X86ISelLowering.cpp revision ee64be9c176a21a6fd86d2c4eebda571f872d4a2
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetOptions.h"
55using namespace llvm;
56using namespace dwarf;
57
58STATISTIC(NumTailCalls, "Number of tail calls");
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static SDValue Insert128BitVector(SDValue Result,
65                                  SDValue Vec,
66                                  SDValue Idx,
67                                  SelectionDAG &DAG,
68                                  DebugLoc dl);
69
70static SDValue Extract128BitVector(SDValue Vec,
71                                   SDValue Idx,
72                                   SelectionDAG &DAG,
73                                   DebugLoc dl);
74
75/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
76/// sets things up to match to an AVX VEXTRACTF128 instruction or a
77/// simple subregister reference.  Idx is an index in the 128 bits we
78/// want.  It need not be aligned to a 128-bit bounday.  That makes
79/// lowering EXTRACT_VECTOR_ELT operations easier.
80static SDValue Extract128BitVector(SDValue Vec,
81                                   SDValue Idx,
82                                   SelectionDAG &DAG,
83                                   DebugLoc dl) {
84  EVT VT = Vec.getValueType();
85  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
86  EVT ElVT = VT.getVectorElementType();
87  int Factor = VT.getSizeInBits()/128;
88  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
89                                  VT.getVectorNumElements()/Factor);
90
91  // Extract from UNDEF is UNDEF.
92  if (Vec.getOpcode() == ISD::UNDEF)
93    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
94
95  if (isa<ConstantSDNode>(Idx)) {
96    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
97
98    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
99    // we can match to VEXTRACTF128.
100    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
101
102    // This is the index of the first element of the 128-bit chunk
103    // we want.
104    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
105                                 * ElemsPerChunk);
106
107    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
108    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
109                                 VecIdx);
110
111    return Result;
112  }
113
114  return SDValue();
115}
116
117/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
118/// sets things up to match to an AVX VINSERTF128 instruction or a
119/// simple superregister reference.  Idx is an index in the 128 bits
120/// we want.  It need not be aligned to a 128-bit bounday.  That makes
121/// lowering INSERT_VECTOR_ELT operations easier.
122static SDValue Insert128BitVector(SDValue Result,
123                                  SDValue Vec,
124                                  SDValue Idx,
125                                  SelectionDAG &DAG,
126                                  DebugLoc dl) {
127  if (isa<ConstantSDNode>(Idx)) {
128    EVT VT = Vec.getValueType();
129    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
130
131    EVT ElVT = VT.getVectorElementType();
132    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
133    EVT ResultVT = Result.getValueType();
134
135    // Insert the relevant 128 bits.
136    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
137
138    // This is the index of the first element of the 128-bit chunk
139    // we want.
140    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
141                                 * ElemsPerChunk);
142
143    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
144    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
145                         VecIdx);
146    return Result;
147  }
148
149  return SDValue();
150}
151
152static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
153  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
154  bool is64Bit = Subtarget->is64Bit();
155
156  if (Subtarget->isTargetEnvMacho()) {
157    if (is64Bit)
158      return new X8664_MachoTargetObjectFile();
159    return new TargetLoweringObjectFileMachO();
160  }
161
162  if (Subtarget->isTargetELF())
163    return new TargetLoweringObjectFileELF();
164  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
165    return new TargetLoweringObjectFileCOFF();
166  llvm_unreachable("unknown subtarget type");
167}
168
169X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
170  : TargetLowering(TM, createTLOF(TM)) {
171  Subtarget = &TM.getSubtarget<X86Subtarget>();
172  X86ScalarSSEf64 = Subtarget->hasXMMInt() || Subtarget->hasAVX();
173  X86ScalarSSEf32 = Subtarget->hasXMM() || Subtarget->hasAVX();
174  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
175
176  RegInfo = TM.getRegisterInfo();
177  TD = getTargetData();
178
179  // Set up the TargetLowering object.
180  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
181
182  // X86 is weird, it always uses i8 for shift amounts and setcc results.
183  setBooleanContents(ZeroOrOneBooleanContent);
184  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
185  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
186
187  // For 64-bit since we have so many registers use the ILP scheduler, for
188  // 32-bit code use the register pressure specific scheduling.
189  if (Subtarget->is64Bit())
190    setSchedulingPreference(Sched::ILP);
191  else
192    setSchedulingPreference(Sched::RegPressure);
193  setStackPointerRegisterToSaveRestore(X86StackPtr);
194
195  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
196    // Setup Windows compiler runtime calls.
197    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
198    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
199    setLibcallName(RTLIB::SREM_I64, "_allrem");
200    setLibcallName(RTLIB::UREM_I64, "_aullrem");
201    setLibcallName(RTLIB::MUL_I64, "_allmul");
202    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
203    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
204    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
209    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
210    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
211  }
212
213  if (Subtarget->isTargetDarwin()) {
214    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
215    setUseUnderscoreSetJmp(false);
216    setUseUnderscoreLongJmp(false);
217  } else if (Subtarget->isTargetMingw()) {
218    // MS runtime is weird: it exports _setjmp, but longjmp!
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(false);
221  } else {
222    setUseUnderscoreSetJmp(true);
223    setUseUnderscoreLongJmp(true);
224  }
225
226  // Set up the register classes.
