD_VECTOR.
6338      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6339                              SVOps.size());
6340    } else if (InputUsed[0] < 0) {
6341      // No input vectors were used! The result is undefined.
6342      Output[l] = DAG.getUNDEF(NVT);
6343    } else {
6344      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6345                                        (InputUsed[0] % 2) * NumLaneElems,
6346                                        DAG, dl);
6347      // If only one input was used, use an undefined vector for the other.
6348      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6349        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6350                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6351      // At least one input vector was used. Create a new shuffle vector.
6352      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6353    }
6354
6355    Mask.clear();
6356  }
6357
6358  // Concatenate the result back
6359  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6360}
6361
6362/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6363/// 4 elements, and match them with several different shuffle types.
6364static SDValue
6365LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6366  SDValue V1 = SVOp->getOperand(0);
6367  SDValue V2 = SVOp->getOperand(1);
6368  DebugLoc dl = SVOp->getDebugLoc();
6369  MVT VT = SVOp->getValueType(0).getSimpleVT();
6370
6371  assert(VT.is128BitVector() && "Unsupported vector size");
6372
6373  std::pair<int, int> Locs[4];
6374  int Mask1[] = { -1, -1, -1, -1 };
6375  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6376
6377  unsigned NumHi = 0;
6378  unsigned NumLo = 0;
6379  for (unsigned i = 0; i != 4; ++i) {
6380    int Idx = PermMask[i];
6381    if (Idx < 0) {
6382      Locs[i] = std::make_pair(-1, -1);
6383    } else {
6384      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6385      if (Idx < 4) {
6386        Locs[i] = std::make_pair(0, NumLo);
6387        Mask1[NumLo] = Idx;
6388        NumLo++;
6389      } else {
6390        Locs[i] = std::make_pair(1, NumHi);
6391        if (2+NumHi < 4)
6392          Mask1[2+NumHi] = Idx;
6393        NumHi++;
6394      }
6395    }
6396  }
6397
6398  if (NumLo <= 2 && NumHi <= 2) {
6399    // If no more than two elements come from either vector. This can be
6400    // implemented with two shuffles. First shuffle gather the elements.
6401    // The second shuffle, which takes the first shuffle as both of its
6402    // vector operands, put the elements into the right order.
6403    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6404
6405    int Mask2[] = { -1, -1, -1, -1 };
6406
6407    for (unsigned i = 0; i != 4; ++i)
6408      if (Locs[i].first != -1) {
6409        unsigned Idx = (i < 2) ? 0 : 4;
6410        Idx += Locs[i].first * 2 + Locs[i].second;
6411        Mask2[i] = Idx;
6412      }
6413
6414    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6415  }
6416
6417  if (NumLo == 3 || NumHi == 3) {
6418    // Otherwise, we must have three elements from one vector, call it X, and
6419    // one element from the other, call it Y.  First, use a shufps to build an
6420    // intermediate vector with the one element from Y and the element from X
6421    // that will be in the same half in the final destination (the indexes don't
6422    // matter). Then, use a shufps to build the final vector, taking the half
6423    // containing the element from Y from the intermediate, and the other half
6424    // from X.
6425    if (NumHi == 3) {
6426      // Normalize it so the 3 elements come from V1.
6427      CommuteVectorShuffleMask(PermMask, 4);
6428      std::swap(V1, V2);
6429    }
6430
6431    // Find the element from V2.
6432    unsigned HiIndex;
6433    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6434      int Val = PermMask[HiIndex];
6435      if (Val < 0)
6436        continue;
6437      if (Val >= 4)
6438        break;
6439    }
6440
6441    Mask1[0] = PermMask[HiIndex];
6442    Mask1[1] = -1;
6443    Mask1[2] = PermMask[HiIndex^1];
6444    Mask1[3] = -1;
6445    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6446
6447    if (HiIndex >= 2) {
6448      Mask1[0] = PermMask[0];
6449      Mask1[1] = PermMask[1];
6450      Mask1[2] = HiIndex & 1 ? 6 : 4;
6451      Mask1[3] = HiIndex & 1 ? 4 : 6;
6452      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6453    }
6454
6455    Mask1[0] = HiIndex & 1 ? 2 : 0;
6456    Mask1[1] = HiIndex & 1 ? 0 : 2;
6457    Mask1[2] = PermMask[2];
6458    Mask1[3] = PermMask[3];
6459    if (Mask1[2] >= 0)
6460      Mask1[2] += 4;
6461    if (Mask1[3] >= 0)
6462      Mask1[3] += 4;
6463    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6464  }
6465
6466  // Break it into (shuffle shuffle_hi, shuffle_lo).
6467  int LoMask[] = { -1, -1, -1, -1 };
6468  int HiMask[] = { -1, -1, -1, -1 };
6469
6470  int *MaskPtr = LoMask;
6471  unsigned MaskIdx = 0;
6472  unsigned LoIdx = 0;
6473  unsigned HiIdx = 2;
6474  for (unsigned i = 0; i != 4; ++i) {
6475    if (i == 2) {
6476      MaskPtr = HiMask;
6477      MaskIdx = 1;
6478      LoIdx = 0;
6479      HiIdx = 2;
6480    }
6481    int Idx = PermMask[i];
6482    if (Idx < 0) {
6483      Locs[i] = std::make_pair(-1, -1);
6484    } else if (Idx < 4) {
6485      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6486      MaskPtr[LoIdx] = Idx;
6487      LoIdx++;
6488    } else {
6489      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6490      MaskPtr[HiIdx] = Idx;
6491      HiIdx++;
6492    }
6493  }
6494
6495  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6496  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6497  int MaskOps[] = { -1, -1, -1, -1 };
6498  for (unsigned i = 0; i != 4; ++i)
6499    if (Locs[i].first != -1)
6500      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6501  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6502}
6503
6504static bool MayFoldVectorLoad(SDValue V) {
6505  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6506    V = V.getOperand(0);
6507
6508  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6509    V = V.getOperand(0);
6510  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6511      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6512    // BUILD_VECTOR (load), undef
6513    V = V.getOperand(0);
6514
6515  return MayFoldLoad(V);
6516}
6517
6518static
6519SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6520  EVT VT = Op.getValueType();
6521
6522  // Canonizalize to v2f64.
6523  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6524  return DAG.getNode(ISD::BITCAST, dl, VT,
6525                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6526                                          V1, DAG));
6527}
6528
6529static
6530SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6531                        bool HasSSE2) {
6532  SDValue V1 = Op.getOperand(0);
6533  SDValue V2 = Op.getOperand(1);
6534  EVT VT = Op.getValueType();
6535
6536  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6537
6538  if (HasSSE2 && VT == MVT::v2f64)
6539    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6540
6541  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6542  return DAG.getNode(ISD::BITCAST, dl, VT,
6543                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6544                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6545                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6546}
6547
6548static
6549SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6550  SDValue V1 = Op.getOperand(0);
6551  SDValue V2 = Op.getOperand(1);
6552  EVT VT = Op.getValueType();
6553
6554  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6555         "unsupported shuffle type");
6556
6557  if (V2.getOpcode() == ISD::UNDEF)
6558    V2 = V1;
6559
6560  // v4i32 or v4f32
6561  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6562}
6563
6564static
6565SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6566  SDValue V1 = Op.getOperand(0);
6567  SDValue V2 = Op.getOperand(1);
6568  EVT VT = Op.getValueType();
6569  unsigned NumElems = VT.getVectorNumElements();
6570
6571  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6572  // operand of these instructions is only memory, so check if there's a
6573  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6574  // same masks.
6575  bool CanFoldLoad = false;
6576
6577  // Trivial case, when V2 comes from a load.
6578  if (MayFoldVectorLoad(V2))
6579    CanFoldLoad = true;
6580
6581  // When V1 is a load, it can be folded later into a store in isel, example:
6582  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6583  //    turns into:
6584  //  (MOVLPSmr addr:$src1, VR128:$src2)
6585  // So, recognize this potential and also use MOVLPS or MOVLPD
6586  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6587    CanFoldLoad = true;
6588
6589  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6590  if (CanFoldLoad) {
6591    if (HasSSE2 && NumElems == 2)
6592      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6593
6594    if (NumElems == 4)
6595      // If we don't care about the second element, proceed to use movss.
6596      if (SVOp->getMaskElt(1) != -1)
6597        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6598  }
6599
6600  // movl and movlp will both match v2i64, but v2i64 is never matched by
6601  // movl earlier because we make it strict to avoid messing with the movlp load
6602  // folding logic (see the code above getMOVLP call). Match it here then,
6603  // this is horrible, but will stay like this until we move all shuffle
6604  // matching to x86 specific nodes. Note that for the 1st condition all
6605  // types are matched with movsd.
6606  if (HasSSE2) {
6607    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6608    // as to remove this logic from here, as much as possible
6609    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6610      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6611    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6612  }
6613
6614  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6615
6616  // Invert the operand order and use SHUFPS to match it.
6617  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6618                              getShuffleSHUFImmediate(SVOp), DAG);
6619}
6620
6621// Reduce a vector shuffle to zext.
6622SDValue
6623X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
6624  // PMOVZX is only available from SSE41.
6625  if (!Subtarget->hasSSE41())
6626    return SDValue();
6627
6628  EVT VT = Op.getValueType();
6629
6630  // Only AVX2 support 256-bit vector integer extending.
6631  if (!Subtarget->hasInt256() && VT.is256BitVector())
6632    return SDValue();
6633
6634  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6635  DebugLoc DL = Op.getDebugLoc();
6636  SDValue V1 = Op.getOperand(0);
6637  SDValue V2 = Op.getOperand(1);
6638  unsigned NumElems = VT.getVectorNumElements();
6639
6640  // Extending is an unary operation and the element type of the source vector
6641  // won't be equal to or larger than i64.
6642  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
6643      VT.getVectorElementType() == MVT::i64)
6644    return SDValue();
6645
6646  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
6647  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
6648  while ((1U << Shift) < NumElems) {
6649    if (SVOp->getMaskElt(1U << Shift) == 1)
6650      break;
6651    Shift += 1;
6652    // The maximal ratio is 8, i.e. from i8 to i64.
6653    if (Shift > 3)
6654      return SDValue();
6655  }
6656
6657  // Check the shuffle mask.
6658  unsigned Mask = (1U << Shift) - 1;
6659  for (unsigned i = 0; i != NumElems; ++i) {
6660    int EltIdx = SVOp->getMaskElt(i);
6661    if ((i & Mask) != 0 && EltIdx != -1)
6662      return SDValue();
6663    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
6664      return SDValue();
6665  }
6666
6667  LLVMContext *Context = DAG.getContext();
6668  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
6669  EVT NeVT = EVT::getIntegerVT(*Context, NBits);
6670  EVT NVT = EVT::getVectorVT(*Context, NeVT, NumElems >> Shift);
6671
6672  if (!isTypeLegal(NVT))
6673    return SDValue();
6674
6675  // Simplify the operand as it's prepared to be fed into shuffle.
6676  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
6677  if (V1.getOpcode() == ISD::BITCAST &&
6678      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
6679      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6680      V1.getOperand(0)
6681        .getOperand(0).getValueType().getSizeInBits() == SignificantBits) {
6682    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
6683    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
6684    ConstantSDNode *CIdx =
6685      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
6686    // If it's foldable, i.e. normal load with single use, we will let code
6687    // selection to fold it. Otherwise, we will short the conversion sequence.
6688    if (CIdx && CIdx->getZExtValue() == 0 &&
6689        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
6690      if (V.getValueSizeInBits() > V1.getValueSizeInBits()) {
6691        // The "ext_vec_elt" node is wider than the result node.
6692        // In this case we should extract subvector from V.
6693        // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
6694        unsigned Ratio = V.getValueSizeInBits() / V1.getValueSizeInBits();
6695        EVT FullVT = V.getValueType();
6696        EVT SubVecVT = EVT::getVectorVT(*Context,
6697                                        FullVT.getVectorElementType(),
6698                                        FullVT.getVectorNumElements()/Ratio);
6699        V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
6700                        DAG.getIntPtrConstant(0));
6701      }
6702      V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V);
6703    }
6704  }
6705
6706  return DAG.getNode(ISD::BITCAST, DL, VT,
6707                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
6708}
6709
6710SDValue
6711X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6712  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6713  MVT VT = Op.getValueType().getSimpleVT();
6714  DebugLoc dl = Op.getDebugLoc();
6715  SDValue V1 = Op.getOperand(0);
6716  SDValue V2 = Op.getOperand(1);
6717
6718  if (isZeroShuffle(SVOp))
6719    return getZeroVector(VT, Subtarget, DAG, dl);
6720
6721  // Handle splat operations
6722  if (SVOp->isSplat()) {
6723    // Use vbroadcast whenever the splat comes from a foldable load
6724    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6725    if (Broadcast.getNode())
6726      return Broadcast;
6727  }
6728
6729  // Check integer expanding shuffles.
6730  SDValue NewOp = LowerVectorIntExtend(Op, DAG);
6731  if (NewOp.getNode())
6732    return NewOp;
6733
6734  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6735  // do it!
6736  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6737      VT == MVT::v16i16 || VT == MVT::v32i8) {
6738    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6739    if (NewOp.getNode())
6740      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6741  } else if ((VT == MVT::v4i32 ||
6742             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6743    // FIXME: Figure out a cleaner way to do this.
6744    // Try to make use of movq to zero out the top part.
6745    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6746      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6747      if (NewOp.getNode()) {
6748        MVT NewVT = NewOp.getValueType().getSimpleVT();
6749        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6750                               NewVT, true, false))
6751          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6752                              DAG, Subtarget, dl);
6753      }
6754    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6755      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6756      if (NewOp.getNode()) {
6757        MVT NewVT = NewOp.getValueType().getSimpleVT();
6758        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6759          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6760                              DAG, Subtarget, dl);
6761      }
6762    }
6763  }
6764  return SDValue();
6765}
6766
6767SDValue
6768X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6769  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6770  SDValue V1 = Op.getOperand(0);
6771  SDValue V2 = Op.getOperand(1);
6772  MVT VT = Op.getValueType().getSimpleVT();
6773  DebugLoc dl = Op.getDebugLoc();
6774  unsigned NumElems = VT.getVectorNumElements();
6775  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6776  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6777  bool V1IsSplat = false;
6778  bool V2IsSplat = false;
6779  bool HasSSE2 = Subtarget->hasSSE2();
6780  bool HasFp256    = Subtarget->hasFp256();
6781  bool HasInt256   = Subtarget->hasInt256();
6782  MachineFunction &MF = DAG.getMachineFunction();
6783  bool OptForSize = MF.getFunction()->getAttributes().
6784    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
6785
6786  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6787
6788  if (V1IsUndef && V2IsUndef)
6789    return DAG.getUNDEF(VT);
6790
6791  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6792
6793  // Vector shuffle lowering takes 3 steps:
6794  //
6795  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6796  //    narrowing and commutation of operands should be handled.
6797  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6798  //    shuffle nodes.
6799  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6800  //    so the shuffle can be broken into other shuffles and the legalizer can
6801  //    try the lowering again.
6802  //
6803  // The general idea is that no vector_shuffle operation should be left to
6804  // be matched during isel, all of them must be converted to a target specific
6805  // node here.
6806
6807  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6808  // narrowing and commutation of operands should be handled. The actual code
6809  // doesn't include all of those, work in progress...
6810  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6811  if (NewOp.getNode())
6812    return NewOp;
6813
6814  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6815
6816  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6817  // unpckh_undef). Only use pshufd if speed is more important than size.
6818  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
6819    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6820  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
6821    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6822
6823  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6824      V2IsUndef && MayFoldVectorLoad(V1))
6825    return getMOVDDup(Op, dl, V1, DAG);
6826
6827  if (isMOVHLPS_v_undef_Mask(M, VT))
6828    return getMOVHighToLow(Op, dl, DAG);
6829
6830  // Use to match splats
6831  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
6832      (VT == MVT::v2f64 || VT == MVT::v2i64))
6833    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6834
6835  if (isPSHUFDMask(M, VT)) {
6836    // The actual implementation will match the mask in the if above and then
6837    // during isel it can match several different instructions, not only pshufd
6838    // as its name says, sad but true, emulate the behavior for now...
6839    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6840      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6841
6842    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6843
6844    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6845      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6846
6847    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
6848      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
6849                                  DAG);
6850
6851    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6852                                TargetMask, DAG);
6853  }
6854
6855  // Check if this can be converted into a logical shift.
6856  bool isLeft = false;
6857  unsigned ShAmt = 0;
6858  SDValue ShVal;
6859  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6860  if (isShift && ShVal.hasOneUse()) {
6861    // If the shifted value has multiple uses, it may be cheaper to use
6862    // v_set0 + movlhps or movhlps, etc.
6863    MVT EltVT = VT.getVectorElementType();
6864    ShAmt *= EltVT.getSizeInBits();
6865    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6866  }
6867
6868  if (isMOVLMask(M, VT)) {
6869    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6870      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6871    if (!isMOVLPMask(M, VT)) {
6872      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6873        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6874
6875      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6876        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6877    }
6878  }
6879
6880  // FIXME: fold these into legal mask.
6881  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
6882    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6883
6884  if (isMOVHLPSMask(M, VT))
6885    return getMOVHighToLow(Op, dl, DAG);
6886
6887  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6888    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6889
6890  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6891    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6892
6893  if (isMOVLPMask(M, VT))
6894    return getMOVLP(Op, dl, DAG, HasSSE2);
6895
6896  if (ShouldXformToMOVHLPS(M, VT) ||
6897      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6898    return CommuteVectorShuffle(SVOp, DAG);
6899
6900  if (isShift) {
6901    // No better options. Use a vshldq / vsrldq.
6902    MVT EltVT = VT.getVectorElementType();
6903    ShAmt *= EltVT.getSizeInBits();
6904    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6905  }
6906
6907  bool Commuted = false;
6908  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6909  // 1,1,1,1 -> v8i16 though.
6910  V1IsSplat = isSplatVector(V1.getNode());
6911  V2IsSplat = isSplatVector(V2.getNode());
6912
6913  // Canonicalize the splat or undef, if present, to be on the RHS.
6914  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6915    CommuteVectorShuffleMask(M, NumElems);
6916    std::swap(V1, V2);
6917    std::swap(V1IsSplat, V2IsSplat);
6918    Commuted = true;
6919  }
6920
6921  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6922    // Shuffling low element of v1 into undef, just return v1.
6923    if (V2IsUndef)
6924      return V1;
6925    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6926    // the instruction selector will not match, so get a canonical MOVL with
6927    // swapped operands to undo the commute.
6928    return getMOVL(DAG, dl, VT, V2, V1);
6929  }
6930
6931  if (isUNPCKLMask(M, VT, HasInt256))
6932    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6933
6934  if (isUNPCKHMask(M, VT, HasInt256))
6935    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6936
6937  if (V2IsSplat) {
6938    // Normalize mask so all entries that point to V2 points to its first
6939    // element then try to match unpck{h|l} again. If match, return a
6940    // new vector_shuffle with the corrected mask.p
6941    SmallVector<int, 8> NewMask(M.begin(), M.end());
6942    NormalizeMask(NewMask, NumElems);
6943    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
6944      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6945    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
6946      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6947  }
6948
6949  if (Commuted) {
6950    // Commute is back and try unpck* again.
6951    // FIXME: this seems wrong.
6952    CommuteVectorShuffleMask(M, NumElems);
6953    std::swap(V1, V2);
6954    std::swap(V1IsSplat, V2IsSplat);
6955    Commuted = false;
6956
6957    if (isUNPCKLMask(M, VT, HasInt256))
6958      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6959
6960    if (isUNPCKHMask(M, VT, HasInt256))
6961      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6962  }
6963
6964  // Normalize the node to match x86 shuffle ops if needed
6965  if (!V2IsUndef && (isSHUFPMask(M, VT, HasFp256, /* Commuted */ true)))
6966    return CommuteVectorShuffle(SVOp, DAG);
6967
6968  // The checks below are all present in isShuffleMaskLegal, but they are
6969  // inlined here right now to enable us to directly emit target specific
6970  // nodes, and remove one by one until they don't return Op anymore.
6971
6972  if (isPALIGNRMask(M, VT, Subtarget))
6973    return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
6974                                getShufflePALIGNRImmediate(SVOp),
6975                                DAG);
6976
6977  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6978      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6979    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6980      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6981  }
6982
6983  if (isPSHUFHWMask(M, VT, HasInt256))
6984    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6985                                getShufflePSHUFHWImmediate(SVOp),
6986                                DAG);
6987
6988  if (isPSHUFLWMask(M, VT, HasInt256))
6989    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6990                                getShufflePSHUFLWImmediate(SVOp),
6991                                DAG);
6992
6993  if (isSHUFPMask(M, VT, HasFp256))
6994    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6995                                getShuffleSHUFImmediate(SVOp), DAG);
6996
6997  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
6998    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6999  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7000    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7001
7002  //===--------------------------------------------------------------------===//
7003  // Generate target specific nodes for 128 or 256-bit shuffles only
7004  // supported in the AVX instruction set.
7005  //
7006
7007  // Handle VMOVDDUPY permutations
7008  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
7009    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
7010
7011  // Handle VPERMILPS/D* permutations
7012  if (isVPERMILPMask(M, VT, HasFp256)) {
7013    if (HasInt256 && VT == MVT::v8i32)
7014      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
7015                                  getShuffleSHUFImmediate(SVOp), DAG);
7016    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
7017                                getShuffleSHUFImmediate(SVOp), DAG);
7018  }
7019
7020  // Handle VPERM2F128/VPERM2I128 permutations
7021  if (isVPERM2X128Mask(M, VT, HasFp256))
7022    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
7023                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
7024
7025  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
7026  if (BlendOp.getNode())
7027    return BlendOp;
7028
7029  if (V2IsUndef && HasInt256 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
7030    SmallVector<SDValue, 8> permclMask;
7031    for (unsigned i = 0; i != 8; ++i) {
7032      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
7033    }
7034    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
7035                               &permclMask[0], 8);
7036    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
7037    return DAG.getNode(X86ISD::VPERMV, dl, VT,
7038                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
7039  }
7040
7041  if (V2IsUndef && HasInt256 && (VT == MVT::v4i64 || VT == MVT::v4f64))
7042    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
7043                                getShuffleCLImmediate(SVOp), DAG);
7044
7045  //===--------------------------------------------------------------------===//
7046  // Since no target specific shuffle was selected for this generic one,
7047  // lower it into other known shuffles. FIXME: this isn't true yet, but
7048  // this is the plan.
7049  //
7050
7051  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7052  if (VT == MVT::v8i16) {
7053    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7054    if (NewOp.getNode())
7055      return NewOp;
7056  }
7057
7058  if (VT == MVT::v16i8) {
7059    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
7060    if (NewOp.getNode())
7061      return NewOp;
7062  }
7063
7064  if (VT == MVT::v32i8) {
7065    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7066    if (NewOp.getNode())
7067      return NewOp;
7068  }
7069
7070  // Handle all 128-bit wide vectors with 4 elements, and match them with
7071  // several different shuffle types.
7072  if (NumElems == 4 && VT.is128BitVector())
7073    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7074
7075  // Handle general 256-bit shuffles
7076  if (VT.is256BitVector())
7077    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7078
7079  return SDValue();
7080}
7081
7082static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7083  MVT VT = Op.getValueType().getSimpleVT();
7084  DebugLoc dl = Op.getDebugLoc();
7085
7086  if (!Op.getOperand(0).getValueType().getSimpleVT().is128BitVector())
7087    return SDValue();
7088
7089  if (VT.getSizeInBits() == 8) {
7090    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7091                                  Op.getOperand(0), Op.getOperand(1));
7092    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7093                                  DAG.getValueType(VT));
7094    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7095  }
7096
7097  if (VT.getSizeInBits() == 16) {
7098    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7099    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7100    if (Idx == 0)
7101      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7102                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7103                                     DAG.getNode(ISD::BITCAST, dl,
7104                                                 MVT::v4i32,
7105                                                 Op.getOperand(0)),
7106                                     Op.getOperand(1)));
7107    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7108                                  Op.getOperand(0), Op.getOperand(1));
7109    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7110                                  DAG.getValueType(VT));
7111    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7112  }
7113
7114  if (VT == MVT::f32) {
7115    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7116    // the result back to FR32 register. It's only worth matching if the
7117    // result has a single use which is a store or a bitcast to i32.  And in
7118    // the case of a store, it's not worth it if the index is a constant 0,
7119    // because a MOVSSmr can be used instead, which is smaller and faster.
7120    if (!Op.hasOneUse())
7121      return SDValue();
7122    SDNode *User = *Op.getNode()->use_begin();
7123    if ((User->getOpcode() != ISD::STORE ||
7124         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7125          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7126        (User->getOpcode() != ISD::BITCAST ||
7127         User->getValueType(0) != MVT::i32))
7128      return SDValue();
7129    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7130                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7131                                              Op.getOperand(0)),
7132                                              Op.getOperand(1));
7133    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7134  }
7135
7136  if (VT == MVT::i32 || VT == MVT::i64) {
7137    // ExtractPS/pextrq works with constant index.
7138    if (isa<ConstantSDNode>(Op.getOperand(1)))
7139      return Op;
7140  }
7141  return SDValue();
7142}
7143
7144SDValue
7145X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7146                                           SelectionDAG &DAG) const {
7147  if (!isa<ConstantSDNode>(Op.getOperand(1)))
7148    return SDValue();
7149
7150  SDValue Vec = Op.getOperand(0);
7151  MVT VecVT = Vec.getValueType().getSimpleVT();
7152
7153  // If this is a 256-bit vector result, first extract the 128-bit vector and
7154  // then extract the element from the 128-bit vector.
7155  if (VecVT.is256BitVector()) {
7156    DebugLoc dl = Op.getNode()->getDebugLoc();
7157    unsigned NumElems = VecVT.getVectorNumElements();
7158    SDValue Idx = Op.getOperand(1);
7159    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7160
7161    // Get the 128-bit vector.
7162    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7163
7164    if (IdxVal >= NumElems/2)
7165      IdxVal -= NumElems/2;
7166    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7167                       DAG.getConstant(IdxVal, MVT::i32));
7168  }
7169
7170  assert(VecVT.is128BitVector() && "Unexpected vector length");
7171
7172  if (Subtarget->hasSSE41()) {
7173    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7174    if (Res.getNode())
7175      return Res;
7176  }
7177
7178  MVT VT = Op.getValueType().getSimpleVT();
7179  DebugLoc dl = Op.getDebugLoc();
7180  // TODO: handle v16i8.
7181  if (VT.getSizeInBits() == 16) {
7182    SDValue Vec = Op.getOperand(0);
7183    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7184    if (Idx == 0)
7185      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7186                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7187                                     DAG.getNode(ISD::BITCAST, dl,
7188                                                 MVT::v4i32, Vec),
7189                                     Op.getOperand(1)));
7190    // Transform it so it match pextrw which produces a 32-bit result.
7191    MVT EltVT = MVT::i32;
7192    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7193                                  Op.getOperand(0), Op.getOperand(1));
7194    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7195                                  DAG.getValueType(VT));
7196    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7197  }
7198
7199  if (VT.getSizeInBits() == 32) {
7200    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7201    if (Idx == 0)
7202      return Op;
7203
7204    // SHUFPS the element to the lowest double word, then movss.
7205    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7206    MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
7207    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7208                                       DAG.getUNDEF(VVT), Mask);
7209    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7210                       DAG.getIntPtrConstant(0));
7211  }
7212
7213  if (VT.getSizeInBits() == 64) {
7214    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7215    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7216    //        to match extract_elt for f64.
7217    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7218    if (Idx == 0)
7219      return Op;
7220
7221    // UNPCKHPD the element to the lowest double word, then movsd.
7222    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7223    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7224    int Mask[2] = { 1, -1 };
7225    MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
7226    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7227                                       DAG.getUNDEF(VVT), Mask);
7228    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7229                       DAG.getIntPtrConstant(0));
7230  }
7231
7232  return SDValue();
7233}
7234
7235static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7236  MVT VT = Op.getValueType().getSimpleVT();
7237  MVT EltVT = VT.getVectorElementType();
7238  DebugLoc dl = Op.getDebugLoc();
7239
7240  SDValue N0 = Op.getOperand(0);
7241  SDValue N1 = Op.getOperand(1);
7242  SDValue N2 = Op.getOperand(2);
7243
7244  if (!VT.is128BitVector())
7245    return SDValue();
7246
7247  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7248      isa<ConstantSDNode>(N2)) {
7249    unsigned Opc;
7250    if (VT == MVT::v8i16)
7251      Opc = X86ISD::PINSRW;
7252    else if (VT == MVT::v16i8)
7253      Opc = X86ISD::PINSRB;
7254    else
7255      Opc = X86ISD::PINSRB;
7256
7257    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7258    // argument.
7259    if (N1.getValueType() != MVT::i32)
7260      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7261    if (N2.getValueType() != MVT::i32)
7262      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7263    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7264  }
7265
7266  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7267    // Bits [7:6] of the constant are the source select.  This will always be
7268    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7269    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7270    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7271    // Bits [5:4] of the constant are the destination select.  This is the
7272    //  value of the incoming immediate.
7273    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7274    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7275    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7276    // Create this as a scalar to vector..
7277    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7278    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7279  }
7280
7281  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7282    // PINSR* works with constant index.
7283    return Op;
7284  }
7285  return SDValue();
7286}
7287
7288SDValue
7289X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7290  MVT VT = Op.getValueType().getSimpleVT();
7291  MVT EltVT = VT.getVectorElementType();
7292
7293  DebugLoc dl = Op.getDebugLoc();
7294  SDValue N0 = Op.getOperand(0);
7295  SDValue N1 = Op.getOperand(1);
7296  SDValue N2 = Op.getOperand(2);
7297
7298  // If this is a 256-bit vector result, first extract the 128-bit vector,
7299  // insert the element into the extracted half and then place it back.
7300  if (VT.is256BitVector()) {
7301    if (!isa<ConstantSDNode>(N2))
7302      return SDValue();
7303
7304    // Get the desired 128-bit vector half.
7305    unsigned NumElems = VT.getVectorNumElements();
7306    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7307    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7308
7309    // Insert the element into the desired half.
7310    bool Upper = IdxVal >= NumElems/2;
7311    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7312                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7313
7314    // Insert the changed part back to the 256-bit vector
7315    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7316  }
7317
7318  if (Subtarget->hasSSE41())
7319    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7320
7321  if (EltVT == MVT::i8)
7322    return SDValue();
7323
7324  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7325    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7326    // as its second argument.
7327    if (N1.getValueType() != MVT::i32)
7328      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7329    if (N2.getValueType() != MVT::i32)
7330      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7331    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7332  }
7333  return SDValue();
7334}
7335
7336static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7337  LLVMContext *Context = DAG.getContext();
7338  DebugLoc dl = Op.getDebugLoc();
7339  MVT OpVT = Op.getValueType().getSimpleVT();
7340
7341  // If this is a 256-bit vector result, first insert into a 128-bit
7342  // vector and then insert into the 256-bit vector.
7343  if (!OpVT.is128BitVector()) {
7344    // Insert into a 128-bit vector.
7345    EVT VT128 = EVT::getVectorVT(*Context,
7346                                 OpVT.getVectorElementType(),
7347                                 OpVT.getVectorNumElements() / 2);
7348
7349    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7350
7351    // Insert the 128-bit vector.
7352    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7353  }
7354
7355  if (OpVT == MVT::v1i64 &&
7356      Op.getOperand(0).getValueType() == MVT::i64)
7357    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7358
7359  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7360  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7361  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7362                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7363}
7364
7365// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7366// a simple subregister reference or explicit instructions to grab
7367// upper bits of a vector.
7368static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7369                                      SelectionDAG &DAG) {
7370  if (Subtarget->hasFp256()) {
7371    DebugLoc dl = Op.getNode()->getDebugLoc();
7372    SDValue Vec = Op.getNode()->getOperand(0);
7373    SDValue Idx = Op.getNode()->getOperand(1);
7374
7375    if (Op.getNode()->getValueType(0).is128BitVector() &&
7376        Vec.getNode()->getValueType(0).is256BitVector() &&
7377        isa<ConstantSDNode>(Idx)) {
7378      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7379      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7380    }
7381  }
7382  return SDValue();
7383}
7384
7385// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7386// simple superregister reference or explicit instructions to insert
7387// the upper bits of a vector.
7388static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7389                                     SelectionDAG &DAG) {
7390  if (Subtarget->hasFp256()) {
7391    DebugLoc dl = Op.getNode()->getDebugLoc();
7392    SDValue Vec = Op.getNode()->getOperand(0);
7393    SDValue SubVec = Op.getNode()->getOperand(1);
7394    SDValue Idx = Op.getNode()->getOperand(2);
7395
7396    if (Op.getNode()->getValueType(0).is256BitVector() &&
7397        SubVec.getNode()->getValueType(0).is128BitVector() &&
7398        isa<ConstantSDNode>(Idx)) {
7399      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7400      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7401    }
7402  }
7403  return SDValue();
7404}
7405
7406// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7407// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7408// one of the above mentioned nodes. It has to be wrapped because otherwise
7409// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7410// be used to form addressing mode. These wrapped nodes will be selected
7411// into MOV32ri.
7412SDValue
7413X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7414  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7415
7416  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7417  // global base reg.
7418  unsigned char OpFlag = 0;
7419  unsigned WrapperKind = X86ISD::Wrapper;
7420  CodeModel::Model M = getTargetMachine().getCodeModel();
7421
7422  if (Subtarget->isPICStyleRIPRel() &&
7423      (M == CodeModel::Small || M == CodeModel::Kernel))
7424    WrapperKind = X86ISD::WrapperRIP;
7425  else if (Subtarget->isPICStyleGOT())
7426    OpFlag = X86II::MO_GOTOFF;
7427  else if (Subtarget->isPICStyleStubPIC())
7428    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7429
7430  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7431                                             CP->getAlignment(),
7432                                             CP->getOffset(), OpFlag);
7433  DebugLoc DL = CP->getDebugLoc();
7434  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7435  // With PIC, the address is actually $g + Offset.
7436  if (OpFlag) {
7437    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7438                         DAG.getNode(X86ISD::GlobalBaseReg,
7439                                     DebugLoc(), getPointerTy()),
7440                         Result);
7441  }
7442
7443  return Result;
7444}
7445
7446SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7447  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7448
7449  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7450  // global base reg.
7451  unsigned char OpFlag = 0;
7452  unsigned WrapperKind = X86ISD::Wrapper;
7453  CodeModel::Model M = getTargetMachine().getCodeModel();
7454
7455  if (Subtarget->isPICStyleRIPRel() &&
7456      (M == CodeModel::Small || M == CodeModel::Kernel))
7457    WrapperKind = X86ISD::WrapperRIP;
7458  else if (Subtarget->isPICStyleGOT())
7459    OpFlag = X86II::MO_GOTOFF;
7460  else if (Subtarget->isPICStyleStubPIC())
7461    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7462
7463  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7464                                          OpFlag);
7465  DebugLoc DL = JT->getDebugLoc();
7466  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7467
7468  // With PIC, the address is actually $g + Offset.
7469  if (OpFlag)
7470    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7471                         DAG.getNode(X86ISD::GlobalBaseReg,
7472                                     DebugLoc(), getPointerTy()),
7473                         Result);
7474
7475  return Result;
7476}
7477
7478SDValue
7479X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7480  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7481
7482  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7483  // global base reg.
7484  unsigned char OpFlag = 0;
7485  unsigned WrapperKind = X86ISD::Wrapper;
7486  CodeModel::Model M = getTargetMachine().getCodeModel();
7487
7488  if (Subtarget->isPICStyleRIPRel() &&
7489      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7490    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7491      OpFlag = X86II::MO_GOTPCREL;
7492    WrapperKind = X86ISD::WrapperRIP;
7493  } else if (Subtarget->isPICStyleGOT()) {
7494    OpFlag = X86II::MO_GOT;
7495  } else if (Subtarget->isPICStyleStubPIC()) {
7496    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7497  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7498    OpFlag = X86II::MO_DARWIN_NONLAZY;
7499  }
7500
7501  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7502
7503  DebugLoc DL = Op.getDebugLoc();
7504  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7505
7506  // With PIC, the address is actually $g + Offset.
7507  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7508      !Subtarget->is64Bit()) {
7509    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7510                         DAG.getNode(X86ISD::GlobalBaseReg,
7511                                     DebugLoc(), getPointerTy()),
7512                         Result);
7513  }
7514
7515  // For symbols that require a load from a stub to get the address, emit the
7516  // load.
7517  if (isGlobalStubReference(OpFlag))
7518    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7519                         MachinePointerInfo::getGOT(), false, false, false, 0);
7520
7521  return Result;
7522}
7523
7524SDValue
7525X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7526  // Create the TargetBlockAddressAddress node.
7527  unsigned char OpFlags =
7528    Subtarget->ClassifyBlockAddressReference();
7529  CodeModel::Model M = getTargetMachine().getCodeModel();
7530  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7531  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7532  DebugLoc dl = Op.getDebugLoc();
7533  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7534                                             OpFlags);
7535
7536  if (Subtarget->isPICStyleRIPRel() &&
7537      (M == CodeModel::Small || M == CodeModel::Kernel))
7538    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7539  else
7540    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7541
7542  // With PIC, the address is actually $g + Offset.
7543  if (isGlobalRelativeToPICBase(OpFlags)) {
7544    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7545                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7546                         Result);
7547  }
7548
7549  return Result;
7550}
7551
7552SDValue
7553X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7554                                      int64_t Offset, SelectionDAG &DAG) const {
7555  // Create the TargetGlobalAddress node, folding in the constant
7556  // offset if it is legal.
7557  unsigned char OpFlags =
7558    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7559  CodeModel::Model M = getTargetMachine().getCodeModel();
7560  SDValue Result;
7561  if (OpFlags == X86II::MO_NO_FLAG &&
7562      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7563    // A direct static reference to a global.
7564    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7565    Offset = 0;
7566  } else {
7567    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7568  }
7569
7570  if (Subtarget->isPICStyleRIPRel() &&
7571      (M == CodeModel::Small || M == CodeModel::Kernel))
7572    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7573  else
7574    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7575
7576  // With PIC, the address is actually $g + Offset.
7577  if (isGlobalRelativeToPICBase(OpFlags)) {
7578    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7579                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7580                         Result);
7581  }
7582
7583  // For globals that require a load from a stub to get the address, emit the
7584  // load.
7585  if (isGlobalStubReference(OpFlags))
7586    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7587                         MachinePointerInfo::getGOT(), false, false, false, 0);
7588
7589  // If there was a non-zero offset that we didn't fold, create an explicit
7590  // addition for it.
7591  if (Offset != 0)
7592    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7593                         DAG.getConstant(Offset, getPointerTy()));
7594
7595  return Result;
7596}
7597
7598SDValue
7599X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7600  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7601  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7602  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7603}
7604
7605static SDValue
7606GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7607           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7608           unsigned char OperandFlags, bool LocalDynamic = false) {
7609  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7610  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7611  DebugLoc dl = GA->getDebugLoc();
7612  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7613                                           GA->getValueType(0),
7614                                           GA->getOffset(),
7615                                           OperandFlags);
7616
7617  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7618                                           : X86ISD::TLSADDR;
7619
7620  if (InFlag) {
7621    SDValue Ops[] = { Chain,  TGA, *InFlag };
7622    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7623  } else {
7624    SDValue Ops[]  = { Chain, TGA };
7625    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7626  }
7627
7628  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7629  MFI->setAdjustsStack(true);
7630
7631  SDValue Flag = Chain.getValue(1);
7632  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7633}
7634
7635// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7636static SDValue
7637LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7638                                const EVT PtrVT) {
7639  SDValue InFlag;
7640  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7641  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7642                                   DAG.getNode(X86ISD::GlobalBaseReg,
7643                                               DebugLoc(), PtrVT), InFlag);
7644  InFlag = Chain.getValue(1);
7645
7646  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7647}
7648
7649// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7650static SDValue
7651LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7652                                const EVT PtrVT) {
7653  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7654                    X86::RAX, X86II::MO_TLSGD);
7655}
7656
7657static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7658                                           SelectionDAG &DAG,
7659                                           const EVT PtrVT,
7660                                           bool is64Bit) {
7661  DebugLoc dl = GA->getDebugLoc();
7662
7663  // Get the start address of the TLS block for this module.
7664  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7665      .getInfo<X86MachineFunctionInfo>();
7666  MFI->incNumLocalDynamicTLSAccesses();
7667
7668  SDValue Base;
7669  if (is64Bit) {
7670    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7671                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7672  } else {
7673    SDValue InFlag;
7674    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7675        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7676    InFlag = Chain.getValue(1);
7677    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7678                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7679  }
7680
7681  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7682  // of Base.
7683
7684  // Build x@dtpoff.
7685  unsigned char OperandFlags = X86II::MO_DTPOFF;
7686  unsigned WrapperKind = X86ISD::Wrapper;
7687  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7688                                           GA->getValueType(0),
7689                                           GA->getOffset(), OperandFlags);
7690  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7691
7692  // Add x@dtpoff with the base.
7693  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7694}
7695
7696// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7697static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7698                                   const EVT PtrVT, TLSModel::Model model,
7699                                   bool is64Bit, bool isPIC) {
7700  DebugLoc dl = GA->getDebugLoc();
7701
7702  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7703  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7704                                                         is64Bit ? 257 : 256));
7705
7706  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7707                                      DAG.getIntPtrConstant(0),
7708                                      MachinePointerInfo(Ptr),
7709                                      false, false, false, 0);
7710
7711  unsigned char OperandFlags = 0;
7712  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7713  // initialexec.
7714  unsigned WrapperKind = X86ISD::Wrapper;
7715  if (model == TLSModel::LocalExec) {
7716    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7717  } else if (model == TLSModel::InitialExec) {
7718    if (is64Bit) {
7719      OperandFlags = X86II::MO_GOTTPOFF;
7720      WrapperKind = X86ISD::WrapperRIP;
7721    } else {
7722      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7723    }
7724  } else {
7725    llvm_unreachable("Unexpected model");
7726  }
7727
7728  // emit "addl x@ntpoff,%eax" (local exec)
7729  // or "addl x@indntpoff,%eax" (initial exec)
7730  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7731  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7732                                           GA->getValueType(0),
7733                                           GA->getOffset(), OperandFlags);
7734  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7735
7736  if (model == TLSModel::InitialExec) {
7737    if (isPIC && !is64Bit) {
7738      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7739                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7740                           Offset);
7741    }
7742
7743    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7744                         MachinePointerInfo::getGOT(), false, false, false,
7745                         0);
7746  }
7747
7748  // The address of the thread local variable is the add of the thread
7749  // pointer with the offset of the variable.
7750  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7751}
7752
7753SDValue
7754X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7755
7756  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7757  const GlobalValue *GV = GA->getGlobal();
7758
7759  if (Subtarget->isTargetELF()) {
7760    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7761
7762    switch (model) {
7763      case TLSModel::GeneralDynamic:
7764        if (Subtarget->is64Bit())
7765          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7766        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7767      case TLSModel::LocalDynamic:
7768        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7769                                           Subtarget->is64Bit());
7770      case TLSModel::InitialExec:
7771      case TLSModel::LocalExec:
7772        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7773                                   Subtarget->is64Bit(),
7774                        getTargetMachine().getRelocationModel() == Reloc::PIC_);
7775    }
7776    llvm_unreachable("Unknown TLS model.");
7777  }
7778
7779  if (Subtarget->isTargetDarwin()) {
7780    // Darwin only has one model of TLS.  Lower to that.
7781    unsigned char OpFlag = 0;
7782    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7783                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7784
7785    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7786    // global base reg.
7787    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7788                  !Subtarget->is64Bit();
7789    if (PIC32)
7790      OpFlag = X86II::MO_TLVP_PIC_BASE;
7791    else
7792      OpFlag = X86II::MO_TLVP;
7793    DebugLoc DL = Op.getDebugLoc();
7794    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7795                                                GA->getValueType(0),
7796                                                GA->getOffset(), OpFlag);
7797    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7798
7799    // With PIC32, the address is actually $g + Offset.
7800    if (PIC32)
7801      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7802                           DAG.getNode(X86ISD::GlobalBaseReg,
7803                                       DebugLoc(), getPointerTy()),
7804                           Offset);
7805
7806    // Lowering the machine isd will make sure everything is in the right
7807    // location.
7808    SDValue Chain = DAG.getEntryNode();
7809    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7810    SDValue Args[] = { Chain, Offset };
7811    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7812
7813    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7814    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7815    MFI->setAdjustsStack(true);
7816
7817    // And our return value (tls address) is in the standard call return value
7818    // location.
7819    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7820    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7821                              Chain.getValue(1));
7822  }
7823
7824  if (Subtarget->isTargetWindows() || Subtarget->isTargetMingw()) {
7825    // Just use the implicit TLS architecture
7826    // Need to generate someting similar to:
7827    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7828    //                                  ; from TEB
7829    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7830    //   mov     rcx, qword [rdx+rcx*8]
7831    //   mov     eax, .tls$:tlsvar
7832    //   [rax+rcx] contains the address
7833    // Windows 64bit: gs:0x58
7834    // Windows 32bit: fs:__tls_array
7835
7836    // If GV is an alias then use the aliasee for determining
7837    // thread-localness.
7838    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7839      GV = GA->resolveAliasedGlobal(false);
7840    DebugLoc dl = GA->getDebugLoc();
7841    SDValue Chain = DAG.getEntryNode();
7842
7843    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7844    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
7845    // use its literal value of 0x2C.
7846    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7847                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7848                                                             256)
7849                                        : Type::getInt32PtrTy(*DAG.getContext(),
7850                                                              257));
7851
7852    SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58) :
7853      (Subtarget->isTargetMingw() ? DAG.getIntPtrConstant(0x2C) :
7854        DAG.getExternalSymbol("_tls_array", getPointerTy()));
7855
7856    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
7857                                        MachinePointerInfo(Ptr),
7858                                        false, false, false, 0);
7859
7860    // Load the _tls_index variable
7861    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7862    if (Subtarget->is64Bit())
7863      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7864                           IDX, MachinePointerInfo(), MVT::i32,
7865                           false, false, 0);
7866    else
7867      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7868                        false, false, false, 0);
7869
7870    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7871                                    getPointerTy());
7872    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7873
7874    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7875    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7876                      false, false, false, 0);
7877
7878    // Get the offset of start of .tls section
7879    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7880                                             GA->getValueType(0),
7881                                             GA->getOffset(), X86II::MO_SECREL);
7882    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7883
7884    // The address of the thread local variable is the add of the thread
7885    // pointer with the offset of the variable.
7886    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7887  }
7888
7889  llvm_unreachable("TLS not implemented for this target.");
7890}
7891
7892/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7893/// and take a 2 x i32 value to shift plus a shift amount.
7894SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7895  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7896  EVT VT = Op.getValueType();
7897  unsigned VTBits = VT.getSizeInBits();
7898  DebugLoc dl = Op.getDebugLoc();
7899  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7900  SDValue ShOpLo = Op.getOperand(0);
7901  SDValue ShOpHi = Op.getOperand(1);
7902  SDValue ShAmt  = Op.getOperand(2);
7903  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7904                                     DAG.getConstant(VTBits - 1, MVT::i8))
7905                       : DAG.getConstant(0, VT);
7906
7907  SDValue Tmp2, Tmp3;
7908  if (Op.getOpcode() == ISD::SHL_PARTS) {
7909    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7910    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7911  } else {
7912    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7913    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7914  }
7915
7916  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7917                                DAG.getConstant(VTBits, MVT::i8));
7918  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7919                             AndNode, DAG.getConstant(0, MVT::i8));
7920
7921  SDValue Hi, Lo;
7922  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7923  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7924  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7925
7926  if (Op.getOpcode() == ISD::SHL_PARTS) {
7927    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7928    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7929  } else {
7930    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7931    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7932  }
7933
7934  SDValue Ops[2] = { Lo, Hi };
7935  return DAG.getMergeValues(Ops, 2, dl);
7936}
7937
7938SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7939                                           SelectionDAG &DAG) const {
7940  EVT SrcVT = Op.getOperand(0).getValueType();
7941
7942  if (SrcVT.isVector())
7943    return SDValue();
7944
7945  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7946         "Unknown SINT_TO_FP to lower!");
7947
7948  // These are really Legal; return the operand so the caller accepts it as
7949  // Legal.
