X86ISelLowering.cpp revision ed2ae136d29dd36122d2476801e7d7a86e8301e3
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
65  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
66  default: llvm_unreachable("unknown subtarget type");
67  case X86Subtarget::isDarwin:
68    if (TM.getSubtarget<X86Subtarget>().is64Bit())
69      return new X8664_MachoTargetObjectFile();
70    return new TargetLoweringObjectFileMachO();
71  case X86Subtarget::isELF:
72   if (TM.getSubtarget<X86Subtarget>().is64Bit())
73     return new X8664_ELFTargetObjectFile(TM);
74    return new X8632_ELFTargetObjectFile(TM);
75  case X86Subtarget::isMingw:
76  case X86Subtarget::isCygwin:
77  case X86Subtarget::isWindows:
78    return new TargetLoweringObjectFileCOFF();
79  }
80}
81
82X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
83  : TargetLowering(TM, createTLOF(TM)) {
84  Subtarget = &TM.getSubtarget<X86Subtarget>();
85  X86ScalarSSEf64 = Subtarget->hasSSE2();
86  X86ScalarSSEf32 = Subtarget->hasSSE1();
87  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
88
89  RegInfo = TM.getRegisterInfo();
90  TD = getTargetData();
91
92  // Set up the TargetLowering object.
93
94  // X86 is weird, it always uses i8 for shift amounts and setcc results.
95  setShiftAmountType(MVT::i8);
96  setBooleanContents(ZeroOrOneBooleanContent);
97  setSchedulingPreference(Sched::RegPressure);
98  setStackPointerRegisterToSaveRestore(X86StackPtr);
99
100  if (Subtarget->isTargetDarwin()) {
101    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
102    setUseUnderscoreSetJmp(false);
103    setUseUnderscoreLongJmp(false);
104  } else if (Subtarget->isTargetMingw()) {
105    // MS runtime is weird: it exports _setjmp, but longjmp!
106    setUseUnderscoreSetJmp(true);
107    setUseUnderscoreLongJmp(false);
108  } else {
109    setUseUnderscoreSetJmp(true);
110    setUseUnderscoreLongJmp(true);
111  }
112
113  // Set up the register classes.
114  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
115  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
116  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
117  if (Subtarget->is64Bit())
118    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
119
120  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
121
122  // We don't accept any truncstore of integer registers.
123  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
124  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
125  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
126  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
127  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
128  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
129
130  // SETOEQ and SETUNE require checking two conditions.
131  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
132  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
133  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
135  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
136  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
137
138  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
139  // operation.
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
141  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
142  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
143
144  if (Subtarget->is64Bit()) {
145    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
146    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
147  } else if (!UseSoftFloat) {
148    // We have an algorithm for SSE2->double, and we turn this into a
149    // 64-bit FILD followed by conditional FADD for other targets.
150    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
151    // We have an algorithm for SSE2, and we turn this into a 64-bit
152    // FILD for other targets.
153    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
154  }
155
156  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
157  // this operation.
158  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
159  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
160
161  if (!UseSoftFloat) {
162    // SSE has no i16 to fp conversion, only i32
163    if (X86ScalarSSEf32) {
164      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
165      // f32 and f64 cases are Legal, f80 case is not
166      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
167    } else {
168      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
169      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
170    }
171  } else {
172    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
173    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
174  }
175
176  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
177  // are Legal, f80 is custom lowered.
178  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
179  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
180
181  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
182  // this operation.
183  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
184  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
185
186  if (X86ScalarSSEf32) {
187    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
188    // f32 and f64 cases are Legal, f80 case is not
189    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
190  } else {
191    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
192    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
193  }
194
195  // Handle FP_TO_UINT by promoting the destination to a larger signed
196  // conversion.
197  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
198  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
199  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
200
201  if (Subtarget->is64Bit()) {
202    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
203    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
204  } else if (!UseSoftFloat) {
205    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
206      // Expand FP_TO_UINT into a select.
207      // FIXME: We would like to use a Custom expander here eventually to do
208      // the optimal thing for SSE vs. the default expansion in the legalizer.
209      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
210    else
211      // With SSE3 we can use fisttpll to convert to a signed i64; without
212      // SSE, we're stuck with a fistpll.
213      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
214  }
215
216  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
217  if (!X86ScalarSSEf64) {
218    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
219    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
220    if (Subtarget->is64Bit()) {
221      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
222      // Without SSE, i64->f64 goes through memory; i64->MMX is Legal.
223      if (Subtarget->hasMMX() && !DisableMMX)
224        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Custom);
225      else
226        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
227    }
228  }
229
230  // Scalar integer divide and remainder are lowered to use operations that
231  // produce two results, to match the available instructions. This exposes
232  // the two-result form to trivial CSE, which is able to combine x/y and x%y
233  // into a single instruction.
234  //
235  // Scalar integer multiply-high is also lowered to use two-result
236  // operations, to match the available instructions. However, plain multiply
237  // (low) operations are left as Legal, as there are single-result
238  // instructions for this in x86. Using the two-result multiply instructions
239  // when both high and low results are needed must be arranged by dagcombine.
240  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
241  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
242  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
243  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
244  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
245  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
246  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
247  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
248  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
249  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
250  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
251  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
252  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
253  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
254  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
255  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
256  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
257  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
258  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
259  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
260  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
261  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
262  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
263  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
264
265  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
266  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
267  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
268  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
269  if (Subtarget->is64Bit())
270    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
271  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
272  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
273  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
274  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
275  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
276  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
277  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
278  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
279
280  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
281  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
282  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
283  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
284  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
285  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
286  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
287  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
288  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
289  if (Subtarget->is64Bit()) {
290    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
291    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
292    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
293  }
294
295  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
296  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
297
298  // These should be promoted to a larger select which is supported.
299  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
300  // X86 wants to expand cmov itself.
301  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
302  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
303  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
305  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
306  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
307  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
308  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
309  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
310  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
311  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
312  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
313  if (Subtarget->is64Bit()) {
314    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
315    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
316  }
317  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
318
319  // Darwin ABI issue.
320  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
321  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
322  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
323  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
324  if (Subtarget->is64Bit())
325    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
326  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
327  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
328  if (Subtarget->is64Bit()) {
329    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
330    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
331    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
332    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
333    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
334  }
335  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
336  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
337  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
338  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
339  if (Subtarget->is64Bit()) {
340    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
341    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
342    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
343  }
344
345  if (Subtarget->hasSSE1())
346    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
347
348  if (!Subtarget->hasSSE2())
349    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
350  // On X86 and X86-64, atomic operations are lowered to locked instructions.
351  // Locked instructions, in turn, have implicit fence semantics (all memory
352  // operations are flushed before issuing the locked instruction, and they
353  // are not buffered), so we can fold away the common pattern of
354  // fence-atomic-fence.
355  setShouldFoldAtomicFences(true);
356
357  // Expand certain atomics
358  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
359  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
360  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
361  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
362
363  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
364  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
365  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
366  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
367
368  if (!Subtarget->is64Bit()) {
369    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
374    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
375    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
376  }
377
378  // FIXME - use subtarget debug flags
379  if (!Subtarget->isTargetDarwin() &&
380      !Subtarget->isTargetELF() &&
381      !Subtarget->isTargetCygMing()) {
382    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
383  }
384
385  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
386  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
387  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
388  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
389  if (Subtarget->is64Bit()) {
390    setExceptionPointerRegister(X86::RAX);
391    setExceptionSelectorRegister(X86::RDX);
392  } else {
393    setExceptionPointerRegister(X86::EAX);
394    setExceptionSelectorRegister(X86::EDX);
395  }
396  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
397  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
398
399  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
400
401  setOperationAction(ISD::TRAP, MVT::Other, Legal);
402
403  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
404  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
405  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
406  if (Subtarget->is64Bit()) {
407    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
408    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
409  } else {
410    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
411    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
412  }
413
414  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
415  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
416  if (Subtarget->is64Bit())
417    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
418  if (Subtarget->isTargetCygMing())
419    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
420  else
421    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
422
423  if (!UseSoftFloat && X86ScalarSSEf64) {
424    // f32 and f64 use SSE.
425    // Set up the FP register classes.
426    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
427    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
428
429    // Use ANDPD to simulate FABS.
430    setOperationAction(ISD::FABS , MVT::f64, Custom);
431    setOperationAction(ISD::FABS , MVT::f32, Custom);
432
433    // Use XORP to simulate FNEG.
434    setOperationAction(ISD::FNEG , MVT::f64, Custom);
435    setOperationAction(ISD::FNEG , MVT::f32, Custom);
436
437    // Use ANDPD and ORPD to simulate FCOPYSIGN.
438    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
439    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
440
441    // We don't support sin/cos/fmod
442    setOperationAction(ISD::FSIN , MVT::f64, Expand);
443    setOperationAction(ISD::FCOS , MVT::f64, Expand);
444    setOperationAction(ISD::FSIN , MVT::f32, Expand);
445    setOperationAction(ISD::FCOS , MVT::f32, Expand);
446
447    // Expand FP immediates into loads from the stack, except for the special
448    // cases we handle.
449    addLegalFPImmediate(APFloat(+0.0)); // xorpd
450    addLegalFPImmediate(APFloat(+0.0f)); // xorps
451  } else if (!UseSoftFloat && X86ScalarSSEf32) {
452    // Use SSE for f32, x87 for f64.
453    // Set up the FP register classes.
454    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
455    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
456
457    // Use ANDPS to simulate FABS.
458    setOperationAction(ISD::FABS , MVT::f32, Custom);
459
460    // Use XORP to simulate FNEG.
461    setOperationAction(ISD::FNEG , MVT::f32, Custom);
462
463    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
464
465    // Use ANDPS and ORPS to simulate FCOPYSIGN.
466    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
467    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
468
469    // We don't support sin/cos/fmod
470    setOperationAction(ISD::FSIN , MVT::f32, Expand);
471    setOperationAction(ISD::FCOS , MVT::f32, Expand);
472
473    // Special cases we handle for FP constants.
474    addLegalFPImmediate(APFloat(+0.0f)); // xorps
475    addLegalFPImmediate(APFloat(+0.0)); // FLD0
476    addLegalFPImmediate(APFloat(+1.0)); // FLD1
477    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
478    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
479
480    if (!UnsafeFPMath) {
481      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
482      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
483    }
484  } else if (!UseSoftFloat) {
485    // f32 and f64 in x87.
486    // Set up the FP register classes.
487    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
488    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
489
490    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
491    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
492    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
493    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
494
495    if (!UnsafeFPMath) {
496      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
497      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
498    }
499    addLegalFPImmediate(APFloat(+0.0)); // FLD0
500    addLegalFPImmediate(APFloat(+1.0)); // FLD1
501    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
502    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
503    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
504    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
505    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
506    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
507  }
508
509  // Long double always uses X87.
510  if (!UseSoftFloat) {
511    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
512    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
513    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
514    {
515      bool ignored;
516      APFloat TmpFlt(+0.0);
517      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
518                     &ignored);
519      addLegalFPImmediate(TmpFlt);  // FLD0
520      TmpFlt.changeSign();
521      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
522      APFloat TmpFlt2(+1.0);
523      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
524                      &ignored);
525      addLegalFPImmediate(TmpFlt2);  // FLD1
526      TmpFlt2.changeSign();
527      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
528    }
529
530    if (!UnsafeFPMath) {
531      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
532      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
533    }
534  }
535
536  // Always use a library call for pow.
537  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
538  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
539  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
540
541  setOperationAction(ISD::FLOG, MVT::f80, Expand);
542  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
543  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
544  setOperationAction(ISD::FEXP, MVT::f80, Expand);
545  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
546
547  // First set operation action for all vector types to either promote
548  // (for widening) or expand (for scalarization). Then we will selectively
549  // turn on ones that can be effectively codegen'd.
550  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
551       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
552    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
567    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
568    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
601    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
605    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
606         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
607      setTruncStoreAction((MVT::SimpleValueType)VT,
608                          (MVT::SimpleValueType)InnerVT, Expand);
609    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
610    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
611    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
612  }
613
614  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
615  // with -msoft-float, disable use of MMX as well.
616  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
617    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass, false);
618    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false);
619    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false);
620    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass, false);
621    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false);
622
623    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
624    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
625    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
626    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
627
628    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
629    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
630    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
631    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
632
633    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
634    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
635
636    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
637    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
638    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
639    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
640    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
641    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
642    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
643
644    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
645    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
646    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
647    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
648    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
649    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
650    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
651
652    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
653    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
654    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
655    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
656    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
657    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
658    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
659
660    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
661    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
662    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
663    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
664    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
665    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
666    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
667    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
668    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
669
670    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
671    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
672    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
673    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
674    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
675
676    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
677    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
678    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
679    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
680
681    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
682    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
683    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
684    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
685
686    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
687
688    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
689    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
690    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
691    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
692    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
693    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
694    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
695
696    if (!X86ScalarSSEf64 && Subtarget->is64Bit()) {
697      setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Custom);
698      setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Custom);
699      setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Custom);
700      setOperationAction(ISD::BIT_CONVERT,        MVT::v2f32, Custom);
701      setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Custom);
702    }
703  }
704
705  if (!UseSoftFloat && Subtarget->hasSSE1()) {
706    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
707
708    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
709    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
710    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
711    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
712    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
713    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
714    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
715    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
716    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
717    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
718    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
719    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
720  }
721
722  if (!UseSoftFloat && Subtarget->hasSSE2()) {
723    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
724
725    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
726    // registers cannot be used even for integer operations.
727    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
728    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
729    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
730    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
731
732    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
733    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
734    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
735    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
736    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
737    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
738    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
739    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
740    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
741    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
742    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
743    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
744    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
745    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
746    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
747    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
748
749    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
750    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
751    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
752    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
753
754    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
755    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
756    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
757    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
758    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
759
760    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
761    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
762    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
763    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
764    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
765
766    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
767    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
768      EVT VT = (MVT::SimpleValueType)i;
769      // Do not attempt to custom lower non-power-of-2 vectors
770      if (!isPowerOf2_32(VT.getVectorNumElements()))
771        continue;
772      // Do not attempt to custom lower non-128-bit vectors
773      if (!VT.is128BitVector())
774        continue;
775      setOperationAction(ISD::BUILD_VECTOR,
776                         VT.getSimpleVT().SimpleTy, Custom);
777      setOperationAction(ISD::VECTOR_SHUFFLE,
778                         VT.getSimpleVT().SimpleTy, Custom);
779      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
780                         VT.getSimpleVT().SimpleTy, Custom);
781    }
782
783    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
784    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
785    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
786    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
787    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
788    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
789
790    if (Subtarget->is64Bit()) {
791      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
792      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
793    }
794
795    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
796    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
797      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
798      EVT VT = SVT;
799
800      // Do not attempt to promote non-128-bit vectors
801      if (!VT.is128BitVector()) {
802        continue;
803      }
804
805      setOperationAction(ISD::AND,    SVT, Promote);
806      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
807      setOperationAction(ISD::OR,     SVT, Promote);
808      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
809      setOperationAction(ISD::XOR,    SVT, Promote);
810      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
811      setOperationAction(ISD::LOAD,   SVT, Promote);
812      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
813      setOperationAction(ISD::SELECT, SVT, Promote);
814      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
815    }
816
817    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
818
819    // Custom lower v2i64 and v2f64 selects.
820    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
821    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
822    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
823    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
824
825    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
826    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
827    if (!DisableMMX && Subtarget->hasMMX()) {
828      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
829      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
830    }
831  }
832
833  if (Subtarget->hasSSE41()) {
834    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
835    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
836    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
837    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
838    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
839    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
840    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
841    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
842    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
843    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
844
845    // FIXME: Do we need to handle scalar-to-vector here?
846    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
847
848    // i8 and i16 vectors are custom , because the source register and source
849    // source memory operand types are not the same width.  f32 vectors are
850    // custom since the immediate controlling the insert encodes additional
851    // information.
852    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
853    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
854    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
855    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
856
857    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
858    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
859    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
860    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
861
862    if (Subtarget->is64Bit()) {
863      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
864      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
865    }
866  }
867
868  if (Subtarget->hasSSE42()) {
869    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
870  }
871
872  if (!UseSoftFloat && Subtarget->hasAVX()) {
873    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
874    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
875    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
876    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
877
878    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
879    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
880    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
881    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
882    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
883    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
884    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
885    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
886    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
887    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
888    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
889    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
890    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
891    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
892    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
893
894    // Operations to consider commented out -v16i16 v32i8
895    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
896    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
897    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
898    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
899    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
900    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
901    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
902    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
903    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
904    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
905    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
906    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
907    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
908    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
909
910    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
911    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
912    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
913    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
914
915    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
916    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
917    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
918    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
919    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
920
921    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
922    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
923    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
924    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
925    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
926    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
927
928#if 0
929    // Not sure we want to do this since there are no 256-bit integer
930    // operations in AVX
931
932    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
933    // This includes 256-bit vectors
934    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
935      EVT VT = (MVT::SimpleValueType)i;
936
937      // Do not attempt to custom lower non-power-of-2 vectors
938      if (!isPowerOf2_32(VT.getVectorNumElements()))
939        continue;
940
941      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
942      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
943      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
944    }
945
946    if (Subtarget->is64Bit()) {
947      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
948      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
949    }
950#endif
951
952#if 0
953    // Not sure we want to do this since there are no 256-bit integer
954    // operations in AVX
955
956    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
957    // Including 256-bit vectors
958    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
959      EVT VT = (MVT::SimpleValueType)i;
960
961      if (!VT.is256BitVector()) {
962        continue;
963      }
964      setOperationAction(ISD::AND,    VT, Promote);
965      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
966      setOperationAction(ISD::OR,     VT, Promote);
967      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
968      setOperationAction(ISD::XOR,    VT, Promote);
969      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
970      setOperationAction(ISD::LOAD,   VT, Promote);
971      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
972      setOperationAction(ISD::SELECT, VT, Promote);
973      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
974    }
975
976    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
977#endif
978  }
979
980  // We want to custom lower some of our intrinsics.
981  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
982
983  // Add/Sub/Mul with overflow operations are custom lowered.
984  setOperationAction(ISD::SADDO, MVT::i32, Custom);
985  setOperationAction(ISD::UADDO, MVT::i32, Custom);
986  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
987  setOperationAction(ISD::USUBO, MVT::i32, Custom);
988  setOperationAction(ISD::SMULO, MVT::i32, Custom);
989
990  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
991  // handle type legalization for these operations here.
992  //
993  // FIXME: We really should do custom legalization for addition and
994  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
995  // than generic legalization for 64-bit multiplication-with-overflow, though.
996  if (Subtarget->is64Bit()) {
997    setOperationAction(ISD::SADDO, MVT::i64, Custom);
998    setOperationAction(ISD::UADDO, MVT::i64, Custom);
999    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
1000    setOperationAction(ISD::USUBO, MVT::i64, Custom);
1001    setOperationAction(ISD::SMULO, MVT::i64, Custom);
1002  }
1003
1004  if (!Subtarget->is64Bit()) {
1005    // These libcalls are not available in 32-bit.
1006    setLibcallName(RTLIB::SHL_I128, 0);
1007    setLibcallName(RTLIB::SRL_I128, 0);
1008    setLibcallName(RTLIB::SRA_I128, 0);
1009  }
1010
1011  // We have target-specific dag combine patterns for the following nodes:
1012  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1013  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1014  setTargetDAGCombine(ISD::BUILD_VECTOR);
1015  setTargetDAGCombine(ISD::SELECT);
1016  setTargetDAGCombine(ISD::SHL);
1017  setTargetDAGCombine(ISD::SRA);
1018  setTargetDAGCombine(ISD::SRL);
1019  setTargetDAGCombine(ISD::OR);
1020  setTargetDAGCombine(ISD::STORE);
1021  setTargetDAGCombine(ISD::ZERO_EXTEND);
1022  if (Subtarget->is64Bit())
1023    setTargetDAGCombine(ISD::MUL);
1024
1025  computeRegisterProperties();
1026
1027  // FIXME: These should be based on subtarget info. Plus, the values should
1028  // be smaller when we are in optimizing for size mode.
1029  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1030  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1031  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1032  setPrefLoopAlignment(16);
1033  benefitFromCodePlacementOpt = true;
1034}
1035
1036
1037MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1038  return MVT::i8;
1039}
1040
1041
1042/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1043/// the desired ByVal argument alignment.
1044static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1045  if (MaxAlign == 16)
1046    return;
1047  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1048    if (VTy->getBitWidth() == 128)
1049      MaxAlign = 16;
1050  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1051    unsigned EltAlign = 0;
1052    getMaxByValAlign(ATy->getElementType(), EltAlign);
1053    if (EltAlign > MaxAlign)
1054      MaxAlign = EltAlign;
1055  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1056    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1057      unsigned EltAlign = 0;
1058      getMaxByValAlign(STy->getElementType(i), EltAlign);
1059      if (EltAlign > MaxAlign)
1060        MaxAlign = EltAlign;
1061      if (MaxAlign == 16)
1062        break;
1063    }
1064  }
1065  return;
1066}
1067
1068/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1069/// function arguments in the caller parameter area. For X86, aggregates
1070/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1071/// are at 4-byte boundaries.
1072unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1073  if (Subtarget->is64Bit()) {
1074    // Max of 8 and alignment of type.
1075    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1076    if (TyAlign > 8)
1077      return TyAlign;
1078    return 8;
1079  }
1080
1081  unsigned Align = 4;
1082  if (Subtarget->hasSSE1())
1083    getMaxByValAlign(Ty, Align);
1084  return Align;
1085}
1086
1087/// getOptimalMemOpType - Returns the target specific optimal type for load
1088/// and store operations as a result of memset, memcpy, and memmove
1089/// lowering. If DstAlign is zero that means it's safe to destination
1090/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1091/// means there isn't a need to check it against alignment requirement,
1092/// probably because the source does not need to be loaded. If
1093/// 'NonScalarIntSafe' is true, that means it's safe to return a
1094/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1095/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1096/// constant so it does not need to be loaded.
1097/// It returns EVT::Other if the type should be determined using generic
1098/// target-independent logic.
1099EVT
1100X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1101                                       unsigned DstAlign, unsigned SrcAlign,
1102                                       bool NonScalarIntSafe,
1103                                       bool MemcpyStrSrc,
1104                                       MachineFunction &MF) const {
1105  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1106  // linux.  This is because the stack realignment code can't handle certain
1107  // cases like PR2962.  This should be removed when PR2962 is fixed.
1108  const Function *F = MF.getFunction();
1109  if (NonScalarIntSafe &&
1110      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1111    if (Size >= 16 &&
1112        (Subtarget->isUnalignedMemAccessFast() ||
1113         ((DstAlign == 0 || DstAlign >= 16) &&
1114          (SrcAlign == 0 || SrcAlign >= 16))) &&
1115        Subtarget->getStackAlignment() >= 16) {
1116      if (Subtarget->hasSSE2())
1117        return MVT::v4i32;
1118      if (Subtarget->hasSSE1())
1119        return MVT::v4f32;
1120    } else if (!MemcpyStrSrc && Size >= 8 &&
1121               !Subtarget->is64Bit() &&
1122               Subtarget->getStackAlignment() >= 8 &&
1123               Subtarget->hasSSE2()) {
1124      // Do not use f64 to lower memcpy if source is string constant. It's
1125      // better to use i32 to avoid the loads.
1126      return MVT::f64;
1127    }
1128  }
1129  if (Subtarget->is64Bit() && Size >= 8)
1130    return MVT::i64;
1131  return MVT::i32;
1132}
1133
1134/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1135/// current function.  The returned value is a member of the
1136/// MachineJumpTableInfo::JTEntryKind enum.
1137unsigned X86TargetLowering::getJumpTableEncoding() const {
1138  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1139  // symbol.
1140  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1141      Subtarget->isPICStyleGOT())
1142    return MachineJumpTableInfo::EK_Custom32;
1143
1144  // Otherwise, use the normal jump table encoding heuristics.
1145  return TargetLowering::getJumpTableEncoding();
1146}
1147
1148/// getPICBaseSymbol - Return the X86-32 PIC base.
1149MCSymbol *
1150X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1151                                    MCContext &Ctx) const {
1152  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1153  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1154                               Twine(MF->getFunctionNumber())+"$pb");
1155}
1156
1157
1158const MCExpr *
1159X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1160                                             const MachineBasicBlock *MBB,
1161                                             unsigned uid,MCContext &Ctx) const{
1162  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1163         Subtarget->isPICStyleGOT());
1164  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1165  // entries.
1166  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1167                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1168}
1169
1170/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1171/// jumptable.
1172SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1173                                                    SelectionDAG &DAG) const {
1174  if (!Subtarget->is64Bit())
1175    // This doesn't have DebugLoc associated with it, but is not really the
1176    // same as a Register.
1177    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1178  return Table;
1179}
1180
1181/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1182/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1183/// MCExpr.
1184const MCExpr *X86TargetLowering::
1185getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1186                             MCContext &Ctx) const {
1187  // X86-64 uses RIP relative addressing based on the jump table label.
1188  if (Subtarget->isPICStyleRIPRel())
1189    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1190
1191  // Otherwise, the reference is relative to the PIC base.
1192  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1193}
1194
1195/// getFunctionAlignment - Return the Log2 alignment of this function.
1196unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1197  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1198}
1199
1200//===----------------------------------------------------------------------===//
1201//               Return Value Calling Convention Implementation
1202//===----------------------------------------------------------------------===//
1203
1204#include "X86GenCallingConv.inc"
1205
1206bool
1207X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1208                        const SmallVectorImpl<EVT> &OutTys,
1209                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1210                        SelectionDAG &DAG) const {
1211  SmallVector<CCValAssign, 16> RVLocs;
1212  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1213                 RVLocs, *DAG.getContext());
1214  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1215}
1216
1217SDValue
1218X86TargetLowering::LowerReturn(SDValue Chain,
1219                               CallingConv::ID CallConv, bool isVarArg,
1220                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1221                               DebugLoc dl, SelectionDAG &DAG) const {
1222  MachineFunction &MF = DAG.getMachineFunction();
1223  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1224
1225  SmallVector<CCValAssign, 16> RVLocs;
1226  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1227                 RVLocs, *DAG.getContext());
1228  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1229
1230  // Add the regs to the liveout set for the function.
1231  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1232  for (unsigned i = 0; i != RVLocs.size(); ++i)
1233    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1234      MRI.addLiveOut(RVLocs[i].getLocReg());
1235
1236  SDValue Flag;
1237
1238  SmallVector<SDValue, 6> RetOps;
1239  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1240  // Operand #1 = Bytes To Pop
1241  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1242                   MVT::i16));
1243
1244  // Copy the result values into the output registers.
1245  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1246    CCValAssign &VA = RVLocs[i];
1247    assert(VA.isRegLoc() && "Can only return in registers!");
1248    SDValue ValToCopy = Outs[i].Val;
1249
1250    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1251    // the RET instruction and handled by the FP Stackifier.
1252    if (VA.getLocReg() == X86::ST0 ||
1253        VA.getLocReg() == X86::ST1) {
1254      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1255      // change the value to the FP stack register class.
1256      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1257        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1258      RetOps.push_back(ValToCopy);
1259      // Don't emit a copytoreg.
1260      continue;
1261    }
1262
1263    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1264    // which is returned in RAX / RDX.
1265    if (Subtarget->is64Bit()) {
1266      EVT ValVT = ValToCopy.getValueType();
1267      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1268        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1269        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1270          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1271      }
1272    }
1273
1274    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1275    Flag = Chain.getValue(1);
1276  }
1277
1278  // The x86-64 ABI for returning structs by value requires that we copy
1279  // the sret argument into %rax for the return. We saved the argument into
1280  // a virtual register in the entry block, so now we copy the value out
1281  // and into %rax.
1282  if (Subtarget->is64Bit() &&
1283      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1284    MachineFunction &MF = DAG.getMachineFunction();
1285    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1286    unsigned Reg = FuncInfo->getSRetReturnReg();
1287    assert(Reg &&
1288           "SRetReturnReg should have been set in LowerFormalArguments().");
1289    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1290
1291    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1292    Flag = Chain.getValue(1);
1293
1294    // RAX now acts like a return value.
1295    MRI.addLiveOut(X86::RAX);
1296  }
1297
1298  RetOps[0] = Chain;  // Update chain.
1299
1300  // Add the flag if we have it.
1301  if (Flag.getNode())
1302    RetOps.push_back(Flag);
1303
1304  return DAG.getNode(X86ISD::RET_FLAG, dl,
1305                     MVT::Other, &RetOps[0], RetOps.size());
1306}
1307
1308/// LowerCallResult - Lower the result values of a call into the
1309/// appropriate copies out of appropriate physical registers.
1310///
1311SDValue
1312X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1313                                   CallingConv::ID CallConv, bool isVarArg,
1314                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1315                                   DebugLoc dl, SelectionDAG &DAG,
1316                                   SmallVectorImpl<SDValue> &InVals) const {
1317
1318  // Assign locations to each value returned by this call.
1319  SmallVector<CCValAssign, 16> RVLocs;
1320  bool Is64Bit = Subtarget->is64Bit();
1321  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1322                 RVLocs, *DAG.getContext());
1323  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1324
1325  // Copy all of the result registers out of their specified physreg.
1326  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1327    CCValAssign &VA = RVLocs[i];
1328    EVT CopyVT = VA.getValVT();
1329
1330    // If this is x86-64, and we disabled SSE, we can't return FP values
1331    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1332        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1333      report_fatal_error("SSE register return with SSE disabled");
1334    }
1335
1336    // If this is a call to a function that returns an fp value on the floating
1337    // point stack, but where we prefer to use the value in xmm registers, copy
1338    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1339    if ((VA.getLocReg() == X86::ST0 ||
1340         VA.getLocReg() == X86::ST1) &&
1341        isScalarFPTypeInSSEReg(VA.getValVT())) {
1342      CopyVT = MVT::f80;
1343    }
1344
1345    SDValue Val;
1346    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1347      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1348      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1349        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1350                                   MVT::v2i64, InFlag).getValue(1);
1351        Val = Chain.getValue(0);
1352        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1353                          Val, DAG.getConstant(0, MVT::i64));
1354      } else {
1355        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1356                                   MVT::i64, InFlag).getValue(1);
1357        Val = Chain.getValue(0);
1358      }
1359      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1360    } else {
1361      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1362                                 CopyVT, InFlag).getValue(1);
1363      Val = Chain.getValue(0);
1364    }
1365    InFlag = Chain.getValue(2);
1366
1367    if (CopyVT != VA.getValVT()) {
1368      // Round the F80 the right size, which also moves to the appropriate xmm
1369      // register.
1370      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1371                        // This truncation won't change the value.
1372                        DAG.getIntPtrConstant(1));
1373    }
1374
1375    InVals.push_back(Val);
1376  }
1377
1378  return Chain;
1379}
1380
1381
1382//===----------------------------------------------------------------------===//
1383//                C & StdCall & Fast Calling Convention implementation
1384//===----------------------------------------------------------------------===//
1385//  StdCall calling convention seems to be standard for many Windows' API
1386//  routines and around. It differs from C calling convention just a little:
1387//  callee should clean up the stack, not caller. Symbols should be also
1388//  decorated in some fancy way :) It doesn't support any vector arguments.
1389//  For info on fast calling convention see Fast Calling Convention (tail call)
1390//  implementation LowerX86_32FastCCCallTo.
1391
1392/// CallIsStructReturn - Determines whether a call uses struct return
1393/// semantics.
1394static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1395  if (Outs.empty())
1396    return false;
1397
1398  return Outs[0].Flags.isSRet();
1399}
1400
1401/// ArgsAreStructReturn - Determines whether a function uses struct
1402/// return semantics.
1403static bool
1404ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1405  if (Ins.empty())
1406    return false;
1407
1408  return Ins[0].Flags.isSRet();
1409}
1410
1411/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1412/// given CallingConvention value.
1413CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1414  if (Subtarget->is64Bit()) {
1415    if (CC == CallingConv::GHC)
1416      return CC_X86_64_GHC;
1417    else if (Subtarget->isTargetWin64())
1418      return CC_X86_Win64_C;
1419    else
1420      return CC_X86_64_C;
1421  }
1422
1423  if (CC == CallingConv::X86_FastCall)
1424    return CC_X86_32_FastCall;
1425  else if (CC == CallingConv::X86_ThisCall)
1426    return CC_X86_32_ThisCall;
1427  else if (CC == CallingConv::Fast)
1428    return CC_X86_32_FastCC;
1429  else if (CC == CallingConv::GHC)
1430    return CC_X86_32_GHC;
1431  else
1432    return CC_X86_32_C;
1433}
1434
1435/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1436/// by "Src" to address "Dst" with size and alignment information specified by
1437/// the specific parameter attribute. The copy will be passed as a byval
1438/// function parameter.
1439static SDValue
1440CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1441                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1442                          DebugLoc dl) {
1443  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1444  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1445                       /*isVolatile*/false, /*AlwaysInline=*/true,
1446                       NULL, 0, NULL, 0);
1447}
1448
1449/// IsTailCallConvention - Return true if the calling convention is one that
1450/// supports tail call optimization.
1451static bool IsTailCallConvention(CallingConv::ID CC) {
1452  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1453}
1454
1455/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1456/// a tailcall target by changing its ABI.
1457static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1458  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1459}
1460
1461SDValue
1462X86TargetLowering::LowerMemArgument(SDValue Chain,
1463                                    CallingConv::ID CallConv,
1464                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1465                                    DebugLoc dl, SelectionDAG &DAG,
1466                                    const CCValAssign &VA,
1467                                    MachineFrameInfo *MFI,
1468                                    unsigned i) const {
1469  // Create the nodes corresponding to a load from this parameter slot.
1470  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1471  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1472  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1473  EVT ValVT;
1474
1475  // If value is passed by pointer we have address passed instead of the value
1476  // itself.
1477  if (VA.getLocInfo() == CCValAssign::Indirect)
1478    ValVT = VA.getLocVT();
1479  else
1480    ValVT = VA.getValVT();
1481
1482  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1483  // changed with more analysis.
1484  // In case of tail call optimization mark all arguments mutable. Since they
1485  // could be overwritten by lowering of arguments in case of a tail call.
1486  if (Flags.isByVal()) {
1487    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1488                                    VA.getLocMemOffset(), isImmutable);
1489    return DAG.getFrameIndex(FI, getPointerTy());
1490  } else {
1491    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1492                                    VA.getLocMemOffset(), isImmutable);
1493    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1494    return DAG.getLoad(ValVT, dl, Chain, FIN,
1495                       PseudoSourceValue::getFixedStack(FI), 0,
1496                       false, false, 0);
1497  }
1498}
1499
1500SDValue
1501X86TargetLowering::LowerFormalArguments(SDValue Chain,
1502                                        CallingConv::ID CallConv,
1503                                        bool isVarArg,
1504                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1505                                        DebugLoc dl,
1506                                        SelectionDAG &DAG,
1507                                        SmallVectorImpl<SDValue> &InVals)
1508                                          const {
1509  MachineFunction &MF = DAG.getMachineFunction();
1510  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1511
1512  const Function* Fn = MF.getFunction();
1513  if (Fn->hasExternalLinkage() &&
1514      Subtarget->isTargetCygMing() &&
1515      Fn->getName() == "main")
1516    FuncInfo->setForceFramePointer(true);
1517
1518  MachineFrameInfo *MFI = MF.getFrameInfo();
1519  bool Is64Bit = Subtarget->is64Bit();
1520  bool IsWin64 = Subtarget->isTargetWin64();
1521
1522  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1523         "Var args not supported with calling convention fastcc or ghc");
1524
1525  // Assign locations to all of the incoming arguments.
1526  SmallVector<CCValAssign, 16> ArgLocs;
1527  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1528                 ArgLocs, *DAG.getContext());
1529  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1530
1531  unsigned LastVal = ~0U;
1532  SDValue ArgValue;
1533  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1534    CCValAssign &VA = ArgLocs[i];
1535    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1536    // places.
1537    assert(VA.getValNo() != LastVal &&
1538           "Don't support value assigned to multiple locs yet");
1539    LastVal = VA.getValNo();
1540
1541    if (VA.isRegLoc()) {
1542      EVT RegVT = VA.getLocVT();
1543      TargetRegisterClass *RC = NULL;
1544      if (RegVT == MVT::i32)
1545        RC = X86::GR32RegisterClass;
1546      else if (Is64Bit && RegVT == MVT::i64)
1547        RC = X86::GR64RegisterClass;
1548      else if (RegVT == MVT::f32)
1549        RC = X86::FR32RegisterClass;
1550      else if (RegVT == MVT::f64)
1551        RC = X86::FR64RegisterClass;
1552      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1553        RC = X86::VR128RegisterClass;
1554      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1555        RC = X86::VR64RegisterClass;
1556      else
1557        llvm_unreachable("Unknown argument type!");
1558
1559      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1560      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1561
1562      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1563      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1564      // right size.
1565      if (VA.getLocInfo() == CCValAssign::SExt)
1566        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1567                               DAG.getValueType(VA.getValVT()));
1568      else if (VA.getLocInfo() == CCValAssign::ZExt)
1569        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1570                               DAG.getValueType(VA.getValVT()));
1571      else if (VA.getLocInfo() == CCValAssign::BCvt)
1572        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1573
1574      if (VA.isExtInLoc()) {
1575        // Handle MMX values passed in XMM regs.
1576        if (RegVT.isVector()) {
1577          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1578                                 ArgValue, DAG.getConstant(0, MVT::i64));
1579          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1580        } else
1581          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1582      }
1583    } else {
1584      assert(VA.isMemLoc());
1585      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1586    }
1587
1588    // If value is passed via pointer - do a load.
1589    if (VA.getLocInfo() == CCValAssign::Indirect)
1590      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1591                             false, false, 0);
1592
1593    InVals.push_back(ArgValue);
1594  }
1595
1596  // The x86-64 ABI for returning structs by value requires that we copy
1597  // the sret argument into %rax for the return. Save the argument into
1598  // a virtual register so that we can access it from the return points.
1599  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1600    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1601    unsigned Reg = FuncInfo->getSRetReturnReg();
1602    if (!Reg) {
1603      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1604      FuncInfo->setSRetReturnReg(Reg);
1605    }
1606    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1607    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1608  }
1609
1610  unsigned StackSize = CCInfo.getNextStackOffset();
1611  // Align stack specially for tail calls.
1612  if (FuncIsMadeTailCallSafe(CallConv))
1613    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1614
1615  // If the function takes variable number of arguments, make a frame index for
1616  // the start of the first vararg value... for expansion of llvm.va_start.