227  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
228  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
229  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
230  if (Subtarget->is64Bit())
231    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
232
233  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
234
235  // We don't accept any truncstore of integer registers.
236  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
237  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
238  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
239  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
240  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
241  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
242
243  // SETOEQ and SETUNE require checking two conditions.
244  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
248  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
249  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
250
251  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
252  // operation.
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
254  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
255  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
256
257  if (Subtarget->is64Bit()) {
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
260  } else if (!UseSoftFloat) {
261    // We have an algorithm for SSE2->double, and we turn this into a
262    // 64-bit FILD followed by conditional FADD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
264    // We have an algorithm for SSE2, and we turn this into a 64-bit
265    // FILD for other targets.
266    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
267  }
268
269  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
270  // this operation.
271  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
272  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
273
274  if (!UseSoftFloat) {
275    // SSE has no i16 to fp conversion, only i32
276    if (X86ScalarSSEf32) {
277      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
278      // f32 and f64 cases are Legal, f80 case is not
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    } else {
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
282      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
283    }
284  } else {
285    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
286    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
287  }
288
289  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
290  // are Legal, f80 is custom lowered.
291  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
292  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
293
294  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
295  // this operation.
296  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
297  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
298
299  if (X86ScalarSSEf32) {
300    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
301    // f32 and f64 cases are Legal, f80 case is not
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  } else {
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
305    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
306  }
307
308  // Handle FP_TO_UINT by promoting the destination to a larger signed
309  // conversion.
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
311  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
312  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
313
314  if (Subtarget->is64Bit()) {
315    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
316    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
317  } else if (!UseSoftFloat) {
318    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
319      // Expand FP_TO_UINT into a select.
320      // FIXME: We would like to use a Custom expander here eventually to do
321      // the optimal thing for SSE vs. the default expansion in the legalizer.
322      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
323    else
324      // With SSE3 we can use fisttpll to convert to a signed i64; without
325      // SSE, we're stuck with a fistpll.
326      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
327  }
328
329  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
330  if (!X86ScalarSSEf64) {
331    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
332    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
333    if (Subtarget->is64Bit()) {
334      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
335      // Without SSE, i64->f64 goes through memory.
336      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
337    }
338  }
339
340  // Scalar integer divide and remainder are lowered to use operations that
341  // produce two results, to match the available instructions. This exposes
342  // the two-result form to trivial CSE, which is able to combine x/y and x%y
343  // into a single instruction.
344  //
345  // Scalar integer multiply-high is also lowered to use two-result
346  // operations, to match the available instructions. However, plain multiply
347  // (low) operations are left as Legal, as there are single-result
348  // instructions for this in x86. Using the two-result multiply instructions
349  // when both high and low results are needed must be arranged by dagcombine.
350  for (unsigned i = 0, e = 4; i != e; ++i) {
351    MVT VT = IntVTs[i];
352    setOperationAction(ISD::MULHS, VT, Expand);
353    setOperationAction(ISD::MULHU, VT, Expand);
354    setOperationAction(ISD::SDIV, VT, Expand);
355    setOperationAction(ISD::UDIV, VT, Expand);
356    setOperationAction(ISD::SREM, VT, Expand);
357    setOperationAction(ISD::UREM, VT, Expand);
358
359    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
360    setOperationAction(ISD::ADDC, VT, Custom);
361    setOperationAction(ISD::ADDE, VT, Custom);
362    setOperationAction(ISD::SUBC, VT, Custom);
363    setOperationAction(ISD::SUBE, VT, Custom);
364  }
365
366  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
367  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
368  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
369  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
370  if (Subtarget->is64Bit())
371    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
375  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
379  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
380
381  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
382  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
383  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
384  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
385  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
386  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
387  if (Subtarget->is64Bit()) {
388    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
389    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
390  }
391
392  if (Subtarget->hasPOPCNT()) {
393    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
394  } else {
395    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
396    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
397    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
398    if (Subtarget->is64Bit())
399      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
400  }
401
402  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
403  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
404
405  // These should be promoted to a larger select which is supported.
406  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
407  // X86 wants to expand cmov itself.
408  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
409  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
410  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
411  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
412  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
413  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
414  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
415  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
416  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
417  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
418  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
419  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
420  if (Subtarget->is64Bit()) {
421    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
422    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
423  }
424  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
425
426  // Darwin ABI issue.
427  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
428  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
429  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
430  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
431  if (Subtarget->is64Bit())
432    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
433  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
434  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
435  if (Subtarget->is64Bit()) {
436    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
437    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
438    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
439    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
440    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
441  }
442  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
443  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
444  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
445  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
446  if (Subtarget->is64Bit()) {
447    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
448    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
449    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
450  }
451
452  if (Subtarget->hasXMM())
453    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
454
455  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
456  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
457
458  // On X86 and X86-64, atomic operations are lowered to locked instructions.
459  // Locked instructions, in turn, have implicit fence semantics (all memory
460  // operations are flushed before issuing the locked instruction, and they
461  // are not buffered), so we can fold away the common pattern of
462  // fence-atomic-fence.