7950  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7951    return Op;
7952  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7953      Subtarget->is64Bit()) {
7954    return Op;
7955  }
7956
7957  DebugLoc dl = Op.getDebugLoc();
7958  unsigned Size = SrcVT.getSizeInBits()/8;
7959  MachineFunction &MF = DAG.getMachineFunction();
7960  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7961  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7962  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7963                               StackSlot,
7964                               MachinePointerInfo::getFixedStack(SSFI),
7965                               false, false, 0);
7966  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7967}
7968
7969SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7970                                     SDValue StackSlot,
7971                                     SelectionDAG &DAG) const {
7972  // Build the FILD
7973  DebugLoc DL = Op.getDebugLoc();
7974  SDVTList Tys;
7975  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7976  if (useSSE)
7977    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7978  else
7979    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7980
7981  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7982
7983  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7984  MachineMemOperand *MMO;
7985  if (FI) {
7986    int SSFI = FI->getIndex();
7987    MMO =
7988      DAG.getMachineFunction()
7989      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7990                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7991  } else {
7992    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7993    StackSlot = StackSlot.getOperand(1);
7994  }
7995  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7996  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7997                                           X86ISD::FILD, DL,
7998                                           Tys, Ops, array_lengthof(Ops),
7999                                           SrcVT, MMO);
8000
8001  if (useSSE) {
8002    Chain = Result.getValue(1);
8003    SDValue InFlag = Result.getValue(2);
8004
8005    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
8006    // shouldn't be necessary except that RFP cannot be live across
8007    // multiple blocks. When stackifier is fixed, they can be uncoupled.
8008    MachineFunction &MF = DAG.getMachineFunction();
8009    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
8010    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
8011    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8012    Tys = DAG.getVTList(MVT::Other);
8013    SDValue Ops[] = {
8014      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
8015    };
8016    MachineMemOperand *MMO =
8017      DAG.getMachineFunction()
8018      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8019                            MachineMemOperand::MOStore, SSFISize, SSFISize);
8020
8021    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
8022                                    Ops, array_lengthof(Ops),
8023                                    Op.getValueType(), MMO);
8024    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
8025                         MachinePointerInfo::getFixedStack(SSFI),
8026                         false, false, false, 0);
8027  }
8028
8029  return Result;
8030}
8031
8032// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
8033SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
8034                                               SelectionDAG &DAG) const {
8035  // This algorithm is not obvious. Here it is what we're trying to output:
8036  /*
8037     movq       %rax,  %xmm0
8038     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
8039     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
8040     #ifdef __SSE3__
8041       haddpd   %xmm0, %xmm0
8042     #else
8043       pshufd   $0x4e, %xmm0, %xmm1
8044       addpd    %xmm1, %xmm0
8045     #endif
8046  */
8047
8048  DebugLoc dl = Op.getDebugLoc();
8049  LLVMContext *Context = DAG.getContext();
8050
8051  // Build some magic constants.
8052  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8053  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8054  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8055
8056  SmallVector<Constant*,2> CV1;
8057  CV1.push_back(
8058    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8059                                      APInt(64, 0x4330000000000000ULL))));
8060  CV1.push_back(
8061    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8062                                      APInt(64, 0x4530000000000000ULL))));
8063  Constant *C1 = ConstantVector::get(CV1);
8064  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8065
8066  // Load the 64-bit value into an XMM register.
8067  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8068                            Op.getOperand(0));
8069  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8070                              MachinePointerInfo::getConstantPool(),
8071                              false, false, false, 16);
8072  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8073                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8074                              CLod0);
8075
8076  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8077                              MachinePointerInfo::getConstantPool(),
8078                              false, false, false, 16);
8079  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8080  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8081  SDValue Result;
8082
8083  if (Subtarget->hasSSE3()) {
8084    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8085    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8086  } else {
8087    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8088    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8089                                           S2F, 0x4E, DAG);
8090    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8091                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8092                         Sub);
8093  }
8094
8095  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8096                     DAG.getIntPtrConstant(0));
8097}
8098
8099// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8100SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8101                                               SelectionDAG &DAG) const {
8102  DebugLoc dl = Op.getDebugLoc();
8103  // FP constant to bias correct the final result.
8104  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8105                                   MVT::f64);
8106
8107  // Load the 32-bit value into an XMM register.
8108  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8109                             Op.getOperand(0));
8110
8111  // Zero out the upper parts of the register.
8112  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8113
8114  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8115                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8116                     DAG.getIntPtrConstant(0));
8117
8118  // Or the load with the bias.
8119  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8120                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8121                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8122                                                   MVT::v2f64, Load)),
8123                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8124                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8125                                                   MVT::v2f64, Bias)));
8126  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8127                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8128                   DAG.getIntPtrConstant(0));
8129
8130  // Subtract the bias.
8131  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8132
8133  // Handle final rounding.
8134  EVT DestVT = Op.getValueType();
8135
8136  if (DestVT.bitsLT(MVT::f64))
8137    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8138                       DAG.getIntPtrConstant(0));
8139  if (DestVT.bitsGT(MVT::f64))
8140    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8141
8142  // Handle final rounding.
8143  return Sub;
8144}
8145
8146SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8147                                               SelectionDAG &DAG) const {
8148  SDValue N0 = Op.getOperand(0);
8149  EVT SVT = N0.getValueType();
8150  DebugLoc dl = Op.getDebugLoc();
8151
8152  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8153          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8154         "Custom UINT_TO_FP is not supported!");
8155
8156  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
8157                             SVT.getVectorNumElements());
8158  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8159                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8160}
8161
8162SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8163                                           SelectionDAG &DAG) const {
8164  SDValue N0 = Op.getOperand(0);
8165  DebugLoc dl = Op.getDebugLoc();
8166
8167  if (Op.getValueType().isVector())
8168    return lowerUINT_TO_FP_vec(Op, DAG);
8169
8170  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8171  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8172  // the optimization here.
8173  if (DAG.SignBitIsZero(N0))
8174    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8175
8176  EVT SrcVT = N0.getValueType();
8177  EVT DstVT = Op.getValueType();
8178  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8179    return LowerUINT_TO_FP_i64(Op, DAG);
8180  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8181    return LowerUINT_TO_FP_i32(Op, DAG);
8182  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8183    return SDValue();
8184
8185  // Make a 64-bit buffer, and use it to build an FILD.
8186  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8187  if (SrcVT == MVT::i32) {
8188    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8189    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8190                                     getPointerTy(), StackSlot, WordOff);
8191    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8192                                  StackSlot, MachinePointerInfo(),
8193                                  false, false, 0);
8194    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8195                                  OffsetSlot, MachinePointerInfo(),
8196                                  false, false, 0);
8197    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8198    return Fild;
8199  }
8200
8201  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8202  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8203                               StackSlot, MachinePointerInfo(),
8204                               false, false, 0);
8205  // For i64 source, we need to add the appropriate power of 2 if the input
8206  // was negative.  This is the same as the optimization in
8207  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8208  // we must be careful to do the computation in x87 extended precision, not
8209  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8210  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8211  MachineMemOperand *MMO =
8212    DAG.getMachineFunction()
8213    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8214                          MachineMemOperand::MOLoad, 8, 8);
8215
8216  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8217  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8218  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
8219                                         MVT::i64, MMO);
8220
8221  APInt FF(32, 0x5F800000ULL);
8222
8223  // Check whether the sign bit is set.
8224  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
8225                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8226                                 ISD::SETLT);
8227
8228  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8229  SDValue FudgePtr = DAG.getConstantPool(
8230                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8231                                         getPointerTy());
8232
8233  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8234  SDValue Zero = DAG.getIntPtrConstant(0);
8235  SDValue Four = DAG.getIntPtrConstant(4);
8236  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8237                               Zero, Four);
8238  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8239
8240  // Load the value out, extending it from f32 to f80.
8241  // FIXME: Avoid the extend by constructing the right constant pool?
8242  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8243                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8244                                 MVT::f32, false, false, 4);
8245  // Extend everything to 80 bits to force it to be done on x87.
8246  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8247  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8248}
8249
8250std::pair<SDValue,SDValue>
8251X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
8252                                    bool IsSigned, bool IsReplace) const {
8253  DebugLoc DL = Op.getDebugLoc();
8254
8255  EVT DstTy = Op.getValueType();
8256
8257  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8258    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8259    DstTy = MVT::i64;
8260  }
8261
8262  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8263         DstTy.getSimpleVT() >= MVT::i16 &&
8264         "Unknown FP_TO_INT to lower!");
8265
8266  // These are really Legal.
8267  if (DstTy == MVT::i32 &&
8268      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8269    return std::make_pair(SDValue(), SDValue());
8270  if (Subtarget->is64Bit() &&
8271      DstTy == MVT::i64 &&
8272      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8273    return std::make_pair(SDValue(), SDValue());
8274
8275  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8276  // stack slot, or into the FTOL runtime function.
8277  MachineFunction &MF = DAG.getMachineFunction();
8278  unsigned MemSize = DstTy.getSizeInBits()/8;
8279  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8280  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8281
8282  unsigned Opc;
8283  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8284    Opc = X86ISD::WIN_FTOL;
8285  else
8286    switch (DstTy.getSimpleVT().SimpleTy) {
8287    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8288    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8289    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8290    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8291    }
8292
8293  SDValue Chain = DAG.getEntryNode();
8294  SDValue Value = Op.getOperand(0);
8295  EVT TheVT = Op.getOperand(0).getValueType();
8296  // FIXME This causes a redundant load/store if the SSE-class value is already
8297  // in memory, such as if it is on the callstack.
8298  if (isScalarFPTypeInSSEReg(TheVT)) {
8299    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8300    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8301                         MachinePointerInfo::getFixedStack(SSFI),
8302                         false, false, 0);
8303    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8304    SDValue Ops[] = {
8305      Chain, StackSlot, DAG.getValueType(TheVT)
8306    };
8307
8308    MachineMemOperand *MMO =
8309      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8310                              MachineMemOperand::MOLoad, MemSize, MemSize);
8311    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8312                                    DstTy, MMO);
8313    Chain = Value.getValue(1);
8314    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8315    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8316  }
8317
8318  MachineMemOperand *MMO =
8319    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8320                            MachineMemOperand::MOStore, MemSize, MemSize);
8321
8322  if (Opc != X86ISD::WIN_FTOL) {
8323    // Build the FP_TO_INT*_IN_MEM
8324    SDValue Ops[] = { Chain, Value, StackSlot };
8325    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8326                                           Ops, 3, DstTy, MMO);
8327    return std::make_pair(FIST, StackSlot);
8328  } else {
8329    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8330      DAG.getVTList(MVT::Other, MVT::Glue),
8331      Chain, Value);
8332    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8333      MVT::i32, ftol.getValue(1));
8334    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8335      MVT::i32, eax.getValue(2));
8336    SDValue Ops[] = { eax, edx };
8337    SDValue pair = IsReplace
8338      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8339      : DAG.getMergeValues(Ops, 2, DL);
8340    return std::make_pair(pair, SDValue());
8341  }
8342}
8343
8344static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
8345                              const X86Subtarget *Subtarget) {
8346  MVT VT = Op->getValueType(0).getSimpleVT();
8347  SDValue In = Op->getOperand(0);
8348  MVT InVT = In.getValueType().getSimpleVT();
8349  DebugLoc dl = Op->getDebugLoc();
8350
8351  // Optimize vectors in AVX mode:
8352  //
8353  //   v8i16 -> v8i32
8354  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
8355  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
8356  //   Concat upper and lower parts.
8357  //
8358  //   v4i32 -> v4i64
8359  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
8360  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
8361  //   Concat upper and lower parts.
8362  //
8363
8364  if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
8365      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
8366    return SDValue();
8367
8368  if (Subtarget->hasInt256())
8369    return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In);
8370
8371  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
8372  SDValue Undef = DAG.getUNDEF(InVT);
8373  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
8374  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8375  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8376
8377  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
8378                             VT.getVectorNumElements()/2);
8379
8380  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
8381  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
8382
8383  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
8384}
8385
8386SDValue X86TargetLowering::LowerANY_EXTEND(SDValue Op,
8387                                           SelectionDAG &DAG) const {
8388  if (Subtarget->hasFp256()) {
8389    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8390    if (Res.getNode())
8391      return Res;
8392  }
8393
8394  return SDValue();
8395}
8396SDValue X86TargetLowering::LowerZERO_EXTEND(SDValue Op,
8397                                            SelectionDAG &DAG) const {
8398  DebugLoc DL = Op.getDebugLoc();
8399  MVT VT = Op.getValueType().getSimpleVT();
8400  SDValue In = Op.getOperand(0);
8401  MVT SVT = In.getValueType().getSimpleVT();
8402
8403  if (Subtarget->hasFp256()) {
8404    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8405    if (Res.getNode())
8406      return Res;
8407  }
8408
8409  if (!VT.is256BitVector() || !SVT.is128BitVector() ||
8410      VT.getVectorNumElements() != SVT.getVectorNumElements())
8411    return SDValue();
8412
8413  assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!");
8414
8415  // AVX2 has better support of integer extending.
8416  if (Subtarget->hasInt256())
8417    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8418
8419  SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
8420  static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
8421  SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
8422                           DAG.getVectorShuffle(MVT::v8i16, DL, In,
8423                                                DAG.getUNDEF(MVT::v8i16),
8424                                                &Mask[0]));
8425
8426  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
8427}
8428
8429SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8430  DebugLoc DL = Op.getDebugLoc();
8431  MVT VT = Op.getValueType().getSimpleVT();
8432  SDValue In = Op.getOperand(0);
8433  MVT SVT = In.getValueType().getSimpleVT();
8434
8435  if ((VT == MVT::v4i32) && (SVT == MVT::v4i64)) {
8436    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
8437    if (Subtarget->hasInt256()) {
8438      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
8439      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
8440      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
8441                                ShufMask);
8442      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
8443                         DAG.getIntPtrConstant(0));
8444    }
8445
8446    // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS.
8447    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8448                               DAG.getIntPtrConstant(0));
8449    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8450                               DAG.getIntPtrConstant(2));
8451
8452    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8453    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8454
8455    // The PSHUFD mask:
8456    static const int ShufMask1[] = {0, 2, 0, 0};
8457    SDValue Undef = DAG.getUNDEF(VT);
8458    OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1);
8459    OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1);
8460
8461    // The MOVLHPS mask:
8462    static const int ShufMask2[] = {0, 1, 4, 5};
8463    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
8464  }
8465
8466  if ((VT == MVT::v8i16) && (SVT == MVT::v8i32)) {
8467    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
8468    if (Subtarget->hasInt256()) {
8469      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
8470
8471      SmallVector<SDValue,32> pshufbMask;
8472      for (unsigned i = 0; i < 2; ++i) {
8473        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
8474        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
8475        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
8476        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
8477        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
8478        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
8479        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
8480        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
8481        for (unsigned j = 0; j < 8; ++j)
8482          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
8483      }
8484      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8,
8485                               &pshufbMask[0], 32);
8486      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
8487      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
8488
8489      static const int ShufMask[] = {0,  2,  -1,  -1};
8490      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
8491                                &ShufMask[0]);
8492      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8493                       DAG.getIntPtrConstant(0));
8494      return DAG.getNode(ISD::BITCAST, DL, VT, In);
8495    }
8496
8497    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8498                               DAG.getIntPtrConstant(0));
8499
8500    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8501                               DAG.getIntPtrConstant(4));
8502
8503    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
8504    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
8505
8506    // The PSHUFB mask:
8507    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
8508                                   -1, -1, -1, -1, -1, -1, -1, -1};
8509
8510    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
8511    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
8512    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
8513
8514    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8515    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8516
8517    // The MOVLHPS Mask:
8518    static const int ShufMask2[] = {0, 1, 4, 5};
8519    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
8520    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
8521  }
8522
8523  // Handle truncation of V256 to V128 using shuffles.
8524  if (!VT.is128BitVector() || !SVT.is256BitVector())
8525    return SDValue();
8526
8527  assert(VT.getVectorNumElements() != SVT.getVectorNumElements() &&
8528         "Invalid op");
8529  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
8530
8531  unsigned NumElems = VT.getVectorNumElements();
8532  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8533                             NumElems * 2);
8534
8535  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
8536  // Prepare truncation shuffle mask
8537  for (unsigned i = 0; i != NumElems; ++i)
8538    MaskVec[i] = i * 2;
8539  SDValue V = DAG.getVectorShuffle(NVT, DL,
8540                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
8541                                   DAG.getUNDEF(NVT), &MaskVec[0]);
8542  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
8543                     DAG.getIntPtrConstant(0));
8544}
8545
8546SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8547                                           SelectionDAG &DAG) const {
8548  MVT VT = Op.getValueType().getSimpleVT();
8549  if (VT.isVector()) {
8550    if (VT == MVT::v8i16)
8551      return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), VT,
8552                         DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(),
8553                                     MVT::v8i32, Op.getOperand(0)));
8554    return SDValue();
8555  }
8556
8557  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8558    /*IsSigned=*/ true, /*IsReplace=*/ false);
8559  SDValue FIST = Vals.first, StackSlot = Vals.second;
8560  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8561  if (FIST.getNode() == 0) return Op;
8562
8563  if (StackSlot.getNode())
8564    // Load the result.
8565    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8566                       FIST, StackSlot, MachinePointerInfo(),
8567                       false, false, false, 0);
8568
8569  // The node is the result.
8570  return FIST;
8571}
8572
8573SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8574                                           SelectionDAG &DAG) const {
8575  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8576    /*IsSigned=*/ false, /*IsReplace=*/ false);
8577  SDValue FIST = Vals.first, StackSlot = Vals.second;
8578  assert(FIST.getNode() && "Unexpected failure");
8579
8580  if (StackSlot.getNode())
8581    // Load the result.
8582    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8583                       FIST, StackSlot, MachinePointerInfo(),
8584                       false, false, false, 0);
8585
8586  // The node is the result.
8587  return FIST;
8588}
8589
8590static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
8591  DebugLoc DL = Op.getDebugLoc();
8592  MVT VT = Op.getValueType().getSimpleVT();
8593  SDValue In = Op.getOperand(0);
8594  MVT SVT = In.getValueType().getSimpleVT();
8595
8596  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
8597
8598  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
8599                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
8600                                 In, DAG.getUNDEF(SVT)));
8601}
8602
8603SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8604  LLVMContext *Context = DAG.getContext();
8605  DebugLoc dl = Op.getDebugLoc();
8606  MVT VT = Op.getValueType().getSimpleVT();
8607  MVT EltVT = VT;
8608  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8609  if (VT.isVector()) {
8610    EltVT = VT.getVectorElementType();
8611    NumElts = VT.getVectorNumElements();
8612  }
8613  Constant *C;
8614  if (EltVT == MVT::f64)
8615    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8616                                          APInt(64, ~(1ULL << 63))));
8617  else
8618    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
8619                                          APInt(32, ~(1U << 31))));
8620  C = ConstantVector::getSplat(NumElts, C);
8621  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8622  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8623  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8624                             MachinePointerInfo::getConstantPool(),
8625                             false, false, false, Alignment);
8626  if (VT.isVector()) {
8627    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8628    return DAG.getNode(ISD::BITCAST, dl, VT,
8629                       DAG.getNode(ISD::AND, dl, ANDVT,
8630                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8631                                               Op.getOperand(0)),
8632                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8633  }
8634  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8635}
8636
8637SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8638  LLVMContext *Context = DAG.getContext();
8639  DebugLoc dl = Op.getDebugLoc();
8640  MVT VT = Op.getValueType().getSimpleVT();
8641  MVT EltVT = VT;
8642  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8643  if (VT.isVector()) {
8644    EltVT = VT.getVectorElementType();
8645    NumElts = VT.getVectorNumElements();
8646  }
8647  Constant *C;
8648  if (EltVT == MVT::f64)
8649    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8650                                          APInt(64, 1ULL << 63)));
8651  else
8652    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
8653                                          APInt(32, 1U << 31)));
8654  C = ConstantVector::getSplat(NumElts, C);
8655  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8656  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8657  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8658                             MachinePointerInfo::getConstantPool(),
8659                             false, false, false, Alignment);
8660  if (VT.isVector()) {
8661    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8662    return DAG.getNode(ISD::BITCAST, dl, VT,
8663                       DAG.getNode(ISD::XOR, dl, XORVT,
8664                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8665                                               Op.getOperand(0)),
8666                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8667  }
8668
8669  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8670}
8671
8672SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8673  LLVMContext *Context = DAG.getContext();
8674  SDValue Op0 = Op.getOperand(0);
8675  SDValue Op1 = Op.getOperand(1);
8676  DebugLoc dl = Op.getDebugLoc();
8677  MVT VT = Op.getValueType().getSimpleVT();
8678  MVT SrcVT = Op1.getValueType().getSimpleVT();
8679
8680  // If second operand is smaller, extend it first.
8681  if (SrcVT.bitsLT(VT)) {
8682    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8683    SrcVT = VT;
8684  }
8685  // And if it is bigger, shrink it first.
8686  if (SrcVT.bitsGT(VT)) {
8687    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8688    SrcVT = VT;
8689  }
8690
8691  // At this point the operands and the result should have the same
8692  // type, and that won't be f80 since that is not custom lowered.
8693
8694  // First get the sign bit of second operand.
8695  SmallVector<Constant*,4> CV;
8696  if (SrcVT == MVT::f64) {
8697    const fltSemantics &Sem = APFloat::IEEEdouble;
8698    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
8699    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
8700  } else {
8701    const fltSemantics &Sem = APFloat::IEEEsingle;
8702    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
8703    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8704    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8705    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8706  }
8707  Constant *C = ConstantVector::get(CV);
8708  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8709  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8710                              MachinePointerInfo::getConstantPool(),
8711                              false, false, false, 16);
8712  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8713
8714  // Shift sign bit right or left if the two operands have different types.
8715  if (SrcVT.bitsGT(VT)) {
8716    // Op0 is MVT::f32, Op1 is MVT::f64.
8717    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8718    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8719                          DAG.getConstant(32, MVT::i32));
8720    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8721    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8722                          DAG.getIntPtrConstant(0));
8723  }
8724
8725  // Clear first operand sign bit.
8726  CV.clear();
8727  if (VT == MVT::f64) {
8728    const fltSemantics &Sem = APFloat::IEEEdouble;
8729    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
8730                                                   APInt(64, ~(1ULL << 63)))));
8731    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
8732  } else {
8733    const fltSemantics &Sem = APFloat::IEEEsingle;
8734    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
8735                                                   APInt(32, ~(1U << 31)))));
8736    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8737    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8738    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8739  }
8740  C = ConstantVector::get(CV);
8741  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8742  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8743                              MachinePointerInfo::getConstantPool(),
8744                              false, false, false, 16);
8745  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8746
8747  // Or the value with the sign bit.
8748  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8749}
8750
8751static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8752  SDValue N0 = Op.getOperand(0);
8753  DebugLoc dl = Op.getDebugLoc();
8754  MVT VT = Op.getValueType().getSimpleVT();
8755
8756  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8757  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8758                                  DAG.getConstant(1, VT));
8759  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8760}
8761
8762// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8763//
8764SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op,
8765                                                  SelectionDAG &DAG) const {
8766  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8767
8768  if (!Subtarget->hasSSE41())
8769    return SDValue();
8770
8771  if (!Op->hasOneUse())
8772    return SDValue();
8773
8774  SDNode *N = Op.getNode();
8775  DebugLoc DL = N->getDebugLoc();
8776
8777  SmallVector<SDValue, 8> Opnds;
8778  DenseMap<SDValue, unsigned> VecInMap;
8779  EVT VT = MVT::Other;
8780
8781  // Recognize a special case where a vector is casted into wide integer to
8782  // test all 0s.
8783  Opnds.push_back(N->getOperand(0));
8784  Opnds.push_back(N->getOperand(1));
8785
8786  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8787    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8788    // BFS traverse all OR'd operands.
8789    if (I->getOpcode() == ISD::OR) {
8790      Opnds.push_back(I->getOperand(0));
8791      Opnds.push_back(I->getOperand(1));
8792      // Re-evaluate the number of nodes to be traversed.
8793      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8794      continue;
8795    }
8796
8797    // Quit if a non-EXTRACT_VECTOR_ELT
8798    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8799      return SDValue();
8800
8801    // Quit if without a constant index.
8802    SDValue Idx = I->getOperand(1);
8803    if (!isa<ConstantSDNode>(Idx))
8804      return SDValue();
8805
8806    SDValue ExtractedFromVec = I->getOperand(0);
8807    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8808    if (M == VecInMap.end()) {
8809      VT = ExtractedFromVec.getValueType();
8810      // Quit if not 128/256-bit vector.
8811      if (!VT.is128BitVector() && !VT.is256BitVector())
8812        return SDValue();
8813      // Quit if not the same type.
8814      if (VecInMap.begin() != VecInMap.end() &&
8815          VT != VecInMap.begin()->first.getValueType())
8816        return SDValue();
8817      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8818    }
8819    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8820  }
8821
8822  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8823         "Not extracted from 128-/256-bit vector.");
8824
8825  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8826  SmallVector<SDValue, 8> VecIns;
8827
8828  for (DenseMap<SDValue, unsigned>::const_iterator
8829        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8830    // Quit if not all elements are used.
8831    if (I->second != FullMask)
8832      return SDValue();
8833    VecIns.push_back(I->first);
8834  }
8835
8836  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8837
8838  // Cast all vectors into TestVT for PTEST.
8839  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8840    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8841
8842  // If more than one full vectors are evaluated, OR them first before PTEST.
8843  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8844    // Each iteration will OR 2 nodes and append the result until there is only
8845    // 1 node left, i.e. the final OR'd value of all vectors.
8846    SDValue LHS = VecIns[Slot];
8847    SDValue RHS = VecIns[Slot + 1];
8848    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8849  }
8850
8851  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8852                     VecIns.back(), VecIns.back());
8853}
8854
8855/// Emit nodes that will be selected as "test Op0,Op0", or something
8856/// equivalent.
8857SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8858                                    SelectionDAG &DAG) const {
8859  DebugLoc dl = Op.getDebugLoc();
8860
8861  // CF and OF aren't always set the way we want. Determine which
8862  // of these we need.
8863  bool NeedCF = false;
8864  bool NeedOF = false;
8865  switch (X86CC) {
8866  default: break;
8867  case X86::COND_A: case X86::COND_AE:
8868  case X86::COND_B: case X86::COND_BE:
8869    NeedCF = true;
8870    break;
8871  case X86::COND_G: case X86::COND_GE:
8872  case X86::COND_L: case X86::COND_LE:
8873  case X86::COND_O: case X86::COND_NO:
8874    NeedOF = true;
8875    break;
8876  }
8877
8878  // See if we can use the EFLAGS value from the operand instead of
8879  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8880  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8881  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8882    // Emit a CMP with 0, which is the TEST pattern.
8883    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8884                       DAG.getConstant(0, Op.getValueType()));
8885
8886  unsigned Opcode = 0;
8887  unsigned NumOperands = 0;
8888
8889  // Truncate operations may prevent the merge of the SETCC instruction
8890  // and the arithmetic intruction before it. Attempt to truncate the operands
8891  // of the arithmetic instruction and use a reduced bit-width instruction.
8892  bool NeedTruncation = false;
8893  SDValue ArithOp = Op;
8894  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8895    SDValue Arith = Op->getOperand(0);
8896    // Both the trunc and the arithmetic op need to have one user each.
8897    if (Arith->hasOneUse())
8898      switch (Arith.getOpcode()) {
8899        default: break;
8900        case ISD::ADD:
8901        case ISD::SUB:
8902        case ISD::AND:
8903        case ISD::OR:
8904        case ISD::XOR: {
8905          NeedTruncation = true;
8906          ArithOp = Arith;
8907        }
8908      }
8909  }
8910
8911  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8912  // which may be the result of a CAST.  We use the variable 'Op', which is the
8913  // non-casted variable when we check for possible users.
8914  switch (ArithOp.getOpcode()) {
8915  case ISD::ADD:
8916    // Due to an isel shortcoming, be conservative if this add is likely to be
8917    // selected as part of a load-modify-store instruction. When the root node
8918    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8919    // uses of other nodes in the match, such as the ADD in this case. This
8920    // leads to the ADD being left around and reselected, with the result being
8921    // two adds in the output.  Alas, even if none our users are stores, that
8922    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8923    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8924    // climbing the DAG back to the root, and it doesn't seem to be worth the
8925    // effort.
8926    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8927         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8928      if (UI->getOpcode() != ISD::CopyToReg &&
8929          UI->getOpcode() != ISD::SETCC &&
8930          UI->getOpcode() != ISD::STORE)
8931        goto default_case;
8932
8933    if (ConstantSDNode *C =
8934        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8935      // An add of one will be selected as an INC.
8936      if (C->getAPIntValue() == 1) {
8937        Opcode = X86ISD::INC;
8938        NumOperands = 1;
8939        break;
8940      }
8941
8942      // An add of negative one (subtract of one) will be selected as a DEC.
8943      if (C->getAPIntValue().isAllOnesValue()) {
8944        Opcode = X86ISD::DEC;
8945        NumOperands = 1;
8946        break;
8947      }
8948    }
8949
8950    // Otherwise use a regular EFLAGS-setting add.
8951    Opcode = X86ISD::ADD;
8952    NumOperands = 2;
8953    break;
8954  case ISD::AND: {
8955    // If the primary and result isn't used, don't bother using X86ISD::AND,
8956    // because a TEST instruction will be better.
8957    bool NonFlagUse = false;
8958    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8959           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8960      SDNode *User = *UI;
8961      unsigned UOpNo = UI.getOperandNo();
8962      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8963        // Look pass truncate.
8964        UOpNo = User->use_begin().getOperandNo();
8965        User = *User->use_begin();
8966      }
8967
8968      if (User->getOpcode() != ISD::BRCOND &&
8969          User->getOpcode() != ISD::SETCC &&
8970          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8971        NonFlagUse = true;
8972        break;
8973      }
8974    }
8975
8976    if (!NonFlagUse)
8977      break;
8978  }
8979    // FALL THROUGH
8980  case ISD::SUB:
8981  case ISD::OR:
8982  case ISD::XOR:
8983    // Due to the ISEL shortcoming noted above, be conservative if this op is
8984    // likely to be selected as part of a load-modify-store instruction.
8985    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8986           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8987      if (UI->getOpcode() == ISD::STORE)
8988        goto default_case;
8989
8990    // Otherwise use a regular EFLAGS-setting instruction.
8991    switch (ArithOp.getOpcode()) {
8992    default: llvm_unreachable("unexpected operator!");
8993    case ISD::SUB: Opcode = X86ISD::SUB; break;
8994    case ISD::XOR: Opcode = X86ISD::XOR; break;
8995    case ISD::AND: Opcode = X86ISD::AND; break;
8996    case ISD::OR: {
8997      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
8998        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
8999        if (EFLAGS.getNode())
9000          return EFLAGS;
9001      }
9002      Opcode = X86ISD::OR;
9003      break;
9004    }
9005    }
9006
9007    NumOperands = 2;
9008    break;
9009  case X86ISD::ADD:
9010  case X86ISD::SUB:
9011  case X86ISD::INC:
9012  case X86ISD::DEC:
9013  case X86ISD::OR:
9014  case X86ISD::XOR:
9015  case X86ISD::AND:
9016    return SDValue(Op.getNode(), 1);
9017  default:
9018  default_case:
9019    break;
9020  }
9021
9022  // If we found that truncation is beneficial, perform the truncation and
9023  // update 'Op'.
9024  if (NeedTruncation) {
9025    EVT VT = Op.getValueType();
9026    SDValue WideVal = Op->getOperand(0);
9027    EVT WideVT = WideVal.getValueType();
9028    unsigned ConvertedOp = 0;
9029    // Use a target machine opcode to prevent further DAGCombine
9030    // optimizations that may separate the arithmetic operations
9031    // from the setcc node.
9032    switch (WideVal.getOpcode()) {
9033      default: break;
9034      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
9035      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
9036      case ISD::AND: ConvertedOp = X86ISD::AND; break;
9037      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
9038      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
9039    }
9040
9041    if (ConvertedOp) {
9042      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9043      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
9044        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
9045        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
9046        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
9047      }
9048    }
9049  }
9050
9051  if (Opcode == 0)
9052    // Emit a CMP with 0, which is the TEST pattern.
9053    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9054                       DAG.getConstant(0, Op.getValueType()));
9055
9056  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
9057  SmallVector<SDValue, 4> Ops;
9058  for (unsigned i = 0; i != NumOperands; ++i)
9059    Ops.push_back(Op.getOperand(i));
9060
9061  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
9062  DAG.ReplaceAllUsesWith(Op, New);
9063  return SDValue(New.getNode(), 1);
9064}
9065
9066/// Emit nodes that will be selected as "cmp Op0,Op1", or something
9067/// equivalent.
9068SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
9069                                   SelectionDAG &DAG) const {
9070  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
9071    if (C->getAPIntValue() == 0)
9072      return EmitTest(Op0, X86CC, DAG);
9073
9074  DebugLoc dl = Op0.getDebugLoc();
9075  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
9076       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
9077    // Use SUB instead of CMP to enable CSE between SUB and CMP.
9078    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
9079    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
9080                              Op0, Op1);
9081    return SDValue(Sub.getNode(), 1);
9082  }
9083  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
9084}
9085
9086/// Convert a comparison if required by the subtarget.
9087SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
9088                                                 SelectionDAG &DAG) const {
9089  // If the subtarget does not support the FUCOMI instruction, floating-point
9090  // comparisons have to be converted.
9091  if (Subtarget->hasCMov() ||
9092      Cmp.getOpcode() != X86ISD::CMP ||
9093      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
9094      !Cmp.getOperand(1).getValueType().isFloatingPoint())
9095    return Cmp;
9096
9097  // The instruction selector will select an FUCOM instruction instead of
9098  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
9099  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
9100  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
9101  DebugLoc dl = Cmp.getDebugLoc();
9102  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
9103  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
9104  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
9105                            DAG.getConstant(8, MVT::i8));
9106  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
9107  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
9108}
9109
9110static bool isAllOnes(SDValue V) {
9111  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9112  return C && C->isAllOnesValue();
9113}
9114
9115/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
9116/// if it's possible.
9117SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
9118                                     DebugLoc dl, SelectionDAG &DAG) const {
9119  SDValue Op0 = And.getOperand(0);
9120  SDValue Op1 = And.getOperand(1);
9121  if (Op0.getOpcode() == ISD::TRUNCATE)
9122    Op0 = Op0.getOperand(0);
9123  if (Op1.getOpcode() == ISD::TRUNCATE)
9124    Op1 = Op1.getOperand(0);
9125
9126  SDValue LHS, RHS;
9127  if (Op1.getOpcode() == ISD::SHL)
9128    std::swap(Op0, Op1);
9129  if (Op0.getOpcode() == ISD::SHL) {
9130    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
9131      if (And00C->getZExtValue() == 1) {
9132        // If we looked past a truncate, check that it's only truncating away
9133        // known zeros.
9134        unsigned BitWidth = Op0.getValueSizeInBits();
9135        unsigned AndBitWidth = And.getValueSizeInBits();
9136        if (BitWidth > AndBitWidth) {
9137          APInt Zeros, Ones;
9138          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
9139          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
9140            return SDValue();
9141        }
9142        LHS = Op1;
9143        RHS = Op0.getOperand(1);
9144      }
9145  } else if (Op1.getOpcode() == ISD::Constant) {
9146    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
9147    uint64_t AndRHSVal = AndRHS->getZExtValue();
9148    SDValue AndLHS = Op0;
9149
9150    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
9151      LHS = AndLHS.getOperand(0);
9152      RHS = AndLHS.getOperand(1);
9153    }
9154
9155    // Use BT if the immediate can't be encoded in a TEST instruction.
9156    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
9157      LHS = AndLHS;
9158      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
9159    }
9160  }
9161
9162  if (LHS.getNode()) {
9163    // If the LHS is of the form (x ^ -1) then replace the LHS with x and flip
9164    // the condition code later.
9165    bool Invert = false;
9166    if (LHS.getOpcode() == ISD::XOR && isAllOnes(LHS.getOperand(1))) {
9167      Invert = true;
9168      LHS = LHS.getOperand(0);
9169    }
9170
9171    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
9172    // instruction.  Since the shift amount is in-range-or-undefined, we know
9173    // that doing a bittest on the i32 value is ok.  We extend to i32 because
9174    // the encoding for the i16 version is larger than the i32 version.
9175    // Also promote i16 to i32 for performance / code size reason.
9176    if (LHS.getValueType() == MVT::i8 ||
9177        LHS.getValueType() == MVT::i16)
9178      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
9179
9180    // If the operand types disagree, extend the shift amount to match.  Since
9181    // BT ignores high bits (like shifts) we can use anyextend.
9182    if (LHS.getValueType() != RHS.getValueType())
9183      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
9184
9185    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
9186    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
9187    // Flip the condition if the LHS was a not instruction
9188    if (Invert)
9189      Cond = X86::GetOppositeBranchCondition(Cond);
9190    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9191                       DAG.getConstant(Cond, MVT::i8), BT);
9192  }
9193
9194  return SDValue();
9195}
9196
9197// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9198// ones, and then concatenate the result back.
9199static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9200  MVT VT = Op.getValueType().getSimpleVT();
9201
9202  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9203         "Unsupported value type for operation");
9204
9205  unsigned NumElems = VT.getVectorNumElements();
9206  DebugLoc dl = Op.getDebugLoc();
9207  SDValue CC = Op.getOperand(2);
9208
9209  // Extract the LHS vectors
9210  SDValue LHS = Op.getOperand(0);
9211  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9212  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9213
9214  // Extract the RHS vectors
9215  SDValue RHS = Op.getOperand(1);
9216  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9217  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9218
9219  // Issue the operation on the smaller types and concatenate the result back
9220  MVT EltVT = VT.getVectorElementType();
9221  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9222  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9223                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9224                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9225}
9226
9227static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
9228                           SelectionDAG &DAG) {
9229  SDValue Cond;
9230  SDValue Op0 = Op.getOperand(0);
9231  SDValue Op1 = Op.getOperand(1);
9232  SDValue CC = Op.getOperand(2);
9233  MVT VT = Op.getValueType().getSimpleVT();
9234  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9235  bool isFP = Op.getOperand(1).getValueType().getSimpleVT().isFloatingPoint();
9236  DebugLoc dl = Op.getDebugLoc();
9237
9238  if (isFP) {
9239#ifndef NDEBUG
9240    MVT EltVT = Op0.getValueType().getVectorElementType().getSimpleVT();
9241    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9242#endif
9243
9244    unsigned SSECC;
9245    bool Swap = false;
9246
9247    // SSE Condition code mapping:
9248    //  0 - EQ
9249    //  1 - LT
9250    //  2 - LE
9251    //  3 - UNORD
9252    //  4 - NEQ
9253    //  5 - NLT
9254    //  6 - NLE
9255    //  7 - ORD
9256    switch (SetCCOpcode) {
9257    default: llvm_unreachable("Unexpected SETCC condition");
9258    case ISD::SETOEQ:
9259    case ISD::SETEQ:  SSECC = 0; break;
9260    case ISD::SETOGT:
9261    case ISD::SETGT: Swap = true; // Fallthrough
9262    case ISD::SETLT:
9263    case ISD::SETOLT: SSECC = 1; break;
9264    case ISD::SETOGE:
9265    case ISD::SETGE: Swap = true; // Fallthrough
9266    case ISD::SETLE:
9267    case ISD::SETOLE: SSECC = 2; break;
9268    case ISD::SETUO:  SSECC = 3; break;
9269    case ISD::SETUNE:
9270    case ISD::SETNE:  SSECC = 4; break;
9271    case ISD::SETULE: Swap = true; // Fallthrough
9272    case ISD::SETUGE: SSECC = 5; break;
9273    case ISD::SETULT: Swap = true; // Fallthrough
9274    case ISD::SETUGT: SSECC = 6; break;
9275    case ISD::SETO:   SSECC = 7; break;
9276    case ISD::SETUEQ:
9277    case ISD::SETONE: SSECC = 8; break;
9278    }
9279    if (Swap)
9280      std::swap(Op0, Op1);
9281
9282    // In the two special cases we can't handle, emit two comparisons.
9283    if (SSECC == 8) {
9284      unsigned CC0, CC1;
9285      unsigned CombineOpc;
9286      if (SetCCOpcode == ISD::SETUEQ) {
9287        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9288      } else {
9289        assert(SetCCOpcode == ISD::SETONE);
9290        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9291      }
9292
9293      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9294                                 DAG.getConstant(CC0, MVT::i8));
9295      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9296                                 DAG.getConstant(CC1, MVT::i8));
9297      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9298    }
9299    // Handle all other FP comparisons here.
9300    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9301                       DAG.getConstant(SSECC, MVT::i8));
9302  }
9303
9304  // Break 256-bit integer vector compare into smaller ones.
9305  if (VT.is256BitVector() && !Subtarget->hasInt256())
9306    return Lower256IntVSETCC(Op, DAG);
9307
9308  // We are handling one of the integer comparisons here.  Since SSE only has
9309  // GT and EQ comparisons for integer, swapping operands and multiple
9310  // operations may be required for some comparisons.
9311  unsigned Opc;
9312  bool Swap = false, Invert = false, FlipSigns = false;
9313
9314  switch (SetCCOpcode) {
9315  default: llvm_unreachable("Unexpected SETCC condition");
9316  case ISD::SETNE:  Invert = true;
9317  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
9318  case ISD::SETLT:  Swap = true;
9319  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
9320  case ISD::SETGE:  Swap = true;
9321  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
9322  case ISD::SETULT: Swap = true;
9323  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
9324  case ISD::SETUGE: Swap = true;
9325  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
9326  }
9327  if (Swap)
9328    std::swap(Op0, Op1);
9329
9330  // Check that the operation in question is available (most are plain SSE2,
9331  // but PCMPGTQ and PCMPEQQ have different requirements).
9332  if (VT == MVT::v2i64) {
9333    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
9334      return SDValue();
9335    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
9336      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
9337      // pcmpeqd + pshufd + pand.
9338      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
9339
9340      // First cast everything to the right type,
9341      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9342      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9343
9344      // Do the compare.
9345      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
9346
9347      // Make sure the lower and upper halves are both all-ones.
9348      const int Mask[] = { 1, 0, 3, 2 };
9349      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
9350      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
9351
9352      if (Invert)
9353        Result = DAG.getNOT(dl, Result, MVT::v4i32);
9354
9355      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9356    }
9357  }
9358
9359  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
9360  // bits of the inputs before performing those operations.
9361  if (FlipSigns) {
9362    EVT EltVT = VT.getVectorElementType();
9363    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
9364                                      EltVT);
9365    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
9366    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
9367                                    SignBits.size());
9368    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
9369    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
9370  }
9371
9372  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
9373
9374  // If the logical-not of the result is required, perform that now.
9375  if (Invert)
9376    Result = DAG.getNOT(dl, Result, VT);
9377
9378  return Result;
9379}
9380
9381SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
9382
9383  MVT VT = Op.getValueType().getSimpleVT();
9384
9385  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
9386
9387  assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
9388  SDValue Op0 = Op.getOperand(0);
9389  SDValue Op1 = Op.getOperand(1);
9390  DebugLoc dl = Op.getDebugLoc();
9391  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9392
9393  // Optimize to BT if possible.
9394  // Lower (X & (1 << N)) == 0 to BT(X, N).
9395  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
9396  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
9397  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
9398      Op1.getOpcode() == ISD::Constant &&
9399      cast<ConstantSDNode>(Op1)->isNullValue() &&
9400      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9401    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
9402    if (NewSetCC.getNode())
9403      return NewSetCC;
9404  }
9405
9406  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
9407  // these.
9408  if (Op1.getOpcode() == ISD::Constant &&
9409      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
9410       cast<ConstantSDNode>(Op1)->isNullValue()) &&
9411      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9412
9413    // If the input is a setcc, then reuse the input setcc or use a new one with
9414    // the inverted condition.
9415    if (Op0.getOpcode() == X86ISD::SETCC) {
9416      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
9417      bool Invert = (CC == ISD::SETNE) ^
9418        cast<ConstantSDNode>(Op1)->isNullValue();
9419      if (!Invert) return Op0;
9420
9421      CCode = X86::GetOppositeBranchCondition(CCode);
9422      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9423                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
9424    }
9425  }
9426
9427  bool isFP = Op1.getValueType().getSimpleVT().isFloatingPoint();
9428  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
9429  if (X86CC == X86::COND_INVALID)
9430    return SDValue();
9431
9432  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
9433  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
9434  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9435                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
9436}
9437
9438// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
9439static bool isX86LogicalCmp(SDValue Op) {
9440  unsigned Opc = Op.getNode()->getOpcode();
9441  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
9442      Opc == X86ISD::SAHF)
9443    return true;
9444  if (Op.getResNo() == 1 &&
9445      (Opc == X86ISD::ADD ||
9446       Opc == X86ISD::SUB ||
9447       Opc == X86ISD::ADC ||
9448       Opc == X86ISD::SBB ||
9449       Opc == X86ISD::SMUL ||
9450       Opc == X86ISD::UMUL ||
9451       Opc == X86ISD::INC ||
9452       Opc == X86ISD::DEC ||
9453       Opc == X86ISD::OR ||
9454       Opc == X86ISD::XOR ||
9455       Opc == X86ISD::AND))
9456    return true;
9457
9458  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9459    return true;
9460
9461  return false;
9462}
9463
9464static bool isZero(SDValue V) {
9465  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9466  return C && C->isNullValue();
9467}
9468
9469static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9470  if (V.getOpcode() != ISD::TRUNCATE)
9471    return false;
9472
9473  SDValue VOp0 = V.getOperand(0);
9474  unsigned InBits = VOp0.getValueSizeInBits();
9475  unsigned Bits = V.getValueSizeInBits();
9476  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9477}
9478
9479SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9480  bool addTest = true;
9481  SDValue Cond  = Op.getOperand(0);
9482  SDValue Op1 = Op.getOperand(1);
9483  SDValue Op2 = Op.getOperand(2);
9484  DebugLoc DL = Op.getDebugLoc();
9485  SDValue CC;
9486
9487  if (Cond.getOpcode() == ISD::SETCC) {
9488    SDValue NewCond = LowerSETCC(Cond, DAG);
9489    if (NewCond.getNode())
9490      Cond = NewCond;
9491  }
9492
9493  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9494  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9495  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9496  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9497  if (Cond.getOpcode() == X86ISD::SETCC &&
9498      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9499      isZero(Cond.getOperand(1).getOperand(1))) {
9500    SDValue Cmp = Cond.getOperand(1);
9501
9502    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9503
9504    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9505        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9506      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9507
9508      SDValue CmpOp0 = Cmp.getOperand(0);
9509      // Apply further optimizations for special cases
9510      // (select (x != 0), -1, 0) -> neg & sbb
9511      // (select (x == 0), 0, -1) -> neg & sbb
9512      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9513        if (YC->isNullValue() &&
9514            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9515          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9516          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9517                                    DAG.getConstant(0, CmpOp0.getValueType()),
9518                                    CmpOp0);
9519          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9520                                    DAG.getConstant(X86::COND_B, MVT::i8),
9521                                    SDValue(Neg.getNode(), 1));
9522          return Res;
9523        }
9524
9525      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9526                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9527      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9528
9529      SDValue Res =   // Res = 0 or -1.
9530        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9531                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9532
9533      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9534        Res = DAG.getNOT(DL, Res, Res.getValueType());
9535
9536      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9537      if (N2C == 0 || !N2C->isNullValue())
9538        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9539      return Res;
9540    }
9541  }
9542
9543  // Look past (and (setcc_carry (cmp ...)), 1).
9544  if (Cond.getOpcode() == ISD::AND &&
9545      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9546    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9547    if (C && C->getAPIntValue() == 1)
9548      Cond = Cond.getOperand(0);
9549  }
9550
9551  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9552  // setting operand in place of the X86ISD::SETCC.
9553  unsigned CondOpcode = Cond.getOpcode();
9554  if (CondOpcode == X86ISD::SETCC ||
9555      CondOpcode == X86ISD::SETCC_CARRY) {
9556    CC = Cond.getOperand(0);
9557
9558    SDValue Cmp = Cond.getOperand(1);
9559    unsigned Opc = Cmp.getOpcode();
9560    MVT VT = Op.getValueType().getSimpleVT();
9561
9562    bool IllegalFPCMov = false;
9563    if (VT.isFloatingPoint() && !VT.isVector() &&
9564        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9565      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9566
9567    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9568        Opc == X86ISD::BT) { // FIXME
9569      Cond = Cmp;
9570      addTest = false;
9571    }
9572  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9573             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9574             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9575              Cond.getOperand(0).getValueType() != MVT::i8)) {
9576    SDValue LHS = Cond.getOperand(0);
9577    SDValue RHS = Cond.getOperand(1);
9578    unsigned X86Opcode;
9579    unsigned X86Cond;
9580    SDVTList VTs;
9581    switch (CondOpcode) {
9582    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9583    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9584    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9585    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9586    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9587    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9588    default: llvm_unreachable("unexpected overflowing operator");
9589    }
9590    if (CondOpcode == ISD::UMULO)
9591      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9592                          MVT::i32);
9593    else
9594      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9595
9596    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9597
9598    if (CondOpcode == ISD::UMULO)
9599      Cond = X86Op.getValue(2);
9600    else
9601      Cond = X86Op.getValue(1);
9602
9603    CC = DAG.getConstant(X86Cond, MVT::i8);
9604    addTest = false;
9605  }
9606
9607  if (addTest) {
9608    // Look pass the truncate if the high bits are known zero.