1617  if (isVarArg) {
1618    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1619                    CallConv != CallingConv::X86_ThisCall)) {
1620      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1621    }
1622    if (Is64Bit) {
1623      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1624
1625      // FIXME: We should really autogenerate these arrays
1626      static const unsigned GPR64ArgRegsWin64[] = {
1627        X86::RCX, X86::RDX, X86::R8,  X86::R9
1628      };
1629      static const unsigned XMMArgRegsWin64[] = {
1630        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1631      };
1632      static const unsigned GPR64ArgRegs64Bit[] = {
1633        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1634      };
1635      static const unsigned XMMArgRegs64Bit[] = {
1636        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1637        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1638      };
1639      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1640
1641      if (IsWin64) {
1642        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1643        GPR64ArgRegs = GPR64ArgRegsWin64;
1644        XMMArgRegs = XMMArgRegsWin64;
1645      } else {
1646        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1647        GPR64ArgRegs = GPR64ArgRegs64Bit;
1648        XMMArgRegs = XMMArgRegs64Bit;
1649      }
1650      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1651                                                       TotalNumIntRegs);
1652      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1653                                                       TotalNumXMMRegs);
1654
1655      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1656      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1657             "SSE register cannot be used when SSE is disabled!");
1658      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1659             "SSE register cannot be used when SSE is disabled!");
1660      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1661        // Kernel mode asks for SSE to be disabled, so don't push them
1662        // on the stack.
1663        TotalNumXMMRegs = 0;
1664
1665      // For X86-64, if there are vararg parameters that are passed via
1666      // registers, then we must store them to their spots on the stack so they
1667      // may be loaded by deferencing the result of va_next.
1668      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1669      FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1670      FuncInfo->setRegSaveFrameIndex(
1671        MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1672                               false));
1673
1674      // Store the integer parameter registers.
1675      SmallVector<SDValue, 8> MemOps;
1676      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1677                                        getPointerTy());
1678      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1679      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1680        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1681                                  DAG.getIntPtrConstant(Offset));
1682        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1683                                     X86::GR64RegisterClass);
1684        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1685        SDValue Store =
1686          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1687                       PseudoSourceValue::getFixedStack(
1688                         FuncInfo->getRegSaveFrameIndex()),
1689                       Offset, false, false, 0);
1690        MemOps.push_back(Store);
1691        Offset += 8;
1692      }
1693
1694      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1695        // Now store the XMM (fp + vector) parameter registers.
1696        SmallVector<SDValue, 11> SaveXMMOps;
1697        SaveXMMOps.push_back(Chain);
1698
1699        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1700        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1701        SaveXMMOps.push_back(ALVal);
1702
1703        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1704                               FuncInfo->getRegSaveFrameIndex()));
1705        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1706                               FuncInfo->getVarArgsFPOffset()));
1707
1708        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1709          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1710                                       X86::VR128RegisterClass);
1711          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1712          SaveXMMOps.push_back(Val);
1713        }
1714        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1715                                     MVT::Other,
1716                                     &SaveXMMOps[0], SaveXMMOps.size()));
1717      }
1718
1719      if (!MemOps.empty())
1720        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1721                            &MemOps[0], MemOps.size());
1722    }
1723  }
1724
1725  // Some CCs need callee pop.
1726  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1727    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1728  } else {
1729    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1730    // If this is an sret function, the return should pop the hidden pointer.
1731    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1732      FuncInfo->setBytesToPopOnReturn(4);
1733  }
1734
1735  if (!Is64Bit) {
1736    // RegSaveFrameIndex is X86-64 only.
1737    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1738    if (CallConv == CallingConv::X86_FastCall ||
1739        CallConv == CallingConv::X86_ThisCall)
1740      // fastcc functions can't have varargs.
1741      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1742  }
1743
1744  return Chain;
1745}
1746
1747SDValue
1748X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1749                                    SDValue StackPtr, SDValue Arg,
1750                                    DebugLoc dl, SelectionDAG &DAG,
1751                                    const CCValAssign &VA,
1752                                    ISD::ArgFlagsTy Flags) const {
1753  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1754  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1755  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1756  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1757  if (Flags.isByVal()) {
1758    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1759  }
1760  return DAG.getStore(Chain, dl, Arg, PtrOff,
1761                      PseudoSourceValue::getStack(), LocMemOffset,
1762                      false, false, 0);
1763}
1764
1765/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1766/// optimization is performed and it is required.
1767SDValue
1768X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1769                                           SDValue &OutRetAddr, SDValue Chain,
1770                                           bool IsTailCall, bool Is64Bit,
1771                                           int FPDiff, DebugLoc dl) const {
1772  // Adjust the Return address stack slot.
1773  EVT VT = getPointerTy();
1774  OutRetAddr = getReturnAddressFrameIndex(DAG);
1775
1776  // Load the "old" Return address.
1777  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1778  return SDValue(OutRetAddr.getNode(), 1);
1779}
1780
1781/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1782/// optimization is performed and it is required (FPDiff!=0).
1783static SDValue
1784EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1785                         SDValue Chain, SDValue RetAddrFrIdx,
1786                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1787  // Store the return address to the appropriate stack slot.
1788  if (!FPDiff) return Chain;
1789  // Calculate the new stack slot for the return address.
1790  int SlotSize = Is64Bit ? 8 : 4;
1791  int NewReturnAddrFI =
1792    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1793  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1794  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1795  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1796                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1797                       false, false, 0);
1798  return Chain;
1799}
1800
1801SDValue
1802X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1803                             CallingConv::ID CallConv, bool isVarArg,
1804                             bool &isTailCall,
1805                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1806                             const SmallVectorImpl<ISD::InputArg> &Ins,
1807                             DebugLoc dl, SelectionDAG &DAG,
1808                             SmallVectorImpl<SDValue> &InVals) const {
1809  MachineFunction &MF = DAG.getMachineFunction();
1810  bool Is64Bit        = Subtarget->is64Bit();
1811  bool IsStructRet    = CallIsStructReturn(Outs);
1812  bool IsSibcall      = false;
1813
1814  if (isTailCall) {
1815    // Check if it's really possible to do a tail call.
1816    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1817                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1818                                                   Outs, Ins, DAG);
1819
1820    // Sibcalls are automatically detected tailcalls which do not require
1821    // ABI changes.
1822    if (!GuaranteedTailCallOpt && isTailCall)
1823      IsSibcall = true;
1824
1825    if (isTailCall)
1826      ++NumTailCalls;
1827  }
1828
1829  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1830         "Var args not supported with calling convention fastcc or ghc");
1831
1832  // Analyze operands of the call, assigning locations to each operand.
1833  SmallVector<CCValAssign, 16> ArgLocs;
1834  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1835                 ArgLocs, *DAG.getContext());
1836  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1837
1838  // Get a count of how many bytes are to be pushed on the stack.
1839  unsigned NumBytes = CCInfo.getNextStackOffset();
1840  if (IsSibcall)
1841    // This is a sibcall. The memory operands are available in caller's
1842    // own caller's stack.
1843    NumBytes = 0;
1844  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1845    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1846
1847  int FPDiff = 0;
1848  if (isTailCall && !IsSibcall) {
1849    // Lower arguments at fp - stackoffset + fpdiff.
1850    unsigned NumBytesCallerPushed =
1851      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1852    FPDiff = NumBytesCallerPushed - NumBytes;
1853
1854    // Set the delta of movement of the returnaddr stackslot.
1855    // But only set if delta is greater than previous delta.
1856    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1857      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1858  }
1859
1860  if (!IsSibcall)
1861    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1862
1863  SDValue RetAddrFrIdx;
1864  // Load return adress for tail calls.
1865  if (isTailCall && FPDiff)
1866    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1867                                    Is64Bit, FPDiff, dl);
1868
1869  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1870  SmallVector<SDValue, 8> MemOpChains;
1871  SDValue StackPtr;
1872
1873  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1874  // of tail call optimization arguments are handle later.
1875  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1876    CCValAssign &VA = ArgLocs[i];
1877    EVT RegVT = VA.getLocVT();
1878    SDValue Arg = Outs[i].Val;
1879    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1880    bool isByVal = Flags.isByVal();
1881
1882    // Promote the value if needed.
1883    switch (VA.getLocInfo()) {
1884    default: llvm_unreachable("Unknown loc info!");
1885    case CCValAssign::Full: break;
1886    case CCValAssign::SExt:
1887      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1888      break;
1889    case CCValAssign::ZExt:
1890      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1891      break;
1892    case CCValAssign::AExt:
1893      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1894        // Special case: passing MMX values in XMM registers.
1895        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1896        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1897        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1898      } else
1899        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1900      break;
1901    case CCValAssign::BCvt:
1902      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1903      break;
1904    case CCValAssign::Indirect: {
1905      // Store the argument.
1906      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1907      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1908      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1909                           PseudoSourceValue::getFixedStack(FI), 0,
1910                           false, false, 0);
1911      Arg = SpillSlot;
1912      break;
1913    }
1914    }
1915
1916    if (VA.isRegLoc()) {
1917      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1918    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1919      assert(VA.isMemLoc());
1920      if (StackPtr.getNode() == 0)
1921        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1922      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1923                                             dl, DAG, VA, Flags));
1924    }
1925  }
1926
1927  if (!MemOpChains.empty())
1928    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1929                        &MemOpChains[0], MemOpChains.size());
1930
1931  // Build a sequence of copy-to-reg nodes chained together with token chain
1932  // and flag operands which copy the outgoing args into registers.
1933  SDValue InFlag;
1934  // Tail call byval lowering might overwrite argument registers so in case of
1935  // tail call optimization the copies to registers are lowered later.
1936  if (!isTailCall)
1937    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1938      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1939                               RegsToPass[i].second, InFlag);
1940      InFlag = Chain.getValue(1);
1941    }
1942
1943  if (Subtarget->isPICStyleGOT()) {
1944    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1945    // GOT pointer.
1946    if (!isTailCall) {
1947      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1948                               DAG.getNode(X86ISD::GlobalBaseReg,
1949                                           DebugLoc(), getPointerTy()),
1950                               InFlag);
1951      InFlag = Chain.getValue(1);
1952    } else {
1953      // If we are tail calling and generating PIC/GOT style code load the
1954      // address of the callee into ECX. The value in ecx is used as target of
1955      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1956      // for tail calls on PIC/GOT architectures. Normally we would just put the
1957      // address of GOT into ebx and then call target@PLT. But for tail calls
1958      // ebx would be restored (since ebx is callee saved) before jumping to the
1959      // target@PLT.
1960
1961      // Note: The actual moving to ECX is done further down.
1962      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1963      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1964          !G->getGlobal()->hasProtectedVisibility())
1965        Callee = LowerGlobalAddress(Callee, DAG);
1966      else if (isa<ExternalSymbolSDNode>(Callee))
1967        Callee = LowerExternalSymbol(Callee, DAG);
1968    }
1969  }
1970
1971  if (Is64Bit && isVarArg) {
1972    // From AMD64 ABI document:
1973    // For calls that may call functions that use varargs or stdargs
1974    // (prototype-less calls or calls to functions containing ellipsis (...) in
1975    // the declaration) %al is used as hidden argument to specify the number
1976    // of SSE registers used. The contents of %al do not need to match exactly
1977    // the number of registers, but must be an ubound on the number of SSE
1978    // registers used and is in the range 0 - 8 inclusive.
1979
1980    // FIXME: Verify this on Win64
1981    // Count the number of XMM registers allocated.
1982    static const unsigned XMMArgRegs[] = {
1983      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1984      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1985    };
1986    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1987    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1988           && "SSE registers cannot be used when SSE is disabled");
1989
1990    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1991                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1992    InFlag = Chain.getValue(1);
1993  }
1994
1995
1996  // For tail calls lower the arguments to the 'real' stack slot.
1997  if (isTailCall) {
1998    // Force all the incoming stack arguments to be loaded from the stack
1999    // before any new outgoing arguments are stored to the stack, because the
2000    // outgoing stack slots may alias the incoming argument stack slots, and
2001    // the alias isn't otherwise explicit. This is slightly more conservative
2002    // than necessary, because it means that each store effectively depends
2003    // on every argument instead of just those arguments it would clobber.
2004    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2005
2006    SmallVector<SDValue, 8> MemOpChains2;
2007    SDValue FIN;
2008    int FI = 0;
2009    // Do not flag preceeding copytoreg stuff together with the following stuff.
2010    InFlag = SDValue();
2011    if (GuaranteedTailCallOpt) {
2012      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2013        CCValAssign &VA = ArgLocs[i];
2014        if (VA.isRegLoc())
2015          continue;
2016        assert(VA.isMemLoc());
2017        SDValue Arg = Outs[i].Val;
2018        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2019        // Create frame index.
2020        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2021        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2022        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2023        FIN = DAG.getFrameIndex(FI, getPointerTy());
2024
2025        if (Flags.isByVal()) {
2026          // Copy relative to framepointer.
2027          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2028          if (StackPtr.getNode() == 0)
2029            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2030                                          getPointerTy());
2031          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2032
2033          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2034                                                           ArgChain,
2035                                                           Flags, DAG, dl));
2036        } else {
2037          // Store relative to framepointer.
2038          MemOpChains2.push_back(
2039            DAG.getStore(ArgChain, dl, Arg, FIN,
2040                         PseudoSourceValue::getFixedStack(FI), 0,
2041                         false, false, 0));
2042        }
2043      }
2044    }
2045
2046    if (!MemOpChains2.empty())
2047      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2048                          &MemOpChains2[0], MemOpChains2.size());
2049
2050    // Copy arguments to their registers.
2051    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2052      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2053                               RegsToPass[i].second, InFlag);
2054      InFlag = Chain.getValue(1);
2055    }
2056    InFlag =SDValue();
2057
2058    // Store the return address to the appropriate stack slot.
2059    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2060                                     FPDiff, dl);
2061  }
2062
2063  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2064    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2065    // In the 64-bit large code model, we have to make all calls
2066    // through a register, since the call instruction's 32-bit
2067    // pc-relative offset may not be large enough to hold the whole
2068    // address.
2069  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2070    // If the callee is a GlobalAddress node (quite common, every direct call
2071    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2072    // it.
2073
2074    // We should use extra load for direct calls to dllimported functions in
2075    // non-JIT mode.
2076    const GlobalValue *GV = G->getGlobal();
2077    if (!GV->hasDLLImportLinkage()) {
2078      unsigned char OpFlags = 0;
2079
2080      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2081      // external symbols most go through the PLT in PIC mode.  If the symbol
2082      // has hidden or protected visibility, or if it is static or local, then
2083      // we don't need to use the PLT - we can directly call it.
2084      if (Subtarget->isTargetELF() &&
2085          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2086          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2087        OpFlags = X86II::MO_PLT;
2088      } else if (Subtarget->isPICStyleStubAny() &&
2089               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2090               Subtarget->getDarwinVers() < 9) {
2091        // PC-relative references to external symbols should go through $stub,
2092        // unless we're building with the leopard linker or later, which
2093        // automatically synthesizes these stubs.
2094        OpFlags = X86II::MO_DARWIN_STUB;
2095      }
2096
2097      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
2098                                          G->getOffset(), OpFlags);
2099    }
2100  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2101    unsigned char OpFlags = 0;
2102
2103    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2104    // symbols should go through the PLT.
2105    if (Subtarget->isTargetELF() &&
2106        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2107      OpFlags = X86II::MO_PLT;
2108    } else if (Subtarget->isPICStyleStubAny() &&
2109             Subtarget->getDarwinVers() < 9) {
2110      // PC-relative references to external symbols should go through $stub,
2111      // unless we're building with the leopard linker or later, which
2112      // automatically synthesizes these stubs.
2113      OpFlags = X86II::MO_DARWIN_STUB;
2114    }
2115
2116    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2117                                         OpFlags);
2118  }
2119
2120  // Returns a chain & a flag for retval copy to use.
2121  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2122  SmallVector<SDValue, 8> Ops;
2123
2124  if (!IsSibcall && isTailCall) {
2125    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2126                           DAG.getIntPtrConstant(0, true), InFlag);
2127    InFlag = Chain.getValue(1);
2128  }
2129
2130  Ops.push_back(Chain);
2131  Ops.push_back(Callee);
2132
2133  if (isTailCall)
2134    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2135
2136  // Add argument registers to the end of the list so that they are known live
2137  // into the call.
2138  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2139    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2140                                  RegsToPass[i].second.getValueType()));
2141
2142  // Add an implicit use GOT pointer in EBX.
2143  if (!isTailCall && Subtarget->isPICStyleGOT())
2144    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2145
2146  // Add an implicit use of AL for x86 vararg functions.
2147  if (Is64Bit && isVarArg)
2148    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2149
2150  if (InFlag.getNode())
2151    Ops.push_back(InFlag);
2152
2153  if (isTailCall) {
2154    // We used to do:
2155    //// If this is the first return lowered for this function, add the regs
2156    //// to the liveout set for the function.
2157    // This isn't right, although it's probably harmless on x86; liveouts
2158    // should be computed from returns not tail calls.  Consider a void
2159    // function making a tail call to a function returning int.
2160    return DAG.getNode(X86ISD::TC_RETURN, dl,
2161                       NodeTys, &Ops[0], Ops.size());
2162  }
2163
2164  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2165  InFlag = Chain.getValue(1);
2166
2167  // Create the CALLSEQ_END node.
2168  unsigned NumBytesForCalleeToPush;
2169  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2170    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2171  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2172    // If this is a call to a struct-return function, the callee
2173    // pops the hidden struct pointer, so we have to push it back.
2174    // This is common for Darwin/X86, Linux & Mingw32 targets.
2175    NumBytesForCalleeToPush = 4;
2176  else
2177    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2178
2179  // Returns a flag for retval copy to use.
2180  if (!IsSibcall) {
2181    Chain = DAG.getCALLSEQ_END(Chain,
2182                               DAG.getIntPtrConstant(NumBytes, true),
2183                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2184                                                     true),
2185                               InFlag);
2186    InFlag = Chain.getValue(1);
2187  }
2188
2189  // Handle result values, copying them out of physregs into vregs that we
2190  // return.
2191  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2192                         Ins, dl, DAG, InVals);
2193}
2194
2195
2196//===----------------------------------------------------------------------===//
2197//                Fast Calling Convention (tail call) implementation
2198//===----------------------------------------------------------------------===//
2199
2200//  Like std call, callee cleans arguments, convention except that ECX is
2201//  reserved for storing the tail called function address. Only 2 registers are
2202//  free for argument passing (inreg). Tail call optimization is performed
2203//  provided:
2204//                * tailcallopt is enabled
2205//                * caller/callee are fastcc
2206//  On X86_64 architecture with GOT-style position independent code only local
2207//  (within module) calls are supported at the moment.
2208//  To keep the stack aligned according to platform abi the function
2209//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2210//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2211//  If a tail called function callee has more arguments than the caller the
2212//  caller needs to make sure that there is room to move the RETADDR to. This is
2213//  achieved by reserving an area the size of the argument delta right after the
2214//  original REtADDR, but before the saved framepointer or the spilled registers
2215//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2216//  stack layout:
2217//    arg1
2218//    arg2
2219//    RETADDR
2220//    [ new RETADDR
2221//      move area ]
2222//    (possible EBP)
2223//    ESI
2224//    EDI
2225//    local1 ..
2226
2227/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2228/// for a 16 byte align requirement.
2229unsigned
2230X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2231                                               SelectionDAG& DAG) const {
2232  MachineFunction &MF = DAG.getMachineFunction();
2233  const TargetMachine &TM = MF.getTarget();
2234  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2235  unsigned StackAlignment = TFI.getStackAlignment();
2236  uint64_t AlignMask = StackAlignment - 1;
2237  int64_t Offset = StackSize;
2238  uint64_t SlotSize = TD->getPointerSize();
2239  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2240    // Number smaller than 12 so just add the difference.
2241    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2242  } else {
2243    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2244    Offset = ((~AlignMask) & Offset) + StackAlignment +
2245      (StackAlignment-SlotSize);
2246  }
2247  return Offset;
2248}
2249
2250/// MatchingStackOffset - Return true if the given stack call argument is
2251/// already available in the same position (relatively) of the caller's
2252/// incoming argument stack.
2253static
2254bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2255                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2256                         const X86InstrInfo *TII) {
2257  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2258  int FI = INT_MAX;
2259  if (Arg.getOpcode() == ISD::CopyFromReg) {
2260    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2261    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2262      return false;
2263    MachineInstr *Def = MRI->getVRegDef(VR);
2264    if (!Def)
2265      return false;
2266    if (!Flags.isByVal()) {
2267      if (!TII->isLoadFromStackSlot(Def, FI))
2268        return false;
2269    } else {
2270      unsigned Opcode = Def->getOpcode();
2271      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2272          Def->getOperand(1).isFI()) {
2273        FI = Def->getOperand(1).getIndex();
2274        Bytes = Flags.getByValSize();
2275      } else
2276        return false;
2277    }
2278  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2279    if (Flags.isByVal())
2280      // ByVal argument is passed in as a pointer but it's now being
2281      // dereferenced. e.g.
2282      // define @foo(%struct.X* %A) {
2283      //   tail call @bar(%struct.X* byval %A)
2284      // }
2285      return false;
2286    SDValue Ptr = Ld->getBasePtr();
2287    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2288    if (!FINode)
2289      return false;
2290    FI = FINode->getIndex();
2291  } else
2292    return false;
2293
2294  assert(FI != INT_MAX);
2295  if (!MFI->isFixedObjectIndex(FI))
2296    return false;
2297  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2298}
2299
2300/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2301/// for tail call optimization. Targets which want to do tail call
2302/// optimization should implement this function.
2303bool
2304X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2305                                                     CallingConv::ID CalleeCC,
2306                                                     bool isVarArg,
2307                                                     bool isCalleeStructRet,
2308                                                     bool isCallerStructRet,
2309                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2310                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2311                                                     SelectionDAG& DAG) const {
2312  if (!IsTailCallConvention(CalleeCC) &&
2313      CalleeCC != CallingConv::C)
2314    return false;
2315
2316  // If -tailcallopt is specified, make fastcc functions tail-callable.
2317  const MachineFunction &MF = DAG.getMachineFunction();
2318  const Function *CallerF = DAG.getMachineFunction().getFunction();
2319  CallingConv::ID CallerCC = CallerF->getCallingConv();
2320  bool CCMatch = CallerCC == CalleeCC;
2321
2322  if (GuaranteedTailCallOpt) {
2323    if (IsTailCallConvention(CalleeCC) && CCMatch)
2324      return true;
2325    return false;
2326  }
2327
2328  // Look for obvious safe cases to perform tail call optimization that do not
2329  // require ABI changes. This is what gcc calls sibcall.
2330
2331  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2332  // emit a special epilogue.
2333  if (RegInfo->needsStackRealignment(MF))
2334    return false;
2335
2336  // Do not sibcall optimize vararg calls unless the call site is not passing any
2337  // arguments.
2338  if (isVarArg && !Outs.empty())
2339    return false;
2340
2341  // Also avoid sibcall optimization if either caller or callee uses struct
2342  // return semantics.
2343  if (isCalleeStructRet || isCallerStructRet)
2344    return false;
2345
2346  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2347  // Therefore if it's not used by the call it is not safe to optimize this into
2348  // a sibcall.
2349  bool Unused = false;
2350  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2351    if (!Ins[i].Used) {
2352      Unused = true;
2353      break;
2354    }
2355  }
2356  if (Unused) {
2357    SmallVector<CCValAssign, 16> RVLocs;
2358    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2359                   RVLocs, *DAG.getContext());
2360    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2361    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2362      CCValAssign &VA = RVLocs[i];
2363      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2364        return false;
2365    }
2366  }
2367
2368  // If the calling conventions do not match, then we'd better make sure the
2369  // results are returned in the same way as what the caller expects.
2370  if (!CCMatch) {
2371    SmallVector<CCValAssign, 16> RVLocs1;
2372    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2373                    RVLocs1, *DAG.getContext());
2374    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2375
2376    SmallVector<CCValAssign, 16> RVLocs2;
2377    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2378                    RVLocs2, *DAG.getContext());
2379    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2380
2381    if (RVLocs1.size() != RVLocs2.size())
2382      return false;
2383    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2384      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2385        return false;
2386      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2387        return false;
2388      if (RVLocs1[i].isRegLoc()) {
2389        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2390          return false;
2391      } else {
2392        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2393          return false;
2394      }
2395    }
2396  }
2397
2398  // If the callee takes no arguments then go on to check the results of the
2399  // call.
2400  if (!Outs.empty()) {
2401    // Check if stack adjustment is needed. For now, do not do this if any
2402    // argument is passed on the stack.
2403    SmallVector<CCValAssign, 16> ArgLocs;
2404    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2405                   ArgLocs, *DAG.getContext());
2406    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2407    if (CCInfo.getNextStackOffset()) {
2408      MachineFunction &MF = DAG.getMachineFunction();
2409      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2410        return false;
2411      if (Subtarget->isTargetWin64())
2412        // Win64 ABI has additional complications.
2413        return false;
2414
2415      // Check if the arguments are already laid out in the right way as
2416      // the caller's fixed stack objects.
2417      MachineFrameInfo *MFI = MF.getFrameInfo();
2418      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2419      const X86InstrInfo *TII =
2420        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2421      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2422        CCValAssign &VA = ArgLocs[i];
2423        SDValue Arg = Outs[i].Val;
2424        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2425        if (VA.getLocInfo() == CCValAssign::Indirect)
2426          return false;
2427        if (!VA.isRegLoc()) {
2428          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2429                                   MFI, MRI, TII))
2430            return false;
2431        }
2432      }
2433    }
2434
2435    // If the tailcall address may be in a register, then make sure it's
2436    // possible to register allocate for it. In 32-bit, the call address can
2437    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2438    // callee-saved registers are restored. In 64-bit, it's RAX, RCX, RDX, RSI,
2439    // RDI, R8, R9, R11.
2440    if (!isa<GlobalAddressSDNode>(Callee) &&
2441        !isa<ExternalSymbolSDNode>(Callee)) {
2442      unsigned Limit = Subtarget->is64Bit() ? 8 : 3;
2443      unsigned NumInRegs = 0;
2444      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2445        CCValAssign &VA = ArgLocs[i];
2446        if (VA.isRegLoc()) {
2447          if (++NumInRegs == Limit)
2448            return false;
2449        }
2450      }
2451    }
2452  }
2453
2454  return true;
2455}
2456
2457FastISel *
2458X86TargetLowering::createFastISel(MachineFunction &mf,
2459                            DenseMap<const Value *, unsigned> &vm,
2460                            DenseMap<const BasicBlock*, MachineBasicBlock*> &bm,
2461                            DenseMap<const AllocaInst *, int> &am,
2462                            std::vector<std::pair<MachineInstr*, unsigned> > &pn
2463#ifndef NDEBUG
2464                          , SmallSet<const Instruction *, 8> &cil
2465#endif
2466                                  ) const {
2467  return X86::createFastISel(mf, vm, bm, am, pn
2468#ifndef NDEBUG
2469                             , cil
2470#endif
2471                             );
2472}
2473
2474
2475//===----------------------------------------------------------------------===//
2476//                           Other Lowering Hooks
2477//===----------------------------------------------------------------------===//
2478
2479
2480SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2481  MachineFunction &MF = DAG.getMachineFunction();
2482  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2483  int ReturnAddrIndex = FuncInfo->getRAIndex();
2484
2485  if (ReturnAddrIndex == 0) {
2486    // Set up a frame object for the return address.
2487    uint64_t SlotSize = TD->getPointerSize();
2488    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2489                                                           false);
2490    FuncInfo->setRAIndex(ReturnAddrIndex);
2491  }
2492
2493  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2494}
2495
2496
2497bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2498                                       bool hasSymbolicDisplacement) {
2499  // Offset should fit into 32 bit immediate field.
2500  if (!isInt<32>(Offset))
2501    return false;
2502
2503  // If we don't have a symbolic displacement - we don't have any extra
2504  // restrictions.
2505  if (!hasSymbolicDisplacement)
2506    return true;
2507
2508  // FIXME: Some tweaks might be needed for medium code model.
2509  if (M != CodeModel::Small && M != CodeModel::Kernel)
2510    return false;
2511
2512  // For small code model we assume that latest object is 16MB before end of 31
2513  // bits boundary. We may also accept pretty large negative constants knowing
2514  // that all objects are in the positive half of address space.
2515  if (M == CodeModel::Small && Offset < 16*1024*1024)
2516    return true;
2517
2518  // For kernel code model we know that all object resist in the negative half
2519  // of 32bits address space. We may not accept negative offsets, since they may
2520  // be just off and we may accept pretty large positive ones.
2521  if (M == CodeModel::Kernel && Offset > 0)
2522    return true;
2523
2524  return false;
2525}
2526
2527/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2528/// specific condition code, returning the condition code and the LHS/RHS of the
2529/// comparison to make.
2530static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2531                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2532  if (!isFP) {
2533    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2534      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2535        // X > -1   -> X == 0, jump !sign.
2536        RHS = DAG.getConstant(0, RHS.getValueType());
2537        return X86::COND_NS;
2538      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2539        // X < 0   -> X == 0, jump on sign.
2540        return X86::COND_S;
2541      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2542        // X < 1   -> X <= 0
2543        RHS = DAG.getConstant(0, RHS.getValueType());
2544        return X86::COND_LE;
2545      }
2546    }
2547
2548    switch (SetCCOpcode) {
2549    default: llvm_unreachable("Invalid integer condition!");
2550    case ISD::SETEQ:  return X86::COND_E;
2551    case ISD::SETGT:  return X86::COND_G;
2552    case ISD::SETGE:  return X86::COND_GE;
2553    case ISD::SETLT:  return X86::COND_L;
2554    case ISD::SETLE:  return X86::COND_LE;
2555    case ISD::SETNE:  return X86::COND_NE;
2556    case ISD::SETULT: return X86::COND_B;
2557    case ISD::SETUGT: return X86::COND_A;
2558    case ISD::SETULE: return X86::COND_BE;
2559    case ISD::SETUGE: return X86::COND_AE;
2560    }
2561  }
2562
2563  // First determine if it is required or is profitable to flip the operands.
2564
2565  // If LHS is a foldable load, but RHS is not, flip the condition.
2566  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2567      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2568    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2569    std::swap(LHS, RHS);
2570  }
2571
2572  switch (SetCCOpcode) {
2573  default: break;
2574  case ISD::SETOLT:
2575  case ISD::SETOLE:
2576  case ISD::SETUGT:
2577  case ISD::SETUGE:
2578    std::swap(LHS, RHS);
2579    break;
2580  }
2581
2582  // On a floating point condition, the flags are set as follows:
2583  // ZF  PF  CF   op
2584  //  0 | 0 | 0 | X > Y
2585  //  0 | 0 | 1 | X < Y
2586  //  1 | 0 | 0 | X == Y
2587  //  1 | 1 | 1 | unordered
2588  switch (SetCCOpcode) {
2589  default: llvm_unreachable("Condcode should be pre-legalized away");
2590  case ISD::SETUEQ:
2591  case ISD::SETEQ:   return X86::COND_E;
2592  case ISD::SETOLT:              // flipped
2593  case ISD::SETOGT:
2594  case ISD::SETGT:   return X86::COND_A;
2595  case ISD::SETOLE:              // flipped
2596  case ISD::SETOGE:
2597  case ISD::SETGE:   return X86::COND_AE;
2598  case ISD::SETUGT:              // flipped
2599  case ISD::SETULT:
2600  case ISD::SETLT:   return X86::COND_B;
2601  case ISD::SETUGE:              // flipped
2602  case ISD::SETULE:
2603  case ISD::SETLE:   return X86::COND_BE;
2604  case ISD::SETONE:
2605  case ISD::SETNE:   return X86::COND_NE;
2606  case ISD::SETUO:   return X86::COND_P;
2607  case ISD::SETO:    return X86::COND_NP;
2608  case ISD::SETOEQ:
2609  case ISD::SETUNE:  return X86::COND_INVALID;
2610  }
2611}
2612
2613/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2614/// code. Current x86 isa includes the following FP cmov instructions:
2615/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2616static bool hasFPCMov(unsigned X86CC) {
2617  switch (X86CC) {
2618  default:
2619    return false;
2620  case X86::COND_B:
2621  case X86::COND_BE:
2622  case X86::COND_E:
2623  case X86::COND_P:
2624  case X86::COND_A:
2625  case X86::COND_AE:
2626  case X86::COND_NE:
2627  case X86::COND_NP:
2628    return true;
2629  }
2630}
2631
2632/// isFPImmLegal - Returns true if the target can instruction select the
2633/// specified FP immediate natively. If false, the legalizer will
2634/// materialize the FP immediate as a load from a constant pool.
2635bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2636  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2637    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2638      return true;
2639  }
2640  return false;
2641}
2642
2643/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2644/// the specified range (L, H].
2645static bool isUndefOrInRange(int Val, int Low, int Hi) {
2646  return (Val < 0) || (Val >= Low && Val < Hi);
2647}
2648
2649/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2650/// specified value.
2651static bool isUndefOrEqual(int Val, int CmpVal) {
2652  if (Val < 0 || Val == CmpVal)
2653    return true;
2654  return false;
2655}
2656
2657/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2658/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2659/// the second operand.
2660static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2661  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2662    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2663  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2664    return (Mask[0] < 2 && Mask[1] < 2);
2665  return false;
2666}
2667
2668bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2669  SmallVector<int, 8> M;
2670  N->getMask(M);
2671  return ::isPSHUFDMask(M, N->getValueType(0));
2672}
2673
2674/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2675/// is suitable for input to PSHUFHW.
2676static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2677  if (VT != MVT::v8i16)
2678    return false;
2679
2680  // Lower quadword copied in order or undef.
2681  for (int i = 0; i != 4; ++i)
2682    if (Mask[i] >= 0 && Mask[i] != i)
2683      return false;
2684
2685  // Upper quadword shuffled.
2686  for (int i = 4; i != 8; ++i)
2687    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2688      return false;
2689
2690  return true;
2691}
2692
2693bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2694  SmallVector<int, 8> M;
2695  N->getMask(M);
2696  return ::isPSHUFHWMask(M, N->getValueType(0));
2697}
2698
2699/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2700/// is suitable for input to PSHUFLW.
2701static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2702  if (VT != MVT::v8i16)
2703    return false;
2704
2705  // Upper quadword copied in order.
2706  for (int i = 4; i != 8; ++i)
2707    if (Mask[i] >= 0 && Mask[i] != i)
2708      return false;
2709
2710  // Lower quadword shuffled.
2711  for (int i = 0; i != 4; ++i)
2712    if (Mask[i] >= 4)
2713      return false;
2714
2715  return true;
2716}
2717
2718bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2719  SmallVector<int, 8> M;
2720  N->getMask(M);
2721  return ::isPSHUFLWMask(M, N->getValueType(0));
2722}
2723
2724/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2725/// is suitable for input to PALIGNR.
2726static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2727                          bool hasSSSE3) {
2728  int i, e = VT.getVectorNumElements();
2729
2730  // Do not handle v2i64 / v2f64 shuffles with palignr.
2731  if (e < 4 || !hasSSSE3)
2732    return false;
2733
2734  for (i = 0; i != e; ++i)
2735    if (Mask[i] >= 0)
2736      break;
2737
2738  // All undef, not a palignr.
2739  if (i == e)
2740    return false;
2741
2742  // Determine if it's ok to perform a palignr with only the LHS, since we
2743  // don't have access to the actual shuffle elements to see if RHS is undef.
2744  bool Unary = Mask[i] < (int)e;
2745  bool NeedsUnary = false;
2746
2747  int s = Mask[i] - i;
2748
2749  // Check the rest of the elements to see if they are consecutive.
2750  for (++i; i != e; ++i) {
2751    int m = Mask[i];
2752    if (m < 0)
2753      continue;
2754
2755    Unary = Unary && (m < (int)e);
2756    NeedsUnary = NeedsUnary || (m < s);
2757
2758    if (NeedsUnary && !Unary)
2759      return false;
2760    if (Unary && m != ((s+i) & (e-1)))
2761      return false;
2762    if (!Unary && m != (s+i))
2763      return false;
2764  }
2765  return true;
2766}
2767
2768bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2769  SmallVector<int, 8> M;
2770  N->getMask(M);
2771  return ::isPALIGNRMask(M, N->getValueType(0), true);
2772}
2773
2774/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2775/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2776static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2777  int NumElems = VT.getVectorNumElements();
2778  if (NumElems != 2 && NumElems != 4)
2779    return false;
2780
2781  int Half = NumElems / 2;
2782  for (int i = 0; i < Half; ++i)
2783    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2784      return false;
2785  for (int i = Half; i < NumElems; ++i)
2786    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2787      return false;
2788
2789  return true;
2790}
2791
2792bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2793  SmallVector<int, 8> M;
2794  N->getMask(M);
2795  return ::isSHUFPMask(M, N->getValueType(0));
2796}
2797
2798/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2799/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2800/// half elements to come from vector 1 (which would equal the dest.) and
2801/// the upper half to come from vector 2.
2802static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2803  int NumElems = VT.getVectorNumElements();
2804
2805  if (NumElems != 2 && NumElems != 4)
2806    return false;
2807
2808  int Half = NumElems / 2;
2809  for (int i = 0; i < Half; ++i)
2810    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2811      return false;
2812  for (int i = Half; i < NumElems; ++i)
2813    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2814      return false;
2815  return true;
2816}
2817
2818static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2819  SmallVector<int, 8> M;
2820  N->getMask(M);
2821  return isCommutedSHUFPMask(M, N->getValueType(0));
2822}
2823
2824/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2825/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2826bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2827  if (N->getValueType(0).getVectorNumElements() != 4)
2828    return false;
2829
2830  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2831  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2832         isUndefOrEqual(N->getMaskElt(1), 7) &&
2833         isUndefOrEqual(N->getMaskElt(2), 2) &&
2834         isUndefOrEqual(N->getMaskElt(3), 3);
2835}
2836
2837/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2838/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2839/// <2, 3, 2, 3>
2840bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2841  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2842
2843  if (NumElems != 4)
2844    return false;
2845
2846  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2847  isUndefOrEqual(N->getMaskElt(1), 3) &&
2848  isUndefOrEqual(N->getMaskElt(2), 2) &&
2849  isUndefOrEqual(N->getMaskElt(3), 3);
2850}
2851
2852/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2853/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2854bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2855  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2856
2857  if (NumElems != 2 && NumElems != 4)
2858    return false;
2859
2860  for (unsigned i = 0; i < NumElems/2; ++i)
2861    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2862      return false;
2863
2864  for (unsigned i = NumElems/2; i < NumElems; ++i)
2865    if (!isUndefOrEqual(N->getMaskElt(i), i))
2866      return false;
2867
2868  return true;
2869}
2870
2871/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2872/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2873bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2874  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2875
2876  if (NumElems != 2 && NumElems != 4)
2877    return false;
2878
2879  for (unsigned i = 0; i < NumElems/2; ++i)
2880    if (!isUndefOrEqual(N->getMaskElt(i), i))
2881      return false;
2882
2883  for (unsigned i = 0; i < NumElems/2; ++i)
2884    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2885      return false;
2886
2887  return true;
2888}
2889
2890/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2891/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2892static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2893                         bool V2IsSplat = false) {
2894  int NumElts = VT.getVectorNumElements();
2895  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2896    return false;
2897
2898  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2899    int BitI  = Mask[i];
2900    int BitI1 = Mask[i+1];
2901    if (!isUndefOrEqual(BitI, j))
2902      return false;
2903    if (V2IsSplat) {
2904      if (!isUndefOrEqual(BitI1, NumElts))
2905        return false;
2906    } else {
2907      if (!isUndefOrEqual(BitI1, j + NumElts))
2908        return false;
2909    }
2910  }
2911  return true;
2912}
2913
2914bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2915  SmallVector<int, 8> M;
2916  N->getMask(M);
2917  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2918}
2919
2920/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2921/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2922static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2923                         bool V2IsSplat = false) {
2924  int NumElts = VT.getVectorNumElements();
2925  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2926    return false;
2927
2928  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2929    int BitI  = Mask[i];
2930    int BitI1 = Mask[i+1];
2931    if (!isUndefOrEqual(BitI, j + NumElts/2))
2932      return false;
2933    if (V2IsSplat) {
2934      if (isUndefOrEqual(BitI1, NumElts))
2935        return false;
2936    } else {
2937      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2938        return false;
2939    }
2940  }
2941  return true;
2942}
2943
2944bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2945  SmallVector<int, 8> M;
2946  N->getMask(M);
2947  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2948}
2949
2950/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2951/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2952/// <0, 0, 1, 1>
2953static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2954  int NumElems = VT.getVectorNumElements();
2955  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2956    return false;
2957
2958  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2959    int BitI  = Mask[i];
2960    int BitI1 = Mask[i+1];
2961    if (!isUndefOrEqual(BitI, j))
2962      return false;
2963    if (!isUndefOrEqual(BitI1, j))
2964      return false;
2965  }
2966  return true;
2967}
2968
2969bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2970  SmallVector<int, 8> M;
2971  N->getMask(M);
2972  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2973}
2974
2975/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2976/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2977/// <2, 2, 3, 3>
2978static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2979  int NumElems = VT.getVectorNumElements();
2980  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2981    return false;
2982
2983  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2984    int BitI  = Mask[i];
2985    int BitI1 = Mask[i+1];
2986    if (!isUndefOrEqual(BitI, j))
2987      return false;
2988    if (!isUndefOrEqual(BitI1, j))
2989      return false;
2990  }
2991  return true;
2992}
2993
2994bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2995  SmallVector<int, 8> M;
2996  N->getMask(M);
2997  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2998}
2999
3000/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3001/// specifies a shuffle of elements that is suitable for input to MOVSS,
3002/// MOVSD, and MOVD, i.e. setting the lowest element.
