X86ISelLowering.cpp revision eb2f969a4ddfb0bc8fdcb5bce3b52e53abff321d
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86TargetMachine.h"
19#include "X86TargetObjectFile.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalAlias.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Function.h"
26#include "llvm/Instructions.h"
27#include "llvm/Intrinsics.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/VectorExtras.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/ADT/SmallSet.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/raw_ostream.h"
45using namespace llvm;
46
47static cl::opt<bool>
48DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
49
50// Disable16Bit - 16-bit operations typically have a larger encoding than
51// corresponding 32-bit instructions, and 16-bit code is slow on some
52// processors. This is an experimental flag to disable 16-bit operations
53// (which forces them to be Legalized to 32-bit operations).
54static cl::opt<bool>
55Disable16Bit("disable-16bit", cl::Hidden,
56             cl::desc("Disable use of 16-bit instructions"));
57
58// Forward declarations.
59static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
60                       SDValue V2);
61
62static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
63  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
64  default: llvm_unreachable("unknown subtarget type");
65  case X86Subtarget::isDarwin:
66    if (TM.getSubtarget<X86Subtarget>().is64Bit())
67      return new X8664_MachoTargetObjectFile();
68    return new X8632_MachoTargetObjectFile();
69  case X86Subtarget::isELF:
70    return new TargetLoweringObjectFileELF();
71  case X86Subtarget::isMingw:
72  case X86Subtarget::isCygwin:
73  case X86Subtarget::isWindows:
74    return new TargetLoweringObjectFileCOFF();
75  }
76
77}
78
79X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
80  : TargetLowering(TM, createTLOF(TM)) {
81  Subtarget = &TM.getSubtarget<X86Subtarget>();
82  X86ScalarSSEf64 = Subtarget->hasSSE2();
83  X86ScalarSSEf32 = Subtarget->hasSSE1();
84  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
85
86  RegInfo = TM.getRegisterInfo();
87  TD = getTargetData();
88
89  // Set up the TargetLowering object.
90
91  // X86 is weird, it always uses i8 for shift amounts and setcc results.
92  setShiftAmountType(MVT::i8);
93  setBooleanContents(ZeroOrOneBooleanContent);
94  setSchedulingPreference(SchedulingForRegPressure);
95  setStackPointerRegisterToSaveRestore(X86StackPtr);
96
97  if (Subtarget->isTargetDarwin()) {
98    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
99    setUseUnderscoreSetJmp(false);
100    setUseUnderscoreLongJmp(false);
101  } else if (Subtarget->isTargetMingw()) {
102    // MS runtime is weird: it exports _setjmp, but longjmp!
103    setUseUnderscoreSetJmp(true);
104    setUseUnderscoreLongJmp(false);
105  } else {
106    setUseUnderscoreSetJmp(true);
107    setUseUnderscoreLongJmp(true);
108  }
109
110  // Set up the register classes.
111  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
112  if (!Disable16Bit)
113    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115  if (Subtarget->is64Bit())
116    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117
118  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
119
120  // We don't accept any truncstore of integer registers.
121  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122  if (!Disable16Bit)
123    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
124  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
125  if (!Disable16Bit)
126    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
127  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
128  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
129
130  // SETOEQ and SETUNE require checking two conditions.
131  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
132  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
133  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
135  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
136  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
137
138  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
139  // operation.
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
141  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
142  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
143
144  if (Subtarget->is64Bit()) {
145    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
146    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
147  } else if (!UseSoftFloat) {
148    if (X86ScalarSSEf64) {
149      // We have an impenetrably clever algorithm for ui64->double only.
150      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
151    }
152    // We have an algorithm for SSE2, and we turn this into a 64-bit
153    // FILD for other targets.
154    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
155  }
156
157  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
158  // this operation.
159  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
160  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
161
162  if (!UseSoftFloat) {
163    // SSE has no i16 to fp conversion, only i32
164    if (X86ScalarSSEf32) {
165      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
166      // f32 and f64 cases are Legal, f80 case is not
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168    } else {
169      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
170      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
171    }
172  } else {
173    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
174    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
175  }
176
177  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
178  // are Legal, f80 is custom lowered.
179  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
180  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
181
182  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
183  // this operation.
184  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
185  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
186
187  if (X86ScalarSSEf32) {
188    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
189    // f32 and f64 cases are Legal, f80 case is not
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191  } else {
192    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
193    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
194  }
195
196  // Handle FP_TO_UINT by promoting the destination to a larger signed
197  // conversion.
198  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
199  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
200  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
201
202  if (Subtarget->is64Bit()) {
203    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
204    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
205  } else if (!UseSoftFloat) {
206    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
207      // Expand FP_TO_UINT into a select.
208      // FIXME: We would like to use a Custom expander here eventually to do
209      // the optimal thing for SSE vs. the default expansion in the legalizer.
210      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
211    else
212      // With SSE3 we can use fisttpll to convert to a signed i64; without
213      // SSE, we're stuck with a fistpll.
214      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
215  }
216
217  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
218  if (!X86ScalarSSEf64) {
219    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
220    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
221  }
222
223  // Scalar integer divide and remainder are lowered to use operations that
224  // produce two results, to match the available instructions. This exposes
225  // the two-result form to trivial CSE, which is able to combine x/y and x%y
226  // into a single instruction.
227  //
228  // Scalar integer multiply-high is also lowered to use two-result
229  // operations, to match the available instructions. However, plain multiply
230  // (low) operations are left as Legal, as there are single-result
231  // instructions for this in x86. Using the two-result multiply instructions
232  // when both high and low results are needed must be arranged by dagcombine.
233  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
234  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
235  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
236  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
237  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
238  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
239  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
240  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
241  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
242  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
243  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
244  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
245  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
246  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
247  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
248  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
249  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
250  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
251  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
252  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
253  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
254  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
255  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
256  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
257
258  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
259  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
260  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
261  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
262  if (Subtarget->is64Bit())
263    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
264  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
265  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
266  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
267  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
268  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
269  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
270  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
271  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
272
273  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
274  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
275  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
276  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
277  if (Disable16Bit) {
278    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
279    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
280  } else {
281    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
282    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
283  }
284  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295
296  // These should be promoted to a larger select which is supported.
297  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
298  // X86 wants to expand cmov itself.
299  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
300  if (Disable16Bit)
301    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
302  else
303    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
305  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
306  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
307  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
309  if (Disable16Bit)
310    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
311  else
312    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
313  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
314  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
315  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
316  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
317  if (Subtarget->is64Bit()) {
318    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
319    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
320  }
321  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
322
323  // Darwin ABI issue.
324  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
325  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
326  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
327  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
328  if (Subtarget->is64Bit())
329    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
330  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
331  if (Subtarget->is64Bit()) {
332    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
333    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
334    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
335    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
336  }
337  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
338  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
339  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
340  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
341  if (Subtarget->is64Bit()) {
342    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
343    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
344    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
345  }
346
347  if (Subtarget->hasSSE1())
348    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
349
350  if (!Subtarget->hasSSE2())
351    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
352
353  // Expand certain atomics
354  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
355  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
356  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
358
359  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
360  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
361  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
363
364  if (!Subtarget->is64Bit()) {
365    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
366    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
367    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
368    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
372  }
373
374  // Use the default ISD::DBG_STOPPOINT.
375  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
376  // FIXME - use subtarget debug flags
377  if (!Subtarget->isTargetDarwin() &&
378      !Subtarget->isTargetELF() &&
379      !Subtarget->isTargetCygMing()) {
380    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
381    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
382  }
383
384  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
385  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
386  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
387  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
388  if (Subtarget->is64Bit()) {
389    setExceptionPointerRegister(X86::RAX);
390    setExceptionSelectorRegister(X86::RDX);
391  } else {
392    setExceptionPointerRegister(X86::EAX);
393    setExceptionSelectorRegister(X86::EDX);
394  }
395  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
396  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
397
398  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
399
400  setOperationAction(ISD::TRAP, MVT::Other, Legal);
401
402  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
403  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
404  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
405  if (Subtarget->is64Bit()) {
406    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
407    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
408  } else {
409    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
410    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
411  }
412
413  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
414  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
415  if (Subtarget->is64Bit())
416    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
417  if (Subtarget->isTargetCygMing())
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
419  else
420    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
421
422  if (!UseSoftFloat && X86ScalarSSEf64) {
423    // f32 and f64 use SSE.
424    // Set up the FP register classes.
425    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
426    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
427
428    // Use ANDPD to simulate FABS.
429    setOperationAction(ISD::FABS , MVT::f64, Custom);
430    setOperationAction(ISD::FABS , MVT::f32, Custom);
431
432    // Use XORP to simulate FNEG.
433    setOperationAction(ISD::FNEG , MVT::f64, Custom);
434    setOperationAction(ISD::FNEG , MVT::f32, Custom);
435
436    // Use ANDPD and ORPD to simulate FCOPYSIGN.
437    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
438    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
439
440    // We don't support sin/cos/fmod
441    setOperationAction(ISD::FSIN , MVT::f64, Expand);
442    setOperationAction(ISD::FCOS , MVT::f64, Expand);
443    setOperationAction(ISD::FSIN , MVT::f32, Expand);
444    setOperationAction(ISD::FCOS , MVT::f32, Expand);
445
446    // Expand FP immediates into loads from the stack, except for the special
447    // cases we handle.
448    addLegalFPImmediate(APFloat(+0.0)); // xorpd
449    addLegalFPImmediate(APFloat(+0.0f)); // xorps
450  } else if (!UseSoftFloat && X86ScalarSSEf32) {
451    // Use SSE for f32, x87 for f64.
452    // Set up the FP register classes.
453    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
454    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
455
456    // Use ANDPS to simulate FABS.
457    setOperationAction(ISD::FABS , MVT::f32, Custom);
458
459    // Use XORP to simulate FNEG.
460    setOperationAction(ISD::FNEG , MVT::f32, Custom);
461
462    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
463
464    // Use ANDPS and ORPS to simulate FCOPYSIGN.
465    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
467
468    // We don't support sin/cos/fmod
469    setOperationAction(ISD::FSIN , MVT::f32, Expand);
470    setOperationAction(ISD::FCOS , MVT::f32, Expand);
471
472    // Special cases we handle for FP constants.
473    addLegalFPImmediate(APFloat(+0.0f)); // xorps
474    addLegalFPImmediate(APFloat(+0.0)); // FLD0
475    addLegalFPImmediate(APFloat(+1.0)); // FLD1
476    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
477    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478
479    if (!UnsafeFPMath) {
480      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
481      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
482    }
483  } else if (!UseSoftFloat) {
484    // f32 and f64 in x87.
485    // Set up the FP register classes.
486    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
487    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
488
489    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
490    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
491    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
492    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
493
494    if (!UnsafeFPMath) {
495      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
496      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
497    }
498    addLegalFPImmediate(APFloat(+0.0)); // FLD0
499    addLegalFPImmediate(APFloat(+1.0)); // FLD1
500    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
501    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
502    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
503    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
504    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
505    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
506  }
507
508  // Long double always uses X87.
509  if (!UseSoftFloat) {
510    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
511    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
512    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
513    {
514      bool ignored;
515      APFloat TmpFlt(+0.0);
516      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
517                     &ignored);
518      addLegalFPImmediate(TmpFlt);  // FLD0
519      TmpFlt.changeSign();
520      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
521      APFloat TmpFlt2(+1.0);
522      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
523                      &ignored);
524      addLegalFPImmediate(TmpFlt2);  // FLD1
525      TmpFlt2.changeSign();
526      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
527    }
528
529    if (!UnsafeFPMath) {
530      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
531      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
532    }
533  }
534
535  // Always use a library call for pow.
536  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
537  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
538  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
539
540  setOperationAction(ISD::FLOG, MVT::f80, Expand);
541  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
542  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
543  setOperationAction(ISD::FEXP, MVT::f80, Expand);
544  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
545
546  // First set operation action for all vector types to either promote
547  // (for widening) or expand (for scalarization). Then we will selectively
548  // turn on ones that can be effectively codegen'd.
549  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
550       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
551    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
566    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
567    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599  }
600
601  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
602  // with -msoft-float, disable use of MMX as well.
603  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
604    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
605    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
606    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
607    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
608    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
609
610    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
611    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
612    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
613    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
614
615    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
616    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
617    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
618    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
619
620    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
621    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
622
623    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
624    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
625    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
626    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
627    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
628    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
629    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
630
631    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
632    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
633    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
634    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
635    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
636    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
637    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
638
639    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
640    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
641    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
642    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
643    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
644    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
645    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
646
647    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
648    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
649    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
650    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
651    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
652    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
653    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
654    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
655    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
656
657    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
658    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
659    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
660    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
661    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
662
663    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
664    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
665    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
666    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
667
668    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
669    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
670    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
671    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
672
673    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
674
675    setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand);
676    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
677    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
678    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
679    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
680    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
681    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
682    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
683    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
684  }
685
686  if (!UseSoftFloat && Subtarget->hasSSE1()) {
687    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
688
689    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
690    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
691    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
692    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
693    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
694    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
695    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
696    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
697    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
698    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
699    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
700    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
701  }
702
703  if (!UseSoftFloat && Subtarget->hasSSE2()) {
704    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
705
706    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
707    // registers cannot be used even for integer operations.
708    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
709    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
710    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
711    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
712
713    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
714    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
715    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
716    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
717    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
718    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
719    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
720    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
721    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
722    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
723    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
724    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
725    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
726    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
727    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
728    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
729
730    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
731    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
732    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
733    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
734
735    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
736    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
737    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
738    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
739    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
740
741    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
742    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
743      EVT VT = (MVT::SimpleValueType)i;
744      // Do not attempt to custom lower non-power-of-2 vectors
745      if (!isPowerOf2_32(VT.getVectorNumElements()))
746        continue;
747      // Do not attempt to custom lower non-128-bit vectors
748      if (!VT.is128BitVector())
749        continue;
750      setOperationAction(ISD::BUILD_VECTOR,
751                         VT.getSimpleVT().SimpleTy, Custom);
752      setOperationAction(ISD::VECTOR_SHUFFLE,
753                         VT.getSimpleVT().SimpleTy, Custom);
754      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
755                         VT.getSimpleVT().SimpleTy, Custom);
756    }
757
758    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
759    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
760    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
761    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
762    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
763    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
764
765    if (Subtarget->is64Bit()) {
766      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
767      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
768    }
769
770    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
771    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
772      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
773      EVT VT = SVT;
774
775      // Do not attempt to promote non-128-bit vectors
776      if (!VT.is128BitVector()) {
777        continue;
778      }
779      setOperationAction(ISD::AND,    SVT, Promote);
780      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
781      setOperationAction(ISD::OR,     SVT, Promote);
782      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
783      setOperationAction(ISD::XOR,    SVT, Promote);
784      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
785      setOperationAction(ISD::LOAD,   SVT, Promote);
786      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
787      setOperationAction(ISD::SELECT, SVT, Promote);
788      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
789    }
790
791    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
792
793    // Custom lower v2i64 and v2f64 selects.
794    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
795    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
796    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
797    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
798
799    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
800    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
801    if (!DisableMMX && Subtarget->hasMMX()) {
802      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
803      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
804    }
805  }
806
807  if (Subtarget->hasSSE41()) {
808    // FIXME: Do we need to handle scalar-to-vector here?
809    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
810
811    // i8 and i16 vectors are custom , because the source register and source
812    // source memory operand types are not the same width.  f32 vectors are
813    // custom since the immediate controlling the insert encodes additional
814    // information.
815    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
816    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
817    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
818    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
819
820    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
821    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
822    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
823    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
824
825    if (Subtarget->is64Bit()) {
826      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
827      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
828    }
829  }
830
831  if (Subtarget->hasSSE42()) {
832    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
833  }
834
835  if (!UseSoftFloat && Subtarget->hasAVX()) {
836    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
837    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
838    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
839    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
840
841    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
842    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
843    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
844    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
845    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
846    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
847    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
848    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
849    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
850    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
851    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
852    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
853    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
854    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
855    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
856
857    // Operations to consider commented out -v16i16 v32i8
858    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
859    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
860    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
861    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
862    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
863    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
864    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
865    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
866    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
867    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
868    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
869    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
870    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
871    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
872
873    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
874    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
875    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
876    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
877
878    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
879    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
880    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
881    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
882    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
883
884    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
885    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
886    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
887    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
888    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
889    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
890
891#if 0
892    // Not sure we want to do this since there are no 256-bit integer
893    // operations in AVX
894
895    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
896    // This includes 256-bit vectors
897    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
898      EVT VT = (MVT::SimpleValueType)i;
899
900      // Do not attempt to custom lower non-power-of-2 vectors
901      if (!isPowerOf2_32(VT.getVectorNumElements()))
902        continue;
903
904      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
905      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
906      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
907    }
908
909    if (Subtarget->is64Bit()) {
910      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
911      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
912    }
913#endif
914
915#if 0
916    // Not sure we want to do this since there are no 256-bit integer
917    // operations in AVX
918
919    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
920    // Including 256-bit vectors
921    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
922      EVT VT = (MVT::SimpleValueType)i;
923
924      if (!VT.is256BitVector()) {
925        continue;
926      }
927      setOperationAction(ISD::AND,    VT, Promote);
928      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
929      setOperationAction(ISD::OR,     VT, Promote);
930      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
931      setOperationAction(ISD::XOR,    VT, Promote);
932      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
933      setOperationAction(ISD::LOAD,   VT, Promote);
934      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
935      setOperationAction(ISD::SELECT, VT, Promote);
936      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
937    }
938
939    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
940#endif
941  }
942
943  // We want to custom lower some of our intrinsics.
944  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
945
946  // Add/Sub/Mul with overflow operations are custom lowered.
947  setOperationAction(ISD::SADDO, MVT::i32, Custom);
948  setOperationAction(ISD::SADDO, MVT::i64, Custom);
949  setOperationAction(ISD::UADDO, MVT::i32, Custom);
950  setOperationAction(ISD::UADDO, MVT::i64, Custom);
951  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
952  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
953  setOperationAction(ISD::USUBO, MVT::i32, Custom);
954  setOperationAction(ISD::USUBO, MVT::i64, Custom);
955  setOperationAction(ISD::SMULO, MVT::i32, Custom);
956  setOperationAction(ISD::SMULO, MVT::i64, Custom);
957
958  if (!Subtarget->is64Bit()) {
959    // These libcalls are not available in 32-bit.
960    setLibcallName(RTLIB::SHL_I128, 0);
961    setLibcallName(RTLIB::SRL_I128, 0);
962    setLibcallName(RTLIB::SRA_I128, 0);
963  }
964
965  // We have target-specific dag combine patterns for the following nodes:
966  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
967  setTargetDAGCombine(ISD::BUILD_VECTOR);
968  setTargetDAGCombine(ISD::SELECT);
969  setTargetDAGCombine(ISD::SHL);
970  setTargetDAGCombine(ISD::SRA);
971  setTargetDAGCombine(ISD::SRL);
972  setTargetDAGCombine(ISD::STORE);
973  setTargetDAGCombine(ISD::MEMBARRIER);
974  if (Subtarget->is64Bit())
975    setTargetDAGCombine(ISD::MUL);
976
977  computeRegisterProperties();
978
979  // FIXME: These should be based on subtarget info. Plus, the values should
980  // be smaller when we are in optimizing for size mode.
981  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
982  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
983  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
984  setPrefLoopAlignment(16);
985  benefitFromCodePlacementOpt = true;
986}
987
988
989MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
990  return MVT::i8;
991}
992
993
994/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
995/// the desired ByVal argument alignment.
996static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
997  if (MaxAlign == 16)
998    return;
999  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1000    if (VTy->getBitWidth() == 128)
1001      MaxAlign = 16;
1002  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1003    unsigned EltAlign = 0;
1004    getMaxByValAlign(ATy->getElementType(), EltAlign);
1005    if (EltAlign > MaxAlign)
1006      MaxAlign = EltAlign;
1007  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1008    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1009      unsigned EltAlign = 0;
1010      getMaxByValAlign(STy->getElementType(i), EltAlign);
1011      if (EltAlign > MaxAlign)
1012        MaxAlign = EltAlign;
1013      if (MaxAlign == 16)
1014        break;
1015    }
1016  }
1017  return;
1018}
1019
1020/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1021/// function arguments in the caller parameter area. For X86, aggregates
1022/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1023/// are at 4-byte boundaries.
1024unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1025  if (Subtarget->is64Bit()) {
1026    // Max of 8 and alignment of type.
1027    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1028    if (TyAlign > 8)
1029      return TyAlign;
1030    return 8;
1031  }
1032
1033  unsigned Align = 4;
1034  if (Subtarget->hasSSE1())
1035    getMaxByValAlign(Ty, Align);
1036  return Align;
1037}
1038
1039/// getOptimalMemOpType - Returns the target specific optimal type for load
1040/// and store operations as a result of memset, memcpy, and memmove
1041/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1042/// determining it.
1043EVT
1044X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1045                                       bool isSrcConst, bool isSrcStr,
1046                                       SelectionDAG &DAG) const {
1047  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1048  // linux.  This is because the stack realignment code can't handle certain
1049  // cases like PR2962.  This should be removed when PR2962 is fixed.
1050  const Function *F = DAG.getMachineFunction().getFunction();
1051  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1052  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1053    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1054      return MVT::v4i32;
1055    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1056      return MVT::v4f32;
1057  }
1058  if (Subtarget->is64Bit() && Size >= 8)
1059    return MVT::i64;
1060  return MVT::i32;
1061}
1062
1063/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1064/// jumptable.
1065SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1066                                                      SelectionDAG &DAG) const {
1067  if (usesGlobalOffsetTable())
1068    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1069  if (!Subtarget->is64Bit())
1070    // This doesn't have DebugLoc associated with it, but is not really the
1071    // same as a Register.
1072    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1073                       getPointerTy());
1074  return Table;
1075}
1076
1077/// getFunctionAlignment - Return the Log2 alignment of this function.
1078unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1079  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1080}
1081
1082//===----------------------------------------------------------------------===//
1083//               Return Value Calling Convention Implementation
1084//===----------------------------------------------------------------------===//
1085
1086#include "X86GenCallingConv.inc"
1087
1088SDValue
1089X86TargetLowering::LowerReturn(SDValue Chain,
1090                               CallingConv::ID CallConv, bool isVarArg,
1091                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1092                               DebugLoc dl, SelectionDAG &DAG) {
1093
1094  SmallVector<CCValAssign, 16> RVLocs;
1095  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1096                 RVLocs, *DAG.getContext());
1097  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1098
1099  // If this is the first return lowered for this function, add the regs to the
1100  // liveout set for the function.
1101  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1102    for (unsigned i = 0; i != RVLocs.size(); ++i)
1103      if (RVLocs[i].isRegLoc())
1104        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1105  }
1106
1107  SDValue Flag;
1108
1109  SmallVector<SDValue, 6> RetOps;
1110  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1111  // Operand #1 = Bytes To Pop
1112  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1113
1114  // Copy the result values into the output registers.
1115  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1116    CCValAssign &VA = RVLocs[i];
1117    assert(VA.isRegLoc() && "Can only return in registers!");
1118    SDValue ValToCopy = Outs[i].Val;
1119
1120    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1121    // the RET instruction and handled by the FP Stackifier.
1122    if (VA.getLocReg() == X86::ST0 ||
1123        VA.getLocReg() == X86::ST1) {
1124      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1125      // change the value to the FP stack register class.
1126      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1127        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1128      RetOps.push_back(ValToCopy);
1129      // Don't emit a copytoreg.
1130      continue;
1131    }
1132
1133    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1134    // which is returned in RAX / RDX.
1135    if (Subtarget->is64Bit()) {
1136      EVT ValVT = ValToCopy.getValueType();
1137      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1138        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1139        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1140          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1141      }
1142    }
1143
1144    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1145    Flag = Chain.getValue(1);
1146  }
1147
1148  // The x86-64 ABI for returning structs by value requires that we copy
1149  // the sret argument into %rax for the return. We saved the argument into
1150  // a virtual register in the entry block, so now we copy the value out
1151  // and into %rax.
1152  if (Subtarget->is64Bit() &&
1153      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1154    MachineFunction &MF = DAG.getMachineFunction();
1155    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1156    unsigned Reg = FuncInfo->getSRetReturnReg();
1157    if (!Reg) {
1158      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1159      FuncInfo->setSRetReturnReg(Reg);
1160    }
1161    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1162
1163    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1164    Flag = Chain.getValue(1);
1165
1166    // RAX now acts like a return value.
1167    MF.getRegInfo().addLiveOut(X86::RAX);
1168  }
1169
1170  RetOps[0] = Chain;  // Update chain.
1171
1172  // Add the flag if we have it.
1173  if (Flag.getNode())
1174    RetOps.push_back(Flag);
1175
1176  return DAG.getNode(X86ISD::RET_FLAG, dl,
1177                     MVT::Other, &RetOps[0], RetOps.size());
1178}
1179
1180/// LowerCallResult - Lower the result values of a call into the
1181/// appropriate copies out of appropriate physical registers.
1182///
1183SDValue
1184X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1185                                   CallingConv::ID CallConv, bool isVarArg,
1186                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1187                                   DebugLoc dl, SelectionDAG &DAG,
1188                                   SmallVectorImpl<SDValue> &InVals) {
1189
1190  // Assign locations to each value returned by this call.
1191  SmallVector<CCValAssign, 16> RVLocs;
1192  bool Is64Bit = Subtarget->is64Bit();
1193  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1194                 RVLocs, *DAG.getContext());
1195  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1196
1197  // Copy all of the result registers out of their specified physreg.
1198  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1199    CCValAssign &VA = RVLocs[i];
1200    EVT CopyVT = VA.getValVT();
1201
1202    // If this is x86-64, and we disabled SSE, we can't return FP values
1203    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1204        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1205      llvm_report_error("SSE register return with SSE disabled");
1206    }
1207
1208    // If this is a call to a function that returns an fp value on the floating
1209    // point stack, but where we prefer to use the value in xmm registers, copy
1210    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1211    if ((VA.getLocReg() == X86::ST0 ||
1212         VA.getLocReg() == X86::ST1) &&
1213        isScalarFPTypeInSSEReg(VA.getValVT())) {
1214      CopyVT = MVT::f80;
1215    }
1216
1217    SDValue Val;
1218    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1219      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1220      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1221        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1222                                   MVT::v2i64, InFlag).getValue(1);
1223        Val = Chain.getValue(0);
1224        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1225                          Val, DAG.getConstant(0, MVT::i64));
1226      } else {
1227        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1228                                   MVT::i64, InFlag).getValue(1);
1229        Val = Chain.getValue(0);
1230      }
1231      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1232    } else {
1233      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1234                                 CopyVT, InFlag).getValue(1);
1235      Val = Chain.getValue(0);
1236    }
1237    InFlag = Chain.getValue(2);
1238
1239    if (CopyVT != VA.getValVT()) {
1240      // Round the F80 the right size, which also moves to the appropriate xmm
1241      // register.
1242      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1243                        // This truncation won't change the value.
1244                        DAG.getIntPtrConstant(1));
1245    }
1246
1247    InVals.push_back(Val);
1248  }
1249
1250  return Chain;
1251}
1252
1253
1254//===----------------------------------------------------------------------===//
1255//                C & StdCall & Fast Calling Convention implementation
1256//===----------------------------------------------------------------------===//
1257//  StdCall calling convention seems to be standard for many Windows' API
1258//  routines and around. It differs from C calling convention just a little:
1259//  callee should clean up the stack, not caller. Symbols should be also
1260//  decorated in some fancy way :) It doesn't support any vector arguments.
1261//  For info on fast calling convention see Fast Calling Convention (tail call)
1262//  implementation LowerX86_32FastCCCallTo.
1263
1264/// CallIsStructReturn - Determines whether a call uses struct return
1265/// semantics.
1266static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1267  if (Outs.empty())
1268    return false;
1269
1270  return Outs[0].Flags.isSRet();
1271}
1272
1273/// ArgsAreStructReturn - Determines whether a function uses struct
1274/// return semantics.
1275static bool
1276ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1277  if (Ins.empty())
1278    return false;
1279
1280  return Ins[0].Flags.isSRet();
1281}
1282
1283/// IsCalleePop - Determines whether the callee is required to pop its
1284/// own arguments. Callee pop is necessary to support tail calls.
1285bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1286  if (IsVarArg)
1287    return false;
1288
1289  switch (CallingConv) {
1290  default:
1291    return false;
1292  case CallingConv::X86_StdCall:
1293    return !Subtarget->is64Bit();
1294  case CallingConv::X86_FastCall:
1295    return !Subtarget->is64Bit();
1296  case CallingConv::Fast:
1297    return PerformTailCallOpt;
1298  }
1299}
1300
1301/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1302/// given CallingConvention value.
1303CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1304  if (Subtarget->is64Bit()) {
1305    if (Subtarget->isTargetWin64())
1306      return CC_X86_Win64_C;
1307    else
1308      return CC_X86_64_C;
1309  }
1310
1311  if (CC == CallingConv::X86_FastCall)
1312    return CC_X86_32_FastCall;
1313  else if (CC == CallingConv::Fast)
1314    return CC_X86_32_FastCC;
1315  else
1316    return CC_X86_32_C;
1317}
1318
1319/// NameDecorationForCallConv - Selects the appropriate decoration to
1320/// apply to a MachineFunction containing a given calling convention.
1321NameDecorationStyle
1322X86TargetLowering::NameDecorationForCallConv(CallingConv::ID CallConv) {
1323  if (CallConv == CallingConv::X86_FastCall)
1324    return FastCall;
1325  else if (CallConv == CallingConv::X86_StdCall)
1326    return StdCall;
1327  return None;
1328}
1329
1330
1331/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1332/// by "Src" to address "Dst" with size and alignment information specified by
1333/// the specific parameter attribute. The copy will be passed as a byval
1334/// function parameter.
1335static SDValue
1336CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1337                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1338                          DebugLoc dl) {
1339  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1340  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1341                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1342}
1343
1344SDValue
1345X86TargetLowering::LowerMemArgument(SDValue Chain,
1346                                    CallingConv::ID CallConv,
1347                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1348                                    DebugLoc dl, SelectionDAG &DAG,
1349                                    const CCValAssign &VA,
1350                                    MachineFrameInfo *MFI,
1351                                    unsigned i) {
1352
1353  // Create the nodes corresponding to a load from this parameter slot.
1354  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1355  bool AlwaysUseMutable = (CallConv==CallingConv::Fast) && PerformTailCallOpt;
1356  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1357  EVT ValVT;
1358
1359  // If value is passed by pointer we have address passed instead of the value
1360  // itself.
1361  if (VA.getLocInfo() == CCValAssign::Indirect)
1362    ValVT = VA.getLocVT();
1363  else
1364    ValVT = VA.getValVT();
1365
1366  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1367  // changed with more analysis.
1368  // In case of tail call optimization mark all arguments mutable. Since they
1369  // could be overwritten by lowering of arguments in case of a tail call.
1370  int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1371                                  VA.getLocMemOffset(), isImmutable);
1372  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1373  if (Flags.isByVal())
1374    return FIN;
1375  return DAG.getLoad(ValVT, dl, Chain, FIN,
1376                     PseudoSourceValue::getFixedStack(FI), 0);
1377}
1378
1379SDValue
1380X86TargetLowering::LowerFormalArguments(SDValue Chain,
1381                                        CallingConv::ID CallConv,
1382                                        bool isVarArg,
1383                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1384                                        DebugLoc dl,
1385                                        SelectionDAG &DAG,
1386                                        SmallVectorImpl<SDValue> &InVals) {
1387
1388  MachineFunction &MF = DAG.getMachineFunction();
1389  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1390
1391  const Function* Fn = MF.getFunction();
1392  if (Fn->hasExternalLinkage() &&
1393      Subtarget->isTargetCygMing() &&
1394      Fn->getName() == "main")
1395    FuncInfo->setForceFramePointer(true);
1396
1397  // Decorate the function name.
1398  FuncInfo->setDecorationStyle(NameDecorationForCallConv(CallConv));
1399
1400  MachineFrameInfo *MFI = MF.getFrameInfo();
1401  bool Is64Bit = Subtarget->is64Bit();
1402  bool IsWin64 = Subtarget->isTargetWin64();
1403
1404  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1405         "Var args not supported with calling convention fastcc");
1406
1407  // Assign locations to all of the incoming arguments.
1408  SmallVector<CCValAssign, 16> ArgLocs;
1409  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1410                 ArgLocs, *DAG.getContext());
1411  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1412
1413  unsigned LastVal = ~0U;
1414  SDValue ArgValue;
1415  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1416    CCValAssign &VA = ArgLocs[i];
1417    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1418    // places.
1419    assert(VA.getValNo() != LastVal &&
1420           "Don't support value assigned to multiple locs yet");
1421    LastVal = VA.getValNo();
1422
1423    if (VA.isRegLoc()) {
1424      EVT RegVT = VA.getLocVT();
1425      TargetRegisterClass *RC = NULL;
1426      if (RegVT == MVT::i32)
1427        RC = X86::GR32RegisterClass;
1428      else if (Is64Bit && RegVT == MVT::i64)
1429        RC = X86::GR64RegisterClass;
1430      else if (RegVT == MVT::f32)
1431        RC = X86::FR32RegisterClass;
1432      else if (RegVT == MVT::f64)
1433        RC = X86::FR64RegisterClass;
1434      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1435        RC = X86::VR128RegisterClass;
1436      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1437        RC = X86::VR64RegisterClass;
1438      else
1439        llvm_unreachable("Unknown argument type!");
1440
1441      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1442      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1443
1444      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1445      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1446      // right size.
1447      if (VA.getLocInfo() == CCValAssign::SExt)
1448        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1449                               DAG.getValueType(VA.getValVT()));
1450      else if (VA.getLocInfo() == CCValAssign::ZExt)
1451        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1452                               DAG.getValueType(VA.getValVT()));
1453      else if (VA.getLocInfo() == CCValAssign::BCvt)
1454        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1455
1456      if (VA.isExtInLoc()) {
1457        // Handle MMX values passed in XMM regs.
1458        if (RegVT.isVector()) {
1459          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1460                                 ArgValue, DAG.getConstant(0, MVT::i64));
1461          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1462        } else
1463          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1464      }
1465    } else {
1466      assert(VA.isMemLoc());
1467      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1468    }
1469
1470    // If value is passed via pointer - do a load.
1471    if (VA.getLocInfo() == CCValAssign::Indirect)
1472      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0);
1473
1474    InVals.push_back(ArgValue);
1475  }
1476
1477  // The x86-64 ABI for returning structs by value requires that we copy
1478  // the sret argument into %rax for the return. Save the argument into
1479  // a virtual register so that we can access it from the return points.
1480  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1481    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1482    unsigned Reg = FuncInfo->getSRetReturnReg();
1483    if (!Reg) {
1484      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1485      FuncInfo->setSRetReturnReg(Reg);
1486    }
1487    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1488    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1489  }
1490
1491  unsigned StackSize = CCInfo.getNextStackOffset();
1492  // align stack specially for tail calls
1493  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1494    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1495
1496  // If the function takes variable number of arguments, make a frame index for
1497  // the start of the first vararg value... for expansion of llvm.va_start.
1498  if (isVarArg) {
1499    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1500      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1501    }
1502    if (Is64Bit) {
1503      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1504
1505      // FIXME: We should really autogenerate these arrays
1506      static const unsigned GPR64ArgRegsWin64[] = {
1507        X86::RCX, X86::RDX, X86::R8,  X86::R9
1508      };
1509      static const unsigned XMMArgRegsWin64[] = {
1510        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1511      };
1512      static const unsigned GPR64ArgRegs64Bit[] = {
1513        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1514      };
1515      static const unsigned XMMArgRegs64Bit[] = {
1516        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1517        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1518      };
1519      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1520
1521      if (IsWin64) {
1522        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1523        GPR64ArgRegs = GPR64ArgRegsWin64;
1524        XMMArgRegs = XMMArgRegsWin64;
1525      } else {
1526        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1527        GPR64ArgRegs = GPR64ArgRegs64Bit;
1528        XMMArgRegs = XMMArgRegs64Bit;
1529      }
1530      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1531                                                       TotalNumIntRegs);
1532      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1533                                                       TotalNumXMMRegs);
1534
1535      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1536      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1537             "SSE register cannot be used when SSE is disabled!");
1538      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1539             "SSE register cannot be used when SSE is disabled!");
1540      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1541        // Kernel mode asks for SSE to be disabled, so don't push them
1542        // on the stack.