9609    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9610        Cond = Cond.getOperand(0);
9611
9612    // We know the result of AND is compared against zero. Try to match
9613    // it to BT.
9614    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9615      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9616      if (NewSetCC.getNode()) {
9617        CC = NewSetCC.getOperand(0);
9618        Cond = NewSetCC.getOperand(1);
9619        addTest = false;
9620      }
9621    }
9622  }
9623
9624  if (addTest) {
9625    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9626    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9627  }
9628
9629  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9630  // a <  b ?  0 : -1 -> RES = setcc_carry
9631  // a >= b ? -1 :  0 -> RES = setcc_carry
9632  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9633  if (Cond.getOpcode() == X86ISD::SUB) {
9634    Cond = ConvertCmpIfNecessary(Cond, DAG);
9635    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9636
9637    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9638        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9639      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9640                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9641      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9642        return DAG.getNOT(DL, Res, Res.getValueType());
9643      return Res;
9644    }
9645  }
9646
9647  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
9648  // widen the cmov and push the truncate through. This avoids introducing a new
9649  // branch during isel and doesn't add any extensions.
9650  if (Op.getValueType() == MVT::i8 &&
9651      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
9652    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
9653    if (T1.getValueType() == T2.getValueType() &&
9654        // Blacklist CopyFromReg to avoid partial register stalls.
9655        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
9656      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
9657      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
9658      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
9659    }
9660  }
9661
9662  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9663  // condition is true.
9664  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9665  SDValue Ops[] = { Op2, Op1, CC, Cond };
9666  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9667}
9668
9669SDValue X86TargetLowering::LowerSIGN_EXTEND(SDValue Op,
9670                                            SelectionDAG &DAG) const {
9671  MVT VT = Op->getValueType(0).getSimpleVT();
9672  SDValue In = Op->getOperand(0);
9673  MVT InVT = In.getValueType().getSimpleVT();
9674  DebugLoc dl = Op->getDebugLoc();
9675
9676  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
9677      (VT != MVT::v8i32 || InVT != MVT::v8i16))
9678    return SDValue();
9679
9680  if (Subtarget->hasInt256())
9681    return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In);
9682
9683  // Optimize vectors in AVX mode
9684  // Sign extend  v8i16 to v8i32 and
9685  //              v4i32 to v4i64
9686  //
9687  // Divide input vector into two parts
9688  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
9689  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
9690  // concat the vectors to original VT
9691
9692  unsigned NumElems = InVT.getVectorNumElements();
9693  SDValue Undef = DAG.getUNDEF(InVT);
9694
9695  SmallVector<int,8> ShufMask1(NumElems, -1);
9696  for (unsigned i = 0; i != NumElems/2; ++i)
9697    ShufMask1[i] = i;
9698
9699  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
9700
9701  SmallVector<int,8> ShufMask2(NumElems, -1);
9702  for (unsigned i = 0; i != NumElems/2; ++i)
9703    ShufMask2[i] = i + NumElems/2;
9704
9705  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
9706
9707  MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
9708                                VT.getVectorNumElements()/2);
9709
9710  OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
9711  OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
9712
9713  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
9714}
9715
9716// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9717// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9718// from the AND / OR.
9719static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9720  Opc = Op.getOpcode();
9721  if (Opc != ISD::OR && Opc != ISD::AND)
9722    return false;
9723  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9724          Op.getOperand(0).hasOneUse() &&
9725          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9726          Op.getOperand(1).hasOneUse());
9727}
9728
9729// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9730// 1 and that the SETCC node has a single use.
9731static bool isXor1OfSetCC(SDValue Op) {
9732  if (Op.getOpcode() != ISD::XOR)
9733    return false;
9734  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9735  if (N1C && N1C->getAPIntValue() == 1) {
9736    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9737      Op.getOperand(0).hasOneUse();
9738  }
9739  return false;
9740}
9741
9742SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9743  bool addTest = true;
9744  SDValue Chain = Op.getOperand(0);
9745  SDValue Cond  = Op.getOperand(1);
9746  SDValue Dest  = Op.getOperand(2);
9747  DebugLoc dl = Op.getDebugLoc();
9748  SDValue CC;
9749  bool Inverted = false;
9750
9751  if (Cond.getOpcode() == ISD::SETCC) {
9752    // Check for setcc([su]{add,sub,mul}o == 0).
9753    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9754        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9755        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9756        Cond.getOperand(0).getResNo() == 1 &&
9757        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9758         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9759         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9760         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9761         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9762         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9763      Inverted = true;
9764      Cond = Cond.getOperand(0);
9765    } else {
9766      SDValue NewCond = LowerSETCC(Cond, DAG);
9767      if (NewCond.getNode())
9768        Cond = NewCond;
9769    }
9770  }
9771#if 0
9772  // FIXME: LowerXALUO doesn't handle these!!
9773  else if (Cond.getOpcode() == X86ISD::ADD  ||
9774           Cond.getOpcode() == X86ISD::SUB  ||
9775           Cond.getOpcode() == X86ISD::SMUL ||
9776           Cond.getOpcode() == X86ISD::UMUL)
9777    Cond = LowerXALUO(Cond, DAG);
9778#endif
9779
9780  // Look pass (and (setcc_carry (cmp ...)), 1).
9781  if (Cond.getOpcode() == ISD::AND &&
9782      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9783    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9784    if (C && C->getAPIntValue() == 1)
9785      Cond = Cond.getOperand(0);
9786  }
9787
9788  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9789  // setting operand in place of the X86ISD::SETCC.
9790  unsigned CondOpcode = Cond.getOpcode();
9791  if (CondOpcode == X86ISD::SETCC ||
9792      CondOpcode == X86ISD::SETCC_CARRY) {
9793    CC = Cond.getOperand(0);
9794
9795    SDValue Cmp = Cond.getOperand(1);
9796    unsigned Opc = Cmp.getOpcode();
9797    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9798    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9799      Cond = Cmp;
9800      addTest = false;
9801    } else {
9802      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9803      default: break;
9804      case X86::COND_O:
9805      case X86::COND_B:
9806        // These can only come from an arithmetic instruction with overflow,
9807        // e.g. SADDO, UADDO.
9808        Cond = Cond.getNode()->getOperand(1);
9809        addTest = false;
9810        break;
9811      }
9812    }
9813  }
9814  CondOpcode = Cond.getOpcode();
9815  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9816      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9817      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9818       Cond.getOperand(0).getValueType() != MVT::i8)) {
9819    SDValue LHS = Cond.getOperand(0);
9820    SDValue RHS = Cond.getOperand(1);
9821    unsigned X86Opcode;
9822    unsigned X86Cond;
9823    SDVTList VTs;
9824    switch (CondOpcode) {
9825    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9826    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9827    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9828    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9829    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9830    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9831    default: llvm_unreachable("unexpected overflowing operator");
9832    }
9833    if (Inverted)
9834      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9835    if (CondOpcode == ISD::UMULO)
9836      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9837                          MVT::i32);
9838    else
9839      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9840
9841    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9842
9843    if (CondOpcode == ISD::UMULO)
9844      Cond = X86Op.getValue(2);
9845    else
9846      Cond = X86Op.getValue(1);
9847
9848    CC = DAG.getConstant(X86Cond, MVT::i8);
9849    addTest = false;
9850  } else {
9851    unsigned CondOpc;
9852    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9853      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9854      if (CondOpc == ISD::OR) {
9855        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9856        // two branches instead of an explicit OR instruction with a
9857        // separate test.
9858        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9859            isX86LogicalCmp(Cmp)) {
9860          CC = Cond.getOperand(0).getOperand(0);
9861          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9862                              Chain, Dest, CC, Cmp);
9863          CC = Cond.getOperand(1).getOperand(0);
9864          Cond = Cmp;
9865          addTest = false;
9866        }
9867      } else { // ISD::AND
9868        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9869        // two branches instead of an explicit AND instruction with a
9870        // separate test. However, we only do this if this block doesn't
9871        // have a fall-through edge, because this requires an explicit
9872        // jmp when the condition is false.
9873        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9874            isX86LogicalCmp(Cmp) &&
9875            Op.getNode()->hasOneUse()) {
9876          X86::CondCode CCode =
9877            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9878          CCode = X86::GetOppositeBranchCondition(CCode);
9879          CC = DAG.getConstant(CCode, MVT::i8);
9880          SDNode *User = *Op.getNode()->use_begin();
9881          // Look for an unconditional branch following this conditional branch.
9882          // We need this because we need to reverse the successors in order
9883          // to implement FCMP_OEQ.
9884          if (User->getOpcode() == ISD::BR) {
9885            SDValue FalseBB = User->getOperand(1);
9886            SDNode *NewBR =
9887              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9888            assert(NewBR == User);
9889            (void)NewBR;
9890            Dest = FalseBB;
9891
9892            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9893                                Chain, Dest, CC, Cmp);
9894            X86::CondCode CCode =
9895              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9896            CCode = X86::GetOppositeBranchCondition(CCode);
9897            CC = DAG.getConstant(CCode, MVT::i8);
9898            Cond = Cmp;
9899            addTest = false;
9900          }
9901        }
9902      }
9903    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9904      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9905      // It should be transformed during dag combiner except when the condition
9906      // is set by a arithmetics with overflow node.
9907      X86::CondCode CCode =
9908        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9909      CCode = X86::GetOppositeBranchCondition(CCode);
9910      CC = DAG.getConstant(CCode, MVT::i8);
9911      Cond = Cond.getOperand(0).getOperand(1);
9912      addTest = false;
9913    } else if (Cond.getOpcode() == ISD::SETCC &&
9914               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9915      // For FCMP_OEQ, we can emit
9916      // two branches instead of an explicit AND instruction with a
9917      // separate test. However, we only do this if this block doesn't
9918      // have a fall-through edge, because this requires an explicit
9919      // jmp when the condition is false.
9920      if (Op.getNode()->hasOneUse()) {
9921        SDNode *User = *Op.getNode()->use_begin();
9922        // Look for an unconditional branch following this conditional branch.
9923        // We need this because we need to reverse the successors in order
9924        // to implement FCMP_OEQ.
9925        if (User->getOpcode() == ISD::BR) {
9926          SDValue FalseBB = User->getOperand(1);
9927          SDNode *NewBR =
9928            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9929          assert(NewBR == User);
9930          (void)NewBR;
9931          Dest = FalseBB;
9932
9933          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9934                                    Cond.getOperand(0), Cond.getOperand(1));
9935          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9936          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9937          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9938                              Chain, Dest, CC, Cmp);
9939          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9940          Cond = Cmp;
9941          addTest = false;
9942        }
9943      }
9944    } else if (Cond.getOpcode() == ISD::SETCC &&
9945               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9946      // For FCMP_UNE, we can emit
9947      // two branches instead of an explicit AND instruction with a
9948      // separate test. However, we only do this if this block doesn't
9949      // have a fall-through edge, because this requires an explicit
9950      // jmp when the condition is false.
9951      if (Op.getNode()->hasOneUse()) {
9952        SDNode *User = *Op.getNode()->use_begin();
9953        // Look for an unconditional branch following this conditional branch.
9954        // We need this because we need to reverse the successors in order
9955        // to implement FCMP_UNE.
9956        if (User->getOpcode() == ISD::BR) {
9957          SDValue FalseBB = User->getOperand(1);
9958          SDNode *NewBR =
9959            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9960          assert(NewBR == User);
9961          (void)NewBR;
9962
9963          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9964                                    Cond.getOperand(0), Cond.getOperand(1));
9965          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9966          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9967          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9968                              Chain, Dest, CC, Cmp);
9969          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9970          Cond = Cmp;
9971          addTest = false;
9972          Dest = FalseBB;
9973        }
9974      }
9975    }
9976  }
9977
9978  if (addTest) {
9979    // Look pass the truncate if the high bits are known zero.
9980    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9981        Cond = Cond.getOperand(0);
9982
9983    // We know the result of AND is compared against zero. Try to match
9984    // it to BT.
9985    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9986      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9987      if (NewSetCC.getNode()) {
9988        CC = NewSetCC.getOperand(0);
9989        Cond = NewSetCC.getOperand(1);
9990        addTest = false;
9991      }
9992    }
9993  }
9994
9995  if (addTest) {
9996    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9997    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9998  }
9999  Cond = ConvertCmpIfNecessary(Cond, DAG);
10000  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10001                     Chain, Dest, CC, Cond);
10002}
10003
10004// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
10005// Calls to _alloca is needed to probe the stack when allocating more than 4k
10006// bytes in one go. Touching the stack at 4K increments is necessary to ensure
10007// that the guard pages used by the OS virtual memory manager are allocated in
10008// correct sequence.
10009SDValue
10010X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
10011                                           SelectionDAG &DAG) const {
10012  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
10013          getTargetMachine().Options.EnableSegmentedStacks) &&
10014         "This should be used only on Windows targets or when segmented stacks "
10015         "are being used");
10016  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
10017  DebugLoc dl = Op.getDebugLoc();
10018
10019  // Get the inputs.
10020  SDValue Chain = Op.getOperand(0);
10021  SDValue Size  = Op.getOperand(1);
10022  // FIXME: Ensure alignment here
10023
10024  bool Is64Bit = Subtarget->is64Bit();
10025  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
10026
10027  if (getTargetMachine().Options.EnableSegmentedStacks) {
10028    MachineFunction &MF = DAG.getMachineFunction();
10029    MachineRegisterInfo &MRI = MF.getRegInfo();
10030
10031    if (Is64Bit) {
10032      // The 64 bit implementation of segmented stacks needs to clobber both r10
10033      // r11. This makes it impossible to use it along with nested parameters.
10034      const Function *F = MF.getFunction();
10035
10036      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
10037           I != E; ++I)
10038        if (I->hasNestAttr())
10039          report_fatal_error("Cannot use segmented stacks with functions that "
10040                             "have nested arguments.");
10041    }
10042
10043    const TargetRegisterClass *AddrRegClass =
10044      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
10045    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
10046    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
10047    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
10048                                DAG.getRegister(Vreg, SPTy));
10049    SDValue Ops1[2] = { Value, Chain };
10050    return DAG.getMergeValues(Ops1, 2, dl);
10051  } else {
10052    SDValue Flag;
10053    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
10054
10055    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
10056    Flag = Chain.getValue(1);
10057    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10058
10059    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
10060    Flag = Chain.getValue(1);
10061
10062    Chain = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
10063                               SPTy).getValue(1);
10064
10065    SDValue Ops1[2] = { Chain.getValue(0), Chain };
10066    return DAG.getMergeValues(Ops1, 2, dl);
10067  }
10068}
10069
10070SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
10071  MachineFunction &MF = DAG.getMachineFunction();
10072  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
10073
10074  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10075  DebugLoc DL = Op.getDebugLoc();
10076
10077  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
10078    // vastart just stores the address of the VarArgsFrameIndex slot into the
10079    // memory location argument.
10080    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10081                                   getPointerTy());
10082    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
10083                        MachinePointerInfo(SV), false, false, 0);
10084  }
10085
10086  // __va_list_tag:
10087  //   gp_offset         (0 - 6 * 8)
10088  //   fp_offset         (48 - 48 + 8 * 16)
10089  //   overflow_arg_area (point to parameters coming in memory).
10090  //   reg_save_area
10091  SmallVector<SDValue, 8> MemOps;
10092  SDValue FIN = Op.getOperand(1);
10093  // Store gp_offset
10094  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
10095                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
10096                                               MVT::i32),
10097                               FIN, MachinePointerInfo(SV), false, false, 0);
10098  MemOps.push_back(Store);
10099
10100  // Store fp_offset
10101  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10102                    FIN, DAG.getIntPtrConstant(4));
10103  Store = DAG.getStore(Op.getOperand(0), DL,
10104                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
10105                                       MVT::i32),
10106                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
10107  MemOps.push_back(Store);
10108
10109  // Store ptr to overflow_arg_area
10110  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10111                    FIN, DAG.getIntPtrConstant(4));
10112  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10113                                    getPointerTy());
10114  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
10115                       MachinePointerInfo(SV, 8),
10116                       false, false, 0);
10117  MemOps.push_back(Store);
10118
10119  // Store ptr to reg_save_area.
10120  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10121                    FIN, DAG.getIntPtrConstant(8));
10122  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
10123                                    getPointerTy());
10124  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
10125                       MachinePointerInfo(SV, 16), false, false, 0);
10126  MemOps.push_back(Store);
10127  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
10128                     &MemOps[0], MemOps.size());
10129}
10130
10131SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
10132  assert(Subtarget->is64Bit() &&
10133         "LowerVAARG only handles 64-bit va_arg!");
10134  assert((Subtarget->isTargetLinux() ||
10135          Subtarget->isTargetDarwin()) &&
10136          "Unhandled target in LowerVAARG");
10137  assert(Op.getNode()->getNumOperands() == 4);
10138  SDValue Chain = Op.getOperand(0);
10139  SDValue SrcPtr = Op.getOperand(1);
10140  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10141  unsigned Align = Op.getConstantOperandVal(3);
10142  DebugLoc dl = Op.getDebugLoc();
10143
10144  EVT ArgVT = Op.getNode()->getValueType(0);
10145  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10146  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
10147  uint8_t ArgMode;
10148
10149  // Decide which area this value should be read from.
10150  // TODO: Implement the AMD64 ABI in its entirety. This simple
10151  // selection mechanism works only for the basic types.
10152  if (ArgVT == MVT::f80) {
10153    llvm_unreachable("va_arg for f80 not yet implemented");
10154  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
10155    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
10156  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
10157    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
10158  } else {
10159    llvm_unreachable("Unhandled argument type in LowerVAARG");
10160  }
10161
10162  if (ArgMode == 2) {
10163    // Sanity Check: Make sure using fp_offset makes sense.
10164    assert(!getTargetMachine().Options.UseSoftFloat &&
10165           !(DAG.getMachineFunction()
10166                .getFunction()->getAttributes()
10167                .hasAttribute(AttributeSet::FunctionIndex,
10168                              Attribute::NoImplicitFloat)) &&
10169           Subtarget->hasSSE1());
10170  }
10171
10172  // Insert VAARG_64 node into the DAG
10173  // VAARG_64 returns two values: Variable Argument Address, Chain
10174  SmallVector<SDValue, 11> InstOps;
10175  InstOps.push_back(Chain);
10176  InstOps.push_back(SrcPtr);
10177  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
10178  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
10179  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
10180  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
10181  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
10182                                          VTs, &InstOps[0], InstOps.size(),
10183                                          MVT::i64,
10184                                          MachinePointerInfo(SV),
10185                                          /*Align=*/0,
10186                                          /*Volatile=*/false,
10187                                          /*ReadMem=*/true,
10188                                          /*WriteMem=*/true);
10189  Chain = VAARG.getValue(1);
10190
10191  // Load the next argument and return it
10192  return DAG.getLoad(ArgVT, dl,
10193                     Chain,
10194                     VAARG,
10195                     MachinePointerInfo(),
10196                     false, false, false, 0);
10197}
10198
10199static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
10200                           SelectionDAG &DAG) {
10201  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
10202  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
10203  SDValue Chain = Op.getOperand(0);
10204  SDValue DstPtr = Op.getOperand(1);
10205  SDValue SrcPtr = Op.getOperand(2);
10206  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
10207  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10208  DebugLoc DL = Op.getDebugLoc();
10209
10210  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
10211                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
10212                       false,
10213                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
10214}
10215
10216// getTargetVShiftNode - Handle vector element shifts where the shift amount
10217// may or may not be a constant. Takes immediate version of shift as input.
10218static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
10219                                   SDValue SrcOp, SDValue ShAmt,
10220                                   SelectionDAG &DAG) {
10221  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
10222
10223  if (isa<ConstantSDNode>(ShAmt)) {
10224    // Constant may be a TargetConstant. Use a regular constant.
10225    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10226    switch (Opc) {
10227      default: llvm_unreachable("Unknown target vector shift node");
10228      case X86ISD::VSHLI:
10229      case X86ISD::VSRLI:
10230      case X86ISD::VSRAI:
10231        return DAG.getNode(Opc, dl, VT, SrcOp,
10232                           DAG.getConstant(ShiftAmt, MVT::i32));
10233    }
10234  }
10235
10236  // Change opcode to non-immediate version
10237  switch (Opc) {
10238    default: llvm_unreachable("Unknown target vector shift node");
10239    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
10240    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
10241    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
10242  }
10243
10244  // Need to build a vector containing shift amount
10245  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
10246  SDValue ShOps[4];
10247  ShOps[0] = ShAmt;
10248  ShOps[1] = DAG.getConstant(0, MVT::i32);
10249  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
10250  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
10251
10252  // The return type has to be a 128-bit type with the same element
10253  // type as the input type.
10254  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10255  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
10256
10257  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
10258  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
10259}
10260
10261static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
10262  DebugLoc dl = Op.getDebugLoc();
10263  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10264  switch (IntNo) {
10265  default: return SDValue();    // Don't custom lower most intrinsics.
10266  // Comparison intrinsics.
10267  case Intrinsic::x86_sse_comieq_ss:
10268  case Intrinsic::x86_sse_comilt_ss:
10269  case Intrinsic::x86_sse_comile_ss:
10270  case Intrinsic::x86_sse_comigt_ss:
10271  case Intrinsic::x86_sse_comige_ss:
10272  case Intrinsic::x86_sse_comineq_ss:
10273  case Intrinsic::x86_sse_ucomieq_ss:
10274  case Intrinsic::x86_sse_ucomilt_ss:
10275  case Intrinsic::x86_sse_ucomile_ss:
10276  case Intrinsic::x86_sse_ucomigt_ss:
10277  case Intrinsic::x86_sse_ucomige_ss:
10278  case Intrinsic::x86_sse_ucomineq_ss:
10279  case Intrinsic::x86_sse2_comieq_sd:
10280  case Intrinsic::x86_sse2_comilt_sd:
10281  case Intrinsic::x86_sse2_comile_sd:
10282  case Intrinsic::x86_sse2_comigt_sd:
10283  case Intrinsic::x86_sse2_comige_sd:
10284  case Intrinsic::x86_sse2_comineq_sd:
10285  case Intrinsic::x86_sse2_ucomieq_sd:
10286  case Intrinsic::x86_sse2_ucomilt_sd:
10287  case Intrinsic::x86_sse2_ucomile_sd:
10288  case Intrinsic::x86_sse2_ucomigt_sd:
10289  case Intrinsic::x86_sse2_ucomige_sd:
10290  case Intrinsic::x86_sse2_ucomineq_sd: {
10291    unsigned Opc;
10292    ISD::CondCode CC;
10293    switch (IntNo) {
10294    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10295    case Intrinsic::x86_sse_comieq_ss:
10296    case Intrinsic::x86_sse2_comieq_sd:
10297      Opc = X86ISD::COMI;
10298      CC = ISD::SETEQ;
10299      break;
10300    case Intrinsic::x86_sse_comilt_ss:
10301    case Intrinsic::x86_sse2_comilt_sd:
10302      Opc = X86ISD::COMI;
10303      CC = ISD::SETLT;
10304      break;
10305    case Intrinsic::x86_sse_comile_ss:
10306    case Intrinsic::x86_sse2_comile_sd:
10307      Opc = X86ISD::COMI;
10308      CC = ISD::SETLE;
10309      break;
10310    case Intrinsic::x86_sse_comigt_ss:
10311    case Intrinsic::x86_sse2_comigt_sd:
10312      Opc = X86ISD::COMI;
10313      CC = ISD::SETGT;
10314      break;
10315    case Intrinsic::x86_sse_comige_ss:
10316    case Intrinsic::x86_sse2_comige_sd:
10317      Opc = X86ISD::COMI;
10318      CC = ISD::SETGE;
10319      break;
10320    case Intrinsic::x86_sse_comineq_ss:
10321    case Intrinsic::x86_sse2_comineq_sd:
10322      Opc = X86ISD::COMI;
10323      CC = ISD::SETNE;
10324      break;
10325    case Intrinsic::x86_sse_ucomieq_ss:
10326    case Intrinsic::x86_sse2_ucomieq_sd:
10327      Opc = X86ISD::UCOMI;
10328      CC = ISD::SETEQ;
10329      break;
10330    case Intrinsic::x86_sse_ucomilt_ss:
10331    case Intrinsic::x86_sse2_ucomilt_sd:
10332      Opc = X86ISD::UCOMI;
10333      CC = ISD::SETLT;
10334      break;
10335    case Intrinsic::x86_sse_ucomile_ss:
10336    case Intrinsic::x86_sse2_ucomile_sd:
10337      Opc = X86ISD::UCOMI;
10338      CC = ISD::SETLE;
10339      break;
10340    case Intrinsic::x86_sse_ucomigt_ss:
10341    case Intrinsic::x86_sse2_ucomigt_sd:
10342      Opc = X86ISD::UCOMI;
10343      CC = ISD::SETGT;
10344      break;
10345    case Intrinsic::x86_sse_ucomige_ss:
10346    case Intrinsic::x86_sse2_ucomige_sd:
10347      Opc = X86ISD::UCOMI;
10348      CC = ISD::SETGE;
10349      break;
10350    case Intrinsic::x86_sse_ucomineq_ss:
10351    case Intrinsic::x86_sse2_ucomineq_sd:
10352      Opc = X86ISD::UCOMI;
10353      CC = ISD::SETNE;
10354      break;
10355    }
10356
10357    SDValue LHS = Op.getOperand(1);
10358    SDValue RHS = Op.getOperand(2);
10359    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
10360    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
10361    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
10362    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10363                                DAG.getConstant(X86CC, MVT::i8), Cond);
10364    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10365  }
10366
10367  // Arithmetic intrinsics.
10368  case Intrinsic::x86_sse2_pmulu_dq:
10369  case Intrinsic::x86_avx2_pmulu_dq:
10370    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
10371                       Op.getOperand(1), Op.getOperand(2));
10372
10373  // SSE2/AVX2 sub with unsigned saturation intrinsics
10374  case Intrinsic::x86_sse2_psubus_b:
10375  case Intrinsic::x86_sse2_psubus_w:
10376  case Intrinsic::x86_avx2_psubus_b:
10377  case Intrinsic::x86_avx2_psubus_w:
10378    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
10379                       Op.getOperand(1), Op.getOperand(2));
10380
10381  // SSE3/AVX horizontal add/sub intrinsics
10382  case Intrinsic::x86_sse3_hadd_ps:
10383  case Intrinsic::x86_sse3_hadd_pd:
10384  case Intrinsic::x86_avx_hadd_ps_256:
10385  case Intrinsic::x86_avx_hadd_pd_256:
10386  case Intrinsic::x86_sse3_hsub_ps:
10387  case Intrinsic::x86_sse3_hsub_pd:
10388  case Intrinsic::x86_avx_hsub_ps_256:
10389  case Intrinsic::x86_avx_hsub_pd_256:
10390  case Intrinsic::x86_ssse3_phadd_w_128:
10391  case Intrinsic::x86_ssse3_phadd_d_128:
10392  case Intrinsic::x86_avx2_phadd_w:
10393  case Intrinsic::x86_avx2_phadd_d:
10394  case Intrinsic::x86_ssse3_phsub_w_128:
10395  case Intrinsic::x86_ssse3_phsub_d_128:
10396  case Intrinsic::x86_avx2_phsub_w:
10397  case Intrinsic::x86_avx2_phsub_d: {
10398    unsigned Opcode;
10399    switch (IntNo) {
10400    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10401    case Intrinsic::x86_sse3_hadd_ps:
10402    case Intrinsic::x86_sse3_hadd_pd:
10403    case Intrinsic::x86_avx_hadd_ps_256:
10404    case Intrinsic::x86_avx_hadd_pd_256:
10405      Opcode = X86ISD::FHADD;
10406      break;
10407    case Intrinsic::x86_sse3_hsub_ps:
10408    case Intrinsic::x86_sse3_hsub_pd:
10409    case Intrinsic::x86_avx_hsub_ps_256:
10410    case Intrinsic::x86_avx_hsub_pd_256:
10411      Opcode = X86ISD::FHSUB;
10412      break;
10413    case Intrinsic::x86_ssse3_phadd_w_128:
10414    case Intrinsic::x86_ssse3_phadd_d_128:
10415    case Intrinsic::x86_avx2_phadd_w:
10416    case Intrinsic::x86_avx2_phadd_d:
10417      Opcode = X86ISD::HADD;
10418      break;
10419    case Intrinsic::x86_ssse3_phsub_w_128:
10420    case Intrinsic::x86_ssse3_phsub_d_128:
10421    case Intrinsic::x86_avx2_phsub_w:
10422    case Intrinsic::x86_avx2_phsub_d:
10423      Opcode = X86ISD::HSUB;
10424      break;
10425    }
10426    return DAG.getNode(Opcode, dl, Op.getValueType(),
10427                       Op.getOperand(1), Op.getOperand(2));
10428  }
10429
10430  // SSE2/SSE41/AVX2 integer max/min intrinsics.
10431  case Intrinsic::x86_sse2_pmaxu_b:
10432  case Intrinsic::x86_sse41_pmaxuw:
10433  case Intrinsic::x86_sse41_pmaxud:
10434  case Intrinsic::x86_avx2_pmaxu_b:
10435  case Intrinsic::x86_avx2_pmaxu_w:
10436  case Intrinsic::x86_avx2_pmaxu_d:
10437  case Intrinsic::x86_sse2_pminu_b:
10438  case Intrinsic::x86_sse41_pminuw:
10439  case Intrinsic::x86_sse41_pminud:
10440  case Intrinsic::x86_avx2_pminu_b:
10441  case Intrinsic::x86_avx2_pminu_w:
10442  case Intrinsic::x86_avx2_pminu_d:
10443  case Intrinsic::x86_sse41_pmaxsb:
10444  case Intrinsic::x86_sse2_pmaxs_w:
10445  case Intrinsic::x86_sse41_pmaxsd:
10446  case Intrinsic::x86_avx2_pmaxs_b:
10447  case Intrinsic::x86_avx2_pmaxs_w:
10448  case Intrinsic::x86_avx2_pmaxs_d:
10449  case Intrinsic::x86_sse41_pminsb:
10450  case Intrinsic::x86_sse2_pmins_w:
10451  case Intrinsic::x86_sse41_pminsd:
10452  case Intrinsic::x86_avx2_pmins_b:
10453  case Intrinsic::x86_avx2_pmins_w:
10454  case Intrinsic::x86_avx2_pmins_d: {
10455    unsigned Opcode;
10456    switch (IntNo) {
10457    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10458    case Intrinsic::x86_sse2_pmaxu_b:
10459    case Intrinsic::x86_sse41_pmaxuw:
10460    case Intrinsic::x86_sse41_pmaxud:
10461    case Intrinsic::x86_avx2_pmaxu_b:
10462    case Intrinsic::x86_avx2_pmaxu_w:
10463    case Intrinsic::x86_avx2_pmaxu_d:
10464      Opcode = X86ISD::UMAX;
10465      break;
10466    case Intrinsic::x86_sse2_pminu_b:
10467    case Intrinsic::x86_sse41_pminuw:
10468    case Intrinsic::x86_sse41_pminud:
10469    case Intrinsic::x86_avx2_pminu_b:
10470    case Intrinsic::x86_avx2_pminu_w:
10471    case Intrinsic::x86_avx2_pminu_d:
10472      Opcode = X86ISD::UMIN;
10473      break;
10474    case Intrinsic::x86_sse41_pmaxsb:
10475    case Intrinsic::x86_sse2_pmaxs_w:
10476    case Intrinsic::x86_sse41_pmaxsd:
10477    case Intrinsic::x86_avx2_pmaxs_b:
10478    case Intrinsic::x86_avx2_pmaxs_w:
10479    case Intrinsic::x86_avx2_pmaxs_d:
10480      Opcode = X86ISD::SMAX;
10481      break;
10482    case Intrinsic::x86_sse41_pminsb:
10483    case Intrinsic::x86_sse2_pmins_w:
10484    case Intrinsic::x86_sse41_pminsd:
10485    case Intrinsic::x86_avx2_pmins_b:
10486    case Intrinsic::x86_avx2_pmins_w:
10487    case Intrinsic::x86_avx2_pmins_d:
10488      Opcode = X86ISD::SMIN;
10489      break;
10490    }
10491    return DAG.getNode(Opcode, dl, Op.getValueType(),
10492                       Op.getOperand(1), Op.getOperand(2));
10493  }
10494
10495  // SSE/SSE2/AVX floating point max/min intrinsics.
10496  case Intrinsic::x86_sse_max_ps:
10497  case Intrinsic::x86_sse2_max_pd:
10498  case Intrinsic::x86_avx_max_ps_256:
10499  case Intrinsic::x86_avx_max_pd_256:
10500  case Intrinsic::x86_sse_min_ps:
10501  case Intrinsic::x86_sse2_min_pd:
10502  case Intrinsic::x86_avx_min_ps_256:
10503  case Intrinsic::x86_avx_min_pd_256: {
10504    unsigned Opcode;
10505    switch (IntNo) {
10506    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10507    case Intrinsic::x86_sse_max_ps:
10508    case Intrinsic::x86_sse2_max_pd:
10509    case Intrinsic::x86_avx_max_ps_256:
10510    case Intrinsic::x86_avx_max_pd_256:
10511      Opcode = X86ISD::FMAX;
10512      break;
10513    case Intrinsic::x86_sse_min_ps:
10514    case Intrinsic::x86_sse2_min_pd:
10515    case Intrinsic::x86_avx_min_ps_256:
10516    case Intrinsic::x86_avx_min_pd_256:
10517      Opcode = X86ISD::FMIN;
10518      break;
10519    }
10520    return DAG.getNode(Opcode, dl, Op.getValueType(),
10521                       Op.getOperand(1), Op.getOperand(2));
10522  }
10523
10524  // AVX2 variable shift intrinsics
10525  case Intrinsic::x86_avx2_psllv_d:
10526  case Intrinsic::x86_avx2_psllv_q:
10527  case Intrinsic::x86_avx2_psllv_d_256:
10528  case Intrinsic::x86_avx2_psllv_q_256:
10529  case Intrinsic::x86_avx2_psrlv_d:
10530  case Intrinsic::x86_avx2_psrlv_q:
10531  case Intrinsic::x86_avx2_psrlv_d_256:
10532  case Intrinsic::x86_avx2_psrlv_q_256:
10533  case Intrinsic::x86_avx2_psrav_d:
10534  case Intrinsic::x86_avx2_psrav_d_256: {
10535    unsigned Opcode;
10536    switch (IntNo) {
10537    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10538    case Intrinsic::x86_avx2_psllv_d:
10539    case Intrinsic::x86_avx2_psllv_q:
10540    case Intrinsic::x86_avx2_psllv_d_256:
10541    case Intrinsic::x86_avx2_psllv_q_256:
10542      Opcode = ISD::SHL;
10543      break;
10544    case Intrinsic::x86_avx2_psrlv_d:
10545    case Intrinsic::x86_avx2_psrlv_q:
10546    case Intrinsic::x86_avx2_psrlv_d_256:
10547    case Intrinsic::x86_avx2_psrlv_q_256:
10548      Opcode = ISD::SRL;
10549      break;
10550    case Intrinsic::x86_avx2_psrav_d:
10551    case Intrinsic::x86_avx2_psrav_d_256:
10552      Opcode = ISD::SRA;
10553      break;
10554    }
10555    return DAG.getNode(Opcode, dl, Op.getValueType(),
10556                       Op.getOperand(1), Op.getOperand(2));
10557  }
10558
10559  case Intrinsic::x86_ssse3_pshuf_b_128:
10560  case Intrinsic::x86_avx2_pshuf_b:
10561    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
10562                       Op.getOperand(1), Op.getOperand(2));
10563
10564  case Intrinsic::x86_ssse3_psign_b_128:
10565  case Intrinsic::x86_ssse3_psign_w_128:
10566  case Intrinsic::x86_ssse3_psign_d_128:
10567  case Intrinsic::x86_avx2_psign_b:
10568  case Intrinsic::x86_avx2_psign_w:
10569  case Intrinsic::x86_avx2_psign_d:
10570    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
10571                       Op.getOperand(1), Op.getOperand(2));
10572
10573  case Intrinsic::x86_sse41_insertps:
10574    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
10575                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10576
10577  case Intrinsic::x86_avx_vperm2f128_ps_256:
10578  case Intrinsic::x86_avx_vperm2f128_pd_256:
10579  case Intrinsic::x86_avx_vperm2f128_si_256:
10580  case Intrinsic::x86_avx2_vperm2i128:
10581    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
10582                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10583
10584  case Intrinsic::x86_avx2_permd:
10585  case Intrinsic::x86_avx2_permps:
10586    // Operands intentionally swapped. Mask is last operand to intrinsic,
10587    // but second operand for node/intruction.
10588    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
10589                       Op.getOperand(2), Op.getOperand(1));
10590
10591  case Intrinsic::x86_sse_sqrt_ps:
10592  case Intrinsic::x86_sse2_sqrt_pd:
10593  case Intrinsic::x86_avx_sqrt_ps_256:
10594  case Intrinsic::x86_avx_sqrt_pd_256:
10595    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
10596
10597  // ptest and testp intrinsics. The intrinsic these come from are designed to
10598  // return an integer value, not just an instruction so lower it to the ptest
10599  // or testp pattern and a setcc for the result.
10600  case Intrinsic::x86_sse41_ptestz:
10601  case Intrinsic::x86_sse41_ptestc:
10602  case Intrinsic::x86_sse41_ptestnzc:
10603  case Intrinsic::x86_avx_ptestz_256:
10604  case Intrinsic::x86_avx_ptestc_256:
10605  case Intrinsic::x86_avx_ptestnzc_256:
10606  case Intrinsic::x86_avx_vtestz_ps:
10607  case Intrinsic::x86_avx_vtestc_ps:
10608  case Intrinsic::x86_avx_vtestnzc_ps:
10609  case Intrinsic::x86_avx_vtestz_pd:
10610  case Intrinsic::x86_avx_vtestc_pd:
10611  case Intrinsic::x86_avx_vtestnzc_pd:
10612  case Intrinsic::x86_avx_vtestz_ps_256:
10613  case Intrinsic::x86_avx_vtestc_ps_256:
10614  case Intrinsic::x86_avx_vtestnzc_ps_256:
10615  case Intrinsic::x86_avx_vtestz_pd_256:
10616  case Intrinsic::x86_avx_vtestc_pd_256:
10617  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10618    bool IsTestPacked = false;
10619    unsigned X86CC;
10620    switch (IntNo) {
10621    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10622    case Intrinsic::x86_avx_vtestz_ps:
10623    case Intrinsic::x86_avx_vtestz_pd:
10624    case Intrinsic::x86_avx_vtestz_ps_256:
10625    case Intrinsic::x86_avx_vtestz_pd_256:
10626      IsTestPacked = true; // Fallthrough
10627    case Intrinsic::x86_sse41_ptestz:
10628    case Intrinsic::x86_avx_ptestz_256:
10629      // ZF = 1
10630      X86CC = X86::COND_E;
10631      break;
10632    case Intrinsic::x86_avx_vtestc_ps:
10633    case Intrinsic::x86_avx_vtestc_pd:
10634    case Intrinsic::x86_avx_vtestc_ps_256:
10635    case Intrinsic::x86_avx_vtestc_pd_256:
10636      IsTestPacked = true; // Fallthrough
10637    case Intrinsic::x86_sse41_ptestc:
10638    case Intrinsic::x86_avx_ptestc_256:
10639      // CF = 1
10640      X86CC = X86::COND_B;
10641      break;
10642    case Intrinsic::x86_avx_vtestnzc_ps:
10643    case Intrinsic::x86_avx_vtestnzc_pd:
10644    case Intrinsic::x86_avx_vtestnzc_ps_256:
10645    case Intrinsic::x86_avx_vtestnzc_pd_256:
10646      IsTestPacked = true; // Fallthrough
10647    case Intrinsic::x86_sse41_ptestnzc:
10648    case Intrinsic::x86_avx_ptestnzc_256:
10649      // ZF and CF = 0
10650      X86CC = X86::COND_A;
10651      break;
10652    }
10653
10654    SDValue LHS = Op.getOperand(1);
10655    SDValue RHS = Op.getOperand(2);
10656    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10657    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10658    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10659    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10660    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10661  }
10662
10663  // SSE/AVX shift intrinsics
10664  case Intrinsic::x86_sse2_psll_w:
10665  case Intrinsic::x86_sse2_psll_d:
10666  case Intrinsic::x86_sse2_psll_q:
10667  case Intrinsic::x86_avx2_psll_w:
10668  case Intrinsic::x86_avx2_psll_d:
10669  case Intrinsic::x86_avx2_psll_q:
10670  case Intrinsic::x86_sse2_psrl_w:
10671  case Intrinsic::x86_sse2_psrl_d:
10672  case Intrinsic::x86_sse2_psrl_q:
10673  case Intrinsic::x86_avx2_psrl_w:
10674  case Intrinsic::x86_avx2_psrl_d:
10675  case Intrinsic::x86_avx2_psrl_q:
10676  case Intrinsic::x86_sse2_psra_w:
10677  case Intrinsic::x86_sse2_psra_d:
10678  case Intrinsic::x86_avx2_psra_w:
10679  case Intrinsic::x86_avx2_psra_d: {
10680    unsigned Opcode;
10681    switch (IntNo) {
10682    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10683    case Intrinsic::x86_sse2_psll_w:
10684    case Intrinsic::x86_sse2_psll_d:
10685    case Intrinsic::x86_sse2_psll_q:
10686    case Intrinsic::x86_avx2_psll_w:
10687    case Intrinsic::x86_avx2_psll_d:
10688    case Intrinsic::x86_avx2_psll_q:
10689      Opcode = X86ISD::VSHL;
10690      break;
10691    case Intrinsic::x86_sse2_psrl_w:
10692    case Intrinsic::x86_sse2_psrl_d:
10693    case Intrinsic::x86_sse2_psrl_q:
10694    case Intrinsic::x86_avx2_psrl_w:
10695    case Intrinsic::x86_avx2_psrl_d:
10696    case Intrinsic::x86_avx2_psrl_q:
10697      Opcode = X86ISD::VSRL;
10698      break;
10699    case Intrinsic::x86_sse2_psra_w:
10700    case Intrinsic::x86_sse2_psra_d:
10701    case Intrinsic::x86_avx2_psra_w:
10702    case Intrinsic::x86_avx2_psra_d:
10703      Opcode = X86ISD::VSRA;
10704      break;
10705    }
10706    return DAG.getNode(Opcode, dl, Op.getValueType(),
10707                       Op.getOperand(1), Op.getOperand(2));
10708  }
10709
10710  // SSE/AVX immediate shift intrinsics
10711  case Intrinsic::x86_sse2_pslli_w:
10712  case Intrinsic::x86_sse2_pslli_d:
10713  case Intrinsic::x86_sse2_pslli_q:
10714  case Intrinsic::x86_avx2_pslli_w:
10715  case Intrinsic::x86_avx2_pslli_d:
10716  case Intrinsic::x86_avx2_pslli_q:
10717  case Intrinsic::x86_sse2_psrli_w:
10718  case Intrinsic::x86_sse2_psrli_d:
10719  case Intrinsic::x86_sse2_psrli_q:
10720  case Intrinsic::x86_avx2_psrli_w:
10721  case Intrinsic::x86_avx2_psrli_d:
10722  case Intrinsic::x86_avx2_psrli_q:
10723  case Intrinsic::x86_sse2_psrai_w:
10724  case Intrinsic::x86_sse2_psrai_d:
10725  case Intrinsic::x86_avx2_psrai_w:
10726  case Intrinsic::x86_avx2_psrai_d: {
10727    unsigned Opcode;
10728    switch (IntNo) {
10729    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10730    case Intrinsic::x86_sse2_pslli_w:
10731    case Intrinsic::x86_sse2_pslli_d:
10732    case Intrinsic::x86_sse2_pslli_q:
10733    case Intrinsic::x86_avx2_pslli_w:
10734    case Intrinsic::x86_avx2_pslli_d:
10735    case Intrinsic::x86_avx2_pslli_q:
10736      Opcode = X86ISD::VSHLI;
10737      break;
10738    case Intrinsic::x86_sse2_psrli_w:
10739    case Intrinsic::x86_sse2_psrli_d:
10740    case Intrinsic::x86_sse2_psrli_q:
10741    case Intrinsic::x86_avx2_psrli_w:
10742    case Intrinsic::x86_avx2_psrli_d:
10743    case Intrinsic::x86_avx2_psrli_q:
10744      Opcode = X86ISD::VSRLI;
10745      break;
10746    case Intrinsic::x86_sse2_psrai_w:
10747    case Intrinsic::x86_sse2_psrai_d:
10748    case Intrinsic::x86_avx2_psrai_w:
10749    case Intrinsic::x86_avx2_psrai_d:
10750      Opcode = X86ISD::VSRAI;
10751      break;
10752    }
10753    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10754                               Op.getOperand(1), Op.getOperand(2), DAG);
10755  }
10756
10757  case Intrinsic::x86_sse42_pcmpistria128:
10758  case Intrinsic::x86_sse42_pcmpestria128:
10759  case Intrinsic::x86_sse42_pcmpistric128:
10760  case Intrinsic::x86_sse42_pcmpestric128:
10761  case Intrinsic::x86_sse42_pcmpistrio128:
10762  case Intrinsic::x86_sse42_pcmpestrio128:
10763  case Intrinsic::x86_sse42_pcmpistris128:
10764  case Intrinsic::x86_sse42_pcmpestris128:
10765  case Intrinsic::x86_sse42_pcmpistriz128:
10766  case Intrinsic::x86_sse42_pcmpestriz128: {
10767    unsigned Opcode;
10768    unsigned X86CC;
10769    switch (IntNo) {
10770    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10771    case Intrinsic::x86_sse42_pcmpistria128:
10772      Opcode = X86ISD::PCMPISTRI;
10773      X86CC = X86::COND_A;
10774      break;
10775    case Intrinsic::x86_sse42_pcmpestria128:
10776      Opcode = X86ISD::PCMPESTRI;
10777      X86CC = X86::COND_A;
10778      break;
10779    case Intrinsic::x86_sse42_pcmpistric128:
10780      Opcode = X86ISD::PCMPISTRI;
10781      X86CC = X86::COND_B;
10782      break;
10783    case Intrinsic::x86_sse42_pcmpestric128:
10784      Opcode = X86ISD::PCMPESTRI;
10785      X86CC = X86::COND_B;
10786      break;
10787    case Intrinsic::x86_sse42_pcmpistrio128:
10788      Opcode = X86ISD::PCMPISTRI;
10789      X86CC = X86::COND_O;
10790      break;
10791    case Intrinsic::x86_sse42_pcmpestrio128:
10792      Opcode = X86ISD::PCMPESTRI;
10793      X86CC = X86::COND_O;
10794      break;
10795    case Intrinsic::x86_sse42_pcmpistris128:
10796      Opcode = X86ISD::PCMPISTRI;
10797      X86CC = X86::COND_S;
10798      break;
10799    case Intrinsic::x86_sse42_pcmpestris128:
10800      Opcode = X86ISD::PCMPESTRI;
10801      X86CC = X86::COND_S;
10802      break;
10803    case Intrinsic::x86_sse42_pcmpistriz128:
10804      Opcode = X86ISD::PCMPISTRI;
10805      X86CC = X86::COND_E;
10806      break;
10807    case Intrinsic::x86_sse42_pcmpestriz128:
10808      Opcode = X86ISD::PCMPESTRI;
10809      X86CC = X86::COND_E;
10810      break;
10811    }
10812    SmallVector<SDValue, 5> NewOps;
10813    NewOps.append(Op->op_begin()+1, Op->op_end());
10814    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10815    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10816    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10817                                DAG.getConstant(X86CC, MVT::i8),
10818                                SDValue(PCMP.getNode(), 1));
10819    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10820  }
10821
10822  case Intrinsic::x86_sse42_pcmpistri128:
10823  case Intrinsic::x86_sse42_pcmpestri128: {
10824    unsigned Opcode;
10825    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10826      Opcode = X86ISD::PCMPISTRI;
10827    else
10828      Opcode = X86ISD::PCMPESTRI;
10829
10830    SmallVector<SDValue, 5> NewOps;
10831    NewOps.append(Op->op_begin()+1, Op->op_end());
10832    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10833    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10834  }
10835  case Intrinsic::x86_fma_vfmadd_ps:
10836  case Intrinsic::x86_fma_vfmadd_pd:
10837  case Intrinsic::x86_fma_vfmsub_ps:
10838  case Intrinsic::x86_fma_vfmsub_pd:
10839  case Intrinsic::x86_fma_vfnmadd_ps:
10840  case Intrinsic::x86_fma_vfnmadd_pd:
10841  case Intrinsic::x86_fma_vfnmsub_ps:
10842  case Intrinsic::x86_fma_vfnmsub_pd:
10843  case Intrinsic::x86_fma_vfmaddsub_ps:
10844  case Intrinsic::x86_fma_vfmaddsub_pd:
10845  case Intrinsic::x86_fma_vfmsubadd_ps:
10846  case Intrinsic::x86_fma_vfmsubadd_pd:
10847  case Intrinsic::x86_fma_vfmadd_ps_256:
10848  case Intrinsic::x86_fma_vfmadd_pd_256:
10849  case Intrinsic::x86_fma_vfmsub_ps_256:
10850  case Intrinsic::x86_fma_vfmsub_pd_256:
10851  case Intrinsic::x86_fma_vfnmadd_ps_256:
10852  case Intrinsic::x86_fma_vfnmadd_pd_256:
10853  case Intrinsic::x86_fma_vfnmsub_ps_256:
10854  case Intrinsic::x86_fma_vfnmsub_pd_256:
10855  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10856  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10857  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10858  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10859    unsigned Opc;
10860    switch (IntNo) {
10861    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10862    case Intrinsic::x86_fma_vfmadd_ps:
10863    case Intrinsic::x86_fma_vfmadd_pd:
10864    case Intrinsic::x86_fma_vfmadd_ps_256:
10865    case Intrinsic::x86_fma_vfmadd_pd_256:
10866      Opc = X86ISD::FMADD;
10867      break;
10868    case Intrinsic::x86_fma_vfmsub_ps:
10869    case Intrinsic::x86_fma_vfmsub_pd:
10870    case Intrinsic::x86_fma_vfmsub_ps_256:
10871    case Intrinsic::x86_fma_vfmsub_pd_256:
10872      Opc = X86ISD::FMSUB;
10873      break;
10874    case Intrinsic::x86_fma_vfnmadd_ps:
10875    case Intrinsic::x86_fma_vfnmadd_pd:
10876    case Intrinsic::x86_fma_vfnmadd_ps_256:
10877    case Intrinsic::x86_fma_vfnmadd_pd_256:
10878      Opc = X86ISD::FNMADD;
10879      break;
10880    case Intrinsic::x86_fma_vfnmsub_ps:
10881    case Intrinsic::x86_fma_vfnmsub_pd:
10882    case Intrinsic::x86_fma_vfnmsub_ps_256:
10883    case Intrinsic::x86_fma_vfnmsub_pd_256:
10884      Opc = X86ISD::FNMSUB;
10885      break;
10886    case Intrinsic::x86_fma_vfmaddsub_ps:
10887    case Intrinsic::x86_fma_vfmaddsub_pd:
10888    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10889    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10890      Opc = X86ISD::FMADDSUB;
10891      break;
10892    case Intrinsic::x86_fma_vfmsubadd_ps:
10893    case Intrinsic::x86_fma_vfmsubadd_pd:
10894    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10895    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10896      Opc = X86ISD::FMSUBADD;
10897      break;
10898    }
10899
10900    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10901                       Op.getOperand(2), Op.getOperand(3));
10902  }
10903  }
10904}
10905
10906static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10907  DebugLoc dl = Op.getDebugLoc();
10908  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10909  switch (IntNo) {
10910  default: return SDValue();    // Don't custom lower most intrinsics.