3003static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3004  if (VT.getVectorElementType().getSizeInBits() < 32)
3005    return false;
3006
3007  int NumElts = VT.getVectorNumElements();
3008
3009  if (!isUndefOrEqual(Mask[0], NumElts))
3010    return false;
3011
3012  for (int i = 1; i < NumElts; ++i)
3013    if (!isUndefOrEqual(Mask[i], i))
3014      return false;
3015
3016  return true;
3017}
3018
3019bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3020  SmallVector<int, 8> M;
3021  N->getMask(M);
3022  return ::isMOVLMask(M, N->getValueType(0));
3023}
3024
3025/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3026/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3027/// element of vector 2 and the other elements to come from vector 1 in order.
3028static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3029                               bool V2IsSplat = false, bool V2IsUndef = false) {
3030  int NumOps = VT.getVectorNumElements();
3031  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3032    return false;
3033
3034  if (!isUndefOrEqual(Mask[0], 0))
3035    return false;
3036
3037  for (int i = 1; i < NumOps; ++i)
3038    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3039          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3040          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3041      return false;
3042
3043  return true;
3044}
3045
3046static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3047                           bool V2IsUndef = false) {
3048  SmallVector<int, 8> M;
3049  N->getMask(M);
3050  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3051}
3052
3053/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3054/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3055bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3056  if (N->getValueType(0).getVectorNumElements() != 4)
3057    return false;
3058
3059  // Expect 1, 1, 3, 3
3060  for (unsigned i = 0; i < 2; ++i) {
3061    int Elt = N->getMaskElt(i);
3062    if (Elt >= 0 && Elt != 1)
3063      return false;
3064  }
3065
3066  bool HasHi = false;
3067  for (unsigned i = 2; i < 4; ++i) {
3068    int Elt = N->getMaskElt(i);
3069    if (Elt >= 0 && Elt != 3)
3070      return false;
3071    if (Elt == 3)
3072      HasHi = true;
3073  }
3074  // Don't use movshdup if it can be done with a shufps.
3075  // FIXME: verify that matching u, u, 3, 3 is what we want.
3076  return HasHi;
3077}
3078
3079/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3080/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3081bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3082  if (N->getValueType(0).getVectorNumElements() != 4)
3083    return false;
3084
3085  // Expect 0, 0, 2, 2
3086  for (unsigned i = 0; i < 2; ++i)
3087    if (N->getMaskElt(i) > 0)
3088      return false;
3089
3090  bool HasHi = false;
3091  for (unsigned i = 2; i < 4; ++i) {
3092    int Elt = N->getMaskElt(i);
3093    if (Elt >= 0 && Elt != 2)
3094      return false;
3095    if (Elt == 2)
3096      HasHi = true;
3097  }
3098  // Don't use movsldup if it can be done with a shufps.
3099  return HasHi;
3100}
3101
3102/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3103/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3104bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3105  int e = N->getValueType(0).getVectorNumElements() / 2;
3106
3107  for (int i = 0; i < e; ++i)
3108    if (!isUndefOrEqual(N->getMaskElt(i), i))
3109      return false;
3110  for (int i = 0; i < e; ++i)
3111    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3112      return false;
3113  return true;
3114}
3115
3116/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3117/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3118unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3119  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3120  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3121
3122  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3123  unsigned Mask = 0;
3124  for (int i = 0; i < NumOperands; ++i) {
3125    int Val = SVOp->getMaskElt(NumOperands-i-1);
3126    if (Val < 0) Val = 0;
3127    if (Val >= NumOperands) Val -= NumOperands;
3128    Mask |= Val;
3129    if (i != NumOperands - 1)
3130      Mask <<= Shift;
3131  }
3132  return Mask;
3133}
3134
3135/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3136/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3137unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3138  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3139  unsigned Mask = 0;
3140  // 8 nodes, but we only care about the last 4.
3141  for (unsigned i = 7; i >= 4; --i) {
3142    int Val = SVOp->getMaskElt(i);
3143    if (Val >= 0)
3144      Mask |= (Val - 4);
3145    if (i != 4)
3146      Mask <<= 2;
3147  }
3148  return Mask;
3149}
3150
3151/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3152/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3153unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3154  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3155  unsigned Mask = 0;
3156  // 8 nodes, but we only care about the first 4.
3157  for (int i = 3; i >= 0; --i) {
3158    int Val = SVOp->getMaskElt(i);
3159    if (Val >= 0)
3160      Mask |= Val;
3161    if (i != 0)
3162      Mask <<= 2;
3163  }
3164  return Mask;
3165}
3166
3167/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3168/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3169unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3170  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3171  EVT VVT = N->getValueType(0);
3172  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3173  int Val = 0;
3174
3175  unsigned i, e;
3176  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3177    Val = SVOp->getMaskElt(i);
3178    if (Val >= 0)
3179      break;
3180  }
3181  return (Val - i) * EltSize;
3182}
3183
3184/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3185/// constant +0.0.
3186bool X86::isZeroNode(SDValue Elt) {
3187  return ((isa<ConstantSDNode>(Elt) &&
3188           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3189          (isa<ConstantFPSDNode>(Elt) &&
3190           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3191}
3192
3193/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3194/// their permute mask.
3195static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3196                                    SelectionDAG &DAG) {
3197  EVT VT = SVOp->getValueType(0);
3198  unsigned NumElems = VT.getVectorNumElements();
3199  SmallVector<int, 8> MaskVec;
3200
3201  for (unsigned i = 0; i != NumElems; ++i) {
3202    int idx = SVOp->getMaskElt(i);
3203    if (idx < 0)
3204      MaskVec.push_back(idx);
3205    else if (idx < (int)NumElems)
3206      MaskVec.push_back(idx + NumElems);
3207    else
3208      MaskVec.push_back(idx - NumElems);
3209  }
3210  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3211                              SVOp->getOperand(0), &MaskVec[0]);
3212}
3213
3214/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3215/// the two vector operands have swapped position.
3216static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3217  unsigned NumElems = VT.getVectorNumElements();
3218  for (unsigned i = 0; i != NumElems; ++i) {
3219    int idx = Mask[i];
3220    if (idx < 0)
3221      continue;
3222    else if (idx < (int)NumElems)
3223      Mask[i] = idx + NumElems;
3224    else
3225      Mask[i] = idx - NumElems;
3226  }
3227}
3228
3229/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3230/// match movhlps. The lower half elements should come from upper half of
3231/// V1 (and in order), and the upper half elements should come from the upper
3232/// half of V2 (and in order).
3233static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3234  if (Op->getValueType(0).getVectorNumElements() != 4)
3235    return false;
3236  for (unsigned i = 0, e = 2; i != e; ++i)
3237    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3238      return false;
3239  for (unsigned i = 2; i != 4; ++i)
3240    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3241      return false;
3242  return true;
3243}
3244
3245/// isScalarLoadToVector - Returns true if the node is a scalar load that
3246/// is promoted to a vector. It also returns the LoadSDNode by reference if
3247/// required.
3248static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3249  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3250    return false;
3251  N = N->getOperand(0).getNode();
3252  if (!ISD::isNON_EXTLoad(N))
3253    return false;
3254  if (LD)
3255    *LD = cast<LoadSDNode>(N);
3256  return true;
3257}
3258
3259/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3260/// match movlp{s|d}. The lower half elements should come from lower half of
3261/// V1 (and in order), and the upper half elements should come from the upper
3262/// half of V2 (and in order). And since V1 will become the source of the
3263/// MOVLP, it must be either a vector load or a scalar load to vector.
3264static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3265                               ShuffleVectorSDNode *Op) {
3266  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3267    return false;
3268  // Is V2 is a vector load, don't do this transformation. We will try to use
3269  // load folding shufps op.
3270  if (ISD::isNON_EXTLoad(V2))
3271    return false;
3272
3273  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3274
3275  if (NumElems != 2 && NumElems != 4)
3276    return false;
3277  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3278    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3279      return false;
3280  for (unsigned i = NumElems/2; i != NumElems; ++i)
3281    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3282      return false;
3283  return true;
3284}
3285
3286/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3287/// all the same.
3288static bool isSplatVector(SDNode *N) {
3289  if (N->getOpcode() != ISD::BUILD_VECTOR)
3290    return false;
3291
3292  SDValue SplatValue = N->getOperand(0);
3293  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3294    if (N->getOperand(i) != SplatValue)
3295      return false;
3296  return true;
3297}
3298
3299/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3300/// to an zero vector.
3301/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3302static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3303  SDValue V1 = N->getOperand(0);
3304  SDValue V2 = N->getOperand(1);
3305  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3306  for (unsigned i = 0; i != NumElems; ++i) {
3307    int Idx = N->getMaskElt(i);
3308    if (Idx >= (int)NumElems) {
3309      unsigned Opc = V2.getOpcode();
3310      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3311        continue;
3312      if (Opc != ISD::BUILD_VECTOR ||
3313          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3314        return false;
3315    } else if (Idx >= 0) {
3316      unsigned Opc = V1.getOpcode();
3317      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3318        continue;
3319      if (Opc != ISD::BUILD_VECTOR ||
3320          !X86::isZeroNode(V1.getOperand(Idx)))
3321        return false;
3322    }
3323  }
3324  return true;
3325}
3326
3327/// getZeroVector - Returns a vector of specified type with all zero elements.
3328///
3329static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3330                             DebugLoc dl) {
3331  assert(VT.isVector() && "Expected a vector type");
3332
3333  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3334  // type.  This ensures they get CSE'd.
3335  SDValue Vec;
3336  if (VT.getSizeInBits() == 64) { // MMX
3337    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3338    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3339  } else if (HasSSE2) {  // SSE2
3340    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3341    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3342  } else { // SSE1
3343    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3344    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3345  }
3346  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3347}
3348
3349/// getOnesVector - Returns a vector of specified type with all bits set.
3350///
3351static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3352  assert(VT.isVector() && "Expected a vector type");
3353
3354  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3355  // type.  This ensures they get CSE'd.
3356  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3357  SDValue Vec;
3358  if (VT.getSizeInBits() == 64)  // MMX
3359    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3360  else                                              // SSE
3361    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3362  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3363}
3364
3365
3366/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3367/// that point to V2 points to its first element.
3368static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3369  EVT VT = SVOp->getValueType(0);
3370  unsigned NumElems = VT.getVectorNumElements();
3371
3372  bool Changed = false;
3373  SmallVector<int, 8> MaskVec;
3374  SVOp->getMask(MaskVec);
3375
3376  for (unsigned i = 0; i != NumElems; ++i) {
3377    if (MaskVec[i] > (int)NumElems) {
3378      MaskVec[i] = NumElems;
3379      Changed = true;
3380    }
3381  }
3382  if (Changed)
3383    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3384                                SVOp->getOperand(1), &MaskVec[0]);
3385  return SDValue(SVOp, 0);
3386}
3387
3388/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3389/// operation of specified width.
3390static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3391                       SDValue V2) {
3392  unsigned NumElems = VT.getVectorNumElements();
3393  SmallVector<int, 8> Mask;
3394  Mask.push_back(NumElems);
3395  for (unsigned i = 1; i != NumElems; ++i)
3396    Mask.push_back(i);
3397  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3398}
3399
3400/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3401static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3402                          SDValue V2) {
3403  unsigned NumElems = VT.getVectorNumElements();
3404  SmallVector<int, 8> Mask;
3405  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3406    Mask.push_back(i);
3407    Mask.push_back(i + NumElems);
3408  }
3409  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3410}
3411
3412/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3413static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3414                          SDValue V2) {
3415  unsigned NumElems = VT.getVectorNumElements();
3416  unsigned Half = NumElems/2;
3417  SmallVector<int, 8> Mask;
3418  for (unsigned i = 0; i != Half; ++i) {
3419    Mask.push_back(i + Half);
3420    Mask.push_back(i + NumElems + Half);
3421  }
3422  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3423}
3424
3425/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3426static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3427                            bool HasSSE2) {
3428  if (SV->getValueType(0).getVectorNumElements() <= 4)
3429    return SDValue(SV, 0);
3430
3431  EVT PVT = MVT::v4f32;
3432  EVT VT = SV->getValueType(0);
3433  DebugLoc dl = SV->getDebugLoc();
3434  SDValue V1 = SV->getOperand(0);
3435  int NumElems = VT.getVectorNumElements();
3436  int EltNo = SV->getSplatIndex();
3437
3438  // unpack elements to the correct location
3439  while (NumElems > 4) {
3440    if (EltNo < NumElems/2) {
3441      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3442    } else {
3443      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3444      EltNo -= NumElems/2;
3445    }
3446    NumElems >>= 1;
3447  }
3448
3449  // Perform the splat.
3450  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3451  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3452  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3453  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3454}
3455
3456/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3457/// vector of zero or undef vector.  This produces a shuffle where the low
3458/// element of V2 is swizzled into the zero/undef vector, landing at element
3459/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3460static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3461                                             bool isZero, bool HasSSE2,
3462                                             SelectionDAG &DAG) {
3463  EVT VT = V2.getValueType();
3464  SDValue V1 = isZero
3465    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3466  unsigned NumElems = VT.getVectorNumElements();
3467  SmallVector<int, 16> MaskVec;
3468  for (unsigned i = 0; i != NumElems; ++i)
3469    // If this is the insertion idx, put the low elt of V2 here.
3470    MaskVec.push_back(i == Idx ? NumElems : i);
3471  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3472}
3473
3474/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3475/// a shuffle that is zero.
3476static
3477unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3478                                  bool Low, SelectionDAG &DAG) {
3479  unsigned NumZeros = 0;
3480  for (int i = 0; i < NumElems; ++i) {
3481    unsigned Index = Low ? i : NumElems-i-1;
3482    int Idx = SVOp->getMaskElt(Index);
3483    if (Idx < 0) {
3484      ++NumZeros;
3485      continue;
3486    }
3487    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3488    if (Elt.getNode() && X86::isZeroNode(Elt))
3489      ++NumZeros;
3490    else
3491      break;
3492  }
3493  return NumZeros;
3494}
3495
3496/// isVectorShift - Returns true if the shuffle can be implemented as a
3497/// logical left or right shift of a vector.
3498/// FIXME: split into pslldqi, psrldqi, palignr variants.
3499static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3500                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3501  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3502
3503  isLeft = true;
3504  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3505  if (!NumZeros) {
3506    isLeft = false;
3507    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3508    if (!NumZeros)
3509      return false;
3510  }
3511  bool SeenV1 = false;
3512  bool SeenV2 = false;
3513  for (unsigned i = NumZeros; i < NumElems; ++i) {
3514    unsigned Val = isLeft ? (i - NumZeros) : i;
3515    int Idx_ = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3516    if (Idx_ < 0)
3517      continue;
3518    unsigned Idx = (unsigned) Idx_;
3519    if (Idx < NumElems)
3520      SeenV1 = true;
3521    else {
3522      Idx -= NumElems;
3523      SeenV2 = true;
3524    }
3525    if (Idx != Val)
3526      return false;
3527  }
3528  if (SeenV1 && SeenV2)
3529    return false;
3530
3531  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3532  ShAmt = NumZeros;
3533  return true;
3534}
3535
3536
3537/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3538///
3539static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3540                                       unsigned NumNonZero, unsigned NumZero,
3541                                       SelectionDAG &DAG,
3542                                       const TargetLowering &TLI) {
3543  if (NumNonZero > 8)
3544    return SDValue();
3545
3546  DebugLoc dl = Op.getDebugLoc();
3547  SDValue V(0, 0);
3548  bool First = true;
3549  for (unsigned i = 0; i < 16; ++i) {
3550    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3551    if (ThisIsNonZero && First) {
3552      if (NumZero)
3553        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3554      else
3555        V = DAG.getUNDEF(MVT::v8i16);
3556      First = false;
3557    }
3558
3559    if ((i & 1) != 0) {
3560      SDValue ThisElt(0, 0), LastElt(0, 0);
3561      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3562      if (LastIsNonZero) {
3563        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3564                              MVT::i16, Op.getOperand(i-1));
3565      }
3566      if (ThisIsNonZero) {
3567        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3568        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3569                              ThisElt, DAG.getConstant(8, MVT::i8));
3570        if (LastIsNonZero)
3571          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3572      } else
3573        ThisElt = LastElt;
3574
3575      if (ThisElt.getNode())
3576        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3577                        DAG.getIntPtrConstant(i/2));
3578    }
3579  }
3580
3581  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3582}
3583
3584/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3585///
3586static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3587                                     unsigned NumNonZero, unsigned NumZero,
3588                                     SelectionDAG &DAG,
3589                                     const TargetLowering &TLI) {
3590  if (NumNonZero > 4)
3591    return SDValue();
3592
3593  DebugLoc dl = Op.getDebugLoc();
3594  SDValue V(0, 0);
3595  bool First = true;
3596  for (unsigned i = 0; i < 8; ++i) {
3597    bool isNonZero = (NonZeros & (1 << i)) != 0;
3598    if (isNonZero) {
3599      if (First) {
3600        if (NumZero)
3601          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3602        else
3603          V = DAG.getUNDEF(MVT::v8i16);
3604        First = false;
3605      }
3606      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3607                      MVT::v8i16, V, Op.getOperand(i),
3608                      DAG.getIntPtrConstant(i));
3609    }
3610  }
3611
3612  return V;
3613}
3614
3615/// getVShift - Return a vector logical shift node.
3616///
3617static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3618                         unsigned NumBits, SelectionDAG &DAG,
3619                         const TargetLowering &TLI, DebugLoc dl) {
3620  bool isMMX = VT.getSizeInBits() == 64;
3621  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3622  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3623  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3624  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3625                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3626                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3627}
3628
3629SDValue
3630X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3631                                          SelectionDAG &DAG) const {
3632
3633  // Check if the scalar load can be widened into a vector load. And if
3634  // the address is "base + cst" see if the cst can be "absorbed" into
3635  // the shuffle mask.
3636  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3637    SDValue Ptr = LD->getBasePtr();
3638    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3639      return SDValue();
3640    EVT PVT = LD->getValueType(0);
3641    if (PVT != MVT::i32 && PVT != MVT::f32)
3642      return SDValue();
3643
3644    int FI = -1;
3645    int64_t Offset = 0;
3646    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3647      FI = FINode->getIndex();
3648      Offset = 0;
3649    } else if (Ptr.getOpcode() == ISD::ADD &&
3650               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3651               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3652      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3653      Offset = Ptr.getConstantOperandVal(1);
3654      Ptr = Ptr.getOperand(0);
3655    } else {
3656      return SDValue();
3657    }
3658
3659    SDValue Chain = LD->getChain();
3660    // Make sure the stack object alignment is at least 16.
3661    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3662    if (DAG.InferPtrAlignment(Ptr) < 16) {
3663      if (MFI->isFixedObjectIndex(FI)) {
3664        // Can't change the alignment. FIXME: It's possible to compute
3665        // the exact stack offset and reference FI + adjust offset instead.
3666        // If someone *really* cares about this. That's the way to implement it.
3667        return SDValue();
3668      } else {
3669        MFI->setObjectAlignment(FI, 16);
3670      }
3671    }
3672
3673    // (Offset % 16) must be multiple of 4. Then address is then
3674    // Ptr + (Offset & ~15).
3675    if (Offset < 0)
3676      return SDValue();
3677    if ((Offset % 16) & 3)
3678      return SDValue();
3679    int64_t StartOffset = Offset & ~15;
3680    if (StartOffset)
3681      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3682                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3683
3684    int EltNo = (Offset - StartOffset) >> 2;
3685    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3686    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3687    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3688                             false, false, 0);
3689    // Canonicalize it to a v4i32 shuffle.
3690    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3691    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3692                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3693                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3694  }
3695
3696  return SDValue();
3697}
3698
3699/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
3700/// vector of type 'VT', see if the elements can be replaced by a single large
3701/// load which has the same value as a build_vector whose operands are 'elts'.
3702///
3703/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
3704///
3705/// FIXME: we'd also like to handle the case where the last elements are zero
3706/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
3707/// There's even a handy isZeroNode for that purpose.
3708static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
3709                                        DebugLoc &dl, SelectionDAG &DAG) {
3710  EVT EltVT = VT.getVectorElementType();
3711  unsigned NumElems = Elts.size();
3712
3713  LoadSDNode *LDBase = NULL;
3714  unsigned LastLoadedElt = -1U;
3715
3716  // For each element in the initializer, see if we've found a load or an undef.
3717  // If we don't find an initial load element, or later load elements are
3718  // non-consecutive, bail out.
3719  for (unsigned i = 0; i < NumElems; ++i) {
3720    SDValue Elt = Elts[i];
3721
3722    if (!Elt.getNode() ||
3723        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
3724      return SDValue();
3725    if (!LDBase) {
3726      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
3727        return SDValue();
3728      LDBase = cast<LoadSDNode>(Elt.getNode());
3729      LastLoadedElt = i;
3730      continue;
3731    }
3732    if (Elt.getOpcode() == ISD::UNDEF)
3733      continue;
3734
3735    LoadSDNode *LD = cast<LoadSDNode>(Elt);
3736    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
3737      return SDValue();
3738    LastLoadedElt = i;
3739  }
3740
3741  // If we have found an entire vector of loads and undefs, then return a large
3742  // load of the entire vector width starting at the base pointer.  If we found
3743  // consecutive loads for the low half, generate a vzext_load node.
3744  if (LastLoadedElt == NumElems - 1) {
3745    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
3746      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3747                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3748                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
3749    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3750                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3751                       LDBase->isVolatile(), LDBase->isNonTemporal(),
3752                       LDBase->getAlignment());
3753  } else if (NumElems == 4 && LastLoadedElt == 1) {
3754    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
3755    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
3756    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
3757    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
3758  }
3759  return SDValue();
3760}
3761
3762SDValue
3763X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
3764  DebugLoc dl = Op.getDebugLoc();
3765  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3766  if (ISD::isBuildVectorAllZeros(Op.getNode())
3767      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3768    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3769    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3770    // eliminated on x86-32 hosts.
3771    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3772      return Op;
3773
3774    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3775      return getOnesVector(Op.getValueType(), DAG, dl);
3776    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3777  }
3778
3779  EVT VT = Op.getValueType();
3780  EVT ExtVT = VT.getVectorElementType();
3781  unsigned EVTBits = ExtVT.getSizeInBits();
3782
3783  unsigned NumElems = Op.getNumOperands();
3784  unsigned NumZero  = 0;
3785  unsigned NumNonZero = 0;
3786  unsigned NonZeros = 0;
3787  bool IsAllConstants = true;
3788  SmallSet<SDValue, 8> Values;
3789  for (unsigned i = 0; i < NumElems; ++i) {
3790    SDValue Elt = Op.getOperand(i);
3791    if (Elt.getOpcode() == ISD::UNDEF)
3792      continue;
3793    Values.insert(Elt);
3794    if (Elt.getOpcode() != ISD::Constant &&
3795        Elt.getOpcode() != ISD::ConstantFP)
3796      IsAllConstants = false;
3797    if (X86::isZeroNode(Elt))
3798      NumZero++;
3799    else {
3800      NonZeros |= (1 << i);
3801      NumNonZero++;
3802    }
3803  }
3804
3805  if (NumNonZero == 0) {
3806    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3807    return DAG.getUNDEF(VT);
3808  }
3809
3810  // Special case for single non-zero, non-undef, element.
3811  if (NumNonZero == 1) {
3812    unsigned Idx = CountTrailingZeros_32(NonZeros);
3813    SDValue Item = Op.getOperand(Idx);
3814
3815    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3816    // the value are obviously zero, truncate the value to i32 and do the
3817    // insertion that way.  Only do this if the value is non-constant or if the
3818    // value is a constant being inserted into element 0.  It is cheaper to do
3819    // a constant pool load than it is to do a movd + shuffle.
3820    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3821        (!IsAllConstants || Idx == 0)) {
3822      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3823        // Handle MMX and SSE both.
3824        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3825        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3826
3827        // Truncate the value (which may itself be a constant) to i32, and
3828        // convert it to a vector with movd (S2V+shuffle to zero extend).
3829        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3830        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3831        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3832                                           Subtarget->hasSSE2(), DAG);
3833
3834        // Now we have our 32-bit value zero extended in the low element of
3835        // a vector.  If Idx != 0, swizzle it into place.
3836        if (Idx != 0) {
3837          SmallVector<int, 4> Mask;
3838          Mask.push_back(Idx);
3839          for (unsigned i = 1; i != VecElts; ++i)
3840            Mask.push_back(i);
3841          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3842                                      DAG.getUNDEF(Item.getValueType()),
3843                                      &Mask[0]);
3844        }
3845        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3846      }
3847    }
3848
3849    // If we have a constant or non-constant insertion into the low element of
3850    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3851    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3852    // depending on what the source datatype is.
3853    if (Idx == 0) {
3854      if (NumZero == 0) {
3855        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3856      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3857          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3858        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3859        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3860        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3861                                           DAG);
3862      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3863        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3864        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3865        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3866        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3867                                           Subtarget->hasSSE2(), DAG);
3868        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3869      }
3870    }
3871
3872    // Is it a vector logical left shift?
3873    if (NumElems == 2 && Idx == 1 &&
3874        X86::isZeroNode(Op.getOperand(0)) &&
3875        !X86::isZeroNode(Op.getOperand(1))) {
3876      unsigned NumBits = VT.getSizeInBits();
3877      return getVShift(true, VT,
3878                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3879                                   VT, Op.getOperand(1)),
3880                       NumBits/2, DAG, *this, dl);
3881    }
3882
3883    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3884      return SDValue();
3885
3886    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3887    // is a non-constant being inserted into an element other than the low one,
3888    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3889    // movd/movss) to move this into the low element, then shuffle it into
3890    // place.
3891    if (EVTBits == 32) {
3892      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3893
3894      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3895      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3896                                         Subtarget->hasSSE2(), DAG);
3897      SmallVector<int, 8> MaskVec;
3898      for (unsigned i = 0; i < NumElems; i++)
3899        MaskVec.push_back(i == Idx ? 0 : 1);
3900      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3901    }
3902  }
3903
3904  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3905  if (Values.size() == 1) {
3906    if (EVTBits == 32) {
3907      // Instead of a shuffle like this:
3908      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
3909      // Check if it's possible to issue this instead.
3910      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
3911      unsigned Idx = CountTrailingZeros_32(NonZeros);
3912      SDValue Item = Op.getOperand(Idx);
3913      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
3914        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
3915    }
3916    return SDValue();
3917  }
3918
3919  // A vector full of immediates; various special cases are already
3920  // handled, so this is best done with a single constant-pool load.
3921  if (IsAllConstants)
3922    return SDValue();
3923
3924  // Let legalizer expand 2-wide build_vectors.
3925  if (EVTBits == 64) {
3926    if (NumNonZero == 1) {
3927      // One half is zero or undef.
3928      unsigned Idx = CountTrailingZeros_32(NonZeros);
3929      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3930                                 Op.getOperand(Idx));
3931      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3932                                         Subtarget->hasSSE2(), DAG);
3933    }
3934    return SDValue();
3935  }
3936
3937  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3938  if (EVTBits == 8 && NumElems == 16) {
3939    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3940                                        *this);
3941    if (V.getNode()) return V;
3942  }
3943
3944  if (EVTBits == 16 && NumElems == 8) {
3945    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3946                                        *this);
3947    if (V.getNode()) return V;
3948  }
3949
3950  // If element VT is == 32 bits, turn it into a number of shuffles.
3951  SmallVector<SDValue, 8> V;
3952  V.resize(NumElems);
3953  if (NumElems == 4 && NumZero > 0) {
3954    for (unsigned i = 0; i < 4; ++i) {
3955      bool isZero = !(NonZeros & (1 << i));
3956      if (isZero)
3957        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3958      else
3959        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3960    }
3961
3962    for (unsigned i = 0; i < 2; ++i) {
3963      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3964        default: break;
3965        case 0:
3966          V[i] = V[i*2];  // Must be a zero vector.
3967          break;
3968        case 1:
3969          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3970          break;
3971        case 2:
3972          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3973          break;
3974        case 3:
3975          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3976          break;
3977      }
3978    }
3979
3980    SmallVector<int, 8> MaskVec;
3981    bool Reverse = (NonZeros & 0x3) == 2;
3982    for (unsigned i = 0; i < 2; ++i)
3983      MaskVec.push_back(Reverse ? 1-i : i);
3984    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3985    for (unsigned i = 0; i < 2; ++i)
3986      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3987    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3988  }
3989
3990  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
3991    // Check for a build vector of consecutive loads.
3992    for (unsigned i = 0; i < NumElems; ++i)
3993      V[i] = Op.getOperand(i);
3994
3995    // Check for elements which are consecutive loads.
3996    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
3997    if (LD.getNode())
3998      return LD;
3999
4000    // For SSE 4.1, use inserts into undef.
4001    if (getSubtarget()->hasSSE41()) {
4002      V[0] = DAG.getUNDEF(VT);
4003      for (unsigned i = 0; i < NumElems; ++i)
4004        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4005          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
4006                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4007      return V[0];
4008    }
4009
4010    // Otherwise, expand into a number of unpckl*
4011    // e.g. for v4f32
4012    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4013    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4014    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4015    for (unsigned i = 0; i < NumElems; ++i)
4016      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4017    NumElems >>= 1;
4018    while (NumElems != 0) {
4019      for (unsigned i = 0; i < NumElems; ++i)
4020        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
4021      NumElems >>= 1;
4022    }
4023    return V[0];
4024  }
4025  return SDValue();
4026}
4027
4028SDValue
4029X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4030  // We support concatenate two MMX registers and place them in a MMX
4031  // register.  This is better than doing a stack convert.
4032  DebugLoc dl = Op.getDebugLoc();
4033  EVT ResVT = Op.getValueType();
4034  assert(Op.getNumOperands() == 2);
4035  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4036         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4037  int Mask[2];
4038  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4039  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4040  InVec = Op.getOperand(1);
4041  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4042    unsigned NumElts = ResVT.getVectorNumElements();
4043    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4044    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4045                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4046  } else {
4047    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4048    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4049    Mask[0] = 0; Mask[1] = 2;
4050    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4051  }
4052  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4053}
4054
4055// v8i16 shuffles - Prefer shuffles in the following order:
4056// 1. [all]   pshuflw, pshufhw, optional move
4057// 2. [ssse3] 1 x pshufb
4058// 3. [ssse3] 2 x pshufb + 1 x por
4059// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4060static
4061SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
4062                                 SelectionDAG &DAG,
4063                                 const X86TargetLowering &TLI) {
4064  SDValue V1 = SVOp->getOperand(0);
4065  SDValue V2 = SVOp->getOperand(1);
4066  DebugLoc dl = SVOp->getDebugLoc();
4067  SmallVector<int, 8> MaskVals;
4068
4069  // Determine if more than 1 of the words in each of the low and high quadwords
4070  // of the result come from the same quadword of one of the two inputs.  Undef
4071  // mask values count as coming from any quadword, for better codegen.
4072  SmallVector<unsigned, 4> LoQuad(4);
4073  SmallVector<unsigned, 4> HiQuad(4);
4074  BitVector InputQuads(4);
4075  for (unsigned i = 0; i < 8; ++i) {
4076    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4077    int EltIdx = SVOp->getMaskElt(i);
4078    MaskVals.push_back(EltIdx);
4079    if (EltIdx < 0) {
4080      ++Quad[0];
4081      ++Quad[1];
4082      ++Quad[2];
4083      ++Quad[3];
4084      continue;
4085    }
4086    ++Quad[EltIdx / 4];
4087    InputQuads.set(EltIdx / 4);
4088  }
4089
4090  int BestLoQuad = -1;
4091  unsigned MaxQuad = 1;
4092  for (unsigned i = 0; i < 4; ++i) {
4093    if (LoQuad[i] > MaxQuad) {
4094      BestLoQuad = i;
4095      MaxQuad = LoQuad[i];
4096    }
4097  }
4098
4099  int BestHiQuad = -1;
4100  MaxQuad = 1;
4101  for (unsigned i = 0; i < 4; ++i) {
4102    if (HiQuad[i] > MaxQuad) {
4103      BestHiQuad = i;
4104      MaxQuad = HiQuad[i];
4105    }
4106  }
4107
4108  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4109  // of the two input vectors, shuffle them into one input vector so only a
4110  // single pshufb instruction is necessary. If There are more than 2 input
4111  // quads, disable the next transformation since it does not help SSSE3.
4112  bool V1Used = InputQuads[0] || InputQuads[1];
4113  bool V2Used = InputQuads[2] || InputQuads[3];
4114  if (TLI.getSubtarget()->hasSSSE3()) {
4115    if (InputQuads.count() == 2 && V1Used && V2Used) {
4116      BestLoQuad = InputQuads.find_first();
4117      BestHiQuad = InputQuads.find_next(BestLoQuad);
4118    }
4119    if (InputQuads.count() > 2) {
4120      BestLoQuad = -1;
4121      BestHiQuad = -1;
4122    }
4123  }
4124
4125  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4126  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4127  // words from all 4 input quadwords.
4128  SDValue NewV;
4129  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4130    SmallVector<int, 8> MaskV;
4131    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4132    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4133    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4134                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4135                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4136    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4137
4138    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4139    // source words for the shuffle, to aid later transformations.
4140    bool AllWordsInNewV = true;
4141    bool InOrder[2] = { true, true };
4142    for (unsigned i = 0; i != 8; ++i) {
4143      int idx = MaskVals[i];
4144      if (idx != (int)i)
4145        InOrder[i/4] = false;
4146      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4147        continue;
4148      AllWordsInNewV = false;
4149      break;
4150    }
4151
4152    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4153    if (AllWordsInNewV) {
4154      for (int i = 0; i != 8; ++i) {
4155        int idx = MaskVals[i];
4156        if (idx < 0)
4157          continue;
4158        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4159        if ((idx != i) && idx < 4)
4160          pshufhw = false;
4161        if ((idx != i) && idx > 3)
4162          pshuflw = false;
4163      }
4164      V1 = NewV;
4165      V2Used = false;
4166      BestLoQuad = 0;
4167      BestHiQuad = 1;
4168    }
4169
4170    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4171    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4172    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4173      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4174                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4175    }
4176  }
4177
4178  // If we have SSSE3, and all words of the result are from 1 input vector,
4179  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4180  // is present, fall back to case 4.
4181  if (TLI.getSubtarget()->hasSSSE3()) {
4182    SmallVector<SDValue,16> pshufbMask;
4183
4184    // If we have elements from both input vectors, set the high bit of the
4185    // shuffle mask element to zero out elements that come from V2 in the V1
4186    // mask, and elements that come from V1 in the V2 mask, so that the two
4187    // results can be OR'd together.
4188    bool TwoInputs = V1Used && V2Used;
4189    for (unsigned i = 0; i != 8; ++i) {
4190      int EltIdx = MaskVals[i] * 2;
4191      if (TwoInputs && (EltIdx >= 16)) {
4192        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4193        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4194        continue;
4195      }
4196      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4197      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4198    }
4199    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4200    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4201                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4202                                 MVT::v16i8, &pshufbMask[0], 16));
4203    if (!TwoInputs)
4204      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4205
4206    // Calculate the shuffle mask for the second input, shuffle it, and
4207    // OR it with the first shuffled input.
4208    pshufbMask.clear();
4209    for (unsigned i = 0; i != 8; ++i) {
4210      int EltIdx = MaskVals[i] * 2;
4211      if (EltIdx < 16) {
4212        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4213        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4214        continue;
4215      }
4216      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4217      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4218    }
4219    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4220    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4221                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4222                                 MVT::v16i8, &pshufbMask[0], 16));
4223    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4224    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4225  }
4226
4227  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4228  // and update MaskVals with new element order.
4229  BitVector InOrder(8);
4230  if (BestLoQuad >= 0) {
4231    SmallVector<int, 8> MaskV;
4232    for (int i = 0; i != 4; ++i) {
4233      int idx = MaskVals[i];
4234      if (idx < 0) {
4235        MaskV.push_back(-1);
4236        InOrder.set(i);
4237      } else if ((idx / 4) == BestLoQuad) {
4238        MaskV.push_back(idx & 3);
4239        InOrder.set(i);
4240      } else {
4241        MaskV.push_back(-1);
4242      }
4243    }
4244    for (unsigned i = 4; i != 8; ++i)
4245      MaskV.push_back(i);
4246    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4247                                &MaskV[0]);
4248  }
4249
4250  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4251  // and update MaskVals with the new element order.
4252  if (BestHiQuad >= 0) {
4253    SmallVector<int, 8> MaskV;
4254    for (unsigned i = 0; i != 4; ++i)
4255      MaskV.push_back(i);
4256    for (unsigned i = 4; i != 8; ++i) {
4257      int idx = MaskVals[i];
4258      if (idx < 0) {
4259        MaskV.push_back(-1);
4260        InOrder.set(i);
4261      } else if ((idx / 4) == BestHiQuad) {
4262        MaskV.push_back((idx & 3) + 4);
4263        InOrder.set(i);
4264      } else {
4265        MaskV.push_back(-1);
4266      }
4267    }
4268    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4269                                &MaskV[0]);
4270  }
4271
4272  // In case BestHi & BestLo were both -1, which means each quadword has a word
4273  // from each of the four input quadwords, calculate the InOrder bitvector now
4274  // before falling through to the insert/extract cleanup.