463  setShouldFoldAtomicFences(true);
464
465  // Expand certain atomics
466  for (unsigned i = 0, e = 4; i != e; ++i) {
467    MVT VT = IntVTs[i];
468    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
469    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
470    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
471  }
472
473  if (!Subtarget->is64Bit()) {
474    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
475    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
476    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
477    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
478    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
479    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
480    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
481    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
482  }
483
484  if (Subtarget->hasCmpxchg16b()) {
485    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
486  }
487
488  // FIXME - use subtarget debug flags
489  if (!Subtarget->isTargetDarwin() &&
490      !Subtarget->isTargetELF() &&
491      !Subtarget->isTargetCygMing()) {
492    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
493  }
494
495  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
496  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
497  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
498  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
499  if (Subtarget->is64Bit()) {
500    setExceptionPointerRegister(X86::RAX);
501    setExceptionSelectorRegister(X86::RDX);
502  } else {
503    setExceptionPointerRegister(X86::EAX);
504    setExceptionSelectorRegister(X86::EDX);
505  }
506  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
507  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
508
509  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
510  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
511
512  setOperationAction(ISD::TRAP, MVT::Other, Legal);
513
514  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
515  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
516  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
517  if (Subtarget->is64Bit()) {
518    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
519    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
520  } else {
521    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
522    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
523  }
524
525  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
526  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
527
528  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
529    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
530                       MVT::i64 : MVT::i32, Custom);
531  else if (EnableSegmentedStacks)
532    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
533                       MVT::i64 : MVT::i32, Custom);
534  else
535    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
536                       MVT::i64 : MVT::i32, Expand);
537
538  if (!UseSoftFloat && X86ScalarSSEf64) {
539    // f32 and f64 use SSE.
540    // Set up the FP register classes.
541    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
542    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
543
544    // Use ANDPD to simulate FABS.
545    setOperationAction(ISD::FABS , MVT::f64, Custom);
546    setOperationAction(ISD::FABS , MVT::f32, Custom);
547
548    // Use XORP to simulate FNEG.
549    setOperationAction(ISD::FNEG , MVT::f64, Custom);
550    setOperationAction(ISD::FNEG , MVT::f32, Custom);
551
552    // Use ANDPD and ORPD to simulate FCOPYSIGN.
553    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
554    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
555
556    // Lower this to FGETSIGNx86 plus an AND.
557    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
558    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
559
560    // We don't support sin/cos/fmod
561    setOperationAction(ISD::FSIN , MVT::f64, Expand);
562    setOperationAction(ISD::FCOS , MVT::f64, Expand);
563    setOperationAction(ISD::FSIN , MVT::f32, Expand);
564    setOperationAction(ISD::FCOS , MVT::f32, Expand);
565
566    // Expand FP immediates into loads from the stack, except for the special
567    // cases we handle.
568    addLegalFPImmediate(APFloat(+0.0)); // xorpd
569    addLegalFPImmediate(APFloat(+0.0f)); // xorps
570  } else if (!UseSoftFloat && X86ScalarSSEf32) {
571    // Use SSE for f32, x87 for f64.
572    // Set up the FP register classes.
573    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
574    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
575
576    // Use ANDPS to simulate FABS.
577    setOperationAction(ISD::FABS , MVT::f32, Custom);
578
579    // Use XORP to simulate FNEG.
580    setOperationAction(ISD::FNEG , MVT::f32, Custom);
581
582    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
583
584    // Use ANDPS and ORPS to simulate FCOPYSIGN.
585    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
586    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
587
588    // We don't support sin/cos/fmod
589    setOperationAction(ISD::FSIN , MVT::f32, Expand);
590    setOperationAction(ISD::FCOS , MVT::f32, Expand);
591
592    // Special cases we handle for FP constants.
593    addLegalFPImmediate(APFloat(+0.0f)); // xorps
594    addLegalFPImmediate(APFloat(+0.0)); // FLD0
595    addLegalFPImmediate(APFloat(+1.0)); // FLD1
596    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
597    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
598
599    if (!UnsafeFPMath) {
600      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
601      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
602    }
603  } else if (!UseSoftFloat) {
604    // f32 and f64 in x87.
605    // Set up the FP register classes.
606    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
607    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
608
609    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
610    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
611    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
612    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
613
614    if (!UnsafeFPMath) {
615      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
616      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
617    }
618    addLegalFPImmediate(APFloat(+0.0)); // FLD0
619    addLegalFPImmediate(APFloat(+1.0)); // FLD1
620    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
621    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
622    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
623    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
624    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
625    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
626  }
627
628  // We don't support FMA.
629  setOperationAction(ISD::FMA, MVT::f64, Expand);
630  setOperationAction(ISD::FMA, MVT::f32, Expand);
631
632  // Long double always uses X87.
633  if (!UseSoftFloat) {
634    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
635    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
636    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
637    {
638      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
639      addLegalFPImmediate(TmpFlt);  // FLD0
640      TmpFlt.changeSign();
641      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
642
643      bool ignored;
644      APFloat TmpFlt2(+1.0);
645      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
646                      &ignored);
647      addLegalFPImmediate(TmpFlt2);  // FLD1
648      TmpFlt2.changeSign();
649      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
650    }
651
652    if (!UnsafeFPMath) {
653      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
654      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
655    }
656
657    setOperationAction(ISD::FMA, MVT::f80, Expand);
658  }
659
660  // Always use a library call for pow.