10911
10912  // RDRAND intrinsics.
10913  case Intrinsic::x86_rdrand_16:
10914  case Intrinsic::x86_rdrand_32:
10915  case Intrinsic::x86_rdrand_64: {
10916    // Emit the node with the right value type.
10917    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10918    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
10919
10920    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
10921    // return the value from Rand, which is always 0, casted to i32.
10922    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10923                      DAG.getConstant(1, Op->getValueType(1)),
10924                      DAG.getConstant(X86::COND_B, MVT::i32),
10925                      SDValue(Result.getNode(), 1) };
10926    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10927                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10928                                  Ops, 4);
10929
10930    // Return { result, isValid, chain }.
10931    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10932                       SDValue(Result.getNode(), 2));
10933  }
10934
10935  // XTEST intrinsics.
10936  case Intrinsic::x86_xtest: {
10937    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
10938    SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0));
10939    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10940                                DAG.getConstant(X86::COND_NE, MVT::i8),
10941                                InTrans);
10942    SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
10943    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
10944                       Ret, SDValue(InTrans.getNode(), 1));
10945  }
10946  }
10947}
10948
10949SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
10950                                           SelectionDAG &DAG) const {
10951  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10952  MFI->setReturnAddressIsTaken(true);
10953
10954  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10955  DebugLoc dl = Op.getDebugLoc();
10956  EVT PtrVT = getPointerTy();
10957
10958  if (Depth > 0) {
10959    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10960    SDValue Offset =
10961      DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
10962    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10963                       DAG.getNode(ISD::ADD, dl, PtrVT,
10964                                   FrameAddr, Offset),
10965                       MachinePointerInfo(), false, false, false, 0);
10966  }
10967
10968  // Just load the return address.
10969  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
10970  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10971                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10972}
10973
10974SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
10975  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10976  MFI->setFrameAddressIsTaken(true);
10977
10978  EVT VT = Op.getValueType();
10979  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
10980  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10981  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
10982  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
10983  while (Depth--)
10984    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
10985                            MachinePointerInfo(),
10986                            false, false, false, 0);
10987  return FrameAddr;
10988}
10989
10990SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
10991                                                     SelectionDAG &DAG) const {
10992  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
10993}
10994
10995SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
10996  SDValue Chain     = Op.getOperand(0);
10997  SDValue Offset    = Op.getOperand(1);
10998  SDValue Handler   = Op.getOperand(2);
10999  DebugLoc dl       = Op.getDebugLoc();
11000
11001  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
11002                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
11003                                     getPointerTy());
11004  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
11005
11006  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
11007                                  DAG.getIntPtrConstant(RegInfo->getSlotSize()));
11008  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
11009  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
11010                       false, false, 0);
11011  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
11012
11013  return DAG.getNode(X86ISD::EH_RETURN, dl,
11014                     MVT::Other,
11015                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
11016}
11017
11018SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
11019                                               SelectionDAG &DAG) const {
11020  DebugLoc DL = Op.getDebugLoc();
11021  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
11022                     DAG.getVTList(MVT::i32, MVT::Other),
11023                     Op.getOperand(0), Op.getOperand(1));
11024}
11025
11026SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
11027                                                SelectionDAG &DAG) const {
11028  DebugLoc DL = Op.getDebugLoc();
11029  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
11030                     Op.getOperand(0), Op.getOperand(1));
11031}
11032
11033static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
11034  return Op.getOperand(0);
11035}
11036
11037SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
11038                                                SelectionDAG &DAG) const {
11039  SDValue Root = Op.getOperand(0);
11040  SDValue Trmp = Op.getOperand(1); // trampoline
11041  SDValue FPtr = Op.getOperand(2); // nested function
11042  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
11043  DebugLoc dl  = Op.getDebugLoc();
11044
11045  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
11046  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
11047
11048  if (Subtarget->is64Bit()) {
11049    SDValue OutChains[6];
11050
11051    // Large code-model.
11052    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
11053    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
11054
11055    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
11056    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
11057
11058    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
11059
11060    // Load the pointer to the nested function into R11.
11061    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
11062    SDValue Addr = Trmp;
11063    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11064                                Addr, MachinePointerInfo(TrmpAddr),
11065                                false, false, 0);
11066
11067    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11068                       DAG.getConstant(2, MVT::i64));
11069    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
11070                                MachinePointerInfo(TrmpAddr, 2),
11071                                false, false, 2);
11072
11073    // Load the 'nest' parameter value into R10.
11074    // R10 is specified in X86CallingConv.td
11075    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
11076    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11077                       DAG.getConstant(10, MVT::i64));
11078    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11079                                Addr, MachinePointerInfo(TrmpAddr, 10),
11080                                false, false, 0);
11081
11082    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11083                       DAG.getConstant(12, MVT::i64));
11084    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
11085                                MachinePointerInfo(TrmpAddr, 12),
11086                                false, false, 2);
11087
11088    // Jump to the nested function.
11089    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
11090    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11091                       DAG.getConstant(20, MVT::i64));
11092    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11093                                Addr, MachinePointerInfo(TrmpAddr, 20),
11094                                false, false, 0);
11095
11096    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
11097    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11098                       DAG.getConstant(22, MVT::i64));
11099    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
11100                                MachinePointerInfo(TrmpAddr, 22),
11101                                false, false, 0);
11102
11103    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
11104  } else {
11105    const Function *Func =
11106      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
11107    CallingConv::ID CC = Func->getCallingConv();
11108    unsigned NestReg;
11109
11110    switch (CC) {
11111    default:
11112      llvm_unreachable("Unsupported calling convention");
11113    case CallingConv::C:
11114    case CallingConv::X86_StdCall: {
11115      // Pass 'nest' parameter in ECX.
11116      // Must be kept in sync with X86CallingConv.td
11117      NestReg = X86::ECX;
11118
11119      // Check that ECX wasn't needed by an 'inreg' parameter.
11120      FunctionType *FTy = Func->getFunctionType();
11121      const AttributeSet &Attrs = Func->getAttributes();
11122
11123      if (!Attrs.isEmpty() && !Func->isVarArg()) {
11124        unsigned InRegCount = 0;
11125        unsigned Idx = 1;
11126
11127        for (FunctionType::param_iterator I = FTy->param_begin(),
11128             E = FTy->param_end(); I != E; ++I, ++Idx)
11129          if (Attrs.hasAttribute(Idx, Attribute::InReg))
11130            // FIXME: should only count parameters that are lowered to integers.
11131            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
11132
11133        if (InRegCount > 2) {
11134          report_fatal_error("Nest register in use - reduce number of inreg"
11135                             " parameters!");
11136        }
11137      }
11138      break;
11139    }
11140    case CallingConv::X86_FastCall:
11141    case CallingConv::X86_ThisCall:
11142    case CallingConv::Fast:
11143      // Pass 'nest' parameter in EAX.
11144      // Must be kept in sync with X86CallingConv.td
11145      NestReg = X86::EAX;
11146      break;
11147    }
11148
11149    SDValue OutChains[4];
11150    SDValue Addr, Disp;
11151
11152    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11153                       DAG.getConstant(10, MVT::i32));
11154    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
11155
11156    // This is storing the opcode for MOV32ri.
11157    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
11158    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
11159    OutChains[0] = DAG.getStore(Root, dl,
11160                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
11161                                Trmp, MachinePointerInfo(TrmpAddr),
11162                                false, false, 0);
11163
11164    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11165                       DAG.getConstant(1, MVT::i32));
11166    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
11167                                MachinePointerInfo(TrmpAddr, 1),
11168                                false, false, 1);
11169
11170    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
11171    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11172                       DAG.getConstant(5, MVT::i32));
11173    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
11174                                MachinePointerInfo(TrmpAddr, 5),
11175                                false, false, 1);
11176
11177    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11178                       DAG.getConstant(6, MVT::i32));
11179    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
11180                                MachinePointerInfo(TrmpAddr, 6),
11181                                false, false, 1);
11182
11183    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
11184  }
11185}
11186
11187SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
11188                                            SelectionDAG &DAG) const {
11189  /*
11190   The rounding mode is in bits 11:10 of FPSR, and has the following
11191   settings:
11192     00 Round to nearest
11193     01 Round to -inf
11194     10 Round to +inf
11195     11 Round to 0
11196
11197  FLT_ROUNDS, on the other hand, expects the following:
11198    -1 Undefined
11199     0 Round to 0
11200     1 Round to nearest
11201     2 Round to +inf
11202     3 Round to -inf
11203
11204  To perform the conversion, we do:
11205    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
11206  */
11207
11208  MachineFunction &MF = DAG.getMachineFunction();
11209  const TargetMachine &TM = MF.getTarget();
11210  const TargetFrameLowering &TFI = *TM.getFrameLowering();
11211  unsigned StackAlignment = TFI.getStackAlignment();
11212  EVT VT = Op.getValueType();
11213  DebugLoc DL = Op.getDebugLoc();
11214
11215  // Save FP Control Word to stack slot
11216  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
11217  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11218
11219  MachineMemOperand *MMO =
11220   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11221                           MachineMemOperand::MOStore, 2, 2);
11222
11223  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
11224  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
11225                                          DAG.getVTList(MVT::Other),
11226                                          Ops, 2, MVT::i16, MMO);
11227
11228  // Load FP Control Word from stack slot
11229  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
11230                            MachinePointerInfo(), false, false, false, 0);
11231
11232  // Transform as necessary
11233  SDValue CWD1 =
11234    DAG.getNode(ISD::SRL, DL, MVT::i16,
11235                DAG.getNode(ISD::AND, DL, MVT::i16,
11236                            CWD, DAG.getConstant(0x800, MVT::i16)),
11237                DAG.getConstant(11, MVT::i8));
11238  SDValue CWD2 =
11239    DAG.getNode(ISD::SRL, DL, MVT::i16,
11240                DAG.getNode(ISD::AND, DL, MVT::i16,
11241                            CWD, DAG.getConstant(0x400, MVT::i16)),
11242                DAG.getConstant(9, MVT::i8));
11243
11244  SDValue RetVal =
11245    DAG.getNode(ISD::AND, DL, MVT::i16,
11246                DAG.getNode(ISD::ADD, DL, MVT::i16,
11247                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
11248                            DAG.getConstant(1, MVT::i16)),
11249                DAG.getConstant(3, MVT::i16));
11250
11251  return DAG.getNode((VT.getSizeInBits() < 16 ?
11252                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
11253}
11254
11255static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
11256  EVT VT = Op.getValueType();
11257  EVT OpVT = VT;
11258  unsigned NumBits = VT.getSizeInBits();
11259  DebugLoc dl = Op.getDebugLoc();
11260
11261  Op = Op.getOperand(0);
11262  if (VT == MVT::i8) {
11263    // Zero extend to i32 since there is not an i8 bsr.
11264    OpVT = MVT::i32;
11265    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11266  }
11267
11268  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
11269  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11270  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11271
11272  // If src is zero (i.e. bsr sets ZF), returns NumBits.
11273  SDValue Ops[] = {
11274    Op,
11275    DAG.getConstant(NumBits+NumBits-1, OpVT),
11276    DAG.getConstant(X86::COND_E, MVT::i8),
11277    Op.getValue(1)
11278  };
11279  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
11280
11281  // Finally xor with NumBits-1.
11282  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11283
11284  if (VT == MVT::i8)
11285    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11286  return Op;
11287}
11288
11289static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
11290  EVT VT = Op.getValueType();
11291  EVT OpVT = VT;
11292  unsigned NumBits = VT.getSizeInBits();
11293  DebugLoc dl = Op.getDebugLoc();
11294
11295  Op = Op.getOperand(0);
11296  if (VT == MVT::i8) {
11297    // Zero extend to i32 since there is not an i8 bsr.
11298    OpVT = MVT::i32;
11299    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11300  }
11301
11302  // Issue a bsr (scan bits in reverse).
11303  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11304  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11305
11306  // And xor with NumBits-1.
11307  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11308
11309  if (VT == MVT::i8)
11310    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11311  return Op;
11312}
11313
11314static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
11315  EVT VT = Op.getValueType();
11316  unsigned NumBits = VT.getSizeInBits();
11317  DebugLoc dl = Op.getDebugLoc();
11318  Op = Op.getOperand(0);
11319
11320  // Issue a bsf (scan bits forward) which also sets EFLAGS.
11321  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11322  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
11323
11324  // If src is zero (i.e. bsf sets ZF), returns NumBits.
11325  SDValue Ops[] = {
11326    Op,
11327    DAG.getConstant(NumBits, VT),
11328    DAG.getConstant(X86::COND_E, MVT::i8),
11329    Op.getValue(1)
11330  };
11331  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
11332}
11333
11334// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
11335// ones, and then concatenate the result back.
11336static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
11337  EVT VT = Op.getValueType();
11338
11339  assert(VT.is256BitVector() && VT.isInteger() &&
11340         "Unsupported value type for operation");
11341
11342  unsigned NumElems = VT.getVectorNumElements();
11343  DebugLoc dl = Op.getDebugLoc();
11344
11345  // Extract the LHS vectors
11346  SDValue LHS = Op.getOperand(0);
11347  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11348  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11349
11350  // Extract the RHS vectors
11351  SDValue RHS = Op.getOperand(1);
11352  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
11353  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
11354
11355  MVT EltVT = VT.getVectorElementType().getSimpleVT();
11356  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11357
11358  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
11359                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
11360                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
11361}
11362
11363static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
11364  assert(Op.getValueType().is256BitVector() &&
11365         Op.getValueType().isInteger() &&
11366         "Only handle AVX 256-bit vector integer operation");
11367  return Lower256IntArith(Op, DAG);
11368}
11369
11370static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
11371  assert(Op.getValueType().is256BitVector() &&
11372         Op.getValueType().isInteger() &&
11373         "Only handle AVX 256-bit vector integer operation");
11374  return Lower256IntArith(Op, DAG);
11375}
11376
11377static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
11378                        SelectionDAG &DAG) {
11379  DebugLoc dl = Op.getDebugLoc();
11380  EVT VT = Op.getValueType();
11381
11382  // Decompose 256-bit ops into smaller 128-bit ops.
11383  if (VT.is256BitVector() && !Subtarget->hasInt256())
11384    return Lower256IntArith(Op, DAG);
11385
11386  SDValue A = Op.getOperand(0);
11387  SDValue B = Op.getOperand(1);
11388
11389  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
11390  if (VT == MVT::v4i32) {
11391    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
11392           "Should not custom lower when pmuldq is available!");
11393
11394    // Extract the odd parts.
11395    const int UnpackMask[] = { 1, -1, 3, -1 };
11396    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
11397    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
11398
11399    // Multiply the even parts.
11400    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
11401    // Now multiply odd parts.
11402    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
11403
11404    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
11405    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
11406
11407    // Merge the two vectors back together with a shuffle. This expands into 2
11408    // shuffles.
11409    const int ShufMask[] = { 0, 4, 2, 6 };
11410    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
11411  }
11412
11413  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
11414         "Only know how to lower V2I64/V4I64 multiply");
11415
11416  //  Ahi = psrlqi(a, 32);
11417  //  Bhi = psrlqi(b, 32);
11418  //
11419  //  AloBlo = pmuludq(a, b);
11420  //  AloBhi = pmuludq(a, Bhi);
11421  //  AhiBlo = pmuludq(Ahi, b);
11422
11423  //  AloBhi = psllqi(AloBhi, 32);
11424  //  AhiBlo = psllqi(AhiBlo, 32);
11425  //  return AloBlo + AloBhi + AhiBlo;
11426
11427  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
11428
11429  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
11430  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
11431
11432  // Bit cast to 32-bit vectors for MULUDQ
11433  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
11434  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
11435  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
11436  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
11437  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
11438
11439  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
11440  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
11441  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
11442
11443  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
11444  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
11445
11446  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
11447  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
11448}
11449
11450SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
11451  EVT VT = Op.getValueType();
11452  EVT EltTy = VT.getVectorElementType();
11453  unsigned NumElts = VT.getVectorNumElements();
11454  SDValue N0 = Op.getOperand(0);
11455  DebugLoc dl = Op.getDebugLoc();
11456
11457  // Lower sdiv X, pow2-const.
11458  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
11459  if (!C)
11460    return SDValue();
11461
11462  APInt SplatValue, SplatUndef;
11463  unsigned MinSplatBits;
11464  bool HasAnyUndefs;
11465  if (!C->isConstantSplat(SplatValue, SplatUndef, MinSplatBits, HasAnyUndefs))
11466    return SDValue();
11467
11468  if ((SplatValue != 0) &&
11469      (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
11470    unsigned lg2 = SplatValue.countTrailingZeros();
11471    // Splat the sign bit.
11472    SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32);
11473    SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG);
11474    // Add (N0 < 0) ? abs2 - 1 : 0;
11475    SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32);
11476    SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG);
11477    SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
11478    SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32);
11479    SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG);
11480
11481    // If we're dividing by a positive value, we're done.  Otherwise, we must
11482    // negate the result.
11483    if (SplatValue.isNonNegative())
11484      return SRA;
11485
11486    SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy));
11487    SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts);
11488    return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA);
11489  }
11490  return SDValue();
11491}
11492
11493static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
11494                                         const X86Subtarget *Subtarget) {
11495  EVT VT = Op.getValueType();
11496  DebugLoc dl = Op.getDebugLoc();
11497  SDValue R = Op.getOperand(0);
11498  SDValue Amt = Op.getOperand(1);
11499
11500  // Optimize shl/srl/sra with constant shift amount.
11501  if (isSplatVector(Amt.getNode())) {
11502    SDValue SclrAmt = Amt->getOperand(0);
11503    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
11504      uint64_t ShiftAmt = C->getZExtValue();
11505
11506      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
11507          (Subtarget->hasInt256() &&
11508           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
11509        if (Op.getOpcode() == ISD::SHL)
11510          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11511                             DAG.getConstant(ShiftAmt, MVT::i32));
11512        if (Op.getOpcode() == ISD::SRL)
11513          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11514                             DAG.getConstant(ShiftAmt, MVT::i32));
11515        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
11516          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11517                             DAG.getConstant(ShiftAmt, MVT::i32));
11518      }
11519
11520      if (VT == MVT::v16i8) {
11521        if (Op.getOpcode() == ISD::SHL) {
11522          // Make a large shift.
11523          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
11524                                    DAG.getConstant(ShiftAmt, MVT::i32));
11525          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11526          // Zero out the rightmost bits.
11527          SmallVector<SDValue, 16> V(16,
11528                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11529                                                     MVT::i8));
11530          return DAG.getNode(ISD::AND, dl, VT, SHL,
11531                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11532        }
11533        if (Op.getOpcode() == ISD::SRL) {
11534          // Make a large shift.
11535          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
11536                                    DAG.getConstant(ShiftAmt, MVT::i32));
11537          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11538          // Zero out the leftmost bits.
11539          SmallVector<SDValue, 16> V(16,
11540                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11541                                                     MVT::i8));
11542          return DAG.getNode(ISD::AND, dl, VT, SRL,
11543                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11544        }
11545        if (Op.getOpcode() == ISD::SRA) {
11546          if (ShiftAmt == 7) {
11547            // R s>> 7  ===  R s< 0
11548            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11549            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11550          }
11551
11552          // R s>> a === ((R u>> a) ^ m) - m
11553          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11554          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
11555                                                         MVT::i8));
11556          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
11557          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11558          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11559          return Res;
11560        }
11561        llvm_unreachable("Unknown shift opcode.");
11562      }
11563
11564      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
11565        if (Op.getOpcode() == ISD::SHL) {
11566          // Make a large shift.
11567          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
11568                                    DAG.getConstant(ShiftAmt, MVT::i32));
11569          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11570          // Zero out the rightmost bits.
11571          SmallVector<SDValue, 32> V(32,
11572                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11573                                                     MVT::i8));
11574          return DAG.getNode(ISD::AND, dl, VT, SHL,
11575                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11576        }
11577        if (Op.getOpcode() == ISD::SRL) {
11578          // Make a large shift.
11579          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
11580                                    DAG.getConstant(ShiftAmt, MVT::i32));
11581          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11582          // Zero out the leftmost bits.
11583          SmallVector<SDValue, 32> V(32,
11584                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11585                                                     MVT::i8));
11586          return DAG.getNode(ISD::AND, dl, VT, SRL,
11587                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11588        }
11589        if (Op.getOpcode() == ISD::SRA) {
11590          if (ShiftAmt == 7) {
11591            // R s>> 7  ===  R s< 0
11592            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11593            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11594          }
11595
11596          // R s>> a === ((R u>> a) ^ m) - m
11597          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11598          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
11599                                                         MVT::i8));
11600          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
11601          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11602          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11603          return Res;
11604        }
11605        llvm_unreachable("Unknown shift opcode.");
11606      }
11607    }
11608  }
11609
11610  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
11611  if (!Subtarget->is64Bit() &&
11612      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
11613      Amt.getOpcode() == ISD::BITCAST &&
11614      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
11615    Amt = Amt.getOperand(0);
11616    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
11617                     VT.getVectorNumElements();
11618    unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
11619    uint64_t ShiftAmt = 0;
11620    for (unsigned i = 0; i != Ratio; ++i) {
11621      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
11622      if (C == 0)
11623        return SDValue();
11624      // 6 == Log2(64)
11625      ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
11626    }
11627    // Check remaining shift amounts.
11628    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
11629      uint64_t ShAmt = 0;
11630      for (unsigned j = 0; j != Ratio; ++j) {
11631        ConstantSDNode *C =
11632          dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
11633        if (C == 0)
11634          return SDValue();
11635        // 6 == Log2(64)
11636        ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
11637      }
11638      if (ShAmt != ShiftAmt)
11639        return SDValue();
11640    }
11641    switch (Op.getOpcode()) {
11642    default:
11643      llvm_unreachable("Unknown shift opcode!");
11644    case ISD::SHL:
11645      return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11646                         DAG.getConstant(ShiftAmt, MVT::i32));
11647    case ISD::SRL:
11648      return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11649                         DAG.getConstant(ShiftAmt, MVT::i32));
11650    case ISD::SRA:
11651      return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11652                         DAG.getConstant(ShiftAmt, MVT::i32));
11653    }
11654  }
11655
11656  return SDValue();
11657}
11658
11659static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
11660                                        const X86Subtarget* Subtarget) {
11661  EVT VT = Op.getValueType();
11662  DebugLoc dl = Op.getDebugLoc();
11663  SDValue R = Op.getOperand(0);
11664  SDValue Amt = Op.getOperand(1);
11665
11666  if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
11667      VT == MVT::v4i32 || VT == MVT::v8i16 ||
11668      (Subtarget->hasInt256() &&
11669       ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
11670        VT == MVT::v8i32 || VT == MVT::v16i16))) {
11671    SDValue BaseShAmt;
11672    EVT EltVT = VT.getVectorElementType();
11673
11674    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11675      unsigned NumElts = VT.getVectorNumElements();
11676      unsigned i, j;
11677      for (i = 0; i != NumElts; ++i) {
11678        if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
11679          continue;
11680        break;
11681      }
11682      for (j = i; j != NumElts; ++j) {
11683        SDValue Arg = Amt.getOperand(j);
11684        if (Arg.getOpcode() == ISD::UNDEF) continue;
11685        if (Arg != Amt.getOperand(i))
11686          break;
11687      }
11688      if (i != NumElts && j == NumElts)
11689        BaseShAmt = Amt.getOperand(i);
11690    } else {
11691      if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
11692        Amt = Amt.getOperand(0);
11693      if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
11694               cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
11695        SDValue InVec = Amt.getOperand(0);
11696        if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
11697          unsigned NumElts = InVec.getValueType().getVectorNumElements();
11698          unsigned i = 0;
11699          for (; i != NumElts; ++i) {
11700            SDValue Arg = InVec.getOperand(i);
11701            if (Arg.getOpcode() == ISD::UNDEF) continue;
11702            BaseShAmt = Arg;
11703            break;
11704          }
11705        } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
11706           if (ConstantSDNode *C =
11707               dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
11708             unsigned SplatIdx =
11709               cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
11710             if (C->getZExtValue() == SplatIdx)
11711               BaseShAmt = InVec.getOperand(1);
11712           }
11713        }
11714        if (BaseShAmt.getNode() == 0)
11715          BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
11716                                  DAG.getIntPtrConstant(0));
11717      }
11718    }
11719
11720    if (BaseShAmt.getNode()) {
11721      if (EltVT.bitsGT(MVT::i32))
11722        BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
11723      else if (EltVT.bitsLT(MVT::i32))
11724        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
11725
11726      switch (Op.getOpcode()) {
11727      default:
11728        llvm_unreachable("Unknown shift opcode!");
11729      case ISD::SHL:
11730        switch (VT.getSimpleVT().SimpleTy) {
11731        default: return SDValue();
11732        case MVT::v2i64:
11733        case MVT::v4i32:
11734        case MVT::v8i16:
11735        case MVT::v4i64:
11736        case MVT::v8i32:
11737        case MVT::v16i16:
11738          return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
11739        }
11740      case ISD::SRA:
11741        switch (VT.getSimpleVT().SimpleTy) {
11742        default: return SDValue();
11743        case MVT::v4i32:
11744        case MVT::v8i16:
11745        case MVT::v8i32:
11746        case MVT::v16i16:
11747          return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
11748        }
11749      case ISD::SRL:
11750        switch (VT.getSimpleVT().SimpleTy) {
11751        default: return SDValue();
11752        case MVT::v2i64:
11753        case MVT::v4i32:
11754        case MVT::v8i16:
11755        case MVT::v4i64:
11756        case MVT::v8i32:
11757        case MVT::v16i16:
11758          return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
11759        }
11760      }
11761    }
11762  }
11763
11764  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
11765  if (!Subtarget->is64Bit() &&
11766      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
11767      Amt.getOpcode() == ISD::BITCAST &&
11768      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
11769    Amt = Amt.getOperand(0);
11770    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
11771                     VT.getVectorNumElements();
11772    std::vector<SDValue> Vals(Ratio);
11773    for (unsigned i = 0; i != Ratio; ++i)
11774      Vals[i] = Amt.getOperand(i);
11775    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
11776      for (unsigned j = 0; j != Ratio; ++j)
11777        if (Vals[j] != Amt.getOperand(i + j))
11778          return SDValue();
11779    }
11780    switch (Op.getOpcode()) {
11781    default:
11782      llvm_unreachable("Unknown shift opcode!");
11783    case ISD::SHL:
11784      return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
11785    case ISD::SRL:
11786      return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
11787    case ISD::SRA:
11788      return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
11789    }
11790  }
11791
11792  return SDValue();
11793}
11794
11795SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
11796
11797  EVT VT = Op.getValueType();
11798  DebugLoc dl = Op.getDebugLoc();
11799  SDValue R = Op.getOperand(0);
11800  SDValue Amt = Op.getOperand(1);
11801  SDValue V;
11802
11803  if (!Subtarget->hasSSE2())
11804    return SDValue();
11805
11806  V = LowerScalarImmediateShift(Op, DAG, Subtarget);
11807  if (V.getNode())
11808    return V;
11809
11810  V = LowerScalarVariableShift(Op, DAG, Subtarget);
11811  if (V.getNode())
11812      return V;
11813
11814  // AVX2 has VPSLLV/VPSRAV/VPSRLV.
11815  if (Subtarget->hasInt256()) {
11816    if (Op.getOpcode() == ISD::SRL &&
11817        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
11818         VT == MVT::v4i64 || VT == MVT::v8i32))
11819      return Op;
11820    if (Op.getOpcode() == ISD::SHL &&
11821        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
11822         VT == MVT::v4i64 || VT == MVT::v8i32))
11823      return Op;
11824    if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
11825      return Op;
11826  }
11827
11828  // Lower SHL with variable shift amount.
11829  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
11830    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
11831
11832    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
11833    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
11834    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
11835    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
11836  }
11837  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
11838    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
11839
11840    // a = a << 5;
11841    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
11842    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
11843
11844    // Turn 'a' into a mask suitable for VSELECT
11845    SDValue VSelM = DAG.getConstant(0x80, VT);
11846    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11847    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11848
11849    SDValue CM1 = DAG.getConstant(0x0f, VT);
11850    SDValue CM2 = DAG.getConstant(0x3f, VT);
11851
11852    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
11853    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
11854    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11855                            DAG.getConstant(4, MVT::i32), DAG);
11856    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11857    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11858
11859    // a += a
11860    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11861    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11862    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11863
11864    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
11865    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
11866    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11867                            DAG.getConstant(2, MVT::i32), DAG);
11868    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11869    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11870
11871    // a += a
11872    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11873    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11874    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11875
11876    // return VSELECT(r, r+r, a);
11877    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
11878                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
11879    return R;
11880  }
11881
11882  // Decompose 256-bit shifts into smaller 128-bit shifts.
11883  if (VT.is256BitVector()) {
11884    unsigned NumElems = VT.getVectorNumElements();
11885    MVT EltVT = VT.getVectorElementType().getSimpleVT();
11886    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11887
11888    // Extract the two vectors
11889    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
11890    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
11891
11892    // Recreate the shift amount vectors
11893    SDValue Amt1, Amt2;
11894    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11895      // Constant shift amount
11896      SmallVector<SDValue, 4> Amt1Csts;
11897      SmallVector<SDValue, 4> Amt2Csts;
11898      for (unsigned i = 0; i != NumElems/2; ++i)
11899        Amt1Csts.push_back(Amt->getOperand(i));
11900      for (unsigned i = NumElems/2; i != NumElems; ++i)
11901        Amt2Csts.push_back(Amt->getOperand(i));
11902
11903      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11904                                 &Amt1Csts[0], NumElems/2);
11905      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11906                                 &Amt2Csts[0], NumElems/2);
11907    } else {
11908      // Variable shift amount
11909      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
11910      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
11911    }
11912
11913    // Issue new vector shifts for the smaller types
11914    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
11915    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
11916
11917    // Concatenate the result back
11918    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
11919  }
11920
11921  return SDValue();
11922}
11923
11924static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
11925  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
11926  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
11927  // looks for this combo and may remove the "setcc" instruction if the "setcc"
11928  // has only one use.
11929  SDNode *N = Op.getNode();
11930  SDValue LHS = N->getOperand(0);
11931  SDValue RHS = N->getOperand(1);
11932  unsigned BaseOp = 0;
11933  unsigned Cond = 0;
11934  DebugLoc DL = Op.getDebugLoc();
11935  switch (Op.getOpcode()) {
11936  default: llvm_unreachable("Unknown ovf instruction!");
11937  case ISD::SADDO:
11938    // A subtract of one will be selected as a INC. Note that INC doesn't
11939    // set CF, so we can't do this for UADDO.
11940    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11941      if (C->isOne()) {
11942        BaseOp = X86ISD::INC;
11943        Cond = X86::COND_O;
11944        break;
11945      }
11946    BaseOp = X86ISD::ADD;
11947    Cond = X86::COND_O;
11948    break;
11949  case ISD::UADDO:
11950    BaseOp = X86ISD::ADD;
11951    Cond = X86::COND_B;
11952    break;
11953  case ISD::SSUBO:
11954    // A subtract of one will be selected as a DEC. Note that DEC doesn't
11955    // set CF, so we can't do this for USUBO.
11956    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11957      if (C->isOne()) {
11958        BaseOp = X86ISD::DEC;
11959        Cond = X86::COND_O;
11960        break;
11961      }
11962    BaseOp = X86ISD::SUB;
11963    Cond = X86::COND_O;
11964    break;
11965  case ISD::USUBO:
11966    BaseOp = X86ISD::SUB;
11967    Cond = X86::COND_B;
11968    break;
11969  case ISD::SMULO:
11970    BaseOp = X86ISD::SMUL;
11971    Cond = X86::COND_O;
11972    break;
11973  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
11974    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
11975                                 MVT::i32);
11976    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
11977
11978    SDValue SetCC =
11979      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11980                  DAG.getConstant(X86::COND_O, MVT::i32),
11981                  SDValue(Sum.getNode(), 2));
11982
11983    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11984  }
11985  }
11986
11987  // Also sets EFLAGS.
11988  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
11989  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
11990
11991  SDValue SetCC =
11992    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
11993                DAG.getConstant(Cond, MVT::i32),
11994                SDValue(Sum.getNode(), 1));
11995
11996  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11997}
11998
11999SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
12000                                                  SelectionDAG &DAG) const {
12001  DebugLoc dl = Op.getDebugLoc();
12002  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
12003  EVT VT = Op.getValueType();
12004
12005  if (!Subtarget->hasSSE2() || !VT.isVector())
12006    return SDValue();
12007
12008  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
12009                      ExtraVT.getScalarType().getSizeInBits();
12010  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
12011
12012  switch (VT.getSimpleVT().SimpleTy) {
12013    default: return SDValue();
12014    case MVT::v8i32:
12015    case MVT::v16i16:
12016      if (!Subtarget->hasFp256())
12017        return SDValue();
12018      if (!Subtarget->hasInt256()) {
12019        // needs to be split
12020        unsigned NumElems = VT.getVectorNumElements();
12021
12022        // Extract the LHS vectors
12023        SDValue LHS = Op.getOperand(0);
12024        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
12025        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
12026
12027        MVT EltVT = VT.getVectorElementType().getSimpleVT();
12028        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12029
12030        EVT ExtraEltVT = ExtraVT.getVectorElementType();
12031        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
12032        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
12033                                   ExtraNumElems/2);
12034        SDValue Extra = DAG.getValueType(ExtraVT);
12035
12036        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
12037        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
12038
12039        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
12040      }
12041      // fall through
12042    case MVT::v4i32:
12043    case MVT::v8i16: {
12044      // (sext (vzext x)) -> (vsext x)
12045      SDValue Op0 = Op.getOperand(0);
12046      SDValue Op00 = Op0.getOperand(0);
12047      SDValue Tmp1;
12048      // Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
12049      if (Op0.getOpcode() == ISD::BITCAST &&
12050          Op00.getOpcode() == ISD::VECTOR_SHUFFLE)
12051        Tmp1 = LowerVectorIntExtend(Op00, DAG);
12052      if (Tmp1.getNode()) {
12053        SDValue Tmp1Op0 = Tmp1.getOperand(0);
12054        assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
12055               "This optimization is invalid without a VZEXT.");
12056        return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
12057      }
12058
12059      // If the above didn't work, then just use Shift-Left + Shift-Right.
12060      Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT, Op0, ShAmt, DAG);
12061      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
12062    }
12063  }
12064}
12065
12066static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget,
12067                              SelectionDAG &DAG) {
12068  DebugLoc dl = Op.getDebugLoc();
12069
12070  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
12071  // There isn't any reason to disable it if the target processor supports it.
12072  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
12073    SDValue Chain = Op.getOperand(0);
12074    SDValue Zero = DAG.getConstant(0, MVT::i32);
12075    SDValue Ops[] = {
12076      DAG.getRegister(X86::ESP, MVT::i32), // Base
12077      DAG.getTargetConstant(1, MVT::i8),   // Scale
12078      DAG.getRegister(0, MVT::i32),        // Index
12079      DAG.getTargetConstant(0, MVT::i32),  // Disp
12080      DAG.getRegister(0, MVT::i32),        // Segment.
12081      Zero,
12082      Chain
12083    };
12084    SDNode *Res =
12085      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
12086                          array_lengthof(Ops));
12087    return SDValue(Res, 0);
12088  }
12089
12090  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
12091  if (!isDev)
12092    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
12093
12094  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
12095  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
12096  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
12097  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
12098
12099  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
12100  if (!Op1 && !Op2 && !Op3 && Op4)
12101    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
12102
12103  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
12104  if (Op1 && !Op2 && !Op3 && !Op4)
12105    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
12106
12107  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
12108  //           (MFENCE)>;
12109  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
12110}
12111
12112static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
12113                                 SelectionDAG &DAG) {
12114  DebugLoc dl = Op.getDebugLoc();
12115  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
12116    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
12117  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
12118    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
12119
12120  // The only fence that needs an instruction is a sequentially-consistent
12121  // cross-thread fence.
12122  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
12123    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
12124    // no-sse2). There isn't any reason to disable it if the target processor
12125    // supports it.
12126    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
12127      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
12128
12129    SDValue Chain = Op.getOperand(0);
12130    SDValue Zero = DAG.getConstant(0, MVT::i32);
12131    SDValue Ops[] = {
12132      DAG.getRegister(X86::ESP, MVT::i32), // Base
12133      DAG.getTargetConstant(1, MVT::i8),   // Scale
12134      DAG.getRegister(0, MVT::i32),        // Index
12135      DAG.getTargetConstant(0, MVT::i32),  // Disp
12136      DAG.getRegister(0, MVT::i32),        // Segment.
12137      Zero,
12138      Chain
12139    };
12140    SDNode *Res =
12141      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
12142                         array_lengthof(Ops));
12143    return SDValue(Res, 0);
12144  }
12145
12146  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
12147  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
12148}
12149
12150static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
12151                             SelectionDAG &DAG) {
12152  EVT T = Op.getValueType();
12153  DebugLoc DL = Op.getDebugLoc();
12154  unsigned Reg = 0;
12155  unsigned size = 0;
12156  switch(T.getSimpleVT().SimpleTy) {
12157  default: llvm_unreachable("Invalid value type!");
12158  case MVT::i8:  Reg = X86::AL;  size = 1; break;
12159  case MVT::i16: Reg = X86::AX;  size = 2; break;
12160  case MVT::i32: Reg = X86::EAX; size = 4; break;
12161  case MVT::i64:
12162    assert(Subtarget->is64Bit() && "Node not type legal!");
12163    Reg = X86::RAX; size = 8;
12164    break;
12165  }
12166  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
12167                                    Op.getOperand(2), SDValue());
12168  SDValue Ops[] = { cpIn.getValue(0),
12169                    Op.getOperand(1),
12170                    Op.getOperand(3),
12171                    DAG.getTargetConstant(size, MVT::i8),
12172                    cpIn.getValue(1) };
12173  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12174  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
12175  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
12176                                           Ops, 5, T, MMO);
12177  SDValue cpOut =
12178    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
12179  return cpOut;
12180}
12181
12182static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
12183                                     SelectionDAG &DAG) {
12184  assert(Subtarget->is64Bit() && "Result not type legalized?");
12185  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12186  SDValue TheChain = Op.getOperand(0);
12187  DebugLoc dl = Op.getDebugLoc();
12188  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
12189  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
12190  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
12191                                   rax.getValue(2));
12192  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
12193                            DAG.getConstant(32, MVT::i8));
12194  SDValue Ops[] = {
12195    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
12196    rdx.getValue(1)
12197  };
12198  return DAG.getMergeValues(Ops, 2, dl);
12199}
12200
12201SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
12202  EVT SrcVT = Op.getOperand(0).getValueType();
12203  EVT DstVT = Op.getValueType();
12204  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
12205         Subtarget->hasMMX() && "Unexpected custom BITCAST");
12206  assert((DstVT == MVT::i64 ||
12207          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
12208         "Unexpected custom BITCAST");
12209  // i64 <=> MMX conversions are Legal.
12210  if (SrcVT==MVT::i64 && DstVT.isVector())
12211    return Op;
12212  if (DstVT==MVT::i64 && SrcVT.isVector())
12213    return Op;
12214  // MMX <=> MMX conversions are Legal.
12215  if (SrcVT.isVector() && DstVT.isVector())
12216    return Op;
12217  // All other conversions need to be expanded.
12218  return SDValue();
12219}
12220
12221static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
12222  SDNode *Node = Op.getNode();
12223  DebugLoc dl = Node->getDebugLoc();
12224  EVT T = Node->getValueType(0);
12225  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
12226                              DAG.getConstant(0, T), Node->getOperand(2));
12227  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
12228                       cast<AtomicSDNode>(Node)->getMemoryVT(),
12229                       Node->getOperand(0),
12230                       Node->getOperand(1), negOp,
12231                       cast<AtomicSDNode>(Node)->getSrcValue(),
12232                       cast<AtomicSDNode>(Node)->getAlignment(),
12233                       cast<AtomicSDNode>(Node)->getOrdering(),
12234                       cast<AtomicSDNode>(Node)->getSynchScope());
12235}
12236
12237static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
12238  SDNode *Node = Op.getNode();
12239  DebugLoc dl = Node->getDebugLoc();
12240  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12241
12242  // Convert seq_cst store -> xchg
12243  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
12244  // FIXME: On 32-bit, store -> fist or movq would be more efficient
12245  //        (The only way to get a 16-byte store is cmpxchg16b)
12246  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
12247  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
12248      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12249    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
12250                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
12251                                 Node->getOperand(0),
12252                                 Node->getOperand(1), Node->getOperand(2),
12253                                 cast<AtomicSDNode>(Node)->getMemOperand(),
12254                                 cast<AtomicSDNode>(Node)->getOrdering(),
12255                                 cast<AtomicSDNode>(Node)->getSynchScope());
12256    return Swap.getValue(1);
12257  }
12258  // Other atomic stores have a simple pattern.
12259  return Op;
12260}
12261
12262static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
12263  EVT VT = Op.getNode()->getValueType(0);
12264
12265  // Let legalize expand this if it isn't a legal type yet.
12266  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12267    return SDValue();
12268
12269  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12270
12271  unsigned Opc;
12272  bool ExtraOp = false;
12273  switch (Op.getOpcode()) {
12274  default: llvm_unreachable("Invalid code");
12275  case ISD::ADDC: Opc = X86ISD::ADD; break;
12276  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
12277  case ISD::SUBC: Opc = X86ISD::SUB; break;
12278  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
12279  }
12280
12281  if (!ExtraOp)
12282    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
12283                       Op.getOperand(1));
12284  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
12285                     Op.getOperand(1), Op.getOperand(2));
12286}
12287
12288SDValue X86TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
12289  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
12290
12291  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
12292  // which returns the values in two XMM registers.
12293  DebugLoc dl = Op.getDebugLoc();
12294  SDValue Arg = Op.getOperand(0);
12295  EVT ArgVT = Arg.getValueType();
12296  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
12297
12298  ArgListTy Args;
12299  ArgListEntry Entry;
12300
12301  Entry.Node = Arg;
12302  Entry.Ty = ArgTy;
12303  Entry.isSExt = false;
12304  Entry.isZExt = false;
12305  Args.push_back(Entry);
12306
12307  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
12308  // the small struct {f32, f32} is returned in (eax, edx). For f64,
12309  // the results are returned via SRet in memory.
12310  const char *LibcallName = (ArgVT == MVT::f64)
12311    ? "__sincos_stret" : "__sincosf_stret";
12312  SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
12313
12314  StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
12315  TargetLowering::
12316    CallLoweringInfo CLI(DAG.getEntryNode(), RetTy,
12317                         false, false, false, false, 0,
12318                         CallingConv::C, /*isTaillCall=*/false,
12319                         /*doesNotRet=*/false, /*isReturnValueUsed*/true,
12320                         Callee, Args, DAG, dl);
12321  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
12322  return CallResult.first;
12323}
12324
12325/// LowerOperation - Provide custom lowering hooks for some operations.