4275  if (BestLoQuad == -1 && BestHiQuad == -1) {
4276    NewV = V1;
4277    for (int i = 0; i != 8; ++i)
4278      if (MaskVals[i] < 0 || MaskVals[i] == i)
4279        InOrder.set(i);
4280  }
4281
4282  // The other elements are put in the right place using pextrw and pinsrw.
4283  for (unsigned i = 0; i != 8; ++i) {
4284    if (InOrder[i])
4285      continue;
4286    int EltIdx = MaskVals[i];
4287    if (EltIdx < 0)
4288      continue;
4289    SDValue ExtOp = (EltIdx < 8)
4290    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4291                  DAG.getIntPtrConstant(EltIdx))
4292    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4293                  DAG.getIntPtrConstant(EltIdx - 8));
4294    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4295                       DAG.getIntPtrConstant(i));
4296  }
4297  return NewV;
4298}
4299
4300// v16i8 shuffles - Prefer shuffles in the following order:
4301// 1. [ssse3] 1 x pshufb
4302// 2. [ssse3] 2 x pshufb + 1 x por
4303// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4304static
4305SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4306                                 SelectionDAG &DAG,
4307                                 const X86TargetLowering &TLI) {
4308  SDValue V1 = SVOp->getOperand(0);
4309  SDValue V2 = SVOp->getOperand(1);
4310  DebugLoc dl = SVOp->getDebugLoc();
4311  SmallVector<int, 16> MaskVals;
4312  SVOp->getMask(MaskVals);
4313
4314  // If we have SSSE3, case 1 is generated when all result bytes come from
4315  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4316  // present, fall back to case 3.
4317  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4318  bool V1Only = true;
4319  bool V2Only = true;
4320  for (unsigned i = 0; i < 16; ++i) {
4321    int EltIdx = MaskVals[i];
4322    if (EltIdx < 0)
4323      continue;
4324    if (EltIdx < 16)
4325      V2Only = false;
4326    else
4327      V1Only = false;
4328  }
4329
4330  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4331  if (TLI.getSubtarget()->hasSSSE3()) {
4332    SmallVector<SDValue,16> pshufbMask;
4333
4334    // If all result elements are from one input vector, then only translate
4335    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4336    //
4337    // Otherwise, we have elements from both input vectors, and must zero out
4338    // elements that come from V2 in the first mask, and V1 in the second mask
4339    // so that we can OR them together.
4340    bool TwoInputs = !(V1Only || V2Only);
4341    for (unsigned i = 0; i != 16; ++i) {
4342      int EltIdx = MaskVals[i];
4343      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4344        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4345        continue;
4346      }
4347      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4348    }
4349    // If all the elements are from V2, assign it to V1 and return after
4350    // building the first pshufb.
4351    if (V2Only)
4352      V1 = V2;
4353    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4354                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4355                                 MVT::v16i8, &pshufbMask[0], 16));
4356    if (!TwoInputs)
4357      return V1;
4358
4359    // Calculate the shuffle mask for the second input, shuffle it, and
4360    // OR it with the first shuffled input.
4361    pshufbMask.clear();
4362    for (unsigned i = 0; i != 16; ++i) {
4363      int EltIdx = MaskVals[i];
4364      if (EltIdx < 16) {
4365        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4366        continue;
4367      }
4368      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4369    }
4370    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4371                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4372                                 MVT::v16i8, &pshufbMask[0], 16));
4373    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4374  }
4375
4376  // No SSSE3 - Calculate in place words and then fix all out of place words
4377  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4378  // the 16 different words that comprise the two doublequadword input vectors.
4379  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4380  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4381  SDValue NewV = V2Only ? V2 : V1;
4382  for (int i = 0; i != 8; ++i) {
4383    int Elt0 = MaskVals[i*2];
4384    int Elt1 = MaskVals[i*2+1];
4385
4386    // This word of the result is all undef, skip it.
4387    if (Elt0 < 0 && Elt1 < 0)
4388      continue;
4389
4390    // This word of the result is already in the correct place, skip it.
4391    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4392      continue;
4393    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4394      continue;
4395
4396    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4397    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4398    SDValue InsElt;
4399
4400    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4401    // using a single extract together, load it and store it.
4402    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4403      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4404                           DAG.getIntPtrConstant(Elt1 / 2));
4405      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4406                        DAG.getIntPtrConstant(i));
4407      continue;
4408    }
4409
4410    // If Elt1 is defined, extract it from the appropriate source.  If the
4411    // source byte is not also odd, shift the extracted word left 8 bits
4412    // otherwise clear the bottom 8 bits if we need to do an or.
4413    if (Elt1 >= 0) {
4414      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4415                           DAG.getIntPtrConstant(Elt1 / 2));
4416      if ((Elt1 & 1) == 0)
4417        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4418                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4419      else if (Elt0 >= 0)
4420        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4421                             DAG.getConstant(0xFF00, MVT::i16));
4422    }
4423    // If Elt0 is defined, extract it from the appropriate source.  If the
4424    // source byte is not also even, shift the extracted word right 8 bits. If
4425    // Elt1 was also defined, OR the extracted values together before
4426    // inserting them in the result.
4427    if (Elt0 >= 0) {
4428      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4429                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4430      if ((Elt0 & 1) != 0)
4431        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4432                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4433      else if (Elt1 >= 0)
4434        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4435                             DAG.getConstant(0x00FF, MVT::i16));
4436      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4437                         : InsElt0;
4438    }
4439    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4440                       DAG.getIntPtrConstant(i));
4441  }
4442  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4443}
4444
4445/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4446/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
4447/// done when every pair / quad of shuffle mask elements point to elements in
4448/// the right sequence. e.g.
4449/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4450static
4451SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4452                                 SelectionDAG &DAG,
4453                                 const TargetLowering &TLI, DebugLoc dl) {
4454  EVT VT = SVOp->getValueType(0);
4455  SDValue V1 = SVOp->getOperand(0);
4456  SDValue V2 = SVOp->getOperand(1);
4457  unsigned NumElems = VT.getVectorNumElements();
4458  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4459  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4460  EVT NewVT = MaskVT;
4461  switch (VT.getSimpleVT().SimpleTy) {
4462  default: assert(false && "Unexpected!");
4463  case MVT::v4f32: NewVT = MVT::v2f64; break;
4464  case MVT::v4i32: NewVT = MVT::v2i64; break;
4465  case MVT::v8i16: NewVT = MVT::v4i32; break;
4466  case MVT::v16i8: NewVT = MVT::v4i32; break;
4467  }
4468
4469  if (NewWidth == 2) {
4470    if (VT.isInteger())
4471      NewVT = MVT::v2i64;
4472    else
4473      NewVT = MVT::v2f64;
4474  }
4475  int Scale = NumElems / NewWidth;
4476  SmallVector<int, 8> MaskVec;
4477  for (unsigned i = 0; i < NumElems; i += Scale) {
4478    int StartIdx = -1;
4479    for (int j = 0; j < Scale; ++j) {
4480      int EltIdx = SVOp->getMaskElt(i+j);
4481      if (EltIdx < 0)
4482        continue;
4483      if (StartIdx == -1)
4484        StartIdx = EltIdx - (EltIdx % Scale);
4485      if (EltIdx != StartIdx + j)
4486        return SDValue();
4487    }
4488    if (StartIdx == -1)
4489      MaskVec.push_back(-1);
4490    else
4491      MaskVec.push_back(StartIdx / Scale);
4492  }
4493
4494  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4495  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4496  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4497}
4498
4499/// getVZextMovL - Return a zero-extending vector move low node.
4500///
4501static SDValue getVZextMovL(EVT VT, EVT OpVT,
4502                            SDValue SrcOp, SelectionDAG &DAG,
4503                            const X86Subtarget *Subtarget, DebugLoc dl) {
4504  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4505    LoadSDNode *LD = NULL;
4506    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4507      LD = dyn_cast<LoadSDNode>(SrcOp);
4508    if (!LD) {
4509      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4510      // instead.
4511      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4512      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4513          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4514          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4515          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4516        // PR2108
4517        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4518        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4519                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4520                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4521                                                   OpVT,
4522                                                   SrcOp.getOperand(0)
4523                                                          .getOperand(0))));
4524      }
4525    }
4526  }
4527
4528  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4529                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4530                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4531                                             OpVT, SrcOp)));
4532}
4533
4534/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4535/// shuffles.
4536static SDValue
4537LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4538  SDValue V1 = SVOp->getOperand(0);
4539  SDValue V2 = SVOp->getOperand(1);
4540  DebugLoc dl = SVOp->getDebugLoc();
4541  EVT VT = SVOp->getValueType(0);
4542
4543  SmallVector<std::pair<int, int>, 8> Locs;
4544  Locs.resize(4);
4545  SmallVector<int, 8> Mask1(4U, -1);
4546  SmallVector<int, 8> PermMask;
4547  SVOp->getMask(PermMask);
4548
4549  unsigned NumHi = 0;
4550  unsigned NumLo = 0;
4551  for (unsigned i = 0; i != 4; ++i) {
4552    int Idx = PermMask[i];
4553    if (Idx < 0) {
4554      Locs[i] = std::make_pair(-1, -1);
4555    } else {
4556      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4557      if (Idx < 4) {
4558        Locs[i] = std::make_pair(0, NumLo);
4559        Mask1[NumLo] = Idx;
4560        NumLo++;
4561      } else {
4562        Locs[i] = std::make_pair(1, NumHi);
4563        if (2+NumHi < 4)
4564          Mask1[2+NumHi] = Idx;
4565        NumHi++;
4566      }
4567    }
4568  }
4569
4570  if (NumLo <= 2 && NumHi <= 2) {
4571    // If no more than two elements come from either vector. This can be
4572    // implemented with two shuffles. First shuffle gather the elements.
4573    // The second shuffle, which takes the first shuffle as both of its
4574    // vector operands, put the elements into the right order.
4575    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4576
4577    SmallVector<int, 8> Mask2(4U, -1);
4578
4579    for (unsigned i = 0; i != 4; ++i) {
4580      if (Locs[i].first == -1)
4581        continue;
4582      else {
4583        unsigned Idx = (i < 2) ? 0 : 4;
4584        Idx += Locs[i].first * 2 + Locs[i].second;
4585        Mask2[i] = Idx;
4586      }
4587    }
4588
4589    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4590  } else if (NumLo == 3 || NumHi == 3) {
4591    // Otherwise, we must have three elements from one vector, call it X, and
4592    // one element from the other, call it Y.  First, use a shufps to build an
4593    // intermediate vector with the one element from Y and the element from X
4594    // that will be in the same half in the final destination (the indexes don't
4595    // matter). Then, use a shufps to build the final vector, taking the half
4596    // containing the element from Y from the intermediate, and the other half
4597    // from X.
4598    if (NumHi == 3) {
4599      // Normalize it so the 3 elements come from V1.
4600      CommuteVectorShuffleMask(PermMask, VT);
4601      std::swap(V1, V2);
4602    }
4603
4604    // Find the element from V2.
4605    unsigned HiIndex;
4606    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4607      int Val = PermMask[HiIndex];
4608      if (Val < 0)
4609        continue;
4610      if (Val >= 4)
4611        break;
4612    }
4613
4614    Mask1[0] = PermMask[HiIndex];
4615    Mask1[1] = -1;
4616    Mask1[2] = PermMask[HiIndex^1];
4617    Mask1[3] = -1;
4618    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4619
4620    if (HiIndex >= 2) {
4621      Mask1[0] = PermMask[0];
4622      Mask1[1] = PermMask[1];
4623      Mask1[2] = HiIndex & 1 ? 6 : 4;
4624      Mask1[3] = HiIndex & 1 ? 4 : 6;
4625      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4626    } else {
4627      Mask1[0] = HiIndex & 1 ? 2 : 0;
4628      Mask1[1] = HiIndex & 1 ? 0 : 2;
4629      Mask1[2] = PermMask[2];
4630      Mask1[3] = PermMask[3];
4631      if (Mask1[2] >= 0)
4632        Mask1[2] += 4;
4633      if (Mask1[3] >= 0)
4634        Mask1[3] += 4;
4635      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4636    }
4637  }
4638
4639  // Break it into (shuffle shuffle_hi, shuffle_lo).
4640  Locs.clear();
4641  SmallVector<int,8> LoMask(4U, -1);
4642  SmallVector<int,8> HiMask(4U, -1);
4643
4644  SmallVector<int,8> *MaskPtr = &LoMask;
4645  unsigned MaskIdx = 0;
4646  unsigned LoIdx = 0;
4647  unsigned HiIdx = 2;
4648  for (unsigned i = 0; i != 4; ++i) {
4649    if (i == 2) {
4650      MaskPtr = &HiMask;
4651      MaskIdx = 1;
4652      LoIdx = 0;
4653      HiIdx = 2;
4654    }
4655    int Idx = PermMask[i];
4656    if (Idx < 0) {
4657      Locs[i] = std::make_pair(-1, -1);
4658    } else if (Idx < 4) {
4659      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4660      (*MaskPtr)[LoIdx] = Idx;
4661      LoIdx++;
4662    } else {
4663      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4664      (*MaskPtr)[HiIdx] = Idx;
4665      HiIdx++;
4666    }
4667  }
4668
4669  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4670  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4671  SmallVector<int, 8> MaskOps;
4672  for (unsigned i = 0; i != 4; ++i) {
4673    if (Locs[i].first == -1) {
4674      MaskOps.push_back(-1);
4675    } else {
4676      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4677      MaskOps.push_back(Idx);
4678    }
4679  }
4680  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4681}
4682
4683SDValue
4684X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
4685  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4686  SDValue V1 = Op.getOperand(0);
4687  SDValue V2 = Op.getOperand(1);
4688  EVT VT = Op.getValueType();
4689  DebugLoc dl = Op.getDebugLoc();
4690  unsigned NumElems = VT.getVectorNumElements();
4691  bool isMMX = VT.getSizeInBits() == 64;
4692  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4693  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4694  bool V1IsSplat = false;
4695  bool V2IsSplat = false;
4696
4697  if (isZeroShuffle(SVOp))
4698    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4699
4700  // Promote splats to v4f32.
4701  if (SVOp->isSplat()) {
4702    if (isMMX || NumElems < 4)
4703      return Op;
4704    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4705  }
4706
4707  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4708  // do it!
4709  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4710    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4711    if (NewOp.getNode())
4712      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4713                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4714  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4715    // FIXME: Figure out a cleaner way to do this.
4716    // Try to make use of movq to zero out the top part.
4717    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4718      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4719      if (NewOp.getNode()) {
4720        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4721          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4722                              DAG, Subtarget, dl);
4723      }
4724    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4725      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4726      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4727        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4728                            DAG, Subtarget, dl);
4729    }
4730  }
4731
4732  if (X86::isPSHUFDMask(SVOp))
4733    return Op;
4734
4735  // Check if this can be converted into a logical shift.
4736  bool isLeft = false;
4737  unsigned ShAmt = 0;
4738  SDValue ShVal;
4739  bool isShift = getSubtarget()->hasSSE2() &&
4740    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4741  if (isShift && ShVal.hasOneUse()) {
4742    // If the shifted value has multiple uses, it may be cheaper to use
4743    // v_set0 + movlhps or movhlps, etc.
4744    EVT EltVT = VT.getVectorElementType();
4745    ShAmt *= EltVT.getSizeInBits();
4746    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4747  }
4748
4749  if (X86::isMOVLMask(SVOp)) {
4750    if (V1IsUndef)
4751      return V2;
4752    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4753      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4754    if (!isMMX)
4755      return Op;
4756  }
4757
4758  // FIXME: fold these into legal mask.
4759  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4760                 X86::isMOVSLDUPMask(SVOp) ||
4761                 X86::isMOVHLPSMask(SVOp) ||
4762                 X86::isMOVLHPSMask(SVOp) ||
4763                 X86::isMOVLPMask(SVOp)))
4764    return Op;
4765
4766  if (ShouldXformToMOVHLPS(SVOp) ||
4767      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4768    return CommuteVectorShuffle(SVOp, DAG);
4769
4770  if (isShift) {
4771    // No better options. Use a vshl / vsrl.
4772    EVT EltVT = VT.getVectorElementType();
4773    ShAmt *= EltVT.getSizeInBits();
4774    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4775  }
4776
4777  bool Commuted = false;
4778  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4779  // 1,1,1,1 -> v8i16 though.
4780  V1IsSplat = isSplatVector(V1.getNode());
4781  V2IsSplat = isSplatVector(V2.getNode());
4782
4783  // Canonicalize the splat or undef, if present, to be on the RHS.
4784  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4785    Op = CommuteVectorShuffle(SVOp, DAG);
4786    SVOp = cast<ShuffleVectorSDNode>(Op);
4787    V1 = SVOp->getOperand(0);
4788    V2 = SVOp->getOperand(1);
4789    std::swap(V1IsSplat, V2IsSplat);
4790    std::swap(V1IsUndef, V2IsUndef);
4791    Commuted = true;
4792  }
4793
4794  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4795    // Shuffling low element of v1 into undef, just return v1.
4796    if (V2IsUndef)
4797      return V1;
4798    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4799    // the instruction selector will not match, so get a canonical MOVL with
4800    // swapped operands to undo the commute.
4801    return getMOVL(DAG, dl, VT, V2, V1);
4802  }
4803
4804  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4805      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4806      X86::isUNPCKLMask(SVOp) ||
4807      X86::isUNPCKHMask(SVOp))
4808    return Op;
4809
4810  if (V2IsSplat) {
4811    // Normalize mask so all entries that point to V2 points to its first
4812    // element then try to match unpck{h|l} again. If match, return a
4813    // new vector_shuffle with the corrected mask.
4814    SDValue NewMask = NormalizeMask(SVOp, DAG);
4815    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4816    if (NSVOp != SVOp) {
4817      if (X86::isUNPCKLMask(NSVOp, true)) {
4818        return NewMask;
4819      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4820        return NewMask;
4821      }
4822    }
4823  }
4824
4825  if (Commuted) {
4826    // Commute is back and try unpck* again.
4827    // FIXME: this seems wrong.
4828    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4829    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4830    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4831        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4832        X86::isUNPCKLMask(NewSVOp) ||
4833        X86::isUNPCKHMask(NewSVOp))
4834      return NewOp;
4835  }
4836
4837  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4838
4839  // Normalize the node to match x86 shuffle ops if needed
4840  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4841    return CommuteVectorShuffle(SVOp, DAG);
4842
4843  // Check for legal shuffle and return?
4844  SmallVector<int, 16> PermMask;
4845  SVOp->getMask(PermMask);
4846  if (isShuffleMaskLegal(PermMask, VT))
4847    return Op;
4848
4849  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4850  if (VT == MVT::v8i16) {
4851    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4852    if (NewOp.getNode())
4853      return NewOp;
4854  }
4855
4856  if (VT == MVT::v16i8) {
4857    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4858    if (NewOp.getNode())
4859      return NewOp;
4860  }
4861
4862  // Handle all 4 wide cases with a number of shuffles except for MMX.
4863  if (NumElems == 4 && !isMMX)
4864    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4865
4866  return SDValue();
4867}
4868
4869SDValue
4870X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4871                                                SelectionDAG &DAG) const {
4872  EVT VT = Op.getValueType();
4873  DebugLoc dl = Op.getDebugLoc();
4874  if (VT.getSizeInBits() == 8) {
4875    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4876                                    Op.getOperand(0), Op.getOperand(1));
4877    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4878                                    DAG.getValueType(VT));
4879    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4880  } else if (VT.getSizeInBits() == 16) {
4881    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4882    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4883    if (Idx == 0)
4884      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4885                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4886                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4887                                                 MVT::v4i32,
4888                                                 Op.getOperand(0)),
4889                                     Op.getOperand(1)));
4890    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4891                                    Op.getOperand(0), Op.getOperand(1));
4892    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4893                                    DAG.getValueType(VT));
4894    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4895  } else if (VT == MVT::f32) {
4896    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4897    // the result back to FR32 register. It's only worth matching if the
4898    // result has a single use which is a store or a bitcast to i32.  And in
4899    // the case of a store, it's not worth it if the index is a constant 0,
4900    // because a MOVSSmr can be used instead, which is smaller and faster.
4901    if (!Op.hasOneUse())
4902      return SDValue();
4903    SDNode *User = *Op.getNode()->use_begin();
4904    if ((User->getOpcode() != ISD::STORE ||
4905         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4906          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4907        (User->getOpcode() != ISD::BIT_CONVERT ||
4908         User->getValueType(0) != MVT::i32))
4909      return SDValue();
4910    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4911                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4912                                              Op.getOperand(0)),
4913                                              Op.getOperand(1));
4914    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4915  } else if (VT == MVT::i32) {
4916    // ExtractPS works with constant index.
4917    if (isa<ConstantSDNode>(Op.getOperand(1)))
4918      return Op;
4919  }
4920  return SDValue();
4921}
4922
4923
4924SDValue
4925X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
4926                                           SelectionDAG &DAG) const {
4927  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4928    return SDValue();
4929
4930  if (Subtarget->hasSSE41()) {
4931    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4932    if (Res.getNode())
4933      return Res;
4934  }
4935
4936  EVT VT = Op.getValueType();
4937  DebugLoc dl = Op.getDebugLoc();
4938  // TODO: handle v16i8.
4939  if (VT.getSizeInBits() == 16) {
4940    SDValue Vec = Op.getOperand(0);
4941    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4942    if (Idx == 0)
4943      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4944                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4945                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4946                                                 MVT::v4i32, Vec),
4947                                     Op.getOperand(1)));
4948    // Transform it so it match pextrw which produces a 32-bit result.
4949    EVT EltVT = MVT::i32;
4950    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4951                                    Op.getOperand(0), Op.getOperand(1));
4952    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4953                                    DAG.getValueType(VT));
4954    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4955  } else if (VT.getSizeInBits() == 32) {
4956    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4957    if (Idx == 0)
4958      return Op;
4959
4960    // SHUFPS the element to the lowest double word, then movss.
4961    int Mask[4] = { Idx, -1, -1, -1 };
4962    EVT VVT = Op.getOperand(0).getValueType();
4963    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4964                                       DAG.getUNDEF(VVT), Mask);
4965    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4966                       DAG.getIntPtrConstant(0));
4967  } else if (VT.getSizeInBits() == 64) {
4968    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4969    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4970    //        to match extract_elt for f64.
4971    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4972    if (Idx == 0)
4973      return Op;
4974
4975    // UNPCKHPD the element to the lowest double word, then movsd.
4976    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4977    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4978    int Mask[2] = { 1, -1 };
4979    EVT VVT = Op.getOperand(0).getValueType();
4980    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4981                                       DAG.getUNDEF(VVT), Mask);
4982    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4983                       DAG.getIntPtrConstant(0));
4984  }
4985
4986  return SDValue();
4987}
4988
4989SDValue
4990X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
4991                                               SelectionDAG &DAG) const {
4992  EVT VT = Op.getValueType();
4993  EVT EltVT = VT.getVectorElementType();
4994  DebugLoc dl = Op.getDebugLoc();
4995
4996  SDValue N0 = Op.getOperand(0);
4997  SDValue N1 = Op.getOperand(1);
4998  SDValue N2 = Op.getOperand(2);
4999
5000  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5001      isa<ConstantSDNode>(N2)) {
5002    unsigned Opc;
5003    if (VT == MVT::v8i16)
5004      Opc = X86ISD::PINSRW;
5005    else if (VT == MVT::v4i16)
5006      Opc = X86ISD::MMX_PINSRW;
5007    else if (VT == MVT::v16i8)
5008      Opc = X86ISD::PINSRB;
5009    else
5010      Opc = X86ISD::PINSRB;
5011
5012    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5013    // argument.
5014    if (N1.getValueType() != MVT::i32)
5015      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5016    if (N2.getValueType() != MVT::i32)
5017      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5018    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5019  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5020    // Bits [7:6] of the constant are the source select.  This will always be
5021    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5022    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5023    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5024    // Bits [5:4] of the constant are the destination select.  This is the
5025    //  value of the incoming immediate.
5026    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5027    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5028    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5029    // Create this as a scalar to vector..
5030    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5031    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5032  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5033    // PINSR* works with constant index.
5034    return Op;
5035  }
5036  return SDValue();
5037}
5038
5039SDValue
5040X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5041  EVT VT = Op.getValueType();
5042  EVT EltVT = VT.getVectorElementType();
5043
5044  if (Subtarget->hasSSE41())
5045    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5046
5047  if (EltVT == MVT::i8)
5048    return SDValue();
5049
5050  DebugLoc dl = Op.getDebugLoc();
5051  SDValue N0 = Op.getOperand(0);
5052  SDValue N1 = Op.getOperand(1);
5053  SDValue N2 = Op.getOperand(2);
5054
5055  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5056    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5057    // as its second argument.
5058    if (N1.getValueType() != MVT::i32)
5059      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5060    if (N2.getValueType() != MVT::i32)
5061      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5062    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5063                       dl, VT, N0, N1, N2);
5064  }
5065  return SDValue();
5066}
5067
5068SDValue
5069X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5070  DebugLoc dl = Op.getDebugLoc();
5071  if (Op.getValueType() == MVT::v2f32)
5072    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
5073                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
5074                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
5075                                               Op.getOperand(0))));
5076
5077  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
5078    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5079
5080  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5081  EVT VT = MVT::v2i32;
5082  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5083  default: break;
5084  case MVT::v16i8:
5085  case MVT::v8i16:
5086    VT = MVT::v4i32;
5087    break;
5088  }
5089  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5090                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5091}
5092
5093// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5094// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5095// one of the above mentioned nodes. It has to be wrapped because otherwise
5096// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5097// be used to form addressing mode. These wrapped nodes will be selected
5098// into MOV32ri.
5099SDValue
5100X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5101  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5102
5103  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5104  // global base reg.
5105  unsigned char OpFlag = 0;
5106  unsigned WrapperKind = X86ISD::Wrapper;
5107  CodeModel::Model M = getTargetMachine().getCodeModel();
5108
5109  if (Subtarget->isPICStyleRIPRel() &&
5110      (M == CodeModel::Small || M == CodeModel::Kernel))
5111    WrapperKind = X86ISD::WrapperRIP;
5112  else if (Subtarget->isPICStyleGOT())
5113    OpFlag = X86II::MO_GOTOFF;
5114  else if (Subtarget->isPICStyleStubPIC())
5115    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5116
5117  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5118                                             CP->getAlignment(),
5119                                             CP->getOffset(), OpFlag);
5120  DebugLoc DL = CP->getDebugLoc();
5121  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5122  // With PIC, the address is actually $g + Offset.
5123  if (OpFlag) {
5124    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5125                         DAG.getNode(X86ISD::GlobalBaseReg,
5126                                     DebugLoc(), getPointerTy()),
5127                         Result);
5128  }
5129
5130  return Result;
5131}
5132
5133SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5134  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5135
5136  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5137  // global base reg.
5138  unsigned char OpFlag = 0;
5139  unsigned WrapperKind = X86ISD::Wrapper;
5140  CodeModel::Model M = getTargetMachine().getCodeModel();
5141
5142  if (Subtarget->isPICStyleRIPRel() &&
5143      (M == CodeModel::Small || M == CodeModel::Kernel))
5144    WrapperKind = X86ISD::WrapperRIP;
5145  else if (Subtarget->isPICStyleGOT())
5146    OpFlag = X86II::MO_GOTOFF;
5147  else if (Subtarget->isPICStyleStubPIC())
5148    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5149
5150  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5151                                          OpFlag);
5152  DebugLoc DL = JT->getDebugLoc();
5153  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5154
5155  // With PIC, the address is actually $g + Offset.
5156  if (OpFlag) {
5157    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5158                         DAG.getNode(X86ISD::GlobalBaseReg,
5159                                     DebugLoc(), getPointerTy()),
5160                         Result);
5161  }
5162
5163  return Result;
5164}
5165
5166SDValue
5167X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5168  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5169
5170  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5171  // global base reg.
5172  unsigned char OpFlag = 0;
5173  unsigned WrapperKind = X86ISD::Wrapper;
5174  CodeModel::Model M = getTargetMachine().getCodeModel();
5175
5176  if (Subtarget->isPICStyleRIPRel() &&
5177      (M == CodeModel::Small || M == CodeModel::Kernel))
5178    WrapperKind = X86ISD::WrapperRIP;
5179  else if (Subtarget->isPICStyleGOT())
5180    OpFlag = X86II::MO_GOTOFF;
5181  else if (Subtarget->isPICStyleStubPIC())
5182    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5183
5184  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5185
5186  DebugLoc DL = Op.getDebugLoc();
5187  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5188
5189
5190  // With PIC, the address is actually $g + Offset.
5191  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5192      !Subtarget->is64Bit()) {
5193    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5194                         DAG.getNode(X86ISD::GlobalBaseReg,
5195                                     DebugLoc(), getPointerTy()),
5196                         Result);
5197  }
5198
5199  return Result;
5200}
5201
5202SDValue
5203X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5204  // Create the TargetBlockAddressAddress node.
5205  unsigned char OpFlags =
5206    Subtarget->ClassifyBlockAddressReference();
5207  CodeModel::Model M = getTargetMachine().getCodeModel();
5208  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5209  DebugLoc dl = Op.getDebugLoc();
5210  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5211                                       /*isTarget=*/true, OpFlags);
5212
5213  if (Subtarget->isPICStyleRIPRel() &&
5214      (M == CodeModel::Small || M == CodeModel::Kernel))
5215    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5216  else
5217    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5218
5219  // With PIC, the address is actually $g + Offset.
5220  if (isGlobalRelativeToPICBase(OpFlags)) {
5221    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5222                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5223                         Result);
5224  }
5225
5226  return Result;
5227}
5228
5229SDValue
5230X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5231                                      int64_t Offset,
5232                                      SelectionDAG &DAG) const {
5233  // Create the TargetGlobalAddress node, folding in the constant
5234  // offset if it is legal.
5235  unsigned char OpFlags =
5236    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5237  CodeModel::Model M = getTargetMachine().getCodeModel();
5238  SDValue Result;
5239  if (OpFlags == X86II::MO_NO_FLAG &&
5240      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5241    // A direct static reference to a global.
5242    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
5243    Offset = 0;
5244  } else {
5245    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
5246  }
5247
5248  if (Subtarget->isPICStyleRIPRel() &&
5249      (M == CodeModel::Small || M == CodeModel::Kernel))
5250    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5251  else
5252    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5253
5254  // With PIC, the address is actually $g + Offset.
5255  if (isGlobalRelativeToPICBase(OpFlags)) {
5256    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5257                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5258                         Result);
5259  }
5260
5261  // For globals that require a load from a stub to get the address, emit the
5262  // load.
5263  if (isGlobalStubReference(OpFlags))
5264    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5265                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5266
5267  // If there was a non-zero offset that we didn't fold, create an explicit
5268  // addition for it.
5269  if (Offset != 0)
5270    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5271                         DAG.getConstant(Offset, getPointerTy()));
5272
5273  return Result;
5274}
5275
5276SDValue
5277X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
5278  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5279  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5280  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5281}
5282
5283static SDValue
5284GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5285           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5286           unsigned char OperandFlags) {
5287  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5288  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5289  DebugLoc dl = GA->getDebugLoc();
5290  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
5291                                           GA->getValueType(0),
5292                                           GA->getOffset(),
5293                                           OperandFlags);
5294  if (InFlag) {
5295    SDValue Ops[] = { Chain,  TGA, *InFlag };
5296    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5297  } else {
5298    SDValue Ops[]  = { Chain, TGA };
5299    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5300  }
5301
5302  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5303  MFI->setAdjustsStack(true);
5304
5305  SDValue Flag = Chain.getValue(1);
5306  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5307}
5308
5309// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5310static SDValue
5311LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5312                                const EVT PtrVT) {
5313  SDValue InFlag;
5314  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5315  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5316                                     DAG.getNode(X86ISD::GlobalBaseReg,
5317                                                 DebugLoc(), PtrVT), InFlag);
5318  InFlag = Chain.getValue(1);
5319
5320  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5321}
5322
5323// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5324static SDValue
5325LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5326                                const EVT PtrVT) {
5327  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5328                    X86::RAX, X86II::MO_TLSGD);
5329}
5330
5331// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5332// "local exec" model.
5333static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5334                                   const EVT PtrVT, TLSModel::Model model,
5335                                   bool is64Bit) {
5336  DebugLoc dl = GA->getDebugLoc();
5337  // Get the Thread Pointer
5338  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5339                             DebugLoc(), PtrVT,
5340                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5341                                             MVT::i32));
5342
5343  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5344                                      NULL, 0, false, false, 0);
5345
5346  unsigned char OperandFlags = 0;
5347  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5348  // initialexec.
5349  unsigned WrapperKind = X86ISD::Wrapper;
5350  if (model == TLSModel::LocalExec) {
5351    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5352  } else if (is64Bit) {
5353    assert(model == TLSModel::InitialExec);
5354    OperandFlags = X86II::MO_GOTTPOFF;
5355    WrapperKind = X86ISD::WrapperRIP;
5356  } else {
5357    assert(model == TLSModel::InitialExec);
5358    OperandFlags = X86II::MO_INDNTPOFF;
5359  }
5360
5361  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5362  // exec)
5363  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5364                                           GA->getOffset(), OperandFlags);
5365  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5366
5367  if (model == TLSModel::InitialExec)
5368    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5369                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5370
5371  // The address of the thread local variable is the add of the thread
5372  // pointer with the offset of the variable.
5373  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5374}
5375
5376SDValue
5377X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
5378
5379  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5380  const GlobalValue *GV = GA->getGlobal();
5381
5382  if (Subtarget->isTargetELF()) {
5383    // TODO: implement the "local dynamic" model
5384    // TODO: implement the "initial exec"model for pic executables
5385
5386    // If GV is an alias then use the aliasee for determining
5387    // thread-localness.
5388    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5389      GV = GA->resolveAliasedGlobal(false);
5390
5391    TLSModel::Model model
5392      = getTLSModel(GV, getTargetMachine().getRelocationModel());
5393
5394    switch (model) {
5395      case TLSModel::GeneralDynamic:
5396      case TLSModel::LocalDynamic: // not implemented
5397        if (Subtarget->is64Bit())
5398          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5399        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5400
5401      case TLSModel::InitialExec:
5402      case TLSModel::LocalExec:
5403        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5404                                   Subtarget->is64Bit());
5405    }
5406  } else if (Subtarget->isTargetDarwin()) {
5407    // Darwin only has one model of TLS.  Lower to that.
5408    unsigned char OpFlag = 0;
5409    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
5410                           X86ISD::WrapperRIP : X86ISD::Wrapper;
5411
5412    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5413    // global base reg.
5414    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
5415                  !Subtarget->is64Bit();
5416    if (PIC32)
5417      OpFlag = X86II::MO_TLVP_PIC_BASE;
5418    else
5419      OpFlag = X86II::MO_TLVP;
5420
5421    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(),
5422                                                getPointerTy(),
5423                                                GA->getOffset(), OpFlag);
5424
5425    DebugLoc DL = Op.getDebugLoc();
5426    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5427
5428    // With PIC32, the address is actually $g + Offset.
5429    if (PIC32)
5430      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5431                           DAG.getNode(X86ISD::GlobalBaseReg,
5432                                       DebugLoc(), getPointerTy()),
5433                           Offset);
5434
5435    // Lowering the machine isd will make sure everything is in the right
5436    // location.
5437    SDValue Args[] = { Offset };
5438    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
5439
5440    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
5441    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5442    MFI->setAdjustsStack(true);
5443
5444    // And our return value (tls address) is in the standard call return value
5445    // location.
5446    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
5447    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
5448  }
5449
5450  assert(false &&
5451         "TLS not implemented for this target.");
5452
5453  llvm_unreachable("Unreachable");
5454  return SDValue();
5455}
5456
5457
5458/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5459/// take a 2 x i32 value to shift plus a shift amount.
5460SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
5461  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5462  EVT VT = Op.getValueType();
5463  unsigned VTBits = VT.getSizeInBits();
5464  DebugLoc dl = Op.getDebugLoc();
5465  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5466  SDValue ShOpLo = Op.getOperand(0);
5467  SDValue ShOpHi = Op.getOperand(1);
5468  SDValue ShAmt  = Op.getOperand(2);
5469  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5470                                     DAG.getConstant(VTBits - 1, MVT::i8))
5471                       : DAG.getConstant(0, VT);
5472
5473  SDValue Tmp2, Tmp3;
5474  if (Op.getOpcode() == ISD::SHL_PARTS) {
5475    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5476    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5477  } else {
5478    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5479    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5480  }
5481
5482  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5483                                DAG.getConstant(VTBits, MVT::i8));
5484  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5485                             AndNode, DAG.getConstant(0, MVT::i8));
5486
5487  SDValue Hi, Lo;
5488  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5489  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5490  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5491
5492  if (Op.getOpcode() == ISD::SHL_PARTS) {
5493    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5494    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5495  } else {
5496    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5497    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5498  }
5499
5500  SDValue Ops[2] = { Lo, Hi };
5501  return DAG.getMergeValues(Ops, 2, dl);
5502}
5503
5504SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
5505                                           SelectionDAG &DAG) const {
5506  EVT SrcVT = Op.getOperand(0).getValueType();
5507
5508  if (SrcVT.isVector()) {
5509    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5510      return Op;
5511    }
5512    return SDValue();
5513  }
5514
5515  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5516         "Unknown SINT_TO_FP to lower!");
5517
5518  // These are really Legal; return the operand so the caller accepts it as
5519  // Legal.
5520  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5521    return Op;
5522  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5523      Subtarget->is64Bit()) {
5524    return Op;
5525  }
5526
5527  DebugLoc dl = Op.getDebugLoc();
5528  unsigned Size = SrcVT.getSizeInBits()/8;
5529  MachineFunction &MF = DAG.getMachineFunction();
5530  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5531  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5532  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5533                               StackSlot,
5534                               PseudoSourceValue::getFixedStack(SSFI), 0,
5535                               false, false, 0);
5536  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5537}
5538
5539SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5540                                     SDValue StackSlot,
5541                                     SelectionDAG &DAG) const {
5542  // Build the FILD
5543  DebugLoc dl = Op.getDebugLoc();
5544  SDVTList Tys;
5545  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5546  if (useSSE)
5547    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5548  else
5549    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5550  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5551  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5552                               Tys, Ops, array_lengthof(Ops));
5553
5554  if (useSSE) {
5555    Chain = Result.getValue(1);
5556    SDValue InFlag = Result.getValue(2);
5557
5558    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5559    // shouldn't be necessary except that RFP cannot be live across
5560    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5561    MachineFunction &MF = DAG.getMachineFunction();
5562    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5563    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5564    Tys = DAG.getVTList(MVT::Other);
5565    SDValue Ops[] = {
5566      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5567    };
5568    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5569    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5570                         PseudoSourceValue::getFixedStack(SSFI), 0,
5571                         false, false, 0);
5572  }
5573
5574  return Result;
5575}
5576
5577// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5578SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
5579                                               SelectionDAG &DAG) const {
5580  // This algorithm is not obvious. Here it is in C code, more or less:
5581  /*
5582    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5583      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5584      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5585
5586      // Copy ints to xmm registers.