1543        TotalNumXMMRegs = 0;
1544
1545      // For X86-64, if there are vararg parameters that are passed via
1546      // registers, then we must store them to their spots on the stack so they
1547      // may be loaded by deferencing the result of va_next.
1548      VarArgsGPOffset = NumIntRegs * 8;
1549      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1550      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1551                                                 TotalNumXMMRegs * 16, 16);
1552
1553      // Store the integer parameter registers.
1554      SmallVector<SDValue, 8> MemOps;
1555      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1556      unsigned Offset = VarArgsGPOffset;
1557      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1558        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1559                                  DAG.getIntPtrConstant(Offset));
1560        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1561                                     X86::GR64RegisterClass);
1562        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1563        SDValue Store =
1564          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1565                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1566                       Offset);
1567        MemOps.push_back(Store);
1568        Offset += 8;
1569      }
1570
1571      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1572        // Now store the XMM (fp + vector) parameter registers.
1573        SmallVector<SDValue, 11> SaveXMMOps;
1574        SaveXMMOps.push_back(Chain);
1575
1576        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1577        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1578        SaveXMMOps.push_back(ALVal);
1579
1580        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1581        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1582
1583        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1584          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1585                                       X86::VR128RegisterClass);
1586          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1587          SaveXMMOps.push_back(Val);
1588        }
1589        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1590                                     MVT::Other,
1591                                     &SaveXMMOps[0], SaveXMMOps.size()));
1592      }
1593
1594      if (!MemOps.empty())
1595        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1596                            &MemOps[0], MemOps.size());
1597    }
1598  }
1599
1600  // Some CCs need callee pop.
1601  if (IsCalleePop(isVarArg, CallConv)) {
1602    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1603    BytesCallerReserves = 0;
1604  } else {
1605    BytesToPopOnReturn  = 0; // Callee pops nothing.
1606    // If this is an sret function, the return should pop the hidden pointer.
1607    if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
1608      BytesToPopOnReturn = 4;
1609    BytesCallerReserves = StackSize;
1610  }
1611
1612  if (!Is64Bit) {
1613    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1614    if (CallConv == CallingConv::X86_FastCall)
1615      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1616  }
1617
1618  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1619
1620  return Chain;
1621}
1622
1623SDValue
1624X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1625                                    SDValue StackPtr, SDValue Arg,
1626                                    DebugLoc dl, SelectionDAG &DAG,
1627                                    const CCValAssign &VA,
1628                                    ISD::ArgFlagsTy Flags) {
1629  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1630  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1631  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1632  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1633  if (Flags.isByVal()) {
1634    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1635  }
1636  return DAG.getStore(Chain, dl, Arg, PtrOff,
1637                      PseudoSourceValue::getStack(), LocMemOffset);
1638}
1639
1640/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1641/// optimization is performed and it is required.
1642SDValue
1643X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1644                                           SDValue &OutRetAddr,
1645                                           SDValue Chain,
1646                                           bool IsTailCall,
1647                                           bool Is64Bit,
1648                                           int FPDiff,
1649                                           DebugLoc dl) {
1650  if (!IsTailCall || FPDiff==0) return Chain;
1651
1652  // Adjust the Return address stack slot.
1653  EVT VT = getPointerTy();
1654  OutRetAddr = getReturnAddressFrameIndex(DAG);
1655
1656  // Load the "old" Return address.
1657  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1658  return SDValue(OutRetAddr.getNode(), 1);
1659}
1660
1661/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1662/// optimization is performed and it is required (FPDiff!=0).
1663static SDValue
1664EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1665                         SDValue Chain, SDValue RetAddrFrIdx,
1666                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1667  // Store the return address to the appropriate stack slot.
1668  if (!FPDiff) return Chain;
1669  // Calculate the new stack slot for the return address.
1670  int SlotSize = Is64Bit ? 8 : 4;
1671  int NewReturnAddrFI =
1672    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1673  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1674  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1675  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1676                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1677  return Chain;
1678}
1679
1680SDValue
1681X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1682                             CallingConv::ID CallConv, bool isVarArg,
1683                             bool isTailCall,
1684                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1685                             const SmallVectorImpl<ISD::InputArg> &Ins,
1686                             DebugLoc dl, SelectionDAG &DAG,
1687                             SmallVectorImpl<SDValue> &InVals) {
1688
1689  MachineFunction &MF = DAG.getMachineFunction();
1690  bool Is64Bit        = Subtarget->is64Bit();
1691  bool IsStructRet    = CallIsStructReturn(Outs);
1692
1693  assert((!isTailCall ||
1694          (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
1695         "IsEligibleForTailCallOptimization missed a case!");
1696  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1697         "Var args not supported with calling convention fastcc");
1698
1699  // Analyze operands of the call, assigning locations to each operand.
1700  SmallVector<CCValAssign, 16> ArgLocs;
1701  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1702                 ArgLocs, *DAG.getContext());
1703  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1704
1705  // Get a count of how many bytes are to be pushed on the stack.
1706  unsigned NumBytes = CCInfo.getNextStackOffset();
1707  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1708    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1709
1710  int FPDiff = 0;
1711  if (isTailCall) {
1712    // Lower arguments at fp - stackoffset + fpdiff.
1713    unsigned NumBytesCallerPushed =
1714      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1715    FPDiff = NumBytesCallerPushed - NumBytes;
1716
1717    // Set the delta of movement of the returnaddr stackslot.
1718    // But only set if delta is greater than previous delta.
1719    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1720      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1721  }
1722
1723  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1724
1725  SDValue RetAddrFrIdx;
1726  // Load return adress for tail calls.
1727  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit,
1728                                  FPDiff, dl);
1729
1730  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1731  SmallVector<SDValue, 8> MemOpChains;
1732  SDValue StackPtr;
1733
1734  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1735  // of tail call optimization arguments are handle later.
1736  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1737    CCValAssign &VA = ArgLocs[i];
1738    EVT RegVT = VA.getLocVT();
1739    SDValue Arg = Outs[i].Val;
1740    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1741    bool isByVal = Flags.isByVal();
1742
1743    // Promote the value if needed.
1744    switch (VA.getLocInfo()) {
1745    default: llvm_unreachable("Unknown loc info!");
1746    case CCValAssign::Full: break;
1747    case CCValAssign::SExt:
1748      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1749      break;
1750    case CCValAssign::ZExt:
1751      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1752      break;
1753    case CCValAssign::AExt:
1754      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1755        // Special case: passing MMX values in XMM registers.
1756        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1757        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1758        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1759      } else
1760        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1761      break;
1762    case CCValAssign::BCvt:
1763      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1764      break;
1765    case CCValAssign::Indirect: {
1766      // Store the argument.
1767      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1768      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1769      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1770                           PseudoSourceValue::getFixedStack(FI), 0);
1771      Arg = SpillSlot;
1772      break;
1773    }
1774    }
1775
1776    if (VA.isRegLoc()) {
1777      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1778    } else {
1779      if (!isTailCall || (isTailCall && isByVal)) {
1780        assert(VA.isMemLoc());
1781        if (StackPtr.getNode() == 0)
1782          StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1783
1784        MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1785                                               dl, DAG, VA, Flags));
1786      }
1787    }
1788  }
1789
1790  if (!MemOpChains.empty())
1791    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1792                        &MemOpChains[0], MemOpChains.size());
1793
1794  // Build a sequence of copy-to-reg nodes chained together with token chain
1795  // and flag operands which copy the outgoing args into registers.
1796  SDValue InFlag;
1797  // Tail call byval lowering might overwrite argument registers so in case of
1798  // tail call optimization the copies to registers are lowered later.
1799  if (!isTailCall)
1800    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1801      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1802                               RegsToPass[i].second, InFlag);
1803      InFlag = Chain.getValue(1);
1804    }
1805
1806
1807  if (Subtarget->isPICStyleGOT()) {
1808    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1809    // GOT pointer.
1810    if (!isTailCall) {
1811      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1812                               DAG.getNode(X86ISD::GlobalBaseReg,
1813                                           DebugLoc::getUnknownLoc(),
1814                                           getPointerTy()),
1815                               InFlag);
1816      InFlag = Chain.getValue(1);
1817    } else {
1818      // If we are tail calling and generating PIC/GOT style code load the
1819      // address of the callee into ECX. The value in ecx is used as target of
1820      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1821      // for tail calls on PIC/GOT architectures. Normally we would just put the
1822      // address of GOT into ebx and then call target@PLT. But for tail calls
1823      // ebx would be restored (since ebx is callee saved) before jumping to the
1824      // target@PLT.
1825
1826      // Note: The actual moving to ECX is done further down.
1827      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1828      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1829          !G->getGlobal()->hasProtectedVisibility())
1830        Callee = LowerGlobalAddress(Callee, DAG);
1831      else if (isa<ExternalSymbolSDNode>(Callee))
1832        Callee = LowerExternalSymbol(Callee, DAG);
1833    }
1834  }
1835
1836  if (Is64Bit && isVarArg) {
1837    // From AMD64 ABI document:
1838    // For calls that may call functions that use varargs or stdargs
1839    // (prototype-less calls or calls to functions containing ellipsis (...) in
1840    // the declaration) %al is used as hidden argument to specify the number
1841    // of SSE registers used. The contents of %al do not need to match exactly
1842    // the number of registers, but must be an ubound on the number of SSE
1843    // registers used and is in the range 0 - 8 inclusive.
1844
1845    // FIXME: Verify this on Win64
1846    // Count the number of XMM registers allocated.
1847    static const unsigned XMMArgRegs[] = {
1848      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1849      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1850    };
1851    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1852    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1853           && "SSE registers cannot be used when SSE is disabled");
1854
1855    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1856                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1857    InFlag = Chain.getValue(1);
1858  }
1859
1860
1861  // For tail calls lower the arguments to the 'real' stack slot.
1862  if (isTailCall) {
1863    // Force all the incoming stack arguments to be loaded from the stack
1864    // before any new outgoing arguments are stored to the stack, because the
1865    // outgoing stack slots may alias the incoming argument stack slots, and
1866    // the alias isn't otherwise explicit. This is slightly more conservative
1867    // than necessary, because it means that each store effectively depends
1868    // on every argument instead of just those arguments it would clobber.
1869    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1870
1871    SmallVector<SDValue, 8> MemOpChains2;
1872    SDValue FIN;
1873    int FI = 0;
1874    // Do not flag preceeding copytoreg stuff together with the following stuff.
1875    InFlag = SDValue();
1876    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1877      CCValAssign &VA = ArgLocs[i];
1878      if (!VA.isRegLoc()) {
1879        assert(VA.isMemLoc());
1880        SDValue Arg = Outs[i].Val;
1881        ISD::ArgFlagsTy Flags = Outs[i].Flags;
1882        // Create frame index.
1883        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1884        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1885        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1886        FIN = DAG.getFrameIndex(FI, getPointerTy());
1887
1888        if (Flags.isByVal()) {
1889          // Copy relative to framepointer.
1890          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1891          if (StackPtr.getNode() == 0)
1892            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1893                                          getPointerTy());
1894          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1895
1896          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
1897                                                           ArgChain,
1898                                                           Flags, DAG, dl));
1899        } else {
1900          // Store relative to framepointer.
1901          MemOpChains2.push_back(
1902            DAG.getStore(ArgChain, dl, Arg, FIN,
1903                         PseudoSourceValue::getFixedStack(FI), 0));
1904        }
1905      }
1906    }
1907
1908    if (!MemOpChains2.empty())
1909      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1910                          &MemOpChains2[0], MemOpChains2.size());
1911
1912    // Copy arguments to their registers.
1913    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1914      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1915                               RegsToPass[i].second, InFlag);
1916      InFlag = Chain.getValue(1);
1917    }
1918    InFlag =SDValue();
1919
1920    // Store the return address to the appropriate stack slot.
1921    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1922                                     FPDiff, dl);
1923  }
1924
1925  // If the callee is a GlobalAddress node (quite common, every direct call is)
1926  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1927  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1928    // We should use extra load for direct calls to dllimported functions in
1929    // non-JIT mode.
1930    GlobalValue *GV = G->getGlobal();
1931    if (!GV->hasDLLImportLinkage()) {
1932      unsigned char OpFlags = 0;
1933
1934      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1935      // external symbols most go through the PLT in PIC mode.  If the symbol
1936      // has hidden or protected visibility, or if it is static or local, then
1937      // we don't need to use the PLT - we can directly call it.
1938      if (Subtarget->isTargetELF() &&
1939          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1940          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1941        OpFlags = X86II::MO_PLT;
1942      } else if (Subtarget->isPICStyleStubAny() &&
1943               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1944               Subtarget->getDarwinVers() < 9) {
1945        // PC-relative references to external symbols should go through $stub,
1946        // unless we're building with the leopard linker or later, which
1947        // automatically synthesizes these stubs.
1948        OpFlags = X86II::MO_DARWIN_STUB;
1949      }
1950
1951      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
1952                                          G->getOffset(), OpFlags);
1953    }
1954  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1955    unsigned char OpFlags = 0;
1956
1957    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1958    // symbols should go through the PLT.
1959    if (Subtarget->isTargetELF() &&
1960        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1961      OpFlags = X86II::MO_PLT;
1962    } else if (Subtarget->isPICStyleStubAny() &&
1963             Subtarget->getDarwinVers() < 9) {
1964      // PC-relative references to external symbols should go through $stub,
1965      // unless we're building with the leopard linker or later, which
1966      // automatically synthesizes these stubs.
1967      OpFlags = X86II::MO_DARWIN_STUB;
1968    }
1969
1970    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
1971                                         OpFlags);
1972  } else if (isTailCall) {
1973    unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
1974
1975    Chain = DAG.getCopyToReg(Chain,  dl,
1976                             DAG.getRegister(Opc, getPointerTy()),
1977                             Callee,InFlag);
1978    Callee = DAG.getRegister(Opc, getPointerTy());
1979    // Add register as live out.
1980    MF.getRegInfo().addLiveOut(Opc);
1981  }
1982
1983  // Returns a chain & a flag for retval copy to use.
1984  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1985  SmallVector<SDValue, 8> Ops;
1986
1987  if (isTailCall) {
1988    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1989                           DAG.getIntPtrConstant(0, true), InFlag);
1990    InFlag = Chain.getValue(1);
1991  }
1992
1993  Ops.push_back(Chain);
1994  Ops.push_back(Callee);
1995
1996  if (isTailCall)
1997    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1998
1999  // Add argument registers to the end of the list so that they are known live
2000  // into the call.
2001  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2002    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2003                                  RegsToPass[i].second.getValueType()));
2004
2005  // Add an implicit use GOT pointer in EBX.
2006  if (!isTailCall && Subtarget->isPICStyleGOT())
2007    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2008
2009  // Add an implicit use of AL for x86 vararg functions.
2010  if (Is64Bit && isVarArg)
2011    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2012
2013  if (InFlag.getNode())
2014    Ops.push_back(InFlag);
2015
2016  if (isTailCall) {
2017    // If this is the first return lowered for this function, add the regs
2018    // to the liveout set for the function.
2019    if (MF.getRegInfo().liveout_empty()) {
2020      SmallVector<CCValAssign, 16> RVLocs;
2021      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2022                     *DAG.getContext());
2023      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2024      for (unsigned i = 0; i != RVLocs.size(); ++i)
2025        if (RVLocs[i].isRegLoc())
2026          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2027    }
2028
2029    assert(((Callee.getOpcode() == ISD::Register &&
2030               (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
2031                cast<RegisterSDNode>(Callee)->getReg() == X86::R9)) ||
2032              Callee.getOpcode() == ISD::TargetExternalSymbol ||
2033              Callee.getOpcode() == ISD::TargetGlobalAddress) &&
2034             "Expecting an global address, external symbol, or register");
2035
2036    return DAG.getNode(X86ISD::TC_RETURN, dl,
2037                       NodeTys, &Ops[0], Ops.size());
2038  }
2039
2040  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2041  InFlag = Chain.getValue(1);
2042
2043  // Create the CALLSEQ_END node.
2044  unsigned NumBytesForCalleeToPush;
2045  if (IsCalleePop(isVarArg, CallConv))
2046    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2047  else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
2048    // If this is is a call to a struct-return function, the callee
2049    // pops the hidden struct pointer, so we have to push it back.
2050    // This is common for Darwin/X86, Linux & Mingw32 targets.
2051    NumBytesForCalleeToPush = 4;
2052  else
2053    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2054
2055  // Returns a flag for retval copy to use.
2056  Chain = DAG.getCALLSEQ_END(Chain,
2057                             DAG.getIntPtrConstant(NumBytes, true),
2058                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2059                                                   true),
2060                             InFlag);
2061  InFlag = Chain.getValue(1);
2062
2063  // Handle result values, copying them out of physregs into vregs that we
2064  // return.
2065  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2066                         Ins, dl, DAG, InVals);
2067}
2068
2069
2070//===----------------------------------------------------------------------===//
2071//                Fast Calling Convention (tail call) implementation
2072//===----------------------------------------------------------------------===//
2073
2074//  Like std call, callee cleans arguments, convention except that ECX is
2075//  reserved for storing the tail called function address. Only 2 registers are
2076//  free for argument passing (inreg). Tail call optimization is performed
2077//  provided:
2078//                * tailcallopt is enabled
2079//                * caller/callee are fastcc
2080//  On X86_64 architecture with GOT-style position independent code only local
2081//  (within module) calls are supported at the moment.
2082//  To keep the stack aligned according to platform abi the function
2083//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2084//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2085//  If a tail called function callee has more arguments than the caller the
2086//  caller needs to make sure that there is room to move the RETADDR to. This is
2087//  achieved by reserving an area the size of the argument delta right after the
2088//  original REtADDR, but before the saved framepointer or the spilled registers
2089//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2090//  stack layout:
2091//    arg1
2092//    arg2
2093//    RETADDR
2094//    [ new RETADDR
2095//      move area ]
2096//    (possible EBP)
2097//    ESI
2098//    EDI
2099//    local1 ..
2100
2101/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2102/// for a 16 byte align requirement.
2103unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2104                                                        SelectionDAG& DAG) {
2105  MachineFunction &MF = DAG.getMachineFunction();
2106  const TargetMachine &TM = MF.getTarget();
2107  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2108  unsigned StackAlignment = TFI.getStackAlignment();
2109  uint64_t AlignMask = StackAlignment - 1;
2110  int64_t Offset = StackSize;
2111  uint64_t SlotSize = TD->getPointerSize();
2112  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2113    // Number smaller than 12 so just add the difference.
2114    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2115  } else {
2116    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2117    Offset = ((~AlignMask) & Offset) + StackAlignment +
2118      (StackAlignment-SlotSize);
2119  }
2120  return Offset;
2121}
2122
2123/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2124/// for tail call optimization. Targets which want to do tail call
2125/// optimization should implement this function.
2126bool
2127X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2128                                                     CallingConv::ID CalleeCC,
2129                                                     bool isVarArg,
2130                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2131                                                     SelectionDAG& DAG) const {
2132  MachineFunction &MF = DAG.getMachineFunction();
2133  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2134  return CalleeCC == CallingConv::Fast && CallerCC == CalleeCC;
2135}
2136
2137FastISel *
2138X86TargetLowering::createFastISel(MachineFunction &mf,
2139                                  MachineModuleInfo *mmo,
2140                                  DwarfWriter *dw,
2141                                  DenseMap<const Value *, unsigned> &vm,
2142                                  DenseMap<const BasicBlock *,
2143                                           MachineBasicBlock *> &bm,
2144                                  DenseMap<const AllocaInst *, int> &am
2145#ifndef NDEBUG
2146                                  , SmallSet<Instruction*, 8> &cil
2147#endif
2148                                  ) {
2149  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2150#ifndef NDEBUG
2151                             , cil
2152#endif
2153                             );
2154}
2155
2156
2157//===----------------------------------------------------------------------===//
2158//                           Other Lowering Hooks
2159//===----------------------------------------------------------------------===//
2160
2161
2162SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2163  MachineFunction &MF = DAG.getMachineFunction();
2164  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2165  int ReturnAddrIndex = FuncInfo->getRAIndex();
2166
2167  if (ReturnAddrIndex == 0) {
2168    // Set up a frame object for the return address.
2169    uint64_t SlotSize = TD->getPointerSize();
2170    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
2171    FuncInfo->setRAIndex(ReturnAddrIndex);
2172  }
2173
2174  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2175}
2176
2177
2178bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2179                                       bool hasSymbolicDisplacement) {
2180  // Offset should fit into 32 bit immediate field.
2181  if (!isInt32(Offset))
2182    return false;
2183
2184  // If we don't have a symbolic displacement - we don't have any extra
2185  // restrictions.
2186  if (!hasSymbolicDisplacement)
2187    return true;
2188
2189  // FIXME: Some tweaks might be needed for medium code model.
2190  if (M != CodeModel::Small && M != CodeModel::Kernel)
2191    return false;
2192
2193  // For small code model we assume that latest object is 16MB before end of 31
2194  // bits boundary. We may also accept pretty large negative constants knowing
2195  // that all objects are in the positive half of address space.
2196  if (M == CodeModel::Small && Offset < 16*1024*1024)
2197    return true;
2198
2199  // For kernel code model we know that all object resist in the negative half
2200  // of 32bits address space. We may not accept negative offsets, since they may
2201  // be just off and we may accept pretty large positive ones.
2202  if (M == CodeModel::Kernel && Offset > 0)
2203    return true;
2204
2205  return false;
2206}
2207
2208/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2209/// specific condition code, returning the condition code and the LHS/RHS of the
2210/// comparison to make.
2211static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2212                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2213  if (!isFP) {
2214    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2215      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2216        // X > -1   -> X == 0, jump !sign.
2217        RHS = DAG.getConstant(0, RHS.getValueType());
2218        return X86::COND_NS;
2219      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2220        // X < 0   -> X == 0, jump on sign.
2221        return X86::COND_S;
2222      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2223        // X < 1   -> X <= 0
2224        RHS = DAG.getConstant(0, RHS.getValueType());
2225        return X86::COND_LE;
2226      }
2227    }
2228
2229    switch (SetCCOpcode) {
2230    default: llvm_unreachable("Invalid integer condition!");
2231    case ISD::SETEQ:  return X86::COND_E;
2232    case ISD::SETGT:  return X86::COND_G;
2233    case ISD::SETGE:  return X86::COND_GE;
2234    case ISD::SETLT:  return X86::COND_L;
2235    case ISD::SETLE:  return X86::COND_LE;
2236    case ISD::SETNE:  return X86::COND_NE;
2237    case ISD::SETULT: return X86::COND_B;
2238    case ISD::SETUGT: return X86::COND_A;
2239    case ISD::SETULE: return X86::COND_BE;
2240    case ISD::SETUGE: return X86::COND_AE;
2241    }
2242  }
2243
2244  // First determine if it is required or is profitable to flip the operands.
2245
2246  // If LHS is a foldable load, but RHS is not, flip the condition.
2247  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2248      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2249    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2250    std::swap(LHS, RHS);
2251  }
2252
2253  switch (SetCCOpcode) {
2254  default: break;
2255  case ISD::SETOLT:
2256  case ISD::SETOLE:
2257  case ISD::SETUGT:
2258  case ISD::SETUGE:
2259    std::swap(LHS, RHS);
2260    break;
2261  }
2262
2263  // On a floating point condition, the flags are set as follows:
2264  // ZF  PF  CF   op
2265  //  0 | 0 | 0 | X > Y
2266  //  0 | 0 | 1 | X < Y
2267  //  1 | 0 | 0 | X == Y
2268  //  1 | 1 | 1 | unordered
2269  switch (SetCCOpcode) {
2270  default: llvm_unreachable("Condcode should be pre-legalized away");
2271  case ISD::SETUEQ:
2272  case ISD::SETEQ:   return X86::COND_E;
2273  case ISD::SETOLT:              // flipped
2274  case ISD::SETOGT:
2275  case ISD::SETGT:   return X86::COND_A;
2276  case ISD::SETOLE:              // flipped
2277  case ISD::SETOGE:
2278  case ISD::SETGE:   return X86::COND_AE;
2279  case ISD::SETUGT:              // flipped
2280  case ISD::SETULT:
2281  case ISD::SETLT:   return X86::COND_B;
2282  case ISD::SETUGE:              // flipped
2283  case ISD::SETULE:
2284  case ISD::SETLE:   return X86::COND_BE;
2285  case ISD::SETONE:
2286  case ISD::SETNE:   return X86::COND_NE;
2287  case ISD::SETUO:   return X86::COND_P;
2288  case ISD::SETO:    return X86::COND_NP;
2289  case ISD::SETOEQ:
2290  case ISD::SETUNE:  return X86::COND_INVALID;
2291  }
2292}
2293
2294/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2295/// code. Current x86 isa includes the following FP cmov instructions:
2296/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2297static bool hasFPCMov(unsigned X86CC) {
2298  switch (X86CC) {
2299  default:
2300    return false;
2301  case X86::COND_B:
2302  case X86::COND_BE:
2303  case X86::COND_E:
2304  case X86::COND_P:
2305  case X86::COND_A:
2306  case X86::COND_AE:
2307  case X86::COND_NE:
2308  case X86::COND_NP:
2309    return true;
2310  }
2311}
2312
2313/// isFPImmLegal - Returns true if the target can instruction select the
2314/// specified FP immediate natively. If false, the legalizer will
2315/// materialize the FP immediate as a load from a constant pool.
2316bool X86TargetLowering::isFPImmLegal(const APFloat &Imm) const {
2317  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2318    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2319      return true;
2320  }
2321  return false;
2322}
2323
2324/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2325/// the specified range (L, H].
2326static bool isUndefOrInRange(int Val, int Low, int Hi) {
2327  return (Val < 0) || (Val >= Low && Val < Hi);
2328}
2329
2330/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2331/// specified value.
2332static bool isUndefOrEqual(int Val, int CmpVal) {
2333  if (Val < 0 || Val == CmpVal)
2334    return true;
2335  return false;
2336}
2337
2338/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2339/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2340/// the second operand.
2341static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2342  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2343    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2344  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2345    return (Mask[0] < 2 && Mask[1] < 2);
2346  return false;
2347}
2348
2349bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2350  SmallVector<int, 8> M;
2351  N->getMask(M);
2352  return ::isPSHUFDMask(M, N->getValueType(0));
2353}
2354
2355/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2356/// is suitable for input to PSHUFHW.
2357static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2358  if (VT != MVT::v8i16)
2359    return false;
2360
2361  // Lower quadword copied in order or undef.
2362  for (int i = 0; i != 4; ++i)
2363    if (Mask[i] >= 0 && Mask[i] != i)
2364      return false;
2365
2366  // Upper quadword shuffled.
2367  for (int i = 4; i != 8; ++i)
2368    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2369      return false;
2370
2371  return true;
2372}
2373
2374bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2375  SmallVector<int, 8> M;
2376  N->getMask(M);
2377  return ::isPSHUFHWMask(M, N->getValueType(0));
2378}
2379
2380/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2381/// is suitable for input to PSHUFLW.
2382static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2383  if (VT != MVT::v8i16)
2384    return false;
2385
2386  // Upper quadword copied in order.
2387  for (int i = 4; i != 8; ++i)
2388    if (Mask[i] >= 0 && Mask[i] != i)
2389      return false;
2390
2391  // Lower quadword shuffled.
2392  for (int i = 0; i != 4; ++i)
2393    if (Mask[i] >= 4)
2394      return false;
2395
2396  return true;
2397}
2398
2399bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2400  SmallVector<int, 8> M;
2401  N->getMask(M);
2402  return ::isPSHUFLWMask(M, N->getValueType(0));
2403}
2404
2405/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2406/// is suitable for input to PALIGNR.
2407static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2408                          bool hasSSSE3) {
2409  int i, e = VT.getVectorNumElements();
2410
2411  // Do not handle v2i64 / v2f64 shuffles with palignr.
2412  if (e < 4 || !hasSSSE3)
2413    return false;
2414
2415  for (i = 0; i != e; ++i)
2416    if (Mask[i] >= 0)
2417      break;
2418
2419  // All undef, not a palignr.
2420  if (i == e)
2421    return false;
2422
2423  // Determine if it's ok to perform a palignr with only the LHS, since we
2424  // don't have access to the actual shuffle elements to see if RHS is undef.
2425  bool Unary = Mask[i] < (int)e;
2426  bool NeedsUnary = false;
2427
2428  int s = Mask[i] - i;
2429
2430  // Check the rest of the elements to see if they are consecutive.
2431  for (++i; i != e; ++i) {
2432    int m = Mask[i];
2433    if (m < 0)
2434      continue;
2435
2436    Unary = Unary && (m < (int)e);
2437    NeedsUnary = NeedsUnary || (m < s);
2438
2439    if (NeedsUnary && !Unary)
2440      return false;
2441    if (Unary && m != ((s+i) & (e-1)))
2442      return false;
2443    if (!Unary && m != (s+i))
2444      return false;
2445  }
2446  return true;
2447}
2448
2449bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2450  SmallVector<int, 8> M;
2451  N->getMask(M);
2452  return ::isPALIGNRMask(M, N->getValueType(0), true);
2453}
2454
2455/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2456/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2457static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2458  int NumElems = VT.getVectorNumElements();
2459  if (NumElems != 2 && NumElems != 4)
2460    return false;
2461
2462  int Half = NumElems / 2;
2463  for (int i = 0; i < Half; ++i)
2464    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2465      return false;
2466  for (int i = Half; i < NumElems; ++i)
2467    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2468      return false;
2469
2470  return true;
2471}
2472
2473bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2474  SmallVector<int, 8> M;
2475  N->getMask(M);
2476  return ::isSHUFPMask(M, N->getValueType(0));
2477}
2478
2479/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2480/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2481/// half elements to come from vector 1 (which would equal the dest.) and
2482/// the upper half to come from vector 2.
2483static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2484  int NumElems = VT.getVectorNumElements();
2485
2486  if (NumElems != 2 && NumElems != 4)
2487    return false;
2488
2489  int Half = NumElems / 2;
2490  for (int i = 0; i < Half; ++i)
2491    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2492      return false;
2493  for (int i = Half; i < NumElems; ++i)
2494    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2495      return false;
2496  return true;
2497}
2498
2499static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2500  SmallVector<int, 8> M;
2501  N->getMask(M);
2502  return isCommutedSHUFPMask(M, N->getValueType(0));
2503}
2504
2505/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2506/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2507bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2508  if (N->getValueType(0).getVectorNumElements() != 4)
2509    return false;
2510
2511  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2512  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2513         isUndefOrEqual(N->getMaskElt(1), 7) &&
2514         isUndefOrEqual(N->getMaskElt(2), 2) &&
2515         isUndefOrEqual(N->getMaskElt(3), 3);
2516}
2517
2518/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2519/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2520bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2521  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2522
2523  if (NumElems != 2 && NumElems != 4)
2524    return false;
2525
2526  for (unsigned i = 0; i < NumElems/2; ++i)
2527    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2528      return false;
2529
2530  for (unsigned i = NumElems/2; i < NumElems; ++i)
2531    if (!isUndefOrEqual(N->getMaskElt(i), i))
2532      return false;
2533
2534  return true;
2535}
2536
2537/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2538/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2539/// and MOVLHPS.
2540bool X86::isMOVHPMask(ShuffleVectorSDNode *N) {
2541  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2542
2543  if (NumElems != 2 && NumElems != 4)
2544    return false;
2545
2546  for (unsigned i = 0; i < NumElems/2; ++i)
2547    if (!isUndefOrEqual(N->getMaskElt(i), i))
2548      return false;
2549
2550  for (unsigned i = 0; i < NumElems/2; ++i)
2551    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2552      return false;
2553
2554  return true;
2555}
2556
2557/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2558/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2559/// <2, 3, 2, 3>
2560bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2561  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2562
2563  if (NumElems != 4)
2564    return false;
2565
2566  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2567         isUndefOrEqual(N->getMaskElt(1), 3) &&
2568         isUndefOrEqual(N->getMaskElt(2), 2) &&
2569         isUndefOrEqual(N->getMaskElt(3), 3);
2570}
2571
2572/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2573/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2574static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2575                         bool V2IsSplat = false) {
2576  int NumElts = VT.getVectorNumElements();
2577  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2578    return false;
2579
2580  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2581    int BitI  = Mask[i];
2582    int BitI1 = Mask[i+1];
2583    if (!isUndefOrEqual(BitI, j))
2584      return false;
2585    if (V2IsSplat) {
2586      if (!isUndefOrEqual(BitI1, NumElts))
2587        return false;
2588    } else {
2589      if (!isUndefOrEqual(BitI1, j + NumElts))
2590        return false;
2591    }
2592  }
2593  return true;
2594}
2595
2596bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2597  SmallVector<int, 8> M;
2598  N->getMask(M);
2599  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2600}
2601
2602/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2603/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2604static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2605                         bool V2IsSplat = false) {
2606  int NumElts = VT.getVectorNumElements();
2607  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2608    return false;
2609
2610  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2611    int BitI  = Mask[i];
2612    int BitI1 = Mask[i+1];
2613    if (!isUndefOrEqual(BitI, j + NumElts/2))
2614      return false;
2615    if (V2IsSplat) {
2616      if (isUndefOrEqual(BitI1, NumElts))
2617        return false;
2618    } else {
2619      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2620        return false;
2621    }
2622  }
2623  return true;
2624}
2625
2626bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2627  SmallVector<int, 8> M;
2628  N->getMask(M);
2629  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2630}
2631
2632/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2633/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2634/// <0, 0, 1, 1>
2635static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2636  int NumElems = VT.getVectorNumElements();
2637  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2638    return false;
2639
2640  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2641    int BitI  = Mask[i];
2642    int BitI1 = Mask[i+1];
2643    if (!isUndefOrEqual(BitI, j))
2644      return false;
2645    if (!isUndefOrEqual(BitI1, j))
2646      return false;
2647  }
2648  return true;
2649}
2650
2651bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2652  SmallVector<int, 8> M;
2653  N->getMask(M);
2654  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2655}
2656
2657/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2658/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2659/// <2, 2, 3, 3>
2660static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2661  int NumElems = VT.getVectorNumElements();
2662  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2663    return false;
2664
2665  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2666    int BitI  = Mask[i];
2667    int BitI1 = Mask[i+1];
2668    if (!isUndefOrEqual(BitI, j))
2669      return false;
2670    if (!isUndefOrEqual(BitI1, j))
2671      return false;
2672  }
2673  return true;
2674}
2675
2676bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2677  SmallVector<int, 8> M;
2678  N->getMask(M);
2679  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2680}
2681
2682/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2683/// specifies a shuffle of elements that is suitable for input to MOVSS,
2684/// MOVSD, and MOVD, i.e. setting the lowest element.
2685static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2686  if (VT.getVectorElementType().getSizeInBits() < 32)
2687    return false;
2688
2689  int NumElts = VT.getVectorNumElements();
2690
2691  if (!isUndefOrEqual(Mask[0], NumElts))
2692    return false;
2693
2694  for (int i = 1; i < NumElts; ++i)
2695    if (!isUndefOrEqual(Mask[i], i))
2696      return false;
2697
2698  return true;
2699}
2700
2701bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2702  SmallVector<int, 8> M;
2703  N->getMask(M);
2704  return ::isMOVLMask(M, N->getValueType(0));
2705}
2706
2707/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2708/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2709/// element of vector 2 and the other elements to come from vector 1 in order.
2710static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2711                               bool V2IsSplat = false, bool V2IsUndef = false) {
2712  int NumOps = VT.getVectorNumElements();
2713  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2714    return false;
2715
2716  if (!isUndefOrEqual(Mask[0], 0))
2717    return false;
2718
2719  for (int i = 1; i < NumOps; ++i)
2720    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2721          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2722          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2723      return false;
2724
2725  return true;
2726}
2727
2728static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2729                           bool V2IsUndef = false) {
2730  SmallVector<int, 8> M;
2731  N->getMask(M);
2732  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2733}
2734
2735/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2736/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2737bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2738  if (N->getValueType(0).getVectorNumElements() != 4)
2739    return false;
2740
2741  // Expect 1, 1, 3, 3
2742  for (unsigned i = 0; i < 2; ++i) {
2743    int Elt = N->getMaskElt(i);
2744    if (Elt >= 0 && Elt != 1)
2745      return false;
2746  }
2747
2748  bool HasHi = false;
2749  for (unsigned i = 2; i < 4; ++i) {
2750    int Elt = N->getMaskElt(i);
2751    if (Elt >= 0 && Elt != 3)
2752      return false;
2753    if (Elt == 3)
2754      HasHi = true;
2755  }
2756  // Don't use movshdup if it can be done with a shufps.