661  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
662  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
663  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
664
665  setOperationAction(ISD::FLOG, MVT::f80, Expand);
666  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
667  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
668  setOperationAction(ISD::FEXP, MVT::f80, Expand);
669  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
670
671  // First set operation action for all vector types to either promote
672  // (for widening) or expand (for scalarization). Then we will selectively
673  // turn on ones that can be effectively codegen'd.
674  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
675       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
676    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
677    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
678    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
679    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
680    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
681    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
682    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
684    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
685    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
691    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
693    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
694    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
726    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
730    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
731         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
732      setTruncStoreAction((MVT::SimpleValueType)VT,
733                          (MVT::SimpleValueType)InnerVT, Expand);
734    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
735    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
736    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
737  }
738
739  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
740  // with -msoft-float, disable use of MMX as well.
741  if (!UseSoftFloat && Subtarget->hasMMX()) {
742    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
743    // No operations on x86mmx supported, everything uses intrinsics.
744  }
745
746  // MMX-sized vectors (other than x86mmx) are expected to be expanded
747  // into smaller operations.
748  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
749  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
750  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
751  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
752  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
753  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
754  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
755  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
756  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
757  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
758  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
759  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
760  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
761  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
762  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
763  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
764  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
765  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
766  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
767  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
768  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
769  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
770  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
771  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
772  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
773  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
774  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
775  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
776  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
777
778  if (!UseSoftFloat && Subtarget->hasXMM()) {
779    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
780
781    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
782    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
783    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
784    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
785    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
786    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
787    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
788    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
789    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
790    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
791    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
792    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
793  }
794
795  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
796    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
797
798    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
799    // registers cannot be used even for integer operations.
800    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
801    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
802    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
803    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
804
805    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
806    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
807    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
808    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
809    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
810    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
811    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
812    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
813    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
814    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
815    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
816    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
817    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
818    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
819    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
820    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
821
822    setOperationAction(ISD::SETCC,              MVT::v2f64, Custom);
823    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
824    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
825    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
826
827    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
828    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
829    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
830    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
831    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
832
833    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
834    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
835    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
836    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
837    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
838
839    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
840    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
841      EVT VT = (MVT::SimpleValueType)i;
842      // Do not attempt to custom lower non-power-of-2 vectors
843      if (!isPowerOf2_32(VT.getVectorNumElements()))
844        continue;
845      // Do not attempt to custom lower non-128-bit vectors
846      if (!VT.is128BitVector())
847        continue;
848      setOperationAction(ISD::BUILD_VECTOR,
849                         VT.getSimpleVT().SimpleTy, Custom);
850      setOperationAction(ISD::VECTOR_SHUFFLE,
851                         VT.getSimpleVT().SimpleTy, Custom);
852      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
853                         VT.getSimpleVT().SimpleTy, Custom);
854    }
855
856    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
857    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
858    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
859    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
860    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
861    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
862
863    if (Subtarget->is64Bit()) {
864      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
865      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
866    }
867
868    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
869    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
870      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
871      EVT VT = SVT;
872
873      // Do not attempt to promote non-128-bit vectors
874      if (!VT.is128BitVector())
875        continue;
876
877      setOperationAction(ISD::AND,    SVT, Promote);
878      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
879      setOperationAction(ISD::OR,     SVT, Promote);
880      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
881      setOperationAction(ISD::XOR,    SVT, Promote);
882      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
883      setOperationAction(ISD::LOAD,   SVT, Promote);
884      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
885      setOperationAction(ISD::SELECT, SVT, Promote);
886      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
887    }
888
889    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
890
891    // Custom lower v2i64 and v2f64 selects.
892    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
893    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
894    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
895    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
896
897    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
898    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
899  }
900
901  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
902    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
903    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
904    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
905    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
906    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
907    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
908    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
909    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
910    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
911    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
912
913    // FIXME: Do we need to handle scalar-to-vector here?
914    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
915
916    // Can turn SHL into an integer multiply.
917    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
918    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
919
920    setOperationAction(ISD::VSELECT,            MVT::v2f64, Custom);
921    setOperationAction(ISD::VSELECT,            MVT::v2i64, Custom);
922    setOperationAction(ISD::VSELECT,            MVT::v16i8, Custom);
923    setOperationAction(ISD::VSELECT,            MVT::v4i32, Custom);
924    setOperationAction(ISD::VSELECT,            MVT::v4f32, Custom);
925
926    // i8 and i16 vectors are custom , because the source register and source
927    // source memory operand types are not the same width.  f32 vectors are
928    // custom since the immediate controlling the insert encodes additional
929    // information.