5587      __m128i xh = _mm_cvtsi32_si128( hi );
5588      __m128i xl = _mm_cvtsi32_si128( lo );
5589
5590      // Combine into low half of a single xmm register.
5591      __m128i x = _mm_unpacklo_epi32( xh, xl );
5592      __m128d d;
5593      double sd;
5594
5595      // Merge in appropriate exponents to give the integer bits the right
5596      // magnitude.
5597      x = _mm_unpacklo_epi32( x, exp );
5598
5599      // Subtract away the biases to deal with the IEEE-754 double precision
5600      // implicit 1.
5601      d = _mm_sub_pd( (__m128d) x, bias );
5602
5603      // All conversions up to here are exact. The correctly rounded result is
5604      // calculated using the current rounding mode using the following
5605      // horizontal add.
5606      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5607      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5608                                // store doesn't really need to be here (except
5609                                // maybe to zero the other double)
5610      return sd;
5611    }
5612  */
5613
5614  DebugLoc dl = Op.getDebugLoc();
5615  LLVMContext *Context = DAG.getContext();
5616
5617  // Build some magic constants.
5618  std::vector<Constant*> CV0;
5619  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5620  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5621  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5622  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5623  Constant *C0 = ConstantVector::get(CV0);
5624  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5625
5626  std::vector<Constant*> CV1;
5627  CV1.push_back(
5628    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5629  CV1.push_back(
5630    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5631  Constant *C1 = ConstantVector::get(CV1);
5632  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5633
5634  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5635                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5636                                        Op.getOperand(0),
5637                                        DAG.getIntPtrConstant(1)));
5638  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5639                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5640                                        Op.getOperand(0),
5641                                        DAG.getIntPtrConstant(0)));
5642  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5643  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5644                              PseudoSourceValue::getConstantPool(), 0,
5645                              false, false, 16);
5646  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5647  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5648  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5649                              PseudoSourceValue::getConstantPool(), 0,
5650                              false, false, 16);
5651  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5652
5653  // Add the halves; easiest way is to swap them into another reg first.
5654  int ShufMask[2] = { 1, -1 };
5655  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5656                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5657  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5658  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5659                     DAG.getIntPtrConstant(0));
5660}
5661
5662// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5663SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
5664                                               SelectionDAG &DAG) const {
5665  DebugLoc dl = Op.getDebugLoc();
5666  // FP constant to bias correct the final result.
5667  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5668                                   MVT::f64);
5669
5670  // Load the 32-bit value into an XMM register.
5671  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5672                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5673                                         Op.getOperand(0),
5674                                         DAG.getIntPtrConstant(0)));
5675
5676  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5677                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5678                     DAG.getIntPtrConstant(0));
5679
5680  // Or the load with the bias.
5681  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5682                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5683                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5684                                                   MVT::v2f64, Load)),
5685                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5686                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5687                                                   MVT::v2f64, Bias)));
5688  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5689                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5690                   DAG.getIntPtrConstant(0));
5691
5692  // Subtract the bias.
5693  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5694
5695  // Handle final rounding.
5696  EVT DestVT = Op.getValueType();
5697
5698  if (DestVT.bitsLT(MVT::f64)) {
5699    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5700                       DAG.getIntPtrConstant(0));
5701  } else if (DestVT.bitsGT(MVT::f64)) {
5702    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5703  }
5704
5705  // Handle final rounding.
5706  return Sub;
5707}
5708
5709SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
5710                                           SelectionDAG &DAG) const {
5711  SDValue N0 = Op.getOperand(0);
5712  DebugLoc dl = Op.getDebugLoc();
5713
5714  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
5715  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5716  // the optimization here.
5717  if (DAG.SignBitIsZero(N0))
5718    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5719
5720  EVT SrcVT = N0.getValueType();
5721  EVT DstVT = Op.getValueType();
5722  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
5723    return LowerUINT_TO_FP_i64(Op, DAG);
5724  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
5725    return LowerUINT_TO_FP_i32(Op, DAG);
5726
5727  // Make a 64-bit buffer, and use it to build an FILD.
5728  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5729  if (SrcVT == MVT::i32) {
5730    SDValue WordOff = DAG.getConstant(4, getPointerTy());
5731    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5732                                     getPointerTy(), StackSlot, WordOff);
5733    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5734                                  StackSlot, NULL, 0, false, false, 0);
5735    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5736                                  OffsetSlot, NULL, 0, false, false, 0);
5737    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5738    return Fild;
5739  }
5740
5741  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
5742  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5743                                StackSlot, NULL, 0, false, false, 0);
5744  // For i64 source, we need to add the appropriate power of 2 if the input
5745  // was negative.  This is the same as the optimization in
5746  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
5747  // we must be careful to do the computation in x87 extended precision, not
5748  // in SSE. (The generic code can't know it's OK to do this, or how to.)
5749  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
5750  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
5751  SDValue Fild = DAG.getNode(X86ISD::FILD, dl, Tys, Ops, 3);
5752
5753  APInt FF(32, 0x5F800000ULL);
5754
5755  // Check whether the sign bit is set.
5756  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
5757                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
5758                                 ISD::SETLT);
5759
5760  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
5761  SDValue FudgePtr = DAG.getConstantPool(
5762                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
5763                                         getPointerTy());
5764
5765  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
5766  SDValue Zero = DAG.getIntPtrConstant(0);
5767  SDValue Four = DAG.getIntPtrConstant(4);
5768  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
5769                               Zero, Four);
5770  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
5771
5772  // Load the value out, extending it from f32 to f80.
5773  // FIXME: Avoid the extend by constructing the right constant pool?
5774  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
5775                                 FudgePtr, PseudoSourceValue::getConstantPool(),
5776                                 0, MVT::f32, false, false, 4);
5777  // Extend everything to 80 bits to force it to be done on x87.
5778  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
5779  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
5780}
5781
5782std::pair<SDValue,SDValue> X86TargetLowering::
5783FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
5784  DebugLoc dl = Op.getDebugLoc();
5785
5786  EVT DstTy = Op.getValueType();
5787
5788  if (!IsSigned) {
5789    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5790    DstTy = MVT::i64;
5791  }
5792
5793  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5794         DstTy.getSimpleVT() >= MVT::i16 &&
5795         "Unknown FP_TO_SINT to lower!");
5796
5797  // These are really Legal.
5798  if (DstTy == MVT::i32 &&
5799      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5800    return std::make_pair(SDValue(), SDValue());
5801  if (Subtarget->is64Bit() &&
5802      DstTy == MVT::i64 &&
5803      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5804    return std::make_pair(SDValue(), SDValue());
5805
5806  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5807  // stack slot.
5808  MachineFunction &MF = DAG.getMachineFunction();
5809  unsigned MemSize = DstTy.getSizeInBits()/8;
5810  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5811  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5812
5813  unsigned Opc;
5814  switch (DstTy.getSimpleVT().SimpleTy) {
5815  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5816  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5817  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5818  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5819  }
5820
5821  SDValue Chain = DAG.getEntryNode();
5822  SDValue Value = Op.getOperand(0);
5823  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5824    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5825    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5826                         PseudoSourceValue::getFixedStack(SSFI), 0,
5827                         false, false, 0);
5828    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5829    SDValue Ops[] = {
5830      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5831    };
5832    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5833    Chain = Value.getValue(1);
5834    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5835    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5836  }
5837
5838  // Build the FP_TO_INT*_IN_MEM
5839  SDValue Ops[] = { Chain, Value, StackSlot };
5840  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5841
5842  return std::make_pair(FIST, StackSlot);
5843}
5844
5845SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
5846                                           SelectionDAG &DAG) const {
5847  if (Op.getValueType().isVector()) {
5848    if (Op.getValueType() == MVT::v2i32 &&
5849        Op.getOperand(0).getValueType() == MVT::v2f64) {
5850      return Op;
5851    }
5852    return SDValue();
5853  }
5854
5855  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5856  SDValue FIST = Vals.first, StackSlot = Vals.second;
5857  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5858  if (FIST.getNode() == 0) return Op;
5859
5860  // Load the result.
5861  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5862                     FIST, StackSlot, NULL, 0, false, false, 0);
5863}
5864
5865SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
5866                                           SelectionDAG &DAG) const {
5867  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5868  SDValue FIST = Vals.first, StackSlot = Vals.second;
5869  assert(FIST.getNode() && "Unexpected failure");
5870
5871  // Load the result.
5872  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5873                     FIST, StackSlot, NULL, 0, false, false, 0);
5874}
5875
5876SDValue X86TargetLowering::LowerFABS(SDValue Op,
5877                                     SelectionDAG &DAG) const {
5878  LLVMContext *Context = DAG.getContext();
5879  DebugLoc dl = Op.getDebugLoc();
5880  EVT VT = Op.getValueType();
5881  EVT EltVT = VT;
5882  if (VT.isVector())
5883    EltVT = VT.getVectorElementType();
5884  std::vector<Constant*> CV;
5885  if (EltVT == MVT::f64) {
5886    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5887    CV.push_back(C);
5888    CV.push_back(C);
5889  } else {
5890    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5891    CV.push_back(C);
5892    CV.push_back(C);
5893    CV.push_back(C);
5894    CV.push_back(C);
5895  }
5896  Constant *C = ConstantVector::get(CV);
5897  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5898  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5899                             PseudoSourceValue::getConstantPool(), 0,
5900                             false, false, 16);
5901  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5902}
5903
5904SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
5905  LLVMContext *Context = DAG.getContext();
5906  DebugLoc dl = Op.getDebugLoc();
5907  EVT VT = Op.getValueType();
5908  EVT EltVT = VT;
5909  if (VT.isVector())
5910    EltVT = VT.getVectorElementType();
5911  std::vector<Constant*> CV;
5912  if (EltVT == MVT::f64) {
5913    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5914    CV.push_back(C);
5915    CV.push_back(C);
5916  } else {
5917    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5918    CV.push_back(C);
5919    CV.push_back(C);
5920    CV.push_back(C);
5921    CV.push_back(C);
5922  }
5923  Constant *C = ConstantVector::get(CV);
5924  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5925  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5926                             PseudoSourceValue::getConstantPool(), 0,
5927                             false, false, 16);
5928  if (VT.isVector()) {
5929    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5930                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5931                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5932                                Op.getOperand(0)),
5933                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5934  } else {
5935    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5936  }
5937}
5938
5939SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
5940  LLVMContext *Context = DAG.getContext();
5941  SDValue Op0 = Op.getOperand(0);
5942  SDValue Op1 = Op.getOperand(1);
5943  DebugLoc dl = Op.getDebugLoc();
5944  EVT VT = Op.getValueType();
5945  EVT SrcVT = Op1.getValueType();
5946
5947  // If second operand is smaller, extend it first.
5948  if (SrcVT.bitsLT(VT)) {
5949    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5950    SrcVT = VT;
5951  }
5952  // And if it is bigger, shrink it first.
5953  if (SrcVT.bitsGT(VT)) {
5954    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5955    SrcVT = VT;
5956  }
5957
5958  // At this point the operands and the result should have the same
5959  // type, and that won't be f80 since that is not custom lowered.
5960
5961  // First get the sign bit of second operand.
5962  std::vector<Constant*> CV;
5963  if (SrcVT == MVT::f64) {
5964    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5965    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5966  } else {
5967    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5968    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5969    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5970    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5971  }
5972  Constant *C = ConstantVector::get(CV);
5973  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5974  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5975                              PseudoSourceValue::getConstantPool(), 0,
5976                              false, false, 16);
5977  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5978
5979  // Shift sign bit right or left if the two operands have different types.
5980  if (SrcVT.bitsGT(VT)) {
5981    // Op0 is MVT::f32, Op1 is MVT::f64.
5982    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5983    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5984                          DAG.getConstant(32, MVT::i32));
5985    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5986    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5987                          DAG.getIntPtrConstant(0));
5988  }
5989
5990  // Clear first operand sign bit.
5991  CV.clear();
5992  if (VT == MVT::f64) {
5993    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5994    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5995  } else {
5996    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5997    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5998    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5999    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6000  }
6001  C = ConstantVector::get(CV);
6002  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6003  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6004                              PseudoSourceValue::getConstantPool(), 0,
6005                              false, false, 16);
6006  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6007
6008  // Or the value with the sign bit.
6009  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6010}
6011
6012/// Emit nodes that will be selected as "test Op0,Op0", or something
6013/// equivalent.
6014SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6015                                    SelectionDAG &DAG) const {
6016  DebugLoc dl = Op.getDebugLoc();
6017
6018  // CF and OF aren't always set the way we want. Determine which
6019  // of these we need.
6020  bool NeedCF = false;
6021  bool NeedOF = false;
6022  switch (X86CC) {
6023  default: break;
6024  case X86::COND_A: case X86::COND_AE:
6025  case X86::COND_B: case X86::COND_BE:
6026    NeedCF = true;
6027    break;
6028  case X86::COND_G: case X86::COND_GE:
6029  case X86::COND_L: case X86::COND_LE:
6030  case X86::COND_O: case X86::COND_NO:
6031    NeedOF = true;
6032    break;
6033  }
6034
6035  // See if we can use the EFLAGS value from the operand instead of
6036  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6037  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6038  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6039    // Emit a CMP with 0, which is the TEST pattern.
6040    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6041                       DAG.getConstant(0, Op.getValueType()));
6042
6043  unsigned Opcode = 0;
6044  unsigned NumOperands = 0;
6045  switch (Op.getNode()->getOpcode()) {
6046  case ISD::ADD:
6047    // Due to an isel shortcoming, be conservative if this add is likely to be
6048    // selected as part of a load-modify-store instruction. When the root node
6049    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6050    // uses of other nodes in the match, such as the ADD in this case. This
6051    // leads to the ADD being left around and reselected, with the result being
6052    // two adds in the output.  Alas, even if none our users are stores, that
6053    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6054    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6055    // climbing the DAG back to the root, and it doesn't seem to be worth the
6056    // effort.
6057    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6058           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6059      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6060        goto default_case;
6061
6062    if (ConstantSDNode *C =
6063        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6064      // An add of one will be selected as an INC.
6065      if (C->getAPIntValue() == 1) {
6066        Opcode = X86ISD::INC;
6067        NumOperands = 1;
6068        break;
6069      }
6070
6071      // An add of negative one (subtract of one) will be selected as a DEC.
6072      if (C->getAPIntValue().isAllOnesValue()) {
6073        Opcode = X86ISD::DEC;
6074        NumOperands = 1;
6075        break;
6076      }
6077    }
6078
6079    // Otherwise use a regular EFLAGS-setting add.
6080    Opcode = X86ISD::ADD;
6081    NumOperands = 2;
6082    break;
6083  case ISD::AND: {
6084    // If the primary and result isn't used, don't bother using X86ISD::AND,
6085    // because a TEST instruction will be better.
6086    bool NonFlagUse = false;
6087    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6088           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6089      SDNode *User = *UI;
6090      unsigned UOpNo = UI.getOperandNo();
6091      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6092        // Look pass truncate.
6093        UOpNo = User->use_begin().getOperandNo();
6094        User = *User->use_begin();
6095      }
6096
6097      if (User->getOpcode() != ISD::BRCOND &&
6098          User->getOpcode() != ISD::SETCC &&
6099          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6100        NonFlagUse = true;
6101        break;
6102      }
6103    }
6104
6105    if (!NonFlagUse)
6106      break;
6107  }
6108    // FALL THROUGH
6109  case ISD::SUB:
6110  case ISD::OR:
6111  case ISD::XOR:
6112    // Due to the ISEL shortcoming noted above, be conservative if this op is
6113    // likely to be selected as part of a load-modify-store instruction.
6114    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6115           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6116      if (UI->getOpcode() == ISD::STORE)
6117        goto default_case;
6118
6119    // Otherwise use a regular EFLAGS-setting instruction.
6120    switch (Op.getNode()->getOpcode()) {
6121    default: llvm_unreachable("unexpected operator!");
6122    case ISD::SUB: Opcode = X86ISD::SUB; break;
6123    case ISD::OR:  Opcode = X86ISD::OR;  break;
6124    case ISD::XOR: Opcode = X86ISD::XOR; break;
6125    case ISD::AND: Opcode = X86ISD::AND; break;
6126    }
6127
6128    NumOperands = 2;
6129    break;
6130  case X86ISD::ADD:
6131  case X86ISD::SUB:
6132  case X86ISD::INC:
6133  case X86ISD::DEC:
6134  case X86ISD::OR:
6135  case X86ISD::XOR:
6136  case X86ISD::AND:
6137    return SDValue(Op.getNode(), 1);
6138  default:
6139  default_case:
6140    break;
6141  }
6142
6143  if (Opcode == 0)
6144    // Emit a CMP with 0, which is the TEST pattern.
6145    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6146                       DAG.getConstant(0, Op.getValueType()));
6147
6148  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6149  SmallVector<SDValue, 4> Ops;
6150  for (unsigned i = 0; i != NumOperands; ++i)
6151    Ops.push_back(Op.getOperand(i));
6152
6153  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6154  DAG.ReplaceAllUsesWith(Op, New);
6155  return SDValue(New.getNode(), 1);
6156}
6157
6158/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6159/// equivalent.
6160SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6161                                   SelectionDAG &DAG) const {
6162  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6163    if (C->getAPIntValue() == 0)
6164      return EmitTest(Op0, X86CC, DAG);
6165
6166  DebugLoc dl = Op0.getDebugLoc();
6167  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6168}
6169
6170/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6171/// if it's possible.
6172SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6173                                     DebugLoc dl, SelectionDAG &DAG) const {
6174  SDValue Op0 = And.getOperand(0);
6175  SDValue Op1 = And.getOperand(1);
6176  if (Op0.getOpcode() == ISD::TRUNCATE)
6177    Op0 = Op0.getOperand(0);
6178  if (Op1.getOpcode() == ISD::TRUNCATE)
6179    Op1 = Op1.getOperand(0);
6180
6181  SDValue LHS, RHS;
6182  if (Op1.getOpcode() == ISD::SHL)
6183    std::swap(Op0, Op1);
6184  if (Op0.getOpcode() == ISD::SHL) {
6185    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6186      if (And00C->getZExtValue() == 1) {
6187        // If we looked past a truncate, check that it's only truncating away
6188        // known zeros.
6189        unsigned BitWidth = Op0.getValueSizeInBits();
6190        unsigned AndBitWidth = And.getValueSizeInBits();
6191        if (BitWidth > AndBitWidth) {
6192          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6193          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6194          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6195            return SDValue();
6196        }
6197        LHS = Op1;
6198        RHS = Op0.getOperand(1);
6199      }
6200  } else if (Op1.getOpcode() == ISD::Constant) {
6201    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6202    SDValue AndLHS = Op0;
6203    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6204      LHS = AndLHS.getOperand(0);
6205      RHS = AndLHS.getOperand(1);
6206    }
6207  }
6208
6209  if (LHS.getNode()) {
6210    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6211    // instruction.  Since the shift amount is in-range-or-undefined, we know
6212    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6213    // the encoding for the i16 version is larger than the i32 version.
6214    // Also promote i16 to i32 for performance / code size reason.
6215    if (LHS.getValueType() == MVT::i8 ||
6216        LHS.getValueType() == MVT::i16)
6217      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6218
6219    // If the operand types disagree, extend the shift amount to match.  Since
6220    // BT ignores high bits (like shifts) we can use anyextend.
6221    if (LHS.getValueType() != RHS.getValueType())
6222      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6223
6224    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6225    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6226    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6227                       DAG.getConstant(Cond, MVT::i8), BT);
6228  }
6229
6230  return SDValue();
6231}
6232
6233SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6234  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6235  SDValue Op0 = Op.getOperand(0);
6236  SDValue Op1 = Op.getOperand(1);
6237  DebugLoc dl = Op.getDebugLoc();
6238  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6239
6240  // Optimize to BT if possible.
6241  // Lower (X & (1 << N)) == 0 to BT(X, N).
6242  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6243  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6244  if (Op0.getOpcode() == ISD::AND &&
6245      Op0.hasOneUse() &&
6246      Op1.getOpcode() == ISD::Constant &&
6247      cast<ConstantSDNode>(Op1)->isNullValue() &&
6248      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6249    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6250    if (NewSetCC.getNode())
6251      return NewSetCC;
6252  }
6253
6254  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6255  if (Op0.getOpcode() == X86ISD::SETCC &&
6256      Op1.getOpcode() == ISD::Constant &&
6257      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6258       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6259      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6260    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6261    bool Invert = (CC == ISD::SETNE) ^
6262      cast<ConstantSDNode>(Op1)->isNullValue();
6263    if (Invert)
6264      CCode = X86::GetOppositeBranchCondition(CCode);
6265    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6266                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6267  }
6268
6269  bool isFP = Op1.getValueType().isFloatingPoint();
6270  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6271  if (X86CC == X86::COND_INVALID)
6272    return SDValue();
6273
6274  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6275
6276  // Use sbb x, x to materialize carry bit into a GPR.
6277  if (X86CC == X86::COND_B)
6278    return DAG.getNode(ISD::AND, dl, MVT::i8,
6279                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6280                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6281                       DAG.getConstant(1, MVT::i8));
6282
6283  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6284                     DAG.getConstant(X86CC, MVT::i8), Cond);
6285}
6286
6287SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
6288  SDValue Cond;
6289  SDValue Op0 = Op.getOperand(0);
6290  SDValue Op1 = Op.getOperand(1);
6291  SDValue CC = Op.getOperand(2);
6292  EVT VT = Op.getValueType();
6293  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6294  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6295  DebugLoc dl = Op.getDebugLoc();
6296
6297  if (isFP) {
6298    unsigned SSECC = 8;
6299    EVT VT0 = Op0.getValueType();
6300    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6301    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6302    bool Swap = false;
6303
6304    switch (SetCCOpcode) {
6305    default: break;
6306    case ISD::SETOEQ:
6307    case ISD::SETEQ:  SSECC = 0; break;
6308    case ISD::SETOGT:
6309    case ISD::SETGT: Swap = true; // Fallthrough
6310    case ISD::SETLT:
6311    case ISD::SETOLT: SSECC = 1; break;
6312    case ISD::SETOGE:
6313    case ISD::SETGE: Swap = true; // Fallthrough
6314    case ISD::SETLE:
6315    case ISD::SETOLE: SSECC = 2; break;
6316    case ISD::SETUO:  SSECC = 3; break;
6317    case ISD::SETUNE:
6318    case ISD::SETNE:  SSECC = 4; break;
6319    case ISD::SETULE: Swap = true;
6320    case ISD::SETUGE: SSECC = 5; break;
6321    case ISD::SETULT: Swap = true;
6322    case ISD::SETUGT: SSECC = 6; break;
6323    case ISD::SETO:   SSECC = 7; break;
6324    }
6325    if (Swap)
6326      std::swap(Op0, Op1);
6327
6328    // In the two special cases we can't handle, emit two comparisons.
6329    if (SSECC == 8) {
6330      if (SetCCOpcode == ISD::SETUEQ) {
6331        SDValue UNORD, EQ;
6332        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6333        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6334        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6335      }
6336      else if (SetCCOpcode == ISD::SETONE) {
6337        SDValue ORD, NEQ;
6338        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6339        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6340        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6341      }
6342      llvm_unreachable("Illegal FP comparison");
6343    }
6344    // Handle all other FP comparisons here.
6345    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6346  }
6347
6348  // We are handling one of the integer comparisons here.  Since SSE only has
6349  // GT and EQ comparisons for integer, swapping operands and multiple
6350  // operations may be required for some comparisons.
6351  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6352  bool Swap = false, Invert = false, FlipSigns = false;
6353
6354  switch (VT.getSimpleVT().SimpleTy) {
6355  default: break;
6356  case MVT::v8i8:
6357  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6358  case MVT::v4i16:
6359  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6360  case MVT::v2i32:
6361  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6362  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6363  }
6364
6365  switch (SetCCOpcode) {
6366  default: break;
6367  case ISD::SETNE:  Invert = true;
6368  case ISD::SETEQ:  Opc = EQOpc; break;
6369  case ISD::SETLT:  Swap = true;
6370  case ISD::SETGT:  Opc = GTOpc; break;
6371  case ISD::SETGE:  Swap = true;
6372  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6373  case ISD::SETULT: Swap = true;
6374  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6375  case ISD::SETUGE: Swap = true;
6376  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6377  }
6378  if (Swap)
6379    std::swap(Op0, Op1);
6380
6381  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6382  // bits of the inputs before performing those operations.
6383  if (FlipSigns) {
6384    EVT EltVT = VT.getVectorElementType();
6385    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6386                                      EltVT);
6387    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6388    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6389                                    SignBits.size());
6390    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6391    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6392  }
6393
6394  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6395
6396  // If the logical-not of the result is required, perform that now.
6397  if (Invert)
6398    Result = DAG.getNOT(dl, Result, VT);
6399
6400  return Result;
6401}
6402
6403// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6404static bool isX86LogicalCmp(SDValue Op) {
6405  unsigned Opc = Op.getNode()->getOpcode();
6406  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6407    return true;
6408  if (Op.getResNo() == 1 &&
6409      (Opc == X86ISD::ADD ||
6410       Opc == X86ISD::SUB ||
6411       Opc == X86ISD::SMUL ||
6412       Opc == X86ISD::UMUL ||
6413       Opc == X86ISD::INC ||
6414       Opc == X86ISD::DEC ||
6415       Opc == X86ISD::OR ||
6416       Opc == X86ISD::XOR ||
6417       Opc == X86ISD::AND))
6418    return true;
6419
6420  return false;
6421}
6422
6423SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
6424  bool addTest = true;
6425  SDValue Cond  = Op.getOperand(0);
6426  DebugLoc dl = Op.getDebugLoc();
6427  SDValue CC;
6428
6429  if (Cond.getOpcode() == ISD::SETCC) {
6430    SDValue NewCond = LowerSETCC(Cond, DAG);
6431    if (NewCond.getNode())
6432      Cond = NewCond;
6433  }
6434
6435  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6436  SDValue Op1 = Op.getOperand(1);
6437  SDValue Op2 = Op.getOperand(2);
6438  if (Cond.getOpcode() == X86ISD::SETCC &&
6439      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6440    SDValue Cmp = Cond.getOperand(1);
6441    if (Cmp.getOpcode() == X86ISD::CMP) {
6442      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6443      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6444      ConstantSDNode *RHSC =
6445        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6446      if (N1C && N1C->isAllOnesValue() &&
6447          N2C && N2C->isNullValue() &&
6448          RHSC && RHSC->isNullValue()) {
6449        SDValue CmpOp0 = Cmp.getOperand(0);
6450        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6451                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6452        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6453                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6454      }
6455    }
6456  }
6457
6458  // Look pass (and (setcc_carry (cmp ...)), 1).
6459  if (Cond.getOpcode() == ISD::AND &&
6460      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6461    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6462    if (C && C->getAPIntValue() == 1)
6463      Cond = Cond.getOperand(0);
6464  }
6465
6466  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6467  // setting operand in place of the X86ISD::SETCC.
6468  if (Cond.getOpcode() == X86ISD::SETCC ||
6469      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6470    CC = Cond.getOperand(0);
6471
6472    SDValue Cmp = Cond.getOperand(1);
6473    unsigned Opc = Cmp.getOpcode();
6474    EVT VT = Op.getValueType();
6475
6476    bool IllegalFPCMov = false;
6477    if (VT.isFloatingPoint() && !VT.isVector() &&
6478        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6479      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6480
6481    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6482        Opc == X86ISD::BT) { // FIXME
6483      Cond = Cmp;
6484      addTest = false;
6485    }
6486  }
6487
6488  if (addTest) {
6489    // Look pass the truncate.
6490    if (Cond.getOpcode() == ISD::TRUNCATE)
6491      Cond = Cond.getOperand(0);
6492
6493    // We know the result of AND is compared against zero. Try to match
6494    // it to BT.
6495    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6496      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6497      if (NewSetCC.getNode()) {
6498        CC = NewSetCC.getOperand(0);
6499        Cond = NewSetCC.getOperand(1);
6500        addTest = false;
6501      }
6502    }
6503  }
6504
6505  if (addTest) {
6506    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6507    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6508  }
6509
6510  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6511  // condition is true.
6512  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6513  SDValue Ops[] = { Op2, Op1, CC, Cond };
6514  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6515}
6516
6517// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6518// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6519// from the AND / OR.
6520static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6521  Opc = Op.getOpcode();
6522  if (Opc != ISD::OR && Opc != ISD::AND)
6523    return false;
6524  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6525          Op.getOperand(0).hasOneUse() &&
6526          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6527          Op.getOperand(1).hasOneUse());
6528}
6529
6530// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6531// 1 and that the SETCC node has a single use.
6532static bool isXor1OfSetCC(SDValue Op) {
6533  if (Op.getOpcode() != ISD::XOR)
6534    return false;
6535  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6536  if (N1C && N1C->getAPIntValue() == 1) {
6537    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6538      Op.getOperand(0).hasOneUse();
6539  }
6540  return false;
6541}
6542
6543SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
6544  bool addTest = true;
6545  SDValue Chain = Op.getOperand(0);
6546  SDValue Cond  = Op.getOperand(1);
6547  SDValue Dest  = Op.getOperand(2);
6548  DebugLoc dl = Op.getDebugLoc();
6549  SDValue CC;
6550
6551  if (Cond.getOpcode() == ISD::SETCC) {
6552    SDValue NewCond = LowerSETCC(Cond, DAG);
6553    if (NewCond.getNode())
6554      Cond = NewCond;
6555  }
6556#if 0
6557  // FIXME: LowerXALUO doesn't handle these!!
6558  else if (Cond.getOpcode() == X86ISD::ADD  ||
6559           Cond.getOpcode() == X86ISD::SUB  ||
6560           Cond.getOpcode() == X86ISD::SMUL ||
6561           Cond.getOpcode() == X86ISD::UMUL)
6562    Cond = LowerXALUO(Cond, DAG);
6563#endif
6564
6565  // Look pass (and (setcc_carry (cmp ...)), 1).
6566  if (Cond.getOpcode() == ISD::AND &&
6567      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6568    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6569    if (C && C->getAPIntValue() == 1)
6570      Cond = Cond.getOperand(0);
6571  }
6572
6573  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6574  // setting operand in place of the X86ISD::SETCC.
6575  if (Cond.getOpcode() == X86ISD::SETCC ||
6576      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6577    CC = Cond.getOperand(0);
6578
6579    SDValue Cmp = Cond.getOperand(1);
6580    unsigned Opc = Cmp.getOpcode();
6581    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6582    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6583      Cond = Cmp;
6584      addTest = false;
6585    } else {
6586      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6587      default: break;
6588      case X86::COND_O:
6589      case X86::COND_B:
6590        // These can only come from an arithmetic instruction with overflow,
6591        // e.g. SADDO, UADDO.
6592        Cond = Cond.getNode()->getOperand(1);
6593        addTest = false;
6594        break;
6595      }
6596    }
6597  } else {
6598    unsigned CondOpc;
6599    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6600      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6601      if (CondOpc == ISD::OR) {
6602        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6603        // two branches instead of an explicit OR instruction with a
6604        // separate test.
6605        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6606            isX86LogicalCmp(Cmp)) {
6607          CC = Cond.getOperand(0).getOperand(0);
6608          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6609                              Chain, Dest, CC, Cmp);
6610          CC = Cond.getOperand(1).getOperand(0);
6611          Cond = Cmp;
6612          addTest = false;
6613        }
6614      } else { // ISD::AND
6615        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6616        // two branches instead of an explicit AND instruction with a
6617        // separate test. However, we only do this if this block doesn't
6618        // have a fall-through edge, because this requires an explicit
6619        // jmp when the condition is false.
6620        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6621            isX86LogicalCmp(Cmp) &&
6622            Op.getNode()->hasOneUse()) {
6623          X86::CondCode CCode =
6624            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6625          CCode = X86::GetOppositeBranchCondition(CCode);
6626          CC = DAG.getConstant(CCode, MVT::i8);
6627          SDNode *User = *Op.getNode()->use_begin();
6628          // Look for an unconditional branch following this conditional branch.
6629          // We need this because we need to reverse the successors in order
6630          // to implement FCMP_OEQ.
6631          if (User->getOpcode() == ISD::BR) {
6632            SDValue FalseBB = User->getOperand(1);
6633            SDNode *NewBR =
6634              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
6635            assert(NewBR == User);
6636            (void)NewBR;
6637            Dest = FalseBB;
6638
6639            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6640                                Chain, Dest, CC, Cmp);
6641            X86::CondCode CCode =
6642              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6643            CCode = X86::GetOppositeBranchCondition(CCode);
6644            CC = DAG.getConstant(CCode, MVT::i8);
6645            Cond = Cmp;
6646            addTest = false;
6647          }
6648        }
6649      }
6650    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6651      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6652      // It should be transformed during dag combiner except when the condition
6653      // is set by a arithmetics with overflow node.
6654      X86::CondCode CCode =
6655        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6656      CCode = X86::GetOppositeBranchCondition(CCode);
6657      CC = DAG.getConstant(CCode, MVT::i8);
6658      Cond = Cond.getOperand(0).getOperand(1);
6659      addTest = false;
6660    }
6661  }
6662
6663  if (addTest) {
6664    // Look pass the truncate.
6665    if (Cond.getOpcode() == ISD::TRUNCATE)
6666      Cond = Cond.getOperand(0);
6667
6668    // We know the result of AND is compared against zero. Try to match
6669    // it to BT.
6670    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6671      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6672      if (NewSetCC.getNode()) {
6673        CC = NewSetCC.getOperand(0);
6674        Cond = NewSetCC.getOperand(1);
6675        addTest = false;
6676      }
6677    }
6678  }
6679
6680  if (addTest) {
6681    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6682    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6683  }
6684  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6685                     Chain, Dest, CC, Cond);
6686}
6687
6688
6689// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6690// Calls to _alloca is needed to probe the stack when allocating more than 4k
6691// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6692// that the guard pages used by the OS virtual memory manager are allocated in
6693// correct sequence.
6694SDValue
6695X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6696                                           SelectionDAG &DAG) const {
6697  assert(Subtarget->isTargetCygMing() &&
6698         "This should be used only on Cygwin/Mingw targets");
6699  DebugLoc dl = Op.getDebugLoc();
6700
6701  // Get the inputs.
6702  SDValue Chain = Op.getOperand(0);
6703  SDValue Size  = Op.getOperand(1);
6704  // FIXME: Ensure alignment here
6705
6706  SDValue Flag;
6707
6708  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6709
6710  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6711  Flag = Chain.getValue(1);
6712
6713  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6714
6715  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
6716  Flag = Chain.getValue(1);
6717
6718  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6719
6720  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6721  return DAG.getMergeValues(Ops1, 2, dl);
6722}
6723
6724SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
6725  MachineFunction &MF = DAG.getMachineFunction();
6726  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
6727
6728  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6729  DebugLoc dl = Op.getDebugLoc();
6730
6731  if (!Subtarget->is64Bit()) {
6732    // vastart just stores the address of the VarArgsFrameIndex slot into the
6733    // memory location argument.
6734    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6735                                   getPointerTy());
6736    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6737                        false, false, 0);
6738  }
6739
6740  // __va_list_tag:
6741  //   gp_offset         (0 - 6 * 8)
6742  //   fp_offset         (48 - 48 + 8 * 16)
6743  //   overflow_arg_area (point to parameters coming in memory).
6744  //   reg_save_area
6745  SmallVector<SDValue, 8> MemOps;
6746  SDValue FIN = Op.getOperand(1);
6747  // Store gp_offset
6748  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6749                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
6750                                               MVT::i32),
6751                               FIN, SV, 0, false, false, 0);
6752  MemOps.push_back(Store);
6753
6754  // Store fp_offset
6755  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6756                    FIN, DAG.getIntPtrConstant(4));
6757  Store = DAG.getStore(Op.getOperand(0), dl,
6758                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
6759                                       MVT::i32),
6760                       FIN, SV, 0, false, false, 0);
6761  MemOps.push_back(Store);
6762
6763  // Store ptr to overflow_arg_area
6764  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6765                    FIN, DAG.getIntPtrConstant(4));
6766  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6767                                    getPointerTy());
6768  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0,
6769                       false, false, 0);
6770  MemOps.push_back(Store);
6771
6772  // Store ptr to reg_save_area.
6773  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6774                    FIN, DAG.getIntPtrConstant(8));
6775  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
6776                                    getPointerTy());
6777  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0,
6778                       false, false, 0);
6779  MemOps.push_back(Store);
6780  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6781                     &MemOps[0], MemOps.size());
6782}
6783
6784SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
6785  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6786  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6787
6788  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
6789  return SDValue();
6790}
6791
6792SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
6793  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6794  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6795  SDValue Chain = Op.getOperand(0);
6796  SDValue DstPtr = Op.getOperand(1);
6797  SDValue SrcPtr = Op.getOperand(2);
6798  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6799  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6800  DebugLoc dl = Op.getDebugLoc();
6801
6802  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6803                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
6804                       false, DstSV, 0, SrcSV, 0);
6805}
6806
6807SDValue
6808X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
6809  DebugLoc dl = Op.getDebugLoc();
6810  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6811  switch (IntNo) {
6812  default: return SDValue();    // Don't custom lower most intrinsics.
6813  // Comparison intrinsics.