2757  // FIXME: verify that matching u, u, 3, 3 is what we want.
2758  return HasHi;
2759}
2760
2761/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2762/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2763bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2764  if (N->getValueType(0).getVectorNumElements() != 4)
2765    return false;
2766
2767  // Expect 0, 0, 2, 2
2768  for (unsigned i = 0; i < 2; ++i)
2769    if (N->getMaskElt(i) > 0)
2770      return false;
2771
2772  bool HasHi = false;
2773  for (unsigned i = 2; i < 4; ++i) {
2774    int Elt = N->getMaskElt(i);
2775    if (Elt >= 0 && Elt != 2)
2776      return false;
2777    if (Elt == 2)
2778      HasHi = true;
2779  }
2780  // Don't use movsldup if it can be done with a shufps.
2781  return HasHi;
2782}
2783
2784/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2785/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2786bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2787  int e = N->getValueType(0).getVectorNumElements() / 2;
2788
2789  for (int i = 0; i < e; ++i)
2790    if (!isUndefOrEqual(N->getMaskElt(i), i))
2791      return false;
2792  for (int i = 0; i < e; ++i)
2793    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2794      return false;
2795  return true;
2796}
2797
2798/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2799/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
2800unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2801  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2802  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2803
2804  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2805  unsigned Mask = 0;
2806  for (int i = 0; i < NumOperands; ++i) {
2807    int Val = SVOp->getMaskElt(NumOperands-i-1);
2808    if (Val < 0) Val = 0;
2809    if (Val >= NumOperands) Val -= NumOperands;
2810    Mask |= Val;
2811    if (i != NumOperands - 1)
2812      Mask <<= Shift;
2813  }
2814  return Mask;
2815}
2816
2817/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2818/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
2819unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2820  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2821  unsigned Mask = 0;
2822  // 8 nodes, but we only care about the last 4.
2823  for (unsigned i = 7; i >= 4; --i) {
2824    int Val = SVOp->getMaskElt(i);
2825    if (Val >= 0)
2826      Mask |= (Val - 4);
2827    if (i != 4)
2828      Mask <<= 2;
2829  }
2830  return Mask;
2831}
2832
2833/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2834/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
2835unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2836  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2837  unsigned Mask = 0;
2838  // 8 nodes, but we only care about the first 4.
2839  for (int i = 3; i >= 0; --i) {
2840    int Val = SVOp->getMaskElt(i);
2841    if (Val >= 0)
2842      Mask |= Val;
2843    if (i != 0)
2844      Mask <<= 2;
2845  }
2846  return Mask;
2847}
2848
2849/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
2850/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
2851unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
2852  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2853  EVT VVT = N->getValueType(0);
2854  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
2855  int Val = 0;
2856
2857  unsigned i, e;
2858  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
2859    Val = SVOp->getMaskElt(i);
2860    if (Val >= 0)
2861      break;
2862  }
2863  return (Val - i) * EltSize;
2864}
2865
2866/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2867/// constant +0.0.
2868bool X86::isZeroNode(SDValue Elt) {
2869  return ((isa<ConstantSDNode>(Elt) &&
2870           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2871          (isa<ConstantFPSDNode>(Elt) &&
2872           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2873}
2874
2875/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2876/// their permute mask.
2877static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2878                                    SelectionDAG &DAG) {
2879  EVT VT = SVOp->getValueType(0);
2880  unsigned NumElems = VT.getVectorNumElements();
2881  SmallVector<int, 8> MaskVec;
2882
2883  for (unsigned i = 0; i != NumElems; ++i) {
2884    int idx = SVOp->getMaskElt(i);
2885    if (idx < 0)
2886      MaskVec.push_back(idx);
2887    else if (idx < (int)NumElems)
2888      MaskVec.push_back(idx + NumElems);
2889    else
2890      MaskVec.push_back(idx - NumElems);
2891  }
2892  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2893                              SVOp->getOperand(0), &MaskVec[0]);
2894}
2895
2896/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2897/// the two vector operands have swapped position.
2898static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
2899  unsigned NumElems = VT.getVectorNumElements();
2900  for (unsigned i = 0; i != NumElems; ++i) {
2901    int idx = Mask[i];
2902    if (idx < 0)
2903      continue;
2904    else if (idx < (int)NumElems)
2905      Mask[i] = idx + NumElems;
2906    else
2907      Mask[i] = idx - NumElems;
2908  }
2909}
2910
2911/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2912/// match movhlps. The lower half elements should come from upper half of
2913/// V1 (and in order), and the upper half elements should come from the upper
2914/// half of V2 (and in order).
2915static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2916  if (Op->getValueType(0).getVectorNumElements() != 4)
2917    return false;
2918  for (unsigned i = 0, e = 2; i != e; ++i)
2919    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2920      return false;
2921  for (unsigned i = 2; i != 4; ++i)
2922    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2923      return false;
2924  return true;
2925}
2926
2927/// isScalarLoadToVector - Returns true if the node is a scalar load that
2928/// is promoted to a vector. It also returns the LoadSDNode by reference if
2929/// required.
2930static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2931  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2932    return false;
2933  N = N->getOperand(0).getNode();
2934  if (!ISD::isNON_EXTLoad(N))
2935    return false;
2936  if (LD)
2937    *LD = cast<LoadSDNode>(N);
2938  return true;
2939}
2940
2941/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2942/// match movlp{s|d}. The lower half elements should come from lower half of
2943/// V1 (and in order), and the upper half elements should come from the upper
2944/// half of V2 (and in order). And since V1 will become the source of the
2945/// MOVLP, it must be either a vector load or a scalar load to vector.
2946static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2947                               ShuffleVectorSDNode *Op) {
2948  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2949    return false;
2950  // Is V2 is a vector load, don't do this transformation. We will try to use
2951  // load folding shufps op.
2952  if (ISD::isNON_EXTLoad(V2))
2953    return false;
2954
2955  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2956
2957  if (NumElems != 2 && NumElems != 4)
2958    return false;
2959  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2960    if (!isUndefOrEqual(Op->getMaskElt(i), i))
2961      return false;
2962  for (unsigned i = NumElems/2; i != NumElems; ++i)
2963    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
2964      return false;
2965  return true;
2966}
2967
2968/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2969/// all the same.
2970static bool isSplatVector(SDNode *N) {
2971  if (N->getOpcode() != ISD::BUILD_VECTOR)
2972    return false;
2973
2974  SDValue SplatValue = N->getOperand(0);
2975  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2976    if (N->getOperand(i) != SplatValue)
2977      return false;
2978  return true;
2979}
2980
2981/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2982/// to an zero vector.
2983/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2984static bool isZeroShuffle(ShuffleVectorSDNode *N) {
2985  SDValue V1 = N->getOperand(0);
2986  SDValue V2 = N->getOperand(1);
2987  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2988  for (unsigned i = 0; i != NumElems; ++i) {
2989    int Idx = N->getMaskElt(i);
2990    if (Idx >= (int)NumElems) {
2991      unsigned Opc = V2.getOpcode();
2992      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2993        continue;
2994      if (Opc != ISD::BUILD_VECTOR ||
2995          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
2996        return false;
2997    } else if (Idx >= 0) {
2998      unsigned Opc = V1.getOpcode();
2999      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3000        continue;
3001      if (Opc != ISD::BUILD_VECTOR ||
3002          !X86::isZeroNode(V1.getOperand(Idx)))
3003        return false;
3004    }
3005  }
3006  return true;
3007}
3008
3009/// getZeroVector - Returns a vector of specified type with all zero elements.
3010///
3011static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3012                             DebugLoc dl) {
3013  assert(VT.isVector() && "Expected a vector type");
3014
3015  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3016  // type.  This ensures they get CSE'd.
3017  SDValue Vec;
3018  if (VT.getSizeInBits() == 64) { // MMX
3019    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3020    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3021  } else if (HasSSE2) {  // SSE2
3022    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3023    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3024  } else { // SSE1
3025    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3026    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3027  }
3028  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3029}
3030
3031/// getOnesVector - Returns a vector of specified type with all bits set.
3032///
3033static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3034  assert(VT.isVector() && "Expected a vector type");
3035
3036  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3037  // type.  This ensures they get CSE'd.
3038  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3039  SDValue Vec;
3040  if (VT.getSizeInBits() == 64)  // MMX
3041    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3042  else                                              // SSE
3043    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3044  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3045}
3046
3047
3048/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3049/// that point to V2 points to its first element.
3050static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3051  EVT VT = SVOp->getValueType(0);
3052  unsigned NumElems = VT.getVectorNumElements();
3053
3054  bool Changed = false;
3055  SmallVector<int, 8> MaskVec;
3056  SVOp->getMask(MaskVec);
3057
3058  for (unsigned i = 0; i != NumElems; ++i) {
3059    if (MaskVec[i] > (int)NumElems) {
3060      MaskVec[i] = NumElems;
3061      Changed = true;
3062    }
3063  }
3064  if (Changed)
3065    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3066                                SVOp->getOperand(1), &MaskVec[0]);
3067  return SDValue(SVOp, 0);
3068}
3069
3070/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3071/// operation of specified width.
3072static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3073                       SDValue V2) {
3074  unsigned NumElems = VT.getVectorNumElements();
3075  SmallVector<int, 8> Mask;
3076  Mask.push_back(NumElems);
3077  for (unsigned i = 1; i != NumElems; ++i)
3078    Mask.push_back(i);
3079  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3080}
3081
3082/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3083static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3084                          SDValue V2) {
3085  unsigned NumElems = VT.getVectorNumElements();
3086  SmallVector<int, 8> Mask;
3087  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3088    Mask.push_back(i);
3089    Mask.push_back(i + NumElems);
3090  }
3091  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3092}
3093
3094/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3095static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3096                          SDValue V2) {
3097  unsigned NumElems = VT.getVectorNumElements();
3098  unsigned Half = NumElems/2;
3099  SmallVector<int, 8> Mask;
3100  for (unsigned i = 0; i != Half; ++i) {
3101    Mask.push_back(i + Half);
3102    Mask.push_back(i + NumElems + Half);
3103  }
3104  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3105}
3106
3107/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3108static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3109                            bool HasSSE2) {
3110  if (SV->getValueType(0).getVectorNumElements() <= 4)
3111    return SDValue(SV, 0);
3112
3113  EVT PVT = MVT::v4f32;
3114  EVT VT = SV->getValueType(0);
3115  DebugLoc dl = SV->getDebugLoc();
3116  SDValue V1 = SV->getOperand(0);
3117  int NumElems = VT.getVectorNumElements();
3118  int EltNo = SV->getSplatIndex();
3119
3120  // unpack elements to the correct location
3121  while (NumElems > 4) {
3122    if (EltNo < NumElems/2) {
3123      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3124    } else {
3125      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3126      EltNo -= NumElems/2;
3127    }
3128    NumElems >>= 1;
3129  }
3130
3131  // Perform the splat.
3132  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3133  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3134  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3135  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3136}
3137
3138/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3139/// vector of zero or undef vector.  This produces a shuffle where the low
3140/// element of V2 is swizzled into the zero/undef vector, landing at element
3141/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3142static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3143                                             bool isZero, bool HasSSE2,
3144                                             SelectionDAG &DAG) {
3145  EVT VT = V2.getValueType();
3146  SDValue V1 = isZero
3147    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3148  unsigned NumElems = VT.getVectorNumElements();
3149  SmallVector<int, 16> MaskVec;
3150  for (unsigned i = 0; i != NumElems; ++i)
3151    // If this is the insertion idx, put the low elt of V2 here.
3152    MaskVec.push_back(i == Idx ? NumElems : i);
3153  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3154}
3155
3156/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3157/// a shuffle that is zero.
3158static
3159unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3160                                  bool Low, SelectionDAG &DAG) {
3161  unsigned NumZeros = 0;
3162  for (int i = 0; i < NumElems; ++i) {
3163    unsigned Index = Low ? i : NumElems-i-1;
3164    int Idx = SVOp->getMaskElt(Index);
3165    if (Idx < 0) {
3166      ++NumZeros;
3167      continue;
3168    }
3169    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3170    if (Elt.getNode() && X86::isZeroNode(Elt))
3171      ++NumZeros;
3172    else
3173      break;
3174  }
3175  return NumZeros;
3176}
3177
3178/// isVectorShift - Returns true if the shuffle can be implemented as a
3179/// logical left or right shift of a vector.
3180/// FIXME: split into pslldqi, psrldqi, palignr variants.
3181static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3182                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3183  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3184
3185  isLeft = true;
3186  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3187  if (!NumZeros) {
3188    isLeft = false;
3189    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3190    if (!NumZeros)
3191      return false;
3192  }
3193  bool SeenV1 = false;
3194  bool SeenV2 = false;
3195  for (int i = NumZeros; i < NumElems; ++i) {
3196    int Val = isLeft ? (i - NumZeros) : i;
3197    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3198    if (Idx < 0)
3199      continue;
3200    if (Idx < NumElems)
3201      SeenV1 = true;
3202    else {
3203      Idx -= NumElems;
3204      SeenV2 = true;
3205    }
3206    if (Idx != Val)
3207      return false;
3208  }
3209  if (SeenV1 && SeenV2)
3210    return false;
3211
3212  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3213  ShAmt = NumZeros;
3214  return true;
3215}
3216
3217
3218/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3219///
3220static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3221                                       unsigned NumNonZero, unsigned NumZero,
3222                                       SelectionDAG &DAG, TargetLowering &TLI) {
3223  if (NumNonZero > 8)
3224    return SDValue();
3225
3226  DebugLoc dl = Op.getDebugLoc();
3227  SDValue V(0, 0);
3228  bool First = true;
3229  for (unsigned i = 0; i < 16; ++i) {
3230    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3231    if (ThisIsNonZero && First) {
3232      if (NumZero)
3233        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3234      else
3235        V = DAG.getUNDEF(MVT::v8i16);
3236      First = false;
3237    }
3238
3239    if ((i & 1) != 0) {
3240      SDValue ThisElt(0, 0), LastElt(0, 0);
3241      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3242      if (LastIsNonZero) {
3243        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3244                              MVT::i16, Op.getOperand(i-1));
3245      }
3246      if (ThisIsNonZero) {
3247        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3248        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3249                              ThisElt, DAG.getConstant(8, MVT::i8));
3250        if (LastIsNonZero)
3251          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3252      } else
3253        ThisElt = LastElt;
3254
3255      if (ThisElt.getNode())
3256        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3257                        DAG.getIntPtrConstant(i/2));
3258    }
3259  }
3260
3261  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3262}
3263
3264/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3265///
3266static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3267                                       unsigned NumNonZero, unsigned NumZero,
3268                                       SelectionDAG &DAG, TargetLowering &TLI) {
3269  if (NumNonZero > 4)
3270    return SDValue();
3271
3272  DebugLoc dl = Op.getDebugLoc();
3273  SDValue V(0, 0);
3274  bool First = true;
3275  for (unsigned i = 0; i < 8; ++i) {
3276    bool isNonZero = (NonZeros & (1 << i)) != 0;
3277    if (isNonZero) {
3278      if (First) {
3279        if (NumZero)
3280          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3281        else
3282          V = DAG.getUNDEF(MVT::v8i16);
3283        First = false;
3284      }
3285      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3286                      MVT::v8i16, V, Op.getOperand(i),
3287                      DAG.getIntPtrConstant(i));
3288    }
3289  }
3290
3291  return V;
3292}
3293
3294/// getVShift - Return a vector logical shift node.
3295///
3296static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3297                         unsigned NumBits, SelectionDAG &DAG,
3298                         const TargetLowering &TLI, DebugLoc dl) {
3299  bool isMMX = VT.getSizeInBits() == 64;
3300  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3301  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3302  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3303  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3304                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3305                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3306}
3307
3308SDValue
3309X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3310  DebugLoc dl = Op.getDebugLoc();
3311  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3312  if (ISD::isBuildVectorAllZeros(Op.getNode())
3313      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3314    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3315    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3316    // eliminated on x86-32 hosts.
3317    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3318      return Op;
3319
3320    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3321      return getOnesVector(Op.getValueType(), DAG, dl);
3322    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3323  }
3324
3325  EVT VT = Op.getValueType();
3326  EVT ExtVT = VT.getVectorElementType();
3327  unsigned EVTBits = ExtVT.getSizeInBits();
3328
3329  unsigned NumElems = Op.getNumOperands();
3330  unsigned NumZero  = 0;
3331  unsigned NumNonZero = 0;
3332  unsigned NonZeros = 0;
3333  bool IsAllConstants = true;
3334  SmallSet<SDValue, 8> Values;
3335  for (unsigned i = 0; i < NumElems; ++i) {
3336    SDValue Elt = Op.getOperand(i);
3337    if (Elt.getOpcode() == ISD::UNDEF)
3338      continue;
3339    Values.insert(Elt);
3340    if (Elt.getOpcode() != ISD::Constant &&
3341        Elt.getOpcode() != ISD::ConstantFP)
3342      IsAllConstants = false;
3343    if (X86::isZeroNode(Elt))
3344      NumZero++;
3345    else {
3346      NonZeros |= (1 << i);
3347      NumNonZero++;
3348    }
3349  }
3350
3351  if (NumNonZero == 0) {
3352    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3353    return DAG.getUNDEF(VT);
3354  }
3355
3356  // Special case for single non-zero, non-undef, element.
3357  if (NumNonZero == 1) {
3358    unsigned Idx = CountTrailingZeros_32(NonZeros);
3359    SDValue Item = Op.getOperand(Idx);
3360
3361    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3362    // the value are obviously zero, truncate the value to i32 and do the
3363    // insertion that way.  Only do this if the value is non-constant or if the
3364    // value is a constant being inserted into element 0.  It is cheaper to do
3365    // a constant pool load than it is to do a movd + shuffle.
3366    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3367        (!IsAllConstants || Idx == 0)) {
3368      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3369        // Handle MMX and SSE both.
3370        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3371        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3372
3373        // Truncate the value (which may itself be a constant) to i32, and
3374        // convert it to a vector with movd (S2V+shuffle to zero extend).
3375        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3376        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3377        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3378                                           Subtarget->hasSSE2(), DAG);
3379
3380        // Now we have our 32-bit value zero extended in the low element of
3381        // a vector.  If Idx != 0, swizzle it into place.
3382        if (Idx != 0) {
3383          SmallVector<int, 4> Mask;
3384          Mask.push_back(Idx);
3385          for (unsigned i = 1; i != VecElts; ++i)
3386            Mask.push_back(i);
3387          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3388                                      DAG.getUNDEF(Item.getValueType()),
3389                                      &Mask[0]);
3390        }
3391        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3392      }
3393    }
3394
3395    // If we have a constant or non-constant insertion into the low element of
3396    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3397    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3398    // depending on what the source datatype is.
3399    if (Idx == 0) {
3400      if (NumZero == 0) {
3401        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3402      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3403          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3404        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3405        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3406        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3407                                           DAG);
3408      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3409        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3410        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3411        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3412        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3413                                           Subtarget->hasSSE2(), DAG);
3414        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3415      }
3416    }
3417
3418    // Is it a vector logical left shift?
3419    if (NumElems == 2 && Idx == 1 &&
3420        X86::isZeroNode(Op.getOperand(0)) &&
3421        !X86::isZeroNode(Op.getOperand(1))) {
3422      unsigned NumBits = VT.getSizeInBits();
3423      return getVShift(true, VT,
3424                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3425                                   VT, Op.getOperand(1)),
3426                       NumBits/2, DAG, *this, dl);
3427    }
3428
3429    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3430      return SDValue();
3431
3432    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3433    // is a non-constant being inserted into an element other than the low one,
3434    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3435    // movd/movss) to move this into the low element, then shuffle it into
3436    // place.
3437    if (EVTBits == 32) {
3438      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3439
3440      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3441      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3442                                         Subtarget->hasSSE2(), DAG);
3443      SmallVector<int, 8> MaskVec;
3444      for (unsigned i = 0; i < NumElems; i++)
3445        MaskVec.push_back(i == Idx ? 0 : 1);
3446      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3447    }
3448  }
3449
3450  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3451  if (Values.size() == 1)
3452    return SDValue();
3453
3454  // A vector full of immediates; various special cases are already
3455  // handled, so this is best done with a single constant-pool load.
3456  if (IsAllConstants)
3457    return SDValue();
3458
3459  // Let legalizer expand 2-wide build_vectors.
3460  if (EVTBits == 64) {
3461    if (NumNonZero == 1) {
3462      // One half is zero or undef.
3463      unsigned Idx = CountTrailingZeros_32(NonZeros);
3464      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3465                                 Op.getOperand(Idx));
3466      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3467                                         Subtarget->hasSSE2(), DAG);
3468    }
3469    return SDValue();
3470  }
3471
3472  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3473  if (EVTBits == 8 && NumElems == 16) {
3474    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3475                                        *this);
3476    if (V.getNode()) return V;
3477  }
3478
3479  if (EVTBits == 16 && NumElems == 8) {
3480    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3481                                        *this);
3482    if (V.getNode()) return V;
3483  }
3484
3485  // If element VT is == 32 bits, turn it into a number of shuffles.
3486  SmallVector<SDValue, 8> V;
3487  V.resize(NumElems);
3488  if (NumElems == 4 && NumZero > 0) {
3489    for (unsigned i = 0; i < 4; ++i) {
3490      bool isZero = !(NonZeros & (1 << i));
3491      if (isZero)
3492        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3493      else
3494        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3495    }
3496
3497    for (unsigned i = 0; i < 2; ++i) {
3498      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3499        default: break;
3500        case 0:
3501          V[i] = V[i*2];  // Must be a zero vector.
3502          break;
3503        case 1:
3504          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3505          break;
3506        case 2:
3507          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3508          break;
3509        case 3:
3510          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3511          break;
3512      }
3513    }
3514
3515    SmallVector<int, 8> MaskVec;
3516    bool Reverse = (NonZeros & 0x3) == 2;
3517    for (unsigned i = 0; i < 2; ++i)
3518      MaskVec.push_back(Reverse ? 1-i : i);
3519    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3520    for (unsigned i = 0; i < 2; ++i)
3521      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3522    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3523  }
3524
3525  if (Values.size() > 2) {
3526    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3527    // values to be inserted is equal to the number of elements, in which case
3528    // use the unpack code below in the hopes of matching the consecutive elts
3529    // load merge pattern for shuffles.
3530    // FIXME: We could probably just check that here directly.
3531    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3532        getSubtarget()->hasSSE41()) {
3533      V[0] = DAG.getUNDEF(VT);
3534      for (unsigned i = 0; i < NumElems; ++i)
3535        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3536          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3537                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3538      return V[0];
3539    }
3540    // Expand into a number of unpckl*.
3541    // e.g. for v4f32
3542    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3543    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3544    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3545    for (unsigned i = 0; i < NumElems; ++i)
3546      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3547    NumElems >>= 1;
3548    while (NumElems != 0) {
3549      for (unsigned i = 0; i < NumElems; ++i)
3550        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3551      NumElems >>= 1;
3552    }
3553    return V[0];
3554  }
3555
3556  return SDValue();
3557}
3558
3559// v8i16 shuffles - Prefer shuffles in the following order:
3560// 1. [all]   pshuflw, pshufhw, optional move
3561// 2. [ssse3] 1 x pshufb
3562// 3. [ssse3] 2 x pshufb + 1 x por
3563// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3564static
3565SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3566                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3567  SDValue V1 = SVOp->getOperand(0);
3568  SDValue V2 = SVOp->getOperand(1);
3569  DebugLoc dl = SVOp->getDebugLoc();
3570  SmallVector<int, 8> MaskVals;
3571
3572  // Determine if more than 1 of the words in each of the low and high quadwords
3573  // of the result come from the same quadword of one of the two inputs.  Undef
3574  // mask values count as coming from any quadword, for better codegen.
3575  SmallVector<unsigned, 4> LoQuad(4);
3576  SmallVector<unsigned, 4> HiQuad(4);
3577  BitVector InputQuads(4);
3578  for (unsigned i = 0; i < 8; ++i) {
3579    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3580    int EltIdx = SVOp->getMaskElt(i);
3581    MaskVals.push_back(EltIdx);
3582    if (EltIdx < 0) {
3583      ++Quad[0];
3584      ++Quad[1];
3585      ++Quad[2];
3586      ++Quad[3];
3587      continue;
3588    }
3589    ++Quad[EltIdx / 4];
3590    InputQuads.set(EltIdx / 4);
3591  }
3592
3593  int BestLoQuad = -1;
3594  unsigned MaxQuad = 1;
3595  for (unsigned i = 0; i < 4; ++i) {
3596    if (LoQuad[i] > MaxQuad) {
3597      BestLoQuad = i;
3598      MaxQuad = LoQuad[i];
3599    }
3600  }
3601
3602  int BestHiQuad = -1;
3603  MaxQuad = 1;
3604  for (unsigned i = 0; i < 4; ++i) {
3605    if (HiQuad[i] > MaxQuad) {
3606      BestHiQuad = i;
3607      MaxQuad = HiQuad[i];
3608    }
3609  }
3610
3611  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3612  // of the two input vectors, shuffle them into one input vector so only a
3613  // single pshufb instruction is necessary. If There are more than 2 input
3614  // quads, disable the next transformation since it does not help SSSE3.
3615  bool V1Used = InputQuads[0] || InputQuads[1];
3616  bool V2Used = InputQuads[2] || InputQuads[3];
3617  if (TLI.getSubtarget()->hasSSSE3()) {
3618    if (InputQuads.count() == 2 && V1Used && V2Used) {
3619      BestLoQuad = InputQuads.find_first();
3620      BestHiQuad = InputQuads.find_next(BestLoQuad);
3621    }
3622    if (InputQuads.count() > 2) {
3623      BestLoQuad = -1;
3624      BestHiQuad = -1;
3625    }
3626  }
3627
3628  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3629  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3630  // words from all 4 input quadwords.
3631  SDValue NewV;
3632  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3633    SmallVector<int, 8> MaskV;
3634    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3635    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3636    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3637                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3638                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3639    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3640
3641    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3642    // source words for the shuffle, to aid later transformations.
3643    bool AllWordsInNewV = true;
3644    bool InOrder[2] = { true, true };
3645    for (unsigned i = 0; i != 8; ++i) {
3646      int idx = MaskVals[i];
3647      if (idx != (int)i)
3648        InOrder[i/4] = false;
3649      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3650        continue;
3651      AllWordsInNewV = false;
3652      break;
3653    }
3654
3655    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3656    if (AllWordsInNewV) {
3657      for (int i = 0; i != 8; ++i) {
3658        int idx = MaskVals[i];
3659        if (idx < 0)
3660          continue;
3661        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3662        if ((idx != i) && idx < 4)
3663          pshufhw = false;
3664        if ((idx != i) && idx > 3)
3665          pshuflw = false;
3666      }
3667      V1 = NewV;
3668      V2Used = false;
3669      BestLoQuad = 0;
3670      BestHiQuad = 1;
3671    }
3672
3673    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3674    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3675    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3676      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3677                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3678    }
3679  }
3680
3681  // If we have SSSE3, and all words of the result are from 1 input vector,
3682  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3683  // is present, fall back to case 4.
3684  if (TLI.getSubtarget()->hasSSSE3()) {
3685    SmallVector<SDValue,16> pshufbMask;
3686
3687    // If we have elements from both input vectors, set the high bit of the
3688    // shuffle mask element to zero out elements that come from V2 in the V1
3689    // mask, and elements that come from V1 in the V2 mask, so that the two
3690    // results can be OR'd together.
3691    bool TwoInputs = V1Used && V2Used;
3692    for (unsigned i = 0; i != 8; ++i) {
3693      int EltIdx = MaskVals[i] * 2;
3694      if (TwoInputs && (EltIdx >= 16)) {
3695        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3696        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3697        continue;
3698      }
3699      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
3700      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3701    }
3702    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3703    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3704                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3705                                 MVT::v16i8, &pshufbMask[0], 16));
3706    if (!TwoInputs)
3707      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3708
3709    // Calculate the shuffle mask for the second input, shuffle it, and
3710    // OR it with the first shuffled input.
3711    pshufbMask.clear();
3712    for (unsigned i = 0; i != 8; ++i) {
3713      int EltIdx = MaskVals[i] * 2;
3714      if (EltIdx < 16) {
3715        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3716        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3717        continue;
3718      }
3719      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3720      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3721    }
3722    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3723    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3724                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3725                                 MVT::v16i8, &pshufbMask[0], 16));
3726    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3727    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3728  }
3729
3730  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3731  // and update MaskVals with new element order.
3732  BitVector InOrder(8);
3733  if (BestLoQuad >= 0) {
3734    SmallVector<int, 8> MaskV;
3735    for (int i = 0; i != 4; ++i) {
3736      int idx = MaskVals[i];
3737      if (idx < 0) {
3738        MaskV.push_back(-1);
3739        InOrder.set(i);
3740      } else if ((idx / 4) == BestLoQuad) {
3741        MaskV.push_back(idx & 3);
3742        InOrder.set(i);
3743      } else {
3744        MaskV.push_back(-1);
3745      }
3746    }
3747    for (unsigned i = 4; i != 8; ++i)
3748      MaskV.push_back(i);
3749    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3750                                &MaskV[0]);
3751  }
3752
3753  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3754  // and update MaskVals with the new element order.
3755  if (BestHiQuad >= 0) {
3756    SmallVector<int, 8> MaskV;
3757    for (unsigned i = 0; i != 4; ++i)
3758      MaskV.push_back(i);
3759    for (unsigned i = 4; i != 8; ++i) {
3760      int idx = MaskVals[i];
3761      if (idx < 0) {
3762        MaskV.push_back(-1);
3763        InOrder.set(i);
3764      } else if ((idx / 4) == BestHiQuad) {
3765        MaskV.push_back((idx & 3) + 4);
3766        InOrder.set(i);
3767      } else {
3768        MaskV.push_back(-1);
3769      }
3770    }
3771    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3772                                &MaskV[0]);
3773  }
3774
3775  // In case BestHi & BestLo were both -1, which means each quadword has a word
3776  // from each of the four input quadwords, calculate the InOrder bitvector now
3777  // before falling through to the insert/extract cleanup.
3778  if (BestLoQuad == -1 && BestHiQuad == -1) {
3779    NewV = V1;
3780    for (int i = 0; i != 8; ++i)
3781      if (MaskVals[i] < 0 || MaskVals[i] == i)
3782        InOrder.set(i);
3783  }
3784
3785  // The other elements are put in the right place using pextrw and pinsrw.
3786  for (unsigned i = 0; i != 8; ++i) {
3787    if (InOrder[i])
3788      continue;
3789    int EltIdx = MaskVals[i];
3790    if (EltIdx < 0)
3791      continue;
3792    SDValue ExtOp = (EltIdx < 8)
3793    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3794                  DAG.getIntPtrConstant(EltIdx))
3795    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3796                  DAG.getIntPtrConstant(EltIdx - 8));
3797    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3798                       DAG.getIntPtrConstant(i));
3799  }
3800  return NewV;
3801}
3802
3803// v16i8 shuffles - Prefer shuffles in the following order:
3804// 1. [ssse3] 1 x pshufb
3805// 2. [ssse3] 2 x pshufb + 1 x por
3806// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
3807static
3808SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3809                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3810  SDValue V1 = SVOp->getOperand(0);
3811  SDValue V2 = SVOp->getOperand(1);
3812  DebugLoc dl = SVOp->getDebugLoc();
3813  SmallVector<int, 16> MaskVals;
3814  SVOp->getMask(MaskVals);
3815
3816  // If we have SSSE3, case 1 is generated when all result bytes come from
3817  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
3818  // present, fall back to case 3.
3819  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3820  bool V1Only = true;
3821  bool V2Only = true;
3822  for (unsigned i = 0; i < 16; ++i) {
3823    int EltIdx = MaskVals[i];
3824    if (EltIdx < 0)
3825      continue;
3826    if (EltIdx < 16)
3827      V2Only = false;
3828    else
3829      V1Only = false;
3830  }
3831
3832  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3833  if (TLI.getSubtarget()->hasSSSE3()) {
3834    SmallVector<SDValue,16> pshufbMask;
3835
3836    // If all result elements are from one input vector, then only translate
3837    // undef mask values to 0x80 (zero out result) in the pshufb mask.
3838    //
3839    // Otherwise, we have elements from both input vectors, and must zero out
3840    // elements that come from V2 in the first mask, and V1 in the second mask
3841    // so that we can OR them together.
3842    bool TwoInputs = !(V1Only || V2Only);
3843    for (unsigned i = 0; i != 16; ++i) {
3844      int EltIdx = MaskVals[i];
3845      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3846        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3847        continue;
3848      }
3849      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3850    }
3851    // If all the elements are from V2, assign it to V1 and return after
3852    // building the first pshufb.
3853    if (V2Only)
3854      V1 = V2;
3855    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3856                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3857                                 MVT::v16i8, &pshufbMask[0], 16));
3858    if (!TwoInputs)
3859      return V1;
3860
3861    // Calculate the shuffle mask for the second input, shuffle it, and
3862    // OR it with the first shuffled input.
3863    pshufbMask.clear();
3864    for (unsigned i = 0; i != 16; ++i) {
3865      int EltIdx = MaskVals[i];
3866      if (EltIdx < 16) {
3867        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3868        continue;
3869      }
3870      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3871    }
3872    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3873                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3874                                 MVT::v16i8, &pshufbMask[0], 16));
3875    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3876  }
3877
3878  // No SSSE3 - Calculate in place words and then fix all out of place words
3879  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
3880  // the 16 different words that comprise the two doublequadword input vectors.
3881  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3882  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3883  SDValue NewV = V2Only ? V2 : V1;
3884  for (int i = 0; i != 8; ++i) {
3885    int Elt0 = MaskVals[i*2];
3886    int Elt1 = MaskVals[i*2+1];
3887
3888    // This word of the result is all undef, skip it.
3889    if (Elt0 < 0 && Elt1 < 0)
3890      continue;
3891
3892    // This word of the result is already in the correct place, skip it.
3893    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3894      continue;
3895    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3896      continue;
3897
3898    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3899    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3900    SDValue InsElt;
3901
3902    // If Elt0 and Elt1 are defined, are consecutive, and can be load
3903    // using a single extract together, load it and store it.
3904    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3905      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3906                           DAG.getIntPtrConstant(Elt1 / 2));
3907      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3908                        DAG.getIntPtrConstant(i));
3909      continue;
3910    }
3911
3912    // If Elt1 is defined, extract it from the appropriate source.  If the
3913    // source byte is not also odd, shift the extracted word left 8 bits
3914    // otherwise clear the bottom 8 bits if we need to do an or.
3915    if (Elt1 >= 0) {
3916      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3917                           DAG.getIntPtrConstant(Elt1 / 2));
3918      if ((Elt1 & 1) == 0)
3919        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3920                             DAG.getConstant(8, TLI.getShiftAmountTy()));
3921      else if (Elt0 >= 0)
3922        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3923                             DAG.getConstant(0xFF00, MVT::i16));
3924    }
3925    // If Elt0 is defined, extract it from the appropriate source.  If the
3926    // source byte is not also even, shift the extracted word right 8 bits. If
3927    // Elt1 was also defined, OR the extracted values together before
3928    // inserting them in the result.
3929    if (Elt0 >= 0) {
3930      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3931                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3932      if ((Elt0 & 1) != 0)
3933        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3934                              DAG.getConstant(8, TLI.getShiftAmountTy()));
3935      else if (Elt1 >= 0)
3936        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3937                             DAG.getConstant(0x00FF, MVT::i16));
3938      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3939                         : InsElt0;
3940    }
3941    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3942                       DAG.getIntPtrConstant(i));
3943  }
3944  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3945}
3946
3947/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3948/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3949/// done when every pair / quad of shuffle mask elements point to elements in
3950/// the right sequence. e.g.