930    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
931    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
932    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
933    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
934
935    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
936    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
937    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
938    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
939
940    if (Subtarget->is64Bit()) {
941      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
942      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
943    }
944  }
945
946  if (Subtarget->hasSSE2() || Subtarget->hasAVX()) {
947    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
948    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
949    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
950    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
951
952    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
953    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
954    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
955
956    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
957    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
958  }
959
960  if (Subtarget->hasSSE42() || Subtarget->hasAVX())
961    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
962
963  if (!UseSoftFloat && Subtarget->hasAVX()) {
964    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
965    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
966    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
967    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
968    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
969    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
970
971    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
972    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
973    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
974
975    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
976    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
977    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
978    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
979    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
980    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
981
982    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
983    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
984    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
985    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
986    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
987    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
988
989    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
990    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
991    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
992
993    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
994    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
995    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
996    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
997    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
998    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
999
1000    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1001    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1002    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1003    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1004
1005    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1006    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1007    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1008    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1009
1010    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1011    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1012
1013    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1014    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1015    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1016    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1017
1018    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1019    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1020    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1021
1022    setOperationAction(ISD::ADD,               MVT::v4i64, Custom);
1023    setOperationAction(ISD::ADD,               MVT::v8i32, Custom);
1024    setOperationAction(ISD::ADD,               MVT::v16i16, Custom);
1025    setOperationAction(ISD::ADD,               MVT::v32i8, Custom);
1026
1027    setOperationAction(ISD::SUB,               MVT::v4i64, Custom);
1028    setOperationAction(ISD::SUB,               MVT::v8i32, Custom);
1029    setOperationAction(ISD::SUB,               MVT::v16i16, Custom);
1030    setOperationAction(ISD::SUB,               MVT::v32i8, Custom);
1031
1032    setOperationAction(ISD::MUL,               MVT::v4i64, Custom);
1033    setOperationAction(ISD::MUL,               MVT::v8i32, Custom);
1034    setOperationAction(ISD::MUL,               MVT::v16i16, Custom);
1035    // Don't lower v32i8 because there is no 128-bit byte mul
1036
1037    // Custom lower several nodes for 256-bit types.
1038    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1039                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1040      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1041      EVT VT = SVT;
1042
1043      // Extract subvector is special because the value type
1044      // (result) is 128-bit but the source is 256-bit wide.
1045      if (VT.is128BitVector())
1046        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1047
1048      // Do not attempt to custom lower other non-256-bit vectors
1049      if (!VT.is256BitVector())
1050        continue;
1051
1052      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1053      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1054      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1055      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1056      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1057      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1058    }
1059
1060    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1061    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1062      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1063      EVT VT = SVT;
1064
1065      // Do not attempt to promote non-256-bit vectors
1066      if (!VT.is256BitVector())
1067        continue;
1068
1069      setOperationAction(ISD::AND,    SVT, Promote);
1070      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1071      setOperationAction(ISD::OR,     SVT, Promote);
1072      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1073      setOperationAction(ISD::XOR,    SVT, Promote);
1074      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1075      setOperationAction(ISD::LOAD,   SVT, Promote);
1076      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1077      setOperationAction(ISD::SELECT, SVT, Promote);
1078      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1079    }
1080  }
1081
1082  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1083  // of this type with custom code.
1084  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1085         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1086    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1087  }
1088
1089  // We want to custom lower some of our intrinsics.
1090  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1091
1092
1093  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1094  // handle type legalization for these operations here.
1095  //
1096  // FIXME: We really should do custom legalization for addition and
1097  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1098  // than generic legalization for 64-bit multiplication-with-overflow, though.
1099  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1100    // Add/Sub/Mul with overflow operations are custom lowered.
1101    MVT VT = IntVTs[i];
1102    setOperationAction(ISD::SADDO, VT, Custom);
1103    setOperationAction(ISD::UADDO, VT, Custom);
1104    setOperationAction(ISD::SSUBO, VT, Custom);
1105    setOperationAction(ISD::USUBO, VT, Custom);
1106    setOperationAction(ISD::SMULO, VT, Custom);
1107    setOperationAction(ISD::UMULO, VT, Custom);
1108  }
1109
1110  // There are no 8-bit 3-address imul/mul instructions
1111  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1112  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1113
1114  if (!Subtarget->is64Bit()) {
1115    // These libcalls are not available in 32-bit.
1116    setLibcallName(RTLIB::SHL_I128, 0);
1117    setLibcallName(RTLIB::SRL_I128, 0);
1118    setLibcallName(RTLIB::SRA_I128, 0);
1119  }
1120
1121  // We have target-specific dag combine patterns for the following nodes:
1122  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1123  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1124  setTargetDAGCombine(ISD::BUILD_VECTOR);
1125  setTargetDAGCombine(ISD::SELECT);
1126  setTargetDAGCombine(ISD::SHL);
1127  setTargetDAGCombine(ISD::SRA);
1128  setTargetDAGCombine(ISD::SRL);
1129  setTargetDAGCombine(ISD::OR);
1130  setTargetDAGCombine(ISD::AND);
1131  setTargetDAGCombine(ISD::ADD);
1132  setTargetDAGCombine(ISD::SUB);
1133  setTargetDAGCombine(ISD::STORE);
1134  setTargetDAGCombine(ISD::ZERO_EXTEND);
1135  setTargetDAGCombine(ISD::SINT_TO_FP);
1136  if (Subtarget->is64Bit())
1137    setTargetDAGCombine(ISD::MUL);
1138
1139  computeRegisterProperties();
1140
1141  // On Darwin, -Os means optimize for size without hurting performance,
1142  // do not reduce the limit.