6814  case Intrinsic::x86_sse_comieq_ss:
6815  case Intrinsic::x86_sse_comilt_ss:
6816  case Intrinsic::x86_sse_comile_ss:
6817  case Intrinsic::x86_sse_comigt_ss:
6818  case Intrinsic::x86_sse_comige_ss:
6819  case Intrinsic::x86_sse_comineq_ss:
6820  case Intrinsic::x86_sse_ucomieq_ss:
6821  case Intrinsic::x86_sse_ucomilt_ss:
6822  case Intrinsic::x86_sse_ucomile_ss:
6823  case Intrinsic::x86_sse_ucomigt_ss:
6824  case Intrinsic::x86_sse_ucomige_ss:
6825  case Intrinsic::x86_sse_ucomineq_ss:
6826  case Intrinsic::x86_sse2_comieq_sd:
6827  case Intrinsic::x86_sse2_comilt_sd:
6828  case Intrinsic::x86_sse2_comile_sd:
6829  case Intrinsic::x86_sse2_comigt_sd:
6830  case Intrinsic::x86_sse2_comige_sd:
6831  case Intrinsic::x86_sse2_comineq_sd:
6832  case Intrinsic::x86_sse2_ucomieq_sd:
6833  case Intrinsic::x86_sse2_ucomilt_sd:
6834  case Intrinsic::x86_sse2_ucomile_sd:
6835  case Intrinsic::x86_sse2_ucomigt_sd:
6836  case Intrinsic::x86_sse2_ucomige_sd:
6837  case Intrinsic::x86_sse2_ucomineq_sd: {
6838    unsigned Opc = 0;
6839    ISD::CondCode CC = ISD::SETCC_INVALID;
6840    switch (IntNo) {
6841    default: break;
6842    case Intrinsic::x86_sse_comieq_ss:
6843    case Intrinsic::x86_sse2_comieq_sd:
6844      Opc = X86ISD::COMI;
6845      CC = ISD::SETEQ;
6846      break;
6847    case Intrinsic::x86_sse_comilt_ss:
6848    case Intrinsic::x86_sse2_comilt_sd:
6849      Opc = X86ISD::COMI;
6850      CC = ISD::SETLT;
6851      break;
6852    case Intrinsic::x86_sse_comile_ss:
6853    case Intrinsic::x86_sse2_comile_sd:
6854      Opc = X86ISD::COMI;
6855      CC = ISD::SETLE;
6856      break;
6857    case Intrinsic::x86_sse_comigt_ss:
6858    case Intrinsic::x86_sse2_comigt_sd:
6859      Opc = X86ISD::COMI;
6860      CC = ISD::SETGT;
6861      break;
6862    case Intrinsic::x86_sse_comige_ss:
6863    case Intrinsic::x86_sse2_comige_sd:
6864      Opc = X86ISD::COMI;
6865      CC = ISD::SETGE;
6866      break;
6867    case Intrinsic::x86_sse_comineq_ss:
6868    case Intrinsic::x86_sse2_comineq_sd:
6869      Opc = X86ISD::COMI;
6870      CC = ISD::SETNE;
6871      break;
6872    case Intrinsic::x86_sse_ucomieq_ss:
6873    case Intrinsic::x86_sse2_ucomieq_sd:
6874      Opc = X86ISD::UCOMI;
6875      CC = ISD::SETEQ;
6876      break;
6877    case Intrinsic::x86_sse_ucomilt_ss:
6878    case Intrinsic::x86_sse2_ucomilt_sd:
6879      Opc = X86ISD::UCOMI;
6880      CC = ISD::SETLT;
6881      break;
6882    case Intrinsic::x86_sse_ucomile_ss:
6883    case Intrinsic::x86_sse2_ucomile_sd:
6884      Opc = X86ISD::UCOMI;
6885      CC = ISD::SETLE;
6886      break;
6887    case Intrinsic::x86_sse_ucomigt_ss:
6888    case Intrinsic::x86_sse2_ucomigt_sd:
6889      Opc = X86ISD::UCOMI;
6890      CC = ISD::SETGT;
6891      break;
6892    case Intrinsic::x86_sse_ucomige_ss:
6893    case Intrinsic::x86_sse2_ucomige_sd:
6894      Opc = X86ISD::UCOMI;
6895      CC = ISD::SETGE;
6896      break;
6897    case Intrinsic::x86_sse_ucomineq_ss:
6898    case Intrinsic::x86_sse2_ucomineq_sd:
6899      Opc = X86ISD::UCOMI;
6900      CC = ISD::SETNE;
6901      break;
6902    }
6903
6904    SDValue LHS = Op.getOperand(1);
6905    SDValue RHS = Op.getOperand(2);
6906    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6907    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6908    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6909    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6910                                DAG.getConstant(X86CC, MVT::i8), Cond);
6911    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6912  }
6913  // ptest intrinsics. The intrinsic these come from are designed to return
6914  // an integer value, not just an instruction so lower it to the ptest
6915  // pattern and a setcc for the result.
6916  case Intrinsic::x86_sse41_ptestz:
6917  case Intrinsic::x86_sse41_ptestc:
6918  case Intrinsic::x86_sse41_ptestnzc:{
6919    unsigned X86CC = 0;
6920    switch (IntNo) {
6921    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6922    case Intrinsic::x86_sse41_ptestz:
6923      // ZF = 1
6924      X86CC = X86::COND_E;
6925      break;
6926    case Intrinsic::x86_sse41_ptestc:
6927      // CF = 1
6928      X86CC = X86::COND_B;
6929      break;
6930    case Intrinsic::x86_sse41_ptestnzc:
6931      // ZF and CF = 0
6932      X86CC = X86::COND_A;
6933      break;
6934    }
6935
6936    SDValue LHS = Op.getOperand(1);
6937    SDValue RHS = Op.getOperand(2);
6938    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6939    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6940    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6941    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6942  }
6943
6944  // Fix vector shift instructions where the last operand is a non-immediate
6945  // i32 value.
6946  case Intrinsic::x86_sse2_pslli_w:
6947  case Intrinsic::x86_sse2_pslli_d:
6948  case Intrinsic::x86_sse2_pslli_q:
6949  case Intrinsic::x86_sse2_psrli_w:
6950  case Intrinsic::x86_sse2_psrli_d:
6951  case Intrinsic::x86_sse2_psrli_q:
6952  case Intrinsic::x86_sse2_psrai_w:
6953  case Intrinsic::x86_sse2_psrai_d:
6954  case Intrinsic::x86_mmx_pslli_w:
6955  case Intrinsic::x86_mmx_pslli_d:
6956  case Intrinsic::x86_mmx_pslli_q:
6957  case Intrinsic::x86_mmx_psrli_w:
6958  case Intrinsic::x86_mmx_psrli_d:
6959  case Intrinsic::x86_mmx_psrli_q:
6960  case Intrinsic::x86_mmx_psrai_w:
6961  case Intrinsic::x86_mmx_psrai_d: {
6962    SDValue ShAmt = Op.getOperand(2);
6963    if (isa<ConstantSDNode>(ShAmt))
6964      return SDValue();
6965
6966    unsigned NewIntNo = 0;
6967    EVT ShAmtVT = MVT::v4i32;
6968    switch (IntNo) {
6969    case Intrinsic::x86_sse2_pslli_w:
6970      NewIntNo = Intrinsic::x86_sse2_psll_w;
6971      break;
6972    case Intrinsic::x86_sse2_pslli_d:
6973      NewIntNo = Intrinsic::x86_sse2_psll_d;
6974      break;
6975    case Intrinsic::x86_sse2_pslli_q:
6976      NewIntNo = Intrinsic::x86_sse2_psll_q;
6977      break;
6978    case Intrinsic::x86_sse2_psrli_w:
6979      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6980      break;
6981    case Intrinsic::x86_sse2_psrli_d:
6982      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6983      break;
6984    case Intrinsic::x86_sse2_psrli_q:
6985      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6986      break;
6987    case Intrinsic::x86_sse2_psrai_w:
6988      NewIntNo = Intrinsic::x86_sse2_psra_w;
6989      break;
6990    case Intrinsic::x86_sse2_psrai_d:
6991      NewIntNo = Intrinsic::x86_sse2_psra_d;
6992      break;
6993    default: {
6994      ShAmtVT = MVT::v2i32;
6995      switch (IntNo) {
6996      case Intrinsic::x86_mmx_pslli_w:
6997        NewIntNo = Intrinsic::x86_mmx_psll_w;
6998        break;
6999      case Intrinsic::x86_mmx_pslli_d:
7000        NewIntNo = Intrinsic::x86_mmx_psll_d;
7001        break;
7002      case Intrinsic::x86_mmx_pslli_q:
7003        NewIntNo = Intrinsic::x86_mmx_psll_q;
7004        break;
7005      case Intrinsic::x86_mmx_psrli_w:
7006        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7007        break;
7008      case Intrinsic::x86_mmx_psrli_d:
7009        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7010        break;
7011      case Intrinsic::x86_mmx_psrli_q:
7012        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7013        break;
7014      case Intrinsic::x86_mmx_psrai_w:
7015        NewIntNo = Intrinsic::x86_mmx_psra_w;
7016        break;
7017      case Intrinsic::x86_mmx_psrai_d:
7018        NewIntNo = Intrinsic::x86_mmx_psra_d;
7019        break;
7020      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7021      }
7022      break;
7023    }
7024    }
7025
7026    // The vector shift intrinsics with scalars uses 32b shift amounts but
7027    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7028    // to be zero.
7029    SDValue ShOps[4];
7030    ShOps[0] = ShAmt;
7031    ShOps[1] = DAG.getConstant(0, MVT::i32);
7032    if (ShAmtVT == MVT::v4i32) {
7033      ShOps[2] = DAG.getUNDEF(MVT::i32);
7034      ShOps[3] = DAG.getUNDEF(MVT::i32);
7035      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7036    } else {
7037      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7038    }
7039
7040    EVT VT = Op.getValueType();
7041    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7042    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7043                       DAG.getConstant(NewIntNo, MVT::i32),
7044                       Op.getOperand(1), ShAmt);
7045  }
7046  }
7047}
7048
7049SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7050                                           SelectionDAG &DAG) const {
7051  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7052  MFI->setReturnAddressIsTaken(true);
7053
7054  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7055  DebugLoc dl = Op.getDebugLoc();
7056
7057  if (Depth > 0) {
7058    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7059    SDValue Offset =
7060      DAG.getConstant(TD->getPointerSize(),
7061                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7062    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7063                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7064                                   FrameAddr, Offset),
7065                       NULL, 0, false, false, 0);
7066  }
7067
7068  // Just load the return address.
7069  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7070  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7071                     RetAddrFI, NULL, 0, false, false, 0);
7072}
7073
7074SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7075  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7076  MFI->setFrameAddressIsTaken(true);
7077
7078  EVT VT = Op.getValueType();
7079  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7080  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7081  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7082  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7083  while (Depth--)
7084    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7085                            false, false, 0);
7086  return FrameAddr;
7087}
7088
7089SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7090                                                     SelectionDAG &DAG) const {
7091  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7092}
7093
7094SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7095  MachineFunction &MF = DAG.getMachineFunction();
7096  SDValue Chain     = Op.getOperand(0);
7097  SDValue Offset    = Op.getOperand(1);
7098  SDValue Handler   = Op.getOperand(2);
7099  DebugLoc dl       = Op.getDebugLoc();
7100
7101  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7102                                  getPointerTy());
7103  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7104
7105  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
7106                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
7107  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7108  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7109  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7110  MF.getRegInfo().addLiveOut(StoreAddrReg);
7111
7112  return DAG.getNode(X86ISD::EH_RETURN, dl,
7113                     MVT::Other,
7114                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7115}
7116
7117SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7118                                             SelectionDAG &DAG) const {
7119  SDValue Root = Op.getOperand(0);
7120  SDValue Trmp = Op.getOperand(1); // trampoline
7121  SDValue FPtr = Op.getOperand(2); // nested function
7122  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7123  DebugLoc dl  = Op.getDebugLoc();
7124
7125  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7126
7127  if (Subtarget->is64Bit()) {
7128    SDValue OutChains[6];
7129
7130    // Large code-model.
7131    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7132    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7133
7134    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7135    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7136
7137    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7138
7139    // Load the pointer to the nested function into R11.
7140    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7141    SDValue Addr = Trmp;
7142    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7143                                Addr, TrmpAddr, 0, false, false, 0);
7144
7145    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7146                       DAG.getConstant(2, MVT::i64));
7147    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7148                                false, false, 2);
7149
7150    // Load the 'nest' parameter value into R10.
7151    // R10 is specified in X86CallingConv.td
7152    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7153    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7154                       DAG.getConstant(10, MVT::i64));
7155    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7156                                Addr, TrmpAddr, 10, false, false, 0);
7157
7158    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7159                       DAG.getConstant(12, MVT::i64));
7160    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7161                                false, false, 2);
7162
7163    // Jump to the nested function.
7164    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7165    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7166                       DAG.getConstant(20, MVT::i64));
7167    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7168                                Addr, TrmpAddr, 20, false, false, 0);
7169
7170    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7171    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7172                       DAG.getConstant(22, MVT::i64));
7173    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7174                                TrmpAddr, 22, false, false, 0);
7175
7176    SDValue Ops[] =
7177      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7178    return DAG.getMergeValues(Ops, 2, dl);
7179  } else {
7180    const Function *Func =
7181      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7182    CallingConv::ID CC = Func->getCallingConv();
7183    unsigned NestReg;
7184
7185    switch (CC) {
7186    default:
7187      llvm_unreachable("Unsupported calling convention");
7188    case CallingConv::C:
7189    case CallingConv::X86_StdCall: {
7190      // Pass 'nest' parameter in ECX.
7191      // Must be kept in sync with X86CallingConv.td
7192      NestReg = X86::ECX;
7193
7194      // Check that ECX wasn't needed by an 'inreg' parameter.
7195      const FunctionType *FTy = Func->getFunctionType();
7196      const AttrListPtr &Attrs = Func->getAttributes();
7197
7198      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7199        unsigned InRegCount = 0;
7200        unsigned Idx = 1;
7201
7202        for (FunctionType::param_iterator I = FTy->param_begin(),
7203             E = FTy->param_end(); I != E; ++I, ++Idx)
7204          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7205            // FIXME: should only count parameters that are lowered to integers.
7206            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7207
7208        if (InRegCount > 2) {
7209          report_fatal_error("Nest register in use - reduce number of inreg parameters!");
7210        }
7211      }
7212      break;
7213    }
7214    case CallingConv::X86_FastCall:
7215    case CallingConv::X86_ThisCall:
7216    case CallingConv::Fast:
7217      // Pass 'nest' parameter in EAX.
7218      // Must be kept in sync with X86CallingConv.td
7219      NestReg = X86::EAX;
7220      break;
7221    }
7222
7223    SDValue OutChains[4];
7224    SDValue Addr, Disp;
7225
7226    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7227                       DAG.getConstant(10, MVT::i32));
7228    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7229
7230    // This is storing the opcode for MOV32ri.
7231    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7232    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7233    OutChains[0] = DAG.getStore(Root, dl,
7234                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7235                                Trmp, TrmpAddr, 0, false, false, 0);
7236
7237    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7238                       DAG.getConstant(1, MVT::i32));
7239    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7240                                false, false, 1);
7241
7242    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7243    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7244                       DAG.getConstant(5, MVT::i32));
7245    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7246                                TrmpAddr, 5, false, false, 1);
7247
7248    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7249                       DAG.getConstant(6, MVT::i32));
7250    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7251                                false, false, 1);
7252
7253    SDValue Ops[] =
7254      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7255    return DAG.getMergeValues(Ops, 2, dl);
7256  }
7257}
7258
7259SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7260                                            SelectionDAG &DAG) const {
7261  /*
7262   The rounding mode is in bits 11:10 of FPSR, and has the following
7263   settings:
7264     00 Round to nearest
7265     01 Round to -inf
7266     10 Round to +inf
7267     11 Round to 0
7268
7269  FLT_ROUNDS, on the other hand, expects the following:
7270    -1 Undefined
7271     0 Round to 0
7272     1 Round to nearest
7273     2 Round to +inf
7274     3 Round to -inf
7275
7276  To perform the conversion, we do:
7277    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7278  */
7279
7280  MachineFunction &MF = DAG.getMachineFunction();
7281  const TargetMachine &TM = MF.getTarget();
7282  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7283  unsigned StackAlignment = TFI.getStackAlignment();
7284  EVT VT = Op.getValueType();
7285  DebugLoc dl = Op.getDebugLoc();
7286
7287  // Save FP Control Word to stack slot
7288  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7289  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7290
7291  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7292                              DAG.getEntryNode(), StackSlot);
7293
7294  // Load FP Control Word from stack slot
7295  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7296                            false, false, 0);
7297
7298  // Transform as necessary
7299  SDValue CWD1 =
7300    DAG.getNode(ISD::SRL, dl, MVT::i16,
7301                DAG.getNode(ISD::AND, dl, MVT::i16,
7302                            CWD, DAG.getConstant(0x800, MVT::i16)),
7303                DAG.getConstant(11, MVT::i8));
7304  SDValue CWD2 =
7305    DAG.getNode(ISD::SRL, dl, MVT::i16,
7306                DAG.getNode(ISD::AND, dl, MVT::i16,
7307                            CWD, DAG.getConstant(0x400, MVT::i16)),
7308                DAG.getConstant(9, MVT::i8));
7309
7310  SDValue RetVal =
7311    DAG.getNode(ISD::AND, dl, MVT::i16,
7312                DAG.getNode(ISD::ADD, dl, MVT::i16,
7313                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7314                            DAG.getConstant(1, MVT::i16)),
7315                DAG.getConstant(3, MVT::i16));
7316
7317
7318  return DAG.getNode((VT.getSizeInBits() < 16 ?
7319                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7320}
7321
7322SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
7323  EVT VT = Op.getValueType();
7324  EVT OpVT = VT;
7325  unsigned NumBits = VT.getSizeInBits();
7326  DebugLoc dl = Op.getDebugLoc();
7327
7328  Op = Op.getOperand(0);
7329  if (VT == MVT::i8) {
7330    // Zero extend to i32 since there is not an i8 bsr.
7331    OpVT = MVT::i32;
7332    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7333  }
7334
7335  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7336  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7337  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7338
7339  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7340  SDValue Ops[] = {
7341    Op,
7342    DAG.getConstant(NumBits+NumBits-1, OpVT),
7343    DAG.getConstant(X86::COND_E, MVT::i8),
7344    Op.getValue(1)
7345  };
7346  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7347
7348  // Finally xor with NumBits-1.
7349  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7350
7351  if (VT == MVT::i8)
7352    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7353  return Op;
7354}
7355
7356SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
7357  EVT VT = Op.getValueType();
7358  EVT OpVT = VT;
7359  unsigned NumBits = VT.getSizeInBits();
7360  DebugLoc dl = Op.getDebugLoc();
7361
7362  Op = Op.getOperand(0);
7363  if (VT == MVT::i8) {
7364    OpVT = MVT::i32;
7365    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7366  }
7367
7368  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7369  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7370  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7371
7372  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7373  SDValue Ops[] = {
7374    Op,
7375    DAG.getConstant(NumBits, OpVT),
7376    DAG.getConstant(X86::COND_E, MVT::i8),
7377    Op.getValue(1)
7378  };
7379  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7380
7381  if (VT == MVT::i8)
7382    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7383  return Op;
7384}
7385
7386SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
7387  EVT VT = Op.getValueType();
7388  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7389  DebugLoc dl = Op.getDebugLoc();
7390
7391  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7392  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7393  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7394  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7395  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7396  //
7397  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7398  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7399  //  return AloBlo + AloBhi + AhiBlo;
7400
7401  SDValue A = Op.getOperand(0);
7402  SDValue B = Op.getOperand(1);
7403
7404  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7405                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7406                       A, DAG.getConstant(32, MVT::i32));
7407  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7408                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7409                       B, DAG.getConstant(32, MVT::i32));
7410  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7411                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7412                       A, B);
7413  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7414                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7415                       A, Bhi);
7416  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7417                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7418                       Ahi, B);
7419  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7420                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7421                       AloBhi, DAG.getConstant(32, MVT::i32));
7422  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7423                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7424                       AhiBlo, DAG.getConstant(32, MVT::i32));
7425  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7426  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7427  return Res;
7428}
7429
7430
7431SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
7432  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7433  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7434  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7435  // has only one use.
7436  SDNode *N = Op.getNode();
7437  SDValue LHS = N->getOperand(0);
7438  SDValue RHS = N->getOperand(1);
7439  unsigned BaseOp = 0;
7440  unsigned Cond = 0;
7441  DebugLoc dl = Op.getDebugLoc();
7442
7443  switch (Op.getOpcode()) {
7444  default: llvm_unreachable("Unknown ovf instruction!");
7445  case ISD::SADDO:
7446    // A subtract of one will be selected as a INC. Note that INC doesn't
7447    // set CF, so we can't do this for UADDO.
7448    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7449      if (C->getAPIntValue() == 1) {
7450        BaseOp = X86ISD::INC;
7451        Cond = X86::COND_O;
7452        break;
7453      }
7454    BaseOp = X86ISD::ADD;
7455    Cond = X86::COND_O;
7456    break;
7457  case ISD::UADDO:
7458    BaseOp = X86ISD::ADD;
7459    Cond = X86::COND_B;
7460    break;
7461  case ISD::SSUBO:
7462    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7463    // set CF, so we can't do this for USUBO.
7464    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7465      if (C->getAPIntValue() == 1) {
7466        BaseOp = X86ISD::DEC;
7467        Cond = X86::COND_O;
7468        break;
7469      }
7470    BaseOp = X86ISD::SUB;
7471    Cond = X86::COND_O;
7472    break;
7473  case ISD::USUBO:
7474    BaseOp = X86ISD::SUB;
7475    Cond = X86::COND_B;
7476    break;
7477  case ISD::SMULO:
7478    BaseOp = X86ISD::SMUL;
7479    Cond = X86::COND_O;
7480    break;
7481  case ISD::UMULO:
7482    BaseOp = X86ISD::UMUL;
7483    Cond = X86::COND_B;
7484    break;
7485  }
7486
7487  // Also sets EFLAGS.
7488  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7489  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7490
7491  SDValue SetCC =
7492    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7493                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7494
7495  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7496  return Sum;
7497}
7498
7499SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
7500  EVT T = Op.getValueType();
7501  DebugLoc dl = Op.getDebugLoc();
7502  unsigned Reg = 0;
7503  unsigned size = 0;
7504  switch(T.getSimpleVT().SimpleTy) {
7505  default:
7506    assert(false && "Invalid value type!");
7507  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7508  case MVT::i16: Reg = X86::AX;  size = 2; break;
7509  case MVT::i32: Reg = X86::EAX; size = 4; break;
7510  case MVT::i64:
7511    assert(Subtarget->is64Bit() && "Node not type legal!");
7512    Reg = X86::RAX; size = 8;
7513    break;
7514  }
7515  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7516                                    Op.getOperand(2), SDValue());
7517  SDValue Ops[] = { cpIn.getValue(0),
7518                    Op.getOperand(1),
7519                    Op.getOperand(3),
7520                    DAG.getTargetConstant(size, MVT::i8),
7521                    cpIn.getValue(1) };
7522  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7523  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7524  SDValue cpOut =
7525    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7526  return cpOut;
7527}
7528
7529SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7530                                                 SelectionDAG &DAG) const {
7531  assert(Subtarget->is64Bit() && "Result not type legalized?");
7532  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7533  SDValue TheChain = Op.getOperand(0);
7534  DebugLoc dl = Op.getDebugLoc();
7535  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7536  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7537  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7538                                   rax.getValue(2));
7539  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7540                            DAG.getConstant(32, MVT::i8));
7541  SDValue Ops[] = {
7542    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7543    rdx.getValue(1)
7544  };
7545  return DAG.getMergeValues(Ops, 2, dl);
7546}
7547
7548SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
7549                                            SelectionDAG &DAG) const {
7550  EVT SrcVT = Op.getOperand(0).getValueType();
7551  EVT DstVT = Op.getValueType();
7552  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
7553          Subtarget->hasMMX() && !DisableMMX) &&
7554         "Unexpected custom BIT_CONVERT");
7555  assert((DstVT == MVT::i64 ||
7556          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
7557         "Unexpected custom BIT_CONVERT");
7558  // i64 <=> MMX conversions are Legal.
7559  if (SrcVT==MVT::i64 && DstVT.isVector())
7560    return Op;
7561  if (DstVT==MVT::i64 && SrcVT.isVector())
7562    return Op;
7563  // MMX <=> MMX conversions are Legal.
7564  if (SrcVT.isVector() && DstVT.isVector())
7565    return Op;
7566  // All other conversions need to be expanded.
7567  return SDValue();
7568}
7569SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
7570  SDNode *Node = Op.getNode();
7571  DebugLoc dl = Node->getDebugLoc();
7572  EVT T = Node->getValueType(0);
7573  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7574                              DAG.getConstant(0, T), Node->getOperand(2));
7575  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7576                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7577                       Node->getOperand(0),
7578                       Node->getOperand(1), negOp,
7579                       cast<AtomicSDNode>(Node)->getSrcValue(),
7580                       cast<AtomicSDNode>(Node)->getAlignment());
7581}
7582
7583/// LowerOperation - Provide custom lowering hooks for some operations.
7584///
7585SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7586  switch (Op.getOpcode()) {
7587  default: llvm_unreachable("Should not custom lower this!");
7588  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7589  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7590  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7591  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7592  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7593  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7594  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7595  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7596  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7597  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7598  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7599  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7600  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7601  case ISD::SHL_PARTS:
7602  case ISD::SRA_PARTS:
7603  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7604  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7605  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7606  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7607  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7608  case ISD::FABS:               return LowerFABS(Op, DAG);
7609  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7610  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7611  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7612  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7613  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7614  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7615  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7616  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7617  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7618  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7619  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7620  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7621  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7622  case ISD::FRAME_TO_ARGS_OFFSET:
7623                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7624  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7625  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7626  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7627  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7628  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7629  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7630  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7631  case ISD::SADDO:
7632  case ISD::UADDO:
7633  case ISD::SSUBO:
7634  case ISD::USUBO:
7635  case ISD::SMULO:
7636  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7637  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7638  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
7639  }
7640}
7641
7642void X86TargetLowering::
7643ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7644                        SelectionDAG &DAG, unsigned NewOp) const {
7645  EVT T = Node->getValueType(0);
7646  DebugLoc dl = Node->getDebugLoc();
7647  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7648
7649  SDValue Chain = Node->getOperand(0);
7650  SDValue In1 = Node->getOperand(1);
7651  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7652                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7653  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7654                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7655  SDValue Ops[] = { Chain, In1, In2L, In2H };
7656  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7657  SDValue Result =
7658    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7659                            cast<MemSDNode>(Node)->getMemOperand());
7660  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7661  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7662  Results.push_back(Result.getValue(2));
7663}
7664
7665/// ReplaceNodeResults - Replace a node with an illegal result type
7666/// with a new node built out of custom code.
7667void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7668                                           SmallVectorImpl<SDValue>&Results,
7669                                           SelectionDAG &DAG) const {
7670  DebugLoc dl = N->getDebugLoc();
7671  switch (N->getOpcode()) {
7672  default:
7673    assert(false && "Do not know how to custom type legalize this operation!");
7674    return;
7675  case ISD::FP_TO_SINT: {
7676    std::pair<SDValue,SDValue> Vals =
7677        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7678    SDValue FIST = Vals.first, StackSlot = Vals.second;
7679    if (FIST.getNode() != 0) {
7680      EVT VT = N->getValueType(0);
7681      // Return a load from the stack slot.
7682      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7683                                    false, false, 0));
7684    }
7685    return;
7686  }
7687  case ISD::READCYCLECOUNTER: {
7688    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7689    SDValue TheChain = N->getOperand(0);
7690    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7691    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7692                                     rd.getValue(1));
7693    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7694                                     eax.getValue(2));
7695    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7696    SDValue Ops[] = { eax, edx };
7697    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7698    Results.push_back(edx.getValue(1));
7699    return;
7700  }
7701  case ISD::ATOMIC_CMP_SWAP: {
7702    EVT T = N->getValueType(0);
7703    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7704    SDValue cpInL, cpInH;
7705    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7706                        DAG.getConstant(0, MVT::i32));
7707    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7708                        DAG.getConstant(1, MVT::i32));
7709    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7710    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7711                             cpInL.getValue(1));
7712    SDValue swapInL, swapInH;
7713    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7714                          DAG.getConstant(0, MVT::i32));
7715    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7716                          DAG.getConstant(1, MVT::i32));
7717    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7718                               cpInH.getValue(1));
7719    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7720                               swapInL.getValue(1));
7721    SDValue Ops[] = { swapInH.getValue(0),
7722                      N->getOperand(1),
7723                      swapInH.getValue(1) };
7724    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7725    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7726    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7727                                        MVT::i32, Result.getValue(1));
7728    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7729                                        MVT::i32, cpOutL.getValue(2));
7730    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7731    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7732    Results.push_back(cpOutH.getValue(1));
7733    return;
7734  }
7735  case ISD::ATOMIC_LOAD_ADD:
7736    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7737    return;
7738  case ISD::ATOMIC_LOAD_AND:
7739    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7740    return;
7741  case ISD::ATOMIC_LOAD_NAND:
7742    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7743    return;
7744  case ISD::ATOMIC_LOAD_OR:
7745    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7746    return;
7747  case ISD::ATOMIC_LOAD_SUB:
7748    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7749    return;
7750  case ISD::ATOMIC_LOAD_XOR:
7751    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7752    return;
7753  case ISD::ATOMIC_SWAP:
7754    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7755    return;
7756  }
7757}
7758
7759const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7760  switch (Opcode) {
7761  default: return NULL;
7762  case X86ISD::BSF:                return "X86ISD::BSF";
7763  case X86ISD::BSR:                return "X86ISD::BSR";
7764  case X86ISD::SHLD:               return "X86ISD::SHLD";
7765  case X86ISD::SHRD:               return "X86ISD::SHRD";
7766  case X86ISD::FAND:               return "X86ISD::FAND";
7767  case X86ISD::FOR:                return "X86ISD::FOR";
7768  case X86ISD::FXOR:               return "X86ISD::FXOR";
7769  case X86ISD::FSRL:               return "X86ISD::FSRL";
7770  case X86ISD::FILD:               return "X86ISD::FILD";
7771  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7772  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7773  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7774  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7775  case X86ISD::FLD:                return "X86ISD::FLD";
7776  case X86ISD::FST:                return "X86ISD::FST";
7777  case X86ISD::CALL:               return "X86ISD::CALL";
7778  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7779  case X86ISD::BT:                 return "X86ISD::BT";
7780  case X86ISD::CMP:                return "X86ISD::CMP";
7781  case X86ISD::COMI:               return "X86ISD::COMI";
7782  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7783  case X86ISD::SETCC:              return "X86ISD::SETCC";
7784  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
7785  case X86ISD::CMOV:               return "X86ISD::CMOV";
7786  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7787  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7788  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7789  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7790  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7791  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7792  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7793  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7794  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7795  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7796  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7797  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7798  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
7799  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7800  case X86ISD::FMAX:               return "X86ISD::FMAX";
7801  case X86ISD::FMIN:               return "X86ISD::FMIN";
7802  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7803  case X86ISD::FRCP:               return "X86ISD::FRCP";
7804  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7805  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
7806  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7807  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7808  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7809  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7810  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7811  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7812  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7813  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7814  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7815  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7816  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7817  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7818  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7819  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7820  case X86ISD::VSHL:               return "X86ISD::VSHL";
7821  case X86ISD::VSRL:               return "X86ISD::VSRL";
7822  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7823  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7824  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7825  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7826  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7827  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7828  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7829  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7830  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7831  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7832  case X86ISD::ADD:                return "X86ISD::ADD";
7833  case X86ISD::SUB:                return "X86ISD::SUB";
7834  case X86ISD::SMUL:               return "X86ISD::SMUL";
7835  case X86ISD::UMUL:               return "X86ISD::UMUL";
7836  case X86ISD::INC:                return "X86ISD::INC";
7837  case X86ISD::DEC:                return "X86ISD::DEC";
7838  case X86ISD::OR:                 return "X86ISD::OR";
7839  case X86ISD::XOR:                return "X86ISD::XOR";
7840  case X86ISD::AND:                return "X86ISD::AND";
7841  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7842  case X86ISD::PTEST:              return "X86ISD::PTEST";
7843  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7844  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
7845  }
7846}
7847
7848// isLegalAddressingMode - Return true if the addressing mode represented
7849// by AM is legal for this target, for a load/store of the specified type.
7850bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7851                                              const Type *Ty) const {
7852  // X86 supports extremely general addressing modes.
7853  CodeModel::Model M = getTargetMachine().getCodeModel();
7854
7855  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7856  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7857    return false;
7858
7859  if (AM.BaseGV) {
7860    unsigned GVFlags =
7861      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7862
7863    // If a reference to this global requires an extra load, we can't fold it.
7864    if (isGlobalStubReference(GVFlags))
7865      return false;
7866
7867    // If BaseGV requires a register for the PIC base, we cannot also have a
7868    // BaseReg specified.
7869    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7870      return false;
7871
7872    // If lower 4G is not available, then we must use rip-relative addressing.
7873    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7874      return false;
7875  }
7876
7877  switch (AM.Scale) {
7878  case 0:
7879  case 1:
7880  case 2:
7881  case 4:
7882  case 8:
7883    // These scales always work.
7884    break;
7885  case 3:
7886  case 5:
7887  case 9:
7888    // These scales are formed with basereg+scalereg.  Only accept if there is
7889    // no basereg yet.
7890    if (AM.HasBaseReg)
7891      return false;
7892    break;
7893  default:  // Other stuff never works.
7894    return false;
7895  }
7896
7897  return true;
7898}
7899
7900
7901bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7902  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7903    return false;
7904  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7905  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7906  if (NumBits1 <= NumBits2)
7907    return false;
7908  return true;
7909}
7910
7911bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7912  if (!VT1.isInteger() || !VT2.isInteger())
7913    return false;
7914  unsigned NumBits1 = VT1.getSizeInBits();
7915  unsigned NumBits2 = VT2.getSizeInBits();
7916  if (NumBits1 <= NumBits2)
7917    return false;
7918  return true;
7919}
7920
7921bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7922  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7923  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
7924}
7925
7926bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7927  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7928  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7929}
7930
7931bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7932  // i16 instructions are longer (0x66 prefix) and potentially slower.
7933  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7934}
7935
7936/// isShuffleMaskLegal - Targets can use this to indicate that they only
7937/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7938/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7939/// are assumed to be legal.
7940bool
7941X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7942                                      EVT VT) const {
7943  // Very little shuffling can be done for 64-bit vectors right now.
7944  if (VT.getSizeInBits() == 64)
7945    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
7946
7947  // FIXME: pshufb, blends, shifts.
7948  return (VT.getVectorNumElements() == 2 ||
7949          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7950          isMOVLMask(M, VT) ||
7951          isSHUFPMask(M, VT) ||
7952          isPSHUFDMask(M, VT) ||
7953          isPSHUFHWMask(M, VT) ||
7954          isPSHUFLWMask(M, VT) ||
7955          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7956          isUNPCKLMask(M, VT) ||
7957          isUNPCKHMask(M, VT) ||
7958          isUNPCKL_v_undef_Mask(M, VT) ||
7959          isUNPCKH_v_undef_Mask(M, VT));
7960}
7961
7962bool
7963X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7964                                          EVT VT) const {
7965  unsigned NumElts = VT.getVectorNumElements();
7966  // FIXME: This collection of masks seems suspect.
7967  if (NumElts == 2)
7968    return true;
7969  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7970    return (isMOVLMask(Mask, VT)  ||
7971            isCommutedMOVLMask(Mask, VT, true) ||
7972            isSHUFPMask(Mask, VT) ||
7973            isCommutedSHUFPMask(Mask, VT));
7974  }
7975  return false;
7976}
7977
7978//===----------------------------------------------------------------------===//
7979//                           X86 Scheduler Hooks
7980//===----------------------------------------------------------------------===//
7981
7982// private utility function
7983MachineBasicBlock *
7984X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7985                                                       MachineBasicBlock *MBB,
7986                                                       unsigned regOpc,
7987                                                       unsigned immOpc,
7988                                                       unsigned LoadOpc,
7989                                                       unsigned CXchgOpc,
7990                                                       unsigned copyOpc,
7991                                                       unsigned notOpc,
7992                                                       unsigned EAXreg,
7993                                                       TargetRegisterClass *RC,
7994                                                       bool invSrc) const {
7995  // For the atomic bitwise operator, we generate
7996  //   thisMBB:
7997  //   newMBB:
7998  //     ld  t1 = [bitinstr.addr]
7999  //     op  t2 = t1, [bitinstr.val]
8000  //     mov EAX = t1
8001  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8002  //     bz  newMBB
8003  //     fallthrough -->nextMBB
8004  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8005  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8006  MachineFunction::iterator MBBIter = MBB;
8007  ++MBBIter;
8008
8009  /// First build the CFG
8010  MachineFunction *F = MBB->getParent();
8011  MachineBasicBlock *thisMBB = MBB;
8012  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8013  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8014  F->insert(MBBIter, newMBB);
8015  F->insert(MBBIter, nextMBB);
8016
8017  // Move all successors to thisMBB to nextMBB
8018  nextMBB->transferSuccessors(thisMBB);
8019
8020  // Update thisMBB to fall through to newMBB
8021  thisMBB->addSuccessor(newMBB);
8022
8023  // newMBB jumps to itself and fall through to nextMBB
8024  newMBB->addSuccessor(nextMBB);
8025  newMBB->addSuccessor(newMBB);
8026
8027  // Insert instructions into newMBB based on incoming instruction
8028  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8029         "unexpected number of operands");
8030  DebugLoc dl = bInstr->getDebugLoc();
8031  MachineOperand& destOper = bInstr->getOperand(0);
8032  MachineOperand* argOpers[2 + X86AddrNumOperands];
8033  int numArgs = bInstr->getNumOperands() - 1;
8034  for (int i=0; i < numArgs; ++i)
8035    argOpers[i] = &bInstr->getOperand(i+1);
8036
8037  // x86 address has 4 operands: base, index, scale, and displacement
8038  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8039  int valArgIndx = lastAddrIndx + 1;
8040
8041  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8042  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8043  for (int i=0; i <= lastAddrIndx; ++i)
8044    (*MIB).addOperand(*argOpers[i]);
8045
8046  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8047  if (invSrc) {
8048    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8049  }
8050  else
8051    tt = t1;
8052
8053  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8054  assert((argOpers[valArgIndx]->isReg() ||
8055          argOpers[valArgIndx]->isImm()) &&
8056         "invalid operand");
8057  if (argOpers[valArgIndx]->isReg())
8058    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8059  else
8060    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8061  MIB.addReg(tt);
8062  (*MIB).addOperand(*argOpers[valArgIndx]);
8063
8064  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
8065  MIB.addReg(t1);
8066
8067  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8068  for (int i=0; i <= lastAddrIndx; ++i)
8069    (*MIB).addOperand(*argOpers[i]);
8070  MIB.addReg(t2);
8071  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8072  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8073                    bInstr->memoperands_end());
8074
8075  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
8076  MIB.addReg(EAXreg);
8077
8078  // insert branch
8079  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8080
8081  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8082  return nextMBB;
8083}
8084
8085// private utility function:  64 bit atomics on 32 bit host.
8086MachineBasicBlock *
8087X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8088                                                       MachineBasicBlock *MBB,
8089                                                       unsigned regOpcL,
8090                                                       unsigned regOpcH,
8091                                                       unsigned immOpcL,
8092                                                       unsigned immOpcH,
8093                                                       bool invSrc) const {
8094  // For the atomic bitwise operator, we generate
8095  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8096  //     ld t1,t2 = [bitinstr.addr]
8097  //   newMBB:
8098  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8099  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8100  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8101  //     mov ECX, EBX <- t5, t6
8102  //     mov EAX, EDX <- t1, t2
8103  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8104  //     mov t3, t4 <- EAX, EDX
8105  //     bz  newMBB
8106  //     result in out1, out2
8107  //     fallthrough -->nextMBB
8108
8109  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8110  const unsigned LoadOpc = X86::MOV32rm;
8111  const unsigned copyOpc = X86::MOV32rr;
8112  const unsigned NotOpc = X86::NOT32r;
8113  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8114  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8115  MachineFunction::iterator MBBIter = MBB;
8116  ++MBBIter;
8117
8118  /// First build the CFG
8119  MachineFunction *F = MBB->getParent();
8120  MachineBasicBlock *thisMBB = MBB;
8121  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8122  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8123  F->insert(MBBIter, newMBB);
8124  F->insert(MBBIter, nextMBB);
8125
8126  // Move all successors to thisMBB to nextMBB
8127  nextMBB->transferSuccessors(thisMBB);
8128
8129  // Update thisMBB to fall through to newMBB
8130  thisMBB->addSuccessor(newMBB);
8131
8132  // newMBB jumps to itself and fall through to nextMBB
8133  newMBB->addSuccessor(nextMBB);
8134  newMBB->addSuccessor(newMBB);
8135
8136  DebugLoc dl = bInstr->getDebugLoc();
8137  // Insert instructions into newMBB based on incoming instruction
8138  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8139  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
8140         "unexpected number of operands");
8141  MachineOperand& dest1Oper = bInstr->getOperand(0);
8142  MachineOperand& dest2Oper = bInstr->getOperand(1);
8143  MachineOperand* argOpers[2 + X86AddrNumOperands];
8144  for (int i=0; i < 2 + X86AddrNumOperands; ++i) {
8145    argOpers[i] = &bInstr->getOperand(i+2);
8146
8147    // We use some of the operands multiple times, so conservatively just
8148    // clear any kill flags that might be present.