3951/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3952static
3953SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3954                                 SelectionDAG &DAG,
3955                                 TargetLowering &TLI, DebugLoc dl) {
3956  EVT VT = SVOp->getValueType(0);
3957  SDValue V1 = SVOp->getOperand(0);
3958  SDValue V2 = SVOp->getOperand(1);
3959  unsigned NumElems = VT.getVectorNumElements();
3960  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3961  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3962  EVT MaskEltVT = MaskVT.getVectorElementType();
3963  EVT NewVT = MaskVT;
3964  switch (VT.getSimpleVT().SimpleTy) {
3965  default: assert(false && "Unexpected!");
3966  case MVT::v4f32: NewVT = MVT::v2f64; break;
3967  case MVT::v4i32: NewVT = MVT::v2i64; break;
3968  case MVT::v8i16: NewVT = MVT::v4i32; break;
3969  case MVT::v16i8: NewVT = MVT::v4i32; break;
3970  }
3971
3972  if (NewWidth == 2) {
3973    if (VT.isInteger())
3974      NewVT = MVT::v2i64;
3975    else
3976      NewVT = MVT::v2f64;
3977  }
3978  int Scale = NumElems / NewWidth;
3979  SmallVector<int, 8> MaskVec;
3980  for (unsigned i = 0; i < NumElems; i += Scale) {
3981    int StartIdx = -1;
3982    for (int j = 0; j < Scale; ++j) {
3983      int EltIdx = SVOp->getMaskElt(i+j);
3984      if (EltIdx < 0)
3985        continue;
3986      if (StartIdx == -1)
3987        StartIdx = EltIdx - (EltIdx % Scale);
3988      if (EltIdx != StartIdx + j)
3989        return SDValue();
3990    }
3991    if (StartIdx == -1)
3992      MaskVec.push_back(-1);
3993    else
3994      MaskVec.push_back(StartIdx / Scale);
3995  }
3996
3997  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
3998  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
3999  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4000}
4001
4002/// getVZextMovL - Return a zero-extending vector move low node.
4003///
4004static SDValue getVZextMovL(EVT VT, EVT OpVT,
4005                            SDValue SrcOp, SelectionDAG &DAG,
4006                            const X86Subtarget *Subtarget, DebugLoc dl) {
4007  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4008    LoadSDNode *LD = NULL;
4009    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4010      LD = dyn_cast<LoadSDNode>(SrcOp);
4011    if (!LD) {
4012      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4013      // instead.
4014      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4015      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4016          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4017          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4018          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4019        // PR2108
4020        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4021        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4022                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4023                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4024                                                   OpVT,
4025                                                   SrcOp.getOperand(0)
4026                                                          .getOperand(0))));
4027      }
4028    }
4029  }
4030
4031  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4032                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4033                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4034                                             OpVT, SrcOp)));
4035}
4036
4037/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4038/// shuffles.
4039static SDValue
4040LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4041  SDValue V1 = SVOp->getOperand(0);
4042  SDValue V2 = SVOp->getOperand(1);
4043  DebugLoc dl = SVOp->getDebugLoc();
4044  EVT VT = SVOp->getValueType(0);
4045
4046  SmallVector<std::pair<int, int>, 8> Locs;
4047  Locs.resize(4);
4048  SmallVector<int, 8> Mask1(4U, -1);
4049  SmallVector<int, 8> PermMask;
4050  SVOp->getMask(PermMask);
4051
4052  unsigned NumHi = 0;
4053  unsigned NumLo = 0;
4054  for (unsigned i = 0; i != 4; ++i) {
4055    int Idx = PermMask[i];
4056    if (Idx < 0) {
4057      Locs[i] = std::make_pair(-1, -1);
4058    } else {
4059      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4060      if (Idx < 4) {
4061        Locs[i] = std::make_pair(0, NumLo);
4062        Mask1[NumLo] = Idx;
4063        NumLo++;
4064      } else {
4065        Locs[i] = std::make_pair(1, NumHi);
4066        if (2+NumHi < 4)
4067          Mask1[2+NumHi] = Idx;
4068        NumHi++;
4069      }
4070    }
4071  }
4072
4073  if (NumLo <= 2 && NumHi <= 2) {
4074    // If no more than two elements come from either vector. This can be
4075    // implemented with two shuffles. First shuffle gather the elements.
4076    // The second shuffle, which takes the first shuffle as both of its
4077    // vector operands, put the elements into the right order.
4078    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4079
4080    SmallVector<int, 8> Mask2(4U, -1);
4081
4082    for (unsigned i = 0; i != 4; ++i) {
4083      if (Locs[i].first == -1)
4084        continue;
4085      else {
4086        unsigned Idx = (i < 2) ? 0 : 4;
4087        Idx += Locs[i].first * 2 + Locs[i].second;
4088        Mask2[i] = Idx;
4089      }
4090    }
4091
4092    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4093  } else if (NumLo == 3 || NumHi == 3) {
4094    // Otherwise, we must have three elements from one vector, call it X, and
4095    // one element from the other, call it Y.  First, use a shufps to build an
4096    // intermediate vector with the one element from Y and the element from X
4097    // that will be in the same half in the final destination (the indexes don't
4098    // matter). Then, use a shufps to build the final vector, taking the half
4099    // containing the element from Y from the intermediate, and the other half
4100    // from X.
4101    if (NumHi == 3) {
4102      // Normalize it so the 3 elements come from V1.
4103      CommuteVectorShuffleMask(PermMask, VT);
4104      std::swap(V1, V2);
4105    }
4106
4107    // Find the element from V2.
4108    unsigned HiIndex;
4109    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4110      int Val = PermMask[HiIndex];
4111      if (Val < 0)
4112        continue;
4113      if (Val >= 4)
4114        break;
4115    }
4116
4117    Mask1[0] = PermMask[HiIndex];
4118    Mask1[1] = -1;
4119    Mask1[2] = PermMask[HiIndex^1];
4120    Mask1[3] = -1;
4121    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4122
4123    if (HiIndex >= 2) {
4124      Mask1[0] = PermMask[0];
4125      Mask1[1] = PermMask[1];
4126      Mask1[2] = HiIndex & 1 ? 6 : 4;
4127      Mask1[3] = HiIndex & 1 ? 4 : 6;
4128      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4129    } else {
4130      Mask1[0] = HiIndex & 1 ? 2 : 0;
4131      Mask1[1] = HiIndex & 1 ? 0 : 2;
4132      Mask1[2] = PermMask[2];
4133      Mask1[3] = PermMask[3];
4134      if (Mask1[2] >= 0)
4135        Mask1[2] += 4;
4136      if (Mask1[3] >= 0)
4137        Mask1[3] += 4;
4138      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4139    }
4140  }
4141
4142  // Break it into (shuffle shuffle_hi, shuffle_lo).
4143  Locs.clear();
4144  SmallVector<int,8> LoMask(4U, -1);
4145  SmallVector<int,8> HiMask(4U, -1);
4146
4147  SmallVector<int,8> *MaskPtr = &LoMask;
4148  unsigned MaskIdx = 0;
4149  unsigned LoIdx = 0;
4150  unsigned HiIdx = 2;
4151  for (unsigned i = 0; i != 4; ++i) {
4152    if (i == 2) {
4153      MaskPtr = &HiMask;
4154      MaskIdx = 1;
4155      LoIdx = 0;
4156      HiIdx = 2;
4157    }
4158    int Idx = PermMask[i];
4159    if (Idx < 0) {
4160      Locs[i] = std::make_pair(-1, -1);
4161    } else if (Idx < 4) {
4162      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4163      (*MaskPtr)[LoIdx] = Idx;
4164      LoIdx++;
4165    } else {
4166      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4167      (*MaskPtr)[HiIdx] = Idx;
4168      HiIdx++;
4169    }
4170  }
4171
4172  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4173  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4174  SmallVector<int, 8> MaskOps;
4175  for (unsigned i = 0; i != 4; ++i) {
4176    if (Locs[i].first == -1) {
4177      MaskOps.push_back(-1);
4178    } else {
4179      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4180      MaskOps.push_back(Idx);
4181    }
4182  }
4183  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4184}
4185
4186SDValue
4187X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4188  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4189  SDValue V1 = Op.getOperand(0);
4190  SDValue V2 = Op.getOperand(1);
4191  EVT VT = Op.getValueType();
4192  DebugLoc dl = Op.getDebugLoc();
4193  unsigned NumElems = VT.getVectorNumElements();
4194  bool isMMX = VT.getSizeInBits() == 64;
4195  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4196  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4197  bool V1IsSplat = false;
4198  bool V2IsSplat = false;
4199
4200  if (isZeroShuffle(SVOp))
4201    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4202
4203  // Promote splats to v4f32.
4204  if (SVOp->isSplat()) {
4205    if (isMMX || NumElems < 4)
4206      return Op;
4207    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4208  }
4209
4210  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4211  // do it!
4212  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4213    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4214    if (NewOp.getNode())
4215      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4216                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4217  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4218    // FIXME: Figure out a cleaner way to do this.
4219    // Try to make use of movq to zero out the top part.
4220    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4221      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4222      if (NewOp.getNode()) {
4223        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4224          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4225                              DAG, Subtarget, dl);
4226      }
4227    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4228      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4229      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4230        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4231                            DAG, Subtarget, dl);
4232    }
4233  }
4234
4235  if (X86::isPSHUFDMask(SVOp))
4236    return Op;
4237
4238  // Check if this can be converted into a logical shift.
4239  bool isLeft = false;
4240  unsigned ShAmt = 0;
4241  SDValue ShVal;
4242  bool isShift = getSubtarget()->hasSSE2() &&
4243  isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4244  if (isShift && ShVal.hasOneUse()) {
4245    // If the shifted value has multiple uses, it may be cheaper to use
4246    // v_set0 + movlhps or movhlps, etc.
4247    EVT EltVT = VT.getVectorElementType();
4248    ShAmt *= EltVT.getSizeInBits();
4249    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4250  }
4251
4252  if (X86::isMOVLMask(SVOp)) {
4253    if (V1IsUndef)
4254      return V2;
4255    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4256      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4257    if (!isMMX)
4258      return Op;
4259  }
4260
4261  // FIXME: fold these into legal mask.
4262  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4263                 X86::isMOVSLDUPMask(SVOp) ||
4264                 X86::isMOVHLPSMask(SVOp) ||
4265                 X86::isMOVHPMask(SVOp) ||
4266                 X86::isMOVLPMask(SVOp)))
4267    return Op;
4268
4269  if (ShouldXformToMOVHLPS(SVOp) ||
4270      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4271    return CommuteVectorShuffle(SVOp, DAG);
4272
4273  if (isShift) {
4274    // No better options. Use a vshl / vsrl.
4275    EVT EltVT = VT.getVectorElementType();
4276    ShAmt *= EltVT.getSizeInBits();
4277    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4278  }
4279
4280  bool Commuted = false;
4281  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4282  // 1,1,1,1 -> v8i16 though.
4283  V1IsSplat = isSplatVector(V1.getNode());
4284  V2IsSplat = isSplatVector(V2.getNode());
4285
4286  // Canonicalize the splat or undef, if present, to be on the RHS.
4287  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4288    Op = CommuteVectorShuffle(SVOp, DAG);
4289    SVOp = cast<ShuffleVectorSDNode>(Op);
4290    V1 = SVOp->getOperand(0);
4291    V2 = SVOp->getOperand(1);
4292    std::swap(V1IsSplat, V2IsSplat);
4293    std::swap(V1IsUndef, V2IsUndef);
4294    Commuted = true;
4295  }
4296
4297  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4298    // Shuffling low element of v1 into undef, just return v1.
4299    if (V2IsUndef)
4300      return V1;
4301    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4302    // the instruction selector will not match, so get a canonical MOVL with
4303    // swapped operands to undo the commute.
4304    return getMOVL(DAG, dl, VT, V2, V1);
4305  }
4306
4307  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4308      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4309      X86::isUNPCKLMask(SVOp) ||
4310      X86::isUNPCKHMask(SVOp))
4311    return Op;
4312
4313  if (V2IsSplat) {
4314    // Normalize mask so all entries that point to V2 points to its first
4315    // element then try to match unpck{h|l} again. If match, return a
4316    // new vector_shuffle with the corrected mask.
4317    SDValue NewMask = NormalizeMask(SVOp, DAG);
4318    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4319    if (NSVOp != SVOp) {
4320      if (X86::isUNPCKLMask(NSVOp, true)) {
4321        return NewMask;
4322      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4323        return NewMask;
4324      }
4325    }
4326  }
4327
4328  if (Commuted) {
4329    // Commute is back and try unpck* again.
4330    // FIXME: this seems wrong.
4331    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4332    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4333    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4334        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4335        X86::isUNPCKLMask(NewSVOp) ||
4336        X86::isUNPCKHMask(NewSVOp))
4337      return NewOp;
4338  }
4339
4340  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4341
4342  // Normalize the node to match x86 shuffle ops if needed
4343  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4344    return CommuteVectorShuffle(SVOp, DAG);
4345
4346  // Check for legal shuffle and return?
4347  SmallVector<int, 16> PermMask;
4348  SVOp->getMask(PermMask);
4349  if (isShuffleMaskLegal(PermMask, VT))
4350    return Op;
4351
4352  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4353  if (VT == MVT::v8i16) {
4354    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4355    if (NewOp.getNode())
4356      return NewOp;
4357  }
4358
4359  if (VT == MVT::v16i8) {
4360    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4361    if (NewOp.getNode())
4362      return NewOp;
4363  }
4364
4365  // Handle all 4 wide cases with a number of shuffles except for MMX.
4366  if (NumElems == 4 && !isMMX)
4367    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4368
4369  return SDValue();
4370}
4371
4372SDValue
4373X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4374                                                SelectionDAG &DAG) {
4375  EVT VT = Op.getValueType();
4376  DebugLoc dl = Op.getDebugLoc();
4377  if (VT.getSizeInBits() == 8) {
4378    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4379                                    Op.getOperand(0), Op.getOperand(1));
4380    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4381                                    DAG.getValueType(VT));
4382    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4383  } else if (VT.getSizeInBits() == 16) {
4384    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4385    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4386    if (Idx == 0)
4387      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4388                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4389                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4390                                                 MVT::v4i32,
4391                                                 Op.getOperand(0)),
4392                                     Op.getOperand(1)));
4393    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4394                                    Op.getOperand(0), Op.getOperand(1));
4395    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4396                                    DAG.getValueType(VT));
4397    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4398  } else if (VT == MVT::f32) {
4399    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4400    // the result back to FR32 register. It's only worth matching if the
4401    // result has a single use which is a store or a bitcast to i32.  And in
4402    // the case of a store, it's not worth it if the index is a constant 0,
4403    // because a MOVSSmr can be used instead, which is smaller and faster.
4404    if (!Op.hasOneUse())
4405      return SDValue();
4406    SDNode *User = *Op.getNode()->use_begin();
4407    if ((User->getOpcode() != ISD::STORE ||
4408         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4409          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4410        (User->getOpcode() != ISD::BIT_CONVERT ||
4411         User->getValueType(0) != MVT::i32))
4412      return SDValue();
4413    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4414                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4415                                              Op.getOperand(0)),
4416                                              Op.getOperand(1));
4417    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4418  } else if (VT == MVT::i32) {
4419    // ExtractPS works with constant index.
4420    if (isa<ConstantSDNode>(Op.getOperand(1)))
4421      return Op;
4422  }
4423  return SDValue();
4424}
4425
4426
4427SDValue
4428X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4429  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4430    return SDValue();
4431
4432  if (Subtarget->hasSSE41()) {
4433    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4434    if (Res.getNode())
4435      return Res;
4436  }
4437
4438  EVT VT = Op.getValueType();
4439  DebugLoc dl = Op.getDebugLoc();
4440  // TODO: handle v16i8.
4441  if (VT.getSizeInBits() == 16) {
4442    SDValue Vec = Op.getOperand(0);
4443    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4444    if (Idx == 0)
4445      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4446                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4447                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4448                                                 MVT::v4i32, Vec),
4449                                     Op.getOperand(1)));
4450    // Transform it so it match pextrw which produces a 32-bit result.
4451    EVT EltVT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy+1);
4452    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4453                                    Op.getOperand(0), Op.getOperand(1));
4454    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4455                                    DAG.getValueType(VT));
4456    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4457  } else if (VT.getSizeInBits() == 32) {
4458    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4459    if (Idx == 0)
4460      return Op;
4461
4462    // SHUFPS the element to the lowest double word, then movss.
4463    int Mask[4] = { Idx, -1, -1, -1 };
4464    EVT VVT = Op.getOperand(0).getValueType();
4465    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4466                                       DAG.getUNDEF(VVT), Mask);
4467    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4468                       DAG.getIntPtrConstant(0));
4469  } else if (VT.getSizeInBits() == 64) {
4470    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4471    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4472    //        to match extract_elt for f64.
4473    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4474    if (Idx == 0)
4475      return Op;
4476
4477    // UNPCKHPD the element to the lowest double word, then movsd.
4478    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4479    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4480    int Mask[2] = { 1, -1 };
4481    EVT VVT = Op.getOperand(0).getValueType();
4482    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4483                                       DAG.getUNDEF(VVT), Mask);
4484    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4485                       DAG.getIntPtrConstant(0));
4486  }
4487
4488  return SDValue();
4489}
4490
4491SDValue
4492X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4493  EVT VT = Op.getValueType();
4494  EVT EltVT = VT.getVectorElementType();
4495  DebugLoc dl = Op.getDebugLoc();
4496
4497  SDValue N0 = Op.getOperand(0);
4498  SDValue N1 = Op.getOperand(1);
4499  SDValue N2 = Op.getOperand(2);
4500
4501  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4502      isa<ConstantSDNode>(N2)) {
4503    unsigned Opc = (EltVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4504                                                : X86ISD::PINSRW;
4505    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4506    // argument.
4507    if (N1.getValueType() != MVT::i32)
4508      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4509    if (N2.getValueType() != MVT::i32)
4510      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4511    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4512  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4513    // Bits [7:6] of the constant are the source select.  This will always be
4514    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4515    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4516    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4517    // Bits [5:4] of the constant are the destination select.  This is the
4518    //  value of the incoming immediate.
4519    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4520    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4521    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4522    // Create this as a scalar to vector..
4523    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4524    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4525  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4526    // PINSR* works with constant index.
4527    return Op;
4528  }
4529  return SDValue();
4530}
4531
4532SDValue
4533X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4534  EVT VT = Op.getValueType();
4535  EVT EltVT = VT.getVectorElementType();
4536
4537  if (Subtarget->hasSSE41())
4538    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4539
4540  if (EltVT == MVT::i8)
4541    return SDValue();
4542
4543  DebugLoc dl = Op.getDebugLoc();
4544  SDValue N0 = Op.getOperand(0);
4545  SDValue N1 = Op.getOperand(1);
4546  SDValue N2 = Op.getOperand(2);
4547
4548  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4549    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4550    // as its second argument.
4551    if (N1.getValueType() != MVT::i32)
4552      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4553    if (N2.getValueType() != MVT::i32)
4554      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4555    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4556  }
4557  return SDValue();
4558}
4559
4560SDValue
4561X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4562  DebugLoc dl = Op.getDebugLoc();
4563  if (Op.getValueType() == MVT::v2f32)
4564    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4565                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4566                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4567                                               Op.getOperand(0))));
4568
4569  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4570    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4571
4572  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4573  EVT VT = MVT::v2i32;
4574  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4575  default: break;
4576  case MVT::v16i8:
4577  case MVT::v8i16:
4578    VT = MVT::v4i32;
4579    break;
4580  }
4581  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4582                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4583}
4584
4585// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4586// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4587// one of the above mentioned nodes. It has to be wrapped because otherwise
4588// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4589// be used to form addressing mode. These wrapped nodes will be selected
4590// into MOV32ri.
4591SDValue
4592X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4593  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4594
4595  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4596  // global base reg.
4597  unsigned char OpFlag = 0;
4598  unsigned WrapperKind = X86ISD::Wrapper;
4599  CodeModel::Model M = getTargetMachine().getCodeModel();
4600
4601  if (Subtarget->isPICStyleRIPRel() &&
4602      (M == CodeModel::Small || M == CodeModel::Kernel))
4603    WrapperKind = X86ISD::WrapperRIP;
4604  else if (Subtarget->isPICStyleGOT())
4605    OpFlag = X86II::MO_GOTOFF;
4606  else if (Subtarget->isPICStyleStubPIC())
4607    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4608
4609  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4610                                             CP->getAlignment(),
4611                                             CP->getOffset(), OpFlag);
4612  DebugLoc DL = CP->getDebugLoc();
4613  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4614  // With PIC, the address is actually $g + Offset.
4615  if (OpFlag) {
4616    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4617                         DAG.getNode(X86ISD::GlobalBaseReg,
4618                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4619                         Result);
4620  }
4621
4622  return Result;
4623}
4624
4625SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4626  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4627
4628  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4629  // global base reg.
4630  unsigned char OpFlag = 0;
4631  unsigned WrapperKind = X86ISD::Wrapper;
4632  CodeModel::Model M = getTargetMachine().getCodeModel();
4633
4634  if (Subtarget->isPICStyleRIPRel() &&
4635      (M == CodeModel::Small || M == CodeModel::Kernel))
4636    WrapperKind = X86ISD::WrapperRIP;
4637  else if (Subtarget->isPICStyleGOT())
4638    OpFlag = X86II::MO_GOTOFF;
4639  else if (Subtarget->isPICStyleStubPIC())
4640    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4641
4642  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4643                                          OpFlag);
4644  DebugLoc DL = JT->getDebugLoc();
4645  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4646
4647  // With PIC, the address is actually $g + Offset.
4648  if (OpFlag) {
4649    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4650                         DAG.getNode(X86ISD::GlobalBaseReg,
4651                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4652                         Result);
4653  }
4654
4655  return Result;
4656}
4657
4658SDValue
4659X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4660  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4661
4662  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4663  // global base reg.
4664  unsigned char OpFlag = 0;
4665  unsigned WrapperKind = X86ISD::Wrapper;
4666  CodeModel::Model M = getTargetMachine().getCodeModel();
4667
4668  if (Subtarget->isPICStyleRIPRel() &&
4669      (M == CodeModel::Small || M == CodeModel::Kernel))
4670    WrapperKind = X86ISD::WrapperRIP;
4671  else if (Subtarget->isPICStyleGOT())
4672    OpFlag = X86II::MO_GOTOFF;
4673  else if (Subtarget->isPICStyleStubPIC())
4674    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4675
4676  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
4677
4678  DebugLoc DL = Op.getDebugLoc();
4679  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4680
4681
4682  // With PIC, the address is actually $g + Offset.
4683  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4684      !Subtarget->is64Bit()) {
4685    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4686                         DAG.getNode(X86ISD::GlobalBaseReg,
4687                                     DebugLoc::getUnknownLoc(),
4688                                     getPointerTy()),
4689                         Result);
4690  }
4691
4692  return Result;
4693}
4694
4695SDValue
4696X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4697                                      int64_t Offset,
4698                                      SelectionDAG &DAG) const {
4699  // Create the TargetGlobalAddress node, folding in the constant
4700  // offset if it is legal.
4701  unsigned char OpFlags =
4702    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4703  CodeModel::Model M = getTargetMachine().getCodeModel();
4704  SDValue Result;
4705  if (OpFlags == X86II::MO_NO_FLAG &&
4706      X86::isOffsetSuitableForCodeModel(Offset, M)) {
4707    // A direct static reference to a global.
4708    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4709    Offset = 0;
4710  } else {
4711    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
4712  }
4713
4714  if (Subtarget->isPICStyleRIPRel() &&
4715      (M == CodeModel::Small || M == CodeModel::Kernel))
4716    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
4717  else
4718    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4719
4720  // With PIC, the address is actually $g + Offset.
4721  if (isGlobalRelativeToPICBase(OpFlags)) {
4722    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4723                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4724                         Result);
4725  }
4726
4727  // For globals that require a load from a stub to get the address, emit the
4728  // load.
4729  if (isGlobalStubReference(OpFlags))
4730    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4731                         PseudoSourceValue::getGOT(), 0);
4732
4733  // If there was a non-zero offset that we didn't fold, create an explicit
4734  // addition for it.
4735  if (Offset != 0)
4736    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4737                         DAG.getConstant(Offset, getPointerTy()));
4738
4739  return Result;
4740}
4741
4742SDValue
4743X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4744  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4745  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4746  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4747}
4748
4749static SDValue
4750GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4751           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
4752           unsigned char OperandFlags) {
4753  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4754  DebugLoc dl = GA->getDebugLoc();
4755  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4756                                           GA->getValueType(0),
4757                                           GA->getOffset(),
4758                                           OperandFlags);
4759  if (InFlag) {
4760    SDValue Ops[] = { Chain,  TGA, *InFlag };
4761    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4762  } else {
4763    SDValue Ops[]  = { Chain, TGA };
4764    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4765  }
4766  SDValue Flag = Chain.getValue(1);
4767  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4768}
4769
4770// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4771static SDValue
4772LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4773                                const EVT PtrVT) {
4774  SDValue InFlag;
4775  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4776  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4777                                     DAG.getNode(X86ISD::GlobalBaseReg,
4778                                                 DebugLoc::getUnknownLoc(),
4779                                                 PtrVT), InFlag);
4780  InFlag = Chain.getValue(1);
4781
4782  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
4783}
4784
4785// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4786static SDValue
4787LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4788                                const EVT PtrVT) {
4789  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
4790                    X86::RAX, X86II::MO_TLSGD);
4791}
4792
4793// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4794// "local exec" model.
4795static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4796                                   const EVT PtrVT, TLSModel::Model model,
4797                                   bool is64Bit) {
4798  DebugLoc dl = GA->getDebugLoc();
4799  // Get the Thread Pointer
4800  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4801                             DebugLoc::getUnknownLoc(), PtrVT,
4802                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
4803                                             MVT::i32));
4804
4805  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4806                                      NULL, 0);
4807
4808  unsigned char OperandFlags = 0;
4809  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
4810  // initialexec.
4811  unsigned WrapperKind = X86ISD::Wrapper;
4812  if (model == TLSModel::LocalExec) {
4813    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
4814  } else if (is64Bit) {
4815    assert(model == TLSModel::InitialExec);
4816    OperandFlags = X86II::MO_GOTTPOFF;
4817    WrapperKind = X86ISD::WrapperRIP;
4818  } else {
4819    assert(model == TLSModel::InitialExec);
4820    OperandFlags = X86II::MO_INDNTPOFF;
4821  }
4822
4823  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4824  // exec)
4825  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4826                                           GA->getOffset(), OperandFlags);
4827  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
4828
4829  if (model == TLSModel::InitialExec)
4830    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4831                         PseudoSourceValue::getGOT(), 0);
4832
4833  // The address of the thread local variable is the add of the thread
4834  // pointer with the offset of the variable.
4835  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4836}
4837
4838SDValue
4839X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4840  // TODO: implement the "local dynamic" model
4841  // TODO: implement the "initial exec"model for pic executables
4842  assert(Subtarget->isTargetELF() &&
4843         "TLS not implemented for non-ELF targets");
4844  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4845  const GlobalValue *GV = GA->getGlobal();
4846
4847  // If GV is an alias then use the aliasee for determining
4848  // thread-localness.
4849  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
4850    GV = GA->resolveAliasedGlobal(false);
4851
4852  TLSModel::Model model = getTLSModel(GV,
4853                                      getTargetMachine().getRelocationModel());
4854
4855  switch (model) {
4856  case TLSModel::GeneralDynamic:
4857  case TLSModel::LocalDynamic: // not implemented
4858    if (Subtarget->is64Bit())
4859      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4860    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4861
4862  case TLSModel::InitialExec:
4863  case TLSModel::LocalExec:
4864    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
4865                               Subtarget->is64Bit());
4866  }
4867
4868  llvm_unreachable("Unreachable");
4869  return SDValue();
4870}
4871
4872
4873/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4874/// take a 2 x i32 value to shift plus a shift amount.
4875SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4876  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4877  EVT VT = Op.getValueType();
4878  unsigned VTBits = VT.getSizeInBits();
4879  DebugLoc dl = Op.getDebugLoc();
4880  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4881  SDValue ShOpLo = Op.getOperand(0);
4882  SDValue ShOpHi = Op.getOperand(1);
4883  SDValue ShAmt  = Op.getOperand(2);
4884  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4885                                     DAG.getConstant(VTBits - 1, MVT::i8))
4886                       : DAG.getConstant(0, VT);
4887
4888  SDValue Tmp2, Tmp3;
4889  if (Op.getOpcode() == ISD::SHL_PARTS) {
4890    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4891    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4892  } else {
4893    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4894    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4895  }
4896
4897  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4898                                DAG.getConstant(VTBits, MVT::i8));
4899  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4900                             AndNode, DAG.getConstant(0, MVT::i8));
4901
4902  SDValue Hi, Lo;
4903  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4904  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4905  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4906
4907  if (Op.getOpcode() == ISD::SHL_PARTS) {
4908    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4909    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4910  } else {
4911    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4912    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4913  }
4914
4915  SDValue Ops[2] = { Lo, Hi };
4916  return DAG.getMergeValues(Ops, 2, dl);
4917}
4918
4919SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4920  EVT SrcVT = Op.getOperand(0).getValueType();
4921
4922  if (SrcVT.isVector()) {
4923    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
4924      return Op;
4925    }
4926    return SDValue();
4927  }
4928
4929  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4930         "Unknown SINT_TO_FP to lower!");
4931
4932  // These are really Legal; return the operand so the caller accepts it as
4933  // Legal.
4934  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4935    return Op;
4936  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
4937      Subtarget->is64Bit()) {
4938    return Op;
4939  }
4940
4941  DebugLoc dl = Op.getDebugLoc();
4942  unsigned Size = SrcVT.getSizeInBits()/8;
4943  MachineFunction &MF = DAG.getMachineFunction();
4944  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4945  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4946  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4947                               StackSlot,
4948                               PseudoSourceValue::getFixedStack(SSFI), 0);
4949  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
4950}
4951
4952SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
4953                                     SDValue StackSlot,
4954                                     SelectionDAG &DAG) {
4955  // Build the FILD
4956  DebugLoc dl = Op.getDebugLoc();
4957  SDVTList Tys;
4958  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4959  if (useSSE)
4960    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4961  else
4962    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4963  SmallVector<SDValue, 8> Ops;
4964  Ops.push_back(Chain);
4965  Ops.push_back(StackSlot);
4966  Ops.push_back(DAG.getValueType(SrcVT));
4967  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
4968                                 Tys, &Ops[0], Ops.size());
4969
4970  if (useSSE) {
4971    Chain = Result.getValue(1);
4972    SDValue InFlag = Result.getValue(2);
4973
4974    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4975    // shouldn't be necessary except that RFP cannot be live across
4976    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4977    MachineFunction &MF = DAG.getMachineFunction();
4978    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4979    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4980    Tys = DAG.getVTList(MVT::Other);
4981    SmallVector<SDValue, 8> Ops;
4982    Ops.push_back(Chain);
4983    Ops.push_back(Result);
4984    Ops.push_back(StackSlot);
4985    Ops.push_back(DAG.getValueType(Op.getValueType()));
4986    Ops.push_back(InFlag);
4987    Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
4988    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
4989                         PseudoSourceValue::getFixedStack(SSFI), 0);
4990  }
4991
4992  return Result;
4993}
4994
4995// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4996SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
4997  // This algorithm is not obvious. Here it is in C code, more or less:
4998  /*
4999    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5000      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5001      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5002
5003      // Copy ints to xmm registers.
5004      __m128i xh = _mm_cvtsi32_si128( hi );
5005      __m128i xl = _mm_cvtsi32_si128( lo );
5006
5007      // Combine into low half of a single xmm register.
5008      __m128i x = _mm_unpacklo_epi32( xh, xl );
5009      __m128d d;
5010      double sd;
5011
5012      // Merge in appropriate exponents to give the integer bits the right
5013      // magnitude.
5014      x = _mm_unpacklo_epi32( x, exp );
5015
5016      // Subtract away the biases to deal with the IEEE-754 double precision
5017      // implicit 1.
5018      d = _mm_sub_pd( (__m128d) x, bias );
5019
5020      // All conversions up to here are exact. The correctly rounded result is
5021      // calculated using the current rounding mode using the following
5022      // horizontal add.
5023      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5024      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5025                                // store doesn't really need to be here (except
5026                                // maybe to zero the other double)
5027      return sd;
5028    }
5029  */
5030
5031  DebugLoc dl = Op.getDebugLoc();
5032  LLVMContext *Context = DAG.getContext();
5033
5034  // Build some magic constants.
5035  std::vector<Constant*> CV0;
5036  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5037  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5038  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5039  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5040  Constant *C0 = ConstantVector::get(CV0);
5041  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5042
5043  std::vector<Constant*> CV1;
5044  CV1.push_back(
5045    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5046  CV1.push_back(
5047    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5048  Constant *C1 = ConstantVector::get(CV1);
5049  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5050
5051  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5052                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5053                                        Op.getOperand(0),
5054                                        DAG.getIntPtrConstant(1)));
5055  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5056                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5057                                        Op.getOperand(0),
5058                                        DAG.getIntPtrConstant(0)));
5059  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5060  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5061                              PseudoSourceValue::getConstantPool(), 0,
5062                              false, 16);
5063  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5064  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5065  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5066                              PseudoSourceValue::getConstantPool(), 0,
5067                              false, 16);
5068  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5069
5070  // Add the halves; easiest way is to swap them into another reg first.
5071  int ShufMask[2] = { 1, -1 };
5072  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5073                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5074  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5075  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5076                     DAG.getIntPtrConstant(0));
5077}
5078
5079// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5080SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5081  DebugLoc dl = Op.getDebugLoc();
5082  // FP constant to bias correct the final result.
5083  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5084                                   MVT::f64);
5085
5086  // Load the 32-bit value into an XMM register.
5087  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5088                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5089                                         Op.getOperand(0),
5090                                         DAG.getIntPtrConstant(0)));
5091
5092  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5093                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5094                     DAG.getIntPtrConstant(0));
5095
5096  // Or the load with the bias.
5097  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5098                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5099                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5100                                                   MVT::v2f64, Load)),
5101                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5102                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5103                                                   MVT::v2f64, Bias)));
5104  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5105                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5106                   DAG.getIntPtrConstant(0));
5107
5108  // Subtract the bias.
5109  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5110
5111  // Handle final rounding.
5112  EVT DestVT = Op.getValueType();
5113
5114  if (DestVT.bitsLT(MVT::f64)) {
5115    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5116                       DAG.getIntPtrConstant(0));
5117  } else if (DestVT.bitsGT(MVT::f64)) {
5118    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5119  }
5120
5121  // Handle final rounding.
5122  return Sub;
5123}
5124
5125SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5126  SDValue N0 = Op.getOperand(0);
5127  DebugLoc dl = Op.getDebugLoc();
5128
5129  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5130  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5131  // the optimization here.
5132  if (DAG.SignBitIsZero(N0))
5133    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5134
5135  EVT SrcVT = N0.getValueType();
5136  if (SrcVT == MVT::i64) {
5137    // We only handle SSE2 f64 target here; caller can expand the rest.
5138    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5139      return SDValue();
5140
5141    return LowerUINT_TO_FP_i64(Op, DAG);
5142  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5143    return LowerUINT_TO_FP_i32(Op, DAG);
5144  }
5145
5146  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5147
5148  // Make a 64-bit buffer, and use it to build an FILD.
5149  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5150  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5151  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5152                                   getPointerTy(), StackSlot, WordOff);
5153  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5154                                StackSlot, NULL, 0);
5155  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5156                                OffsetSlot, NULL, 0);
5157  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5158}
5159
5160std::pair<SDValue,SDValue> X86TargetLowering::
5161FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5162  DebugLoc dl = Op.getDebugLoc();
5163
5164  EVT DstTy = Op.getValueType();
5165
5166  if (!IsSigned) {
5167    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5168    DstTy = MVT::i64;
5169  }
5170
5171  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5172         DstTy.getSimpleVT() >= MVT::i16 &&
5173         "Unknown FP_TO_SINT to lower!");
5174
5175  // These are really Legal.
5176  if (DstTy == MVT::i32 &&
5177      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5178    return std::make_pair(SDValue(), SDValue());
5179  if (Subtarget->is64Bit() &&
5180      DstTy == MVT::i64 &&
5181      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5182    return std::make_pair(SDValue(), SDValue());
5183
5184  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5185  // stack slot.