12326///
12327SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
12328  switch (Op.getOpcode()) {
12329  default: llvm_unreachable("Should not custom lower this!");
12330  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
12331  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, Subtarget, DAG);
12332  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
12333  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
12334  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
12335  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
12336  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
12337  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
12338  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
12339  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
12340  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
12341  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
12342  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
12343  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
12344  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
12345  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
12346  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
12347  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
12348  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
12349  case ISD::SHL_PARTS:
12350  case ISD::SRA_PARTS:
12351  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
12352  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
12353  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
12354  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
12355  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, DAG);
12356  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, DAG);
12357  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, DAG);
12358  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
12359  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
12360  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
12361  case ISD::FABS:               return LowerFABS(Op, DAG);
12362  case ISD::FNEG:               return LowerFNEG(Op, DAG);
12363  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
12364  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
12365  case ISD::SETCC:              return LowerSETCC(Op, DAG);
12366  case ISD::SELECT:             return LowerSELECT(Op, DAG);
12367  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
12368  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
12369  case ISD::VASTART:            return LowerVASTART(Op, DAG);
12370  case ISD::VAARG:              return LowerVAARG(Op, DAG);
12371  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
12372  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
12373  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
12374  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
12375  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
12376  case ISD::FRAME_TO_ARGS_OFFSET:
12377                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
12378  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
12379  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
12380  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
12381  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
12382  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
12383  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
12384  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
12385  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
12386  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
12387  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
12388  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
12389  case ISD::SRA:
12390  case ISD::SRL:
12391  case ISD::SHL:                return LowerShift(Op, DAG);
12392  case ISD::SADDO:
12393  case ISD::UADDO:
12394  case ISD::SSUBO:
12395  case ISD::USUBO:
12396  case ISD::SMULO:
12397  case ISD::UMULO:              return LowerXALUO(Op, DAG);
12398  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
12399  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
12400  case ISD::ADDC:
12401  case ISD::ADDE:
12402  case ISD::SUBC:
12403  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
12404  case ISD::ADD:                return LowerADD(Op, DAG);
12405  case ISD::SUB:                return LowerSUB(Op, DAG);
12406  case ISD::SDIV:               return LowerSDIV(Op, DAG);
12407  case ISD::FSINCOS:            return LowerFSINCOS(Op, DAG);
12408  }
12409}
12410
12411static void ReplaceATOMIC_LOAD(SDNode *Node,
12412                                  SmallVectorImpl<SDValue> &Results,
12413                                  SelectionDAG &DAG) {
12414  DebugLoc dl = Node->getDebugLoc();
12415  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12416
12417  // Convert wide load -> cmpxchg8b/cmpxchg16b
12418  // FIXME: On 32-bit, load -> fild or movq would be more efficient
12419  //        (The only way to get a 16-byte load is cmpxchg16b)
12420  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
12421  SDValue Zero = DAG.getConstant(0, VT);
12422  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
12423                               Node->getOperand(0),
12424                               Node->getOperand(1), Zero, Zero,
12425                               cast<AtomicSDNode>(Node)->getMemOperand(),
12426                               cast<AtomicSDNode>(Node)->getOrdering(),
12427                               cast<AtomicSDNode>(Node)->getSynchScope());
12428  Results.push_back(Swap.getValue(0));
12429  Results.push_back(Swap.getValue(1));
12430}
12431
12432static void
12433ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
12434                        SelectionDAG &DAG, unsigned NewOp) {
12435  DebugLoc dl = Node->getDebugLoc();
12436  assert (Node->getValueType(0) == MVT::i64 &&
12437          "Only know how to expand i64 atomics");
12438
12439  SDValue Chain = Node->getOperand(0);
12440  SDValue In1 = Node->getOperand(1);
12441  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12442                             Node->getOperand(2), DAG.getIntPtrConstant(0));
12443  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12444                             Node->getOperand(2), DAG.getIntPtrConstant(1));
12445  SDValue Ops[] = { Chain, In1, In2L, In2H };
12446  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
12447  SDValue Result =
12448    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
12449                            cast<MemSDNode>(Node)->getMemOperand());
12450  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
12451  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
12452  Results.push_back(Result.getValue(2));
12453}
12454
12455/// ReplaceNodeResults - Replace a node with an illegal result type
12456/// with a new node built out of custom code.
12457void X86TargetLowering::ReplaceNodeResults(SDNode *N,
12458                                           SmallVectorImpl<SDValue>&Results,
12459                                           SelectionDAG &DAG) const {
12460  DebugLoc dl = N->getDebugLoc();
12461  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12462  switch (N->getOpcode()) {
12463  default:
12464    llvm_unreachable("Do not know how to custom type legalize this operation!");
12465  case ISD::SIGN_EXTEND_INREG:
12466  case ISD::ADDC:
12467  case ISD::ADDE:
12468  case ISD::SUBC:
12469  case ISD::SUBE:
12470    // We don't want to expand or promote these.
12471    return;
12472  case ISD::FP_TO_SINT:
12473  case ISD::FP_TO_UINT: {
12474    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
12475
12476    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
12477      return;
12478
12479    std::pair<SDValue,SDValue> Vals =
12480        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
12481    SDValue FIST = Vals.first, StackSlot = Vals.second;
12482    if (FIST.getNode() != 0) {
12483      EVT VT = N->getValueType(0);
12484      // Return a load from the stack slot.
12485      if (StackSlot.getNode() != 0)
12486        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
12487                                      MachinePointerInfo(),
12488                                      false, false, false, 0));
12489      else
12490        Results.push_back(FIST);
12491    }
12492    return;
12493  }
12494  case ISD::UINT_TO_FP: {
12495    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
12496    if (N->getOperand(0).getValueType() != MVT::v2i32 ||
12497        N->getValueType(0) != MVT::v2f32)
12498      return;
12499    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
12500                                 N->getOperand(0));
12501    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
12502                                     MVT::f64);
12503    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
12504    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
12505                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
12506    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
12507    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
12508    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
12509    return;
12510  }
12511  case ISD::FP_ROUND: {
12512    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
12513        return;
12514    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
12515    Results.push_back(V);
12516    return;
12517  }
12518  case ISD::READCYCLECOUNTER: {
12519    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12520    SDValue TheChain = N->getOperand(0);
12521    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
12522    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
12523                                     rd.getValue(1));
12524    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
12525                                     eax.getValue(2));
12526    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
12527    SDValue Ops[] = { eax, edx };
12528    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
12529    Results.push_back(edx.getValue(1));
12530    return;
12531  }
12532  case ISD::ATOMIC_CMP_SWAP: {
12533    EVT T = N->getValueType(0);
12534    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
12535    bool Regs64bit = T == MVT::i128;
12536    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
12537    SDValue cpInL, cpInH;
12538    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12539                        DAG.getConstant(0, HalfT));
12540    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12541                        DAG.getConstant(1, HalfT));
12542    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
12543                             Regs64bit ? X86::RAX : X86::EAX,
12544                             cpInL, SDValue());
12545    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
12546                             Regs64bit ? X86::RDX : X86::EDX,
12547                             cpInH, cpInL.getValue(1));
12548    SDValue swapInL, swapInH;
12549    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12550                          DAG.getConstant(0, HalfT));
12551    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12552                          DAG.getConstant(1, HalfT));
12553    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
12554                               Regs64bit ? X86::RBX : X86::EBX,
12555                               swapInL, cpInH.getValue(1));
12556    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
12557                               Regs64bit ? X86::RCX : X86::ECX,
12558                               swapInH, swapInL.getValue(1));
12559    SDValue Ops[] = { swapInH.getValue(0),
12560                      N->getOperand(1),
12561                      swapInH.getValue(1) };
12562    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12563    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
12564    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
12565                                  X86ISD::LCMPXCHG8_DAG;
12566    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
12567                                             Ops, 3, T, MMO);
12568    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
12569                                        Regs64bit ? X86::RAX : X86::EAX,
12570                                        HalfT, Result.getValue(1));
12571    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
12572                                        Regs64bit ? X86::RDX : X86::EDX,
12573                                        HalfT, cpOutL.getValue(2));
12574    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
12575    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
12576    Results.push_back(cpOutH.getValue(1));
12577    return;
12578  }
12579  case ISD::ATOMIC_LOAD_ADD:
12580  case ISD::ATOMIC_LOAD_AND:
12581  case ISD::ATOMIC_LOAD_NAND:
12582  case ISD::ATOMIC_LOAD_OR:
12583  case ISD::ATOMIC_LOAD_SUB:
12584  case ISD::ATOMIC_LOAD_XOR:
12585  case ISD::ATOMIC_LOAD_MAX:
12586  case ISD::ATOMIC_LOAD_MIN:
12587  case ISD::ATOMIC_LOAD_UMAX:
12588  case ISD::ATOMIC_LOAD_UMIN:
12589  case ISD::ATOMIC_SWAP: {
12590    unsigned Opc;
12591    switch (N->getOpcode()) {
12592    default: llvm_unreachable("Unexpected opcode");
12593    case ISD::ATOMIC_LOAD_ADD:
12594      Opc = X86ISD::ATOMADD64_DAG;
12595      break;
12596    case ISD::ATOMIC_LOAD_AND:
12597      Opc = X86ISD::ATOMAND64_DAG;
12598      break;
12599    case ISD::ATOMIC_LOAD_NAND:
12600      Opc = X86ISD::ATOMNAND64_DAG;
12601      break;
12602    case ISD::ATOMIC_LOAD_OR:
12603      Opc = X86ISD::ATOMOR64_DAG;
12604      break;
12605    case ISD::ATOMIC_LOAD_SUB:
12606      Opc = X86ISD::ATOMSUB64_DAG;
12607      break;
12608    case ISD::ATOMIC_LOAD_XOR:
12609      Opc = X86ISD::ATOMXOR64_DAG;
12610      break;
12611    case ISD::ATOMIC_LOAD_MAX:
12612      Opc = X86ISD::ATOMMAX64_DAG;
12613      break;
12614    case ISD::ATOMIC_LOAD_MIN:
12615      Opc = X86ISD::ATOMMIN64_DAG;
12616      break;
12617    case ISD::ATOMIC_LOAD_UMAX:
12618      Opc = X86ISD::ATOMUMAX64_DAG;
12619      break;
12620    case ISD::ATOMIC_LOAD_UMIN:
12621      Opc = X86ISD::ATOMUMIN64_DAG;
12622      break;
12623    case ISD::ATOMIC_SWAP:
12624      Opc = X86ISD::ATOMSWAP64_DAG;
12625      break;
12626    }
12627    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
12628    return;
12629  }
12630  case ISD::ATOMIC_LOAD:
12631    ReplaceATOMIC_LOAD(N, Results, DAG);
12632  }
12633}
12634
12635const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
12636  switch (Opcode) {
12637  default: return NULL;
12638  case X86ISD::BSF:                return "X86ISD::BSF";
12639  case X86ISD::BSR:                return "X86ISD::BSR";
12640  case X86ISD::SHLD:               return "X86ISD::SHLD";
12641  case X86ISD::SHRD:               return "X86ISD::SHRD";
12642  case X86ISD::FAND:               return "X86ISD::FAND";
12643  case X86ISD::FOR:                return "X86ISD::FOR";
12644  case X86ISD::FXOR:               return "X86ISD::FXOR";
12645  case X86ISD::FSRL:               return "X86ISD::FSRL";
12646  case X86ISD::FILD:               return "X86ISD::FILD";
12647  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
12648  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
12649  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
12650  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
12651  case X86ISD::FLD:                return "X86ISD::FLD";
12652  case X86ISD::FST:                return "X86ISD::FST";
12653  case X86ISD::CALL:               return "X86ISD::CALL";
12654  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
12655  case X86ISD::BT:                 return "X86ISD::BT";
12656  case X86ISD::CMP:                return "X86ISD::CMP";
12657  case X86ISD::COMI:               return "X86ISD::COMI";
12658  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
12659  case X86ISD::SETCC:              return "X86ISD::SETCC";
12660  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
12661  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
12662  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
12663  case X86ISD::CMOV:               return "X86ISD::CMOV";
12664  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
12665  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
12666  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
12667  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
12668  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
12669  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
12670  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
12671  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
12672  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
12673  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
12674  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
12675  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
12676  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
12677  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
12678  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
12679  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
12680  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
12681  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
12682  case X86ISD::HADD:               return "X86ISD::HADD";
12683  case X86ISD::HSUB:               return "X86ISD::HSUB";
12684  case X86ISD::FHADD:              return "X86ISD::FHADD";
12685  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
12686  case X86ISD::UMAX:               return "X86ISD::UMAX";
12687  case X86ISD::UMIN:               return "X86ISD::UMIN";
12688  case X86ISD::SMAX:               return "X86ISD::SMAX";
12689  case X86ISD::SMIN:               return "X86ISD::SMIN";
12690  case X86ISD::FMAX:               return "X86ISD::FMAX";
12691  case X86ISD::FMIN:               return "X86ISD::FMIN";
12692  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
12693  case X86ISD::FMINC:              return "X86ISD::FMINC";
12694  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
12695  case X86ISD::FRCP:               return "X86ISD::FRCP";
12696  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
12697  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
12698  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
12699  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
12700  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
12701  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
12702  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
12703  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
12704  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
12705  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
12706  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
12707  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
12708  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
12709  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
12710  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
12711  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
12712  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
12713  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
12714  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
12715  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
12716  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
12717  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
12718  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
12719  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
12720  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
12721  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
12722  case X86ISD::VSHL:               return "X86ISD::VSHL";
12723  case X86ISD::VSRL:               return "X86ISD::VSRL";
12724  case X86ISD::VSRA:               return "X86ISD::VSRA";
12725  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
12726  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
12727  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
12728  case X86ISD::CMPP:               return "X86ISD::CMPP";
12729  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
12730  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
12731  case X86ISD::ADD:                return "X86ISD::ADD";
12732  case X86ISD::SUB:                return "X86ISD::SUB";
12733  case X86ISD::ADC:                return "X86ISD::ADC";
12734  case X86ISD::SBB:                return "X86ISD::SBB";
12735  case X86ISD::SMUL:               return "X86ISD::SMUL";
12736  case X86ISD::UMUL:               return "X86ISD::UMUL";
12737  case X86ISD::INC:                return "X86ISD::INC";
12738  case X86ISD::DEC:                return "X86ISD::DEC";
12739  case X86ISD::OR:                 return "X86ISD::OR";
12740  case X86ISD::XOR:                return "X86ISD::XOR";
12741  case X86ISD::AND:                return "X86ISD::AND";
12742  case X86ISD::BLSI:               return "X86ISD::BLSI";
12743  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
12744  case X86ISD::BLSR:               return "X86ISD::BLSR";
12745  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
12746  case X86ISD::PTEST:              return "X86ISD::PTEST";
12747  case X86ISD::TESTP:              return "X86ISD::TESTP";
12748  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
12749  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
12750  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
12751  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
12752  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
12753  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
12754  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
12755  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
12756  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
12757  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
12758  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
12759  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
12760  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
12761  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
12762  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
12763  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
12764  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
12765  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
12766  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
12767  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
12768  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
12769  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
12770  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
12771  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
12772  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
12773  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
12774  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
12775  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
12776  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
12777  case X86ISD::SAHF:               return "X86ISD::SAHF";
12778  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
12779  case X86ISD::FMADD:              return "X86ISD::FMADD";
12780  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
12781  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
12782  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
12783  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
12784  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
12785  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
12786  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
12787  case X86ISD::XTEST:              return "X86ISD::XTEST";
12788  }
12789}
12790
12791// isLegalAddressingMode - Return true if the addressing mode represented
12792// by AM is legal for this target, for a load/store of the specified type.
12793bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
12794                                              Type *Ty) const {
12795  // X86 supports extremely general addressing modes.
12796  CodeModel::Model M = getTargetMachine().getCodeModel();
12797  Reloc::Model R = getTargetMachine().getRelocationModel();
12798
12799  // X86 allows a sign-extended 32-bit immediate field as a displacement.
12800  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
12801    return false;
12802
12803  if (AM.BaseGV) {
12804    unsigned GVFlags =
12805      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
12806
12807    // If a reference to this global requires an extra load, we can't fold it.
12808    if (isGlobalStubReference(GVFlags))
12809      return false;
12810
12811    // If BaseGV requires a register for the PIC base, we cannot also have a
12812    // BaseReg specified.
12813    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
12814      return false;
12815
12816    // If lower 4G is not available, then we must use rip-relative addressing.
12817    if ((M != CodeModel::Small || R != Reloc::Static) &&
12818        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
12819      return false;
12820  }
12821
12822  switch (AM.Scale) {
12823  case 0:
12824  case 1:
12825  case 2:
12826  case 4:
12827  case 8:
12828    // These scales always work.
12829    break;
12830  case 3:
12831  case 5:
12832  case 9:
12833    // These scales are formed with basereg+scalereg.  Only accept if there is
12834    // no basereg yet.
12835    if (AM.HasBaseReg)
12836      return false;
12837    break;
12838  default:  // Other stuff never works.
12839    return false;
12840  }
12841
12842  return true;
12843}
12844
12845bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
12846  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12847    return false;
12848  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
12849  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
12850  return NumBits1 > NumBits2;
12851}
12852
12853bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
12854  return isInt<32>(Imm);
12855}
12856
12857bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
12858  // Can also use sub to handle negated immediates.
12859  return isInt<32>(Imm);
12860}
12861
12862bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
12863  if (!VT1.isInteger() || !VT2.isInteger())
12864    return false;
12865  unsigned NumBits1 = VT1.getSizeInBits();
12866  unsigned NumBits2 = VT2.getSizeInBits();
12867  return NumBits1 > NumBits2;
12868}
12869
12870bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
12871  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12872  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
12873}
12874
12875bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
12876  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12877  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
12878}
12879
12880bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12881  EVT VT1 = Val.getValueType();
12882  if (isZExtFree(VT1, VT2))
12883    return true;
12884
12885  if (Val.getOpcode() != ISD::LOAD)
12886    return false;
12887
12888  if (!VT1.isSimple() || !VT1.isInteger() ||
12889      !VT2.isSimple() || !VT2.isInteger())
12890    return false;
12891
12892  switch (VT1.getSimpleVT().SimpleTy) {
12893  default: break;
12894  case MVT::i8:
12895  case MVT::i16:
12896  case MVT::i32:
12897    // X86 has 8, 16, and 32-bit zero-extending loads.
12898    return true;
12899  }
12900
12901  return false;
12902}
12903
12904bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
12905  // i16 instructions are longer (0x66 prefix) and potentially slower.
12906  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
12907}
12908
12909/// isShuffleMaskLegal - Targets can use this to indicate that they only
12910/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
12911/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
12912/// are assumed to be legal.
12913bool
12914X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
12915                                      EVT VT) const {
12916  // Very little shuffling can be done for 64-bit vectors right now.
12917  if (VT.getSizeInBits() == 64)
12918    return false;
12919
12920  // FIXME: pshufb, blends, shifts.
12921  return (VT.getVectorNumElements() == 2 ||
12922          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
12923          isMOVLMask(M, VT) ||
12924          isSHUFPMask(M, VT, Subtarget->hasFp256()) ||
12925          isPSHUFDMask(M, VT) ||
12926          isPSHUFHWMask(M, VT, Subtarget->hasInt256()) ||
12927          isPSHUFLWMask(M, VT, Subtarget->hasInt256()) ||
12928          isPALIGNRMask(M, VT, Subtarget) ||
12929          isUNPCKLMask(M, VT, Subtarget->hasInt256()) ||
12930          isUNPCKHMask(M, VT, Subtarget->hasInt256()) ||
12931          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasInt256()) ||
12932          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasInt256()));
12933}
12934
12935bool
12936X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
12937                                          EVT VT) const {
12938  unsigned NumElts = VT.getVectorNumElements();
12939  // FIXME: This collection of masks seems suspect.
12940  if (NumElts == 2)
12941    return true;
12942  if (NumElts == 4 && VT.is128BitVector()) {
12943    return (isMOVLMask(Mask, VT)  ||
12944            isCommutedMOVLMask(Mask, VT, true) ||
12945            isSHUFPMask(Mask, VT, Subtarget->hasFp256()) ||
12946            isSHUFPMask(Mask, VT, Subtarget->hasFp256(), /* Commuted */ true));
12947  }
12948  return false;
12949}
12950
12951//===----------------------------------------------------------------------===//
12952//                           X86 Scheduler Hooks
12953//===----------------------------------------------------------------------===//
12954
12955/// Utility function to emit xbegin specifying the start of an RTM region.
12956static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
12957                                     const TargetInstrInfo *TII) {
12958  DebugLoc DL = MI->getDebugLoc();
12959
12960  const BasicBlock *BB = MBB->getBasicBlock();
12961  MachineFunction::iterator I = MBB;
12962  ++I;
12963
12964  // For the v = xbegin(), we generate
12965  //
12966  // thisMBB:
12967  //  xbegin sinkMBB
12968  //
12969  // mainMBB:
12970  //  eax = -1
12971  //
12972  // sinkMBB:
12973  //  v = eax
12974
12975  MachineBasicBlock *thisMBB = MBB;
12976  MachineFunction *MF = MBB->getParent();
12977  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12978  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12979  MF->insert(I, mainMBB);
12980  MF->insert(I, sinkMBB);
12981
12982  // Transfer the remainder of BB and its successor edges to sinkMBB.
12983  sinkMBB->splice(sinkMBB->begin(), MBB,
12984                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12985  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12986
12987  // thisMBB:
12988  //  xbegin sinkMBB
12989  //  # fallthrough to mainMBB
12990  //  # abortion to sinkMBB
12991  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
12992  thisMBB->addSuccessor(mainMBB);
12993  thisMBB->addSuccessor(sinkMBB);
12994
12995  // mainMBB:
12996  //  EAX = -1
12997  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
12998  mainMBB->addSuccessor(sinkMBB);
12999
13000  // sinkMBB:
13001  // EAX is live into the sinkMBB
13002  sinkMBB->addLiveIn(X86::EAX);
13003  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13004          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13005    .addReg(X86::EAX);
13006
13007  MI->eraseFromParent();
13008  return sinkMBB;
13009}
13010
13011// Get CMPXCHG opcode for the specified data type.
13012static unsigned getCmpXChgOpcode(EVT VT) {
13013  switch (VT.getSimpleVT().SimpleTy) {
13014  case MVT::i8:  return X86::LCMPXCHG8;
13015  case MVT::i16: return X86::LCMPXCHG16;
13016  case MVT::i32: return X86::LCMPXCHG32;
13017  case MVT::i64: return X86::LCMPXCHG64;
13018  default:
13019    break;
13020  }
13021  llvm_unreachable("Invalid operand size!");
13022}
13023
13024// Get LOAD opcode for the specified data type.
13025static unsigned getLoadOpcode(EVT VT) {
13026  switch (VT.getSimpleVT().SimpleTy) {
13027  case MVT::i8:  return X86::MOV8rm;
13028  case MVT::i16: return X86::MOV16rm;
13029  case MVT::i32: return X86::MOV32rm;
13030  case MVT::i64: return X86::MOV64rm;
13031  default:
13032    break;
13033  }
13034  llvm_unreachable("Invalid operand size!");
13035}
13036
13037// Get opcode of the non-atomic one from the specified atomic instruction.
13038static unsigned getNonAtomicOpcode(unsigned Opc) {
13039  switch (Opc) {
13040  case X86::ATOMAND8:  return X86::AND8rr;
13041  case X86::ATOMAND16: return X86::AND16rr;
13042  case X86::ATOMAND32: return X86::AND32rr;
13043  case X86::ATOMAND64: return X86::AND64rr;
13044  case X86::ATOMOR8:   return X86::OR8rr;
13045  case X86::ATOMOR16:  return X86::OR16rr;
13046  case X86::ATOMOR32:  return X86::OR32rr;
13047  case X86::ATOMOR64:  return X86::OR64rr;
13048  case X86::ATOMXOR8:  return X86::XOR8rr;
13049  case X86::ATOMXOR16: return X86::XOR16rr;
13050  case X86::ATOMXOR32: return X86::XOR32rr;
13051  case X86::ATOMXOR64: return X86::XOR64rr;
13052  }
13053  llvm_unreachable("Unhandled atomic-load-op opcode!");
13054}
13055
13056// Get opcode of the non-atomic one from the specified atomic instruction with
13057// extra opcode.
13058static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
13059                                               unsigned &ExtraOpc) {
13060  switch (Opc) {
13061  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
13062  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
13063  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
13064  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
13065  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
13066  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
13067  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
13068  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
13069  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
13070  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
13071  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
13072  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
13073  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
13074  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
13075  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
13076  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
13077  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
13078  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
13079  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
13080  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
13081  }
13082  llvm_unreachable("Unhandled atomic-load-op opcode!");
13083}
13084
13085// Get opcode of the non-atomic one from the specified atomic instruction for
13086// 64-bit data type on 32-bit target.
13087static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
13088  switch (Opc) {
13089  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
13090  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
13091  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
13092  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
13093  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
13094  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
13095  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
13096  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
13097  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
13098  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
13099  }
13100  llvm_unreachable("Unhandled atomic-load-op opcode!");
13101}
13102
13103// Get opcode of the non-atomic one from the specified atomic instruction for
13104// 64-bit data type on 32-bit target with extra opcode.
13105static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
13106                                                   unsigned &HiOpc,
13107                                                   unsigned &ExtraOpc) {
13108  switch (Opc) {
13109  case X86::ATOMNAND6432:
13110    ExtraOpc = X86::NOT32r;
13111    HiOpc = X86::AND32rr;
13112    return X86::AND32rr;
13113  }
13114  llvm_unreachable("Unhandled atomic-load-op opcode!");
13115}
13116
13117// Get pseudo CMOV opcode from the specified data type.
13118static unsigned getPseudoCMOVOpc(EVT VT) {
13119  switch (VT.getSimpleVT().SimpleTy) {
13120  case MVT::i8:  return X86::CMOV_GR8;
13121  case MVT::i16: return X86::CMOV_GR16;
13122  case MVT::i32: return X86::CMOV_GR32;
13123  default:
13124    break;
13125  }
13126  llvm_unreachable("Unknown CMOV opcode!");
13127}
13128
13129// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
13130// They will be translated into a spin-loop or compare-exchange loop from
13131//
13132//    ...
13133//    dst = atomic-fetch-op MI.addr, MI.val
13134//    ...
13135//
13136// to
13137//
13138//    ...
13139//    t1 = LOAD MI.addr
13140// loop:
13141//    t4 = phi(t1, t3 / loop)
13142//    t2 = OP MI.val, t4
13143//    EAX = t4
13144//    LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined]
13145//    t3 = EAX
13146//    JNE loop
13147// sink:
13148//    dst = t3
13149//    ...
13150MachineBasicBlock *
13151X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
13152                                       MachineBasicBlock *MBB) const {
13153  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13154  DebugLoc DL = MI->getDebugLoc();
13155
13156  MachineFunction *MF = MBB->getParent();
13157  MachineRegisterInfo &MRI = MF->getRegInfo();
13158
13159  const BasicBlock *BB = MBB->getBasicBlock();
13160  MachineFunction::iterator I = MBB;
13161  ++I;
13162
13163  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
13164         "Unexpected number of operands");
13165
13166  assert(MI->hasOneMemOperand() &&
13167         "Expected atomic-load-op to have one memoperand");
13168
13169  // Memory Reference
13170  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13171  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13172
13173  unsigned DstReg, SrcReg;
13174  unsigned MemOpndSlot;
13175
13176  unsigned CurOp = 0;
13177
13178  DstReg = MI->getOperand(CurOp++).getReg();
13179  MemOpndSlot = CurOp;
13180  CurOp += X86::AddrNumOperands;
13181  SrcReg = MI->getOperand(CurOp++).getReg();
13182
13183  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
13184  MVT::SimpleValueType VT = *RC->vt_begin();
13185  unsigned t1 = MRI.createVirtualRegister(RC);
13186  unsigned t2 = MRI.createVirtualRegister(RC);
13187  unsigned t3 = MRI.createVirtualRegister(RC);
13188  unsigned t4 = MRI.createVirtualRegister(RC);
13189  unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT);
13190
13191  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
13192  unsigned LOADOpc = getLoadOpcode(VT);
13193
13194  // For the atomic load-arith operator, we generate
13195  //
13196  //  thisMBB:
13197  //    t1 = LOAD [MI.addr]
13198  //  mainMBB:
13199  //    t4 = phi(t1 / thisMBB, t3 / mainMBB)
13200  //    t1 = OP MI.val, EAX
13201  //    EAX = t4
13202  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
13203  //    t3 = EAX
13204  //    JNE mainMBB
13205  //  sinkMBB:
13206  //    dst = t3
13207
13208  MachineBasicBlock *thisMBB = MBB;
13209  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13210  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13211  MF->insert(I, mainMBB);
13212  MF->insert(I, sinkMBB);
13213
13214  MachineInstrBuilder MIB;
13215
13216  // Transfer the remainder of BB and its successor edges to sinkMBB.
13217  sinkMBB->splice(sinkMBB->begin(), MBB,
13218                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13219  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13220
13221  // thisMBB:
13222  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1);
13223  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13224    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13225    if (NewMO.isReg())
13226      NewMO.setIsKill(false);
13227    MIB.addOperand(NewMO);
13228  }
13229  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
13230    unsigned flags = (*MMOI)->getFlags();
13231    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
13232    MachineMemOperand *MMO =
13233      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
13234                               (*MMOI)->getSize(),
13235                               (*MMOI)->getBaseAlignment(),
13236                               (*MMOI)->getTBAAInfo(),
13237                               (*MMOI)->getRanges());
13238    MIB.addMemOperand(MMO);
13239  }
13240
13241  thisMBB->addSuccessor(mainMBB);
13242
13243  // mainMBB:
13244  MachineBasicBlock *origMainMBB = mainMBB;
13245
13246  // Add a PHI.
13247  MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4)
13248                        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
13249
13250  unsigned Opc = MI->getOpcode();
13251  switch (Opc) {
13252  default:
13253    llvm_unreachable("Unhandled atomic-load-op opcode!");
13254  case X86::ATOMAND8:
13255  case X86::ATOMAND16:
13256  case X86::ATOMAND32:
13257  case X86::ATOMAND64:
13258  case X86::ATOMOR8:
13259  case X86::ATOMOR16:
13260  case X86::ATOMOR32:
13261  case X86::ATOMOR64:
13262  case X86::ATOMXOR8:
13263  case X86::ATOMXOR16:
13264  case X86::ATOMXOR32:
13265  case X86::ATOMXOR64: {
13266    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
13267    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg)
13268      .addReg(t4);
13269    break;
13270  }
13271  case X86::ATOMNAND8:
13272  case X86::ATOMNAND16:
13273  case X86::ATOMNAND32:
13274  case X86::ATOMNAND64: {
13275    unsigned Tmp = MRI.createVirtualRegister(RC);
13276    unsigned NOTOpc;
13277    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
13278    BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg)
13279      .addReg(t4);
13280    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp);
13281    break;
13282  }
13283  case X86::ATOMMAX8:
13284  case X86::ATOMMAX16:
13285  case X86::ATOMMAX32:
13286  case X86::ATOMMAX64:
13287  case X86::ATOMMIN8:
13288  case X86::ATOMMIN16:
13289  case X86::ATOMMIN32:
13290  case X86::ATOMMIN64:
13291  case X86::ATOMUMAX8:
13292  case X86::ATOMUMAX16:
13293  case X86::ATOMUMAX32:
13294  case X86::ATOMUMAX64:
13295  case X86::ATOMUMIN8:
13296  case X86::ATOMUMIN16:
13297  case X86::ATOMUMIN32:
13298  case X86::ATOMUMIN64: {
13299    unsigned CMPOpc;
13300    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
13301
13302    BuildMI(mainMBB, DL, TII->get(CMPOpc))
13303      .addReg(SrcReg)
13304      .addReg(t4);
13305
13306    if (Subtarget->hasCMov()) {
13307      if (VT != MVT::i8) {
13308        // Native support
13309        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
13310          .addReg(SrcReg)
13311          .addReg(t4);
13312      } else {
13313        // Promote i8 to i32 to use CMOV32
13314        const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
13315        const TargetRegisterClass *RC32 =
13316          TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit);
13317        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
13318        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
13319        unsigned Tmp = MRI.createVirtualRegister(RC32);
13320
13321        unsigned Undef = MRI.createVirtualRegister(RC32);
13322        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
13323
13324        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
13325          .addReg(Undef)
13326          .addReg(SrcReg)
13327          .addImm(X86::sub_8bit);
13328        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
13329          .addReg(Undef)
13330          .addReg(t4)
13331          .addImm(X86::sub_8bit);
13332
13333        BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp)
13334          .addReg(SrcReg32)
13335          .addReg(AccReg32);
13336
13337        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2)
13338          .addReg(Tmp, 0, X86::sub_8bit);
13339      }
13340    } else {
13341      // Use pseudo select and lower them.
13342      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
13343             "Invalid atomic-load-op transformation!");
13344      unsigned SelOpc = getPseudoCMOVOpc(VT);
13345      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
13346      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
13347      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2)
13348              .addReg(SrcReg).addReg(t4)
13349              .addImm(CC);
13350      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13351      // Replace the original PHI node as mainMBB is changed after CMOV
13352      // lowering.
13353      BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4)
13354        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
13355      Phi->eraseFromParent();
13356    }
13357    break;
13358  }
13359  }
13360
13361  // Copy PhyReg back from virtual register.
13362  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg)
13363    .addReg(t4);
13364
13365  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13366  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13367    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13368    if (NewMO.isReg())
13369      NewMO.setIsKill(false);
13370    MIB.addOperand(NewMO);
13371  }
13372  MIB.addReg(t2);
13373  MIB.setMemRefs(MMOBegin, MMOEnd);
13374
13375  // Copy PhyReg back to virtual register.
13376  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3)
13377    .addReg(PhyReg);
13378
13379  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13380
13381  mainMBB->addSuccessor(origMainMBB);
13382  mainMBB->addSuccessor(sinkMBB);
13383
13384  // sinkMBB:
13385  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13386          TII->get(TargetOpcode::COPY), DstReg)
13387    .addReg(t3);
13388
13389  MI->eraseFromParent();
13390  return sinkMBB;
13391}
13392
13393// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
13394// instructions. They will be translated into a spin-loop or compare-exchange
13395// loop from
13396//
13397//    ...
13398//    dst = atomic-fetch-op MI.addr, MI.val
13399//    ...
13400//
13401// to
13402//
13403//    ...
13404//    t1L = LOAD [MI.addr + 0]
13405//    t1H = LOAD [MI.addr + 4]
13406// loop:
13407//    t4L = phi(t1L, t3L / loop)
13408//    t4H = phi(t1H, t3H / loop)
13409//    t2L = OP MI.val.lo, t4L
13410//    t2H = OP MI.val.hi, t4H
13411//    EAX = t4L
13412//    EDX = t4H
13413//    EBX = t2L
13414//    ECX = t2H
13415//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13416//    t3L = EAX
13417//    t3H = EDX
13418//    JNE loop
13419// sink:
13420//    dstL = t3L
13421//    dstH = t3H
13422//    ...
13423MachineBasicBlock *
13424X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
13425                                           MachineBasicBlock *MBB) const {
13426  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13427  DebugLoc DL = MI->getDebugLoc();
13428
13429  MachineFunction *MF = MBB->getParent();
13430  MachineRegisterInfo &MRI = MF->getRegInfo();
13431
13432  const BasicBlock *BB = MBB->getBasicBlock();
13433  MachineFunction::iterator I = MBB;
13434  ++I;
13435
13436  assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 &&
13437         "Unexpected number of operands");
13438
13439  assert(MI->hasOneMemOperand() &&
13440         "Expected atomic-load-op32 to have one memoperand");
13441
13442  // Memory Reference
13443  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13444  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13445
13446  unsigned DstLoReg, DstHiReg;
13447  unsigned SrcLoReg, SrcHiReg;
13448  unsigned MemOpndSlot;
13449
13450  unsigned CurOp = 0;
13451
13452  DstLoReg = MI->getOperand(CurOp++).getReg();
13453  DstHiReg = MI->getOperand(CurOp++).getReg();
13454  MemOpndSlot = CurOp;
13455  CurOp += X86::AddrNumOperands;
13456  SrcLoReg = MI->getOperand(CurOp++).getReg();
13457  SrcHiReg = MI->getOperand(CurOp++).getReg();
13458
13459  const TargetRegisterClass *RC = &X86::GR32RegClass;
13460  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
13461
13462  unsigned t1L = MRI.createVirtualRegister(RC);
13463  unsigned t1H = MRI.createVirtualRegister(RC);
13464  unsigned t2L = MRI.createVirtualRegister(RC);
13465  unsigned t2H = MRI.createVirtualRegister(RC);
13466  unsigned t3L = MRI.createVirtualRegister(RC);
13467  unsigned t3H = MRI.createVirtualRegister(RC);
13468  unsigned t4L = MRI.createVirtualRegister(RC);
13469  unsigned t4H = MRI.createVirtualRegister(RC);
13470
13471  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
13472  unsigned LOADOpc = X86::MOV32rm;
13473
13474  // For the atomic load-arith operator, we generate
13475  //
13476  //  thisMBB:
13477  //    t1L = LOAD [MI.addr + 0]
13478  //    t1H = LOAD [MI.addr + 4]
13479  //  mainMBB:
13480  //    t4L = phi(t1L / thisMBB, t3L / mainMBB)
13481  //    t4H = phi(t1H / thisMBB, t3H / mainMBB)
13482  //    t2L = OP MI.val.lo, t4L
13483  //    t2H = OP MI.val.hi, t4H
13484  //    EBX = t2L
13485  //    ECX = t2H
13486  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13487  //    t3L = EAX
13488  //    t3H = EDX
13489  //    JNE loop
13490  //  sinkMBB:
13491  //    dstL = t3L
13492  //    dstH = t3H
13493
13494  MachineBasicBlock *thisMBB = MBB;
13495  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13496  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13497  MF->insert(I, mainMBB);
13498  MF->insert(I, sinkMBB);
13499
13500  MachineInstrBuilder MIB;
13501
13502  // Transfer the remainder of BB and its successor edges to sinkMBB.
13503  sinkMBB->splice(sinkMBB->begin(), MBB,
13504                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13505  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13506
13507  // thisMBB:
13508  // Lo
13509  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L);
13510  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13511    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13512    if (NewMO.isReg())
13513      NewMO.setIsKill(false);
13514    MIB.addOperand(NewMO);
13515  }
13516  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
13517    unsigned flags = (*MMOI)->getFlags();
13518    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
13519    MachineMemOperand *MMO =
13520      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
13521                               (*MMOI)->getSize(),
13522                               (*MMOI)->getBaseAlignment(),
13523                               (*MMOI)->getTBAAInfo(),
13524                               (*MMOI)->getRanges());
13525    MIB.addMemOperand(MMO);
13526  };
13527  MachineInstr *LowMI = MIB;
13528
13529  // Hi
13530  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H);
13531  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13532    if (i == X86::AddrDisp) {
13533      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
13534    } else {
13535      MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13536      if (NewMO.isReg())
13537        NewMO.setIsKill(false);
13538      MIB.addOperand(NewMO);
13539    }
13540  }
13541  MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end());
13542
13543  thisMBB->addSuccessor(mainMBB);
13544
13545  // mainMBB:
13546  MachineBasicBlock *origMainMBB = mainMBB;
13547
13548  // Add PHIs.
13549  MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L)
13550                        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
13551  MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H)
13552                        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
13553
13554  unsigned Opc = MI->getOpcode();
13555  switch (Opc) {
13556  default:
13557    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
13558  case X86::ATOMAND6432:
13559  case X86::ATOMOR6432:
13560  case X86::ATOMXOR6432:
13561  case X86::ATOMADD6432:
13562  case X86::ATOMSUB6432: {
13563    unsigned HiOpc;
13564    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13565    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L)
13566      .addReg(SrcLoReg);
13567    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H)
13568      .addReg(SrcHiReg);
13569    break;
13570  }
13571  case X86::ATOMNAND6432: {
13572    unsigned HiOpc, NOTOpc;
13573    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
13574    unsigned TmpL = MRI.createVirtualRegister(RC);
13575    unsigned TmpH = MRI.createVirtualRegister(RC);
13576    BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg)
13577      .addReg(t4L);
13578    BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg)
13579      .addReg(t4H);
13580    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL);
13581    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH);
13582    break;
13583  }
13584  case X86::ATOMMAX6432:
13585  case X86::ATOMMIN6432:
13586  case X86::ATOMUMAX6432:
13587  case X86::ATOMUMIN6432: {
13588    unsigned HiOpc;
13589    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13590    unsigned cL = MRI.createVirtualRegister(RC8);
13591    unsigned cH = MRI.createVirtualRegister(RC8);
13592    unsigned cL32 = MRI.createVirtualRegister(RC);
13593    unsigned cH32 = MRI.createVirtualRegister(RC);
13594    unsigned cc = MRI.createVirtualRegister(RC);
13595    // cl := cmp src_lo, lo
13596    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13597      .addReg(SrcLoReg).addReg(t4L);
13598    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
13599    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
13600    // ch := cmp src_hi, hi
13601    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13602      .addReg(SrcHiReg).addReg(t4H);
13603    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
13604    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
13605    // cc := if (src_hi == hi) ? cl : ch;
13606    if (Subtarget->hasCMov()) {
13607      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
13608        .addReg(cH32).addReg(cL32);
13609    } else {
13610      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
13611              .addReg(cH32).addReg(cL32)
13612              .addImm(X86::COND_E);
13613      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13614    }
13615    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
13616    if (Subtarget->hasCMov()) {
13617      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L)
13618        .addReg(SrcLoReg).addReg(t4L);
13619      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H)
13620        .addReg(SrcHiReg).addReg(t4H);
13621    } else {
13622      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L)
13623              .addReg(SrcLoReg).addReg(t4L)
13624              .addImm(X86::COND_NE);
13625      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13626      // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the
13627      // 2nd CMOV lowering.
13628      mainMBB->addLiveIn(X86::EFLAGS);
13629      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H)
13630              .addReg(SrcHiReg).addReg(t4H)
13631              .addImm(X86::COND_NE);
13632      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13633      // Replace the original PHI node as mainMBB is changed after CMOV
13634      // lowering.
13635      BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L)
13636        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
13637      BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H)
13638        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
13639      PhiL->eraseFromParent();
13640      PhiH->eraseFromParent();
13641    }
13642    break;
13643  }
13644  case X86::ATOMSWAP6432: {
13645    unsigned HiOpc;
13646    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13647    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg);
13648    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg);
13649    break;
13650  }
13651  }
13652
13653  // Copy EDX:EAX back from HiReg:LoReg
13654  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L);
13655  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H);
13656  // Copy ECX:EBX from t1H:t1L
13657  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L);
13658  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H);
13659
13660  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13661  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13662    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13663    if (NewMO.isReg())
13664      NewMO.setIsKill(false);
13665    MIB.addOperand(NewMO);
13666  }
13667  MIB.setMemRefs(MMOBegin, MMOEnd);
13668
13669  // Copy EDX:EAX back to t3H:t3L
13670  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX);
13671  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX);
13672
13673  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13674
13675  mainMBB->addSuccessor(origMainMBB);
13676  mainMBB->addSuccessor(sinkMBB);
13677
13678  // sinkMBB:
13679  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13680          TII->get(TargetOpcode::COPY), DstLoReg)
13681    .addReg(t3L);
13682  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13683          TII->get(TargetOpcode::COPY), DstHiReg)
13684    .addReg(t3H);
13685
13686  MI->eraseFromParent();
13687  return sinkMBB;
13688}
13689
13690// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
13691// or XMM0_V32I8 in AVX all of this code can be replaced with that
13692// in the .td file.
13693static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
13694                                       const TargetInstrInfo *TII) {
13695  unsigned Opc;
13696  switch (MI->getOpcode()) {
13697  default: llvm_unreachable("illegal opcode!");
13698  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
13699  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
13700  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
13701  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
13702  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
13703  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
13704  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
13705  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
13706  }
13707
13708  DebugLoc dl = MI->getDebugLoc();
13709  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13710
13711  unsigned NumArgs = MI->getNumOperands();
13712  for (unsigned i = 1; i < NumArgs; ++i) {
13713    MachineOperand &Op = MI->getOperand(i);
13714    if (!(Op.isReg() && Op.isImplicit()))
13715      MIB.addOperand(Op);
13716  }
13717  if (MI->hasOneMemOperand())
13718    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13719
13720  BuildMI(*BB, MI, dl,
13721    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13722    .addReg(X86::XMM0);
13723
13724  MI->eraseFromParent();
13725  return BB;
13726}
13727
13728// FIXME: Custom handling because TableGen doesn't support multiple implicit
13729// defs in an instruction pattern
13730static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
13731                                       const TargetInstrInfo *TII) {
13732  unsigned Opc;
13733  switch (MI->getOpcode()) {
13734  default: llvm_unreachable("illegal opcode!");
13735  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
13736  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
13737  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
13738  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
13739  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
13740  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
13741  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
13742  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
13743  }
13744
13745  DebugLoc dl = MI->getDebugLoc();
13746  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13747
13748  unsigned NumArgs = MI->getNumOperands(); // remove the results
13749  for (unsigned i = 1; i < NumArgs; ++i) {
13750    MachineOperand &Op = MI->getOperand(i);
13751    if (!(Op.isReg() && Op.isImplicit()))
13752      MIB.addOperand(Op);
13753  }
13754  if (MI->hasOneMemOperand())
13755    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13756
13757  BuildMI(*BB, MI, dl,
13758    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13759    .addReg(X86::ECX);
13760
13761  MI->eraseFromParent();
13762  return BB;
13763}
13764
13765static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
13766                                       const TargetInstrInfo *TII,
13767                                       const X86Subtarget* Subtarget) {
13768  DebugLoc dl = MI->getDebugLoc();
13769
13770  // Address into RAX/EAX, other two args into ECX, EDX.
13771  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
13772  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
13773  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
13774  for (int i = 0; i < X86::AddrNumOperands; ++i)
13775    MIB.addOperand(MI->getOperand(i));
13776
13777  unsigned ValOps = X86::AddrNumOperands;
13778  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
13779    .addReg(MI->getOperand(ValOps).getReg());
13780  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
13781    .addReg(MI->getOperand(ValOps+1).getReg());
13782
13783  // The instruction doesn't actually take any operands though.
13784  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
13785
13786  MI->eraseFromParent(); // The pseudo is gone now.
13787  return BB;
13788}
13789
13790MachineBasicBlock *
13791X86TargetLowering::EmitVAARG64WithCustomInserter(
13792                   MachineInstr *MI,
13793                   MachineBasicBlock *MBB) const {
13794  // Emit va_arg instruction on X86-64.
13795
13796  // Operands to this pseudo-instruction:
13797  // 0  ) Output        : destination address (reg)
13798  // 1-5) Input         : va_list address (addr, i64mem)
13799  // 6  ) ArgSize       : Size (in bytes) of vararg type
13800  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
13801  // 8  ) Align         : Alignment of type
13802  // 9  ) EFLAGS (implicit-def)
13803
13804  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
13805  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
13806
13807  unsigned DestReg = MI->getOperand(0).getReg();
13808  MachineOperand &Base = MI->getOperand(1);
13809  MachineOperand &Scale = MI->getOperand(2);
13810  MachineOperand &Index = MI->getOperand(3);
13811  MachineOperand &Disp = MI->getOperand(4);
13812  MachineOperand &Segment = MI->getOperand(5);
13813  unsigned ArgSize = MI->getOperand(6).getImm();
13814  unsigned ArgMode = MI->getOperand(7).getImm();
13815  unsigned Align = MI->getOperand(8).getImm();
13816
13817  // Memory Reference
13818  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
13819  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13820  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13821
13822  // Machine Information
13823  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13824  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
13825  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
13826  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
13827  DebugLoc DL = MI->getDebugLoc();
13828
13829  // struct va_list {
13830  //   i32   gp_offset
13831  //   i32   fp_offset
13832  //   i64   overflow_area (address)
13833  //   i64   reg_save_area (address)
13834  // }
13835  // sizeof(va_list) = 24
13836  // alignment(va_list) = 8
13837
13838  unsigned TotalNumIntRegs = 6;
13839  unsigned TotalNumXMMRegs = 8;
13840  bool UseGPOffset = (ArgMode == 1);
13841  bool UseFPOffset = (ArgMode == 2);
13842  unsigned MaxOffset = TotalNumIntRegs * 8 +
13843                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
13844
13845  /* Align ArgSize to a multiple of 8 */
13846  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
13847  bool NeedsAlign = (Align > 8);
13848
13849  MachineBasicBlock *thisMBB = MBB;
13850  MachineBasicBlock *overflowMBB;
13851  MachineBasicBlock *offsetMBB;
13852  MachineBasicBlock *endMBB;
13853
13854  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
13855  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
13856  unsigned OffsetReg = 0;
13857
13858  if (!UseGPOffset && !UseFPOffset) {
13859    // If we only pull from the overflow region, we don't create a branch.
13860    // We don't need to alter control flow.
13861    OffsetDestReg = 0; // unused
13862    OverflowDestReg = DestReg;
13863
13864    offsetMBB = NULL;
13865    overflowMBB = thisMBB;
13866    endMBB = thisMBB;
13867  } else {
13868    // First emit code to check if gp_offset (or fp_offset) is below the bound.
13869    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
13870    // If not, pull from overflow_area. (branch to overflowMBB)
13871    //
13872    //       thisMBB
13873    //         |     .
13874    //         |        .
13875    //     offsetMBB   overflowMBB
13876    //         |        .
13877    //         |     .
13878    //        endMBB
13879
13880    // Registers for the PHI in endMBB
13881    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
13882    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
13883
13884    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13885    MachineFunction *MF = MBB->getParent();
13886    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13887    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13888    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13889
13890    MachineFunction::iterator MBBIter = MBB;
13891    ++MBBIter;
13892
13893    // Insert the new basic blocks
13894    MF->insert(MBBIter, offsetMBB);
13895    MF->insert(MBBIter, overflowMBB);
13896    MF->insert(MBBIter, endMBB);
13897
13898    // Transfer the remainder of MBB and its successor edges to endMBB.
13899    endMBB->splice(endMBB->begin(), thisMBB,
13900                    llvm::next(MachineBasicBlock::iterator(MI)),
13901                    thisMBB->end());
13902    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
13903
13904    // Make offsetMBB and overflowMBB successors of thisMBB
13905    thisMBB->addSuccessor(offsetMBB);
13906    thisMBB->addSuccessor(overflowMBB);
13907
13908    // endMBB is a successor of both offsetMBB and overflowMBB
13909    offsetMBB->addSuccessor(endMBB);
13910    overflowMBB->addSuccessor(endMBB);
13911
13912    // Load the offset value into a register
13913    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13914    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
13915      .addOperand(Base)
13916      .addOperand(Scale)
13917      .addOperand(Index)
13918      .addDisp(Disp, UseFPOffset ? 4 : 0)
13919      .addOperand(Segment)
13920      .setMemRefs(MMOBegin, MMOEnd);
13921
13922    // Check if there is enough room left to pull this argument.