8149    if (argOpers[i]->isReg() && argOpers[i]->isUse())
8150      argOpers[i]->setIsKill(false);
8151  }
8152
8153  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8154  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8155
8156  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8157  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8158  for (int i=0; i <= lastAddrIndx; ++i)
8159    (*MIB).addOperand(*argOpers[i]);
8160  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8161  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8162  // add 4 to displacement.
8163  for (int i=0; i <= lastAddrIndx-2; ++i)
8164    (*MIB).addOperand(*argOpers[i]);
8165  MachineOperand newOp3 = *(argOpers[3]);
8166  if (newOp3.isImm())
8167    newOp3.setImm(newOp3.getImm()+4);
8168  else
8169    newOp3.setOffset(newOp3.getOffset()+4);
8170  (*MIB).addOperand(newOp3);
8171  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8172
8173  // t3/4 are defined later, at the bottom of the loop
8174  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8175  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8176  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8177    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8178  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8179    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8180
8181  // The subsequent operations should be using the destination registers of
8182  //the PHI instructions.
8183  if (invSrc) {
8184    t1 = F->getRegInfo().createVirtualRegister(RC);
8185    t2 = F->getRegInfo().createVirtualRegister(RC);
8186    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8187    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8188  } else {
8189    t1 = dest1Oper.getReg();
8190    t2 = dest2Oper.getReg();
8191  }
8192
8193  int valArgIndx = lastAddrIndx + 1;
8194  assert((argOpers[valArgIndx]->isReg() ||
8195          argOpers[valArgIndx]->isImm()) &&
8196         "invalid operand");
8197  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8198  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8199  if (argOpers[valArgIndx]->isReg())
8200    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8201  else
8202    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8203  if (regOpcL != X86::MOV32rr)
8204    MIB.addReg(t1);
8205  (*MIB).addOperand(*argOpers[valArgIndx]);
8206  assert(argOpers[valArgIndx + 1]->isReg() ==
8207         argOpers[valArgIndx]->isReg());
8208  assert(argOpers[valArgIndx + 1]->isImm() ==
8209         argOpers[valArgIndx]->isImm());
8210  if (argOpers[valArgIndx + 1]->isReg())
8211    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8212  else
8213    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8214  if (regOpcH != X86::MOV32rr)
8215    MIB.addReg(t2);
8216  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8217
8218  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
8219  MIB.addReg(t1);
8220  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
8221  MIB.addReg(t2);
8222
8223  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
8224  MIB.addReg(t5);
8225  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
8226  MIB.addReg(t6);
8227
8228  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8229  for (int i=0; i <= lastAddrIndx; ++i)
8230    (*MIB).addOperand(*argOpers[i]);
8231
8232  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8233  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8234                    bInstr->memoperands_end());
8235
8236  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
8237  MIB.addReg(X86::EAX);
8238  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
8239  MIB.addReg(X86::EDX);
8240
8241  // insert branch
8242  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8243
8244  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8245  return nextMBB;
8246}
8247
8248// private utility function
8249MachineBasicBlock *
8250X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8251                                                      MachineBasicBlock *MBB,
8252                                                      unsigned cmovOpc) const {
8253  // For the atomic min/max operator, we generate
8254  //   thisMBB:
8255  //   newMBB:
8256  //     ld t1 = [min/max.addr]
8257  //     mov t2 = [min/max.val]
8258  //     cmp  t1, t2
8259  //     cmov[cond] t2 = t1
8260  //     mov EAX = t1
8261  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8262  //     bz   newMBB
8263  //     fallthrough -->nextMBB
8264  //
8265  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8266  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8267  MachineFunction::iterator MBBIter = MBB;
8268  ++MBBIter;
8269
8270  /// First build the CFG
8271  MachineFunction *F = MBB->getParent();
8272  MachineBasicBlock *thisMBB = MBB;
8273  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8274  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8275  F->insert(MBBIter, newMBB);
8276  F->insert(MBBIter, nextMBB);
8277
8278  // Move all successors of thisMBB to nextMBB
8279  nextMBB->transferSuccessors(thisMBB);
8280
8281  // Update thisMBB to fall through to newMBB
8282  thisMBB->addSuccessor(newMBB);
8283
8284  // newMBB jumps to newMBB and fall through to nextMBB
8285  newMBB->addSuccessor(nextMBB);
8286  newMBB->addSuccessor(newMBB);
8287
8288  DebugLoc dl = mInstr->getDebugLoc();
8289  // Insert instructions into newMBB based on incoming instruction
8290  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8291         "unexpected number of operands");
8292  MachineOperand& destOper = mInstr->getOperand(0);
8293  MachineOperand* argOpers[2 + X86AddrNumOperands];
8294  int numArgs = mInstr->getNumOperands() - 1;
8295  for (int i=0; i < numArgs; ++i)
8296    argOpers[i] = &mInstr->getOperand(i+1);
8297
8298  // x86 address has 4 operands: base, index, scale, and displacement
8299  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8300  int valArgIndx = lastAddrIndx + 1;
8301
8302  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8303  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8304  for (int i=0; i <= lastAddrIndx; ++i)
8305    (*MIB).addOperand(*argOpers[i]);
8306
8307  // We only support register and immediate values
8308  assert((argOpers[valArgIndx]->isReg() ||
8309          argOpers[valArgIndx]->isImm()) &&
8310         "invalid operand");
8311
8312  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8313  if (argOpers[valArgIndx]->isReg())
8314    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8315  else
8316    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8317  (*MIB).addOperand(*argOpers[valArgIndx]);
8318
8319  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
8320  MIB.addReg(t1);
8321
8322  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8323  MIB.addReg(t1);
8324  MIB.addReg(t2);
8325
8326  // Generate movc
8327  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8328  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8329  MIB.addReg(t2);
8330  MIB.addReg(t1);
8331
8332  // Cmp and exchange if none has modified the memory location
8333  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8334  for (int i=0; i <= lastAddrIndx; ++i)
8335    (*MIB).addOperand(*argOpers[i]);
8336  MIB.addReg(t3);
8337  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8338  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8339                    mInstr->memoperands_end());
8340
8341  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
8342  MIB.addReg(X86::EAX);
8343
8344  // insert branch
8345  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8346
8347  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
8348  return nextMBB;
8349}
8350
8351// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8352// all of this code can be replaced with that in the .td file.
8353MachineBasicBlock *
8354X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8355                            unsigned numArgs, bool memArg) const {
8356
8357  MachineFunction *F = BB->getParent();
8358  DebugLoc dl = MI->getDebugLoc();
8359  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8360
8361  unsigned Opc;
8362  if (memArg)
8363    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8364  else
8365    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8366
8367  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8368
8369  for (unsigned i = 0; i < numArgs; ++i) {
8370    MachineOperand &Op = MI->getOperand(i+1);
8371
8372    if (!(Op.isReg() && Op.isImplicit()))
8373      MIB.addOperand(Op);
8374  }
8375
8376  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8377    .addReg(X86::XMM0);
8378
8379  F->DeleteMachineInstr(MI);
8380
8381  return BB;
8382}
8383
8384MachineBasicBlock *
8385X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8386                                                 MachineInstr *MI,
8387                                                 MachineBasicBlock *MBB) const {
8388  // Emit code to save XMM registers to the stack. The ABI says that the
8389  // number of registers to save is given in %al, so it's theoretically
8390  // possible to do an indirect jump trick to avoid saving all of them,
8391  // however this code takes a simpler approach and just executes all
8392  // of the stores if %al is non-zero. It's less code, and it's probably
8393  // easier on the hardware branch predictor, and stores aren't all that
8394  // expensive anyway.
8395
8396  // Create the new basic blocks. One block contains all the XMM stores,
8397  // and one block is the final destination regardless of whether any
8398  // stores were performed.
8399  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8400  MachineFunction *F = MBB->getParent();
8401  MachineFunction::iterator MBBIter = MBB;
8402  ++MBBIter;
8403  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8404  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8405  F->insert(MBBIter, XMMSaveMBB);
8406  F->insert(MBBIter, EndMBB);
8407
8408  // Set up the CFG.
8409  // Move any original successors of MBB to the end block.
8410  EndMBB->transferSuccessors(MBB);
8411  // The original block will now fall through to the XMM save block.
8412  MBB->addSuccessor(XMMSaveMBB);
8413  // The XMMSaveMBB will fall through to the end block.
8414  XMMSaveMBB->addSuccessor(EndMBB);
8415
8416  // Now add the instructions.
8417  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8418  DebugLoc DL = MI->getDebugLoc();
8419
8420  unsigned CountReg = MI->getOperand(0).getReg();
8421  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8422  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8423
8424  if (!Subtarget->isTargetWin64()) {
8425    // If %al is 0, branch around the XMM save block.
8426    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8427    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8428    MBB->addSuccessor(EndMBB);
8429  }
8430
8431  // In the XMM save block, save all the XMM argument registers.
8432  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8433    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8434    MachineMemOperand *MMO =
8435      F->getMachineMemOperand(
8436        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8437        MachineMemOperand::MOStore, Offset,
8438        /*Size=*/16, /*Align=*/16);
8439    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8440      .addFrameIndex(RegSaveFrameIndex)
8441      .addImm(/*Scale=*/1)
8442      .addReg(/*IndexReg=*/0)
8443      .addImm(/*Disp=*/Offset)
8444      .addReg(/*Segment=*/0)
8445      .addReg(MI->getOperand(i).getReg())
8446      .addMemOperand(MMO);
8447  }
8448
8449  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8450
8451  return EndMBB;
8452}
8453
8454MachineBasicBlock *
8455X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8456                                     MachineBasicBlock *BB) const {
8457  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8458  DebugLoc DL = MI->getDebugLoc();
8459
8460  // To "insert" a SELECT_CC instruction, we actually have to insert the
8461  // diamond control-flow pattern.  The incoming instruction knows the
8462  // destination vreg to set, the condition code register to branch on, the
8463  // true/false values to select between, and a branch opcode to use.
8464  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8465  MachineFunction::iterator It = BB;
8466  ++It;
8467
8468  //  thisMBB:
8469  //  ...
8470  //   TrueVal = ...
8471  //   cmpTY ccX, r1, r2
8472  //   bCC copy1MBB
8473  //   fallthrough --> copy0MBB
8474  MachineBasicBlock *thisMBB = BB;
8475  MachineFunction *F = BB->getParent();
8476  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8477  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8478  unsigned Opc =
8479    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8480
8481  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8482  F->insert(It, copy0MBB);
8483  F->insert(It, sinkMBB);
8484
8485  // Update machine-CFG edges by first adding all successors of the current
8486  // block to the new block which will contain the Phi node for the select.
8487  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
8488         E = BB->succ_end(); I != E; ++I)
8489    sinkMBB->addSuccessor(*I);
8490
8491  // Next, remove all successors of the current block, and add the true
8492  // and fallthrough blocks as its successors.
8493  while (!BB->succ_empty())
8494    BB->removeSuccessor(BB->succ_begin());
8495
8496  // Add the true and fallthrough blocks as its successors.
8497  BB->addSuccessor(copy0MBB);
8498  BB->addSuccessor(sinkMBB);
8499
8500  // If the EFLAGS register isn't dead in the terminator, then claim that it's
8501  // live into the sink and copy blocks.
8502  const MachineFunction *MF = BB->getParent();
8503  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
8504  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
8505  const MachineInstr *Term = BB->getFirstTerminator();
8506
8507  for (unsigned I = 0, E = Term->getNumOperands(); I != E; ++I) {
8508    const MachineOperand &MO = Term->getOperand(I);
8509    if (!MO.isReg() || MO.isKill() || MO.isDead()) continue;
8510    unsigned Reg = MO.getReg();
8511    if (Reg != X86::EFLAGS) continue;
8512    copy0MBB->addLiveIn(Reg);
8513    sinkMBB->addLiveIn(Reg);
8514  }
8515
8516  //  copy0MBB:
8517  //   %FalseValue = ...
8518  //   # fallthrough to sinkMBB
8519  copy0MBB->addSuccessor(sinkMBB);
8520
8521  //  sinkMBB:
8522  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8523  //  ...
8524  BuildMI(sinkMBB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
8525    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8526    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8527
8528  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8529  return sinkMBB;
8530}
8531
8532MachineBasicBlock *
8533X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
8534                                          MachineBasicBlock *BB) const {
8535  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8536  DebugLoc DL = MI->getDebugLoc();
8537  MachineFunction *F = BB->getParent();
8538
8539  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
8540  // non-trivial part is impdef of ESP.
8541  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
8542  // mingw-w64.
8543
8544  BuildMI(BB, DL, TII->get(X86::CALLpcrel32))
8545    .addExternalSymbol("_alloca")
8546    .addReg(X86::EAX, RegState::Implicit)
8547    .addReg(X86::ESP, RegState::Implicit)
8548    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
8549    .addReg(X86::ESP, RegState::Define | RegState::Implicit);
8550
8551  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8552  return BB;
8553}
8554
8555MachineBasicBlock *
8556X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
8557                                      MachineBasicBlock *BB) const {
8558  // This is pretty easy.  We're taking the value that we received from
8559  // our load from the relocation, sticking it in either RDI (x86-64)
8560  // or EAX and doing an indirect call.  The return value will then
8561  // be in the normal return register.
8562  const X86InstrInfo *TII
8563    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
8564  DebugLoc DL = MI->getDebugLoc();
8565  MachineFunction *F = BB->getParent();
8566
8567  assert(MI->getOperand(3).isGlobal() && "This should be a global");
8568
8569  if (Subtarget->is64Bit()) {
8570    MachineInstrBuilder MIB = BuildMI(BB, DL, TII->get(X86::MOV64rm), X86::RDI)
8571    .addReg(X86::RIP)
8572    .addImm(0).addReg(0)
8573    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8574                      MI->getOperand(3).getTargetFlags())
8575    .addReg(0);
8576    MIB = BuildMI(BB, DL, TII->get(X86::CALL64m));
8577    addDirectMem(MIB, X86::RDI).addReg(0);
8578  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
8579    MachineInstrBuilder MIB = BuildMI(BB, DL, TII->get(X86::MOV32rm), X86::EAX)
8580    .addReg(0)
8581    .addImm(0).addReg(0)
8582    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8583                      MI->getOperand(3).getTargetFlags())
8584    .addReg(0);
8585    MIB = BuildMI(BB, DL, TII->get(X86::CALL32m));
8586    addDirectMem(MIB, X86::EAX).addReg(0);
8587  } else {
8588    MachineInstrBuilder MIB = BuildMI(BB, DL, TII->get(X86::MOV32rm), X86::EAX)
8589    .addReg(TII->getGlobalBaseReg(F))
8590    .addImm(0).addReg(0)
8591    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8592                      MI->getOperand(3).getTargetFlags())
8593    .addReg(0);
8594    MIB = BuildMI(BB, DL, TII->get(X86::CALL32m));
8595    addDirectMem(MIB, X86::EAX).addReg(0);
8596  }
8597
8598  F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
8599  return BB;
8600}
8601
8602MachineBasicBlock *
8603X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8604                                               MachineBasicBlock *BB) const {
8605  switch (MI->getOpcode()) {
8606  default: assert(false && "Unexpected instr type to insert");
8607  case X86::MINGW_ALLOCA:
8608    return EmitLoweredMingwAlloca(MI, BB);
8609  case X86::TLSCall_32:
8610  case X86::TLSCall_64:
8611    return EmitLoweredTLSCall(MI, BB);
8612  case X86::CMOV_GR8:
8613  case X86::CMOV_V1I64:
8614  case X86::CMOV_FR32:
8615  case X86::CMOV_FR64:
8616  case X86::CMOV_V4F32:
8617  case X86::CMOV_V2F64:
8618  case X86::CMOV_V2I64:
8619  case X86::CMOV_GR16:
8620  case X86::CMOV_GR32:
8621  case X86::CMOV_RFP32:
8622  case X86::CMOV_RFP64:
8623  case X86::CMOV_RFP80:
8624    return EmitLoweredSelect(MI, BB);
8625
8626  case X86::FP32_TO_INT16_IN_MEM:
8627  case X86::FP32_TO_INT32_IN_MEM:
8628  case X86::FP32_TO_INT64_IN_MEM:
8629  case X86::FP64_TO_INT16_IN_MEM:
8630  case X86::FP64_TO_INT32_IN_MEM:
8631  case X86::FP64_TO_INT64_IN_MEM:
8632  case X86::FP80_TO_INT16_IN_MEM:
8633  case X86::FP80_TO_INT32_IN_MEM:
8634  case X86::FP80_TO_INT64_IN_MEM: {
8635    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8636    DebugLoc DL = MI->getDebugLoc();
8637
8638    // Change the floating point control register to use "round towards zero"
8639    // mode when truncating to an integer value.
8640    MachineFunction *F = BB->getParent();
8641    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8642    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
8643
8644    // Load the old value of the high byte of the control word...
8645    unsigned OldCW =
8646      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8647    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8648                      CWFrameIdx);
8649
8650    // Set the high part to be round to zero...
8651    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8652      .addImm(0xC7F);
8653
8654    // Reload the modified control word now...
8655    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8656
8657    // Restore the memory image of control word to original value
8658    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8659      .addReg(OldCW);
8660
8661    // Get the X86 opcode to use.
8662    unsigned Opc;
8663    switch (MI->getOpcode()) {
8664    default: llvm_unreachable("illegal opcode!");
8665    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8666    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8667    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8668    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8669    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8670    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8671    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8672    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8673    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8674    }
8675
8676    X86AddressMode AM;
8677    MachineOperand &Op = MI->getOperand(0);
8678    if (Op.isReg()) {
8679      AM.BaseType = X86AddressMode::RegBase;
8680      AM.Base.Reg = Op.getReg();
8681    } else {
8682      AM.BaseType = X86AddressMode::FrameIndexBase;
8683      AM.Base.FrameIndex = Op.getIndex();
8684    }
8685    Op = MI->getOperand(1);
8686    if (Op.isImm())
8687      AM.Scale = Op.getImm();
8688    Op = MI->getOperand(2);
8689    if (Op.isImm())
8690      AM.IndexReg = Op.getImm();
8691    Op = MI->getOperand(3);
8692    if (Op.isGlobal()) {
8693      AM.GV = Op.getGlobal();
8694    } else {
8695      AM.Disp = Op.getImm();
8696    }
8697    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8698                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8699
8700    // Reload the original control word now.
8701    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8702
8703    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8704    return BB;
8705  }
8706    // String/text processing lowering.
8707  case X86::PCMPISTRM128REG:
8708    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8709  case X86::PCMPISTRM128MEM:
8710    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8711  case X86::PCMPESTRM128REG:
8712    return EmitPCMP(MI, BB, 5, false /* in mem */);
8713  case X86::PCMPESTRM128MEM:
8714    return EmitPCMP(MI, BB, 5, true /* in mem */);
8715
8716    // Atomic Lowering.
8717  case X86::ATOMAND32:
8718    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8719                                               X86::AND32ri, X86::MOV32rm,
8720                                               X86::LCMPXCHG32, X86::MOV32rr,
8721                                               X86::NOT32r, X86::EAX,
8722                                               X86::GR32RegisterClass);
8723  case X86::ATOMOR32:
8724    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8725                                               X86::OR32ri, X86::MOV32rm,
8726                                               X86::LCMPXCHG32, X86::MOV32rr,
8727                                               X86::NOT32r, X86::EAX,
8728                                               X86::GR32RegisterClass);
8729  case X86::ATOMXOR32:
8730    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8731                                               X86::XOR32ri, X86::MOV32rm,
8732                                               X86::LCMPXCHG32, X86::MOV32rr,
8733                                               X86::NOT32r, X86::EAX,
8734                                               X86::GR32RegisterClass);
8735  case X86::ATOMNAND32:
8736    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8737                                               X86::AND32ri, X86::MOV32rm,
8738                                               X86::LCMPXCHG32, X86::MOV32rr,
8739                                               X86::NOT32r, X86::EAX,
8740                                               X86::GR32RegisterClass, true);
8741  case X86::ATOMMIN32:
8742    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8743  case X86::ATOMMAX32:
8744    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8745  case X86::ATOMUMIN32:
8746    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8747  case X86::ATOMUMAX32:
8748    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8749
8750  case X86::ATOMAND16:
8751    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8752                                               X86::AND16ri, X86::MOV16rm,
8753                                               X86::LCMPXCHG16, X86::MOV16rr,
8754                                               X86::NOT16r, X86::AX,
8755                                               X86::GR16RegisterClass);
8756  case X86::ATOMOR16:
8757    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8758                                               X86::OR16ri, X86::MOV16rm,
8759                                               X86::LCMPXCHG16, X86::MOV16rr,
8760                                               X86::NOT16r, X86::AX,
8761                                               X86::GR16RegisterClass);
8762  case X86::ATOMXOR16:
8763    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8764                                               X86::XOR16ri, X86::MOV16rm,
8765                                               X86::LCMPXCHG16, X86::MOV16rr,
8766                                               X86::NOT16r, X86::AX,
8767                                               X86::GR16RegisterClass);
8768  case X86::ATOMNAND16:
8769    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8770                                               X86::AND16ri, X86::MOV16rm,
8771                                               X86::LCMPXCHG16, X86::MOV16rr,
8772                                               X86::NOT16r, X86::AX,
8773                                               X86::GR16RegisterClass, true);
8774  case X86::ATOMMIN16:
8775    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8776  case X86::ATOMMAX16:
8777    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8778  case X86::ATOMUMIN16:
8779    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8780  case X86::ATOMUMAX16:
8781    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8782
8783  case X86::ATOMAND8:
8784    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8785                                               X86::AND8ri, X86::MOV8rm,
8786                                               X86::LCMPXCHG8, X86::MOV8rr,
8787                                               X86::NOT8r, X86::AL,
8788                                               X86::GR8RegisterClass);
8789  case X86::ATOMOR8:
8790    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8791                                               X86::OR8ri, X86::MOV8rm,
8792                                               X86::LCMPXCHG8, X86::MOV8rr,
8793                                               X86::NOT8r, X86::AL,
8794                                               X86::GR8RegisterClass);
8795  case X86::ATOMXOR8:
8796    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8797                                               X86::XOR8ri, X86::MOV8rm,
8798                                               X86::LCMPXCHG8, X86::MOV8rr,
8799                                               X86::NOT8r, X86::AL,
8800                                               X86::GR8RegisterClass);
8801  case X86::ATOMNAND8:
8802    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8803                                               X86::AND8ri, X86::MOV8rm,
8804                                               X86::LCMPXCHG8, X86::MOV8rr,
8805                                               X86::NOT8r, X86::AL,
8806                                               X86::GR8RegisterClass, true);
8807  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8808  // This group is for 64-bit host.
8809  case X86::ATOMAND64:
8810    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8811                                               X86::AND64ri32, X86::MOV64rm,
8812                                               X86::LCMPXCHG64, X86::MOV64rr,
8813                                               X86::NOT64r, X86::RAX,
8814                                               X86::GR64RegisterClass);
8815  case X86::ATOMOR64:
8816    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8817                                               X86::OR64ri32, X86::MOV64rm,
8818                                               X86::LCMPXCHG64, X86::MOV64rr,
8819                                               X86::NOT64r, X86::RAX,
8820                                               X86::GR64RegisterClass);
8821  case X86::ATOMXOR64:
8822    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8823                                               X86::XOR64ri32, X86::MOV64rm,
8824                                               X86::LCMPXCHG64, X86::MOV64rr,
8825                                               X86::NOT64r, X86::RAX,
8826                                               X86::GR64RegisterClass);
8827  case X86::ATOMNAND64:
8828    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8829                                               X86::AND64ri32, X86::MOV64rm,
8830                                               X86::LCMPXCHG64, X86::MOV64rr,
8831                                               X86::NOT64r, X86::RAX,
8832                                               X86::GR64RegisterClass, true);
8833  case X86::ATOMMIN64:
8834    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8835  case X86::ATOMMAX64:
8836    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8837  case X86::ATOMUMIN64:
8838    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8839  case X86::ATOMUMAX64:
8840    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8841
8842  // This group does 64-bit operations on a 32-bit host.
8843  case X86::ATOMAND6432:
8844    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8845                                               X86::AND32rr, X86::AND32rr,
8846                                               X86::AND32ri, X86::AND32ri,
8847                                               false);
8848  case X86::ATOMOR6432:
8849    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8850                                               X86::OR32rr, X86::OR32rr,
8851                                               X86::OR32ri, X86::OR32ri,
8852                                               false);
8853  case X86::ATOMXOR6432:
8854    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8855                                               X86::XOR32rr, X86::XOR32rr,
8856                                               X86::XOR32ri, X86::XOR32ri,
8857                                               false);
8858  case X86::ATOMNAND6432:
8859    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8860                                               X86::AND32rr, X86::AND32rr,
8861                                               X86::AND32ri, X86::AND32ri,
8862                                               true);
8863  case X86::ATOMADD6432:
8864    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8865                                               X86::ADD32rr, X86::ADC32rr,
8866                                               X86::ADD32ri, X86::ADC32ri,
8867                                               false);
8868  case X86::ATOMSUB6432:
8869    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8870                                               X86::SUB32rr, X86::SBB32rr,
8871                                               X86::SUB32ri, X86::SBB32ri,
8872                                               false);
8873  case X86::ATOMSWAP6432:
8874    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8875                                               X86::MOV32rr, X86::MOV32rr,
8876                                               X86::MOV32ri, X86::MOV32ri,
8877                                               false);
8878  case X86::VASTART_SAVE_XMM_REGS:
8879    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8880  }
8881}
8882
8883//===----------------------------------------------------------------------===//
8884//                           X86 Optimization Hooks
8885//===----------------------------------------------------------------------===//
8886
8887void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8888                                                       const APInt &Mask,
8889                                                       APInt &KnownZero,
8890                                                       APInt &KnownOne,
8891                                                       const SelectionDAG &DAG,
8892                                                       unsigned Depth) const {
8893  unsigned Opc = Op.getOpcode();
8894  assert((Opc >= ISD::BUILTIN_OP_END ||
8895          Opc == ISD::INTRINSIC_WO_CHAIN ||
8896          Opc == ISD::INTRINSIC_W_CHAIN ||
8897          Opc == ISD::INTRINSIC_VOID) &&
8898         "Should use MaskedValueIsZero if you don't know whether Op"
8899         " is a target node!");
8900
8901  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8902  switch (Opc) {
8903  default: break;
8904  case X86ISD::ADD:
8905  case X86ISD::SUB:
8906  case X86ISD::SMUL:
8907  case X86ISD::UMUL:
8908  case X86ISD::INC:
8909  case X86ISD::DEC:
8910  case X86ISD::OR:
8911  case X86ISD::XOR:
8912  case X86ISD::AND:
8913    // These nodes' second result is a boolean.
8914    if (Op.getResNo() == 0)
8915      break;
8916    // Fallthrough
8917  case X86ISD::SETCC:
8918    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8919                                       Mask.getBitWidth() - 1);
8920    break;
8921  }
8922}
8923
8924/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8925/// node is a GlobalAddress + offset.
8926bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8927                                       const GlobalValue* &GA,
8928                                       int64_t &Offset) const {
8929  if (N->getOpcode() == X86ISD::Wrapper) {
8930    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8931      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8932      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8933      return true;
8934    }
8935  }
8936  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8937}
8938
8939/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8940/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8941/// if the load addresses are consecutive, non-overlapping, and in the right
8942/// order.
8943static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8944                                     const TargetLowering &TLI) {
8945  DebugLoc dl = N->getDebugLoc();
8946  EVT VT = N->getValueType(0);
8947  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8948
8949  if (VT.getSizeInBits() != 128)
8950    return SDValue();
8951
8952  SmallVector<SDValue, 16> Elts;
8953  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
8954    Elts.push_back(DAG.getShuffleScalarElt(SVN, i));
8955
8956  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
8957}
8958
8959/// PerformShuffleCombine - Detect vector gather/scatter index generation
8960/// and convert it from being a bunch of shuffles and extracts to a simple
8961/// store and scalar loads to extract the elements.
8962static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
8963                                                const TargetLowering &TLI) {
8964  SDValue InputVector = N->getOperand(0);
8965
8966  // Only operate on vectors of 4 elements, where the alternative shuffling
8967  // gets to be more expensive.
8968  if (InputVector.getValueType() != MVT::v4i32)
8969    return SDValue();
8970
8971  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
8972  // single use which is a sign-extend or zero-extend, and all elements are
8973  // used.
8974  SmallVector<SDNode *, 4> Uses;
8975  unsigned ExtractedElements = 0;
8976  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
8977       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
8978    if (UI.getUse().getResNo() != InputVector.getResNo())
8979      return SDValue();
8980
8981    SDNode *Extract = *UI;
8982    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8983      return SDValue();
8984
8985    if (Extract->getValueType(0) != MVT::i32)
8986      return SDValue();
8987    if (!Extract->hasOneUse())
8988      return SDValue();
8989    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
8990        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
8991      return SDValue();
8992    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
8993      return SDValue();
8994
8995    // Record which element was extracted.
8996    ExtractedElements |=
8997      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
8998
8999    Uses.push_back(Extract);
9000  }
9001
9002  // If not all the elements were used, this may not be worthwhile.
9003  if (ExtractedElements != 15)
9004    return SDValue();
9005
9006  // Ok, we've now decided to do the transformation.
9007  DebugLoc dl = InputVector.getDebugLoc();
9008
9009  // Store the value to a temporary stack slot.
9010  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
9011  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL, 0,
9012                            false, false, 0);
9013
9014  // Replace each use (extract) with a load of the appropriate element.
9015  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
9016       UE = Uses.end(); UI != UE; ++UI) {
9017    SDNode *Extract = *UI;
9018
9019    // Compute the element's address.
9020    SDValue Idx = Extract->getOperand(1);
9021    unsigned EltSize =
9022        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
9023    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
9024    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
9025
9026    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), OffsetVal, StackPtr);
9027
9028    // Load the scalar.
9029    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, ScalarAddr,
9030                          NULL, 0, false, false, 0);
9031
9032    // Replace the exact with the load.
9033    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
9034  }
9035
9036  // The replacement was made in place; don't return anything.
9037  return SDValue();
9038}
9039
9040/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
9041static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
9042                                    const X86Subtarget *Subtarget) {
9043  DebugLoc DL = N->getDebugLoc();
9044  SDValue Cond = N->getOperand(0);
9045  // Get the LHS/RHS of the select.
9046  SDValue LHS = N->getOperand(1);
9047  SDValue RHS = N->getOperand(2);
9048
9049  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9050  // instructions match the semantics of the common C idiom x<y?x:y but not
9051  // x<=y?x:y, because of how they handle negative zero (which can be
9052  // ignored in unsafe-math mode).
9053  if (Subtarget->hasSSE2() &&
9054      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9055      Cond.getOpcode() == ISD::SETCC) {
9056    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9057
9058    unsigned Opcode = 0;
9059    // Check for x CC y ? x : y.
9060    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9061        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9062      switch (CC) {
9063      default: break;
9064      case ISD::SETULT:
9065        // Converting this to a min would handle NaNs incorrectly, and swapping
9066        // the operands would cause it to handle comparisons between positive
9067        // and negative zero incorrectly.
9068        if (!FiniteOnlyFPMath() &&
9069            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
9070          if (!UnsafeFPMath &&
9071              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9072            break;
9073          std::swap(LHS, RHS);
9074        }
9075        Opcode = X86ISD::FMIN;
9076        break;
9077      case ISD::SETOLE:
9078        // Converting this to a min would handle comparisons between positive
9079        // and negative zero incorrectly.
9080        if (!UnsafeFPMath &&
9081            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9082          break;
9083        Opcode = X86ISD::FMIN;
9084        break;
9085      case ISD::SETULE:
9086        // Converting this to a min would handle both negative zeros and NaNs
9087        // incorrectly, but we can swap the operands to fix both.
9088        std::swap(LHS, RHS);
9089      case ISD::SETOLT:
9090      case ISD::SETLT:
9091      case ISD::SETLE:
9092        Opcode = X86ISD::FMIN;
9093        break;
9094
9095      case ISD::SETOGE:
9096        // Converting this to a max would handle comparisons between positive
9097        // and negative zero incorrectly.
9098        if (!UnsafeFPMath &&
9099            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9100          break;
9101        Opcode = X86ISD::FMAX;
9102        break;
9103      case ISD::SETUGT:
9104        // Converting this to a max would handle NaNs incorrectly, and swapping
9105        // the operands would cause it to handle comparisons between positive
9106        // and negative zero incorrectly.
9107        if (!FiniteOnlyFPMath() &&
9108            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
9109          if (!UnsafeFPMath &&
9110              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9111            break;
9112          std::swap(LHS, RHS);
9113        }
9114        Opcode = X86ISD::FMAX;
9115        break;
9116      case ISD::SETUGE:
9117        // Converting this to a max would handle both negative zeros and NaNs
9118        // incorrectly, but we can swap the operands to fix both.
9119        std::swap(LHS, RHS);
9120      case ISD::SETOGT:
9121      case ISD::SETGT:
9122      case ISD::SETGE:
9123        Opcode = X86ISD::FMAX;
9124        break;
9125      }
9126    // Check for x CC y ? y : x -- a min/max with reversed arms.
9127    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9128               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9129      switch (CC) {
9130      default: break;
9131      case ISD::SETOGE:
9132        // Converting this to a min would handle comparisons between positive
9133        // and negative zero incorrectly, and swapping the operands would
9134        // cause it to handle NaNs incorrectly.
9135        if (!UnsafeFPMath &&
9136            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9137          if (!FiniteOnlyFPMath() &&
9138              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9139            break;
9140          std::swap(LHS, RHS);
9141        }
9142        Opcode = X86ISD::FMIN;
9143        break;
9144      case ISD::SETUGT:
9145        // Converting this to a min would handle NaNs incorrectly.
9146        if (!UnsafeFPMath &&
9147            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9148          break;
9149        Opcode = X86ISD::FMIN;
9150        break;
9151      case ISD::SETUGE:
9152        // Converting this to a min would handle both negative zeros and NaNs
9153        // incorrectly, but we can swap the operands to fix both.
9154        std::swap(LHS, RHS);
9155      case ISD::SETOGT:
9156      case ISD::SETGT:
9157      case ISD::SETGE:
9158        Opcode = X86ISD::FMIN;
9159        break;
9160
9161      case ISD::SETULT:
9162        // Converting this to a max would handle NaNs incorrectly.
9163        if (!FiniteOnlyFPMath() &&
9164            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9165          break;
9166        Opcode = X86ISD::FMAX;
9167        break;
9168      case ISD::SETOLE:
9169        // Converting this to a max would handle comparisons between positive
9170        // and negative zero incorrectly, and swapping the operands would
9171        // cause it to handle NaNs incorrectly.
9172        if (!UnsafeFPMath &&
9173            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9174          if (!FiniteOnlyFPMath() &&
9175              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9176            break;
9177          std::swap(LHS, RHS);
9178        }
9179        Opcode = X86ISD::FMAX;
9180        break;
9181      case ISD::SETULE:
9182        // Converting this to a max would handle both negative zeros and NaNs
9183        // incorrectly, but we can swap the operands to fix both.
9184        std::swap(LHS, RHS);
9185      case ISD::SETOLT:
9186      case ISD::SETLT:
9187      case ISD::SETLE:
9188        Opcode = X86ISD::FMAX;
9189        break;
9190      }
9191    }
9192
9193    if (Opcode)
9194      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9195  }
9196
9197  // If this is a select between two integer constants, try to do some
9198  // optimizations.
9199  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9200    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9201      // Don't do this for crazy integer types.
9202      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9203        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9204        // so that TrueC (the true value) is larger than FalseC.
9205        bool NeedsCondInvert = false;
9206
9207        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9208            // Efficiently invertible.
9209            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9210             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9211              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9212          NeedsCondInvert = true;
9213          std::swap(TrueC, FalseC);
9214        }
9215
9216        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9217        if (FalseC->getAPIntValue() == 0 &&
9218            TrueC->getAPIntValue().isPowerOf2()) {
9219          if (NeedsCondInvert) // Invert the condition if needed.
9220            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9221                               DAG.getConstant(1, Cond.getValueType()));
9222
9223          // Zero extend the condition if needed.
9224          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9225
9226          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9227          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9228                             DAG.getConstant(ShAmt, MVT::i8));
9229        }
9230
9231        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9232        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9233          if (NeedsCondInvert) // Invert the condition if needed.
9234            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9235                               DAG.getConstant(1, Cond.getValueType()));
9236
9237          // Zero extend the condition if needed.
9238          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9239                             FalseC->getValueType(0), Cond);
9240          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9241                             SDValue(FalseC, 0));
9242        }
9243
9244        // Optimize cases that will turn into an LEA instruction.  This requires
9245        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9246        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9247          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9248          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9249
9250          bool isFastMultiplier = false;
9251          if (Diff < 10) {
9252            switch ((unsigned char)Diff) {
9253              default: break;
9254              case 1:  // result = add base, cond
9255              case 2:  // result = lea base(    , cond*2)
9256              case 3:  // result = lea base(cond, cond*2)
9257              case 4:  // result = lea base(    , cond*4)
9258              case 5:  // result = lea base(cond, cond*4)
9259              case 8:  // result = lea base(    , cond*8)
9260              case 9:  // result = lea base(cond, cond*8)
9261                isFastMultiplier = true;
9262                break;
9263            }
9264          }
9265
9266          if (isFastMultiplier) {
9267            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9268            if (NeedsCondInvert) // Invert the condition if needed.
9269              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9270                                 DAG.getConstant(1, Cond.getValueType()));
9271
9272            // Zero extend the condition if needed.
9273            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9274                               Cond);
9275            // Scale the condition by the difference.
9276            if (Diff != 1)
9277              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9278                                 DAG.getConstant(Diff, Cond.getValueType()));
9279
9280            // Add the base if non-zero.
9281            if (FalseC->getAPIntValue() != 0)
9282              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9283                                 SDValue(FalseC, 0));
9284            return Cond;
9285          }
9286        }
9287      }
9288  }
9289
9290  return SDValue();
9291}
9292
9293/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9294static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9295                                  TargetLowering::DAGCombinerInfo &DCI) {
9296  DebugLoc DL = N->getDebugLoc();
9297
9298  // If the flag operand isn't dead, don't touch this CMOV.
9299  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9300    return SDValue();
9301
9302  // If this is a select between two integer constants, try to do some
9303  // optimizations.  Note that the operands are ordered the opposite of SELECT
9304  // operands.
9305  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9306    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9307      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9308      // larger than FalseC (the false value).