5186  MachineFunction &MF = DAG.getMachineFunction();
5187  unsigned MemSize = DstTy.getSizeInBits()/8;
5188  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5189  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5190
5191  unsigned Opc;
5192  switch (DstTy.getSimpleVT().SimpleTy) {
5193  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5194  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5195  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5196  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5197  }
5198
5199  SDValue Chain = DAG.getEntryNode();
5200  SDValue Value = Op.getOperand(0);
5201  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5202    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5203    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5204                         PseudoSourceValue::getFixedStack(SSFI), 0);
5205    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5206    SDValue Ops[] = {
5207      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5208    };
5209    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5210    Chain = Value.getValue(1);
5211    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5212    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5213  }
5214
5215  // Build the FP_TO_INT*_IN_MEM
5216  SDValue Ops[] = { Chain, Value, StackSlot };
5217  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5218
5219  return std::make_pair(FIST, StackSlot);
5220}
5221
5222SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5223  if (Op.getValueType().isVector()) {
5224    if (Op.getValueType() == MVT::v2i32 &&
5225        Op.getOperand(0).getValueType() == MVT::v2f64) {
5226      return Op;
5227    }
5228    return SDValue();
5229  }
5230
5231  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5232  SDValue FIST = Vals.first, StackSlot = Vals.second;
5233  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5234  if (FIST.getNode() == 0) return Op;
5235
5236  // Load the result.
5237  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5238                     FIST, StackSlot, NULL, 0);
5239}
5240
5241SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5242  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5243  SDValue FIST = Vals.first, StackSlot = Vals.second;
5244  assert(FIST.getNode() && "Unexpected failure");
5245
5246  // Load the result.
5247  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5248                     FIST, StackSlot, NULL, 0);
5249}
5250
5251SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5252  LLVMContext *Context = DAG.getContext();
5253  DebugLoc dl = Op.getDebugLoc();
5254  EVT VT = Op.getValueType();
5255  EVT EltVT = VT;
5256  if (VT.isVector())
5257    EltVT = VT.getVectorElementType();
5258  std::vector<Constant*> CV;
5259  if (EltVT == MVT::f64) {
5260    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5261    CV.push_back(C);
5262    CV.push_back(C);
5263  } else {
5264    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5265    CV.push_back(C);
5266    CV.push_back(C);
5267    CV.push_back(C);
5268    CV.push_back(C);
5269  }
5270  Constant *C = ConstantVector::get(CV);
5271  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5272  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5273                               PseudoSourceValue::getConstantPool(), 0,
5274                               false, 16);
5275  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5276}
5277
5278SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5279  LLVMContext *Context = DAG.getContext();
5280  DebugLoc dl = Op.getDebugLoc();
5281  EVT VT = Op.getValueType();
5282  EVT EltVT = VT;
5283  if (VT.isVector())
5284    EltVT = VT.getVectorElementType();
5285  std::vector<Constant*> CV;
5286  if (EltVT == MVT::f64) {
5287    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5288    CV.push_back(C);
5289    CV.push_back(C);
5290  } else {
5291    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5292    CV.push_back(C);
5293    CV.push_back(C);
5294    CV.push_back(C);
5295    CV.push_back(C);
5296  }
5297  Constant *C = ConstantVector::get(CV);
5298  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5299  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5300                               PseudoSourceValue::getConstantPool(), 0,
5301                               false, 16);
5302  if (VT.isVector()) {
5303    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5304                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5305                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5306                                Op.getOperand(0)),
5307                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5308  } else {
5309    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5310  }
5311}
5312
5313SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5314  LLVMContext *Context = DAG.getContext();
5315  SDValue Op0 = Op.getOperand(0);
5316  SDValue Op1 = Op.getOperand(1);
5317  DebugLoc dl = Op.getDebugLoc();
5318  EVT VT = Op.getValueType();
5319  EVT SrcVT = Op1.getValueType();
5320
5321  // If second operand is smaller, extend it first.
5322  if (SrcVT.bitsLT(VT)) {
5323    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5324    SrcVT = VT;
5325  }
5326  // And if it is bigger, shrink it first.
5327  if (SrcVT.bitsGT(VT)) {
5328    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5329    SrcVT = VT;
5330  }
5331
5332  // At this point the operands and the result should have the same
5333  // type, and that won't be f80 since that is not custom lowered.
5334
5335  // First get the sign bit of second operand.
5336  std::vector<Constant*> CV;
5337  if (SrcVT == MVT::f64) {
5338    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5339    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5340  } else {
5341    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5342    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5343    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5344    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5345  }
5346  Constant *C = ConstantVector::get(CV);
5347  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5348  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5349                                PseudoSourceValue::getConstantPool(), 0,
5350                                false, 16);
5351  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5352
5353  // Shift sign bit right or left if the two operands have different types.
5354  if (SrcVT.bitsGT(VT)) {
5355    // Op0 is MVT::f32, Op1 is MVT::f64.
5356    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5357    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5358                          DAG.getConstant(32, MVT::i32));
5359    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5360    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5361                          DAG.getIntPtrConstant(0));
5362  }
5363
5364  // Clear first operand sign bit.
5365  CV.clear();
5366  if (VT == MVT::f64) {
5367    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5368    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5369  } else {
5370    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5371    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5372    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5373    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5374  }
5375  C = ConstantVector::get(CV);
5376  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5377  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5378                                PseudoSourceValue::getConstantPool(), 0,
5379                                false, 16);
5380  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5381
5382  // Or the value with the sign bit.
5383  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5384}
5385
5386/// Emit nodes that will be selected as "test Op0,Op0", or something
5387/// equivalent.
5388SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5389                                    SelectionDAG &DAG) {
5390  DebugLoc dl = Op.getDebugLoc();
5391
5392  // CF and OF aren't always set the way we want. Determine which
5393  // of these we need.
5394  bool NeedCF = false;
5395  bool NeedOF = false;
5396  switch (X86CC) {
5397  case X86::COND_A: case X86::COND_AE:
5398  case X86::COND_B: case X86::COND_BE:
5399    NeedCF = true;
5400    break;
5401  case X86::COND_G: case X86::COND_GE:
5402  case X86::COND_L: case X86::COND_LE:
5403  case X86::COND_O: case X86::COND_NO:
5404    NeedOF = true;
5405    break;
5406  default: break;
5407  }
5408
5409  // See if we can use the EFLAGS value from the operand instead of
5410  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5411  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5412  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5413    unsigned Opcode = 0;
5414    unsigned NumOperands = 0;
5415    switch (Op.getNode()->getOpcode()) {
5416    case ISD::ADD:
5417      // Due to an isel shortcoming, be conservative if this add is likely to
5418      // be selected as part of a load-modify-store instruction. When the root
5419      // node in a match is a store, isel doesn't know how to remap non-chain
5420      // non-flag uses of other nodes in the match, such as the ADD in this
5421      // case. This leads to the ADD being left around and reselected, with
5422      // the result being two adds in the output.
5423      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5424           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5425        if (UI->getOpcode() == ISD::STORE)
5426          goto default_case;
5427      if (ConstantSDNode *C =
5428            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5429        // An add of one will be selected as an INC.
5430        if (C->getAPIntValue() == 1) {
5431          Opcode = X86ISD::INC;
5432          NumOperands = 1;
5433          break;
5434        }
5435        // An add of negative one (subtract of one) will be selected as a DEC.
5436        if (C->getAPIntValue().isAllOnesValue()) {
5437          Opcode = X86ISD::DEC;
5438          NumOperands = 1;
5439          break;
5440        }
5441      }
5442      // Otherwise use a regular EFLAGS-setting add.
5443      Opcode = X86ISD::ADD;
5444      NumOperands = 2;
5445      break;
5446    case ISD::AND: {
5447      // If the primary and result isn't used, don't bother using X86ISD::AND,
5448      // because a TEST instruction will be better.
5449      bool NonFlagUse = false;
5450      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5451           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5452        if (UI->getOpcode() != ISD::BRCOND &&
5453            UI->getOpcode() != ISD::SELECT &&
5454            UI->getOpcode() != ISD::SETCC) {
5455          NonFlagUse = true;
5456          break;
5457        }
5458      if (!NonFlagUse)
5459        break;
5460    }
5461    // FALL THROUGH
5462    case ISD::SUB:
5463    case ISD::OR:
5464    case ISD::XOR:
5465      // Due to the ISEL shortcoming noted above, be conservative if this op is
5466      // likely to be selected as part of a load-modify-store instruction.
5467      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5468           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5469        if (UI->getOpcode() == ISD::STORE)
5470          goto default_case;
5471      // Otherwise use a regular EFLAGS-setting instruction.
5472      switch (Op.getNode()->getOpcode()) {
5473      case ISD::SUB: Opcode = X86ISD::SUB; break;
5474      case ISD::OR:  Opcode = X86ISD::OR;  break;
5475      case ISD::XOR: Opcode = X86ISD::XOR; break;
5476      case ISD::AND: Opcode = X86ISD::AND; break;
5477      default: llvm_unreachable("unexpected operator!");
5478      }
5479      NumOperands = 2;
5480      break;
5481    case X86ISD::ADD:
5482    case X86ISD::SUB:
5483    case X86ISD::INC:
5484    case X86ISD::DEC:
5485    case X86ISD::OR:
5486    case X86ISD::XOR:
5487    case X86ISD::AND:
5488      return SDValue(Op.getNode(), 1);
5489    default:
5490    default_case:
5491      break;
5492    }
5493    if (Opcode != 0) {
5494      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5495      SmallVector<SDValue, 4> Ops;
5496      for (unsigned i = 0; i != NumOperands; ++i)
5497        Ops.push_back(Op.getOperand(i));
5498      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5499      DAG.ReplaceAllUsesWith(Op, New);
5500      return SDValue(New.getNode(), 1);
5501    }
5502  }
5503
5504  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5505  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5506                     DAG.getConstant(0, Op.getValueType()));
5507}
5508
5509/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5510/// equivalent.
5511SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5512                                   SelectionDAG &DAG) {
5513  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5514    if (C->getAPIntValue() == 0)
5515      return EmitTest(Op0, X86CC, DAG);
5516
5517  DebugLoc dl = Op0.getDebugLoc();
5518  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5519}
5520
5521SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5522  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5523  SDValue Op0 = Op.getOperand(0);
5524  SDValue Op1 = Op.getOperand(1);
5525  DebugLoc dl = Op.getDebugLoc();
5526  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5527
5528  // Lower (X & (1 << N)) == 0 to BT(X, N).
5529  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5530  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5531  if (Op0.getOpcode() == ISD::AND &&
5532      Op0.hasOneUse() &&
5533      Op1.getOpcode() == ISD::Constant &&
5534      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5535      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5536    SDValue LHS, RHS;
5537    if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5538      if (ConstantSDNode *Op010C =
5539            dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5540        if (Op010C->getZExtValue() == 1) {
5541          LHS = Op0.getOperand(0);
5542          RHS = Op0.getOperand(1).getOperand(1);
5543        }
5544    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5545      if (ConstantSDNode *Op000C =
5546            dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5547        if (Op000C->getZExtValue() == 1) {
5548          LHS = Op0.getOperand(1);
5549          RHS = Op0.getOperand(0).getOperand(1);
5550        }
5551    } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5552      ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5553      SDValue AndLHS = Op0.getOperand(0);
5554      if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5555        LHS = AndLHS.getOperand(0);
5556        RHS = AndLHS.getOperand(1);
5557      }
5558    }
5559
5560    if (LHS.getNode()) {
5561      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5562      // instruction.  Since the shift amount is in-range-or-undefined, we know
5563      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5564      // the encoding for the i16 version is larger than the i32 version.
5565      if (LHS.getValueType() == MVT::i8)
5566        LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5567
5568      // If the operand types disagree, extend the shift amount to match.  Since
5569      // BT ignores high bits (like shifts) we can use anyextend.
5570      if (LHS.getValueType() != RHS.getValueType())
5571        RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5572
5573      SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5574      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5575      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5576                         DAG.getConstant(Cond, MVT::i8), BT);
5577    }
5578  }
5579
5580  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5581  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5582  if (X86CC == X86::COND_INVALID)
5583    return SDValue();
5584
5585  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5586  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5587                     DAG.getConstant(X86CC, MVT::i8), Cond);
5588}
5589
5590SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5591  SDValue Cond;
5592  SDValue Op0 = Op.getOperand(0);
5593  SDValue Op1 = Op.getOperand(1);
5594  SDValue CC = Op.getOperand(2);
5595  EVT VT = Op.getValueType();
5596  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5597  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5598  DebugLoc dl = Op.getDebugLoc();
5599
5600  if (isFP) {
5601    unsigned SSECC = 8;
5602    EVT VT0 = Op0.getValueType();
5603    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5604    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5605    bool Swap = false;
5606
5607    switch (SetCCOpcode) {
5608    default: break;
5609    case ISD::SETOEQ:
5610    case ISD::SETEQ:  SSECC = 0; break;
5611    case ISD::SETOGT:
5612    case ISD::SETGT: Swap = true; // Fallthrough
5613    case ISD::SETLT:
5614    case ISD::SETOLT: SSECC = 1; break;
5615    case ISD::SETOGE:
5616    case ISD::SETGE: Swap = true; // Fallthrough
5617    case ISD::SETLE:
5618    case ISD::SETOLE: SSECC = 2; break;
5619    case ISD::SETUO:  SSECC = 3; break;
5620    case ISD::SETUNE:
5621    case ISD::SETNE:  SSECC = 4; break;
5622    case ISD::SETULE: Swap = true;
5623    case ISD::SETUGE: SSECC = 5; break;
5624    case ISD::SETULT: Swap = true;
5625    case ISD::SETUGT: SSECC = 6; break;
5626    case ISD::SETO:   SSECC = 7; break;
5627    }
5628    if (Swap)
5629      std::swap(Op0, Op1);
5630
5631    // In the two special cases we can't handle, emit two comparisons.
5632    if (SSECC == 8) {
5633      if (SetCCOpcode == ISD::SETUEQ) {
5634        SDValue UNORD, EQ;
5635        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5636        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5637        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5638      }
5639      else if (SetCCOpcode == ISD::SETONE) {
5640        SDValue ORD, NEQ;
5641        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5642        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5643        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5644      }
5645      llvm_unreachable("Illegal FP comparison");
5646    }
5647    // Handle all other FP comparisons here.
5648    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5649  }
5650
5651  // We are handling one of the integer comparisons here.  Since SSE only has
5652  // GT and EQ comparisons for integer, swapping operands and multiple
5653  // operations may be required for some comparisons.
5654  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5655  bool Swap = false, Invert = false, FlipSigns = false;
5656
5657  switch (VT.getSimpleVT().SimpleTy) {
5658  default: break;
5659  case MVT::v8i8:
5660  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5661  case MVT::v4i16:
5662  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5663  case MVT::v2i32:
5664  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5665  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5666  }
5667
5668  switch (SetCCOpcode) {
5669  default: break;
5670  case ISD::SETNE:  Invert = true;
5671  case ISD::SETEQ:  Opc = EQOpc; break;
5672  case ISD::SETLT:  Swap = true;
5673  case ISD::SETGT:  Opc = GTOpc; break;
5674  case ISD::SETGE:  Swap = true;
5675  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5676  case ISD::SETULT: Swap = true;
5677  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5678  case ISD::SETUGE: Swap = true;
5679  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5680  }
5681  if (Swap)
5682    std::swap(Op0, Op1);
5683
5684  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5685  // bits of the inputs before performing those operations.
5686  if (FlipSigns) {
5687    EVT EltVT = VT.getVectorElementType();
5688    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5689                                      EltVT);
5690    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5691    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5692                                    SignBits.size());
5693    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5694    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5695  }
5696
5697  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5698
5699  // If the logical-not of the result is required, perform that now.
5700  if (Invert)
5701    Result = DAG.getNOT(dl, Result, VT);
5702
5703  return Result;
5704}
5705
5706// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5707static bool isX86LogicalCmp(SDValue Op) {
5708  unsigned Opc = Op.getNode()->getOpcode();
5709  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5710    return true;
5711  if (Op.getResNo() == 1 &&
5712      (Opc == X86ISD::ADD ||
5713       Opc == X86ISD::SUB ||
5714       Opc == X86ISD::SMUL ||
5715       Opc == X86ISD::UMUL ||
5716       Opc == X86ISD::INC ||
5717       Opc == X86ISD::DEC ||
5718       Opc == X86ISD::OR ||
5719       Opc == X86ISD::XOR ||
5720       Opc == X86ISD::AND))
5721    return true;
5722
5723  return false;
5724}
5725
5726SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5727  bool addTest = true;
5728  SDValue Cond  = Op.getOperand(0);
5729  DebugLoc dl = Op.getDebugLoc();
5730  SDValue CC;
5731
5732  if (Cond.getOpcode() == ISD::SETCC) {
5733    SDValue NewCond = LowerSETCC(Cond, DAG);
5734    if (NewCond.getNode())
5735      Cond = NewCond;
5736  }
5737
5738  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5739  // setting operand in place of the X86ISD::SETCC.
5740  if (Cond.getOpcode() == X86ISD::SETCC) {
5741    CC = Cond.getOperand(0);
5742
5743    SDValue Cmp = Cond.getOperand(1);
5744    unsigned Opc = Cmp.getOpcode();
5745    EVT VT = Op.getValueType();
5746
5747    bool IllegalFPCMov = false;
5748    if (VT.isFloatingPoint() && !VT.isVector() &&
5749        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5750      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5751
5752    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5753        Opc == X86ISD::BT) { // FIXME
5754      Cond = Cmp;
5755      addTest = false;
5756    }
5757  }
5758
5759  if (addTest) {
5760    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5761    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5762  }
5763
5764  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5765  SmallVector<SDValue, 4> Ops;
5766  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5767  // condition is true.
5768  Ops.push_back(Op.getOperand(2));
5769  Ops.push_back(Op.getOperand(1));
5770  Ops.push_back(CC);
5771  Ops.push_back(Cond);
5772  return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5773}
5774
5775// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5776// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5777// from the AND / OR.
5778static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5779  Opc = Op.getOpcode();
5780  if (Opc != ISD::OR && Opc != ISD::AND)
5781    return false;
5782  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5783          Op.getOperand(0).hasOneUse() &&
5784          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5785          Op.getOperand(1).hasOneUse());
5786}
5787
5788// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5789// 1 and that the SETCC node has a single use.
5790static bool isXor1OfSetCC(SDValue Op) {
5791  if (Op.getOpcode() != ISD::XOR)
5792    return false;
5793  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5794  if (N1C && N1C->getAPIntValue() == 1) {
5795    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5796      Op.getOperand(0).hasOneUse();
5797  }
5798  return false;
5799}
5800
5801SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5802  bool addTest = true;
5803  SDValue Chain = Op.getOperand(0);
5804  SDValue Cond  = Op.getOperand(1);
5805  SDValue Dest  = Op.getOperand(2);
5806  DebugLoc dl = Op.getDebugLoc();
5807  SDValue CC;
5808
5809  if (Cond.getOpcode() == ISD::SETCC) {
5810    SDValue NewCond = LowerSETCC(Cond, DAG);
5811    if (NewCond.getNode())
5812      Cond = NewCond;
5813  }
5814#if 0
5815  // FIXME: LowerXALUO doesn't handle these!!
5816  else if (Cond.getOpcode() == X86ISD::ADD  ||
5817           Cond.getOpcode() == X86ISD::SUB  ||
5818           Cond.getOpcode() == X86ISD::SMUL ||
5819           Cond.getOpcode() == X86ISD::UMUL)
5820    Cond = LowerXALUO(Cond, DAG);
5821#endif
5822
5823  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5824  // setting operand in place of the X86ISD::SETCC.
5825  if (Cond.getOpcode() == X86ISD::SETCC) {
5826    CC = Cond.getOperand(0);
5827
5828    SDValue Cmp = Cond.getOperand(1);
5829    unsigned Opc = Cmp.getOpcode();
5830    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5831    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5832      Cond = Cmp;
5833      addTest = false;
5834    } else {
5835      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5836      default: break;
5837      case X86::COND_O:
5838      case X86::COND_B:
5839        // These can only come from an arithmetic instruction with overflow,
5840        // e.g. SADDO, UADDO.
5841        Cond = Cond.getNode()->getOperand(1);
5842        addTest = false;
5843        break;
5844      }
5845    }
5846  } else {
5847    unsigned CondOpc;
5848    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5849      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5850      if (CondOpc == ISD::OR) {
5851        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5852        // two branches instead of an explicit OR instruction with a
5853        // separate test.
5854        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5855            isX86LogicalCmp(Cmp)) {
5856          CC = Cond.getOperand(0).getOperand(0);
5857          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5858                              Chain, Dest, CC, Cmp);
5859          CC = Cond.getOperand(1).getOperand(0);
5860          Cond = Cmp;
5861          addTest = false;
5862        }
5863      } else { // ISD::AND
5864        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5865        // two branches instead of an explicit AND instruction with a
5866        // separate test. However, we only do this if this block doesn't
5867        // have a fall-through edge, because this requires an explicit
5868        // jmp when the condition is false.
5869        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5870            isX86LogicalCmp(Cmp) &&
5871            Op.getNode()->hasOneUse()) {
5872          X86::CondCode CCode =
5873            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5874          CCode = X86::GetOppositeBranchCondition(CCode);
5875          CC = DAG.getConstant(CCode, MVT::i8);
5876          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5877          // Look for an unconditional branch following this conditional branch.
5878          // We need this because we need to reverse the successors in order
5879          // to implement FCMP_OEQ.
5880          if (User.getOpcode() == ISD::BR) {
5881            SDValue FalseBB = User.getOperand(1);
5882            SDValue NewBR =
5883              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5884            assert(NewBR == User);
5885            Dest = FalseBB;
5886
5887            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5888                                Chain, Dest, CC, Cmp);
5889            X86::CondCode CCode =
5890              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5891            CCode = X86::GetOppositeBranchCondition(CCode);
5892            CC = DAG.getConstant(CCode, MVT::i8);
5893            Cond = Cmp;
5894            addTest = false;
5895          }
5896        }
5897      }
5898    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5899      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5900      // It should be transformed during dag combiner except when the condition
5901      // is set by a arithmetics with overflow node.
5902      X86::CondCode CCode =
5903        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5904      CCode = X86::GetOppositeBranchCondition(CCode);
5905      CC = DAG.getConstant(CCode, MVT::i8);
5906      Cond = Cond.getOperand(0).getOperand(1);
5907      addTest = false;
5908    }
5909  }
5910
5911  if (addTest) {
5912    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5913    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5914  }
5915  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5916                     Chain, Dest, CC, Cond);
5917}
5918
5919
5920// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5921// Calls to _alloca is needed to probe the stack when allocating more than 4k
5922// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5923// that the guard pages used by the OS virtual memory manager are allocated in
5924// correct sequence.
5925SDValue
5926X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5927                                           SelectionDAG &DAG) {
5928  assert(Subtarget->isTargetCygMing() &&
5929         "This should be used only on Cygwin/Mingw targets");
5930  DebugLoc dl = Op.getDebugLoc();
5931
5932  // Get the inputs.
5933  SDValue Chain = Op.getOperand(0);
5934  SDValue Size  = Op.getOperand(1);
5935  // FIXME: Ensure alignment here
5936
5937  SDValue Flag;
5938
5939  EVT IntPtr = getPointerTy();
5940  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5941
5942  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5943
5944  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5945  Flag = Chain.getValue(1);
5946
5947  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5948  SDValue Ops[] = { Chain,
5949                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5950                      DAG.getRegister(X86::EAX, IntPtr),
5951                      DAG.getRegister(X86StackPtr, SPTy),
5952                      Flag };
5953  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5954  Flag = Chain.getValue(1);
5955
5956  Chain = DAG.getCALLSEQ_END(Chain,
5957                             DAG.getIntPtrConstant(0, true),
5958                             DAG.getIntPtrConstant(0, true),
5959                             Flag);
5960
5961  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5962
5963  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5964  return DAG.getMergeValues(Ops1, 2, dl);
5965}
5966
5967SDValue
5968X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5969                                           SDValue Chain,
5970                                           SDValue Dst, SDValue Src,
5971                                           SDValue Size, unsigned Align,
5972                                           const Value *DstSV,
5973                                           uint64_t DstSVOff) {
5974  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5975
5976  // If not DWORD aligned or size is more than the threshold, call the library.
5977  // The libc version is likely to be faster for these cases. It can use the
5978  // address value and run time information about the CPU.
5979  if ((Align & 3) != 0 ||
5980      !ConstantSize ||
5981      ConstantSize->getZExtValue() >
5982        getSubtarget()->getMaxInlineSizeThreshold()) {
5983    SDValue InFlag(0, 0);
5984
5985    // Check to see if there is a specialized entry-point for memory zeroing.
5986    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5987
5988    if (const char *bzeroEntry =  V &&
5989        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5990      EVT IntPtr = getPointerTy();
5991      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
5992      TargetLowering::ArgListTy Args;
5993      TargetLowering::ArgListEntry Entry;
5994      Entry.Node = Dst;
5995      Entry.Ty = IntPtrTy;
5996      Args.push_back(Entry);
5997      Entry.Node = Size;
5998      Args.push_back(Entry);
5999      std::pair<SDValue,SDValue> CallResult =
6000        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6001                    false, false, false, false,
6002                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6003                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
6004      return CallResult.second;
6005    }
6006
6007    // Otherwise have the target-independent code call memset.
6008    return SDValue();
6009  }
6010
6011  uint64_t SizeVal = ConstantSize->getZExtValue();
6012  SDValue InFlag(0, 0);
6013  EVT AVT;
6014  SDValue Count;
6015  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6016  unsigned BytesLeft = 0;
6017  bool TwoRepStos = false;
6018  if (ValC) {
6019    unsigned ValReg;
6020    uint64_t Val = ValC->getZExtValue() & 255;
6021
6022    // If the value is a constant, then we can potentially use larger sets.
6023    switch (Align & 3) {
6024    case 2:   // WORD aligned
6025      AVT = MVT::i16;
6026      ValReg = X86::AX;
6027      Val = (Val << 8) | Val;
6028      break;
6029    case 0:  // DWORD aligned
6030      AVT = MVT::i32;
6031      ValReg = X86::EAX;
6032      Val = (Val << 8)  | Val;
6033      Val = (Val << 16) | Val;
6034      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6035        AVT = MVT::i64;
6036        ValReg = X86::RAX;
6037        Val = (Val << 32) | Val;
6038      }
6039      break;
6040    default:  // Byte aligned
6041      AVT = MVT::i8;
6042      ValReg = X86::AL;
6043      Count = DAG.getIntPtrConstant(SizeVal);
6044      break;
6045    }
6046
6047    if (AVT.bitsGT(MVT::i8)) {
6048      unsigned UBytes = AVT.getSizeInBits() / 8;
6049      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6050      BytesLeft = SizeVal % UBytes;
6051    }
6052
6053    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6054                              InFlag);
6055    InFlag = Chain.getValue(1);
6056  } else {
6057    AVT = MVT::i8;
6058    Count  = DAG.getIntPtrConstant(SizeVal);
6059    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6060    InFlag = Chain.getValue(1);
6061  }
6062
6063  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6064                                                              X86::ECX,
6065                            Count, InFlag);
6066  InFlag = Chain.getValue(1);
6067  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6068                                                              X86::EDI,
6069                            Dst, InFlag);
6070  InFlag = Chain.getValue(1);
6071
6072  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6073  SmallVector<SDValue, 8> Ops;
6074  Ops.push_back(Chain);
6075  Ops.push_back(DAG.getValueType(AVT));
6076  Ops.push_back(InFlag);
6077  Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
6078
6079  if (TwoRepStos) {
6080    InFlag = Chain.getValue(1);
6081    Count  = Size;
6082    EVT CVT = Count.getValueType();
6083    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6084                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6085    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6086                                                             X86::ECX,
6087                              Left, InFlag);
6088    InFlag = Chain.getValue(1);
6089    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6090    Ops.clear();
6091    Ops.push_back(Chain);
6092    Ops.push_back(DAG.getValueType(MVT::i8));
6093    Ops.push_back(InFlag);
6094    Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
6095  } else if (BytesLeft) {
6096    // Handle the last 1 - 7 bytes.
6097    unsigned Offset = SizeVal - BytesLeft;
6098    EVT AddrVT = Dst.getValueType();
6099    EVT SizeVT = Size.getValueType();
6100
6101    Chain = DAG.getMemset(Chain, dl,
6102                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6103                                      DAG.getConstant(Offset, AddrVT)),
6104                          Src,
6105                          DAG.getConstant(BytesLeft, SizeVT),
6106                          Align, DstSV, DstSVOff + Offset);
6107  }
6108
6109  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6110  return Chain;
6111}
6112
6113SDValue
6114X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6115                                      SDValue Chain, SDValue Dst, SDValue Src,
6116                                      SDValue Size, unsigned Align,
6117                                      bool AlwaysInline,
6118                                      const Value *DstSV, uint64_t DstSVOff,
6119                                      const Value *SrcSV, uint64_t SrcSVOff) {
6120  // This requires the copy size to be a constant, preferrably
6121  // within a subtarget-specific limit.
6122  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6123  if (!ConstantSize)
6124    return SDValue();
6125  uint64_t SizeVal = ConstantSize->getZExtValue();
6126  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6127    return SDValue();
6128
6129  /// If not DWORD aligned, call the library.
6130  if ((Align & 3) != 0)
6131    return SDValue();
6132
6133  // DWORD aligned
6134  EVT AVT = MVT::i32;
6135  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6136    AVT = MVT::i64;
6137
6138  unsigned UBytes = AVT.getSizeInBits() / 8;
6139  unsigned CountVal = SizeVal / UBytes;
6140  SDValue Count = DAG.getIntPtrConstant(CountVal);
6141  unsigned BytesLeft = SizeVal % UBytes;
6142
6143  SDValue InFlag(0, 0);
6144  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6145                                                              X86::ECX,
6146                            Count, InFlag);
6147  InFlag = Chain.getValue(1);
6148  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6149                                                             X86::EDI,
6150                            Dst, InFlag);
6151  InFlag = Chain.getValue(1);
6152  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6153                                                              X86::ESI,
6154                            Src, InFlag);
6155  InFlag = Chain.getValue(1);
6156
6157  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6158  SmallVector<SDValue, 8> Ops;
6159  Ops.push_back(Chain);
6160  Ops.push_back(DAG.getValueType(AVT));
6161  Ops.push_back(InFlag);
6162  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
6163
6164  SmallVector<SDValue, 4> Results;
6165  Results.push_back(RepMovs);
6166  if (BytesLeft) {
6167    // Handle the last 1 - 7 bytes.
6168    unsigned Offset = SizeVal - BytesLeft;
6169    EVT DstVT = Dst.getValueType();
6170    EVT SrcVT = Src.getValueType();
6171    EVT SizeVT = Size.getValueType();
6172    Results.push_back(DAG.getMemcpy(Chain, dl,
6173                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6174                                                DAG.getConstant(Offset, DstVT)),
6175                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6176                                                DAG.getConstant(Offset, SrcVT)),
6177                                    DAG.getConstant(BytesLeft, SizeVT),
6178                                    Align, AlwaysInline,
6179                                    DstSV, DstSVOff + Offset,
6180                                    SrcSV, SrcSVOff + Offset));
6181  }
6182
6183  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6184                     &Results[0], Results.size());
6185}
6186
6187SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6188  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6189  DebugLoc dl = Op.getDebugLoc();
6190
6191  if (!Subtarget->is64Bit()) {
6192    // vastart just stores the address of the VarArgsFrameIndex slot into the
6193    // memory location argument.
6194    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6195    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6196  }
6197
6198  // __va_list_tag:
6199  //   gp_offset         (0 - 6 * 8)
6200  //   fp_offset         (48 - 48 + 8 * 16)
6201  //   overflow_arg_area (point to parameters coming in memory).
6202  //   reg_save_area
6203  SmallVector<SDValue, 8> MemOps;
6204  SDValue FIN = Op.getOperand(1);
6205  // Store gp_offset
6206  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6207                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6208                                 FIN, SV, 0);
6209  MemOps.push_back(Store);
6210
6211  // Store fp_offset
6212  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6213                    FIN, DAG.getIntPtrConstant(4));
6214  Store = DAG.getStore(Op.getOperand(0), dl,
6215                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6216                       FIN, SV, 0);
6217  MemOps.push_back(Store);
6218
6219  // Store ptr to overflow_arg_area
6220  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6221                    FIN, DAG.getIntPtrConstant(4));
6222  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6223  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6224  MemOps.push_back(Store);
6225
6226  // Store ptr to reg_save_area.
6227  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6228                    FIN, DAG.getIntPtrConstant(8));
6229  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6230  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6231  MemOps.push_back(Store);
6232  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6233                     &MemOps[0], MemOps.size());
6234}
6235
6236SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6237  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6238  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6239  SDValue Chain = Op.getOperand(0);
6240  SDValue SrcPtr = Op.getOperand(1);
6241  SDValue SrcSV = Op.getOperand(2);
6242
6243  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6244  return SDValue();
6245}
6246
6247SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6248  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6249  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6250  SDValue Chain = Op.getOperand(0);
6251  SDValue DstPtr = Op.getOperand(1);
6252  SDValue SrcPtr = Op.getOperand(2);
6253  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6254  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6255  DebugLoc dl = Op.getDebugLoc();
6256
6257  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6258                       DAG.getIntPtrConstant(24), 8, false,
6259                       DstSV, 0, SrcSV, 0);
6260}
6261
6262SDValue
6263X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6264  DebugLoc dl = Op.getDebugLoc();
6265  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6266  switch (IntNo) {
6267  default: return SDValue();    // Don't custom lower most intrinsics.
6268  // Comparison intrinsics.
6269  case Intrinsic::x86_sse_comieq_ss:
6270  case Intrinsic::x86_sse_comilt_ss:
6271  case Intrinsic::x86_sse_comile_ss:
6272  case Intrinsic::x86_sse_comigt_ss:
6273  case Intrinsic::x86_sse_comige_ss:
6274  case Intrinsic::x86_sse_comineq_ss:
6275  case Intrinsic::x86_sse_ucomieq_ss:
6276  case Intrinsic::x86_sse_ucomilt_ss:
6277  case Intrinsic::x86_sse_ucomile_ss:
6278  case Intrinsic::x86_sse_ucomigt_ss:
6279  case Intrinsic::x86_sse_ucomige_ss:
6280  case Intrinsic::x86_sse_ucomineq_ss:
6281  case Intrinsic::x86_sse2_comieq_sd:
6282  case Intrinsic::x86_sse2_comilt_sd:
6283  case Intrinsic::x86_sse2_comile_sd:
6284  case Intrinsic::x86_sse2_comigt_sd:
6285  case Intrinsic::x86_sse2_comige_sd:
6286  case Intrinsic::x86_sse2_comineq_sd:
6287  case Intrinsic::x86_sse2_ucomieq_sd:
6288  case Intrinsic::x86_sse2_ucomilt_sd:
6289  case Intrinsic::x86_sse2_ucomile_sd:
6290  case Intrinsic::x86_sse2_ucomigt_sd:
6291  case Intrinsic::x86_sse2_ucomige_sd:
6292  case Intrinsic::x86_sse2_ucomineq_sd: {
6293    unsigned Opc = 0;
6294    ISD::CondCode CC = ISD::SETCC_INVALID;
6295    switch (IntNo) {
6296    default: break;
6297    case Intrinsic::x86_sse_comieq_ss:
6298    case Intrinsic::x86_sse2_comieq_sd:
6299      Opc = X86ISD::COMI;
6300      CC = ISD::SETEQ;
6301      break;
6302    case Intrinsic::x86_sse_comilt_ss:
6303    case Intrinsic::x86_sse2_comilt_sd:
6304      Opc = X86ISD::COMI;
6305      CC = ISD::SETLT;
6306      break;
6307    case Intrinsic::x86_sse_comile_ss:
6308    case Intrinsic::x86_sse2_comile_sd:
6309      Opc = X86ISD::COMI;
6310      CC = ISD::SETLE;
6311      break;
6312    case Intrinsic::x86_sse_comigt_ss:
6313    case Intrinsic::x86_sse2_comigt_sd:
6314      Opc = X86ISD::COMI;
6315      CC = ISD::SETGT;
6316      break;
6317    case Intrinsic::x86_sse_comige_ss:
6318    case Intrinsic::x86_sse2_comige_sd:
6319      Opc = X86ISD::COMI;
6320      CC = ISD::SETGE;
6321      break;
6322    case Intrinsic::x86_sse_comineq_ss:
6323    case Intrinsic::x86_sse2_comineq_sd:
6324      Opc = X86ISD::COMI;
6325      CC = ISD::SETNE;
6326      break;
6327    case Intrinsic::x86_sse_ucomieq_ss:
6328    case Intrinsic::x86_sse2_ucomieq_sd:
6329      Opc = X86ISD::UCOMI;
6330      CC = ISD::SETEQ;
6331      break;
6332    case Intrinsic::x86_sse_ucomilt_ss:
6333    case Intrinsic::x86_sse2_ucomilt_sd:
6334      Opc = X86ISD::UCOMI;
6335      CC = ISD::SETLT;
6336      break;
6337    case Intrinsic::x86_sse_ucomile_ss:
6338    case Intrinsic::x86_sse2_ucomile_sd:
6339      Opc = X86ISD::UCOMI;
6340      CC = ISD::SETLE;
6341      break;
6342    case Intrinsic::x86_sse_ucomigt_ss:
6343    case Intrinsic::x86_sse2_ucomigt_sd:
6344      Opc = X86ISD::UCOMI;
6345      CC = ISD::SETGT;
6346      break;
6347    case Intrinsic::x86_sse_ucomige_ss:
6348    case Intrinsic::x86_sse2_ucomige_sd:
6349      Opc = X86ISD::UCOMI;
6350      CC = ISD::SETGE;
6351      break;
6352    case Intrinsic::x86_sse_ucomineq_ss:
6353    case Intrinsic::x86_sse2_ucomineq_sd:
6354      Opc = X86ISD::UCOMI;
6355      CC = ISD::SETNE;
6356      break;
6357    }
6358
6359    SDValue LHS = Op.getOperand(1);
6360    SDValue RHS = Op.getOperand(2);
6361    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6362    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6363    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6364    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6365                                DAG.getConstant(X86CC, MVT::i8), Cond);
6366    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6367  }
6368  // ptest intrinsics. The intrinsic these come from are designed to return
6369  // an integer value, not just an instruction so lower it to the ptest
6370  // pattern and a setcc for the result.