13923    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
13924      .addReg(OffsetReg)
13925      .addImm(MaxOffset + 8 - ArgSizeA8);
13926
13927    // Branch to "overflowMBB" if offset >= max
13928    // Fall through to "offsetMBB" otherwise
13929    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
13930      .addMBB(overflowMBB);
13931  }
13932
13933  // In offsetMBB, emit code to use the reg_save_area.
13934  if (offsetMBB) {
13935    assert(OffsetReg != 0);
13936
13937    // Read the reg_save_area address.
13938    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
13939    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
13940      .addOperand(Base)
13941      .addOperand(Scale)
13942      .addOperand(Index)
13943      .addDisp(Disp, 16)
13944      .addOperand(Segment)
13945      .setMemRefs(MMOBegin, MMOEnd);
13946
13947    // Zero-extend the offset
13948    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
13949      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
13950        .addImm(0)
13951        .addReg(OffsetReg)
13952        .addImm(X86::sub_32bit);
13953
13954    // Add the offset to the reg_save_area to get the final address.
13955    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
13956      .addReg(OffsetReg64)
13957      .addReg(RegSaveReg);
13958
13959    // Compute the offset for the next argument
13960    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13961    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
13962      .addReg(OffsetReg)
13963      .addImm(UseFPOffset ? 16 : 8);
13964
13965    // Store it back into the va_list.
13966    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
13967      .addOperand(Base)
13968      .addOperand(Scale)
13969      .addOperand(Index)
13970      .addDisp(Disp, UseFPOffset ? 4 : 0)
13971      .addOperand(Segment)
13972      .addReg(NextOffsetReg)
13973      .setMemRefs(MMOBegin, MMOEnd);
13974
13975    // Jump to endMBB
13976    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
13977      .addMBB(endMBB);
13978  }
13979
13980  //
13981  // Emit code to use overflow area
13982  //
13983
13984  // Load the overflow_area address into a register.
13985  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
13986  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
13987    .addOperand(Base)
13988    .addOperand(Scale)
13989    .addOperand(Index)
13990    .addDisp(Disp, 8)
13991    .addOperand(Segment)
13992    .setMemRefs(MMOBegin, MMOEnd);
13993
13994  // If we need to align it, do so. Otherwise, just copy the address
13995  // to OverflowDestReg.
13996  if (NeedsAlign) {
13997    // Align the overflow address
13998    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
13999    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
14000
14001    // aligned_addr = (addr + (align-1)) & ~(align-1)
14002    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
14003      .addReg(OverflowAddrReg)
14004      .addImm(Align-1);
14005
14006    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
14007      .addReg(TmpReg)
14008      .addImm(~(uint64_t)(Align-1));
14009  } else {
14010    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
14011      .addReg(OverflowAddrReg);
14012  }
14013
14014  // Compute the next overflow address after this argument.
14015  // (the overflow address should be kept 8-byte aligned)
14016  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
14017  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
14018    .addReg(OverflowDestReg)
14019    .addImm(ArgSizeA8);
14020
14021  // Store the new overflow address.
14022  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
14023    .addOperand(Base)
14024    .addOperand(Scale)
14025    .addOperand(Index)
14026    .addDisp(Disp, 8)
14027    .addOperand(Segment)
14028    .addReg(NextAddrReg)
14029    .setMemRefs(MMOBegin, MMOEnd);
14030
14031  // If we branched, emit the PHI to the front of endMBB.
14032  if (offsetMBB) {
14033    BuildMI(*endMBB, endMBB->begin(), DL,
14034            TII->get(X86::PHI), DestReg)
14035      .addReg(OffsetDestReg).addMBB(offsetMBB)
14036      .addReg(OverflowDestReg).addMBB(overflowMBB);
14037  }
14038
14039  // Erase the pseudo instruction
14040  MI->eraseFromParent();
14041
14042  return endMBB;
14043}
14044
14045MachineBasicBlock *
14046X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
14047                                                 MachineInstr *MI,
14048                                                 MachineBasicBlock *MBB) const {
14049  // Emit code to save XMM registers to the stack. The ABI says that the
14050  // number of registers to save is given in %al, so it's theoretically
14051  // possible to do an indirect jump trick to avoid saving all of them,
14052  // however this code takes a simpler approach and just executes all
14053  // of the stores if %al is non-zero. It's less code, and it's probably
14054  // easier on the hardware branch predictor, and stores aren't all that
14055  // expensive anyway.
14056
14057  // Create the new basic blocks. One block contains all the XMM stores,
14058  // and one block is the final destination regardless of whether any
14059  // stores were performed.
14060  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
14061  MachineFunction *F = MBB->getParent();
14062  MachineFunction::iterator MBBIter = MBB;
14063  ++MBBIter;
14064  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
14065  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
14066  F->insert(MBBIter, XMMSaveMBB);
14067  F->insert(MBBIter, EndMBB);
14068
14069  // Transfer the remainder of MBB and its successor edges to EndMBB.
14070  EndMBB->splice(EndMBB->begin(), MBB,
14071                 llvm::next(MachineBasicBlock::iterator(MI)),
14072                 MBB->end());
14073  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
14074
14075  // The original block will now fall through to the XMM save block.
14076  MBB->addSuccessor(XMMSaveMBB);
14077  // The XMMSaveMBB will fall through to the end block.
14078  XMMSaveMBB->addSuccessor(EndMBB);
14079
14080  // Now add the instructions.
14081  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14082  DebugLoc DL = MI->getDebugLoc();
14083
14084  unsigned CountReg = MI->getOperand(0).getReg();
14085  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
14086  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
14087
14088  if (!Subtarget->isTargetWin64()) {
14089    // If %al is 0, branch around the XMM save block.
14090    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
14091    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
14092    MBB->addSuccessor(EndMBB);
14093  }
14094
14095  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
14096  // In the XMM save block, save all the XMM argument registers.
14097  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
14098    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
14099    MachineMemOperand *MMO =
14100      F->getMachineMemOperand(
14101          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
14102        MachineMemOperand::MOStore,
14103        /*Size=*/16, /*Align=*/16);
14104    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
14105      .addFrameIndex(RegSaveFrameIndex)
14106      .addImm(/*Scale=*/1)
14107      .addReg(/*IndexReg=*/0)
14108      .addImm(/*Disp=*/Offset)
14109      .addReg(/*Segment=*/0)
14110      .addReg(MI->getOperand(i).getReg())
14111      .addMemOperand(MMO);
14112  }
14113
14114  MI->eraseFromParent();   // The pseudo instruction is gone now.
14115
14116  return EndMBB;
14117}
14118
14119// The EFLAGS operand of SelectItr might be missing a kill marker
14120// because there were multiple uses of EFLAGS, and ISel didn't know
14121// which to mark. Figure out whether SelectItr should have had a
14122// kill marker, and set it if it should. Returns the correct kill
14123// marker value.
14124static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
14125                                     MachineBasicBlock* BB,
14126                                     const TargetRegisterInfo* TRI) {
14127  // Scan forward through BB for a use/def of EFLAGS.
14128  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
14129  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
14130    const MachineInstr& mi = *miI;
14131    if (mi.readsRegister(X86::EFLAGS))
14132      return false;
14133    if (mi.definesRegister(X86::EFLAGS))
14134      break; // Should have kill-flag - update below.
14135  }
14136
14137  // If we hit the end of the block, check whether EFLAGS is live into a
14138  // successor.
14139  if (miI == BB->end()) {
14140    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
14141                                          sEnd = BB->succ_end();
14142         sItr != sEnd; ++sItr) {
14143      MachineBasicBlock* succ = *sItr;
14144      if (succ->isLiveIn(X86::EFLAGS))
14145        return false;
14146    }
14147  }
14148
14149  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
14150  // out. SelectMI should have a kill flag on EFLAGS.
14151  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
14152  return true;
14153}
14154
14155MachineBasicBlock *
14156X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
14157                                     MachineBasicBlock *BB) const {
14158  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14159  DebugLoc DL = MI->getDebugLoc();
14160
14161  // To "insert" a SELECT_CC instruction, we actually have to insert the
14162  // diamond control-flow pattern.  The incoming instruction knows the
14163  // destination vreg to set, the condition code register to branch on, the
14164  // true/false values to select between, and a branch opcode to use.
14165  const BasicBlock *LLVM_BB = BB->getBasicBlock();
14166  MachineFunction::iterator It = BB;
14167  ++It;
14168
14169  //  thisMBB:
14170  //  ...
14171  //   TrueVal = ...
14172  //   cmpTY ccX, r1, r2
14173  //   bCC copy1MBB
14174  //   fallthrough --> copy0MBB
14175  MachineBasicBlock *thisMBB = BB;
14176  MachineFunction *F = BB->getParent();
14177  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
14178  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
14179  F->insert(It, copy0MBB);
14180  F->insert(It, sinkMBB);
14181
14182  // If the EFLAGS register isn't dead in the terminator, then claim that it's
14183  // live into the sink and copy blocks.
14184  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
14185  if (!MI->killsRegister(X86::EFLAGS) &&
14186      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
14187    copy0MBB->addLiveIn(X86::EFLAGS);
14188    sinkMBB->addLiveIn(X86::EFLAGS);
14189  }
14190
14191  // Transfer the remainder of BB and its successor edges to sinkMBB.
14192  sinkMBB->splice(sinkMBB->begin(), BB,
14193                  llvm::next(MachineBasicBlock::iterator(MI)),
14194                  BB->end());
14195  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
14196
14197  // Add the true and fallthrough blocks as its successors.
14198  BB->addSuccessor(copy0MBB);
14199  BB->addSuccessor(sinkMBB);
14200
14201  // Create the conditional branch instruction.
14202  unsigned Opc =
14203    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
14204  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
14205
14206  //  copy0MBB:
14207  //   %FalseValue = ...
14208  //   # fallthrough to sinkMBB
14209  copy0MBB->addSuccessor(sinkMBB);
14210
14211  //  sinkMBB:
14212  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
14213  //  ...
14214  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14215          TII->get(X86::PHI), MI->getOperand(0).getReg())
14216    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
14217    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
14218
14219  MI->eraseFromParent();   // The pseudo instruction is gone now.
14220  return sinkMBB;
14221}
14222
14223MachineBasicBlock *
14224X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
14225                                        bool Is64Bit) const {
14226  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14227  DebugLoc DL = MI->getDebugLoc();
14228  MachineFunction *MF = BB->getParent();
14229  const BasicBlock *LLVM_BB = BB->getBasicBlock();
14230
14231  assert(getTargetMachine().Options.EnableSegmentedStacks);
14232
14233  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
14234  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
14235
14236  // BB:
14237  //  ... [Till the alloca]
14238  // If stacklet is not large enough, jump to mallocMBB
14239  //
14240  // bumpMBB:
14241  //  Allocate by subtracting from RSP
14242  //  Jump to continueMBB
14243  //
14244  // mallocMBB:
14245  //  Allocate by call to runtime
14246  //
14247  // continueMBB:
14248  //  ...
14249  //  [rest of original BB]
14250  //
14251
14252  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14253  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14254  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14255
14256  MachineRegisterInfo &MRI = MF->getRegInfo();
14257  const TargetRegisterClass *AddrRegClass =
14258    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
14259
14260  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
14261    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
14262    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
14263    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
14264    sizeVReg = MI->getOperand(1).getReg(),
14265    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
14266
14267  MachineFunction::iterator MBBIter = BB;
14268  ++MBBIter;
14269
14270  MF->insert(MBBIter, bumpMBB);
14271  MF->insert(MBBIter, mallocMBB);
14272  MF->insert(MBBIter, continueMBB);
14273
14274  continueMBB->splice(continueMBB->begin(), BB, llvm::next
14275                      (MachineBasicBlock::iterator(MI)), BB->end());
14276  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
14277
14278  // Add code to the main basic block to check if the stack limit has been hit,
14279  // and if so, jump to mallocMBB otherwise to bumpMBB.
14280  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
14281  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
14282    .addReg(tmpSPVReg).addReg(sizeVReg);
14283  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
14284    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
14285    .addReg(SPLimitVReg);
14286  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
14287
14288  // bumpMBB simply decreases the stack pointer, since we know the current
14289  // stacklet has enough space.
14290  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
14291    .addReg(SPLimitVReg);
14292  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
14293    .addReg(SPLimitVReg);
14294  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
14295
14296  // Calls into a routine in libgcc to allocate more space from the heap.
14297  const uint32_t *RegMask =
14298    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
14299  if (Is64Bit) {
14300    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
14301      .addReg(sizeVReg);
14302    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
14303      .addExternalSymbol("__morestack_allocate_stack_space")
14304      .addRegMask(RegMask)
14305      .addReg(X86::RDI, RegState::Implicit)
14306      .addReg(X86::RAX, RegState::ImplicitDefine);
14307  } else {
14308    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
14309      .addImm(12);
14310    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
14311    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
14312      .addExternalSymbol("__morestack_allocate_stack_space")
14313      .addRegMask(RegMask)
14314      .addReg(X86::EAX, RegState::ImplicitDefine);
14315  }
14316
14317  if (!Is64Bit)
14318    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
14319      .addImm(16);
14320
14321  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
14322    .addReg(Is64Bit ? X86::RAX : X86::EAX);
14323  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
14324
14325  // Set up the CFG correctly.
14326  BB->addSuccessor(bumpMBB);
14327  BB->addSuccessor(mallocMBB);
14328  mallocMBB->addSuccessor(continueMBB);
14329  bumpMBB->addSuccessor(continueMBB);
14330
14331  // Take care of the PHI nodes.
14332  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
14333          MI->getOperand(0).getReg())
14334    .addReg(mallocPtrVReg).addMBB(mallocMBB)
14335    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
14336
14337  // Delete the original pseudo instruction.
14338  MI->eraseFromParent();
14339
14340  // And we're done.
14341  return continueMBB;
14342}
14343
14344MachineBasicBlock *
14345X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
14346                                          MachineBasicBlock *BB) const {
14347  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14348  DebugLoc DL = MI->getDebugLoc();
14349
14350  assert(!Subtarget->isTargetEnvMacho());
14351
14352  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
14353  // non-trivial part is impdef of ESP.
14354
14355  if (Subtarget->isTargetWin64()) {
14356    if (Subtarget->isTargetCygMing()) {
14357      // ___chkstk(Mingw64):
14358      // Clobbers R10, R11, RAX and EFLAGS.
14359      // Updates RSP.
14360      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
14361        .addExternalSymbol("___chkstk")
14362        .addReg(X86::RAX, RegState::Implicit)
14363        .addReg(X86::RSP, RegState::Implicit)
14364        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
14365        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
14366        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14367    } else {
14368      // __chkstk(MSVCRT): does not update stack pointer.
14369      // Clobbers R10, R11 and EFLAGS.
14370      // FIXME: RAX(allocated size) might be reused and not killed.
14371      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
14372        .addExternalSymbol("__chkstk")
14373        .addReg(X86::RAX, RegState::Implicit)
14374        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14375      // RAX has the offset to subtracted from RSP.
14376      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
14377        .addReg(X86::RSP)
14378        .addReg(X86::RAX);
14379    }
14380  } else {
14381    const char *StackProbeSymbol =
14382      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
14383
14384    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
14385      .addExternalSymbol(StackProbeSymbol)
14386      .addReg(X86::EAX, RegState::Implicit)
14387      .addReg(X86::ESP, RegState::Implicit)
14388      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
14389      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
14390      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14391  }
14392
14393  MI->eraseFromParent();   // The pseudo instruction is gone now.
14394  return BB;
14395}
14396
14397MachineBasicBlock *
14398X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
14399                                      MachineBasicBlock *BB) const {
14400  // This is pretty easy.  We're taking the value that we received from
14401  // our load from the relocation, sticking it in either RDI (x86-64)
14402  // or EAX and doing an indirect call.  The return value will then
14403  // be in the normal return register.
14404  const X86InstrInfo *TII
14405    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
14406  DebugLoc DL = MI->getDebugLoc();
14407  MachineFunction *F = BB->getParent();
14408
14409  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
14410  assert(MI->getOperand(3).isGlobal() && "This should be a global");
14411
14412  // Get a register mask for the lowered call.
14413  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
14414  // proper register mask.
14415  const uint32_t *RegMask =
14416    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
14417  if (Subtarget->is64Bit()) {
14418    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14419                                      TII->get(X86::MOV64rm), X86::RDI)
14420    .addReg(X86::RIP)
14421    .addImm(0).addReg(0)
14422    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14423                      MI->getOperand(3).getTargetFlags())
14424    .addReg(0);
14425    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
14426    addDirectMem(MIB, X86::RDI);
14427    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
14428  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
14429    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14430                                      TII->get(X86::MOV32rm), X86::EAX)
14431    .addReg(0)
14432    .addImm(0).addReg(0)
14433    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14434                      MI->getOperand(3).getTargetFlags())
14435    .addReg(0);
14436    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14437    addDirectMem(MIB, X86::EAX);
14438    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14439  } else {
14440    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14441                                      TII->get(X86::MOV32rm), X86::EAX)
14442    .addReg(TII->getGlobalBaseReg(F))
14443    .addImm(0).addReg(0)
14444    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14445                      MI->getOperand(3).getTargetFlags())
14446    .addReg(0);
14447    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14448    addDirectMem(MIB, X86::EAX);
14449    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14450  }
14451
14452  MI->eraseFromParent(); // The pseudo instruction is gone now.
14453  return BB;
14454}
14455
14456MachineBasicBlock *
14457X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
14458                                    MachineBasicBlock *MBB) const {
14459  DebugLoc DL = MI->getDebugLoc();
14460  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14461
14462  MachineFunction *MF = MBB->getParent();
14463  MachineRegisterInfo &MRI = MF->getRegInfo();
14464
14465  const BasicBlock *BB = MBB->getBasicBlock();
14466  MachineFunction::iterator I = MBB;
14467  ++I;
14468
14469  // Memory Reference
14470  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14471  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14472
14473  unsigned DstReg;
14474  unsigned MemOpndSlot = 0;
14475
14476  unsigned CurOp = 0;
14477
14478  DstReg = MI->getOperand(CurOp++).getReg();
14479  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
14480  assert(RC->hasType(MVT::i32) && "Invalid destination!");
14481  unsigned mainDstReg = MRI.createVirtualRegister(RC);
14482  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
14483
14484  MemOpndSlot = CurOp;
14485
14486  MVT PVT = getPointerTy();
14487  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14488         "Invalid Pointer Size!");
14489
14490  // For v = setjmp(buf), we generate
14491  //
14492  // thisMBB:
14493  //  buf[LabelOffset] = restoreMBB
14494  //  SjLjSetup restoreMBB
14495  //
14496  // mainMBB:
14497  //  v_main = 0
14498  //
14499  // sinkMBB:
14500  //  v = phi(main, restore)
14501  //
14502  // restoreMBB:
14503  //  v_restore = 1
14504
14505  MachineBasicBlock *thisMBB = MBB;
14506  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14507  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14508  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
14509  MF->insert(I, mainMBB);
14510  MF->insert(I, sinkMBB);
14511  MF->push_back(restoreMBB);
14512
14513  MachineInstrBuilder MIB;
14514
14515  // Transfer the remainder of BB and its successor edges to sinkMBB.
14516  sinkMBB->splice(sinkMBB->begin(), MBB,
14517                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14518  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14519
14520  // thisMBB:
14521  unsigned PtrStoreOpc = 0;
14522  unsigned LabelReg = 0;
14523  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14524  Reloc::Model RM = getTargetMachine().getRelocationModel();
14525  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
14526                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
14527
14528  // Prepare IP either in reg or imm.
14529  if (!UseImmLabel) {
14530    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
14531    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
14532    LabelReg = MRI.createVirtualRegister(PtrRC);
14533    if (Subtarget->is64Bit()) {
14534      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
14535              .addReg(X86::RIP)
14536              .addImm(0)
14537              .addReg(0)
14538              .addMBB(restoreMBB)
14539              .addReg(0);
14540    } else {
14541      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
14542      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
14543              .addReg(XII->getGlobalBaseReg(MF))
14544              .addImm(0)
14545              .addReg(0)
14546              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
14547              .addReg(0);
14548    }
14549  } else
14550    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
14551  // Store IP
14552  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
14553  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14554    if (i == X86::AddrDisp)
14555      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
14556    else
14557      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
14558  }
14559  if (!UseImmLabel)
14560    MIB.addReg(LabelReg);
14561  else
14562    MIB.addMBB(restoreMBB);
14563  MIB.setMemRefs(MMOBegin, MMOEnd);
14564  // Setup
14565  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
14566          .addMBB(restoreMBB);
14567  MIB.addRegMask(RegInfo->getNoPreservedMask());
14568  thisMBB->addSuccessor(mainMBB);
14569  thisMBB->addSuccessor(restoreMBB);
14570
14571  // mainMBB:
14572  //  EAX = 0
14573  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
14574  mainMBB->addSuccessor(sinkMBB);
14575
14576  // sinkMBB:
14577  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14578          TII->get(X86::PHI), DstReg)
14579    .addReg(mainDstReg).addMBB(mainMBB)
14580    .addReg(restoreDstReg).addMBB(restoreMBB);
14581
14582  // restoreMBB:
14583  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
14584  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
14585  restoreMBB->addSuccessor(sinkMBB);
14586
14587  MI->eraseFromParent();
14588  return sinkMBB;
14589}
14590
14591MachineBasicBlock *
14592X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
14593                                     MachineBasicBlock *MBB) const {
14594  DebugLoc DL = MI->getDebugLoc();
14595  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14596
14597  MachineFunction *MF = MBB->getParent();
14598  MachineRegisterInfo &MRI = MF->getRegInfo();
14599
14600  // Memory Reference
14601  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14602  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14603
14604  MVT PVT = getPointerTy();
14605  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14606         "Invalid Pointer Size!");
14607
14608  const TargetRegisterClass *RC =
14609    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
14610  unsigned Tmp = MRI.createVirtualRegister(RC);
14611  // Since FP is only updated here but NOT referenced, it's treated as GPR.
14612  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
14613  unsigned SP = RegInfo->getStackRegister();
14614
14615  MachineInstrBuilder MIB;
14616
14617  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14618  const int64_t SPOffset = 2 * PVT.getStoreSize();
14619
14620  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
14621  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
14622
14623  // Reload FP
14624  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
14625  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
14626    MIB.addOperand(MI->getOperand(i));
14627  MIB.setMemRefs(MMOBegin, MMOEnd);
14628  // Reload IP
14629  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
14630  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14631    if (i == X86::AddrDisp)
14632      MIB.addDisp(MI->getOperand(i), LabelOffset);
14633    else
14634      MIB.addOperand(MI->getOperand(i));
14635  }
14636  MIB.setMemRefs(MMOBegin, MMOEnd);
14637  // Reload SP
14638  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
14639  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14640    if (i == X86::AddrDisp)
14641      MIB.addDisp(MI->getOperand(i), SPOffset);
14642    else
14643      MIB.addOperand(MI->getOperand(i));
14644  }
14645  MIB.setMemRefs(MMOBegin, MMOEnd);
14646  // Jump
14647  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
14648
14649  MI->eraseFromParent();
14650  return MBB;
14651}
14652
14653MachineBasicBlock *
14654X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
14655                                               MachineBasicBlock *BB) const {
14656  switch (MI->getOpcode()) {
14657  default: llvm_unreachable("Unexpected instr type to insert");
14658  case X86::TAILJMPd64:
14659  case X86::TAILJMPr64:
14660  case X86::TAILJMPm64:
14661    llvm_unreachable("TAILJMP64 would not be touched here.");
14662  case X86::TCRETURNdi64:
14663  case X86::TCRETURNri64:
14664  case X86::TCRETURNmi64:
14665    return BB;
14666  case X86::WIN_ALLOCA:
14667    return EmitLoweredWinAlloca(MI, BB);
14668  case X86::SEG_ALLOCA_32:
14669    return EmitLoweredSegAlloca(MI, BB, false);
14670  case X86::SEG_ALLOCA_64:
14671    return EmitLoweredSegAlloca(MI, BB, true);
14672  case X86::TLSCall_32:
14673  case X86::TLSCall_64:
14674    return EmitLoweredTLSCall(MI, BB);
14675  case X86::CMOV_GR8:
14676  case X86::CMOV_FR32:
14677  case X86::CMOV_FR64:
14678  case X86::CMOV_V4F32:
14679  case X86::CMOV_V2F64:
14680  case X86::CMOV_V2I64:
14681  case X86::CMOV_V8F32:
14682  case X86::CMOV_V4F64:
14683  case X86::CMOV_V4I64:
14684  case X86::CMOV_GR16:
14685  case X86::CMOV_GR32:
14686  case X86::CMOV_RFP32:
14687  case X86::CMOV_RFP64:
14688  case X86::CMOV_RFP80:
14689    return EmitLoweredSelect(MI, BB);
14690
14691  case X86::FP32_TO_INT16_IN_MEM:
14692  case X86::FP32_TO_INT32_IN_MEM:
14693  case X86::FP32_TO_INT64_IN_MEM:
14694  case X86::FP64_TO_INT16_IN_MEM:
14695  case X86::FP64_TO_INT32_IN_MEM:
14696  case X86::FP64_TO_INT64_IN_MEM:
14697  case X86::FP80_TO_INT16_IN_MEM:
14698  case X86::FP80_TO_INT32_IN_MEM:
14699  case X86::FP80_TO_INT64_IN_MEM: {
14700    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14701    DebugLoc DL = MI->getDebugLoc();
14702
14703    // Change the floating point control register to use "round towards zero"
14704    // mode when truncating to an integer value.
14705    MachineFunction *F = BB->getParent();
14706    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
14707    addFrameReference(BuildMI(*BB, MI, DL,
14708                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
14709
14710    // Load the old value of the high byte of the control word...
14711    unsigned OldCW =
14712      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
14713    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
14714                      CWFrameIdx);
14715
14716    // Set the high part to be round to zero...
14717    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
14718      .addImm(0xC7F);
14719
14720    // Reload the modified control word now...
14721    addFrameReference(BuildMI(*BB, MI, DL,
14722                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14723
14724    // Restore the memory image of control word to original value
14725    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
14726      .addReg(OldCW);
14727
14728    // Get the X86 opcode to use.
14729    unsigned Opc;
14730    switch (MI->getOpcode()) {
14731    default: llvm_unreachable("illegal opcode!");
14732    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
14733    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
14734    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
14735    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
14736    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
14737    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
14738    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
14739    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
14740    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
14741    }
14742
14743    X86AddressMode AM;
14744    MachineOperand &Op = MI->getOperand(0);
14745    if (Op.isReg()) {
14746      AM.BaseType = X86AddressMode::RegBase;
14747      AM.Base.Reg = Op.getReg();
14748    } else {
14749      AM.BaseType = X86AddressMode::FrameIndexBase;
14750      AM.Base.FrameIndex = Op.getIndex();
14751    }
14752    Op = MI->getOperand(1);
14753    if (Op.isImm())
14754      AM.Scale = Op.getImm();
14755    Op = MI->getOperand(2);
14756    if (Op.isImm())
14757      AM.IndexReg = Op.getImm();
14758    Op = MI->getOperand(3);
14759    if (Op.isGlobal()) {
14760      AM.GV = Op.getGlobal();
14761    } else {
14762      AM.Disp = Op.getImm();
14763    }
14764    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
14765                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
14766
14767    // Reload the original control word now.
14768    addFrameReference(BuildMI(*BB, MI, DL,
14769                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14770
14771    MI->eraseFromParent();   // The pseudo instruction is gone now.
14772    return BB;
14773  }
14774    // String/text processing lowering.
14775  case X86::PCMPISTRM128REG:
14776  case X86::VPCMPISTRM128REG:
14777  case X86::PCMPISTRM128MEM:
14778  case X86::VPCMPISTRM128MEM:
14779  case X86::PCMPESTRM128REG:
14780  case X86::VPCMPESTRM128REG:
14781  case X86::PCMPESTRM128MEM:
14782  case X86::VPCMPESTRM128MEM:
14783    assert(Subtarget->hasSSE42() &&
14784           "Target must have SSE4.2 or AVX features enabled");
14785    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
14786
14787  // String/text processing lowering.
14788  case X86::PCMPISTRIREG:
14789  case X86::VPCMPISTRIREG:
14790  case X86::PCMPISTRIMEM:
14791  case X86::VPCMPISTRIMEM:
14792  case X86::PCMPESTRIREG:
14793  case X86::VPCMPESTRIREG:
14794  case X86::PCMPESTRIMEM:
14795  case X86::VPCMPESTRIMEM:
14796    assert(Subtarget->hasSSE42() &&
14797           "Target must have SSE4.2 or AVX features enabled");
14798    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
14799
14800  // Thread synchronization.
14801  case X86::MONITOR:
14802    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
14803
14804  // xbegin
14805  case X86::XBEGIN:
14806    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
14807
14808  // Atomic Lowering.
14809  case X86::ATOMAND8:
14810  case X86::ATOMAND16:
14811  case X86::ATOMAND32:
14812  case X86::ATOMAND64:
14813    // Fall through
14814  case X86::ATOMOR8:
14815  case X86::ATOMOR16:
14816  case X86::ATOMOR32:
14817  case X86::ATOMOR64:
14818    // Fall through
14819  case X86::ATOMXOR16:
14820  case X86::ATOMXOR8:
14821  case X86::ATOMXOR32:
14822  case X86::ATOMXOR64:
14823    // Fall through
14824  case X86::ATOMNAND8:
14825  case X86::ATOMNAND16:
14826  case X86::ATOMNAND32:
14827  case X86::ATOMNAND64:
14828    // Fall through
14829  case X86::ATOMMAX8:
14830  case X86::ATOMMAX16:
14831  case X86::ATOMMAX32:
14832  case X86::ATOMMAX64:
14833    // Fall through
14834  case X86::ATOMMIN8:
14835  case X86::ATOMMIN16:
14836  case X86::ATOMMIN32:
14837  case X86::ATOMMIN64:
14838    // Fall through
14839  case X86::ATOMUMAX8:
14840  case X86::ATOMUMAX16:
14841  case X86::ATOMUMAX32:
14842  case X86::ATOMUMAX64:
14843    // Fall through
14844  case X86::ATOMUMIN8:
14845  case X86::ATOMUMIN16:
14846  case X86::ATOMUMIN32:
14847  case X86::ATOMUMIN64:
14848    return EmitAtomicLoadArith(MI, BB);
14849
14850  // This group does 64-bit operations on a 32-bit host.
14851  case X86::ATOMAND6432:
14852  case X86::ATOMOR6432:
14853  case X86::ATOMXOR6432:
14854  case X86::ATOMNAND6432:
14855  case X86::ATOMADD6432:
14856  case X86::ATOMSUB6432:
14857  case X86::ATOMMAX6432:
14858  case X86::ATOMMIN6432:
14859  case X86::ATOMUMAX6432:
14860  case X86::ATOMUMIN6432:
14861  case X86::ATOMSWAP6432:
14862    return EmitAtomicLoadArith6432(MI, BB);
14863
14864  case X86::VASTART_SAVE_XMM_REGS:
14865    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
14866
14867  case X86::VAARG_64:
14868    return EmitVAARG64WithCustomInserter(MI, BB);
14869
14870  case X86::EH_SjLj_SetJmp32:
14871  case X86::EH_SjLj_SetJmp64:
14872    return emitEHSjLjSetJmp(MI, BB);
14873
14874  case X86::EH_SjLj_LongJmp32:
14875  case X86::EH_SjLj_LongJmp64:
14876    return emitEHSjLjLongJmp(MI, BB);
14877  }
14878}
14879
14880//===----------------------------------------------------------------------===//
14881//                           X86 Optimization Hooks
14882//===----------------------------------------------------------------------===//
14883
14884void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
14885                                                       APInt &KnownZero,
14886                                                       APInt &KnownOne,
14887                                                       const SelectionDAG &DAG,
14888                                                       unsigned Depth) const {
14889  unsigned BitWidth = KnownZero.getBitWidth();
14890  unsigned Opc = Op.getOpcode();
14891  assert((Opc >= ISD::BUILTIN_OP_END ||
14892          Opc == ISD::INTRINSIC_WO_CHAIN ||
14893          Opc == ISD::INTRINSIC_W_CHAIN ||
14894          Opc == ISD::INTRINSIC_VOID) &&
14895         "Should use MaskedValueIsZero if you don't know whether Op"
14896         " is a target node!");
14897
14898  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
14899  switch (Opc) {
14900  default: break;
14901  case X86ISD::ADD:
14902  case X86ISD::SUB:
14903  case X86ISD::ADC:
14904  case X86ISD::SBB:
14905  case X86ISD::SMUL:
14906  case X86ISD::UMUL:
14907  case X86ISD::INC:
14908  case X86ISD::DEC:
14909  case X86ISD::OR:
14910  case X86ISD::XOR:
14911  case X86ISD::AND:
14912    // These nodes' second result is a boolean.
14913    if (Op.getResNo() == 0)
14914      break;
14915    // Fallthrough
14916  case X86ISD::SETCC:
14917    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
14918    break;
14919  case ISD::INTRINSIC_WO_CHAIN: {
14920    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14921    unsigned NumLoBits = 0;
14922    switch (IntId) {
14923    default: break;
14924    case Intrinsic::x86_sse_movmsk_ps:
14925    case Intrinsic::x86_avx_movmsk_ps_256:
14926    case Intrinsic::x86_sse2_movmsk_pd:
14927    case Intrinsic::x86_avx_movmsk_pd_256:
14928    case Intrinsic::x86_mmx_pmovmskb:
14929    case Intrinsic::x86_sse2_pmovmskb_128:
14930    case Intrinsic::x86_avx2_pmovmskb: {
14931      // High bits of movmskp{s|d}, pmovmskb are known zero.
14932      switch (IntId) {
14933        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
14934        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
14935        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
14936        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
14937        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
14938        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
14939        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
14940        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
14941      }
14942      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
14943      break;
14944    }
14945    }
14946    break;
14947  }
14948  }
14949}
14950
14951unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
14952                                                         unsigned Depth) const {
14953  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
14954  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
14955    return Op.getValueType().getScalarType().getSizeInBits();
14956
14957  // Fallback case.
14958  return 1;
14959}
14960
14961/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
14962/// node is a GlobalAddress + offset.
14963bool X86TargetLowering::isGAPlusOffset(SDNode *N,
14964                                       const GlobalValue* &GA,
14965                                       int64_t &Offset) const {
14966  if (N->getOpcode() == X86ISD::Wrapper) {
14967    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
14968      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
14969      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
14970      return true;
14971    }
14972  }
14973  return TargetLowering::isGAPlusOffset(N, GA, Offset);
14974}
14975
14976/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
14977/// same as extracting the high 128-bit part of 256-bit vector and then
14978/// inserting the result into the low part of a new 256-bit vector
14979static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
14980  EVT VT = SVOp->getValueType(0);
14981  unsigned NumElems = VT.getVectorNumElements();
14982
14983  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14984  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
14985    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14986        SVOp->getMaskElt(j) >= 0)
14987      return false;
14988
14989  return true;
14990}
14991
14992/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
14993/// same as extracting the low 128-bit part of 256-bit vector and then
14994/// inserting the result into the high part of a new 256-bit vector
14995static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
14996  EVT VT = SVOp->getValueType(0);
14997  unsigned NumElems = VT.getVectorNumElements();
14998
14999  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
15000  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
15001    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
15002        SVOp->getMaskElt(j) >= 0)
15003      return false;
15004
15005  return true;
15006}
15007
15008/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
15009static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
15010                                        TargetLowering::DAGCombinerInfo &DCI,
15011                                        const X86Subtarget* Subtarget) {
15012  DebugLoc dl = N->getDebugLoc();
15013  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
15014  SDValue V1 = SVOp->getOperand(0);
15015  SDValue V2 = SVOp->getOperand(1);
15016  EVT VT = SVOp->getValueType(0);
15017  unsigned NumElems = VT.getVectorNumElements();
15018
15019  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
15020      V2.getOpcode() == ISD::CONCAT_VECTORS) {
15021    //
15022    //                   0,0,0,...
15023    //                      |
15024    //    V      UNDEF    BUILD_VECTOR    UNDEF
15025    //     \      /           \           /
15026    //  CONCAT_VECTOR         CONCAT_VECTOR
15027    //         \                  /
15028    //          \                /
15029    //          RESULT: V + zero extended
15030    //
15031    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
15032        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
15033        V1.getOperand(1).getOpcode() != ISD::UNDEF)
15034      return SDValue();
15035
15036    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
15037      return SDValue();
15038
15039    // To match the shuffle mask, the first half of the mask should
15040    // be exactly the first vector, and all the rest a splat with the
15041    // first element of the second one.
15042    for (unsigned i = 0; i != NumElems/2; ++i)
15043      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
15044          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
15045        return SDValue();
15046
15047    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
15048    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
15049      if (Ld->hasNUsesOfValue(1, 0)) {
15050        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
15051        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
15052        SDValue ResNode =
15053          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
15054                                  Ld->getMemoryVT(),
15055                                  Ld->getPointerInfo(),
15056                                  Ld->getAlignment(),
15057                                  false/*isVolatile*/, true/*ReadMem*/,
15058                                  false/*WriteMem*/);
15059
15060        // Make sure the newly-created LOAD is in the same position as Ld in
15061        // terms of dependency. We create a TokenFactor for Ld and ResNode,
15062        // and update uses of Ld's output chain to use the TokenFactor.
15063        if (Ld->hasAnyUseOfValue(1)) {
15064          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15065                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
15066          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
15067          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
15068                                 SDValue(ResNode.getNode(), 1));
15069        }
15070
15071        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
15072      }
15073    }
15074
15075    // Emit a zeroed vector and insert the desired subvector on its
15076    // first half.
15077    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
15078    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
15079    return DCI.CombineTo(N, InsV);
15080  }
15081
15082  //===--------------------------------------------------------------------===//
15083  // Combine some shuffles into subvector extracts and inserts:
15084  //
15085
15086  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
15087  if (isShuffleHigh128VectorInsertLow(SVOp)) {
15088    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
15089    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
15090    return DCI.CombineTo(N, InsV);
15091  }
15092
15093  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
15094  if (isShuffleLow128VectorInsertHigh(SVOp)) {
15095    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
15096    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
15097    return DCI.CombineTo(N, InsV);
15098  }
15099
15100  return SDValue();
15101}
15102
15103/// PerformShuffleCombine - Performs several different shuffle combines.
15104static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
15105                                     TargetLowering::DAGCombinerInfo &DCI,
15106                                     const X86Subtarget *Subtarget) {
15107  DebugLoc dl = N->getDebugLoc();
15108  EVT VT = N->getValueType(0);
15109
15110  // Don't create instructions with illegal types after legalize types has run.
15111  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15112  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
15113    return SDValue();
15114
15115  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
15116  if (Subtarget->hasFp256() && VT.is256BitVector() &&
15117      N->getOpcode() == ISD::VECTOR_SHUFFLE)
15118    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
15119
15120  // Only handle 128 wide vector from here on.
15121  if (!VT.is128BitVector())
15122    return SDValue();
15123
15124  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
15125  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
15126  // consecutive, non-overlapping, and in the right order.
15127  SmallVector<SDValue, 16> Elts;
15128  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
15129    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
15130
15131  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
15132}
15133
15134/// PerformTruncateCombine - Converts truncate operation to
15135/// a sequence of vector shuffle operations.
15136/// It is possible when we truncate 256-bit vector to 128-bit vector
15137static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
15138                                      TargetLowering::DAGCombinerInfo &DCI,
15139                                      const X86Subtarget *Subtarget)  {
15140  return SDValue();
15141}
15142
15143/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
15144/// specific shuffle of a load can be folded into a single element load.
15145/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
15146/// shuffles have been customed lowered so we need to handle those here.
15147static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
15148                                         TargetLowering::DAGCombinerInfo &DCI) {
15149  if (DCI.isBeforeLegalizeOps())
15150    return SDValue();
15151
15152  SDValue InVec = N->getOperand(0);
15153  SDValue EltNo = N->getOperand(1);
15154
15155  if (!isa<ConstantSDNode>(EltNo))
15156    return SDValue();
15157
15158  EVT VT = InVec.getValueType();
15159
15160  bool HasShuffleIntoBitcast = false;
15161  if (InVec.getOpcode() == ISD::BITCAST) {
15162    // Don't duplicate a load with other uses.
15163    if (!InVec.hasOneUse())
15164      return SDValue();
15165    EVT BCVT = InVec.getOperand(0).getValueType();
15166    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
15167      return SDValue();
15168    InVec = InVec.getOperand(0);
15169    HasShuffleIntoBitcast = true;
15170  }
15171
15172  if (!isTargetShuffle(InVec.getOpcode()))
15173    return SDValue();
15174
15175  // Don't duplicate a load with other uses.
15176  if (!InVec.hasOneUse())
15177    return SDValue();
15178
15179  SmallVector<int, 16> ShuffleMask;
15180  bool UnaryShuffle;
15181  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
15182                            UnaryShuffle))
15183    return SDValue();
15184
15185  // Select the input vector, guarding against out of range extract vector.
15186  unsigned NumElems = VT.getVectorNumElements();
15187  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
15188  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
15189  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
15190                                         : InVec.getOperand(1);
15191
15192  // If inputs to shuffle are the same for both ops, then allow 2 uses
15193  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
15194
15195  if (LdNode.getOpcode() == ISD::BITCAST) {
15196    // Don't duplicate a load with other uses.
15197    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
15198      return SDValue();
15199
15200    AllowedUses = 1; // only allow 1 load use if we have a bitcast
15201    LdNode = LdNode.getOperand(0);
15202  }
15203
15204  if (!ISD::isNormalLoad(LdNode.getNode()))
15205    return SDValue();
15206
15207  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
15208
15209  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
15210    return SDValue();
15211
15212  if (HasShuffleIntoBitcast) {
15213    // If there's a bitcast before the shuffle, check if the load type and
15214    // alignment is valid.
15215    unsigned Align = LN0->getAlignment();
15216    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15217    unsigned NewAlign = TLI.getDataLayout()->
15218      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
15219
15220    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
15221      return SDValue();
15222  }
15223
15224  // All checks match so transform back to vector_shuffle so that DAG combiner
15225  // can finish the job
15226  DebugLoc dl = N->getDebugLoc();
15227
15228  // Create shuffle node taking into account the case that its a unary shuffle
15229  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
15230  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
15231                                 InVec.getOperand(0), Shuffle,
15232                                 &ShuffleMask[0]);
15233  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
15234  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
15235                     EltNo);
15236}
15237
15238/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
15239/// generation and convert it from being a bunch of shuffles and extracts
15240/// to a simple store and scalar loads to extract the elements.
15241static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
15242                                         TargetLowering::DAGCombinerInfo &DCI) {
15243  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
15244  if (NewOp.getNode())
15245    return NewOp;
15246
15247  SDValue InputVector = N->getOperand(0);
15248  // Detect whether we are trying to convert from mmx to i32 and the bitcast
15249  // from mmx to v2i32 has a single usage.
15250  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
15251      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
15252      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
15253    return DAG.getNode(X86ISD::MMX_MOVD2W, InputVector.getDebugLoc(),
15254                       N->getValueType(0),
15255                       InputVector.getNode()->getOperand(0));
15256
15257  // Only operate on vectors of 4 elements, where the alternative shuffling
15258  // gets to be more expensive.
15259  if (InputVector.getValueType() != MVT::v4i32)
15260    return SDValue();
15261
15262  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
15263  // single use which is a sign-extend or zero-extend, and all elements are
15264  // used.
15265  SmallVector<SDNode *, 4> Uses;
15266  unsigned ExtractedElements = 0;
15267  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
15268       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
15269    if (UI.getUse().getResNo() != InputVector.getResNo())
15270      return SDValue();
15271
15272    SDNode *Extract = *UI;
15273    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
15274      return SDValue();
15275
15276    if (Extract->getValueType(0) != MVT::i32)
15277      return SDValue();
15278    if (!Extract->hasOneUse())
15279      return SDValue();
15280    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
15281        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
15282      return SDValue();
15283    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
15284      return SDValue();
15285
15286    // Record which element was extracted.
15287    ExtractedElements |=
15288      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
15289
15290    Uses.push_back(Extract);
15291  }
15292
15293  // If not all the elements were used, this may not be worthwhile.
15294  if (ExtractedElements != 15)
15295    return SDValue();
15296
15297  // Ok, we've now decided to do the transformation.
15298  DebugLoc dl = InputVector.getDebugLoc();
15299
15300  // Store the value to a temporary stack slot.
15301  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
15302  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
15303                            MachinePointerInfo(), false, false, 0);
15304
15305  // Replace each use (extract) with a load of the appropriate element.
15306  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
15307       UE = Uses.end(); UI != UE; ++UI) {
15308    SDNode *Extract = *UI;
15309
15310    // cOMpute the element's address.
15311    SDValue Idx = Extract->getOperand(1);
15312    unsigned EltSize =
15313        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
15314    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
15315    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15316    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
15317
15318    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
15319                                     StackPtr, OffsetVal);
15320
15321    // Load the scalar.
15322    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
15323                                     ScalarAddr, MachinePointerInfo(),
15324                                     false, false, false, 0);
15325
15326    // Replace the exact with the load.
15327    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
15328  }
15329
15330  // The replacement was made in place; don't return anything.
15331  return SDValue();
15332}
15333
15334/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
15335static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
15336                                   SDValue RHS, SelectionDAG &DAG,
15337                                   const X86Subtarget *Subtarget) {
15338  if (!VT.isVector())
15339    return 0;
15340
15341  switch (VT.getSimpleVT().SimpleTy) {
15342  default: return 0;
15343  case MVT::v32i8:
15344  case MVT::v16i16:
15345  case MVT::v8i32:
15346    if (!Subtarget->hasAVX2())
15347      return 0;
15348  case MVT::v16i8:
15349  case MVT::v8i16:
15350  case MVT::v4i32:
15351    if (!Subtarget->hasSSE2())
15352      return 0;
15353  }
15354
15355  // SSE2 has only a small subset of the operations.
15356  bool hasUnsigned = Subtarget->hasSSE41() ||
15357                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
15358  bool hasSigned = Subtarget->hasSSE41() ||
15359                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
15360
15361  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15362
15363  // Check for x CC y ? x : y.
15364  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15365      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15366    switch (CC) {
15367    default: break;
15368    case ISD::SETULT:
15369    case ISD::SETULE:
15370      return hasUnsigned ? X86ISD::UMIN : 0;
15371    case ISD::SETUGT:
15372    case ISD::SETUGE:
15373      return hasUnsigned ? X86ISD::UMAX : 0;
15374    case ISD::SETLT:
15375    case ISD::SETLE:
15376      return hasSigned ? X86ISD::SMIN : 0;
15377    case ISD::SETGT:
15378    case ISD::SETGE:
15379      return hasSigned ? X86ISD::SMAX : 0;
15380    }
15381  // Check for x CC y ? y : x -- a min/max with reversed arms.
15382  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
15383             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
15384    switch (CC) {
15385    default: break;
15386    case ISD::SETULT:
15387    case ISD::SETULE:
15388      return hasUnsigned ? X86ISD::UMAX : 0;
15389    case ISD::SETUGT:
15390    case ISD::SETUGE:
15391      return hasUnsigned ? X86ISD::UMIN : 0;
15392    case ISD::SETLT:
15393    case ISD::SETLE:
15394      return hasSigned ? X86ISD::SMAX : 0;
15395    case ISD::SETGT:
15396    case ISD::SETGE:
15397      return hasSigned ? X86ISD::SMIN : 0;
15398    }
15399  }
15400
15401  return 0;
15402}
15403
15404/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
15405/// nodes.
15406static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
15407                                    TargetLowering::DAGCombinerInfo &DCI,
15408                                    const X86Subtarget *Subtarget) {
15409  DebugLoc DL = N->getDebugLoc();
15410  SDValue Cond = N->getOperand(0);
15411  // Get the LHS/RHS of the select.
15412  SDValue LHS = N->getOperand(1);
15413  SDValue RHS = N->getOperand(2);
15414  EVT VT = LHS.getValueType();
15415
15416  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
15417  // instructions match the semantics of the common C idiom x<y?x:y but not
15418  // x<=y?x:y, because of how they handle negative zero (which can be
15419  // ignored in unsafe-math mode).