9309      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9310
9311      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9312        CC = X86::GetOppositeBranchCondition(CC);
9313        std::swap(TrueC, FalseC);
9314      }
9315
9316      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9317      // This is efficient for any integer data type (including i8/i16) and
9318      // shift amount.
9319      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9320        SDValue Cond = N->getOperand(3);
9321        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9322                           DAG.getConstant(CC, MVT::i8), Cond);
9323
9324        // Zero extend the condition if needed.
9325        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9326
9327        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9328        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9329                           DAG.getConstant(ShAmt, MVT::i8));
9330        if (N->getNumValues() == 2)  // Dead flag value?
9331          return DCI.CombineTo(N, Cond, SDValue());
9332        return Cond;
9333      }
9334
9335      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9336      // for any integer data type, including i8/i16.
9337      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9338        SDValue Cond = N->getOperand(3);
9339        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9340                           DAG.getConstant(CC, MVT::i8), Cond);
9341
9342        // Zero extend the condition if needed.
9343        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9344                           FalseC->getValueType(0), Cond);
9345        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9346                           SDValue(FalseC, 0));
9347
9348        if (N->getNumValues() == 2)  // Dead flag value?
9349          return DCI.CombineTo(N, Cond, SDValue());
9350        return Cond;
9351      }
9352
9353      // Optimize cases that will turn into an LEA instruction.  This requires
9354      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9355      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9356        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9357        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9358
9359        bool isFastMultiplier = false;
9360        if (Diff < 10) {
9361          switch ((unsigned char)Diff) {
9362          default: break;
9363          case 1:  // result = add base, cond
9364          case 2:  // result = lea base(    , cond*2)
9365          case 3:  // result = lea base(cond, cond*2)
9366          case 4:  // result = lea base(    , cond*4)
9367          case 5:  // result = lea base(cond, cond*4)
9368          case 8:  // result = lea base(    , cond*8)
9369          case 9:  // result = lea base(cond, cond*8)
9370            isFastMultiplier = true;
9371            break;
9372          }
9373        }
9374
9375        if (isFastMultiplier) {
9376          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9377          SDValue Cond = N->getOperand(3);
9378          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9379                             DAG.getConstant(CC, MVT::i8), Cond);
9380          // Zero extend the condition if needed.
9381          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9382                             Cond);
9383          // Scale the condition by the difference.
9384          if (Diff != 1)
9385            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9386                               DAG.getConstant(Diff, Cond.getValueType()));
9387
9388          // Add the base if non-zero.
9389          if (FalseC->getAPIntValue() != 0)
9390            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9391                               SDValue(FalseC, 0));
9392          if (N->getNumValues() == 2)  // Dead flag value?
9393            return DCI.CombineTo(N, Cond, SDValue());
9394          return Cond;
9395        }
9396      }
9397    }
9398  }
9399  return SDValue();
9400}
9401
9402
9403/// PerformMulCombine - Optimize a single multiply with constant into two
9404/// in order to implement it with two cheaper instructions, e.g.
9405/// LEA + SHL, LEA + LEA.
9406static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9407                                 TargetLowering::DAGCombinerInfo &DCI) {
9408  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9409    return SDValue();
9410
9411  EVT VT = N->getValueType(0);
9412  if (VT != MVT::i64)
9413    return SDValue();
9414
9415  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9416  if (!C)
9417    return SDValue();
9418  uint64_t MulAmt = C->getZExtValue();
9419  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9420    return SDValue();
9421
9422  uint64_t MulAmt1 = 0;
9423  uint64_t MulAmt2 = 0;
9424  if ((MulAmt % 9) == 0) {
9425    MulAmt1 = 9;
9426    MulAmt2 = MulAmt / 9;
9427  } else if ((MulAmt % 5) == 0) {
9428    MulAmt1 = 5;
9429    MulAmt2 = MulAmt / 5;
9430  } else if ((MulAmt % 3) == 0) {
9431    MulAmt1 = 3;
9432    MulAmt2 = MulAmt / 3;
9433  }
9434  if (MulAmt2 &&
9435      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9436    DebugLoc DL = N->getDebugLoc();
9437
9438    if (isPowerOf2_64(MulAmt2) &&
9439        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9440      // If second multiplifer is pow2, issue it first. We want the multiply by
9441      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9442      // is an add.
9443      std::swap(MulAmt1, MulAmt2);
9444
9445    SDValue NewMul;
9446    if (isPowerOf2_64(MulAmt1))
9447      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9448                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9449    else
9450      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9451                           DAG.getConstant(MulAmt1, VT));
9452
9453    if (isPowerOf2_64(MulAmt2))
9454      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9455                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9456    else
9457      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9458                           DAG.getConstant(MulAmt2, VT));
9459
9460    // Do not add new nodes to DAG combiner worklist.
9461    DCI.CombineTo(N, NewMul, false);
9462  }
9463  return SDValue();
9464}
9465
9466static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9467  SDValue N0 = N->getOperand(0);
9468  SDValue N1 = N->getOperand(1);
9469  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9470  EVT VT = N0.getValueType();
9471
9472  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9473  // since the result of setcc_c is all zero's or all ones.
9474  if (N1C && N0.getOpcode() == ISD::AND &&
9475      N0.getOperand(1).getOpcode() == ISD::Constant) {
9476    SDValue N00 = N0.getOperand(0);
9477    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9478        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9479          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9480         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9481      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9482      APInt ShAmt = N1C->getAPIntValue();
9483      Mask = Mask.shl(ShAmt);
9484      if (Mask != 0)
9485        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9486                           N00, DAG.getConstant(Mask, VT));
9487    }
9488  }
9489
9490  return SDValue();
9491}
9492
9493/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9494///                       when possible.
9495static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9496                                   const X86Subtarget *Subtarget) {
9497  EVT VT = N->getValueType(0);
9498  if (!VT.isVector() && VT.isInteger() &&
9499      N->getOpcode() == ISD::SHL)
9500    return PerformSHLCombine(N, DAG);
9501
9502  // On X86 with SSE2 support, we can transform this to a vector shift if
9503  // all elements are shifted by the same amount.  We can't do this in legalize
9504  // because the a constant vector is typically transformed to a constant pool
9505  // so we have no knowledge of the shift amount.
9506  if (!Subtarget->hasSSE2())
9507    return SDValue();
9508
9509  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9510    return SDValue();
9511
9512  SDValue ShAmtOp = N->getOperand(1);
9513  EVT EltVT = VT.getVectorElementType();
9514  DebugLoc DL = N->getDebugLoc();
9515  SDValue BaseShAmt = SDValue();
9516  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9517    unsigned NumElts = VT.getVectorNumElements();
9518    unsigned i = 0;
9519    for (; i != NumElts; ++i) {
9520      SDValue Arg = ShAmtOp.getOperand(i);
9521      if (Arg.getOpcode() == ISD::UNDEF) continue;
9522      BaseShAmt = Arg;
9523      break;
9524    }
9525    for (; i != NumElts; ++i) {
9526      SDValue Arg = ShAmtOp.getOperand(i);
9527      if (Arg.getOpcode() == ISD::UNDEF) continue;
9528      if (Arg != BaseShAmt) {
9529        return SDValue();
9530      }
9531    }
9532  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9533             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9534    SDValue InVec = ShAmtOp.getOperand(0);
9535    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9536      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9537      unsigned i = 0;
9538      for (; i != NumElts; ++i) {
9539        SDValue Arg = InVec.getOperand(i);
9540        if (Arg.getOpcode() == ISD::UNDEF) continue;
9541        BaseShAmt = Arg;
9542        break;
9543      }
9544    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9545       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9546         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9547         if (C->getZExtValue() == SplatIdx)
9548           BaseShAmt = InVec.getOperand(1);
9549       }
9550    }
9551    if (BaseShAmt.getNode() == 0)
9552      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9553                              DAG.getIntPtrConstant(0));
9554  } else
9555    return SDValue();
9556
9557  // The shift amount is an i32.
9558  if (EltVT.bitsGT(MVT::i32))
9559    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9560  else if (EltVT.bitsLT(MVT::i32))
9561    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9562
9563  // The shift amount is identical so we can do a vector shift.
9564  SDValue  ValOp = N->getOperand(0);
9565  switch (N->getOpcode()) {
9566  default:
9567    llvm_unreachable("Unknown shift opcode!");
9568    break;
9569  case ISD::SHL:
9570    if (VT == MVT::v2i64)
9571      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9572                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9573                         ValOp, BaseShAmt);
9574    if (VT == MVT::v4i32)
9575      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9576                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9577                         ValOp, BaseShAmt);
9578    if (VT == MVT::v8i16)
9579      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9580                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9581                         ValOp, BaseShAmt);
9582    break;
9583  case ISD::SRA:
9584    if (VT == MVT::v4i32)
9585      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9586                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9587                         ValOp, BaseShAmt);
9588    if (VT == MVT::v8i16)
9589      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9590                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9591                         ValOp, BaseShAmt);
9592    break;
9593  case ISD::SRL:
9594    if (VT == MVT::v2i64)
9595      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9596                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9597                         ValOp, BaseShAmt);
9598    if (VT == MVT::v4i32)
9599      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9600                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9601                         ValOp, BaseShAmt);
9602    if (VT ==  MVT::v8i16)
9603      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9604                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9605                         ValOp, BaseShAmt);
9606    break;
9607  }
9608  return SDValue();
9609}
9610
9611static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9612                                TargetLowering::DAGCombinerInfo &DCI,
9613                                const X86Subtarget *Subtarget) {
9614  if (DCI.isBeforeLegalizeOps())
9615    return SDValue();
9616
9617  EVT VT = N->getValueType(0);
9618  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
9619    return SDValue();
9620
9621  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9622  SDValue N0 = N->getOperand(0);
9623  SDValue N1 = N->getOperand(1);
9624  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9625    std::swap(N0, N1);
9626  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9627    return SDValue();
9628  if (!N0.hasOneUse() || !N1.hasOneUse())
9629    return SDValue();
9630
9631  SDValue ShAmt0 = N0.getOperand(1);
9632  if (ShAmt0.getValueType() != MVT::i8)
9633    return SDValue();
9634  SDValue ShAmt1 = N1.getOperand(1);
9635  if (ShAmt1.getValueType() != MVT::i8)
9636    return SDValue();
9637  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9638    ShAmt0 = ShAmt0.getOperand(0);
9639  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9640    ShAmt1 = ShAmt1.getOperand(0);
9641
9642  DebugLoc DL = N->getDebugLoc();
9643  unsigned Opc = X86ISD::SHLD;
9644  SDValue Op0 = N0.getOperand(0);
9645  SDValue Op1 = N1.getOperand(0);
9646  if (ShAmt0.getOpcode() == ISD::SUB) {
9647    Opc = X86ISD::SHRD;
9648    std::swap(Op0, Op1);
9649    std::swap(ShAmt0, ShAmt1);
9650  }
9651
9652  unsigned Bits = VT.getSizeInBits();
9653  if (ShAmt1.getOpcode() == ISD::SUB) {
9654    SDValue Sum = ShAmt1.getOperand(0);
9655    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9656      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
9657      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
9658        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
9659      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
9660        return DAG.getNode(Opc, DL, VT,
9661                           Op0, Op1,
9662                           DAG.getNode(ISD::TRUNCATE, DL,
9663                                       MVT::i8, ShAmt0));
9664    }
9665  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9666    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9667    if (ShAmt0C &&
9668        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
9669      return DAG.getNode(Opc, DL, VT,
9670                         N0.getOperand(0), N1.getOperand(0),
9671                         DAG.getNode(ISD::TRUNCATE, DL,
9672                                       MVT::i8, ShAmt0));
9673  }
9674
9675  return SDValue();
9676}
9677
9678/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9679static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9680                                   const X86Subtarget *Subtarget) {
9681  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9682  // the FP state in cases where an emms may be missing.
9683  // A preferable solution to the general problem is to figure out the right
9684  // places to insert EMMS.  This qualifies as a quick hack.
9685
9686  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9687  StoreSDNode *St = cast<StoreSDNode>(N);
9688  EVT VT = St->getValue().getValueType();
9689  if (VT.getSizeInBits() != 64)
9690    return SDValue();
9691
9692  const Function *F = DAG.getMachineFunction().getFunction();
9693  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9694  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9695    && Subtarget->hasSSE2();
9696  if ((VT.isVector() ||
9697       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9698      isa<LoadSDNode>(St->getValue()) &&
9699      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9700      St->getChain().hasOneUse() && !St->isVolatile()) {
9701    SDNode* LdVal = St->getValue().getNode();
9702    LoadSDNode *Ld = 0;
9703    int TokenFactorIndex = -1;
9704    SmallVector<SDValue, 8> Ops;
9705    SDNode* ChainVal = St->getChain().getNode();
9706    // Must be a store of a load.  We currently handle two cases:  the load
9707    // is a direct child, and it's under an intervening TokenFactor.  It is
9708    // possible to dig deeper under nested TokenFactors.
9709    if (ChainVal == LdVal)
9710      Ld = cast<LoadSDNode>(St->getChain());
9711    else if (St->getValue().hasOneUse() &&
9712             ChainVal->getOpcode() == ISD::TokenFactor) {
9713      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9714        if (ChainVal->getOperand(i).getNode() == LdVal) {
9715          TokenFactorIndex = i;
9716          Ld = cast<LoadSDNode>(St->getValue());
9717        } else
9718          Ops.push_back(ChainVal->getOperand(i));
9719      }
9720    }
9721
9722    if (!Ld || !ISD::isNormalLoad(Ld))
9723      return SDValue();
9724
9725    // If this is not the MMX case, i.e. we are just turning i64 load/store
9726    // into f64 load/store, avoid the transformation if there are multiple
9727    // uses of the loaded value.
9728    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9729      return SDValue();
9730
9731    DebugLoc LdDL = Ld->getDebugLoc();
9732    DebugLoc StDL = N->getDebugLoc();
9733    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9734    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9735    // pair instead.
9736    if (Subtarget->is64Bit() || F64IsLegal) {
9737      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9738      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9739                                  Ld->getBasePtr(), Ld->getSrcValue(),
9740                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9741                                  Ld->isNonTemporal(), Ld->getAlignment());
9742      SDValue NewChain = NewLd.getValue(1);
9743      if (TokenFactorIndex != -1) {
9744        Ops.push_back(NewChain);
9745        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9746                               Ops.size());
9747      }
9748      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9749                          St->getSrcValue(), St->getSrcValueOffset(),
9750                          St->isVolatile(), St->isNonTemporal(),
9751                          St->getAlignment());
9752    }
9753
9754    // Otherwise, lower to two pairs of 32-bit loads / stores.
9755    SDValue LoAddr = Ld->getBasePtr();
9756    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9757                                 DAG.getConstant(4, MVT::i32));
9758
9759    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9760                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9761                               Ld->isVolatile(), Ld->isNonTemporal(),
9762                               Ld->getAlignment());
9763    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9764                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9765                               Ld->isVolatile(), Ld->isNonTemporal(),
9766                               MinAlign(Ld->getAlignment(), 4));
9767
9768    SDValue NewChain = LoLd.getValue(1);
9769    if (TokenFactorIndex != -1) {
9770      Ops.push_back(LoLd);
9771      Ops.push_back(HiLd);
9772      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9773                             Ops.size());
9774    }
9775
9776    LoAddr = St->getBasePtr();
9777    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9778                         DAG.getConstant(4, MVT::i32));
9779
9780    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9781                                St->getSrcValue(), St->getSrcValueOffset(),
9782                                St->isVolatile(), St->isNonTemporal(),
9783                                St->getAlignment());
9784    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9785                                St->getSrcValue(),
9786                                St->getSrcValueOffset() + 4,
9787                                St->isVolatile(),
9788                                St->isNonTemporal(),
9789                                MinAlign(St->getAlignment(), 4));
9790    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9791  }
9792  return SDValue();
9793}
9794
9795/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9796/// X86ISD::FXOR nodes.
9797static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9798  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9799  // F[X]OR(0.0, x) -> x
9800  // F[X]OR(x, 0.0) -> x
9801  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9802    if (C->getValueAPF().isPosZero())
9803      return N->getOperand(1);
9804  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9805    if (C->getValueAPF().isPosZero())
9806      return N->getOperand(0);
9807  return SDValue();
9808}
9809
9810/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9811static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9812  // FAND(0.0, x) -> 0.0
9813  // FAND(x, 0.0) -> 0.0
9814  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9815    if (C->getValueAPF().isPosZero())
9816      return N->getOperand(0);
9817  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9818    if (C->getValueAPF().isPosZero())
9819      return N->getOperand(1);
9820  return SDValue();
9821}
9822
9823static SDValue PerformBTCombine(SDNode *N,
9824                                SelectionDAG &DAG,
9825                                TargetLowering::DAGCombinerInfo &DCI) {
9826  // BT ignores high bits in the bit index operand.
9827  SDValue Op1 = N->getOperand(1);
9828  if (Op1.hasOneUse()) {
9829    unsigned BitWidth = Op1.getValueSizeInBits();
9830    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9831    APInt KnownZero, KnownOne;
9832    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
9833                                          !DCI.isBeforeLegalizeOps());
9834    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9835    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9836        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9837      DCI.CommitTargetLoweringOpt(TLO);
9838  }
9839  return SDValue();
9840}
9841
9842static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9843  SDValue Op = N->getOperand(0);
9844  if (Op.getOpcode() == ISD::BIT_CONVERT)
9845    Op = Op.getOperand(0);
9846  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9847  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9848      VT.getVectorElementType().getSizeInBits() ==
9849      OpVT.getVectorElementType().getSizeInBits()) {
9850    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9851  }
9852  return SDValue();
9853}
9854
9855static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
9856  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
9857  //           (and (i32 x86isd::setcc_carry), 1)
9858  // This eliminates the zext. This transformation is necessary because
9859  // ISD::SETCC is always legalized to i8.
9860  DebugLoc dl = N->getDebugLoc();
9861  SDValue N0 = N->getOperand(0);
9862  EVT VT = N->getValueType(0);
9863  if (N0.getOpcode() == ISD::AND &&
9864      N0.hasOneUse() &&
9865      N0.getOperand(0).hasOneUse()) {
9866    SDValue N00 = N0.getOperand(0);
9867    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
9868      return SDValue();
9869    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9870    if (!C || C->getZExtValue() != 1)
9871      return SDValue();
9872    return DAG.getNode(ISD::AND, dl, VT,
9873                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
9874                                   N00.getOperand(0), N00.getOperand(1)),
9875                       DAG.getConstant(1, VT));
9876  }
9877
9878  return SDValue();
9879}
9880
9881SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9882                                             DAGCombinerInfo &DCI) const {
9883  SelectionDAG &DAG = DCI.DAG;
9884  switch (N->getOpcode()) {
9885  default: break;
9886  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9887  case ISD::EXTRACT_VECTOR_ELT:
9888                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
9889  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9890  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9891  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9892  case ISD::SHL:
9893  case ISD::SRA:
9894  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9895  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
9896  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9897  case X86ISD::FXOR:
9898  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9899  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9900  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9901  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9902  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
9903  }
9904
9905  return SDValue();
9906}
9907
9908/// isTypeDesirableForOp - Return true if the target has native support for
9909/// the specified value type and it is 'desirable' to use the type for the
9910/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
9911/// instruction encodings are longer and some i16 instructions are slow.
9912bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
9913  if (!isTypeLegal(VT))
9914    return false;
9915  if (VT != MVT::i16)
9916    return true;
9917
9918  switch (Opc) {
9919  default:
9920    return true;
9921  case ISD::LOAD:
9922  case ISD::SIGN_EXTEND:
9923  case ISD::ZERO_EXTEND:
9924  case ISD::ANY_EXTEND:
9925  case ISD::SHL:
9926  case ISD::SRL:
9927  case ISD::SUB:
9928  case ISD::ADD:
9929  case ISD::MUL:
9930  case ISD::AND:
9931  case ISD::OR:
9932  case ISD::XOR:
9933    return false;
9934  }
9935}
9936
9937static bool MayFoldLoad(SDValue Op) {
9938  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
9939}
9940
9941static bool MayFoldIntoStore(SDValue Op) {
9942  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
9943}
9944
9945/// IsDesirableToPromoteOp - This method query the target whether it is
9946/// beneficial for dag combiner to promote the specified node. If true, it
9947/// should return the desired promotion type by reference.
9948bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
9949  EVT VT = Op.getValueType();
9950  if (VT != MVT::i16)
9951    return false;
9952
9953  bool Promote = false;
9954  bool Commute = false;
9955  switch (Op.getOpcode()) {
9956  default: break;
9957  case ISD::LOAD: {
9958    LoadSDNode *LD = cast<LoadSDNode>(Op);
9959    // If the non-extending load has a single use and it's not live out, then it
9960    // might be folded.
9961    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
9962                                                     Op.hasOneUse()*/) {
9963      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9964             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
9965        // The only case where we'd want to promote LOAD (rather then it being
9966        // promoted as an operand is when it's only use is liveout.
9967        if (UI->getOpcode() != ISD::CopyToReg)
9968          return false;
9969      }
9970    }
9971    Promote = true;
9972    break;
9973  }
9974  case ISD::SIGN_EXTEND:
9975  case ISD::ZERO_EXTEND:
9976  case ISD::ANY_EXTEND:
9977    Promote = true;
9978    break;
9979  case ISD::SHL:
9980  case ISD::SRL: {
9981    SDValue N0 = Op.getOperand(0);
9982    // Look out for (store (shl (load), x)).
9983    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
9984      return false;
9985    Promote = true;
9986    break;
9987  }
9988  case ISD::ADD:
9989  case ISD::MUL:
9990  case ISD::AND:
9991  case ISD::OR:
9992  case ISD::XOR:
9993    Commute = true;
9994    // fallthrough
9995  case ISD::SUB: {
9996    SDValue N0 = Op.getOperand(0);
9997    SDValue N1 = Op.getOperand(1);
9998    if (!Commute && MayFoldLoad(N1))
9999      return false;
10000    // Avoid disabling potential load folding opportunities.
10001    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
10002      return false;
10003    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
10004      return false;
10005    Promote = true;
10006  }
10007  }
10008
10009  PVT = MVT::i32;
10010  return Promote;
10011}
10012
10013//===----------------------------------------------------------------------===//
10014//                           X86 Inline Assembly Support
10015//===----------------------------------------------------------------------===//
10016
10017static bool LowerToBSwap(CallInst *CI) {
10018  // FIXME: this should verify that we are targetting a 486 or better.  If not,
10019  // we will turn this bswap into something that will be lowered to logical ops
10020  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
10021  // so don't worry about this.
10022
10023  // Verify this is a simple bswap.
10024  if (CI->getNumArgOperands() != 1 ||
10025      CI->getType() != CI->getArgOperand(0)->getType() ||
10026      !CI->getType()->isIntegerTy())
10027    return false;
10028
10029  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10030  if (!Ty || Ty->getBitWidth() % 16 != 0)
10031    return false;
10032
10033  // Okay, we can do this xform, do so now.
10034  const Type *Tys[] = { Ty };
10035  Module *M = CI->getParent()->getParent()->getParent();
10036  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
10037
10038  Value *Op = CI->getArgOperand(0);
10039  Op = CallInst::Create(Int, Op, CI->getName(), CI);
10040
10041  CI->replaceAllUsesWith(Op);
10042  CI->eraseFromParent();
10043  return true;
10044}
10045
10046bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
10047  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10048  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
10049
10050  std::string AsmStr = IA->getAsmString();
10051
10052  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
10053  SmallVector<StringRef, 4> AsmPieces;
10054  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
10055
10056  switch (AsmPieces.size()) {
10057  default: return false;
10058  case 1:
10059    AsmStr = AsmPieces[0];
10060    AsmPieces.clear();
10061    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
10062
10063    // bswap $0
10064    if (AsmPieces.size() == 2 &&
10065        (AsmPieces[0] == "bswap" ||
10066         AsmPieces[0] == "bswapq" ||
10067         AsmPieces[0] == "bswapl") &&
10068        (AsmPieces[1] == "$0" ||
10069         AsmPieces[1] == "${0:q}")) {
10070      // No need to check constraints, nothing other than the equivalent of
10071      // "=r,0" would be valid here.
10072      return LowerToBSwap(CI);
10073    }
10074    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
10075    if (CI->getType()->isIntegerTy(16) &&
10076        AsmPieces.size() == 3 &&
10077        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
10078        AsmPieces[1] == "$$8," &&
10079        AsmPieces[2] == "${0:w}" &&
10080        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
10081      AsmPieces.clear();
10082      const std::string &Constraints = IA->getConstraintString();
10083      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
10084      std::sort(AsmPieces.begin(), AsmPieces.end());
10085      if (AsmPieces.size() == 4 &&
10086          AsmPieces[0] == "~{cc}" &&
10087          AsmPieces[1] == "~{dirflag}" &&
10088          AsmPieces[2] == "~{flags}" &&
10089          AsmPieces[3] == "~{fpsr}") {
10090        return LowerToBSwap(CI);
10091      }
10092    }
10093    break;
10094  case 3:
10095    if (CI->getType()->isIntegerTy(64) &&
10096        Constraints.size() >= 2 &&
10097        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
10098        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
10099      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
10100      SmallVector<StringRef, 4> Words;
10101      SplitString(AsmPieces[0], Words, " \t");
10102      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
10103        Words.clear();
10104        SplitString(AsmPieces[1], Words, " \t");
10105        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
10106          Words.clear();
10107          SplitString(AsmPieces[2], Words, " \t,");
10108          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
10109              Words[2] == "%edx") {
10110            return LowerToBSwap(CI);
10111          }
10112        }
10113      }
10114    }
10115    break;
10116  }
10117  return false;
10118}
10119
10120
10121
10122/// getConstraintType - Given a constraint letter, return the type of
10123/// constraint it is for this target.
10124X86TargetLowering::ConstraintType
10125X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10126  if (Constraint.size() == 1) {
10127    switch (Constraint[0]) {
10128    case 'A':
10129      return C_Register;
10130    case 'f':
10131    case 'r':
10132    case 'R':
10133    case 'l':
10134    case 'q':
10135    case 'Q':
10136    case 'x':
10137    case 'y':
10138    case 'Y':
10139      return C_RegisterClass;
10140    case 'e':
10141    case 'Z':
10142      return C_Other;
10143    default:
10144      break;
10145    }
10146  }
10147  return TargetLowering::getConstraintType(Constraint);
10148}
10149
10150/// LowerXConstraint - try to replace an X constraint, which matches anything,
10151/// with another that has more specific requirements based on the type of the
10152/// corresponding operand.
10153const char *X86TargetLowering::
10154LowerXConstraint(EVT ConstraintVT) const {
10155  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10156  // 'f' like normal targets.
10157  if (ConstraintVT.isFloatingPoint()) {
10158    if (Subtarget->hasSSE2())
10159      return "Y";
10160    if (Subtarget->hasSSE1())
10161      return "x";
10162  }
10163
10164  return TargetLowering::LowerXConstraint(ConstraintVT);
10165}
10166
10167/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10168/// vector.  If it is invalid, don't add anything to Ops.
10169void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10170                                                     char Constraint,
10171                                                     std::vector<SDValue>&Ops,
10172                                                     SelectionDAG &DAG) const {
10173  SDValue Result(0, 0);
10174
10175  switch (Constraint) {
10176  default: break;
10177  case 'I':
10178    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10179      if (C->getZExtValue() <= 31) {
10180        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10181        break;
10182      }
10183    }
10184    return;
10185  case 'J':
10186    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10187      if (C->getZExtValue() <= 63) {
10188        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10189        break;
10190      }
10191    }
10192    return;
10193  case 'K':
10194    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10195      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10196        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10197        break;
10198      }
10199    }
10200    return;
10201  case 'N':
10202    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10203      if (C->getZExtValue() <= 255) {
10204        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10205        break;
10206      }
10207    }
10208    return;
10209  case 'e': {
10210    // 32-bit signed value
10211    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10212      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10213                                           C->getSExtValue())) {
10214        // Widen to 64 bits here to get it sign extended.
10215        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10216        break;
10217      }
10218    // FIXME gcc accepts some relocatable values here too, but only in certain
10219    // memory models; it's complicated.
10220    }
10221    return;
10222  }
10223  case 'Z': {
10224    // 32-bit unsigned value
10225    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10226      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10227                                           C->getZExtValue())) {
10228        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10229        break;
10230      }
10231    }
10232    // FIXME gcc accepts some relocatable values here too, but only in certain
10233    // memory models; it's complicated.
10234    return;
10235  }
10236  case 'i': {
10237    // Literal immediates are always ok.
10238    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10239      // Widen to 64 bits here to get it sign extended.
10240      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10241      break;
10242    }
10243
10244    // In any sort of PIC mode addresses need to be computed at runtime by
10245    // adding in a register or some sort of table lookup.  These can't
10246    // be used as immediates.
10247    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC() ||
10248        Subtarget->isPICStyleRIPRel())
10249      return;
10250
10251    // If we are in non-pic codegen mode, we allow the address of a global (with
10252    // an optional displacement) to be used with 'i'.
10253    GlobalAddressSDNode *GA = 0;
10254    int64_t Offset = 0;
10255
10256    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10257    while (1) {
10258      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10259        Offset += GA->getOffset();
10260        break;
10261      } else if (Op.getOpcode() == ISD::ADD) {
10262        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10263          Offset += C->getZExtValue();
10264          Op = Op.getOperand(0);
10265          continue;
10266        }
10267      } else if (Op.getOpcode() == ISD::SUB) {
10268        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10269          Offset += -C->getZExtValue();
10270          Op = Op.getOperand(0);
10271          continue;
10272        }
10273      }
10274
10275      // Otherwise, this isn't something we can handle, reject it.
10276      return;
10277    }
10278
10279    const GlobalValue *GV = GA->getGlobal();
10280    // If we require an extra load to get this address, as in PIC mode, we
10281    // can't accept it.
10282    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10283                                                        getTargetMachine())))
10284      return;
10285
10286    Result = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
10287    break;
10288  }
10289  }
10290
10291  if (Result.getNode()) {
10292    Ops.push_back(Result);
10293    return;
10294  }
10295  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10296}
10297
10298std::vector<unsigned> X86TargetLowering::
10299getRegClassForInlineAsmConstraint(const std::string &Constraint,
10300                                  EVT VT) const {
10301  if (Constraint.size() == 1) {
10302    // FIXME: not handling fp-stack yet!
10303    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10304    default: break;  // Unknown constraint letter
10305    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10306      if (Subtarget->is64Bit()) {
10307        if (VT == MVT::i32)
10308          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10309                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10310                                       X86::R10D,X86::R11D,X86::R12D,
10311                                       X86::R13D,X86::R14D,X86::R15D,
10312                                       X86::EBP, X86::ESP, 0);
10313        else if (VT == MVT::i16)
10314          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10315                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10316                                       X86::R10W,X86::R11W,X86::R12W,
10317                                       X86::R13W,X86::R14W,X86::R15W,
10318                                       X86::BP,  X86::SP, 0);
10319        else if (VT == MVT::i8)
10320          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10321                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10322                                       X86::R10B,X86::R11B,X86::R12B,
10323                                       X86::R13B,X86::R14B,X86::R15B,
10324                                       X86::BPL, X86::SPL, 0);
10325
10326        else if (VT == MVT::i64)
10327          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10328                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10329                                       X86::R10, X86::R11, X86::R12,
10330                                       X86::R13, X86::R14, X86::R15,
10331                                       X86::RBP, X86::RSP, 0);
10332
10333        break;
10334      }
10335      // 32-bit fallthrough
10336    case 'Q':   // Q_REGS
10337      if (VT == MVT::i32)
10338        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10339      else if (VT == MVT::i16)
10340        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10341      else if (VT == MVT::i8)
10342        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10343      else if (VT == MVT::i64)
10344        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10345      break;
10346    }
10347  }
10348
10349  return std::vector<unsigned>();
10350}
10351
10352std::pair<unsigned, const TargetRegisterClass*>
10353X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10354                                                EVT VT) const {
10355  // First, see if this is a constraint that directly corresponds to an LLVM
10356  // register class.
10357  if (Constraint.size() == 1) {
10358    // GCC Constraint Letters
10359    switch (Constraint[0]) {
10360    default: break;
10361    case 'r':   // GENERAL_REGS
10362    case 'l':   // INDEX_REGS
10363      if (VT == MVT::i8)
10364        return std::make_pair(0U, X86::GR8RegisterClass);
10365      if (VT == MVT::i16)
10366        return std::make_pair(0U, X86::GR16RegisterClass);
10367      if (VT == MVT::i32 || !Subtarget->is64Bit())
10368        return std::make_pair(0U, X86::GR32RegisterClass);
10369      return std::make_pair(0U, X86::GR64RegisterClass);
10370    case 'R':   // LEGACY_REGS
10371      if (VT == MVT::i8)
10372        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10373      if (VT == MVT::i16)
10374        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10375      if (VT == MVT::i32 || !Subtarget->is64Bit())
10376        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10377      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10378    case 'f':  // FP Stack registers.
10379      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10380      // value to the correct fpstack register class.
10381      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10382        return std::make_pair(0U, X86::RFP32RegisterClass);
10383      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10384        return std::make_pair(0U, X86::RFP64RegisterClass);
10385      return std::make_pair(0U, X86::RFP80RegisterClass);
10386    case 'y':   // MMX_REGS if MMX allowed.
10387      if (!Subtarget->hasMMX()) break;
10388      return std::make_pair(0U, X86::VR64RegisterClass);
10389    case 'Y':   // SSE_REGS if SSE2 allowed
10390      if (!Subtarget->hasSSE2()) break;
10391      // FALL THROUGH.
10392    case 'x':   // SSE_REGS if SSE1 allowed
10393      if (!Subtarget->hasSSE1()) break;
10394
10395      switch (VT.getSimpleVT().SimpleTy) {
10396      default: break;
10397      // Scalar SSE types.
10398      case MVT::f32:
10399      case MVT::i32:
10400        return std::make_pair(0U, X86::FR32RegisterClass);
10401      case MVT::f64:
10402      case MVT::i64:
10403        return std::make_pair(0U, X86::FR64RegisterClass);
10404      // Vector types.
10405      case MVT::v16i8:
10406      case MVT::v8i16:
10407      case MVT::v4i32:
10408      case MVT::v2i64:
10409      case MVT::v4f32:
10410      case MVT::v2f64:
10411        return std::make_pair(0U, X86::VR128RegisterClass);
10412      }
10413      break;
10414    }
10415  }
10416
10417  // Use the default implementation in TargetLowering to convert the register
10418  // constraint into a member of a register class.
10419  std::pair<unsigned, const TargetRegisterClass*> Res;
10420  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10421
10422  // Not found as a standard register?
10423  if (Res.second == 0) {
10424    // Map st(0) -> st(7) -> ST0
10425    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10426        tolower(Constraint[1]) == 's' &&
10427        tolower(Constraint[2]) == 't' &&
10428        Constraint[3] == '(' &&
10429        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10430        Constraint[5] == ')' &&
10431        Constraint[6] == '}') {
10432
10433      Res.first = X86::ST0+Constraint[4]-'0';
10434      Res.second = X86::RFP80RegisterClass;
10435      return Res;
10436    }
10437
10438    // GCC allows "st(0)" to be called just plain "st".
10439    if (StringRef("{st}").equals_lower(Constraint)) {
10440      Res.first = X86::ST0;
10441      Res.second = X86::RFP80RegisterClass;
10442      return Res;
10443    }
10444
10445    // flags -> EFLAGS
10446    if (StringRef("{flags}").equals_lower(Constraint)) {
10447      Res.first = X86::EFLAGS;
10448      Res.second = X86::CCRRegisterClass;
10449      return Res;
10450    }
10451
10452    // 'A' means EAX + EDX.
10453    if (Constraint == "A") {
10454      Res.first = X86::EAX;
10455      Res.second = X86::GR32_ADRegisterClass;
10456      return Res;
10457    }
10458    return Res;
10459  }
10460
10461  // Otherwise, check to see if this is a register class of the wrong value
10462  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10463  // turn into {ax},{dx}.
10464  if (Res.second->hasType(VT))
10465    return Res;   // Correct type already, nothing to do.
10466
10467  // All of the single-register GCC register classes map their values onto
10468  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10469  // really want an 8-bit or 32-bit register, map to the appropriate register
10470  // class and return the appropriate register.
10471  if (Res.second == X86::GR16RegisterClass) {
10472    if (VT == MVT::i8) {
10473      unsigned DestReg = 0;
10474      switch (Res.first) {
10475      default: break;
10476      case X86::AX: DestReg = X86::AL; break;
10477      case X86::DX: DestReg = X86::DL; break;
10478      case X86::CX: DestReg = X86::CL; break;
10479      case X86::BX: DestReg = X86::BL; break;
10480      }
10481      if (DestReg) {
10482        Res.first = DestReg;
10483        Res.second = X86::GR8RegisterClass;
10484      }
10485    } else if (VT == MVT::i32) {
10486      unsigned DestReg = 0;
10487      switch (Res.first) {
10488      default: break;
10489      case X86::AX: DestReg = X86::EAX; break;
10490      case X86::DX: DestReg = X86::EDX; break;
10491      case X86::CX: DestReg = X86::ECX; break;
10492      case X86::BX: DestReg = X86::EBX; break;
10493      case X86::SI: DestReg = X86::ESI; break;
10494      case X86::DI: DestReg = X86::EDI; break;
10495      case X86::BP: DestReg = X86::EBP; break;
10496      case X86::SP: DestReg = X86::ESP; break;
10497      }
10498      if (DestReg) {
10499        Res.first = DestReg;
10500        Res.second = X86::GR32RegisterClass;
10501      }
10502    } else if (VT == MVT::i64) {
10503      unsigned DestReg = 0;
10504      switch (Res.first) {
10505      default: break;
10506      case X86::AX: DestReg = X86::RAX; break;
10507      case X86::DX: DestReg = X86::RDX; break;
10508      case X86::CX: DestReg = X86::RCX; break;
10509      case X86::BX: DestReg = X86::RBX; break;
10510      case X86::SI: DestReg = X86::RSI; break;
10511      case X86::DI: DestReg = X86::RDI; break;
10512      case X86::BP: DestReg = X86::RBP; break;
10513      case X86::SP: DestReg = X86::RSP; break;
10514      }
10515      if (DestReg) {
10516        Res.first = DestReg;
10517        Res.second = X86::GR64RegisterClass;
10518      }
10519    }
10520  } else if (Res.second == X86::FR32RegisterClass ||
10521             Res.second == X86::FR64RegisterClass ||
10522             Res.second == X86::VR128RegisterClass) {
10523    // Handle references to XMM physical registers that got mapped into the
10524    // wrong class.  This can happen with constraints like {xmm0} where the
10525    // target independent register mapper will just pick the first match it can
10526    // find, ignoring the required type.
10527    if (VT == MVT::f32)
10528      Res.second = X86::FR32RegisterClass;
10529    else if (VT == MVT::f64)
10530      Res.second = X86::FR64RegisterClass;
10531    else if (X86::VR128RegisterClass->hasType(VT))
10532      Res.second = X86::VR128RegisterClass;
10533  }
10534
10535  return Res;
10536}
10537