6371  case Intrinsic::x86_sse41_ptestz:
6372  case Intrinsic::x86_sse41_ptestc:
6373  case Intrinsic::x86_sse41_ptestnzc:{
6374    unsigned X86CC = 0;
6375    switch (IntNo) {
6376    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6377    case Intrinsic::x86_sse41_ptestz:
6378      // ZF = 1
6379      X86CC = X86::COND_E;
6380      break;
6381    case Intrinsic::x86_sse41_ptestc:
6382      // CF = 1
6383      X86CC = X86::COND_B;
6384      break;
6385    case Intrinsic::x86_sse41_ptestnzc:
6386      // ZF and CF = 0
6387      X86CC = X86::COND_A;
6388      break;
6389    }
6390
6391    SDValue LHS = Op.getOperand(1);
6392    SDValue RHS = Op.getOperand(2);
6393    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6394    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6395    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6396    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6397  }
6398
6399  // Fix vector shift instructions where the last operand is a non-immediate
6400  // i32 value.
6401  case Intrinsic::x86_sse2_pslli_w:
6402  case Intrinsic::x86_sse2_pslli_d:
6403  case Intrinsic::x86_sse2_pslli_q:
6404  case Intrinsic::x86_sse2_psrli_w:
6405  case Intrinsic::x86_sse2_psrli_d:
6406  case Intrinsic::x86_sse2_psrli_q:
6407  case Intrinsic::x86_sse2_psrai_w:
6408  case Intrinsic::x86_sse2_psrai_d:
6409  case Intrinsic::x86_mmx_pslli_w:
6410  case Intrinsic::x86_mmx_pslli_d:
6411  case Intrinsic::x86_mmx_pslli_q:
6412  case Intrinsic::x86_mmx_psrli_w:
6413  case Intrinsic::x86_mmx_psrli_d:
6414  case Intrinsic::x86_mmx_psrli_q:
6415  case Intrinsic::x86_mmx_psrai_w:
6416  case Intrinsic::x86_mmx_psrai_d: {
6417    SDValue ShAmt = Op.getOperand(2);
6418    if (isa<ConstantSDNode>(ShAmt))
6419      return SDValue();
6420
6421    unsigned NewIntNo = 0;
6422    EVT ShAmtVT = MVT::v4i32;
6423    switch (IntNo) {
6424    case Intrinsic::x86_sse2_pslli_w:
6425      NewIntNo = Intrinsic::x86_sse2_psll_w;
6426      break;
6427    case Intrinsic::x86_sse2_pslli_d:
6428      NewIntNo = Intrinsic::x86_sse2_psll_d;
6429      break;
6430    case Intrinsic::x86_sse2_pslli_q:
6431      NewIntNo = Intrinsic::x86_sse2_psll_q;
6432      break;
6433    case Intrinsic::x86_sse2_psrli_w:
6434      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6435      break;
6436    case Intrinsic::x86_sse2_psrli_d:
6437      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6438      break;
6439    case Intrinsic::x86_sse2_psrli_q:
6440      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6441      break;
6442    case Intrinsic::x86_sse2_psrai_w:
6443      NewIntNo = Intrinsic::x86_sse2_psra_w;
6444      break;
6445    case Intrinsic::x86_sse2_psrai_d:
6446      NewIntNo = Intrinsic::x86_sse2_psra_d;
6447      break;
6448    default: {
6449      ShAmtVT = MVT::v2i32;
6450      switch (IntNo) {
6451      case Intrinsic::x86_mmx_pslli_w:
6452        NewIntNo = Intrinsic::x86_mmx_psll_w;
6453        break;
6454      case Intrinsic::x86_mmx_pslli_d:
6455        NewIntNo = Intrinsic::x86_mmx_psll_d;
6456        break;
6457      case Intrinsic::x86_mmx_pslli_q:
6458        NewIntNo = Intrinsic::x86_mmx_psll_q;
6459        break;
6460      case Intrinsic::x86_mmx_psrli_w:
6461        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6462        break;
6463      case Intrinsic::x86_mmx_psrli_d:
6464        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6465        break;
6466      case Intrinsic::x86_mmx_psrli_q:
6467        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6468        break;
6469      case Intrinsic::x86_mmx_psrai_w:
6470        NewIntNo = Intrinsic::x86_mmx_psra_w;
6471        break;
6472      case Intrinsic::x86_mmx_psrai_d:
6473        NewIntNo = Intrinsic::x86_mmx_psra_d;
6474        break;
6475      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6476      }
6477      break;
6478    }
6479    }
6480
6481    // The vector shift intrinsics with scalars uses 32b shift amounts but
6482    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
6483    // to be zero.
6484    SDValue ShOps[4];
6485    ShOps[0] = ShAmt;
6486    ShOps[1] = DAG.getConstant(0, MVT::i32);
6487    if (ShAmtVT == MVT::v4i32) {
6488      ShOps[2] = DAG.getUNDEF(MVT::i32);
6489      ShOps[3] = DAG.getUNDEF(MVT::i32);
6490      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
6491    } else {
6492      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
6493    }
6494
6495    EVT VT = Op.getValueType();
6496    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
6497    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6498                       DAG.getConstant(NewIntNo, MVT::i32),
6499                       Op.getOperand(1), ShAmt);
6500  }
6501  }
6502}
6503
6504SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6505  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6506  DebugLoc dl = Op.getDebugLoc();
6507
6508  if (Depth > 0) {
6509    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6510    SDValue Offset =
6511      DAG.getConstant(TD->getPointerSize(),
6512                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6513    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6514                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6515                                   FrameAddr, Offset),
6516                       NULL, 0);
6517  }
6518
6519  // Just load the return address.
6520  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6521  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6522                     RetAddrFI, NULL, 0);
6523}
6524
6525SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6526  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6527  MFI->setFrameAddressIsTaken(true);
6528  EVT VT = Op.getValueType();
6529  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6530  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6531  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6532  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6533  while (Depth--)
6534    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6535  return FrameAddr;
6536}
6537
6538SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6539                                                     SelectionDAG &DAG) {
6540  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6541}
6542
6543SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6544{
6545  MachineFunction &MF = DAG.getMachineFunction();
6546  SDValue Chain     = Op.getOperand(0);
6547  SDValue Offset    = Op.getOperand(1);
6548  SDValue Handler   = Op.getOperand(2);
6549  DebugLoc dl       = Op.getDebugLoc();
6550
6551  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6552                                  getPointerTy());
6553  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6554
6555  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6556                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6557  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6558  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6559  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6560  MF.getRegInfo().addLiveOut(StoreAddrReg);
6561
6562  return DAG.getNode(X86ISD::EH_RETURN, dl,
6563                     MVT::Other,
6564                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6565}
6566
6567SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6568                                             SelectionDAG &DAG) {
6569  SDValue Root = Op.getOperand(0);
6570  SDValue Trmp = Op.getOperand(1); // trampoline
6571  SDValue FPtr = Op.getOperand(2); // nested function
6572  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6573  DebugLoc dl  = Op.getDebugLoc();
6574
6575  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6576
6577  const X86InstrInfo *TII =
6578    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6579
6580  if (Subtarget->is64Bit()) {
6581    SDValue OutChains[6];
6582
6583    // Large code-model.
6584
6585    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6586    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6587
6588    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6589    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6590
6591    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6592
6593    // Load the pointer to the nested function into R11.
6594    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6595    SDValue Addr = Trmp;
6596    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6597                                Addr, TrmpAddr, 0);
6598
6599    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6600                       DAG.getConstant(2, MVT::i64));
6601    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6602
6603    // Load the 'nest' parameter value into R10.
6604    // R10 is specified in X86CallingConv.td
6605    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6606    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6607                       DAG.getConstant(10, MVT::i64));
6608    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6609                                Addr, TrmpAddr, 10);
6610
6611    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6612                       DAG.getConstant(12, MVT::i64));
6613    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6614
6615    // Jump to the nested function.
6616    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6617    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6618                       DAG.getConstant(20, MVT::i64));
6619    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6620                                Addr, TrmpAddr, 20);
6621
6622    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6623    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6624                       DAG.getConstant(22, MVT::i64));
6625    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6626                                TrmpAddr, 22);
6627
6628    SDValue Ops[] =
6629      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6630    return DAG.getMergeValues(Ops, 2, dl);
6631  } else {
6632    const Function *Func =
6633      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6634    CallingConv::ID CC = Func->getCallingConv();
6635    unsigned NestReg;
6636
6637    switch (CC) {
6638    default:
6639      llvm_unreachable("Unsupported calling convention");
6640    case CallingConv::C:
6641    case CallingConv::X86_StdCall: {
6642      // Pass 'nest' parameter in ECX.
6643      // Must be kept in sync with X86CallingConv.td
6644      NestReg = X86::ECX;
6645
6646      // Check that ECX wasn't needed by an 'inreg' parameter.
6647      const FunctionType *FTy = Func->getFunctionType();
6648      const AttrListPtr &Attrs = Func->getAttributes();
6649
6650      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6651        unsigned InRegCount = 0;
6652        unsigned Idx = 1;
6653
6654        for (FunctionType::param_iterator I = FTy->param_begin(),
6655             E = FTy->param_end(); I != E; ++I, ++Idx)
6656          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6657            // FIXME: should only count parameters that are lowered to integers.
6658            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6659
6660        if (InRegCount > 2) {
6661          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6662        }
6663      }
6664      break;
6665    }
6666    case CallingConv::X86_FastCall:
6667    case CallingConv::Fast:
6668      // Pass 'nest' parameter in EAX.
6669      // Must be kept in sync with X86CallingConv.td
6670      NestReg = X86::EAX;
6671      break;
6672    }
6673
6674    SDValue OutChains[4];
6675    SDValue Addr, Disp;
6676
6677    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6678                       DAG.getConstant(10, MVT::i32));
6679    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6680
6681    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6682    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6683    OutChains[0] = DAG.getStore(Root, dl,
6684                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6685                                Trmp, TrmpAddr, 0);
6686
6687    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6688                       DAG.getConstant(1, MVT::i32));
6689    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6690
6691    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6692    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6693                       DAG.getConstant(5, MVT::i32));
6694    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6695                                TrmpAddr, 5, false, 1);
6696
6697    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6698                       DAG.getConstant(6, MVT::i32));
6699    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6700
6701    SDValue Ops[] =
6702      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6703    return DAG.getMergeValues(Ops, 2, dl);
6704  }
6705}
6706
6707SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6708  /*
6709   The rounding mode is in bits 11:10 of FPSR, and has the following
6710   settings:
6711     00 Round to nearest
6712     01 Round to -inf
6713     10 Round to +inf
6714     11 Round to 0
6715
6716  FLT_ROUNDS, on the other hand, expects the following:
6717    -1 Undefined
6718     0 Round to 0
6719     1 Round to nearest
6720     2 Round to +inf
6721     3 Round to -inf
6722
6723  To perform the conversion, we do:
6724    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6725  */
6726
6727  MachineFunction &MF = DAG.getMachineFunction();
6728  const TargetMachine &TM = MF.getTarget();
6729  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6730  unsigned StackAlignment = TFI.getStackAlignment();
6731  EVT VT = Op.getValueType();
6732  DebugLoc dl = Op.getDebugLoc();
6733
6734  // Save FP Control Word to stack slot
6735  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6736  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6737
6738  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6739                              DAG.getEntryNode(), StackSlot);
6740
6741  // Load FP Control Word from stack slot
6742  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6743
6744  // Transform as necessary
6745  SDValue CWD1 =
6746    DAG.getNode(ISD::SRL, dl, MVT::i16,
6747                DAG.getNode(ISD::AND, dl, MVT::i16,
6748                            CWD, DAG.getConstant(0x800, MVT::i16)),
6749                DAG.getConstant(11, MVT::i8));
6750  SDValue CWD2 =
6751    DAG.getNode(ISD::SRL, dl, MVT::i16,
6752                DAG.getNode(ISD::AND, dl, MVT::i16,
6753                            CWD, DAG.getConstant(0x400, MVT::i16)),
6754                DAG.getConstant(9, MVT::i8));
6755
6756  SDValue RetVal =
6757    DAG.getNode(ISD::AND, dl, MVT::i16,
6758                DAG.getNode(ISD::ADD, dl, MVT::i16,
6759                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6760                            DAG.getConstant(1, MVT::i16)),
6761                DAG.getConstant(3, MVT::i16));
6762
6763
6764  return DAG.getNode((VT.getSizeInBits() < 16 ?
6765                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6766}
6767
6768SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6769  EVT VT = Op.getValueType();
6770  EVT OpVT = VT;
6771  unsigned NumBits = VT.getSizeInBits();
6772  DebugLoc dl = Op.getDebugLoc();
6773
6774  Op = Op.getOperand(0);
6775  if (VT == MVT::i8) {
6776    // Zero extend to i32 since there is not an i8 bsr.
6777    OpVT = MVT::i32;
6778    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6779  }
6780
6781  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6782  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6783  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6784
6785  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6786  SmallVector<SDValue, 4> Ops;
6787  Ops.push_back(Op);
6788  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6789  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6790  Ops.push_back(Op.getValue(1));
6791  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6792
6793  // Finally xor with NumBits-1.
6794  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6795
6796  if (VT == MVT::i8)
6797    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6798  return Op;
6799}
6800
6801SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6802  EVT VT = Op.getValueType();
6803  EVT OpVT = VT;
6804  unsigned NumBits = VT.getSizeInBits();
6805  DebugLoc dl = Op.getDebugLoc();
6806
6807  Op = Op.getOperand(0);
6808  if (VT == MVT::i8) {
6809    OpVT = MVT::i32;
6810    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6811  }
6812
6813  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6814  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6815  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6816
6817  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6818  SmallVector<SDValue, 4> Ops;
6819  Ops.push_back(Op);
6820  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6821  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6822  Ops.push_back(Op.getValue(1));
6823  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6824
6825  if (VT == MVT::i8)
6826    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6827  return Op;
6828}
6829
6830SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6831  EVT VT = Op.getValueType();
6832  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6833  DebugLoc dl = Op.getDebugLoc();
6834
6835  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6836  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6837  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6838  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6839  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6840  //
6841  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6842  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6843  //  return AloBlo + AloBhi + AhiBlo;
6844
6845  SDValue A = Op.getOperand(0);
6846  SDValue B = Op.getOperand(1);
6847
6848  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6849                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6850                       A, DAG.getConstant(32, MVT::i32));
6851  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6852                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6853                       B, DAG.getConstant(32, MVT::i32));
6854  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6855                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6856                       A, B);
6857  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6858                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6859                       A, Bhi);
6860  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6861                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6862                       Ahi, B);
6863  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6864                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6865                       AloBhi, DAG.getConstant(32, MVT::i32));
6866  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6867                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6868                       AhiBlo, DAG.getConstant(32, MVT::i32));
6869  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6870  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6871  return Res;
6872}
6873
6874
6875SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6876  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6877  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6878  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6879  // has only one use.
6880  SDNode *N = Op.getNode();
6881  SDValue LHS = N->getOperand(0);
6882  SDValue RHS = N->getOperand(1);
6883  unsigned BaseOp = 0;
6884  unsigned Cond = 0;
6885  DebugLoc dl = Op.getDebugLoc();
6886
6887  switch (Op.getOpcode()) {
6888  default: llvm_unreachable("Unknown ovf instruction!");
6889  case ISD::SADDO:
6890    // A subtract of one will be selected as a INC. Note that INC doesn't
6891    // set CF, so we can't do this for UADDO.
6892    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6893      if (C->getAPIntValue() == 1) {
6894        BaseOp = X86ISD::INC;
6895        Cond = X86::COND_O;
6896        break;
6897      }
6898    BaseOp = X86ISD::ADD;
6899    Cond = X86::COND_O;
6900    break;
6901  case ISD::UADDO:
6902    BaseOp = X86ISD::ADD;
6903    Cond = X86::COND_B;
6904    break;
6905  case ISD::SSUBO:
6906    // A subtract of one will be selected as a DEC. Note that DEC doesn't
6907    // set CF, so we can't do this for USUBO.
6908    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6909      if (C->getAPIntValue() == 1) {
6910        BaseOp = X86ISD::DEC;
6911        Cond = X86::COND_O;
6912        break;
6913      }
6914    BaseOp = X86ISD::SUB;
6915    Cond = X86::COND_O;
6916    break;
6917  case ISD::USUBO:
6918    BaseOp = X86ISD::SUB;
6919    Cond = X86::COND_B;
6920    break;
6921  case ISD::SMULO:
6922    BaseOp = X86ISD::SMUL;
6923    Cond = X86::COND_O;
6924    break;
6925  case ISD::UMULO:
6926    BaseOp = X86ISD::UMUL;
6927    Cond = X86::COND_B;
6928    break;
6929  }
6930
6931  // Also sets EFLAGS.
6932  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6933  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6934
6935  SDValue SetCC =
6936    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6937                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6938
6939  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6940  return Sum;
6941}
6942
6943SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6944  EVT T = Op.getValueType();
6945  DebugLoc dl = Op.getDebugLoc();
6946  unsigned Reg = 0;
6947  unsigned size = 0;
6948  switch(T.getSimpleVT().SimpleTy) {
6949  default:
6950    assert(false && "Invalid value type!");
6951  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6952  case MVT::i16: Reg = X86::AX;  size = 2; break;
6953  case MVT::i32: Reg = X86::EAX; size = 4; break;
6954  case MVT::i64:
6955    assert(Subtarget->is64Bit() && "Node not type legal!");
6956    Reg = X86::RAX; size = 8;
6957    break;
6958  }
6959  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6960                                    Op.getOperand(2), SDValue());
6961  SDValue Ops[] = { cpIn.getValue(0),
6962                    Op.getOperand(1),
6963                    Op.getOperand(3),
6964                    DAG.getTargetConstant(size, MVT::i8),
6965                    cpIn.getValue(1) };
6966  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6967  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6968  SDValue cpOut =
6969    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6970  return cpOut;
6971}
6972
6973SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6974                                                 SelectionDAG &DAG) {
6975  assert(Subtarget->is64Bit() && "Result not type legalized?");
6976  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6977  SDValue TheChain = Op.getOperand(0);
6978  DebugLoc dl = Op.getDebugLoc();
6979  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6980  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6981  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6982                                   rax.getValue(2));
6983  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6984                            DAG.getConstant(32, MVT::i8));
6985  SDValue Ops[] = {
6986    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6987    rdx.getValue(1)
6988  };
6989  return DAG.getMergeValues(Ops, 2, dl);
6990}
6991
6992SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6993  SDNode *Node = Op.getNode();
6994  DebugLoc dl = Node->getDebugLoc();
6995  EVT T = Node->getValueType(0);
6996  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6997                              DAG.getConstant(0, T), Node->getOperand(2));
6998  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6999                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7000                       Node->getOperand(0),
7001                       Node->getOperand(1), negOp,
7002                       cast<AtomicSDNode>(Node)->getSrcValue(),
7003                       cast<AtomicSDNode>(Node)->getAlignment());
7004}
7005
7006/// LowerOperation - Provide custom lowering hooks for some operations.
7007///
7008SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
7009  switch (Op.getOpcode()) {
7010  default: llvm_unreachable("Should not custom lower this!");
7011  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7012  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7013  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7014  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7015  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7016  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7017  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7018  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7019  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7020  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7021  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7022  case ISD::SHL_PARTS:
7023  case ISD::SRA_PARTS:
7024  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7025  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7026  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7027  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7028  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7029  case ISD::FABS:               return LowerFABS(Op, DAG);
7030  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7031  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7032  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7033  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7034  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7035  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7036  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7037  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7038  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7039  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7040  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7041  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7042  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7043  case ISD::FRAME_TO_ARGS_OFFSET:
7044                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7045  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7046  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7047  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7048  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7049  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7050  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7051  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7052  case ISD::SADDO:
7053  case ISD::UADDO:
7054  case ISD::SSUBO:
7055  case ISD::USUBO:
7056  case ISD::SMULO:
7057  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7058  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7059  }
7060}
7061
7062void X86TargetLowering::
7063ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7064                        SelectionDAG &DAG, unsigned NewOp) {
7065  EVT T = Node->getValueType(0);
7066  DebugLoc dl = Node->getDebugLoc();
7067  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7068
7069  SDValue Chain = Node->getOperand(0);
7070  SDValue In1 = Node->getOperand(1);
7071  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7072                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7073  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7074                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7075  SDValue Ops[] = { Chain, In1, In2L, In2H };
7076  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7077  SDValue Result =
7078    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7079                            cast<MemSDNode>(Node)->getMemOperand());
7080  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7081  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7082  Results.push_back(Result.getValue(2));
7083}
7084
7085/// ReplaceNodeResults - Replace a node with an illegal result type
7086/// with a new node built out of custom code.
7087void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7088                                           SmallVectorImpl<SDValue>&Results,
7089                                           SelectionDAG &DAG) {
7090  DebugLoc dl = N->getDebugLoc();
7091  switch (N->getOpcode()) {
7092  default:
7093    assert(false && "Do not know how to custom type legalize this operation!");
7094    return;
7095  case ISD::FP_TO_SINT: {
7096    std::pair<SDValue,SDValue> Vals =
7097        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7098    SDValue FIST = Vals.first, StackSlot = Vals.second;
7099    if (FIST.getNode() != 0) {
7100      EVT VT = N->getValueType(0);
7101      // Return a load from the stack slot.
7102      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
7103    }
7104    return;
7105  }
7106  case ISD::READCYCLECOUNTER: {
7107    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7108    SDValue TheChain = N->getOperand(0);
7109    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7110    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7111                                     rd.getValue(1));
7112    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7113                                     eax.getValue(2));
7114    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7115    SDValue Ops[] = { eax, edx };
7116    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7117    Results.push_back(edx.getValue(1));
7118    return;
7119  }
7120  case ISD::ATOMIC_CMP_SWAP: {
7121    EVT T = N->getValueType(0);
7122    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7123    SDValue cpInL, cpInH;
7124    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7125                        DAG.getConstant(0, MVT::i32));
7126    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7127                        DAG.getConstant(1, MVT::i32));
7128    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7129    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7130                             cpInL.getValue(1));
7131    SDValue swapInL, swapInH;
7132    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7133                          DAG.getConstant(0, MVT::i32));
7134    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7135                          DAG.getConstant(1, MVT::i32));
7136    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7137                               cpInH.getValue(1));
7138    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7139                               swapInL.getValue(1));
7140    SDValue Ops[] = { swapInH.getValue(0),
7141                      N->getOperand(1),
7142                      swapInH.getValue(1) };
7143    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7144    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7145    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7146                                        MVT::i32, Result.getValue(1));
7147    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7148                                        MVT::i32, cpOutL.getValue(2));
7149    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7150    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7151    Results.push_back(cpOutH.getValue(1));
7152    return;
7153  }
7154  case ISD::ATOMIC_LOAD_ADD:
7155    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7156    return;
7157  case ISD::ATOMIC_LOAD_AND:
7158    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7159    return;
7160  case ISD::ATOMIC_LOAD_NAND:
7161    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7162    return;
7163  case ISD::ATOMIC_LOAD_OR:
7164    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7165    return;
7166  case ISD::ATOMIC_LOAD_SUB:
7167    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7168    return;
7169  case ISD::ATOMIC_LOAD_XOR:
7170    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7171    return;
7172  case ISD::ATOMIC_SWAP:
7173    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7174    return;
7175  }
7176}
7177
7178const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7179  switch (Opcode) {
7180  default: return NULL;
7181  case X86ISD::BSF:                return "X86ISD::BSF";
7182  case X86ISD::BSR:                return "X86ISD::BSR";
7183  case X86ISD::SHLD:               return "X86ISD::SHLD";
7184  case X86ISD::SHRD:               return "X86ISD::SHRD";
7185  case X86ISD::FAND:               return "X86ISD::FAND";
7186  case X86ISD::FOR:                return "X86ISD::FOR";
7187  case X86ISD::FXOR:               return "X86ISD::FXOR";
7188  case X86ISD::FSRL:               return "X86ISD::FSRL";
7189  case X86ISD::FILD:               return "X86ISD::FILD";
7190  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7191  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7192  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7193  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7194  case X86ISD::FLD:                return "X86ISD::FLD";
7195  case X86ISD::FST:                return "X86ISD::FST";
7196  case X86ISD::CALL:               return "X86ISD::CALL";
7197  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7198  case X86ISD::BT:                 return "X86ISD::BT";
7199  case X86ISD::CMP:                return "X86ISD::CMP";
7200  case X86ISD::COMI:               return "X86ISD::COMI";
7201  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7202  case X86ISD::SETCC:              return "X86ISD::SETCC";
7203  case X86ISD::CMOV:               return "X86ISD::CMOV";
7204  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7205  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7206  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7207  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7208  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7209  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7210  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7211  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7212  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7213  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7214  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7215  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7216  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7217  case X86ISD::FMAX:               return "X86ISD::FMAX";
7218  case X86ISD::FMIN:               return "X86ISD::FMIN";
7219  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7220  case X86ISD::FRCP:               return "X86ISD::FRCP";
7221  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7222  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7223  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7224  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7225  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7226  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7227  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7228  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7229  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7230  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7231  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7232  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7233  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7234  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7235  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7236  case X86ISD::VSHL:               return "X86ISD::VSHL";
7237  case X86ISD::VSRL:               return "X86ISD::VSRL";
7238  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7239  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7240  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7241  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7242  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7243  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7244  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7245  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7246  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7247  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7248  case X86ISD::ADD:                return "X86ISD::ADD";
7249  case X86ISD::SUB:                return "X86ISD::SUB";
7250  case X86ISD::SMUL:               return "X86ISD::SMUL";
7251  case X86ISD::UMUL:               return "X86ISD::UMUL";
7252  case X86ISD::INC:                return "X86ISD::INC";
7253  case X86ISD::DEC:                return "X86ISD::DEC";
7254  case X86ISD::OR:                 return "X86ISD::OR";
7255  case X86ISD::XOR:                return "X86ISD::XOR";
7256  case X86ISD::AND:                return "X86ISD::AND";
7257  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7258  case X86ISD::PTEST:              return "X86ISD::PTEST";
7259  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7260  }
7261}
7262
7263// isLegalAddressingMode - Return true if the addressing mode represented
7264// by AM is legal for this target, for a load/store of the specified type.
7265bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7266                                              const Type *Ty) const {
7267  // X86 supports extremely general addressing modes.
7268  CodeModel::Model M = getTargetMachine().getCodeModel();
7269
7270  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7271  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7272    return false;
7273
7274  if (AM.BaseGV) {
7275    unsigned GVFlags =
7276      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7277
7278    // If a reference to this global requires an extra load, we can't fold it.
7279    if (isGlobalStubReference(GVFlags))
7280      return false;
7281
7282    // If BaseGV requires a register for the PIC base, we cannot also have a
7283    // BaseReg specified.
7284    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7285      return false;
7286
7287    // If lower 4G is not available, then we must use rip-relative addressing.
7288    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7289      return false;
7290  }
7291
7292  switch (AM.Scale) {
7293  case 0:
7294  case 1:
7295  case 2:
7296  case 4:
7297  case 8:
7298    // These scales always work.
7299    break;
7300  case 3:
7301  case 5:
7302  case 9:
7303    // These scales are formed with basereg+scalereg.  Only accept if there is
7304    // no basereg yet.
7305    if (AM.HasBaseReg)
7306      return false;
7307    break;
7308  default:  // Other stuff never works.
7309    return false;
7310  }
7311
7312  return true;
7313}
7314
7315
7316bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7317  if (!Ty1->isInteger() || !Ty2->isInteger())
7318    return false;
7319  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7320  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7321  if (NumBits1 <= NumBits2)
7322    return false;
7323  return Subtarget->is64Bit() || NumBits1 < 64;
7324}
7325
7326bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7327  if (!VT1.isInteger() || !VT2.isInteger())
7328    return false;
7329  unsigned NumBits1 = VT1.getSizeInBits();
7330  unsigned NumBits2 = VT2.getSizeInBits();
7331  if (NumBits1 <= NumBits2)
7332    return false;
7333  return Subtarget->is64Bit() || NumBits1 < 64;
7334}
7335
7336bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7337  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7338  return Ty1 == Type::getInt32Ty(Ty1->getContext()) &&
7339         Ty2 == Type::getInt64Ty(Ty1->getContext()) && Subtarget->is64Bit();
7340}
7341
7342bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7343  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7344  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7345}
7346
7347bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7348  // i16 instructions are longer (0x66 prefix) and potentially slower.
7349  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7350}
7351
7352/// isShuffleMaskLegal - Targets can use this to indicate that they only
7353/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7354/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7355/// are assumed to be legal.
7356bool
7357X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7358                                      EVT VT) const {
7359  // Only do shuffles on 128-bit vector types for now.
7360  if (VT.getSizeInBits() == 64)
7361    return false;
7362
7363  // FIXME: pshufb, blends, shifts.
7364  return (VT.getVectorNumElements() == 2 ||
7365          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7366          isMOVLMask(M, VT) ||
7367          isSHUFPMask(M, VT) ||
7368          isPSHUFDMask(M, VT) ||
7369          isPSHUFHWMask(M, VT) ||
7370          isPSHUFLWMask(M, VT) ||
7371          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7372          isUNPCKLMask(M, VT) ||
7373          isUNPCKHMask(M, VT) ||
7374          isUNPCKL_v_undef_Mask(M, VT) ||
7375          isUNPCKH_v_undef_Mask(M, VT));
7376}
7377
7378bool
7379X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7380                                          EVT VT) const {
7381  unsigned NumElts = VT.getVectorNumElements();
7382  // FIXME: This collection of masks seems suspect.
7383  if (NumElts == 2)
7384    return true;
7385  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7386    return (isMOVLMask(Mask, VT)  ||
7387            isCommutedMOVLMask(Mask, VT, true) ||
7388            isSHUFPMask(Mask, VT) ||
7389            isCommutedSHUFPMask(Mask, VT));
7390  }
7391  return false;
7392}
7393
7394//===----------------------------------------------------------------------===//
7395//                           X86 Scheduler Hooks
7396//===----------------------------------------------------------------------===//
7397
7398// private utility function
7399MachineBasicBlock *
7400X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7401                                                       MachineBasicBlock *MBB,
7402                                                       unsigned regOpc,
7403                                                       unsigned immOpc,
7404                                                       unsigned LoadOpc,
7405                                                       unsigned CXchgOpc,
7406                                                       unsigned copyOpc,
7407                                                       unsigned notOpc,
7408                                                       unsigned EAXreg,
7409                                                       TargetRegisterClass *RC,
7410                                                       bool invSrc) const {
7411  // For the atomic bitwise operator, we generate
7412  //   thisMBB:
7413  //   newMBB:
7414  //     ld  t1 = [bitinstr.addr]
7415  //     op  t2 = t1, [bitinstr.val]
7416  //     mov EAX = t1
7417  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7418  //     bz  newMBB
7419  //     fallthrough -->nextMBB
7420  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7421  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7422  MachineFunction::iterator MBBIter = MBB;
7423  ++MBBIter;
7424
7425  /// First build the CFG
7426  MachineFunction *F = MBB->getParent();
7427  MachineBasicBlock *thisMBB = MBB;
7428  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7429  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7430  F->insert(MBBIter, newMBB);
7431  F->insert(MBBIter, nextMBB);
7432
7433  // Move all successors to thisMBB to nextMBB
7434  nextMBB->transferSuccessors(thisMBB);
7435
7436  // Update thisMBB to fall through to newMBB
7437  thisMBB->addSuccessor(newMBB);
7438
7439  // newMBB jumps to itself and fall through to nextMBB
7440  newMBB->addSuccessor(nextMBB);
7441  newMBB->addSuccessor(newMBB);
7442
7443  // Insert instructions into newMBB based on incoming instruction
7444  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7445         "unexpected number of operands");
7446  DebugLoc dl = bInstr->getDebugLoc();
7447  MachineOperand& destOper = bInstr->getOperand(0);
7448  MachineOperand* argOpers[2 + X86AddrNumOperands];
7449  int numArgs = bInstr->getNumOperands() - 1;
7450  for (int i=0; i < numArgs; ++i)
7451    argOpers[i] = &bInstr->getOperand(i+1);
7452
7453  // x86 address has 4 operands: base, index, scale, and displacement
7454  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7455  int valArgIndx = lastAddrIndx + 1;
7456
7457  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7458  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7459  for (int i=0; i <= lastAddrIndx; ++i)
7460    (*MIB).addOperand(*argOpers[i]);
7461
7462  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7463  if (invSrc) {
7464    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7465  }
7466  else
7467    tt = t1;
7468
7469  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7470  assert((argOpers[valArgIndx]->isReg() ||
7471          argOpers[valArgIndx]->isImm()) &&
7472         "invalid operand");
7473  if (argOpers[valArgIndx]->isReg())
7474    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7475  else
7476    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7477  MIB.addReg(tt);
7478  (*MIB).addOperand(*argOpers[valArgIndx]);
7479
7480  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7481  MIB.addReg(t1);
7482
7483  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7484  for (int i=0; i <= lastAddrIndx; ++i)
7485    (*MIB).addOperand(*argOpers[i]);
7486  MIB.addReg(t2);
7487  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7488  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7489                    bInstr->memoperands_end());
7490
7491  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7492  MIB.addReg(EAXreg);
7493
7494  // insert branch
7495  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7496
7497  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7498  return nextMBB;
7499}
7500
7501// private utility function:  64 bit atomics on 32 bit host.