15420  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
15421      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
15422      (Subtarget->hasSSE2() ||
15423       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
15424    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15425
15426    unsigned Opcode = 0;
15427    // Check for x CC y ? x : y.
15428    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15429        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15430      switch (CC) {
15431      default: break;
15432      case ISD::SETULT:
15433        // Converting this to a min would handle NaNs incorrectly, and swapping
15434        // the operands would cause it to handle comparisons between positive
15435        // and negative zero incorrectly.
15436        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15437          if (!DAG.getTarget().Options.UnsafeFPMath &&
15438              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15439            break;
15440          std::swap(LHS, RHS);
15441        }
15442        Opcode = X86ISD::FMIN;
15443        break;
15444      case ISD::SETOLE:
15445        // Converting this to a min would handle comparisons between positive
15446        // and negative zero incorrectly.
15447        if (!DAG.getTarget().Options.UnsafeFPMath &&
15448            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15449          break;
15450        Opcode = X86ISD::FMIN;
15451        break;
15452      case ISD::SETULE:
15453        // Converting this to a min would handle both negative zeros and NaNs
15454        // incorrectly, but we can swap the operands to fix both.
15455        std::swap(LHS, RHS);
15456      case ISD::SETOLT:
15457      case ISD::SETLT:
15458      case ISD::SETLE:
15459        Opcode = X86ISD::FMIN;
15460        break;
15461
15462      case ISD::SETOGE:
15463        // Converting this to a max would handle comparisons between positive
15464        // and negative zero incorrectly.
15465        if (!DAG.getTarget().Options.UnsafeFPMath &&
15466            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15467          break;
15468        Opcode = X86ISD::FMAX;
15469        break;
15470      case ISD::SETUGT:
15471        // Converting this to a max would handle NaNs incorrectly, and swapping
15472        // the operands would cause it to handle comparisons between positive
15473        // and negative zero incorrectly.
15474        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15475          if (!DAG.getTarget().Options.UnsafeFPMath &&
15476              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15477            break;
15478          std::swap(LHS, RHS);
15479        }
15480        Opcode = X86ISD::FMAX;
15481        break;
15482      case ISD::SETUGE:
15483        // Converting this to a max would handle both negative zeros and NaNs
15484        // incorrectly, but we can swap the operands to fix both.
15485        std::swap(LHS, RHS);
15486      case ISD::SETOGT:
15487      case ISD::SETGT:
15488      case ISD::SETGE:
15489        Opcode = X86ISD::FMAX;
15490        break;
15491      }
15492    // Check for x CC y ? y : x -- a min/max with reversed arms.
15493    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
15494               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
15495      switch (CC) {
15496      default: break;
15497      case ISD::SETOGE:
15498        // Converting this to a min would handle comparisons between positive
15499        // and negative zero incorrectly, and swapping the operands would
15500        // cause it to handle NaNs incorrectly.
15501        if (!DAG.getTarget().Options.UnsafeFPMath &&
15502            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
15503          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15504            break;
15505          std::swap(LHS, RHS);
15506        }
15507        Opcode = X86ISD::FMIN;
15508        break;
15509      case ISD::SETUGT:
15510        // Converting this to a min would handle NaNs incorrectly.
15511        if (!DAG.getTarget().Options.UnsafeFPMath &&
15512            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
15513          break;
15514        Opcode = X86ISD::FMIN;
15515        break;
15516      case ISD::SETUGE:
15517        // Converting this to a min would handle both negative zeros and NaNs
15518        // incorrectly, but we can swap the operands to fix both.
15519        std::swap(LHS, RHS);
15520      case ISD::SETOGT:
15521      case ISD::SETGT:
15522      case ISD::SETGE:
15523        Opcode = X86ISD::FMIN;
15524        break;
15525
15526      case ISD::SETULT:
15527        // Converting this to a max would handle NaNs incorrectly.
15528        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15529          break;
15530        Opcode = X86ISD::FMAX;
15531        break;
15532      case ISD::SETOLE:
15533        // Converting this to a max would handle comparisons between positive
15534        // and negative zero incorrectly, and swapping the operands would
15535        // cause it to handle NaNs incorrectly.
15536        if (!DAG.getTarget().Options.UnsafeFPMath &&
15537            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
15538          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15539            break;
15540          std::swap(LHS, RHS);
15541        }
15542        Opcode = X86ISD::FMAX;
15543        break;
15544      case ISD::SETULE:
15545        // Converting this to a max would handle both negative zeros and NaNs
15546        // incorrectly, but we can swap the operands to fix both.
15547        std::swap(LHS, RHS);
15548      case ISD::SETOLT:
15549      case ISD::SETLT:
15550      case ISD::SETLE:
15551        Opcode = X86ISD::FMAX;
15552        break;
15553      }
15554    }
15555
15556    if (Opcode)
15557      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
15558  }
15559
15560  // If this is a select between two integer constants, try to do some
15561  // optimizations.
15562  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
15563    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
15564      // Don't do this for crazy integer types.
15565      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
15566        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
15567        // so that TrueC (the true value) is larger than FalseC.
15568        bool NeedsCondInvert = false;
15569
15570        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
15571            // Efficiently invertible.
15572            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
15573             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
15574              isa<ConstantSDNode>(Cond.getOperand(1))))) {
15575          NeedsCondInvert = true;
15576          std::swap(TrueC, FalseC);
15577        }
15578
15579        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
15580        if (FalseC->getAPIntValue() == 0 &&
15581            TrueC->getAPIntValue().isPowerOf2()) {
15582          if (NeedsCondInvert) // Invert the condition if needed.
15583            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15584                               DAG.getConstant(1, Cond.getValueType()));
15585
15586          // Zero extend the condition if needed.
15587          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
15588
15589          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15590          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
15591                             DAG.getConstant(ShAmt, MVT::i8));
15592        }
15593
15594        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
15595        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15596          if (NeedsCondInvert) // Invert the condition if needed.
15597            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15598                               DAG.getConstant(1, Cond.getValueType()));
15599
15600          // Zero extend the condition if needed.
15601          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15602                             FalseC->getValueType(0), Cond);
15603          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15604                             SDValue(FalseC, 0));
15605        }
15606
15607        // Optimize cases that will turn into an LEA instruction.  This requires
15608        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15609        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15610          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15611          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15612
15613          bool isFastMultiplier = false;
15614          if (Diff < 10) {
15615            switch ((unsigned char)Diff) {
15616              default: break;
15617              case 1:  // result = add base, cond
15618              case 2:  // result = lea base(    , cond*2)
15619              case 3:  // result = lea base(cond, cond*2)
15620              case 4:  // result = lea base(    , cond*4)
15621              case 5:  // result = lea base(cond, cond*4)
15622              case 8:  // result = lea base(    , cond*8)
15623              case 9:  // result = lea base(cond, cond*8)
15624                isFastMultiplier = true;
15625                break;
15626            }
15627          }
15628
15629          if (isFastMultiplier) {
15630            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15631            if (NeedsCondInvert) // Invert the condition if needed.
15632              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15633                                 DAG.getConstant(1, Cond.getValueType()));
15634
15635            // Zero extend the condition if needed.
15636            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15637                               Cond);
15638            // Scale the condition by the difference.
15639            if (Diff != 1)
15640              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15641                                 DAG.getConstant(Diff, Cond.getValueType()));
15642
15643            // Add the base if non-zero.
15644            if (FalseC->getAPIntValue() != 0)
15645              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15646                                 SDValue(FalseC, 0));
15647            return Cond;
15648          }
15649        }
15650      }
15651  }
15652
15653  // Canonicalize max and min:
15654  // (x > y) ? x : y -> (x >= y) ? x : y
15655  // (x < y) ? x : y -> (x <= y) ? x : y
15656  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
15657  // the need for an extra compare
15658  // against zero. e.g.
15659  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
15660  // subl   %esi, %edi
15661  // testl  %edi, %edi
15662  // movl   $0, %eax
15663  // cmovgl %edi, %eax
15664  // =>
15665  // xorl   %eax, %eax
15666  // subl   %esi, $edi
15667  // cmovsl %eax, %edi
15668  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
15669      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15670      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15671    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15672    switch (CC) {
15673    default: break;
15674    case ISD::SETLT:
15675    case ISD::SETGT: {
15676      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
15677      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
15678                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
15679      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
15680    }
15681    }
15682  }
15683
15684  // Match VSELECTs into subs with unsigned saturation.
15685  if (!DCI.isBeforeLegalize() &&
15686      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
15687      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
15688      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
15689       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
15690    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15691
15692    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
15693    // left side invert the predicate to simplify logic below.
15694    SDValue Other;
15695    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
15696      Other = RHS;
15697      CC = ISD::getSetCCInverse(CC, true);
15698    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
15699      Other = LHS;
15700    }
15701
15702    if (Other.getNode() && Other->getNumOperands() == 2 &&
15703        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
15704      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
15705      SDValue CondRHS = Cond->getOperand(1);
15706
15707      // Look for a general sub with unsigned saturation first.
15708      // x >= y ? x-y : 0 --> subus x, y
15709      // x >  y ? x-y : 0 --> subus x, y
15710      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
15711          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
15712        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15713
15714      // If the RHS is a constant we have to reverse the const canonicalization.
15715      // x > C-1 ? x+-C : 0 --> subus x, C
15716      if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
15717          isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
15718        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15719        if (CondRHS.getConstantOperandVal(0) == -A-1)
15720          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
15721                             DAG.getConstant(-A, VT));
15722      }
15723
15724      // Another special case: If C was a sign bit, the sub has been
15725      // canonicalized into a xor.
15726      // FIXME: Would it be better to use ComputeMaskedBits to determine whether
15727      //        it's safe to decanonicalize the xor?
15728      // x s< 0 ? x^C : 0 --> subus x, C
15729      if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
15730          ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
15731          isSplatVector(OpRHS.getNode())) {
15732        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15733        if (A.isSignBit())
15734          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15735      }
15736    }
15737  }
15738
15739  // Try to match a min/max vector operation.
15740  if (!DCI.isBeforeLegalize() &&
15741      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC)
15742    if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget))
15743      return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS);
15744
15745  // If we know that this node is legal then we know that it is going to be
15746  // matched by one of the SSE/AVX BLEND instructions. These instructions only
15747  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
15748  // to simplify previous instructions.
15749  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15750  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
15751      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
15752    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
15753
15754    // Don't optimize vector selects that map to mask-registers.
15755    if (BitWidth == 1)
15756      return SDValue();
15757
15758    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
15759    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
15760
15761    APInt KnownZero, KnownOne;
15762    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
15763                                          DCI.isBeforeLegalizeOps());
15764    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
15765        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
15766      DCI.CommitTargetLoweringOpt(TLO);
15767  }
15768
15769  return SDValue();
15770}
15771
15772// Check whether a boolean test is testing a boolean value generated by
15773// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
15774// code.
15775//
15776// Simplify the following patterns:
15777// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
15778// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
15779// to (Op EFLAGS Cond)
15780//
15781// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
15782// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
15783// to (Op EFLAGS !Cond)
15784//
15785// where Op could be BRCOND or CMOV.
15786//
15787static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
15788  // Quit if not CMP and SUB with its value result used.
15789  if (Cmp.getOpcode() != X86ISD::CMP &&
15790      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
15791      return SDValue();
15792
15793  // Quit if not used as a boolean value.
15794  if (CC != X86::COND_E && CC != X86::COND_NE)
15795    return SDValue();
15796
15797  // Check CMP operands. One of them should be 0 or 1 and the other should be
15798  // an SetCC or extended from it.
15799  SDValue Op1 = Cmp.getOperand(0);
15800  SDValue Op2 = Cmp.getOperand(1);
15801
15802  SDValue SetCC;
15803  const ConstantSDNode* C = 0;
15804  bool needOppositeCond = (CC == X86::COND_E);
15805
15806  if ((C = dyn_cast<ConstantSDNode>(Op1)))
15807    SetCC = Op2;
15808  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
15809    SetCC = Op1;
15810  else // Quit if all operands are not constants.
15811    return SDValue();
15812
15813  if (C->getZExtValue() == 1)
15814    needOppositeCond = !needOppositeCond;
15815  else if (C->getZExtValue() != 0)
15816    // Quit if the constant is neither 0 or 1.
15817    return SDValue();
15818
15819  // Skip 'zext' node.
15820  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
15821    SetCC = SetCC.getOperand(0);
15822
15823  switch (SetCC.getOpcode()) {
15824  case X86ISD::SETCC:
15825    // Set the condition code or opposite one if necessary.
15826    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
15827    if (needOppositeCond)
15828      CC = X86::GetOppositeBranchCondition(CC);
15829    return SetCC.getOperand(1);
15830  case X86ISD::CMOV: {
15831    // Check whether false/true value has canonical one, i.e. 0 or 1.
15832    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
15833    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
15834    // Quit if true value is not a constant.
15835    if (!TVal)
15836      return SDValue();
15837    // Quit if false value is not a constant.
15838    if (!FVal) {
15839      // A special case for rdrand, where 0 is set if false cond is found.
15840      SDValue Op = SetCC.getOperand(0);
15841      if (Op.getOpcode() != X86ISD::RDRAND)
15842        return SDValue();
15843    }
15844    // Quit if false value is not the constant 0 or 1.
15845    bool FValIsFalse = true;
15846    if (FVal && FVal->getZExtValue() != 0) {
15847      if (FVal->getZExtValue() != 1)
15848        return SDValue();
15849      // If FVal is 1, opposite cond is needed.
15850      needOppositeCond = !needOppositeCond;
15851      FValIsFalse = false;
15852    }
15853    // Quit if TVal is not the constant opposite of FVal.
15854    if (FValIsFalse && TVal->getZExtValue() != 1)
15855      return SDValue();
15856    if (!FValIsFalse && TVal->getZExtValue() != 0)
15857      return SDValue();
15858    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
15859    if (needOppositeCond)
15860      CC = X86::GetOppositeBranchCondition(CC);
15861    return SetCC.getOperand(3);
15862  }
15863  }
15864
15865  return SDValue();
15866}
15867
15868/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
15869static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
15870                                  TargetLowering::DAGCombinerInfo &DCI,
15871                                  const X86Subtarget *Subtarget) {
15872  DebugLoc DL = N->getDebugLoc();
15873
15874  // If the flag operand isn't dead, don't touch this CMOV.
15875  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
15876    return SDValue();
15877
15878  SDValue FalseOp = N->getOperand(0);
15879  SDValue TrueOp = N->getOperand(1);
15880  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
15881  SDValue Cond = N->getOperand(3);
15882
15883  if (CC == X86::COND_E || CC == X86::COND_NE) {
15884    switch (Cond.getOpcode()) {
15885    default: break;
15886    case X86ISD::BSR:
15887    case X86ISD::BSF:
15888      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
15889      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
15890        return (CC == X86::COND_E) ? FalseOp : TrueOp;
15891    }
15892  }
15893
15894  SDValue Flags;
15895
15896  Flags = checkBoolTestSetCCCombine(Cond, CC);
15897  if (Flags.getNode() &&
15898      // Extra check as FCMOV only supports a subset of X86 cond.
15899      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
15900    SDValue Ops[] = { FalseOp, TrueOp,
15901                      DAG.getConstant(CC, MVT::i8), Flags };
15902    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
15903                       Ops, array_lengthof(Ops));
15904  }
15905
15906  // If this is a select between two integer constants, try to do some
15907  // optimizations.  Note that the operands are ordered the opposite of SELECT
15908  // operands.
15909  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
15910    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
15911      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
15912      // larger than FalseC (the false value).
15913      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
15914        CC = X86::GetOppositeBranchCondition(CC);
15915        std::swap(TrueC, FalseC);
15916        std::swap(TrueOp, FalseOp);
15917      }
15918
15919      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
15920      // This is efficient for any integer data type (including i8/i16) and
15921      // shift amount.
15922      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
15923        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15924                           DAG.getConstant(CC, MVT::i8), Cond);
15925
15926        // Zero extend the condition if needed.
15927        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
15928
15929        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15930        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
15931                           DAG.getConstant(ShAmt, MVT::i8));
15932        if (N->getNumValues() == 2)  // Dead flag value?
15933          return DCI.CombineTo(N, Cond, SDValue());
15934        return Cond;
15935      }
15936
15937      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
15938      // for any integer data type, including i8/i16.
15939      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15940        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15941                           DAG.getConstant(CC, MVT::i8), Cond);
15942
15943        // Zero extend the condition if needed.
15944        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15945                           FalseC->getValueType(0), Cond);
15946        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15947                           SDValue(FalseC, 0));
15948
15949        if (N->getNumValues() == 2)  // Dead flag value?
15950          return DCI.CombineTo(N, Cond, SDValue());
15951        return Cond;
15952      }
15953
15954      // Optimize cases that will turn into an LEA instruction.  This requires
15955      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15956      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15957        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15958        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15959
15960        bool isFastMultiplier = false;
15961        if (Diff < 10) {
15962          switch ((unsigned char)Diff) {
15963          default: break;
15964          case 1:  // result = add base, cond
15965          case 2:  // result = lea base(    , cond*2)
15966          case 3:  // result = lea base(cond, cond*2)
15967          case 4:  // result = lea base(    , cond*4)
15968          case 5:  // result = lea base(cond, cond*4)
15969          case 8:  // result = lea base(    , cond*8)
15970          case 9:  // result = lea base(cond, cond*8)
15971            isFastMultiplier = true;
15972            break;
15973          }
15974        }
15975
15976        if (isFastMultiplier) {
15977          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15978          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15979                             DAG.getConstant(CC, MVT::i8), Cond);
15980          // Zero extend the condition if needed.
15981          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15982                             Cond);
15983          // Scale the condition by the difference.
15984          if (Diff != 1)
15985            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15986                               DAG.getConstant(Diff, Cond.getValueType()));
15987
15988          // Add the base if non-zero.
15989          if (FalseC->getAPIntValue() != 0)
15990            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15991                               SDValue(FalseC, 0));
15992          if (N->getNumValues() == 2)  // Dead flag value?
15993            return DCI.CombineTo(N, Cond, SDValue());
15994          return Cond;
15995        }
15996      }
15997    }
15998  }
15999
16000  // Handle these cases:
16001  //   (select (x != c), e, c) -> select (x != c), e, x),
16002  //   (select (x == c), c, e) -> select (x == c), x, e)
16003  // where the c is an integer constant, and the "select" is the combination
16004  // of CMOV and CMP.
16005  //
16006  // The rationale for this change is that the conditional-move from a constant
16007  // needs two instructions, however, conditional-move from a register needs
16008  // only one instruction.
16009  //
16010  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
16011  //  some instruction-combining opportunities. This opt needs to be
16012  //  postponed as late as possible.
16013  //
16014  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
16015    // the DCI.xxxx conditions are provided to postpone the optimization as
16016    // late as possible.
16017
16018    ConstantSDNode *CmpAgainst = 0;
16019    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
16020        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
16021        !isa<ConstantSDNode>(Cond.getOperand(0))) {
16022
16023      if (CC == X86::COND_NE &&
16024          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
16025        CC = X86::GetOppositeBranchCondition(CC);
16026        std::swap(TrueOp, FalseOp);
16027      }
16028
16029      if (CC == X86::COND_E &&
16030          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
16031        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
16032                          DAG.getConstant(CC, MVT::i8), Cond };
16033        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
16034                           array_lengthof(Ops));
16035      }
16036    }
16037  }
16038
16039  return SDValue();
16040}
16041
16042/// PerformMulCombine - Optimize a single multiply with constant into two
16043/// in order to implement it with two cheaper instructions, e.g.
16044/// LEA + SHL, LEA + LEA.
16045static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
16046                                 TargetLowering::DAGCombinerInfo &DCI) {
16047  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
16048    return SDValue();
16049
16050  EVT VT = N->getValueType(0);
16051  if (VT != MVT::i64)
16052    return SDValue();
16053
16054  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
16055  if (!C)
16056    return SDValue();
16057  uint64_t MulAmt = C->getZExtValue();
16058  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
16059    return SDValue();
16060
16061  uint64_t MulAmt1 = 0;
16062  uint64_t MulAmt2 = 0;
16063  if ((MulAmt % 9) == 0) {
16064    MulAmt1 = 9;
16065    MulAmt2 = MulAmt / 9;
16066  } else if ((MulAmt % 5) == 0) {
16067    MulAmt1 = 5;
16068    MulAmt2 = MulAmt / 5;
16069  } else if ((MulAmt % 3) == 0) {
16070    MulAmt1 = 3;
16071    MulAmt2 = MulAmt / 3;
16072  }
16073  if (MulAmt2 &&
16074      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
16075    DebugLoc DL = N->getDebugLoc();
16076
16077    if (isPowerOf2_64(MulAmt2) &&
16078        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
16079      // If second multiplifer is pow2, issue it first. We want the multiply by
16080      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
16081      // is an add.
16082      std::swap(MulAmt1, MulAmt2);
16083
16084    SDValue NewMul;
16085    if (isPowerOf2_64(MulAmt1))
16086      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16087                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
16088    else
16089      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
16090                           DAG.getConstant(MulAmt1, VT));
16091
16092    if (isPowerOf2_64(MulAmt2))
16093      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
16094                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
16095    else
16096      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
16097                           DAG.getConstant(MulAmt2, VT));
16098
16099    // Do not add new nodes to DAG combiner worklist.
16100    DCI.CombineTo(N, NewMul, false);
16101  }
16102  return SDValue();
16103}
16104
16105static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
16106  SDValue N0 = N->getOperand(0);
16107  SDValue N1 = N->getOperand(1);
16108  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
16109  EVT VT = N0.getValueType();
16110
16111  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
16112  // since the result of setcc_c is all zero's or all ones.
16113  if (VT.isInteger() && !VT.isVector() &&
16114      N1C && N0.getOpcode() == ISD::AND &&
16115      N0.getOperand(1).getOpcode() == ISD::Constant) {
16116    SDValue N00 = N0.getOperand(0);
16117    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
16118        ((N00.getOpcode() == ISD::ANY_EXTEND ||
16119          N00.getOpcode() == ISD::ZERO_EXTEND) &&
16120         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
16121      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
16122      APInt ShAmt = N1C->getAPIntValue();
16123      Mask = Mask.shl(ShAmt);
16124      if (Mask != 0)
16125        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
16126                           N00, DAG.getConstant(Mask, VT));
16127    }
16128  }
16129
16130  // Hardware support for vector shifts is sparse which makes us scalarize the
16131  // vector operations in many cases. Also, on sandybridge ADD is faster than
16132  // shl.
16133  // (shl V, 1) -> add V,V
16134  if (isSplatVector(N1.getNode())) {
16135    assert(N0.getValueType().isVector() && "Invalid vector shift type");
16136    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
16137    // We shift all of the values by one. In many cases we do not have
16138    // hardware support for this operation. This is better expressed as an ADD
16139    // of two values.
16140    if (N1C && (1 == N1C->getZExtValue())) {
16141      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
16142    }
16143  }
16144
16145  return SDValue();
16146}
16147
16148/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
16149///                       when possible.
16150static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
16151                                   TargetLowering::DAGCombinerInfo &DCI,
16152                                   const X86Subtarget *Subtarget) {
16153  if (N->getOpcode() == ISD::SHL) {
16154    SDValue V = PerformSHLCombine(N, DAG);
16155    if (V.getNode()) return V;
16156  }
16157
16158  return SDValue();
16159}
16160
16161// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
16162// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
16163// and friends.  Likewise for OR -> CMPNEQSS.
16164static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
16165                            TargetLowering::DAGCombinerInfo &DCI,
16166                            const X86Subtarget *Subtarget) {
16167  unsigned opcode;
16168
16169  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
16170  // we're requiring SSE2 for both.
16171  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
16172    SDValue N0 = N->getOperand(0);
16173    SDValue N1 = N->getOperand(1);
16174    SDValue CMP0 = N0->getOperand(1);
16175    SDValue CMP1 = N1->getOperand(1);
16176    DebugLoc DL = N->getDebugLoc();
16177
16178    // The SETCCs should both refer to the same CMP.
16179    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
16180      return SDValue();
16181
16182    SDValue CMP00 = CMP0->getOperand(0);
16183    SDValue CMP01 = CMP0->getOperand(1);
16184    EVT     VT    = CMP00.getValueType();
16185
16186    if (VT == MVT::f32 || VT == MVT::f64) {
16187      bool ExpectingFlags = false;
16188      // Check for any users that want flags:
16189      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
16190           !ExpectingFlags && UI != UE; ++UI)
16191        switch (UI->getOpcode()) {
16192        default:
16193        case ISD::BR_CC:
16194        case ISD::BRCOND:
16195        case ISD::SELECT:
16196          ExpectingFlags = true;
16197          break;
16198        case ISD::CopyToReg:
16199        case ISD::SIGN_EXTEND:
16200        case ISD::ZERO_EXTEND:
16201        case ISD::ANY_EXTEND:
16202          break;
16203        }
16204
16205      if (!ExpectingFlags) {
16206        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
16207        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
16208
16209        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
16210          X86::CondCode tmp = cc0;
16211          cc0 = cc1;
16212          cc1 = tmp;
16213        }
16214
16215        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
16216            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
16217          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
16218          X86ISD::NodeType NTOperator = is64BitFP ?
16219            X86ISD::FSETCCsd : X86ISD::FSETCCss;
16220          // FIXME: need symbolic constants for these magic numbers.
16221          // See X86ATTInstPrinter.cpp:printSSECC().
16222          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
16223          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
16224                                              DAG.getConstant(x86cc, MVT::i8));
16225          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
16226                                              OnesOrZeroesF);
16227          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
16228                                      DAG.getConstant(1, MVT::i32));
16229          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
16230          return OneBitOfTruth;
16231        }
16232      }
16233    }
16234  }
16235  return SDValue();
16236}
16237
16238/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
16239/// so it can be folded inside ANDNP.
16240static bool CanFoldXORWithAllOnes(const SDNode *N) {
16241  EVT VT = N->getValueType(0);
16242
16243  // Match direct AllOnes for 128 and 256-bit vectors
16244  if (ISD::isBuildVectorAllOnes(N))
16245    return true;
16246
16247  // Look through a bit convert.
16248  if (N->getOpcode() == ISD::BITCAST)
16249    N = N->getOperand(0).getNode();
16250
16251  // Sometimes the operand may come from a insert_subvector building a 256-bit
16252  // allones vector
16253  if (VT.is256BitVector() &&
16254      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
16255    SDValue V1 = N->getOperand(0);
16256    SDValue V2 = N->getOperand(1);
16257
16258    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
16259        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
16260        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
16261        ISD::isBuildVectorAllOnes(V2.getNode()))
16262      return true;
16263  }
16264
16265  return false;
16266}
16267
16268// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
16269// register. In most cases we actually compare or select YMM-sized registers
16270// and mixing the two types creates horrible code. This method optimizes
16271// some of the transition sequences.
16272static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
16273                                 TargetLowering::DAGCombinerInfo &DCI,
16274                                 const X86Subtarget *Subtarget) {
16275  EVT VT = N->getValueType(0);
16276  if (!VT.is256BitVector())
16277    return SDValue();
16278
16279  assert((N->getOpcode() == ISD::ANY_EXTEND ||
16280          N->getOpcode() == ISD::ZERO_EXTEND ||
16281          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
16282
16283  SDValue Narrow = N->getOperand(0);
16284  EVT NarrowVT = Narrow->getValueType(0);
16285  if (!NarrowVT.is128BitVector())
16286    return SDValue();
16287
16288  if (Narrow->getOpcode() != ISD::XOR &&
16289      Narrow->getOpcode() != ISD::AND &&
16290      Narrow->getOpcode() != ISD::OR)
16291    return SDValue();
16292
16293  SDValue N0  = Narrow->getOperand(0);
16294  SDValue N1  = Narrow->getOperand(1);
16295  DebugLoc DL = Narrow->getDebugLoc();
16296
16297  // The Left side has to be a trunc.
16298  if (N0.getOpcode() != ISD::TRUNCATE)
16299    return SDValue();
16300
16301  // The type of the truncated inputs.
16302  EVT WideVT = N0->getOperand(0)->getValueType(0);
16303  if (WideVT != VT)
16304    return SDValue();
16305
16306  // The right side has to be a 'trunc' or a constant vector.
16307  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
16308  bool RHSConst = (isSplatVector(N1.getNode()) &&
16309                   isa<ConstantSDNode>(N1->getOperand(0)));
16310  if (!RHSTrunc && !RHSConst)
16311    return SDValue();
16312
16313  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16314
16315  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
16316    return SDValue();
16317
16318  // Set N0 and N1 to hold the inputs to the new wide operation.
16319  N0 = N0->getOperand(0);
16320  if (RHSConst) {
16321    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
16322                     N1->getOperand(0));
16323    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
16324    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size());
16325  } else if (RHSTrunc) {
16326    N1 = N1->getOperand(0);
16327  }
16328
16329  // Generate the wide operation.
16330  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
16331  unsigned Opcode = N->getOpcode();
16332  switch (Opcode) {
16333  case ISD::ANY_EXTEND:
16334    return Op;
16335  case ISD::ZERO_EXTEND: {
16336    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
16337    APInt Mask = APInt::getAllOnesValue(InBits);
16338    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
16339    return DAG.getNode(ISD::AND, DL, VT,
16340                       Op, DAG.getConstant(Mask, VT));
16341  }
16342  case ISD::SIGN_EXTEND:
16343    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
16344                       Op, DAG.getValueType(NarrowVT));
16345  default:
16346    llvm_unreachable("Unexpected opcode");
16347  }
16348}
16349
16350static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
16351                                 TargetLowering::DAGCombinerInfo &DCI,
16352                                 const X86Subtarget *Subtarget) {
16353  EVT VT = N->getValueType(0);
16354  if (DCI.isBeforeLegalizeOps())
16355    return SDValue();
16356
16357  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16358  if (R.getNode())
16359    return R;
16360
16361  // Create BLSI, and BLSR instructions
16362  // BLSI is X & (-X)
16363  // BLSR is X & (X-1)
16364  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
16365    SDValue N0 = N->getOperand(0);
16366    SDValue N1 = N->getOperand(1);
16367    DebugLoc DL = N->getDebugLoc();
16368
16369    // Check LHS for neg
16370    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
16371        isZero(N0.getOperand(0)))
16372      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
16373
16374    // Check RHS for neg
16375    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
16376        isZero(N1.getOperand(0)))
16377      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
16378
16379    // Check LHS for X-1
16380    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16381        isAllOnes(N0.getOperand(1)))
16382      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
16383
16384    // Check RHS for X-1
16385    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16386        isAllOnes(N1.getOperand(1)))
16387      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
16388
16389    return SDValue();
16390  }
16391
16392  // Want to form ANDNP nodes:
16393  // 1) In the hopes of then easily combining them with OR and AND nodes
16394  //    to form PBLEND/PSIGN.
16395  // 2) To match ANDN packed intrinsics
16396  if (VT != MVT::v2i64 && VT != MVT::v4i64)
16397    return SDValue();
16398
16399  SDValue N0 = N->getOperand(0);
16400  SDValue N1 = N->getOperand(1);
16401  DebugLoc DL = N->getDebugLoc();
16402
16403  // Check LHS for vnot
16404  if (N0.getOpcode() == ISD::XOR &&
16405      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
16406      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
16407    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
16408
16409  // Check RHS for vnot
16410  if (N1.getOpcode() == ISD::XOR &&
16411      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
16412      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
16413    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
16414
16415  return SDValue();
16416}
16417
16418static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
16419                                TargetLowering::DAGCombinerInfo &DCI,
16420                                const X86Subtarget *Subtarget) {
16421  EVT VT = N->getValueType(0);
16422  if (DCI.isBeforeLegalizeOps())
16423    return SDValue();
16424
16425  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16426  if (R.getNode())
16427    return R;
16428
16429  SDValue N0 = N->getOperand(0);
16430  SDValue N1 = N->getOperand(1);
16431
16432  // look for psign/blend
16433  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
16434    if (!Subtarget->hasSSSE3() ||
16435        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
16436      return SDValue();
16437
16438    // Canonicalize pandn to RHS
16439    if (N0.getOpcode() == X86ISD::ANDNP)
16440      std::swap(N0, N1);
16441    // or (and (m, y), (pandn m, x))
16442    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
16443      SDValue Mask = N1.getOperand(0);
16444      SDValue X    = N1.getOperand(1);
16445      SDValue Y;
16446      if (N0.getOperand(0) == Mask)
16447        Y = N0.getOperand(1);
16448      if (N0.getOperand(1) == Mask)
16449        Y = N0.getOperand(0);
16450
16451      // Check to see if the mask appeared in both the AND and ANDNP and
16452      if (!Y.getNode())
16453        return SDValue();
16454
16455      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
16456      // Look through mask bitcast.
16457      if (Mask.getOpcode() == ISD::BITCAST)
16458        Mask = Mask.getOperand(0);
16459      if (X.getOpcode() == ISD::BITCAST)
16460        X = X.getOperand(0);
16461      if (Y.getOpcode() == ISD::BITCAST)
16462        Y = Y.getOperand(0);
16463
16464      EVT MaskVT = Mask.getValueType();
16465
16466      // Validate that the Mask operand is a vector sra node.
16467      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
16468      // there is no psrai.b
16469      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
16470      unsigned SraAmt = ~0;
16471      if (Mask.getOpcode() == ISD::SRA) {
16472        SDValue Amt = Mask.getOperand(1);
16473        if (isSplatVector(Amt.getNode())) {
16474          SDValue SclrAmt = Amt->getOperand(0);
16475          if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt))
16476            SraAmt = C->getZExtValue();
16477        }
16478      } else if (Mask.getOpcode() == X86ISD::VSRAI) {
16479        SDValue SraC = Mask.getOperand(1);
16480        SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
16481      }
16482      if ((SraAmt + 1) != EltBits)
16483        return SDValue();
16484
16485      DebugLoc DL = N->getDebugLoc();
16486
16487      // Now we know we at least have a plendvb with the mask val.  See if
16488      // we can form a psignb/w/d.
16489      // psign = x.type == y.type == mask.type && y = sub(0, x);
16490      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
16491          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
16492          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
16493        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
16494               "Unsupported VT for PSIGN");
16495        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
16496        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16497      }
16498      // PBLENDVB only available on SSE 4.1
16499      if (!Subtarget->hasSSE41())
16500        return SDValue();
16501
16502      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
16503
16504      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
16505      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
16506      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
16507      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
16508      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16509    }
16510  }
16511
16512  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
16513    return SDValue();
16514
16515  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
16516  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
16517    std::swap(N0, N1);
16518  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
16519    return SDValue();
16520  if (!N0.hasOneUse() || !N1.hasOneUse())
16521    return SDValue();
16522
16523  SDValue ShAmt0 = N0.getOperand(1);
16524  if (ShAmt0.getValueType() != MVT::i8)
16525    return SDValue();
16526  SDValue ShAmt1 = N1.getOperand(1);
16527  if (ShAmt1.getValueType() != MVT::i8)
16528    return SDValue();
16529  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
16530    ShAmt0 = ShAmt0.getOperand(0);
16531  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
16532    ShAmt1 = ShAmt1.getOperand(0);
16533
16534  DebugLoc DL = N->getDebugLoc();
16535  unsigned Opc = X86ISD::SHLD;
16536  SDValue Op0 = N0.getOperand(0);
16537  SDValue Op1 = N1.getOperand(0);
16538  if (ShAmt0.getOpcode() == ISD::SUB) {
16539    Opc = X86ISD::SHRD;
16540    std::swap(Op0, Op1);
16541    std::swap(ShAmt0, ShAmt1);
16542  }
16543
16544  unsigned Bits = VT.getSizeInBits();
16545  if (ShAmt1.getOpcode() == ISD::SUB) {
16546    SDValue Sum = ShAmt1.getOperand(0);
16547    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
16548      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
16549      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
16550        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
16551      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
16552        return DAG.getNode(Opc, DL, VT,
16553                           Op0, Op1,
16554                           DAG.getNode(ISD::TRUNCATE, DL,
16555                                       MVT::i8, ShAmt0));
16556    }
16557  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
16558    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
16559    if (ShAmt0C &&
16560        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
16561      return DAG.getNode(Opc, DL, VT,
16562                         N0.getOperand(0), N1.getOperand(0),
16563                         DAG.getNode(ISD::TRUNCATE, DL,
16564                                       MVT::i8, ShAmt0));
16565  }
16566
16567  return SDValue();
16568}
16569
16570// Generate NEG and CMOV for integer abs.
16571static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
16572  EVT VT = N->getValueType(0);
16573
16574  // Since X86 does not have CMOV for 8-bit integer, we don't convert
16575  // 8-bit integer abs to NEG and CMOV.
16576  if (VT.isInteger() && VT.getSizeInBits() == 8)
16577    return SDValue();
16578
16579  SDValue N0 = N->getOperand(0);
16580  SDValue N1 = N->getOperand(1);
16581  DebugLoc DL = N->getDebugLoc();
16582
16583  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
16584  // and change it to SUB and CMOV.
16585  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
16586      N0.getOpcode() == ISD::ADD &&
16587      N0.getOperand(1) == N1 &&
16588      N1.getOpcode() == ISD::SRA &&
16589      N1.getOperand(0) == N0.getOperand(0))
16590    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
16591      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
16592        // Generate SUB & CMOV.
16593        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
16594                                  DAG.getConstant(0, VT), N0.getOperand(0));
16595
16596        SDValue Ops[] = { N0.getOperand(0), Neg,
16597                          DAG.getConstant(X86::COND_GE, MVT::i8),
16598                          SDValue(Neg.getNode(), 1) };
16599        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
16600                           Ops, array_lengthof(Ops));
16601      }
16602  return SDValue();
16603}
16604
16605// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
16606static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
16607                                 TargetLowering::DAGCombinerInfo &DCI,
16608                                 const X86Subtarget *Subtarget) {
16609  EVT VT = N->getValueType(0);
16610  if (DCI.isBeforeLegalizeOps())
16611    return SDValue();
16612
16613  if (Subtarget->hasCMov()) {
16614    SDValue RV = performIntegerAbsCombine(N, DAG);
16615    if (RV.getNode())
16616      return RV;
16617  }
16618
16619  // Try forming BMI if it is available.
16620  if (!Subtarget->hasBMI())
16621    return SDValue();
16622
16623  if (VT != MVT::i32 && VT != MVT::i64)
16624    return SDValue();
16625
16626  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
16627
16628  // Create BLSMSK instructions by finding X ^ (X-1)
16629  SDValue N0 = N->getOperand(0);
16630  SDValue N1 = N->getOperand(1);
16631  DebugLoc DL = N->getDebugLoc();
16632
16633  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16634      isAllOnes(N0.getOperand(1)))
16635    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
16636
16637  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16638      isAllOnes(N1.getOperand(1)))
16639    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
16640
16641  return SDValue();
16642}
16643
16644/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
16645static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
16646                                  TargetLowering::DAGCombinerInfo &DCI,
16647                                  const X86Subtarget *Subtarget) {
16648  LoadSDNode *Ld = cast<LoadSDNode>(N);
16649  EVT RegVT = Ld->getValueType(0);
16650  EVT MemVT = Ld->getMemoryVT();
16651  DebugLoc dl = Ld->getDebugLoc();
16652  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16653  unsigned RegSz = RegVT.getSizeInBits();
16654
16655  // On Sandybridge unaligned 256bit loads are inefficient.
16656  ISD::LoadExtType Ext = Ld->getExtensionType();
16657  unsigned Alignment = Ld->getAlignment();
16658  bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
16659  if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
16660      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
16661    unsigned NumElems = RegVT.getVectorNumElements();
16662    if (NumElems < 2)
16663      return SDValue();
16664
16665    SDValue Ptr = Ld->getBasePtr();
16666    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
16667
16668    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16669                                  NumElems/2);
16670    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16671                                Ld->getPointerInfo(), Ld->isVolatile(),
16672                                Ld->isNonTemporal(), Ld->isInvariant(),
16673                                Alignment);
16674    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16675    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16676                                Ld->getPointerInfo(), Ld->isVolatile(),
16677                                Ld->isNonTemporal(), Ld->isInvariant(),
16678                                std::min(16U, Alignment));
16679    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16680                             Load1.getValue(1),
16681                             Load2.getValue(1));
16682
16683    SDValue NewVec = DAG.getUNDEF(RegVT);
16684    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
16685    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
16686    return DCI.CombineTo(N, NewVec, TF, true);
16687  }
16688
16689  // If this is a vector EXT Load then attempt to optimize it using a
16690  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
16691  // expansion is still better than scalar code.
16692  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
16693  // emit a shuffle and a arithmetic shift.
16694  // TODO: It is possible to support ZExt by zeroing the undef values
16695  // during the shuffle phase or after the shuffle.
16696  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
16697      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
16698    assert(MemVT != RegVT && "Cannot extend to the same type");
16699    assert(MemVT.isVector() && "Must load a vector from memory");
16700
16701    unsigned NumElems = RegVT.getVectorNumElements();
16702    unsigned MemSz = MemVT.getSizeInBits();
16703    assert(RegSz > MemSz && "Register size must be greater than the mem size");
16704
16705    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
16706      return SDValue();
16707
16708    // All sizes must be a power of two.
16709    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
16710      return SDValue();
16711
16712    // Attempt to load the original value using scalar loads.
16713    // Find the largest scalar type that divides the total loaded size.
16714    MVT SclrLoadTy = MVT::i8;
16715    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16716         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16717      MVT Tp = (MVT::SimpleValueType)tp;
16718      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
16719        SclrLoadTy = Tp;
16720      }
16721    }
16722
16723    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16724    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
16725        (64 <= MemSz))
16726      SclrLoadTy = MVT::f64;
16727
16728    // Calculate the number of scalar loads that we need to perform
16729    // in order to load our vector from memory.
16730    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
16731    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
16732      return SDValue();
16733
16734    unsigned loadRegZize = RegSz;
16735    if (Ext == ISD::SEXTLOAD && RegSz == 256)
16736      loadRegZize /= 2;
16737
16738    // Represent our vector as a sequence of elements which are the
16739    // largest scalar that we can load.
16740    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
16741      loadRegZize/SclrLoadTy.getSizeInBits());
16742
16743    // Represent the data using the same element type that is stored in
16744    // memory. In practice, we ''widen'' MemVT.
16745    EVT WideVecVT =
16746          EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16747                       loadRegZize/MemVT.getScalarType().getSizeInBits());
16748
16749    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
16750      "Invalid vector type");
16751
16752    // We can't shuffle using an illegal type.
16753    if (!TLI.isTypeLegal(WideVecVT))
16754      return SDValue();
16755
16756    SmallVector<SDValue, 8> Chains;
16757    SDValue Ptr = Ld->getBasePtr();
16758    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
16759                                        TLI.getPointerTy());
16760    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
16761
16762    for (unsigned i = 0; i < NumLoads; ++i) {
16763      // Perform a single load.
16764      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
16765                                       Ptr, Ld->getPointerInfo(),
16766                                       Ld->isVolatile(), Ld->isNonTemporal(),
16767                                       Ld->isInvariant(), Ld->getAlignment());
16768      Chains.push_back(ScalarLoad.getValue(1));
16769      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
16770      // another round of DAGCombining.
16771      if (i == 0)
16772        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
16773      else
16774        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
16775                          ScalarLoad, DAG.getIntPtrConstant(i));
16776
16777      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16778    }
16779
16780    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
16781                               Chains.size());
16782
16783    // Bitcast the loaded value to a vector of the original element type, in
16784    // the size of the target vector type.
16785    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
16786    unsigned SizeRatio = RegSz/MemSz;
16787
16788    if (Ext == ISD::SEXTLOAD) {
16789      // If we have SSE4.1 we can directly emit a VSEXT node.
16790      if (Subtarget->hasSSE41()) {
16791        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
16792        return DCI.CombineTo(N, Sext, TF, true);
16793      }
16794
16795      // Otherwise we'll shuffle the small elements in the high bits of the
16796      // larger type and perform an arithmetic shift. If the shift is not legal
16797      // it's better to scalarize.
16798      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
16799        return SDValue();
16800
16801      // Redistribute the loaded elements into the different locations.
16802      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16803      for (unsigned i = 0; i != NumElems; ++i)
16804        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
16805
16806      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16807                                           DAG.getUNDEF(WideVecVT),
16808                                           &ShuffleVec[0]);
16809
16810      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16811
16812      // Build the arithmetic shift.
16813      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
16814                     MemVT.getVectorElementType().getSizeInBits();
16815      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
16816                          DAG.getConstant(Amt, RegVT));
16817
16818      return DCI.CombineTo(N, Shuff, TF, true);
16819    }
16820
16821    // Redistribute the loaded elements into the different locations.
16822    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16823    for (unsigned i = 0; i != NumElems; ++i)
16824      ShuffleVec[i*SizeRatio] = i;
16825
16826    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16827                                         DAG.getUNDEF(WideVecVT),
16828                                         &ShuffleVec[0]);
16829
16830    // Bitcast to the requested type.
16831    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16832    // Replace the original load with the new sequence
16833    // and return the new chain.
16834    return DCI.CombineTo(N, Shuff, TF, true);
16835  }
16836
16837  return SDValue();
16838}
16839
16840/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
16841static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
16842                                   const X86Subtarget *Subtarget) {
16843  StoreSDNode *St = cast<StoreSDNode>(N);
16844  EVT VT = St->getValue().getValueType();
16845  EVT StVT = St->getMemoryVT();
16846  DebugLoc dl = St->getDebugLoc();
16847  SDValue StoredVal = St->getOperand(1);
16848  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16849
16850  // If we are saving a concatenation of two XMM registers, perform two stores.
16851  // On Sandy Bridge, 256-bit memory operations are executed by two
16852  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
16853  // memory  operation.
16854  unsigned Alignment = St->getAlignment();
16855  bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
16856  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
16857      StVT == VT && !IsAligned) {
16858    unsigned NumElems = VT.getVectorNumElements();
16859    if (NumElems < 2)
16860      return SDValue();
16861
16862    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
16863    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
16864
16865    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
16866    SDValue Ptr0 = St->getBasePtr();
16867    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
16868
16869    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
16870                                St->getPointerInfo(), St->isVolatile(),
16871                                St->isNonTemporal(), Alignment);
16872    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
16873                                St->getPointerInfo(), St->isVolatile(),
16874                                St->isNonTemporal(),
16875                                std::min(16U, Alignment));
16876    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
16877  }
16878
16879  // Optimize trunc store (of multiple scalars) to shuffle and store.
16880  // First, pack all of the elements in one place. Next, store to memory
16881  // in fewer chunks.
16882  if (St->isTruncatingStore() && VT.isVector()) {
16883    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16884    unsigned NumElems = VT.getVectorNumElements();
16885    assert(StVT != VT && "Cannot truncate to the same type");
16886    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
16887    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
16888
16889    // From, To sizes and ElemCount must be pow of two
16890    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
16891    // We are going to use the original vector elt for storing.
16892    // Accumulated smaller vector elements must be a multiple of the store size.
16893    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
16894
16895    unsigned SizeRatio  = FromSz / ToSz;
16896
16897    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
16898
16899    // Create a type on which we perform the shuffle
16900    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
16901            StVT.getScalarType(), NumElems*SizeRatio);
16902
16903    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
16904
16905    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
16906    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16907    for (unsigned i = 0; i != NumElems; ++i)
16908      ShuffleVec[i] = i * SizeRatio;
16909
16910    // Can't shuffle using an illegal type.
16911    if (!TLI.isTypeLegal(WideVecVT))
16912      return SDValue();
16913
16914    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
16915                                         DAG.getUNDEF(WideVecVT),
16916                                         &ShuffleVec[0]);
16917    // At this point all of the data is stored at the bottom of the
16918    // register. We now need to save it to mem.
16919
16920    // Find the largest store unit
16921    MVT StoreType = MVT::i8;
16922    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16923         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16924      MVT Tp = (MVT::SimpleValueType)tp;
16925      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
16926        StoreType = Tp;
16927    }
16928
16929    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16930    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
16931        (64 <= NumElems * ToSz))
16932      StoreType = MVT::f64;
16933
16934    // Bitcast the original vector into a vector of store-size units
16935    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
16936            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
16937    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
16938    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
16939    SmallVector<SDValue, 8> Chains;
16940    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
16941                                        TLI.getPointerTy());
16942    SDValue Ptr = St->getBasePtr();
16943
16944    // Perform one or more big stores into memory.
16945    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
16946      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
16947                                   StoreType, ShuffWide,
16948                                   DAG.getIntPtrConstant(i));
16949      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
16950                                St->getPointerInfo(), St->isVolatile(),
16951                                St->isNonTemporal(), St->getAlignment());
16952      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16953      Chains.push_back(Ch);
16954    }
16955
16956    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
16957                               Chains.size());
16958  }
16959
16960  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
16961  // the FP state in cases where an emms may be missing.