1143  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1144  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1145  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1146  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1147  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1148  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1149  setPrefLoopAlignment(16);
1150  benefitFromCodePlacementOpt = true;
1151
1152  setPrefFunctionAlignment(4);
1153}
1154
1155
1156EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1157  if (!VT.isVector()) return MVT::i8;
1158  return VT.changeVectorElementTypeToInteger();
1159}
1160
1161
1162/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1163/// the desired ByVal argument alignment.
1164static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1165  if (MaxAlign == 16)
1166    return;
1167  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1168    if (VTy->getBitWidth() == 128)
1169      MaxAlign = 16;
1170  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1171    unsigned EltAlign = 0;
1172    getMaxByValAlign(ATy->getElementType(), EltAlign);
1173    if (EltAlign > MaxAlign)
1174      MaxAlign = EltAlign;
1175  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1176    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1177      unsigned EltAlign = 0;
1178      getMaxByValAlign(STy->getElementType(i), EltAlign);
1179      if (EltAlign > MaxAlign)
1180        MaxAlign = EltAlign;
1181      if (MaxAlign == 16)
1182        break;
1183    }
1184  }
1185  return;
1186}
1187
1188/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1189/// function arguments in the caller parameter area. For X86, aggregates
1190/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1191/// are at 4-byte boundaries.
1192unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1193  if (Subtarget->is64Bit()) {
1194    // Max of 8 and alignment of type.
1195    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1196    if (TyAlign > 8)
1197      return TyAlign;
1198    return 8;
1199  }
1200
1201  unsigned Align = 4;
1202  if (Subtarget->hasXMM())
1203    getMaxByValAlign(Ty, Align);
1204  return Align;
1205}
1206
1207/// getOptimalMemOpType - Returns the target specific optimal type for load
1208/// and store operations as a result of memset, memcpy, and memmove
1209/// lowering. If DstAlign is zero that means it's safe to destination
1210/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1211/// means there isn't a need to check it against alignment requirement,
1212/// probably because the source does not need to be loaded. If
1213/// 'NonScalarIntSafe' is true, that means it's safe to return a
1214/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1215/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1216/// constant so it does not need to be loaded.
1217/// It returns EVT::Other if the type should be determined using generic
1218/// target-independent logic.
1219EVT
1220X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1221                                       unsigned DstAlign, unsigned SrcAlign,
1222                                       bool NonScalarIntSafe,
1223                                       bool MemcpyStrSrc,
1224                                       MachineFunction &MF) const {
1225  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1226  // linux.  This is because the stack realignment code can't handle certain
1227  // cases like PR2962.  This should be removed when PR2962 is fixed.
1228  const Function *F = MF.getFunction();
1229  if (NonScalarIntSafe &&
1230      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1231    if (Size >= 16 &&
1232        (Subtarget->isUnalignedMemAccessFast() ||
1233         ((DstAlign == 0 || DstAlign >= 16) &&
1234          (SrcAlign == 0 || SrcAlign >= 16))) &&
1235        Subtarget->getStackAlignment() >= 16) {
1236      if (Subtarget->hasSSE2())
1237        return MVT::v4i32;
1238      if (Subtarget->hasSSE1())
1239        return MVT::v4f32;
1240    } else if (!MemcpyStrSrc && Size >= 8 &&
1241               !Subtarget->is64Bit() &&
1242               Subtarget->getStackAlignment() >= 8 &&
1243               Subtarget->hasXMMInt()) {
1244      // Do not use f64 to lower memcpy if source is string constant. It's
1245      // better to use i32 to avoid the loads.
1246      return MVT::f64;
1247    }
1248  }
1249  if (Subtarget->is64Bit() && Size >= 8)
1250    return MVT::i64;
1251  return MVT::i32;
1252}
1253
1254/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1255/// current function.  The returned value is a member of the
1256/// MachineJumpTableInfo::JTEntryKind enum.
1257unsigned X86TargetLowering::getJumpTableEncoding() const {
1258  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1259  // symbol.
1260  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1261      Subtarget->isPICStyleGOT())
1262    return MachineJumpTableInfo::EK_Custom32;
1263
1264  // Otherwise, use the normal jump table encoding heuristics.
1265  return TargetLowering::getJumpTableEncoding();
1266}
1267
1268const MCExpr *
1269X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1270                                             const MachineBasicBlock *MBB,
1271                                             unsigned uid,MCContext &Ctx) const{
1272  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1273         Subtarget->isPICStyleGOT());
1274  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1275  // entries.
1276  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1277                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1278}
1279
1280/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1281/// jumptable.
1282SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1283                                                    SelectionDAG &DAG) const {
1284  if (!Subtarget->is64Bit())
1285    // This doesn't have DebugLoc associated with it, but is not really the
1286    // same as a Register.
1287    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1288  return Table;
1289}
1290
1291/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1292/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1293/// MCExpr.
1294const MCExpr *X86TargetLowering::
1295getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1296                             MCContext &Ctx) const {
1297  // X86-64 uses RIP relative addressing based on the jump table label.
1298  if (Subtarget->isPICStyleRIPRel())
1299    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1300
1301  // Otherwise, the reference is relative to the PIC base.
1302  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1303}
1304
1305// FIXME: Why this routine is here? Move to RegInfo!