7502MachineBasicBlock *
7503X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7504                                                       MachineBasicBlock *MBB,
7505                                                       unsigned regOpcL,
7506                                                       unsigned regOpcH,
7507                                                       unsigned immOpcL,
7508                                                       unsigned immOpcH,
7509                                                       bool invSrc) const {
7510  // For the atomic bitwise operator, we generate
7511  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7512  //     ld t1,t2 = [bitinstr.addr]
7513  //   newMBB:
7514  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7515  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7516  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7517  //     mov ECX, EBX <- t5, t6
7518  //     mov EAX, EDX <- t1, t2
7519  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7520  //     mov t3, t4 <- EAX, EDX
7521  //     bz  newMBB
7522  //     result in out1, out2
7523  //     fallthrough -->nextMBB
7524
7525  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7526  const unsigned LoadOpc = X86::MOV32rm;
7527  const unsigned copyOpc = X86::MOV32rr;
7528  const unsigned NotOpc = X86::NOT32r;
7529  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7530  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7531  MachineFunction::iterator MBBIter = MBB;
7532  ++MBBIter;
7533
7534  /// First build the CFG
7535  MachineFunction *F = MBB->getParent();
7536  MachineBasicBlock *thisMBB = MBB;
7537  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7538  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7539  F->insert(MBBIter, newMBB);
7540  F->insert(MBBIter, nextMBB);
7541
7542  // Move all successors to thisMBB to nextMBB
7543  nextMBB->transferSuccessors(thisMBB);
7544
7545  // Update thisMBB to fall through to newMBB
7546  thisMBB->addSuccessor(newMBB);
7547
7548  // newMBB jumps to itself and fall through to nextMBB
7549  newMBB->addSuccessor(nextMBB);
7550  newMBB->addSuccessor(newMBB);
7551
7552  DebugLoc dl = bInstr->getDebugLoc();
7553  // Insert instructions into newMBB based on incoming instruction
7554  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7555  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7556         "unexpected number of operands");
7557  MachineOperand& dest1Oper = bInstr->getOperand(0);
7558  MachineOperand& dest2Oper = bInstr->getOperand(1);
7559  MachineOperand* argOpers[2 + X86AddrNumOperands];
7560  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7561    argOpers[i] = &bInstr->getOperand(i+2);
7562
7563  // x86 address has 4 operands: base, index, scale, and displacement
7564  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7565
7566  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7567  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7568  for (int i=0; i <= lastAddrIndx; ++i)
7569    (*MIB).addOperand(*argOpers[i]);
7570  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7571  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7572  // add 4 to displacement.
7573  for (int i=0; i <= lastAddrIndx-2; ++i)
7574    (*MIB).addOperand(*argOpers[i]);
7575  MachineOperand newOp3 = *(argOpers[3]);
7576  if (newOp3.isImm())
7577    newOp3.setImm(newOp3.getImm()+4);
7578  else
7579    newOp3.setOffset(newOp3.getOffset()+4);
7580  (*MIB).addOperand(newOp3);
7581  (*MIB).addOperand(*argOpers[lastAddrIndx]);
7582
7583  // t3/4 are defined later, at the bottom of the loop
7584  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7585  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7586  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7587    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7588  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7589    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7590
7591  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7592  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7593  if (invSrc) {
7594    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7595    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7596  } else {
7597    tt1 = t1;
7598    tt2 = t2;
7599  }
7600
7601  int valArgIndx = lastAddrIndx + 1;
7602  assert((argOpers[valArgIndx]->isReg() ||
7603          argOpers[valArgIndx]->isImm()) &&
7604         "invalid operand");
7605  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7606  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7607  if (argOpers[valArgIndx]->isReg())
7608    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7609  else
7610    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7611  if (regOpcL != X86::MOV32rr)
7612    MIB.addReg(tt1);
7613  (*MIB).addOperand(*argOpers[valArgIndx]);
7614  assert(argOpers[valArgIndx + 1]->isReg() ==
7615         argOpers[valArgIndx]->isReg());
7616  assert(argOpers[valArgIndx + 1]->isImm() ==
7617         argOpers[valArgIndx]->isImm());
7618  if (argOpers[valArgIndx + 1]->isReg())
7619    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7620  else
7621    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7622  if (regOpcH != X86::MOV32rr)
7623    MIB.addReg(tt2);
7624  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7625
7626  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7627  MIB.addReg(t1);
7628  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7629  MIB.addReg(t2);
7630
7631  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7632  MIB.addReg(t5);
7633  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7634  MIB.addReg(t6);
7635
7636  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7637  for (int i=0; i <= lastAddrIndx; ++i)
7638    (*MIB).addOperand(*argOpers[i]);
7639
7640  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7641  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7642                    bInstr->memoperands_end());
7643
7644  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7645  MIB.addReg(X86::EAX);
7646  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7647  MIB.addReg(X86::EDX);
7648
7649  // insert branch
7650  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7651
7652  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7653  return nextMBB;
7654}
7655
7656// private utility function
7657MachineBasicBlock *
7658X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7659                                                      MachineBasicBlock *MBB,
7660                                                      unsigned cmovOpc) const {
7661  // For the atomic min/max operator, we generate
7662  //   thisMBB:
7663  //   newMBB:
7664  //     ld t1 = [min/max.addr]
7665  //     mov t2 = [min/max.val]
7666  //     cmp  t1, t2
7667  //     cmov[cond] t2 = t1
7668  //     mov EAX = t1
7669  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7670  //     bz   newMBB
7671  //     fallthrough -->nextMBB
7672  //
7673  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7674  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7675  MachineFunction::iterator MBBIter = MBB;
7676  ++MBBIter;
7677
7678  /// First build the CFG
7679  MachineFunction *F = MBB->getParent();
7680  MachineBasicBlock *thisMBB = MBB;
7681  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7682  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7683  F->insert(MBBIter, newMBB);
7684  F->insert(MBBIter, nextMBB);
7685
7686  // Move all successors of thisMBB to nextMBB
7687  nextMBB->transferSuccessors(thisMBB);
7688
7689  // Update thisMBB to fall through to newMBB
7690  thisMBB->addSuccessor(newMBB);
7691
7692  // newMBB jumps to newMBB and fall through to nextMBB
7693  newMBB->addSuccessor(nextMBB);
7694  newMBB->addSuccessor(newMBB);
7695
7696  DebugLoc dl = mInstr->getDebugLoc();
7697  // Insert instructions into newMBB based on incoming instruction
7698  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7699         "unexpected number of operands");
7700  MachineOperand& destOper = mInstr->getOperand(0);
7701  MachineOperand* argOpers[2 + X86AddrNumOperands];
7702  int numArgs = mInstr->getNumOperands() - 1;
7703  for (int i=0; i < numArgs; ++i)
7704    argOpers[i] = &mInstr->getOperand(i+1);
7705
7706  // x86 address has 4 operands: base, index, scale, and displacement
7707  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7708  int valArgIndx = lastAddrIndx + 1;
7709
7710  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7711  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7712  for (int i=0; i <= lastAddrIndx; ++i)
7713    (*MIB).addOperand(*argOpers[i]);
7714
7715  // We only support register and immediate values
7716  assert((argOpers[valArgIndx]->isReg() ||
7717          argOpers[valArgIndx]->isImm()) &&
7718         "invalid operand");
7719
7720  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7721  if (argOpers[valArgIndx]->isReg())
7722    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7723  else
7724    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7725  (*MIB).addOperand(*argOpers[valArgIndx]);
7726
7727  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7728  MIB.addReg(t1);
7729
7730  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7731  MIB.addReg(t1);
7732  MIB.addReg(t2);
7733
7734  // Generate movc
7735  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7736  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7737  MIB.addReg(t2);
7738  MIB.addReg(t1);
7739
7740  // Cmp and exchange if none has modified the memory location
7741  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7742  for (int i=0; i <= lastAddrIndx; ++i)
7743    (*MIB).addOperand(*argOpers[i]);
7744  MIB.addReg(t3);
7745  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7746  (*MIB).setMemRefs(mInstr->memoperands_begin(),
7747                    mInstr->memoperands_end());
7748
7749  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7750  MIB.addReg(X86::EAX);
7751
7752  // insert branch
7753  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7754
7755  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7756  return nextMBB;
7757}
7758
7759// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
7760// all of this code can be replaced with that in the .td file.
7761MachineBasicBlock *
7762X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
7763                            unsigned numArgs, bool memArg) const {
7764
7765  MachineFunction *F = BB->getParent();
7766  DebugLoc dl = MI->getDebugLoc();
7767  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7768
7769  unsigned Opc;
7770  if (memArg)
7771    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
7772  else
7773    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
7774
7775  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
7776
7777  for (unsigned i = 0; i < numArgs; ++i) {
7778    MachineOperand &Op = MI->getOperand(i+1);
7779
7780    if (!(Op.isReg() && Op.isImplicit()))
7781      MIB.addOperand(Op);
7782  }
7783
7784  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
7785    .addReg(X86::XMM0);
7786
7787  F->DeleteMachineInstr(MI);
7788
7789  return BB;
7790}
7791
7792MachineBasicBlock *
7793X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
7794                                                 MachineInstr *MI,
7795                                                 MachineBasicBlock *MBB) const {
7796  // Emit code to save XMM registers to the stack. The ABI says that the
7797  // number of registers to save is given in %al, so it's theoretically
7798  // possible to do an indirect jump trick to avoid saving all of them,
7799  // however this code takes a simpler approach and just executes all
7800  // of the stores if %al is non-zero. It's less code, and it's probably
7801  // easier on the hardware branch predictor, and stores aren't all that
7802  // expensive anyway.
7803
7804  // Create the new basic blocks. One block contains all the XMM stores,
7805  // and one block is the final destination regardless of whether any
7806  // stores were performed.
7807  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7808  MachineFunction *F = MBB->getParent();
7809  MachineFunction::iterator MBBIter = MBB;
7810  ++MBBIter;
7811  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
7812  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
7813  F->insert(MBBIter, XMMSaveMBB);
7814  F->insert(MBBIter, EndMBB);
7815
7816  // Set up the CFG.
7817  // Move any original successors of MBB to the end block.
7818  EndMBB->transferSuccessors(MBB);
7819  // The original block will now fall through to the XMM save block.
7820  MBB->addSuccessor(XMMSaveMBB);
7821  // The XMMSaveMBB will fall through to the end block.
7822  XMMSaveMBB->addSuccessor(EndMBB);
7823
7824  // Now add the instructions.
7825  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7826  DebugLoc DL = MI->getDebugLoc();
7827
7828  unsigned CountReg = MI->getOperand(0).getReg();
7829  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
7830  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
7831
7832  if (!Subtarget->isTargetWin64()) {
7833    // If %al is 0, branch around the XMM save block.
7834    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
7835    BuildMI(MBB, DL, TII->get(X86::JE)).addMBB(EndMBB);
7836    MBB->addSuccessor(EndMBB);
7837  }
7838
7839  // In the XMM save block, save all the XMM argument registers.
7840  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
7841    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
7842    MachineMemOperand *MMO =
7843      F->getMachineMemOperand(
7844        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
7845        MachineMemOperand::MOStore, Offset,
7846        /*Size=*/16, /*Align=*/16);
7847    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
7848      .addFrameIndex(RegSaveFrameIndex)
7849      .addImm(/*Scale=*/1)
7850      .addReg(/*IndexReg=*/0)
7851      .addImm(/*Disp=*/Offset)
7852      .addReg(/*Segment=*/0)
7853      .addReg(MI->getOperand(i).getReg())
7854      .addMemOperand(MMO);
7855  }
7856
7857  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7858
7859  return EndMBB;
7860}
7861
7862MachineBasicBlock *
7863X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
7864                                     MachineBasicBlock *BB,
7865                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
7866  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7867  DebugLoc DL = MI->getDebugLoc();
7868
7869  // To "insert" a SELECT_CC instruction, we actually have to insert the
7870  // diamond control-flow pattern.  The incoming instruction knows the
7871  // destination vreg to set, the condition code register to branch on, the
7872  // true/false values to select between, and a branch opcode to use.
7873  const BasicBlock *LLVM_BB = BB->getBasicBlock();
7874  MachineFunction::iterator It = BB;
7875  ++It;
7876
7877  //  thisMBB:
7878  //  ...
7879  //   TrueVal = ...
7880  //   cmpTY ccX, r1, r2
7881  //   bCC copy1MBB
7882  //   fallthrough --> copy0MBB
7883  MachineBasicBlock *thisMBB = BB;
7884  MachineFunction *F = BB->getParent();
7885  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7886  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7887  unsigned Opc =
7888    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7889  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
7890  F->insert(It, copy0MBB);
7891  F->insert(It, sinkMBB);
7892  // Update machine-CFG edges by first adding all successors of the current
7893  // block to the new block which will contain the Phi node for the select.
7894  // Also inform sdisel of the edge changes.
7895  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
7896         E = BB->succ_end(); I != E; ++I) {
7897    EM->insert(std::make_pair(*I, sinkMBB));
7898    sinkMBB->addSuccessor(*I);
7899  }
7900  // Next, remove all successors of the current block, and add the true
7901  // and fallthrough blocks as its successors.
7902  while (!BB->succ_empty())
7903    BB->removeSuccessor(BB->succ_begin());
7904  // Add the true and fallthrough blocks as its successors.
7905  BB->addSuccessor(copy0MBB);
7906  BB->addSuccessor(sinkMBB);
7907
7908  //  copy0MBB:
7909  //   %FalseValue = ...
7910  //   # fallthrough to sinkMBB
7911  BB = copy0MBB;
7912
7913  // Update machine-CFG edges
7914  BB->addSuccessor(sinkMBB);
7915
7916  //  sinkMBB:
7917  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7918  //  ...
7919  BB = sinkMBB;
7920  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
7921    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7922    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7923
7924  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7925  return BB;
7926}
7927
7928
7929MachineBasicBlock *
7930X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7931                                               MachineBasicBlock *BB,
7932                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
7933  switch (MI->getOpcode()) {
7934  default: assert(false && "Unexpected instr type to insert");
7935  case X86::CMOV_GR8:
7936  case X86::CMOV_V1I64:
7937  case X86::CMOV_FR32:
7938  case X86::CMOV_FR64:
7939  case X86::CMOV_V4F32:
7940  case X86::CMOV_V2F64:
7941  case X86::CMOV_V2I64:
7942    return EmitLoweredSelect(MI, BB, EM);
7943
7944  case X86::FP32_TO_INT16_IN_MEM:
7945  case X86::FP32_TO_INT32_IN_MEM:
7946  case X86::FP32_TO_INT64_IN_MEM:
7947  case X86::FP64_TO_INT16_IN_MEM:
7948  case X86::FP64_TO_INT32_IN_MEM:
7949  case X86::FP64_TO_INT64_IN_MEM:
7950  case X86::FP80_TO_INT16_IN_MEM:
7951  case X86::FP80_TO_INT32_IN_MEM:
7952  case X86::FP80_TO_INT64_IN_MEM: {
7953    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7954    DebugLoc DL = MI->getDebugLoc();
7955
7956    // Change the floating point control register to use "round towards zero"
7957    // mode when truncating to an integer value.
7958    MachineFunction *F = BB->getParent();
7959    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7960    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7961
7962    // Load the old value of the high byte of the control word...
7963    unsigned OldCW =
7964      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7965    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
7966                      CWFrameIdx);
7967
7968    // Set the high part to be round to zero...
7969    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
7970      .addImm(0xC7F);
7971
7972    // Reload the modified control word now...
7973    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
7974
7975    // Restore the memory image of control word to original value
7976    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
7977      .addReg(OldCW);
7978
7979    // Get the X86 opcode to use.
7980    unsigned Opc;
7981    switch (MI->getOpcode()) {
7982    default: llvm_unreachable("illegal opcode!");
7983    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7984    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7985    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7986    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7987    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7988    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7989    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7990    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7991    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7992    }
7993
7994    X86AddressMode AM;
7995    MachineOperand &Op = MI->getOperand(0);
7996    if (Op.isReg()) {
7997      AM.BaseType = X86AddressMode::RegBase;
7998      AM.Base.Reg = Op.getReg();
7999    } else {
8000      AM.BaseType = X86AddressMode::FrameIndexBase;
8001      AM.Base.FrameIndex = Op.getIndex();
8002    }
8003    Op = MI->getOperand(1);
8004    if (Op.isImm())
8005      AM.Scale = Op.getImm();
8006    Op = MI->getOperand(2);
8007    if (Op.isImm())
8008      AM.IndexReg = Op.getImm();
8009    Op = MI->getOperand(3);
8010    if (Op.isGlobal()) {
8011      AM.GV = Op.getGlobal();
8012    } else {
8013      AM.Disp = Op.getImm();
8014    }
8015    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8016                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8017
8018    // Reload the original control word now.
8019    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8020
8021    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8022    return BB;
8023  }
8024    // String/text processing lowering.
8025  case X86::PCMPISTRM128REG:
8026    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8027  case X86::PCMPISTRM128MEM:
8028    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8029  case X86::PCMPESTRM128REG:
8030    return EmitPCMP(MI, BB, 5, false /* in mem */);
8031  case X86::PCMPESTRM128MEM:
8032    return EmitPCMP(MI, BB, 5, true /* in mem */);
8033
8034    // Atomic Lowering.
8035  case X86::ATOMAND32:
8036    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8037                                               X86::AND32ri, X86::MOV32rm,
8038                                               X86::LCMPXCHG32, X86::MOV32rr,
8039                                               X86::NOT32r, X86::EAX,
8040                                               X86::GR32RegisterClass);
8041  case X86::ATOMOR32:
8042    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8043                                               X86::OR32ri, X86::MOV32rm,
8044                                               X86::LCMPXCHG32, X86::MOV32rr,
8045                                               X86::NOT32r, X86::EAX,
8046                                               X86::GR32RegisterClass);
8047  case X86::ATOMXOR32:
8048    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8049                                               X86::XOR32ri, X86::MOV32rm,
8050                                               X86::LCMPXCHG32, X86::MOV32rr,
8051                                               X86::NOT32r, X86::EAX,
8052                                               X86::GR32RegisterClass);
8053  case X86::ATOMNAND32:
8054    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8055                                               X86::AND32ri, X86::MOV32rm,
8056                                               X86::LCMPXCHG32, X86::MOV32rr,
8057                                               X86::NOT32r, X86::EAX,
8058                                               X86::GR32RegisterClass, true);
8059  case X86::ATOMMIN32:
8060    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8061  case X86::ATOMMAX32:
8062    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8063  case X86::ATOMUMIN32:
8064    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8065  case X86::ATOMUMAX32:
8066    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8067
8068  case X86::ATOMAND16:
8069    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8070                                               X86::AND16ri, X86::MOV16rm,
8071                                               X86::LCMPXCHG16, X86::MOV16rr,
8072                                               X86::NOT16r, X86::AX,
8073                                               X86::GR16RegisterClass);
8074  case X86::ATOMOR16:
8075    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8076                                               X86::OR16ri, X86::MOV16rm,
8077                                               X86::LCMPXCHG16, X86::MOV16rr,
8078                                               X86::NOT16r, X86::AX,
8079                                               X86::GR16RegisterClass);
8080  case X86::ATOMXOR16:
8081    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8082                                               X86::XOR16ri, X86::MOV16rm,
8083                                               X86::LCMPXCHG16, X86::MOV16rr,
8084                                               X86::NOT16r, X86::AX,
8085                                               X86::GR16RegisterClass);
8086  case X86::ATOMNAND16:
8087    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8088                                               X86::AND16ri, X86::MOV16rm,
8089                                               X86::LCMPXCHG16, X86::MOV16rr,
8090                                               X86::NOT16r, X86::AX,
8091                                               X86::GR16RegisterClass, true);
8092  case X86::ATOMMIN16:
8093    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8094  case X86::ATOMMAX16:
8095    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8096  case X86::ATOMUMIN16:
8097    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8098  case X86::ATOMUMAX16:
8099    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8100
8101  case X86::ATOMAND8:
8102    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8103                                               X86::AND8ri, X86::MOV8rm,
8104                                               X86::LCMPXCHG8, X86::MOV8rr,
8105                                               X86::NOT8r, X86::AL,
8106                                               X86::GR8RegisterClass);
8107  case X86::ATOMOR8:
8108    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8109                                               X86::OR8ri, X86::MOV8rm,
8110                                               X86::LCMPXCHG8, X86::MOV8rr,
8111                                               X86::NOT8r, X86::AL,
8112                                               X86::GR8RegisterClass);
8113  case X86::ATOMXOR8:
8114    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8115                                               X86::XOR8ri, X86::MOV8rm,
8116                                               X86::LCMPXCHG8, X86::MOV8rr,
8117                                               X86::NOT8r, X86::AL,
8118                                               X86::GR8RegisterClass);
8119  case X86::ATOMNAND8:
8120    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8121                                               X86::AND8ri, X86::MOV8rm,
8122                                               X86::LCMPXCHG8, X86::MOV8rr,
8123                                               X86::NOT8r, X86::AL,
8124                                               X86::GR8RegisterClass, true);
8125  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8126  // This group is for 64-bit host.
8127  case X86::ATOMAND64:
8128    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8129                                               X86::AND64ri32, X86::MOV64rm,
8130                                               X86::LCMPXCHG64, X86::MOV64rr,
8131                                               X86::NOT64r, X86::RAX,
8132                                               X86::GR64RegisterClass);
8133  case X86::ATOMOR64:
8134    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8135                                               X86::OR64ri32, X86::MOV64rm,
8136                                               X86::LCMPXCHG64, X86::MOV64rr,
8137                                               X86::NOT64r, X86::RAX,
8138                                               X86::GR64RegisterClass);
8139  case X86::ATOMXOR64:
8140    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8141                                               X86::XOR64ri32, X86::MOV64rm,
8142                                               X86::LCMPXCHG64, X86::MOV64rr,
8143                                               X86::NOT64r, X86::RAX,
8144                                               X86::GR64RegisterClass);
8145  case X86::ATOMNAND64:
8146    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8147                                               X86::AND64ri32, X86::MOV64rm,
8148                                               X86::LCMPXCHG64, X86::MOV64rr,
8149                                               X86::NOT64r, X86::RAX,
8150                                               X86::GR64RegisterClass, true);
8151  case X86::ATOMMIN64:
8152    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8153  case X86::ATOMMAX64:
8154    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8155  case X86::ATOMUMIN64:
8156    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8157  case X86::ATOMUMAX64:
8158    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8159
8160  // This group does 64-bit operations on a 32-bit host.
8161  case X86::ATOMAND6432:
8162    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8163                                               X86::AND32rr, X86::AND32rr,
8164                                               X86::AND32ri, X86::AND32ri,
8165                                               false);
8166  case X86::ATOMOR6432:
8167    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8168                                               X86::OR32rr, X86::OR32rr,
8169                                               X86::OR32ri, X86::OR32ri,
8170                                               false);
8171  case X86::ATOMXOR6432:
8172    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8173                                               X86::XOR32rr, X86::XOR32rr,
8174                                               X86::XOR32ri, X86::XOR32ri,
8175                                               false);
8176  case X86::ATOMNAND6432:
8177    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8178                                               X86::AND32rr, X86::AND32rr,
8179                                               X86::AND32ri, X86::AND32ri,
8180                                               true);
8181  case X86::ATOMADD6432:
8182    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8183                                               X86::ADD32rr, X86::ADC32rr,
8184                                               X86::ADD32ri, X86::ADC32ri,
8185                                               false);
8186  case X86::ATOMSUB6432:
8187    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8188                                               X86::SUB32rr, X86::SBB32rr,
8189                                               X86::SUB32ri, X86::SBB32ri,
8190                                               false);
8191  case X86::ATOMSWAP6432:
8192    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8193                                               X86::MOV32rr, X86::MOV32rr,
8194                                               X86::MOV32ri, X86::MOV32ri,
8195                                               false);
8196  case X86::VASTART_SAVE_XMM_REGS:
8197    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8198  }
8199}
8200
8201//===----------------------------------------------------------------------===//
8202//                           X86 Optimization Hooks
8203//===----------------------------------------------------------------------===//
8204
8205void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8206                                                       const APInt &Mask,
8207                                                       APInt &KnownZero,
8208                                                       APInt &KnownOne,
8209                                                       const SelectionDAG &DAG,
8210                                                       unsigned Depth) const {
8211  unsigned Opc = Op.getOpcode();
8212  assert((Opc >= ISD::BUILTIN_OP_END ||
8213          Opc == ISD::INTRINSIC_WO_CHAIN ||
8214          Opc == ISD::INTRINSIC_W_CHAIN ||
8215          Opc == ISD::INTRINSIC_VOID) &&
8216         "Should use MaskedValueIsZero if you don't know whether Op"
8217         " is a target node!");
8218
8219  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8220  switch (Opc) {
8221  default: break;
8222  case X86ISD::ADD:
8223  case X86ISD::SUB:
8224  case X86ISD::SMUL:
8225  case X86ISD::UMUL:
8226  case X86ISD::INC:
8227  case X86ISD::DEC:
8228  case X86ISD::OR:
8229  case X86ISD::XOR:
8230  case X86ISD::AND:
8231    // These nodes' second result is a boolean.
8232    if (Op.getResNo() == 0)
8233      break;
8234    // Fallthrough
8235  case X86ISD::SETCC:
8236    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8237                                       Mask.getBitWidth() - 1);
8238    break;
8239  }
8240}
8241
8242/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8243/// node is a GlobalAddress + offset.
8244bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8245                                       GlobalValue* &GA, int64_t &Offset) const{
8246  if (N->getOpcode() == X86ISD::Wrapper) {
8247    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8248      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8249      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8250      return true;
8251    }
8252  }
8253  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8254}
8255
8256static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
8257                               const TargetLowering &TLI) {
8258  GlobalValue *GV;
8259  int64_t Offset = 0;
8260  if (TLI.isGAPlusOffset(Base, GV, Offset))
8261    return (GV->getAlignment() >= N && (Offset % N) == 0);
8262  // DAG combine handles the stack object case.
8263  return false;
8264}
8265
8266static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
8267                                     EVT EltVT, LoadSDNode *&LDBase,
8268                                     unsigned &LastLoadedElt,
8269                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8270                                     const TargetLowering &TLI) {
8271  LDBase = NULL;
8272  LastLoadedElt = -1U;
8273  for (unsigned i = 0; i < NumElems; ++i) {
8274    if (N->getMaskElt(i) < 0) {
8275      if (!LDBase)
8276        return false;
8277      continue;
8278    }
8279
8280    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8281    if (!Elt.getNode() ||
8282        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8283      return false;
8284    if (!LDBase) {
8285      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
8286        return false;
8287      LDBase = cast<LoadSDNode>(Elt.getNode());
8288      LastLoadedElt = i;
8289      continue;
8290    }
8291    if (Elt.getOpcode() == ISD::UNDEF)
8292      continue;
8293
8294    LoadSDNode *LD = cast<LoadSDNode>(Elt);
8295    if (!TLI.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i, MFI))
8296      return false;
8297    LastLoadedElt = i;
8298  }
8299  return true;
8300}
8301
8302/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8303/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8304/// if the load addresses are consecutive, non-overlapping, and in the right
8305/// order.  In the case of v2i64, it will see if it can rewrite the
8306/// shuffle to be an appropriate build vector so it can take advantage of
8307// performBuildVectorCombine.
8308static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8309                                     const TargetLowering &TLI) {
8310  DebugLoc dl = N->getDebugLoc();
8311  EVT VT = N->getValueType(0);
8312  EVT EltVT = VT.getVectorElementType();
8313  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8314  unsigned NumElems = VT.getVectorNumElements();
8315
8316  if (VT.getSizeInBits() != 128)
8317    return SDValue();
8318
8319  // Try to combine a vector_shuffle into a 128-bit load.
8320  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8321  LoadSDNode *LD = NULL;
8322  unsigned LastLoadedElt;
8323  if (!EltsFromConsecutiveLoads(SVN, NumElems, EltVT, LD, LastLoadedElt, DAG,
8324                                MFI, TLI))
8325    return SDValue();
8326
8327  if (LastLoadedElt == NumElems - 1) {
8328    if (isBaseAlignmentOfN(16, LD->getBasePtr().getNode(), TLI))
8329      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8330                         LD->getSrcValue(), LD->getSrcValueOffset(),
8331                         LD->isVolatile());
8332    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8333                       LD->getSrcValue(), LD->getSrcValueOffset(),
8334                       LD->isVolatile(), LD->getAlignment());
8335  } else if (NumElems == 4 && LastLoadedElt == 1) {
8336    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8337    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8338    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8339    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8340  }
8341  return SDValue();
8342}
8343
8344/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8345static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8346                                    const X86Subtarget *Subtarget) {
8347  DebugLoc DL = N->getDebugLoc();
8348  SDValue Cond = N->getOperand(0);
8349  // Get the LHS/RHS of the select.
8350  SDValue LHS = N->getOperand(1);
8351  SDValue RHS = N->getOperand(2);
8352
8353  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
8354  // instructions have the peculiarity that if either operand is a NaN,
8355  // they chose what we call the RHS operand (and as such are not symmetric).
8356  // It happens that this matches the semantics of the common C idiom
8357  // x<y?x:y and related forms, so we can recognize these cases.
8358  if (Subtarget->hasSSE2() &&
8359      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8360      Cond.getOpcode() == ISD::SETCC) {
8361    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8362
8363    unsigned Opcode = 0;
8364    // Check for x CC y ? x : y.
8365    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8366      switch (CC) {
8367      default: break;
8368      case ISD::SETULT:
8369        // This can be a min if we can prove that at least one of the operands
8370        // is not a nan.
8371        if (!FiniteOnlyFPMath()) {
8372          if (DAG.isKnownNeverNaN(RHS)) {
8373            // Put the potential NaN in the RHS so that SSE will preserve it.
8374            std::swap(LHS, RHS);
8375          } else if (!DAG.isKnownNeverNaN(LHS))
8376            break;
8377        }
8378        Opcode = X86ISD::FMIN;
8379        break;
8380      case ISD::SETOLE:
8381        // This can be a min if we can prove that at least one of the operands
8382        // is not a nan.
8383        if (!FiniteOnlyFPMath()) {
8384          if (DAG.isKnownNeverNaN(LHS)) {
8385            // Put the potential NaN in the RHS so that SSE will preserve it.
8386            std::swap(LHS, RHS);
8387          } else if (!DAG.isKnownNeverNaN(RHS))
8388            break;
8389        }
8390        Opcode = X86ISD::FMIN;
8391        break;
8392      case ISD::SETULE:
8393        // This can be a min, but if either operand is a NaN we need it to
8394        // preserve the original LHS.
8395        std::swap(LHS, RHS);
8396      case ISD::SETOLT:
8397      case ISD::SETLT:
8398      case ISD::SETLE:
8399        Opcode = X86ISD::FMIN;
8400        break;
8401
8402      case ISD::SETOGE:
8403        // This can be a max if we can prove that at least one of the operands
8404        // is not a nan.
8405        if (!FiniteOnlyFPMath()) {
8406          if (DAG.isKnownNeverNaN(LHS)) {
8407            // Put the potential NaN in the RHS so that SSE will preserve it.
8408            std::swap(LHS, RHS);
8409          } else if (!DAG.isKnownNeverNaN(RHS))
8410            break;
8411        }
8412        Opcode = X86ISD::FMAX;
8413        break;
8414      case ISD::SETUGT:
8415        // This can be a max if we can prove that at least one of the operands
8416        // is not a nan.
8417        if (!FiniteOnlyFPMath()) {
8418          if (DAG.isKnownNeverNaN(RHS)) {
8419            // Put the potential NaN in the RHS so that SSE will preserve it.
8420            std::swap(LHS, RHS);
8421          } else if (!DAG.isKnownNeverNaN(LHS))
8422            break;
8423        }
8424        Opcode = X86ISD::FMAX;
8425        break;
8426      case ISD::SETUGE:
8427        // This can be a max, but if either operand is a NaN we need it to
8428        // preserve the original LHS.
8429        std::swap(LHS, RHS);
8430      case ISD::SETOGT:
8431      case ISD::SETGT:
8432      case ISD::SETGE:
8433        Opcode = X86ISD::FMAX;
8434        break;
8435      }
8436    // Check for x CC y ? y : x -- a min/max with reversed arms.
8437    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8438      switch (CC) {
8439      default: break;
8440      case ISD::SETOGE:
8441        // This can be a min if we can prove that at least one of the operands
8442        // is not a nan.
8443        if (!FiniteOnlyFPMath()) {
8444          if (DAG.isKnownNeverNaN(RHS)) {
8445            // Put the potential NaN in the RHS so that SSE will preserve it.
8446            std::swap(LHS, RHS);
8447          } else if (!DAG.isKnownNeverNaN(LHS))
8448            break;
8449        }
8450        Opcode = X86ISD::FMIN;
8451        break;
8452      case ISD::SETUGT:
8453        // This can be a min if we can prove that at least one of the operands
8454        // is not a nan.
8455        if (!FiniteOnlyFPMath()) {
8456          if (DAG.isKnownNeverNaN(LHS)) {
8457            // Put the potential NaN in the RHS so that SSE will preserve it.
8458            std::swap(LHS, RHS);
8459          } else if (!DAG.isKnownNeverNaN(RHS))
8460            break;
8461        }
8462        Opcode = X86ISD::FMIN;
8463        break;
8464      case ISD::SETUGE:
8465        // This can be a min, but if either operand is a NaN we need it to
8466        // preserve the original LHS.
8467        std::swap(LHS, RHS);
8468      case ISD::SETOGT:
8469      case ISD::SETGT:
8470      case ISD::SETGE:
8471        Opcode = X86ISD::FMIN;
8472        break;
8473
8474      case ISD::SETULT:
8475        // This can be a max if we can prove that at least one of the operands
8476        // is not a nan.
8477        if (!FiniteOnlyFPMath()) {
8478          if (DAG.isKnownNeverNaN(LHS)) {
8479            // Put the potential NaN in the RHS so that SSE will preserve it.
8480            std::swap(LHS, RHS);
8481          } else if (!DAG.isKnownNeverNaN(RHS))
8482            break;
8483        }
8484        Opcode = X86ISD::FMAX;
8485        break;
8486      case ISD::SETOLE:
8487        // This can be a max if we can prove that at least one of the operands
8488        // is not a nan.
8489        if (!FiniteOnlyFPMath()) {
8490          if (DAG.isKnownNeverNaN(RHS)) {
8491            // Put the potential NaN in the RHS so that SSE will preserve it.
8492            std::swap(LHS, RHS);
8493          } else if (!DAG.isKnownNeverNaN(LHS))
8494            break;
8495        }
8496        Opcode = X86ISD::FMAX;
8497        break;
8498      case ISD::SETULE:
8499        // This can be a max, but if either operand is a NaN we need it to
8500        // preserve the original LHS.
8501        std::swap(LHS, RHS);
8502      case ISD::SETOLT:
8503      case ISD::SETLT:
8504      case ISD::SETLE:
8505        Opcode = X86ISD::FMAX;
8506        break;
8507      }
8508    }
8509
8510    if (Opcode)
8511      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8512  }
8513
8514  // If this is a select between two integer constants, try to do some
8515  // optimizations.
8516  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8517    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8518      // Don't do this for crazy integer types.
8519      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8520        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8521        // so that TrueC (the true value) is larger than FalseC.
8522        bool NeedsCondInvert = false;
8523
8524        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8525            // Efficiently invertible.
8526            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
8527             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
8528              isa<ConstantSDNode>(Cond.getOperand(1))))) {
8529          NeedsCondInvert = true;
8530          std::swap(TrueC, FalseC);
8531        }
8532
8533        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
8534        if (FalseC->getAPIntValue() == 0 &&
8535            TrueC->getAPIntValue().isPowerOf2()) {
8536          if (NeedsCondInvert) // Invert the condition if needed.
8537            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8538                               DAG.getConstant(1, Cond.getValueType()));
8539
8540          // Zero extend the condition if needed.
8541          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8542
8543          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8544          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8545                             DAG.getConstant(ShAmt, MVT::i8));
8546        }
8547
8548        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8549        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8550          if (NeedsCondInvert) // Invert the condition if needed.
8551            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8552                               DAG.getConstant(1, Cond.getValueType()));
8553
8554          // Zero extend the condition if needed.
8555          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8556                             FalseC->getValueType(0), Cond);
8557          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8558                             SDValue(FalseC, 0));
8559        }
8560
8561        // Optimize cases that will turn into an LEA instruction.  This requires
8562        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8563        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8564          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8565          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8566
8567          bool isFastMultiplier = false;
8568          if (Diff < 10) {
8569            switch ((unsigned char)Diff) {
8570              default: break;
8571              case 1:  // result = add base, cond
8572              case 2:  // result = lea base(    , cond*2)
8573              case 3:  // result = lea base(cond, cond*2)
8574              case 4:  // result = lea base(    , cond*4)
8575              case 5:  // result = lea base(cond, cond*4)
8576              case 8:  // result = lea base(    , cond*8)
8577              case 9:  // result = lea base(cond, cond*8)
8578                isFastMultiplier = true;
8579                break;
8580            }
8581          }
8582
8583          if (isFastMultiplier) {
8584            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8585            if (NeedsCondInvert) // Invert the condition if needed.