16962  // A preferable solution to the general problem is to figure out the right
16963  // places to insert EMMS.  This qualifies as a quick hack.
16964
16965  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
16966  if (VT.getSizeInBits() != 64)
16967    return SDValue();
16968
16969  const Function *F = DAG.getMachineFunction().getFunction();
16970  bool NoImplicitFloatOps = F->getAttributes().
16971    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
16972  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
16973                     && Subtarget->hasSSE2();
16974  if ((VT.isVector() ||
16975       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
16976      isa<LoadSDNode>(St->getValue()) &&
16977      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
16978      St->getChain().hasOneUse() && !St->isVolatile()) {
16979    SDNode* LdVal = St->getValue().getNode();
16980    LoadSDNode *Ld = 0;
16981    int TokenFactorIndex = -1;
16982    SmallVector<SDValue, 8> Ops;
16983    SDNode* ChainVal = St->getChain().getNode();
16984    // Must be a store of a load.  We currently handle two cases:  the load
16985    // is a direct child, and it's under an intervening TokenFactor.  It is
16986    // possible to dig deeper under nested TokenFactors.
16987    if (ChainVal == LdVal)
16988      Ld = cast<LoadSDNode>(St->getChain());
16989    else if (St->getValue().hasOneUse() &&
16990             ChainVal->getOpcode() == ISD::TokenFactor) {
16991      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
16992        if (ChainVal->getOperand(i).getNode() == LdVal) {
16993          TokenFactorIndex = i;
16994          Ld = cast<LoadSDNode>(St->getValue());
16995        } else
16996          Ops.push_back(ChainVal->getOperand(i));
16997      }
16998    }
16999
17000    if (!Ld || !ISD::isNormalLoad(Ld))
17001      return SDValue();
17002
17003    // If this is not the MMX case, i.e. we are just turning i64 load/store
17004    // into f64 load/store, avoid the transformation if there are multiple
17005    // uses of the loaded value.
17006    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
17007      return SDValue();
17008
17009    DebugLoc LdDL = Ld->getDebugLoc();
17010    DebugLoc StDL = N->getDebugLoc();
17011    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
17012    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
17013    // pair instead.
17014    if (Subtarget->is64Bit() || F64IsLegal) {
17015      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
17016      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
17017                                  Ld->getPointerInfo(), Ld->isVolatile(),
17018                                  Ld->isNonTemporal(), Ld->isInvariant(),
17019                                  Ld->getAlignment());
17020      SDValue NewChain = NewLd.getValue(1);
17021      if (TokenFactorIndex != -1) {
17022        Ops.push_back(NewChain);
17023        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
17024                               Ops.size());
17025      }
17026      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
17027                          St->getPointerInfo(),
17028                          St->isVolatile(), St->isNonTemporal(),
17029                          St->getAlignment());
17030    }
17031
17032    // Otherwise, lower to two pairs of 32-bit loads / stores.
17033    SDValue LoAddr = Ld->getBasePtr();
17034    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
17035                                 DAG.getConstant(4, MVT::i32));
17036
17037    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
17038                               Ld->getPointerInfo(),
17039                               Ld->isVolatile(), Ld->isNonTemporal(),
17040                               Ld->isInvariant(), Ld->getAlignment());
17041    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
17042                               Ld->getPointerInfo().getWithOffset(4),
17043                               Ld->isVolatile(), Ld->isNonTemporal(),
17044                               Ld->isInvariant(),
17045                               MinAlign(Ld->getAlignment(), 4));
17046
17047    SDValue NewChain = LoLd.getValue(1);
17048    if (TokenFactorIndex != -1) {
17049      Ops.push_back(LoLd);
17050      Ops.push_back(HiLd);
17051      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
17052                             Ops.size());
17053    }
17054
17055    LoAddr = St->getBasePtr();
17056    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
17057                         DAG.getConstant(4, MVT::i32));
17058
17059    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
17060                                St->getPointerInfo(),
17061                                St->isVolatile(), St->isNonTemporal(),
17062                                St->getAlignment());
17063    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
17064                                St->getPointerInfo().getWithOffset(4),
17065                                St->isVolatile(),
17066                                St->isNonTemporal(),
17067                                MinAlign(St->getAlignment(), 4));
17068    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
17069  }
17070  return SDValue();
17071}
17072
17073/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
17074/// and return the operands for the horizontal operation in LHS and RHS.  A
17075/// horizontal operation performs the binary operation on successive elements
17076/// of its first operand, then on successive elements of its second operand,
17077/// returning the resulting values in a vector.  For example, if
17078///   A = < float a0, float a1, float a2, float a3 >
17079/// and
17080///   B = < float b0, float b1, float b2, float b3 >
17081/// then the result of doing a horizontal operation on A and B is
17082///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
17083/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
17084/// A horizontal-op B, for some already available A and B, and if so then LHS is
17085/// set to A, RHS to B, and the routine returns 'true'.
17086/// Note that the binary operation should have the property that if one of the
17087/// operands is UNDEF then the result is UNDEF.
17088static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
17089  // Look for the following pattern: if
17090  //   A = < float a0, float a1, float a2, float a3 >
17091  //   B = < float b0, float b1, float b2, float b3 >
17092  // and
17093  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
17094  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
17095  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
17096  // which is A horizontal-op B.
17097
17098  // At least one of the operands should be a vector shuffle.
17099  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
17100      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
17101    return false;
17102
17103  EVT VT = LHS.getValueType();
17104
17105  assert((VT.is128BitVector() || VT.is256BitVector()) &&
17106         "Unsupported vector type for horizontal add/sub");
17107
17108  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
17109  // operate independently on 128-bit lanes.
17110  unsigned NumElts = VT.getVectorNumElements();
17111  unsigned NumLanes = VT.getSizeInBits()/128;
17112  unsigned NumLaneElts = NumElts / NumLanes;
17113  assert((NumLaneElts % 2 == 0) &&
17114         "Vector type should have an even number of elements in each lane");
17115  unsigned HalfLaneElts = NumLaneElts/2;
17116
17117  // View LHS in the form
17118  //   LHS = VECTOR_SHUFFLE A, B, LMask
17119  // If LHS is not a shuffle then pretend it is the shuffle
17120  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
17121  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
17122  // type VT.
17123  SDValue A, B;
17124  SmallVector<int, 16> LMask(NumElts);
17125  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
17126    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
17127      A = LHS.getOperand(0);
17128    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
17129      B = LHS.getOperand(1);
17130    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
17131    std::copy(Mask.begin(), Mask.end(), LMask.begin());
17132  } else {
17133    if (LHS.getOpcode() != ISD::UNDEF)
17134      A = LHS;
17135    for (unsigned i = 0; i != NumElts; ++i)
17136      LMask[i] = i;
17137  }
17138
17139  // Likewise, view RHS in the form
17140  //   RHS = VECTOR_SHUFFLE C, D, RMask
17141  SDValue C, D;
17142  SmallVector<int, 16> RMask(NumElts);
17143  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
17144    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
17145      C = RHS.getOperand(0);
17146    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
17147      D = RHS.getOperand(1);
17148    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
17149    std::copy(Mask.begin(), Mask.end(), RMask.begin());
17150  } else {
17151    if (RHS.getOpcode() != ISD::UNDEF)
17152      C = RHS;
17153    for (unsigned i = 0; i != NumElts; ++i)
17154      RMask[i] = i;
17155  }
17156
17157  // Check that the shuffles are both shuffling the same vectors.
17158  if (!(A == C && B == D) && !(A == D && B == C))
17159    return false;
17160
17161  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
17162  if (!A.getNode() && !B.getNode())
17163    return false;
17164
17165  // If A and B occur in reverse order in RHS, then "swap" them (which means
17166  // rewriting the mask).
17167  if (A != C)
17168    CommuteVectorShuffleMask(RMask, NumElts);
17169
17170  // At this point LHS and RHS are equivalent to
17171  //   LHS = VECTOR_SHUFFLE A, B, LMask
17172  //   RHS = VECTOR_SHUFFLE A, B, RMask
17173  // Check that the masks correspond to performing a horizontal operation.
17174  for (unsigned i = 0; i != NumElts; ++i) {
17175    int LIdx = LMask[i], RIdx = RMask[i];
17176
17177    // Ignore any UNDEF components.
17178    if (LIdx < 0 || RIdx < 0 ||
17179        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
17180        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
17181      continue;
17182
17183    // Check that successive elements are being operated on.  If not, this is
17184    // not a horizontal operation.
17185    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
17186    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
17187    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
17188    if (!(LIdx == Index && RIdx == Index + 1) &&
17189        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
17190      return false;
17191  }
17192
17193  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
17194  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
17195  return true;
17196}
17197
17198/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
17199static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
17200                                  const X86Subtarget *Subtarget) {
17201  EVT VT = N->getValueType(0);
17202  SDValue LHS = N->getOperand(0);
17203  SDValue RHS = N->getOperand(1);
17204
17205  // Try to synthesize horizontal adds from adds of shuffles.
17206  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
17207       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
17208      isHorizontalBinOp(LHS, RHS, true))
17209    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
17210  return SDValue();
17211}
17212
17213/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
17214static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
17215                                  const X86Subtarget *Subtarget) {
17216  EVT VT = N->getValueType(0);
17217  SDValue LHS = N->getOperand(0);
17218  SDValue RHS = N->getOperand(1);
17219
17220  // Try to synthesize horizontal subs from subs of shuffles.
17221  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
17222       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
17223      isHorizontalBinOp(LHS, RHS, false))
17224    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
17225  return SDValue();
17226}
17227
17228/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
17229/// X86ISD::FXOR nodes.
17230static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
17231  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
17232  // F[X]OR(0.0, x) -> x
17233  // F[X]OR(x, 0.0) -> x
17234  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
17235    if (C->getValueAPF().isPosZero())
17236      return N->getOperand(1);
17237  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
17238    if (C->getValueAPF().isPosZero())
17239      return N->getOperand(0);
17240  return SDValue();
17241}
17242
17243/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
17244/// X86ISD::FMAX nodes.
17245static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
17246  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
17247
17248  // Only perform optimizations if UnsafeMath is used.
17249  if (!DAG.getTarget().Options.UnsafeFPMath)
17250    return SDValue();
17251
17252  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
17253  // into FMINC and FMAXC, which are Commutative operations.
17254  unsigned NewOp = 0;
17255  switch (N->getOpcode()) {
17256    default: llvm_unreachable("unknown opcode");
17257    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
17258    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
17259  }
17260
17261  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
17262                     N->getOperand(0), N->getOperand(1));
17263}
17264
17265/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
17266static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
17267  // FAND(0.0, x) -> 0.0
17268  // FAND(x, 0.0) -> 0.0
17269  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
17270    if (C->getValueAPF().isPosZero())
17271      return N->getOperand(0);
17272  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
17273    if (C->getValueAPF().isPosZero())
17274      return N->getOperand(1);
17275  return SDValue();
17276}
17277
17278static SDValue PerformBTCombine(SDNode *N,
17279                                SelectionDAG &DAG,
17280                                TargetLowering::DAGCombinerInfo &DCI) {
17281  // BT ignores high bits in the bit index operand.
17282  SDValue Op1 = N->getOperand(1);
17283  if (Op1.hasOneUse()) {
17284    unsigned BitWidth = Op1.getValueSizeInBits();
17285    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
17286    APInt KnownZero, KnownOne;
17287    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
17288                                          !DCI.isBeforeLegalizeOps());
17289    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17290    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
17291        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
17292      DCI.CommitTargetLoweringOpt(TLO);
17293  }
17294  return SDValue();
17295}
17296
17297static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
17298  SDValue Op = N->getOperand(0);
17299  if (Op.getOpcode() == ISD::BITCAST)
17300    Op = Op.getOperand(0);
17301  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
17302  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
17303      VT.getVectorElementType().getSizeInBits() ==
17304      OpVT.getVectorElementType().getSizeInBits()) {
17305    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
17306  }
17307  return SDValue();
17308}
17309
17310static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
17311                                               const X86Subtarget *Subtarget) {
17312  EVT VT = N->getValueType(0);
17313  if (!VT.isVector())
17314    return SDValue();
17315
17316  SDValue N0 = N->getOperand(0);
17317  SDValue N1 = N->getOperand(1);
17318  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
17319  DebugLoc dl = N->getDebugLoc();
17320
17321  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
17322  // both SSE and AVX2 since there is no sign-extended shift right
17323  // operation on a vector with 64-bit elements.
17324  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
17325  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
17326  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
17327      N0.getOpcode() == ISD::SIGN_EXTEND)) {
17328    SDValue N00 = N0.getOperand(0);
17329
17330    // EXTLOAD has a better solution on AVX2,
17331    // it may be replaced with X86ISD::VSEXT node.
17332    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
17333      if (!ISD::isNormalLoad(N00.getNode()))
17334        return SDValue();
17335
17336    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
17337        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
17338                                  N00, N1);
17339      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
17340    }
17341  }
17342  return SDValue();
17343}
17344
17345static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
17346                                  TargetLowering::DAGCombinerInfo &DCI,
17347                                  const X86Subtarget *Subtarget) {
17348  if (!DCI.isBeforeLegalizeOps())
17349    return SDValue();
17350
17351  if (!Subtarget->hasFp256())
17352    return SDValue();
17353
17354  EVT VT = N->getValueType(0);
17355  if (VT.isVector() && VT.getSizeInBits() == 256) {
17356    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17357    if (R.getNode())
17358      return R;
17359  }
17360
17361  return SDValue();
17362}
17363
17364static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
17365                                 const X86Subtarget* Subtarget) {
17366  DebugLoc dl = N->getDebugLoc();
17367  EVT VT = N->getValueType(0);
17368
17369  // Let legalize expand this if it isn't a legal type yet.
17370  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
17371    return SDValue();
17372
17373  EVT ScalarVT = VT.getScalarType();
17374  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
17375      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
17376    return SDValue();
17377
17378  SDValue A = N->getOperand(0);
17379  SDValue B = N->getOperand(1);
17380  SDValue C = N->getOperand(2);
17381
17382  bool NegA = (A.getOpcode() == ISD::FNEG);
17383  bool NegB = (B.getOpcode() == ISD::FNEG);
17384  bool NegC = (C.getOpcode() == ISD::FNEG);
17385
17386  // Negative multiplication when NegA xor NegB
17387  bool NegMul = (NegA != NegB);
17388  if (NegA)
17389    A = A.getOperand(0);
17390  if (NegB)
17391    B = B.getOperand(0);
17392  if (NegC)
17393    C = C.getOperand(0);
17394
17395  unsigned Opcode;
17396  if (!NegMul)
17397    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
17398  else
17399    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
17400
17401  return DAG.getNode(Opcode, dl, VT, A, B, C);
17402}
17403
17404static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
17405                                  TargetLowering::DAGCombinerInfo &DCI,
17406                                  const X86Subtarget *Subtarget) {
17407  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
17408  //           (and (i32 x86isd::setcc_carry), 1)
17409  // This eliminates the zext. This transformation is necessary because
17410  // ISD::SETCC is always legalized to i8.
17411  DebugLoc dl = N->getDebugLoc();
17412  SDValue N0 = N->getOperand(0);
17413  EVT VT = N->getValueType(0);
17414
17415  if (N0.getOpcode() == ISD::AND &&
17416      N0.hasOneUse() &&
17417      N0.getOperand(0).hasOneUse()) {
17418    SDValue N00 = N0.getOperand(0);
17419    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
17420      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
17421      if (!C || C->getZExtValue() != 1)
17422        return SDValue();
17423      return DAG.getNode(ISD::AND, dl, VT,
17424                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
17425                                     N00.getOperand(0), N00.getOperand(1)),
17426                         DAG.getConstant(1, VT));
17427    }
17428  }
17429
17430  if (VT.is256BitVector()) {
17431    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17432    if (R.getNode())
17433      return R;
17434  }
17435
17436  return SDValue();
17437}
17438
17439// Optimize x == -y --> x+y == 0
17440//          x != -y --> x+y != 0
17441static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
17442  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
17443  SDValue LHS = N->getOperand(0);
17444  SDValue RHS = N->getOperand(1);
17445
17446  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
17447    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
17448      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
17449        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17450                                   LHS.getValueType(), RHS, LHS.getOperand(1));
17451        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17452                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17453      }
17454  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
17455    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
17456      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
17457        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17458                                   RHS.getValueType(), LHS, RHS.getOperand(1));
17459        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17460                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17461      }
17462  return SDValue();
17463}
17464
17465// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
17466// as "sbb reg,reg", since it can be extended without zext and produces
17467// an all-ones bit which is more useful than 0/1 in some cases.
17468static SDValue MaterializeSETB(DebugLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
17469  return DAG.getNode(ISD::AND, DL, MVT::i8,
17470                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
17471                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
17472                     DAG.getConstant(1, MVT::i8));
17473}
17474
17475// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
17476static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
17477                                   TargetLowering::DAGCombinerInfo &DCI,
17478                                   const X86Subtarget *Subtarget) {
17479  DebugLoc DL = N->getDebugLoc();
17480  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
17481  SDValue EFLAGS = N->getOperand(1);
17482
17483  if (CC == X86::COND_A) {
17484    // Try to convert COND_A into COND_B in an attempt to facilitate
17485    // materializing "setb reg".
17486    //
17487    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
17488    // cannot take an immediate as its first operand.
17489    //
17490    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
17491        EFLAGS.getValueType().isInteger() &&
17492        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
17493      SDValue NewSub = DAG.getNode(X86ISD::SUB, EFLAGS.getDebugLoc(),
17494                                   EFLAGS.getNode()->getVTList(),
17495                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
17496      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
17497      return MaterializeSETB(DL, NewEFLAGS, DAG);
17498    }
17499  }
17500
17501  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
17502  // a zext and produces an all-ones bit which is more useful than 0/1 in some
17503  // cases.
17504  if (CC == X86::COND_B)
17505    return MaterializeSETB(DL, EFLAGS, DAG);
17506
17507  SDValue Flags;
17508
17509  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17510  if (Flags.getNode()) {
17511    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17512    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
17513  }
17514
17515  return SDValue();
17516}
17517
17518// Optimize branch condition evaluation.
17519//
17520static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
17521                                    TargetLowering::DAGCombinerInfo &DCI,
17522                                    const X86Subtarget *Subtarget) {
17523  DebugLoc DL = N->getDebugLoc();
17524  SDValue Chain = N->getOperand(0);
17525  SDValue Dest = N->getOperand(1);
17526  SDValue EFLAGS = N->getOperand(3);
17527  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
17528
17529  SDValue Flags;
17530
17531  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17532  if (Flags.getNode()) {
17533    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17534    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
17535                       Flags);
17536  }
17537
17538  return SDValue();
17539}
17540
17541static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
17542                                        const X86TargetLowering *XTLI) {
17543  SDValue Op0 = N->getOperand(0);
17544  EVT InVT = Op0->getValueType(0);
17545
17546  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
17547  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
17548    DebugLoc dl = N->getDebugLoc();
17549    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
17550    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
17551    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
17552  }
17553
17554  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
17555  // a 32-bit target where SSE doesn't support i64->FP operations.
17556  if (Op0.getOpcode() == ISD::LOAD) {
17557    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
17558    EVT VT = Ld->getValueType(0);
17559    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
17560        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
17561        !XTLI->getSubtarget()->is64Bit() &&
17562        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
17563      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
17564                                          Ld->getChain(), Op0, DAG);
17565      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
17566      return FILDChain;
17567    }
17568  }
17569  return SDValue();
17570}
17571
17572// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
17573static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
17574                                 X86TargetLowering::DAGCombinerInfo &DCI) {
17575  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
17576  // the result is either zero or one (depending on the input carry bit).
17577  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
17578  if (X86::isZeroNode(N->getOperand(0)) &&
17579      X86::isZeroNode(N->getOperand(1)) &&
17580      // We don't have a good way to replace an EFLAGS use, so only do this when
17581      // dead right now.
17582      SDValue(N, 1).use_empty()) {
17583    DebugLoc DL = N->getDebugLoc();
17584    EVT VT = N->getValueType(0);
17585    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
17586    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
17587                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
17588                                           DAG.getConstant(X86::COND_B,MVT::i8),
17589                                           N->getOperand(2)),
17590                               DAG.getConstant(1, VT));
17591    return DCI.CombineTo(N, Res1, CarryOut);
17592  }
17593
17594  return SDValue();
17595}
17596
17597// fold (add Y, (sete  X, 0)) -> adc  0, Y
17598//      (add Y, (setne X, 0)) -> sbb -1, Y
17599//      (sub (sete  X, 0), Y) -> sbb  0, Y
17600//      (sub (setne X, 0), Y) -> adc -1, Y
17601static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
17602  DebugLoc DL = N->getDebugLoc();
17603
17604  // Look through ZExts.
17605  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
17606  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
17607    return SDValue();
17608
17609  SDValue SetCC = Ext.getOperand(0);
17610  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
17611    return SDValue();
17612
17613  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
17614  if (CC != X86::COND_E && CC != X86::COND_NE)
17615    return SDValue();
17616
17617  SDValue Cmp = SetCC.getOperand(1);
17618  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
17619      !X86::isZeroNode(Cmp.getOperand(1)) ||
17620      !Cmp.getOperand(0).getValueType().isInteger())
17621    return SDValue();
17622
17623  SDValue CmpOp0 = Cmp.getOperand(0);
17624  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
17625                               DAG.getConstant(1, CmpOp0.getValueType()));
17626
17627  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
17628  if (CC == X86::COND_NE)
17629    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
17630                       DL, OtherVal.getValueType(), OtherVal,
17631                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
17632  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
17633                     DL, OtherVal.getValueType(), OtherVal,
17634                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
17635}
17636
17637/// PerformADDCombine - Do target-specific dag combines on integer adds.
17638static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
17639                                 const X86Subtarget *Subtarget) {
17640  EVT VT = N->getValueType(0);
17641  SDValue Op0 = N->getOperand(0);
17642  SDValue Op1 = N->getOperand(1);
17643
17644  // Try to synthesize horizontal adds from adds of shuffles.
17645  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17646       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17647      isHorizontalBinOp(Op0, Op1, true))
17648    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
17649
17650  return OptimizeConditionalInDecrement(N, DAG);
17651}
17652
17653static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
17654                                 const X86Subtarget *Subtarget) {
17655  SDValue Op0 = N->getOperand(0);
17656  SDValue Op1 = N->getOperand(1);
17657
17658  // X86 can't encode an immediate LHS of a sub. See if we can push the
17659  // negation into a preceding instruction.
17660  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
17661    // If the RHS of the sub is a XOR with one use and a constant, invert the
17662    // immediate. Then add one to the LHS of the sub so we can turn
17663    // X-Y -> X+~Y+1, saving one register.
17664    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
17665        isa<ConstantSDNode>(Op1.getOperand(1))) {
17666      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
17667      EVT VT = Op0.getValueType();
17668      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
17669                                   Op1.getOperand(0),
17670                                   DAG.getConstant(~XorC, VT));
17671      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
17672                         DAG.getConstant(C->getAPIntValue()+1, VT));
17673    }
17674  }
17675
17676  // Try to synthesize horizontal adds from adds of shuffles.
17677  EVT VT = N->getValueType(0);
17678  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17679       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17680      isHorizontalBinOp(Op0, Op1, true))
17681    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
17682
17683  return OptimizeConditionalInDecrement(N, DAG);
17684}
17685
17686/// performVZEXTCombine - Performs build vector combines
17687static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
17688                                        TargetLowering::DAGCombinerInfo &DCI,
17689                                        const X86Subtarget *Subtarget) {
17690  // (vzext (bitcast (vzext (x)) -> (vzext x)
17691  SDValue In = N->getOperand(0);
17692  while (In.getOpcode() == ISD::BITCAST)
17693    In = In.getOperand(0);
17694
17695  if (In.getOpcode() != X86ISD::VZEXT)
17696    return SDValue();
17697
17698  return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0),
17699                     In.getOperand(0));
17700}
17701
17702SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
17703                                             DAGCombinerInfo &DCI) const {
17704  SelectionDAG &DAG = DCI.DAG;
17705  switch (N->getOpcode()) {
17706  default: break;
17707  case ISD::EXTRACT_VECTOR_ELT:
17708    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
17709  case ISD::VSELECT:
17710  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
17711  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
17712  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
17713  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
17714  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
17715  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
17716  case ISD::SHL:
17717  case ISD::SRA:
17718  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
17719  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
17720  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
17721  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
17722  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
17723  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
17724  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
17725  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
17726  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
17727  case X86ISD::FXOR:
17728  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
17729  case X86ISD::FMIN:
17730  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
17731  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
17732  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
17733  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
17734  case ISD::ANY_EXTEND:
17735  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
17736  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
17737  case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
17738  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
17739  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
17740  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
17741  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
17742  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
17743  case X86ISD::SHUFP:       // Handle all target specific shuffles
17744  case X86ISD::PALIGNR:
17745  case X86ISD::UNPCKH:
17746  case X86ISD::UNPCKL:
17747  case X86ISD::MOVHLPS:
17748  case X86ISD::MOVLHPS:
17749  case X86ISD::PSHUFD:
17750  case X86ISD::PSHUFHW:
17751  case X86ISD::PSHUFLW:
17752  case X86ISD::MOVSS:
17753  case X86ISD::MOVSD:
17754  case X86ISD::VPERMILP:
17755  case X86ISD::VPERM2X128:
17756  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
17757  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
17758  }
17759
17760  return SDValue();
17761}
17762
17763/// isTypeDesirableForOp - Return true if the target has native support for
17764/// the specified value type and it is 'desirable' to use the type for the
17765/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
17766/// instruction encodings are longer and some i16 instructions are slow.
17767bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
17768  if (!isTypeLegal(VT))
17769    return false;
17770  if (VT != MVT::i16)
17771    return true;
17772
17773  switch (Opc) {
17774  default:
17775    return true;
17776  case ISD::LOAD:
17777  case ISD::SIGN_EXTEND:
17778  case ISD::ZERO_EXTEND:
17779  case ISD::ANY_EXTEND:
17780  case ISD::SHL:
17781  case ISD::SRL:
17782  case ISD::SUB:
17783  case ISD::ADD:
17784  case ISD::MUL:
17785  case ISD::AND:
17786  case ISD::OR:
17787  case ISD::XOR:
17788    return false;
17789  }
17790}
17791
17792/// IsDesirableToPromoteOp - This method query the target whether it is
17793/// beneficial for dag combiner to promote the specified node. If true, it
17794/// should return the desired promotion type by reference.
17795bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
17796  EVT VT = Op.getValueType();
17797  if (VT != MVT::i16)
17798    return false;
17799
17800  bool Promote = false;
17801  bool Commute = false;
17802  switch (Op.getOpcode()) {
17803  default: break;
17804  case ISD::LOAD: {
17805    LoadSDNode *LD = cast<LoadSDNode>(Op);
17806    // If the non-extending load has a single use and it's not live out, then it
17807    // might be folded.
17808    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
17809                                                     Op.hasOneUse()*/) {
17810      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
17811             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
17812        // The only case where we'd want to promote LOAD (rather then it being
17813        // promoted as an operand is when it's only use is liveout.
17814        if (UI->getOpcode() != ISD::CopyToReg)
17815          return false;
17816      }
17817    }
17818    Promote = true;
17819    break;
17820  }
17821  case ISD::SIGN_EXTEND:
17822  case ISD::ZERO_EXTEND:
17823  case ISD::ANY_EXTEND:
17824    Promote = true;
17825    break;
17826  case ISD::SHL:
17827  case ISD::SRL: {
17828    SDValue N0 = Op.getOperand(0);
17829    // Look out for (store (shl (load), x)).
17830    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
17831      return false;
17832    Promote = true;
17833    break;
17834  }
17835  case ISD::ADD:
17836  case ISD::MUL:
17837  case ISD::AND:
17838  case ISD::OR:
17839  case ISD::XOR:
17840    Commute = true;
17841    // fallthrough
17842  case ISD::SUB: {
17843    SDValue N0 = Op.getOperand(0);
17844    SDValue N1 = Op.getOperand(1);
17845    if (!Commute && MayFoldLoad(N1))
17846      return false;
17847    // Avoid disabling potential load folding opportunities.
17848    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
17849      return false;
17850    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
17851      return false;
17852    Promote = true;
17853  }
17854  }
17855
17856  PVT = MVT::i32;
17857  return Promote;
17858}
17859
17860//===----------------------------------------------------------------------===//
17861//                           X86 Inline Assembly Support
17862//===----------------------------------------------------------------------===//
17863
17864namespace {
17865  // Helper to match a string separated by whitespace.
17866  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
17867    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
17868
17869    for (unsigned i = 0, e = args.size(); i != e; ++i) {
17870      StringRef piece(*args[i]);
17871      if (!s.startswith(piece)) // Check if the piece matches.
17872        return false;
17873
17874      s = s.substr(piece.size());
17875      StringRef::size_type pos = s.find_first_not_of(" \t");
17876      if (pos == 0) // We matched a prefix.
17877        return false;
17878
17879      s = s.substr(pos);
17880    }
17881
17882    return s.empty();
17883  }
17884  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
17885}
17886
17887bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
17888  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
17889
17890  std::string AsmStr = IA->getAsmString();
17891
17892  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
17893  if (!Ty || Ty->getBitWidth() % 16 != 0)
17894    return false;
17895
17896  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
17897  SmallVector<StringRef, 4> AsmPieces;
17898  SplitString(AsmStr, AsmPieces, ";\n");
17899
17900  switch (AsmPieces.size()) {
17901  default: return false;
17902  case 1:
17903    // FIXME: this should verify that we are targeting a 486 or better.  If not,
17904    // we will turn this bswap into something that will be lowered to logical
17905    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
17906    // lower so don't worry about this.
17907    // bswap $0
17908    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
17909        matchAsm(AsmPieces[0], "bswapl", "$0") ||
17910        matchAsm(AsmPieces[0], "bswapq", "$0") ||
17911        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
17912        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
17913        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
17914      // No need to check constraints, nothing other than the equivalent of
17915      // "=r,0" would be valid here.
17916      return IntrinsicLowering::LowerToByteSwap(CI);
17917    }
17918
17919    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
17920    if (CI->getType()->isIntegerTy(16) &&
17921        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
17922        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
17923         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
17924      AsmPieces.clear();
17925      const std::string &ConstraintsStr = IA->getConstraintString();
17926      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
17927      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
17928      if (AsmPieces.size() == 4 &&
17929          AsmPieces[0] == "~{cc}" &&
17930          AsmPieces[1] == "~{dirflag}" &&
17931          AsmPieces[2] == "~{flags}" &&
17932          AsmPieces[3] == "~{fpsr}")
17933      return IntrinsicLowering::LowerToByteSwap(CI);
17934    }
17935    break;
17936  case 3:
17937    if (CI->getType()->isIntegerTy(32) &&
17938        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
17939        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
17940        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
17941        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
17942      AsmPieces.clear();
17943      const std::string &ConstraintsStr = IA->getConstraintString();
17944      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
17945      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
17946      if (AsmPieces.size() == 4 &&
17947          AsmPieces[0] == "~{cc}" &&
17948          AsmPieces[1] == "~{dirflag}" &&
17949          AsmPieces[2] == "~{flags}" &&
17950          AsmPieces[3] == "~{fpsr}")
17951        return IntrinsicLowering::LowerToByteSwap(CI);
17952    }
17953
17954    if (CI->getType()->isIntegerTy(64)) {
17955      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
17956      if (Constraints.size() >= 2 &&
17957          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
17958          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
17959        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
17960        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
17961            matchAsm(AsmPieces[1], "bswap", "%edx") &&
17962            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
17963          return IntrinsicLowering::LowerToByteSwap(CI);
17964      }
17965    }
17966    break;
17967  }
17968  return false;
17969}
17970
17971/// getConstraintType - Given a constraint letter, return the type of
17972/// constraint it is for this target.
17973X86TargetLowering::ConstraintType
17974X86TargetLowering::getConstraintType(const std::string &Constraint) const {
17975  if (Constraint.size() == 1) {
17976    switch (Constraint[0]) {
17977    case 'R':
17978    case 'q':
17979    case 'Q':
17980    case 'f':
17981    case 't':
17982    case 'u':
17983    case 'y':
17984    case 'x':
17985    case 'Y':
17986    case 'l':
17987      return C_RegisterClass;
17988    case 'a':
17989    case 'b':
17990    case 'c':
17991    case 'd':
17992    case 'S':
17993    case 'D':
17994    case 'A':
17995      return C_Register;
17996    case 'I':
17997    case 'J':
17998    case 'K':
17999    case 'L':
18000    case 'M':
18001    case 'N':
18002    case 'G':
18003    case 'C':
18004    case 'e':
18005    case 'Z':
18006      return C_Other;
18007    default:
18008      break;
18009    }
18010  }
18011  return TargetLowering::getConstraintType(Constraint);
18012}
18013
18014/// Examine constraint type and operand type and determine a weight value.
18015/// This object must already have been set up with the operand type
18016/// and the current alternative constraint selected.
18017TargetLowering::ConstraintWeight
18018  X86TargetLowering::getSingleConstraintMatchWeight(
18019    AsmOperandInfo &info, const char *constraint) const {
18020  ConstraintWeight weight = CW_Invalid;
18021  Value *CallOperandVal = info.CallOperandVal;
18022    // If we don't have a value, we can't do a match,
18023    // but allow it at the lowest weight.
18024  if (CallOperandVal == NULL)
18025    return CW_Default;
18026  Type *type = CallOperandVal->getType();
18027  // Look at the constraint type.
18028  switch (*constraint) {
18029  default:
18030    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
18031  case 'R':
18032  case 'q':
18033  case 'Q':
18034  case 'a':
18035  case 'b':
18036  case 'c':
18037  case 'd':
18038  case 'S':
18039  case 'D':
18040  case 'A':
18041    if (CallOperandVal->getType()->isIntegerTy())
18042      weight = CW_SpecificReg;
18043    break;
18044  case 'f':
18045  case 't':
18046  case 'u':
18047    if (type->isFloatingPointTy())
18048      weight = CW_SpecificReg;
18049    break;
18050  case 'y':
18051    if (type->isX86_MMXTy() && Subtarget->hasMMX())
18052      weight = CW_SpecificReg;
18053    break;
18054  case 'x':
18055  case 'Y':
18056    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
18057        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
18058      weight = CW_Register;
18059    break;
18060  case 'I':
18061    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
18062      if (C->getZExtValue() <= 31)
18063        weight = CW_Constant;
18064    }
18065    break;
18066  case 'J':
18067    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18068      if (C->getZExtValue() <= 63)
18069        weight = CW_Constant;
18070    }
18071    break;
18072  case 'K':
18073    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18074      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
18075        weight = CW_Constant;
18076    }
18077    break;
18078  case 'L':
18079    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18080      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
18081        weight = CW_Constant;
18082    }
18083    break;
18084  case 'M':
18085    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18086      if (C->getZExtValue() <= 3)
18087        weight = CW_Constant;
18088    }
18089    break;
18090  case 'N':
18091    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18092      if (C->getZExtValue() <= 0xff)
18093        weight = CW_Constant;
18094    }
18095    break;
18096  case 'G':
18097  case 'C':
18098    if (dyn_cast<ConstantFP>(CallOperandVal)) {
18099      weight = CW_Constant;
18100    }
18101    break;
18102  case 'e':
18103    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18104      if ((C->getSExtValue() >= -0x80000000LL) &&
18105          (C->getSExtValue() <= 0x7fffffffLL))
18106        weight = CW_Constant;
18107    }
18108    break;
18109  case 'Z':
18110    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18111      if (C->getZExtValue() <= 0xffffffff)
18112        weight = CW_Constant;
18113    }
18114    break;
18115  }
18116  return weight;
18117}
18118
18119/// LowerXConstraint - try to replace an X constraint, which matches anything,
18120/// with another that has more specific requirements based on the type of the
18121/// corresponding operand.
18122const char *X86TargetLowering::
18123LowerXConstraint(EVT ConstraintVT) const {
18124  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
18125  // 'f' like normal targets.
18126  if (ConstraintVT.isFloatingPoint()) {
18127    if (Subtarget->hasSSE2())
18128      return "Y";
18129    if (Subtarget->hasSSE1())
18130      return "x";
18131  }
18132
18133  return TargetLowering::LowerXConstraint(ConstraintVT);
18134}
18135
18136/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
18137/// vector.  If it is invalid, don't add anything to Ops.
18138void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
18139                                                     std::string &Constraint,
18140                                                     std::vector<SDValue>&Ops,
18141                                                     SelectionDAG &DAG) const {
18142  SDValue Result(0, 0);
18143
18144  // Only support length 1 constraints for now.
18145  if (Constraint.length() > 1) return;
18146
18147  char ConstraintLetter = Constraint[0];
18148  switch (ConstraintLetter) {
18149  default: break;
18150  case 'I':
18151    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18152      if (C->getZExtValue() <= 31) {
18153        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18154        break;
18155      }
18156    }
18157    return;
18158  case 'J':
18159    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18160      if (C->getZExtValue() <= 63) {
18161        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18162        break;
18163      }
18164    }
18165    return;
18166  case 'K':
18167    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18168      if (isInt<8>(C->getSExtValue())) {
18169        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18170        break;
18171      }
18172    }
18173    return;
18174  case 'N':
18175    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18176      if (C->getZExtValue() <= 255) {
18177        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18178        break;
18179      }
18180    }
18181    return;
18182  case 'e': {
18183    // 32-bit signed value
18184    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18185      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
18186                                           C->getSExtValue())) {
18187        // Widen to 64 bits here to get it sign extended.
18188        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
18189        break;
18190      }
18191    // FIXME gcc accepts some relocatable values here too, but only in certain
18192    // memory models; it's complicated.
18193    }
18194    return;
18195  }
18196  case 'Z': {
18197    // 32-bit unsigned value
18198    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18199      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
18200                                           C->getZExtValue())) {
18201        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18202        break;
18203      }
18204    }
18205    // FIXME gcc accepts some relocatable values here too, but only in certain
18206    // memory models; it's complicated.
18207    return;
18208  }
18209  case 'i': {
18210    // Literal immediates are always ok.
18211    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
18212      // Widen to 64 bits here to get it sign extended.
18213      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
18214      break;
18215    }
18216
18217    // In any sort of PIC mode addresses need to be computed at runtime by
18218    // adding in a register or some sort of table lookup.  These can't
18219    // be used as immediates.
18220    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
18221      return;
18222
18223    // If we are in non-pic codegen mode, we allow the address of a global (with
18224    // an optional displacement) to be used with 'i'.
18225    GlobalAddressSDNode *GA = 0;
18226    int64_t Offset = 0;
18227
18228    // Match either (GA), (GA+C), (GA+C1+C2), etc.
18229    while (1) {
18230      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
18231        Offset += GA->getOffset();
18232        break;
18233      } else if (Op.getOpcode() == ISD::ADD) {
18234        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
18235          Offset += C->getZExtValue();
18236          Op = Op.getOperand(0);
18237          continue;
18238        }
18239      } else if (Op.getOpcode() == ISD::SUB) {
18240        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
18241          Offset += -C->getZExtValue();
18242          Op = Op.getOperand(0);
18243          continue;
18244        }
18245      }
18246
18247      // Otherwise, this isn't something we can handle, reject it.
18248      return;
18249    }
18250
18251    const GlobalValue *GV = GA->getGlobal();
18252    // If we require an extra load to get this address, as in PIC mode, we
18253    // can't accept it.
18254    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
18255                                                        getTargetMachine())))
18256      return;
18257
18258    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
18259                                        GA->getValueType(0), Offset);
18260    break;
18261  }
18262  }
18263
18264  if (Result.getNode()) {
18265    Ops.push_back(Result);
18266    return;
18267  }
18268  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
18269}
18270
18271std::pair<unsigned, const TargetRegisterClass*>
18272X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
18273                                                EVT VT) const {
18274  // First, see if this is a constraint that directly corresponds to an LLVM
18275  // register class.
18276  if (Constraint.size() == 1) {
18277    // GCC Constraint Letters
18278    switch (Constraint[0]) {
18279    default: break;
18280      // TODO: Slight differences here in allocation order and leaving
18281      // RIP in the class. Do they matter any more here than they do
18282      // in the normal allocation?
18283    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
18284      if (Subtarget->is64Bit()) {
18285        if (VT == MVT::i32 || VT == MVT::f32)
18286          return std::make_pair(0U, &X86::GR32RegClass);
18287        if (VT == MVT::i16)
18288          return std::make_pair(0U, &X86::GR16RegClass);
18289        if (VT == MVT::i8 || VT == MVT::i1)
18290          return std::make_pair(0U, &X86::GR8RegClass);
18291        if (VT == MVT::i64 || VT == MVT::f64)
18292          return std::make_pair(0U, &X86::GR64RegClass);
18293        break;
18294      }
18295      // 32-bit fallthrough
18296    case 'Q':   // Q_REGS
18297      if (VT == MVT::i32 || VT == MVT::f32)
18298        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
18299      if (VT == MVT::i16)
18300        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
18301      if (VT == MVT::i8 || VT == MVT::i1)
18302        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
18303      if (VT == MVT::i64)
18304        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
18305      break;
18306    case 'r':   // GENERAL_REGS
18307    case 'l':   // INDEX_REGS
18308      if (VT == MVT::i8 || VT == MVT::i1)
18309        return std::make_pair(0U, &X86::GR8RegClass);
18310      if (VT == MVT::i16)
18311        return std::make_pair(0U, &X86::GR16RegClass);
18312      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
18313        return std::make_pair(0U, &X86::GR32RegClass);
18314      return std::make_pair(0U, &X86::GR64RegClass);
18315    case 'R':   // LEGACY_REGS
18316      if (VT == MVT::i8 || VT == MVT::i1)
18317        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
18318      if (VT == MVT::i16)
18319        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
18320      if (VT == MVT::i32 || !Subtarget->is64Bit())
18321        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
18322      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
18323    case 'f':  // FP Stack registers.
18324      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
18325      // value to the correct fpstack register class.
18326      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
18327        return std::make_pair(0U, &X86::RFP32RegClass);
18328      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
18329        return std::make_pair(0U, &X86::RFP64RegClass);
18330      return std::make_pair(0U, &X86::RFP80RegClass);
18331    case 'y':   // MMX_REGS if MMX allowed.
18332      if (!Subtarget->hasMMX()) break;
18333      return std::make_pair(0U, &X86::VR64RegClass);
18334    case 'Y':   // SSE_REGS if SSE2 allowed
18335      if (!Subtarget->hasSSE2()) break;
18336      // FALL THROUGH.
18337    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
18338      if (!Subtarget->hasSSE1()) break;
18339
18340      switch (VT.getSimpleVT().SimpleTy) {
18341      default: break;
18342      // Scalar SSE types.
18343      case MVT::f32:
18344      case MVT::i32:
18345        return std::make_pair(0U, &X86::FR32RegClass);
18346      case MVT::f64:
18347      case MVT::i64:
18348        return std::make_pair(0U, &X86::FR64RegClass);
18349      // Vector types.
18350      case MVT::v16i8:
18351      case MVT::v8i16:
18352      case MVT::v4i32:
18353      case MVT::v2i64:
18354      case MVT::v4f32:
18355      case MVT::v2f64:
18356        return std::make_pair(0U, &X86::VR128RegClass);
18357      // AVX types.
18358      case MVT::v32i8:
18359      case MVT::v16i16:
18360      case MVT::v8i32:
18361      case MVT::v4i64:
18362      case MVT::v8f32:
18363      case MVT::v4f64:
18364        return std::make_pair(0U, &X86::VR256RegClass);
18365      }
18366      break;
18367    }
18368  }
18369
18370  // Use the default implementation in TargetLowering to convert the register
18371  // constraint into a member of a register class.
18372  std::pair<unsigned, const TargetRegisterClass*> Res;
18373  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
18374
18375  // Not found as a standard register?
18376  if (Res.second == 0) {
18377    // Map st(0) -> st(7) -> ST0
18378    if (Constraint.size() == 7 && Constraint[0] == '{' &&
18379        tolower(Constraint[1]) == 's' &&
18380        tolower(Constraint[2]) == 't' &&
18381        Constraint[3] == '(' &&
18382        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
18383        Constraint[5] == ')' &&
18384        Constraint[6] == '}') {
18385
18386      Res.first = X86::ST0+Constraint[4]-'0';
18387      Res.second = &X86::RFP80RegClass;
18388      return Res;
18389    }
18390
18391    // GCC allows "st(0)" to be called just plain "st".
18392    if (StringRef("{st}").equals_lower(Constraint)) {
18393      Res.first = X86::ST0;
18394      Res.second = &X86::RFP80RegClass;
18395      return Res;
18396    }
18397
18398    // flags -> EFLAGS
18399    if (StringRef("{flags}").equals_lower(Constraint)) {
18400      Res.first = X86::EFLAGS;
18401      Res.second = &X86::CCRRegClass;
18402      return Res;
18403    }
18404
18405    // 'A' means EAX + EDX.
18406    if (Constraint == "A") {
18407      Res.first = X86::EAX;
18408      Res.second = &X86::GR32_ADRegClass;
18409      return Res;
18410    }
18411    return Res;
18412  }
18413
18414  // Otherwise, check to see if this is a register class of the wrong value
18415  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
18416  // turn into {ax},{dx}.
18417  if (Res.second->hasType(VT))
18418    return Res;   // Correct type already, nothing to do.
18419
18420  // All of the single-register GCC register classes map their values onto
18421  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
18422  // really want an 8-bit or 32-bit register, map to the appropriate register
18423  // class and return the appropriate register.
18424  if (Res.second == &X86::GR16RegClass) {
18425    if (VT == MVT::i8 || VT == MVT::i1) {
18426      unsigned DestReg = 0;
18427      switch (Res.first) {
18428      default: break;
18429      case X86::AX: DestReg = X86::AL; break;
18430      case X86::DX: DestReg = X86::DL; break;
18431      case X86::CX: DestReg = X86::CL; break;
18432      case X86::BX: DestReg = X86::BL; break;
18433      }
18434      if (DestReg) {
18435        Res.first = DestReg;
18436        Res.second = &X86::GR8RegClass;
18437      }
18438    } else if (VT == MVT::i32 || VT == MVT::f32) {
18439      unsigned DestReg = 0;
18440      switch (Res.first) {
18441      default: break;
18442      case X86::AX: DestReg = X86::EAX; break;
18443      case X86::DX: DestReg = X86::EDX; break;
18444      case X86::CX: DestReg = X86::ECX; break;
18445      case X86::BX: DestReg = X86::EBX; break;
18446      case X86::SI: DestReg = X86::ESI; break;
18447      case X86::DI: DestReg = X86::EDI; break;
18448      case X86::BP: DestReg = X86::EBP; break;
18449      case X86::SP: DestReg = X86::ESP; break;
18450      }
18451      if (DestReg) {
18452        Res.first = DestReg;
18453        Res.second = &X86::GR32RegClass;
18454      }
18455    } else if (VT == MVT::i64 || VT == MVT::f64) {
18456      unsigned DestReg = 0;
18457      switch (Res.first) {
18458      default: break;
18459      case X86::AX: DestReg = X86::RAX; break;
18460      case X86::DX: DestReg = X86::RDX; break;
18461      case X86::CX: DestReg = X86::RCX; break;
18462      case X86::BX: DestReg = X86::RBX; break;
18463      case X86::SI: DestReg = X86::RSI; break;
18464      case X86::DI: DestReg = X86::RDI; break;
18465      case X86::BP: DestReg = X86::RBP; break;
18466      case X86::SP: DestReg = X86::RSP; break;
18467      }
18468      if (DestReg) {
18469        Res.first = DestReg;
18470        Res.second = &X86::GR64RegClass;
18471      }
18472    }
18473  } else if (Res.second == &X86::FR32RegClass ||
18474             Res.second == &X86::FR64RegClass ||
18475             Res.second == &X86::VR128RegClass) {
18476    // Handle references to XMM physical registers that got mapped into the
18477    // wrong class.  This can happen with constraints like {xmm0} where the
18478    // target independent register mapper will just pick the first match it can
18479    // find, ignoring the required type.
18480
18481    if (VT == MVT::f32 || VT == MVT::i32)
18482      Res.second = &X86::FR32RegClass;
18483    else if (VT == MVT::f64 || VT == MVT::i64)
18484      Res.second = &X86::FR64RegClass;
18485    else if (X86::VR128RegClass.hasType(VT))
18486      Res.second = &X86::VR128RegClass;
18487    else if (X86::VR256RegClass.hasType(VT))
18488      Res.second = &X86::VR256RegClass;
18489  }
18490
18491  return Res;
18492}
18493