1306std::pair<const TargetRegisterClass*, uint8_t>
1307X86TargetLowering::findRepresentativeClass(EVT VT) const{
1308  const TargetRegisterClass *RRC = 0;
1309  uint8_t Cost = 1;
1310  switch (VT.getSimpleVT().SimpleTy) {
1311  default:
1312    return TargetLowering::findRepresentativeClass(VT);
1313  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1314    RRC = (Subtarget->is64Bit()
1315           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1316    break;
1317  case MVT::x86mmx:
1318    RRC = X86::VR64RegisterClass;
1319    break;
1320  case MVT::f32: case MVT::f64:
1321  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1322  case MVT::v4f32: case MVT::v2f64:
1323  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1324  case MVT::v4f64:
1325    RRC = X86::VR128RegisterClass;
1326    break;
1327  }
1328  return std::make_pair(RRC, Cost);
1329}
1330
1331bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1332                                               unsigned &Offset) const {
1333  if (!Subtarget->isTargetLinux())
1334    return false;
1335
1336  if (Subtarget->is64Bit()) {
1337    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1338    Offset = 0x28;
1339    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1340      AddressSpace = 256;
1341    else
1342      AddressSpace = 257;
1343  } else {
1344    // %gs:0x14 on i386
1345    Offset = 0x14;
1346    AddressSpace = 256;
1347  }
1348  return true;
1349}
1350
1351
1352//===----------------------------------------------------------------------===//
1353//               Return Value Calling Convention Implementation
1354//===----------------------------------------------------------------------===//
1355
1356#include "X86GenCallingConv.inc"
1357
1358bool
1359X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1360				  MachineFunction &MF, bool isVarArg,
1361                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1362                        LLVMContext &Context) const {
1363  SmallVector<CCValAssign, 16> RVLocs;
1364  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1365                 RVLocs, Context);
1366  return CCInfo.CheckReturn(Outs, RetCC_X86);
1367}
1368
1369SDValue
1370X86TargetLowering::LowerReturn(SDValue Chain,
1371                               CallingConv::ID CallConv, bool isVarArg,
1372                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1373                               const SmallVectorImpl<SDValue> &OutVals,
1374                               DebugLoc dl, SelectionDAG &DAG) const {
1375  MachineFunction &MF = DAG.getMachineFunction();
1376  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1377
1378  SmallVector<CCValAssign, 16> RVLocs;
1379  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1380                 RVLocs, *DAG.getContext());
1381  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1382
1383  // Add the regs to the liveout set for the function.
1384  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1385  for (unsigned i = 0; i != RVLocs.size(); ++i)
1386    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1387      MRI.addLiveOut(RVLocs[i].getLocReg());
1388
1389  SDValue Flag;
1390
1391  SmallVector<SDValue, 6> RetOps;
1392  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1393  // Operand #1 = Bytes To Pop
1394  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1395                   MVT::i16));
1396
1397  // Copy the result values into the output registers.
1398  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1399    CCValAssign &VA = RVLocs[i];
1400    assert(VA.isRegLoc() && "Can only return in registers!");
1401    SDValue ValToCopy = OutVals[i];
1402    EVT ValVT = ValToCopy.getValueType();
1403
1404    // If this is x86-64, and we disabled SSE, we can't return FP values,
1405    // or SSE or MMX vectors.
1406    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1407         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1408          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1409      report_fatal_error("SSE register return with SSE disabled");
1410    }
1411    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1412    // llvm-gcc has never done it right and no one has noticed, so this
1413    // should be OK for now.
1414    if (ValVT == MVT::f64 &&
1415        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1416      report_fatal_error("SSE2 register return with SSE2 disabled");
1417
1418    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1419    // the RET instruction and handled by the FP Stackifier.
1420    if (VA.getLocReg() == X86::ST0 ||
1421        VA.getLocReg() == X86::ST1) {
1422      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1423      // change the value to the FP stack register class.
1424      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1425        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1426      RetOps.push_back(ValToCopy);
1427      // Don't emit a copytoreg.
1428      continue;
1429    }
1430
1431    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1432    // which is returned in RAX / RDX.
1433    if (Subtarget->is64Bit()) {
1434      if (ValVT == MVT::x86mmx) {
1435        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1436          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1437          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1438                                  ValToCopy);
1439          // If we don't have SSE2 available, convert to v4f32 so the generated
1440          // register is legal.
1441          if (!Subtarget->hasSSE2())
1442            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1443        }
1444      }
1445    }
1446
1447    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1448    Flag = Chain.getValue(1);
1449  }
1450
1451  // The x86-64 ABI for returning structs by value requires that we copy
1452  // the sret argument into %rax for the return. We saved the argument into
1453  // a virtual register in the entry block, so now we copy the value out
1454  // and into %rax.
1455  if (Subtarget->is64Bit() &&
1456      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1457    MachineFunction &MF = DAG.getMachineFunction();
1458    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1459    unsigned Reg = FuncInfo->getSRetReturnReg();
1460    assert(Reg &&
1461           "SRetReturnReg should have been set in LowerFormalArguments().");
1462    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1463
1464    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1465    Flag = Chain.getValue(1);
1466
1467    // RAX now acts like a return value.
1468    MRI.addLiveOut(X86::RAX);
1469  }
1470
1471  RetOps[0] = Chain;  // Update chain.
1472
1473  // Add the flag if we have it.