8586              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8587                                 DAG.getConstant(1, Cond.getValueType()));
8588
8589            // Zero extend the condition if needed.
8590            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8591                               Cond);
8592            // Scale the condition by the difference.
8593            if (Diff != 1)
8594              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8595                                 DAG.getConstant(Diff, Cond.getValueType()));
8596
8597            // Add the base if non-zero.
8598            if (FalseC->getAPIntValue() != 0)
8599              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8600                                 SDValue(FalseC, 0));
8601            return Cond;
8602          }
8603        }
8604      }
8605  }
8606
8607  return SDValue();
8608}
8609
8610/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8611static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
8612                                  TargetLowering::DAGCombinerInfo &DCI) {
8613  DebugLoc DL = N->getDebugLoc();
8614
8615  // If the flag operand isn't dead, don't touch this CMOV.
8616  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
8617    return SDValue();
8618
8619  // If this is a select between two integer constants, try to do some
8620  // optimizations.  Note that the operands are ordered the opposite of SELECT
8621  // operands.
8622  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
8623    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
8624      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8625      // larger than FalseC (the false value).
8626      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
8627
8628      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
8629        CC = X86::GetOppositeBranchCondition(CC);
8630        std::swap(TrueC, FalseC);
8631      }
8632
8633      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
8634      // This is efficient for any integer data type (including i8/i16) and
8635      // shift amount.
8636      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
8637        SDValue Cond = N->getOperand(3);
8638        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8639                           DAG.getConstant(CC, MVT::i8), Cond);
8640
8641        // Zero extend the condition if needed.
8642        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
8643
8644        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8645        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
8646                           DAG.getConstant(ShAmt, MVT::i8));
8647        if (N->getNumValues() == 2)  // Dead flag value?
8648          return DCI.CombineTo(N, Cond, SDValue());
8649        return Cond;
8650      }
8651
8652      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
8653      // for any integer data type, including i8/i16.
8654      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8655        SDValue Cond = N->getOperand(3);
8656        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8657                           DAG.getConstant(CC, MVT::i8), Cond);
8658
8659        // Zero extend the condition if needed.
8660        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8661                           FalseC->getValueType(0), Cond);
8662        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8663                           SDValue(FalseC, 0));
8664
8665        if (N->getNumValues() == 2)  // Dead flag value?
8666          return DCI.CombineTo(N, Cond, SDValue());
8667        return Cond;
8668      }
8669
8670      // Optimize cases that will turn into an LEA instruction.  This requires
8671      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8672      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8673        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8674        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8675
8676        bool isFastMultiplier = false;
8677        if (Diff < 10) {
8678          switch ((unsigned char)Diff) {
8679          default: break;
8680          case 1:  // result = add base, cond
8681          case 2:  // result = lea base(    , cond*2)
8682          case 3:  // result = lea base(cond, cond*2)
8683          case 4:  // result = lea base(    , cond*4)
8684          case 5:  // result = lea base(cond, cond*4)
8685          case 8:  // result = lea base(    , cond*8)
8686          case 9:  // result = lea base(cond, cond*8)
8687            isFastMultiplier = true;
8688            break;
8689          }
8690        }
8691
8692        if (isFastMultiplier) {
8693          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8694          SDValue Cond = N->getOperand(3);
8695          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8696                             DAG.getConstant(CC, MVT::i8), Cond);
8697          // Zero extend the condition if needed.
8698          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8699                             Cond);
8700          // Scale the condition by the difference.
8701          if (Diff != 1)
8702            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8703                               DAG.getConstant(Diff, Cond.getValueType()));
8704
8705          // Add the base if non-zero.
8706          if (FalseC->getAPIntValue() != 0)
8707            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8708                               SDValue(FalseC, 0));
8709          if (N->getNumValues() == 2)  // Dead flag value?
8710            return DCI.CombineTo(N, Cond, SDValue());
8711          return Cond;
8712        }
8713      }
8714    }
8715  }
8716  return SDValue();
8717}
8718
8719
8720/// PerformMulCombine - Optimize a single multiply with constant into two
8721/// in order to implement it with two cheaper instructions, e.g.
8722/// LEA + SHL, LEA + LEA.
8723static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8724                                 TargetLowering::DAGCombinerInfo &DCI) {
8725  if (DAG.getMachineFunction().
8726      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8727    return SDValue();
8728
8729  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8730    return SDValue();
8731
8732  EVT VT = N->getValueType(0);
8733  if (VT != MVT::i64)
8734    return SDValue();
8735
8736  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8737  if (!C)
8738    return SDValue();
8739  uint64_t MulAmt = C->getZExtValue();
8740  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8741    return SDValue();
8742
8743  uint64_t MulAmt1 = 0;
8744  uint64_t MulAmt2 = 0;
8745  if ((MulAmt % 9) == 0) {
8746    MulAmt1 = 9;
8747    MulAmt2 = MulAmt / 9;
8748  } else if ((MulAmt % 5) == 0) {
8749    MulAmt1 = 5;
8750    MulAmt2 = MulAmt / 5;
8751  } else if ((MulAmt % 3) == 0) {
8752    MulAmt1 = 3;
8753    MulAmt2 = MulAmt / 3;
8754  }
8755  if (MulAmt2 &&
8756      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8757    DebugLoc DL = N->getDebugLoc();
8758
8759    if (isPowerOf2_64(MulAmt2) &&
8760        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8761      // If second multiplifer is pow2, issue it first. We want the multiply by
8762      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8763      // is an add.
8764      std::swap(MulAmt1, MulAmt2);
8765
8766    SDValue NewMul;
8767    if (isPowerOf2_64(MulAmt1))
8768      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8769                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8770    else
8771      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8772                           DAG.getConstant(MulAmt1, VT));
8773
8774    if (isPowerOf2_64(MulAmt2))
8775      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8776                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8777    else
8778      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8779                           DAG.getConstant(MulAmt2, VT));
8780
8781    // Do not add new nodes to DAG combiner worklist.
8782    DCI.CombineTo(N, NewMul, false);
8783  }
8784  return SDValue();
8785}
8786
8787
8788/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8789///                       when possible.
8790static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8791                                   const X86Subtarget *Subtarget) {
8792  // On X86 with SSE2 support, we can transform this to a vector shift if
8793  // all elements are shifted by the same amount.  We can't do this in legalize
8794  // because the a constant vector is typically transformed to a constant pool
8795  // so we have no knowledge of the shift amount.
8796  if (!Subtarget->hasSSE2())
8797    return SDValue();
8798
8799  EVT VT = N->getValueType(0);
8800  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8801    return SDValue();
8802
8803  SDValue ShAmtOp = N->getOperand(1);
8804  EVT EltVT = VT.getVectorElementType();
8805  DebugLoc DL = N->getDebugLoc();
8806  SDValue BaseShAmt = SDValue();
8807  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8808    unsigned NumElts = VT.getVectorNumElements();
8809    unsigned i = 0;
8810    for (; i != NumElts; ++i) {
8811      SDValue Arg = ShAmtOp.getOperand(i);
8812      if (Arg.getOpcode() == ISD::UNDEF) continue;
8813      BaseShAmt = Arg;
8814      break;
8815    }
8816    for (; i != NumElts; ++i) {
8817      SDValue Arg = ShAmtOp.getOperand(i);
8818      if (Arg.getOpcode() == ISD::UNDEF) continue;
8819      if (Arg != BaseShAmt) {
8820        return SDValue();
8821      }
8822    }
8823  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8824             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8825    SDValue InVec = ShAmtOp.getOperand(0);
8826    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8827      unsigned NumElts = InVec.getValueType().getVectorNumElements();
8828      unsigned i = 0;
8829      for (; i != NumElts; ++i) {
8830        SDValue Arg = InVec.getOperand(i);
8831        if (Arg.getOpcode() == ISD::UNDEF) continue;
8832        BaseShAmt = Arg;
8833        break;
8834      }
8835    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
8836       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
8837         unsigned SplatIdx = cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
8838         if (C->getZExtValue() == SplatIdx)
8839           BaseShAmt = InVec.getOperand(1);
8840       }
8841    }
8842    if (BaseShAmt.getNode() == 0)
8843      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8844                              DAG.getIntPtrConstant(0));
8845  } else
8846    return SDValue();
8847
8848  // The shift amount is an i32.
8849  if (EltVT.bitsGT(MVT::i32))
8850    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8851  else if (EltVT.bitsLT(MVT::i32))
8852    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
8853
8854  // The shift amount is identical so we can do a vector shift.
8855  SDValue  ValOp = N->getOperand(0);
8856  switch (N->getOpcode()) {
8857  default:
8858    llvm_unreachable("Unknown shift opcode!");
8859    break;
8860  case ISD::SHL:
8861    if (VT == MVT::v2i64)
8862      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8863                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8864                         ValOp, BaseShAmt);
8865    if (VT == MVT::v4i32)
8866      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8867                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8868                         ValOp, BaseShAmt);
8869    if (VT == MVT::v8i16)
8870      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8871                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8872                         ValOp, BaseShAmt);
8873    break;
8874  case ISD::SRA:
8875    if (VT == MVT::v4i32)
8876      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8877                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8878                         ValOp, BaseShAmt);
8879    if (VT == MVT::v8i16)
8880      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8881                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8882                         ValOp, BaseShAmt);
8883    break;
8884  case ISD::SRL:
8885    if (VT == MVT::v2i64)
8886      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8887                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8888                         ValOp, BaseShAmt);
8889    if (VT == MVT::v4i32)
8890      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8891                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8892                         ValOp, BaseShAmt);
8893    if (VT ==  MVT::v8i16)
8894      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8895                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8896                         ValOp, BaseShAmt);
8897    break;
8898  }
8899  return SDValue();
8900}
8901
8902/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8903static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8904                                   const X86Subtarget *Subtarget) {
8905  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
8906  // the FP state in cases where an emms may be missing.
8907  // A preferable solution to the general problem is to figure out the right
8908  // places to insert EMMS.  This qualifies as a quick hack.
8909
8910  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8911  StoreSDNode *St = cast<StoreSDNode>(N);
8912  EVT VT = St->getValue().getValueType();
8913  if (VT.getSizeInBits() != 64)
8914    return SDValue();
8915
8916  const Function *F = DAG.getMachineFunction().getFunction();
8917  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
8918  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
8919    && Subtarget->hasSSE2();
8920  if ((VT.isVector() ||
8921       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8922      isa<LoadSDNode>(St->getValue()) &&
8923      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8924      St->getChain().hasOneUse() && !St->isVolatile()) {
8925    SDNode* LdVal = St->getValue().getNode();
8926    LoadSDNode *Ld = 0;
8927    int TokenFactorIndex = -1;
8928    SmallVector<SDValue, 8> Ops;
8929    SDNode* ChainVal = St->getChain().getNode();
8930    // Must be a store of a load.  We currently handle two cases:  the load
8931    // is a direct child, and it's under an intervening TokenFactor.  It is
8932    // possible to dig deeper under nested TokenFactors.
8933    if (ChainVal == LdVal)
8934      Ld = cast<LoadSDNode>(St->getChain());
8935    else if (St->getValue().hasOneUse() &&
8936             ChainVal->getOpcode() == ISD::TokenFactor) {
8937      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8938        if (ChainVal->getOperand(i).getNode() == LdVal) {
8939          TokenFactorIndex = i;
8940          Ld = cast<LoadSDNode>(St->getValue());
8941        } else
8942          Ops.push_back(ChainVal->getOperand(i));
8943      }
8944    }
8945
8946    if (!Ld || !ISD::isNormalLoad(Ld))
8947      return SDValue();
8948
8949    // If this is not the MMX case, i.e. we are just turning i64 load/store
8950    // into f64 load/store, avoid the transformation if there are multiple
8951    // uses of the loaded value.
8952    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8953      return SDValue();
8954
8955    DebugLoc LdDL = Ld->getDebugLoc();
8956    DebugLoc StDL = N->getDebugLoc();
8957    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8958    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8959    // pair instead.
8960    if (Subtarget->is64Bit() || F64IsLegal) {
8961      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8962      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8963                                  Ld->getBasePtr(), Ld->getSrcValue(),
8964                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
8965                                  Ld->getAlignment());
8966      SDValue NewChain = NewLd.getValue(1);
8967      if (TokenFactorIndex != -1) {
8968        Ops.push_back(NewChain);
8969        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8970                               Ops.size());
8971      }
8972      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
8973                          St->getSrcValue(), St->getSrcValueOffset(),
8974                          St->isVolatile(), St->getAlignment());
8975    }
8976
8977    // Otherwise, lower to two pairs of 32-bit loads / stores.
8978    SDValue LoAddr = Ld->getBasePtr();
8979    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
8980                                 DAG.getConstant(4, MVT::i32));
8981
8982    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
8983                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
8984                               Ld->isVolatile(), Ld->getAlignment());
8985    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
8986                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8987                               Ld->isVolatile(),
8988                               MinAlign(Ld->getAlignment(), 4));
8989
8990    SDValue NewChain = LoLd.getValue(1);
8991    if (TokenFactorIndex != -1) {
8992      Ops.push_back(LoLd);
8993      Ops.push_back(HiLd);
8994      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8995                             Ops.size());
8996    }
8997
8998    LoAddr = St->getBasePtr();
8999    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9000                         DAG.getConstant(4, MVT::i32));
9001
9002    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9003                                St->getSrcValue(), St->getSrcValueOffset(),
9004                                St->isVolatile(), St->getAlignment());
9005    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9006                                St->getSrcValue(),
9007                                St->getSrcValueOffset() + 4,
9008                                St->isVolatile(),
9009                                MinAlign(St->getAlignment(), 4));
9010    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9011  }
9012  return SDValue();
9013}
9014
9015/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9016/// X86ISD::FXOR nodes.
9017static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9018  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9019  // F[X]OR(0.0, x) -> x
9020  // F[X]OR(x, 0.0) -> x
9021  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9022    if (C->getValueAPF().isPosZero())
9023      return N->getOperand(1);
9024  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9025    if (C->getValueAPF().isPosZero())
9026      return N->getOperand(0);
9027  return SDValue();
9028}
9029
9030/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9031static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9032  // FAND(0.0, x) -> 0.0
9033  // FAND(x, 0.0) -> 0.0
9034  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9035    if (C->getValueAPF().isPosZero())
9036      return N->getOperand(0);
9037  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9038    if (C->getValueAPF().isPosZero())
9039      return N->getOperand(1);
9040  return SDValue();
9041}
9042
9043static SDValue PerformBTCombine(SDNode *N,
9044                                SelectionDAG &DAG,
9045                                TargetLowering::DAGCombinerInfo &DCI) {
9046  // BT ignores high bits in the bit index operand.
9047  SDValue Op1 = N->getOperand(1);
9048  if (Op1.hasOneUse()) {
9049    unsigned BitWidth = Op1.getValueSizeInBits();
9050    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9051    APInt KnownZero, KnownOne;
9052    TargetLowering::TargetLoweringOpt TLO(DAG);
9053    TargetLowering &TLI = DAG.getTargetLoweringInfo();
9054    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9055        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9056      DCI.CommitTargetLoweringOpt(TLO);
9057  }
9058  return SDValue();
9059}
9060
9061static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9062  SDValue Op = N->getOperand(0);
9063  if (Op.getOpcode() == ISD::BIT_CONVERT)
9064    Op = Op.getOperand(0);
9065  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9066  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9067      VT.getVectorElementType().getSizeInBits() ==
9068      OpVT.getVectorElementType().getSizeInBits()) {
9069    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9070  }
9071  return SDValue();
9072}
9073
9074// On X86 and X86-64, atomic operations are lowered to locked instructions.
9075// Locked instructions, in turn, have implicit fence semantics (all memory
9076// operations are flushed before issuing the locked instruction, and the
9077// are not buffered), so we can fold away the common pattern of
9078// fence-atomic-fence.
9079static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9080  SDValue atomic = N->getOperand(0);
9081  switch (atomic.getOpcode()) {
9082    case ISD::ATOMIC_CMP_SWAP:
9083    case ISD::ATOMIC_SWAP:
9084    case ISD::ATOMIC_LOAD_ADD:
9085    case ISD::ATOMIC_LOAD_SUB:
9086    case ISD::ATOMIC_LOAD_AND:
9087    case ISD::ATOMIC_LOAD_OR:
9088    case ISD::ATOMIC_LOAD_XOR:
9089    case ISD::ATOMIC_LOAD_NAND:
9090    case ISD::ATOMIC_LOAD_MIN:
9091    case ISD::ATOMIC_LOAD_MAX:
9092    case ISD::ATOMIC_LOAD_UMIN:
9093    case ISD::ATOMIC_LOAD_UMAX:
9094      break;
9095    default:
9096      return SDValue();
9097  }
9098
9099  SDValue fence = atomic.getOperand(0);
9100  if (fence.getOpcode() != ISD::MEMBARRIER)
9101    return SDValue();
9102
9103  switch (atomic.getOpcode()) {
9104    case ISD::ATOMIC_CMP_SWAP:
9105      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9106                                    atomic.getOperand(1), atomic.getOperand(2),
9107                                    atomic.getOperand(3));
9108    case ISD::ATOMIC_SWAP:
9109    case ISD::ATOMIC_LOAD_ADD:
9110    case ISD::ATOMIC_LOAD_SUB:
9111    case ISD::ATOMIC_LOAD_AND:
9112    case ISD::ATOMIC_LOAD_OR:
9113    case ISD::ATOMIC_LOAD_XOR:
9114    case ISD::ATOMIC_LOAD_NAND:
9115    case ISD::ATOMIC_LOAD_MIN:
9116    case ISD::ATOMIC_LOAD_MAX:
9117    case ISD::ATOMIC_LOAD_UMIN:
9118    case ISD::ATOMIC_LOAD_UMAX:
9119      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9120                                    atomic.getOperand(1), atomic.getOperand(2));
9121    default:
9122      return SDValue();
9123  }
9124}
9125
9126SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9127                                             DAGCombinerInfo &DCI) const {
9128  SelectionDAG &DAG = DCI.DAG;
9129  switch (N->getOpcode()) {
9130  default: break;
9131  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9132  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9133  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9134  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9135  case ISD::SHL:
9136  case ISD::SRA:
9137  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9138  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9139  case X86ISD::FXOR:
9140  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9141  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9142  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9143  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9144  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9145  }
9146
9147  return SDValue();
9148}
9149
9150//===----------------------------------------------------------------------===//
9151//                           X86 Inline Assembly Support
9152//===----------------------------------------------------------------------===//
9153
9154static bool LowerToBSwap(CallInst *CI) {
9155  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9156  // we will turn this bswap into something that will be lowered to logical ops
9157  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9158  // so don't worry about this.
9159
9160  // Verify this is a simple bswap.
9161  if (CI->getNumOperands() != 2 ||
9162      CI->getType() != CI->getOperand(1)->getType() ||
9163      !CI->getType()->isInteger())
9164    return false;
9165
9166  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9167  if (!Ty || Ty->getBitWidth() % 16 != 0)
9168    return false;
9169
9170  // Okay, we can do this xform, do so now.
9171  const Type *Tys[] = { Ty };
9172  Module *M = CI->getParent()->getParent()->getParent();
9173  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9174
9175  Value *Op = CI->getOperand(1);
9176  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9177
9178  CI->replaceAllUsesWith(Op);
9179  CI->eraseFromParent();
9180  return true;
9181}
9182
9183bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9184  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9185  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9186
9187  std::string AsmStr = IA->getAsmString();
9188
9189  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9190  std::vector<std::string> AsmPieces;
9191  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9192
9193  switch (AsmPieces.size()) {
9194  default: return false;
9195  case 1:
9196    AsmStr = AsmPieces[0];
9197    AsmPieces.clear();
9198    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9199
9200    // bswap $0
9201    if (AsmPieces.size() == 2 &&
9202        (AsmPieces[0] == "bswap" ||
9203         AsmPieces[0] == "bswapq" ||
9204         AsmPieces[0] == "bswapl") &&
9205        (AsmPieces[1] == "$0" ||
9206         AsmPieces[1] == "${0:q}")) {
9207      // No need to check constraints, nothing other than the equivalent of
9208      // "=r,0" would be valid here.
9209      return LowerToBSwap(CI);
9210    }
9211    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9212    if (CI->getType() == Type::getInt16Ty(CI->getContext()) &&
9213        AsmPieces.size() == 3 &&
9214        AsmPieces[0] == "rorw" &&
9215        AsmPieces[1] == "$$8," &&
9216        AsmPieces[2] == "${0:w}" &&
9217        IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
9218      return LowerToBSwap(CI);
9219    }
9220    break;
9221  case 3:
9222    if (CI->getType() == Type::getInt64Ty(CI->getContext()) &&
9223        Constraints.size() >= 2 &&
9224        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9225        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9226      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9227      std::vector<std::string> Words;
9228      SplitString(AsmPieces[0], Words, " \t");
9229      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9230        Words.clear();
9231        SplitString(AsmPieces[1], Words, " \t");
9232        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9233          Words.clear();
9234          SplitString(AsmPieces[2], Words, " \t,");
9235          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
9236              Words[2] == "%edx") {
9237            return LowerToBSwap(CI);
9238          }
9239        }
9240      }
9241    }
9242    break;
9243  }
9244  return false;
9245}
9246
9247
9248
9249/// getConstraintType - Given a constraint letter, return the type of
9250/// constraint it is for this target.
9251X86TargetLowering::ConstraintType
9252X86TargetLowering::getConstraintType(const std::string &Constraint) const {
9253  if (Constraint.size() == 1) {
9254    switch (Constraint[0]) {
9255    case 'A':
9256      return C_Register;
9257    case 'f':
9258    case 'r':
9259    case 'R':
9260    case 'l':
9261    case 'q':
9262    case 'Q':
9263    case 'x':
9264    case 'y':
9265    case 'Y':
9266      return C_RegisterClass;
9267    case 'e':
9268    case 'Z':
9269      return C_Other;
9270    default:
9271      break;
9272    }
9273  }
9274  return TargetLowering::getConstraintType(Constraint);
9275}
9276
9277/// LowerXConstraint - try to replace an X constraint, which matches anything,
9278/// with another that has more specific requirements based on the type of the
9279/// corresponding operand.
9280const char *X86TargetLowering::
9281LowerXConstraint(EVT ConstraintVT) const {
9282  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
9283  // 'f' like normal targets.
9284  if (ConstraintVT.isFloatingPoint()) {
9285    if (Subtarget->hasSSE2())
9286      return "Y";
9287    if (Subtarget->hasSSE1())
9288      return "x";
9289  }
9290
9291  return TargetLowering::LowerXConstraint(ConstraintVT);
9292}
9293
9294/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9295/// vector.  If it is invalid, don't add anything to Ops.
9296void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9297                                                     char Constraint,
9298                                                     bool hasMemory,
9299                                                     std::vector<SDValue>&Ops,
9300                                                     SelectionDAG &DAG) const {
9301  SDValue Result(0, 0);
9302
9303  switch (Constraint) {
9304  default: break;
9305  case 'I':
9306    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9307      if (C->getZExtValue() <= 31) {
9308        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9309        break;
9310      }
9311    }
9312    return;
9313  case 'J':
9314    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9315      if (C->getZExtValue() <= 63) {
9316        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9317        break;
9318      }
9319    }
9320    return;
9321  case 'K':
9322    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9323      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
9324        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9325        break;
9326      }
9327    }
9328    return;
9329  case 'N':
9330    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9331      if (C->getZExtValue() <= 255) {
9332        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9333        break;
9334      }
9335    }
9336    return;
9337  case 'e': {
9338    // 32-bit signed value
9339    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9340      const ConstantInt *CI = C->getConstantIntValue();
9341      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9342                                  C->getSExtValue())) {
9343        // Widen to 64 bits here to get it sign extended.
9344        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
9345        break;
9346      }
9347    // FIXME gcc accepts some relocatable values here too, but only in certain
9348    // memory models; it's complicated.
9349    }
9350    return;
9351  }
9352  case 'Z': {
9353    // 32-bit unsigned value
9354    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9355      const ConstantInt *CI = C->getConstantIntValue();
9356      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9357                                  C->getZExtValue())) {
9358        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9359        break;
9360      }
9361    }
9362    // FIXME gcc accepts some relocatable values here too, but only in certain
9363    // memory models; it's complicated.
9364    return;
9365  }
9366  case 'i': {
9367    // Literal immediates are always ok.
9368    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
9369      // Widen to 64 bits here to get it sign extended.
9370      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
9371      break;
9372    }
9373
9374    // If we are in non-pic codegen mode, we allow the address of a global (with
9375    // an optional displacement) to be used with 'i'.
9376    GlobalAddressSDNode *GA = 0;
9377    int64_t Offset = 0;
9378
9379    // Match either (GA), (GA+C), (GA+C1+C2), etc.
9380    while (1) {
9381      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
9382        Offset += GA->getOffset();
9383        break;
9384      } else if (Op.getOpcode() == ISD::ADD) {
9385        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9386          Offset += C->getZExtValue();
9387          Op = Op.getOperand(0);
9388          continue;
9389        }
9390      } else if (Op.getOpcode() == ISD::SUB) {
9391        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9392          Offset += -C->getZExtValue();
9393          Op = Op.getOperand(0);
9394          continue;
9395        }
9396      }
9397
9398      // Otherwise, this isn't something we can handle, reject it.
9399      return;
9400    }
9401
9402    GlobalValue *GV = GA->getGlobal();
9403    // If we require an extra load to get this address, as in PIC mode, we
9404    // can't accept it.
9405    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
9406                                                        getTargetMachine())))
9407      return;
9408
9409    if (hasMemory)
9410      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
9411    else
9412      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
9413    Result = Op;
9414    break;
9415  }
9416  }
9417
9418  if (Result.getNode()) {
9419    Ops.push_back(Result);
9420    return;
9421  }
9422  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
9423                                                      Ops, DAG);
9424}
9425
9426std::vector<unsigned> X86TargetLowering::
9427getRegClassForInlineAsmConstraint(const std::string &Constraint,
9428                                  EVT VT) const {
9429  if (Constraint.size() == 1) {
9430    // FIXME: not handling fp-stack yet!
9431    switch (Constraint[0]) {      // GCC X86 Constraint Letters
9432    default: break;  // Unknown constraint letter
9433    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
9434      if (Subtarget->is64Bit()) {
9435        if (VT == MVT::i32)
9436          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
9437                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
9438                                       X86::R10D,X86::R11D,X86::R12D,
9439                                       X86::R13D,X86::R14D,X86::R15D,
9440                                       X86::EBP, X86::ESP, 0);
9441        else if (VT == MVT::i16)
9442          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
9443                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
9444                                       X86::R10W,X86::R11W,X86::R12W,
9445                                       X86::R13W,X86::R14W,X86::R15W,
9446                                       X86::BP,  X86::SP, 0);
9447        else if (VT == MVT::i8)
9448          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
9449                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
9450                                       X86::R10B,X86::R11B,X86::R12B,
9451                                       X86::R13B,X86::R14B,X86::R15B,
9452                                       X86::BPL, X86::SPL, 0);
9453
9454        else if (VT == MVT::i64)
9455          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
9456                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
9457                                       X86::R10, X86::R11, X86::R12,
9458                                       X86::R13, X86::R14, X86::R15,
9459                                       X86::RBP, X86::RSP, 0);
9460
9461        break;
9462      }
9463      // 32-bit fallthrough
9464    case 'Q':   // Q_REGS
9465      if (VT == MVT::i32)
9466        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
9467      else if (VT == MVT::i16)
9468        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
9469      else if (VT == MVT::i8)
9470        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
9471      else if (VT == MVT::i64)
9472        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
9473      break;
9474    }
9475  }
9476
9477  return std::vector<unsigned>();
9478}
9479
9480std::pair<unsigned, const TargetRegisterClass*>
9481X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9482                                                EVT VT) const {
9483  // First, see if this is a constraint that directly corresponds to an LLVM
9484  // register class.
9485  if (Constraint.size() == 1) {
9486    // GCC Constraint Letters
9487    switch (Constraint[0]) {
9488    default: break;
9489    case 'r':   // GENERAL_REGS
9490    case 'l':   // INDEX_REGS
9491      if (VT == MVT::i8)
9492        return std::make_pair(0U, X86::GR8RegisterClass);
9493      if (VT == MVT::i16)
9494        return std::make_pair(0U, X86::GR16RegisterClass);
9495      if (VT == MVT::i32 || !Subtarget->is64Bit())
9496        return std::make_pair(0U, X86::GR32RegisterClass);
9497      return std::make_pair(0U, X86::GR64RegisterClass);
9498    case 'R':   // LEGACY_REGS
9499      if (VT == MVT::i8)
9500        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
9501      if (VT == MVT::i16)
9502        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
9503      if (VT == MVT::i32 || !Subtarget->is64Bit())
9504        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
9505      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
9506    case 'f':  // FP Stack registers.
9507      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
9508      // value to the correct fpstack register class.
9509      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
9510        return std::make_pair(0U, X86::RFP32RegisterClass);
9511      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
9512        return std::make_pair(0U, X86::RFP64RegisterClass);
9513      return std::make_pair(0U, X86::RFP80RegisterClass);
9514    case 'y':   // MMX_REGS if MMX allowed.
9515      if (!Subtarget->hasMMX()) break;
9516      return std::make_pair(0U, X86::VR64RegisterClass);
9517    case 'Y':   // SSE_REGS if SSE2 allowed
9518      if (!Subtarget->hasSSE2()) break;
9519      // FALL THROUGH.
9520    case 'x':   // SSE_REGS if SSE1 allowed
9521      if (!Subtarget->hasSSE1()) break;
9522
9523      switch (VT.getSimpleVT().SimpleTy) {
9524      default: break;
9525      // Scalar SSE types.
9526      case MVT::f32:
9527      case MVT::i32:
9528        return std::make_pair(0U, X86::FR32RegisterClass);
9529      case MVT::f64:
9530      case MVT::i64:
9531        return std::make_pair(0U, X86::FR64RegisterClass);
9532      // Vector types.
9533      case MVT::v16i8:
9534      case MVT::v8i16:
9535      case MVT::v4i32:
9536      case MVT::v2i64:
9537      case MVT::v4f32:
9538      case MVT::v2f64:
9539        return std::make_pair(0U, X86::VR128RegisterClass);
9540      }
9541      break;
9542    }
9543  }
9544
9545  // Use the default implementation in TargetLowering to convert the register
9546  // constraint into a member of a register class.
9547  std::pair<unsigned, const TargetRegisterClass*> Res;
9548  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9549
9550  // Not found as a standard register?
9551  if (Res.second == 0) {
9552    // Map st(0) -> st(7) -> ST0
9553    if (Constraint.size() == 7 && Constraint[0] == '{' &&
9554        tolower(Constraint[1]) == 's' &&
9555        tolower(Constraint[2]) == 't' &&
9556        Constraint[3] == '(' &&
9557        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
9558        Constraint[5] == ')' &&
9559        Constraint[6] == '}') {
9560
9561      Res.first = X86::ST0+Constraint[4]-'0';
9562      Res.second = X86::RFP80RegisterClass;
9563      return Res;
9564    }
9565
9566    // GCC allows "st(0)" to be called just plain "st".
9567    if (StringsEqualNoCase("{st}", Constraint)) {
9568      Res.first = X86::ST0;
9569      Res.second = X86::RFP80RegisterClass;
9570      return Res;
9571    }
9572
9573    // flags -> EFLAGS
9574    if (StringsEqualNoCase("{flags}", Constraint)) {
9575      Res.first = X86::EFLAGS;
9576      Res.second = X86::CCRRegisterClass;
9577      return Res;
9578    }
9579
9580    // 'A' means EAX + EDX.
9581    if (Constraint == "A") {
9582      Res.first = X86::EAX;
9583      Res.second = X86::GR32_ADRegisterClass;
9584      return Res;
9585    }
9586    return Res;
9587  }
9588
9589  // Otherwise, check to see if this is a register class of the wrong value
9590  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
9591  // turn into {ax},{dx}.
9592  if (Res.second->hasType(VT))
9593    return Res;   // Correct type already, nothing to do.
9594
9595  // All of the single-register GCC register classes map their values onto
9596  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
9597  // really want an 8-bit or 32-bit register, map to the appropriate register
9598  // class and return the appropriate register.
9599  if (Res.second == X86::GR16RegisterClass) {
9600    if (VT == MVT::i8) {
9601      unsigned DestReg = 0;
9602      switch (Res.first) {
9603      default: break;
9604      case X86::AX: DestReg = X86::AL; break;
9605      case X86::DX: DestReg = X86::DL; break;
9606      case X86::CX: DestReg = X86::CL; break;
9607      case X86::BX: DestReg = X86::BL; break;
9608      }
9609      if (DestReg) {
9610        Res.first = DestReg;
9611        Res.second = X86::GR8RegisterClass;
9612      }
9613    } else if (VT == MVT::i32) {
9614      unsigned DestReg = 0;
9615      switch (Res.first) {
9616      default: break;
9617      case X86::AX: DestReg = X86::EAX; break;
9618      case X86::DX: DestReg = X86::EDX; break;
9619      case X86::CX: DestReg = X86::ECX; break;
9620      case X86::BX: DestReg = X86::EBX; break;
9621      case X86::SI: DestReg = X86::ESI; break;
9622      case X86::DI: DestReg = X86::EDI; break;
9623      case X86::BP: DestReg = X86::EBP; break;
9624      case X86::SP: DestReg = X86::ESP; break;
9625      }
9626      if (DestReg) {
9627        Res.first = DestReg;
9628        Res.second = X86::GR32RegisterClass;
9629      }
9630    } else if (VT == MVT::i64) {
9631      unsigned DestReg = 0;
9632      switch (Res.first) {
9633      default: break;
9634      case X86::AX: DestReg = X86::RAX; break;
9635      case X86::DX: DestReg = X86::RDX; break;
9636      case X86::CX: DestReg = X86::RCX; break;
9637      case X86::BX: DestReg = X86::RBX; break;
9638      case X86::SI: DestReg = X86::RSI; break;
9639      case X86::DI: DestReg = X86::RDI; break;
9640      case X86::BP: DestReg = X86::RBP; break;
9641      case X86::SP: DestReg = X86::RSP; break;
9642      }
9643      if (DestReg) {
9644        Res.first = DestReg;
9645        Res.second = X86::GR64RegisterClass;
9646      }
9647    }
9648  } else if (Res.second == X86::FR32RegisterClass ||
9649             Res.second == X86::FR64RegisterClass ||
9650             Res.second == X86::VR128RegisterClass) {
9651    // Handle references to XMM physical registers that got mapped into the
9652    // wrong class.  This can happen with constraints like {xmm0} where the
9653    // target independent register mapper will just pick the first match it can
9654    // find, ignoring the required type.
9655    if (VT == MVT::f32)
9656      Res.second = X86::FR32RegisterClass;
9657    else if (VT == MVT::f64)
9658      Res.second = X86::FR64RegisterClass;
9659    else if (X86::VR128RegisterClass->hasType(VT))
9660      Res.second = X86::VR128RegisterClass;
9661  }
9662
9663  return Res;
9664}
9665
9666//===----------------------------------------------------------------------===//
9667//                           X86 Widen vector type
9668//===----------------------------------------------------------------------===//
9669
9670/// getWidenVectorType: given a vector type, returns the type to widen
9671/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9672/// If there is no vector type that we want to widen to, returns MVT::Other
9673/// When and where to widen is target dependent based on the cost of
9674/// scalarizing vs using the wider vector type.
9675
9676EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
9677  assert(VT.isVector());
9678  if (isTypeLegal(VT))
9679    return VT;
9680
9681  // TODO: In computeRegisterProperty, we can compute the list of legal vector
9682  //       type based on element type.  This would speed up our search (though
9683  //       it may not be worth it since the size of the list is relatively
9684  //       small).
9685  EVT EltVT = VT.getVectorElementType();
9686  unsigned NElts = VT.getVectorNumElements();
9687
9688  // On X86, it make sense to widen any vector wider than 1
9689  if (NElts <= 1)
9690    return MVT::Other;
9691
9692  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
9693       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
9694    EVT SVT = (MVT::SimpleValueType)nVT;
9695
9696    if (isTypeLegal(SVT) &&
9697        SVT.getVectorElementType() == EltVT &&
9698        SVT.getVectorNumElements() > NElts)
9699      return SVT;
9700  }
9701  return MVT::Other;
9702}
9703