1474  if (Flag.getNode())
1475    RetOps.push_back(Flag);
1476
1477  return DAG.getNode(X86ISD::RET_FLAG, dl,
1478                     MVT::Other, &RetOps[0], RetOps.size());
1479}
1480
1481bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1482  if (N->getNumValues() != 1)
1483    return false;
1484  if (!N->hasNUsesOfValue(1, 0))
1485    return false;
1486
1487  SDNode *Copy = *N->use_begin();
1488  if (Copy->getOpcode() != ISD::CopyToReg &&
1489      Copy->getOpcode() != ISD::FP_EXTEND)
1490    return false;
1491
1492  bool HasRet = false;
1493  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1494       UI != UE; ++UI) {
1495    if (UI->getOpcode() != X86ISD::RET_FLAG)
1496      return false;
1497    HasRet = true;
1498  }
1499
1500  return HasRet;
1501}
1502
1503EVT
1504X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1505                                            ISD::NodeType ExtendKind) const {
1506  MVT ReturnMVT;
1507  // TODO: Is this also valid on 32-bit?
1508  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1509    ReturnMVT = MVT::i8;
1510  else
1511    ReturnMVT = MVT::i32;
1512
1513  EVT MinVT = getRegisterType(Context, ReturnMVT);
1514  return VT.bitsLT(MinVT) ? MinVT : VT;
1515}
1516
1517/// LowerCallResult - Lower the result values of a call into the
1518/// appropriate copies out of appropriate physical registers.
1519///
1520SDValue
1521X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1522                                   CallingConv::ID CallConv, bool isVarArg,
1523                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1524                                   DebugLoc dl, SelectionDAG &DAG,
1525                                   SmallVectorImpl<SDValue> &InVals) const {
1526
1527  // Assign locations to each value returned by this call.
1528  SmallVector<CCValAssign, 16> RVLocs;
1529  bool Is64Bit = Subtarget->is64Bit();
1530  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1531		 getTargetMachine(), RVLocs, *DAG.getContext());
1532  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1533
1534  // Copy all of the result registers out of their specified physreg.
1535  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1536    CCValAssign &VA = RVLocs[i];
1537    EVT CopyVT = VA.getValVT();
1538
1539    // If this is x86-64, and we disabled SSE, we can't return FP values
1540    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1541        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1542      report_fatal_error("SSE register return with SSE disabled");
1543    }
1544
1545    SDValue Val;
1546
1547    // If this is a call to a function that returns an fp value on the floating
1548    // point stack, we must guarantee the the value is popped from the stack, so
1549    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1550    // if the return value is not used. We use the FpPOP_RETVAL instruction
1551    // instead.
1552    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1553      // If we prefer to use the value in xmm registers, copy it out as f80 and
1554      // use a truncate to move it from fp stack reg to xmm reg.
1555      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1556      SDValue Ops[] = { Chain, InFlag };
1557      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1558                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1559      Val = Chain.getValue(0);
1560
1561      // Round the f80 to the right size, which also moves it to the appropriate
1562      // xmm register.
1563      if (CopyVT != VA.getValVT())
1564        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1565                          // This truncation won't change the value.
1566                          DAG.getIntPtrConstant(1));
1567    } else {
1568      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1569                                 CopyVT, InFlag).getValue(1);
1570      Val = Chain.getValue(0);
1571    }
1572    InFlag = Chain.getValue(2);
1573    InVals.push_back(Val);
1574  }
1575
1576  return Chain;
1577}
1578
1579
1580//===----------------------------------------------------------------------===//
1581//                C & StdCall & Fast Calling Convention implementation
1582//===----------------------------------------------------------------------===//
1583//  StdCall calling convention seems to be standard for many Windows' API
1584//  routines and around. It differs from C calling convention just a little:
1585//  callee should clean up the stack, not caller. Symbols should be also
1586//  decorated in some fancy way :) It doesn't support any vector arguments.
1587//  For info on fast calling convention see Fast Calling Convention (tail call)
1588//  implementation LowerX86_32FastCCCallTo.
1589
1590/// CallIsStructReturn - Determines whether a call uses struct return
1591/// semantics.
1592static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1593  if (Outs.empty())
1594    return false;
1595
1596  return Outs[0].Flags.isSRet();
1597}
1598
1599/// ArgsAreStructReturn - Determines whether a function uses struct
1600/// return semantics.
1601static bool
1602ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1603  if (Ins.empty())
1604    return false;
1605
1606  return Ins[0].Flags.isSRet();
1607}
1608
1609/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1610/// by "Src" to address "Dst" with size and alignment information specified by
1611/// the specific parameter attribute. The copy will be passed as a byval
1612/// function parameter.
1613static SDValue
1614CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1615                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1616                          DebugLoc dl) {
1617  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1618
1619  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1620                       /*isVolatile*/false, /*AlwaysInline=*/true,
1621                       MachinePointerInfo(), MachinePointerInfo());
1622}
1623
1624/// IsTailCallConvention - Return true if the calling convention is one that
1625/// supports tail call optimization.
1626static bool IsTailCallConvention(CallingConv::ID CC) {
1627  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1628}
1629
1630bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1631  if (!CI->isTailCall())
1632    return false;
1633
1634  CallSite CS(CI);
1635  CallingConv::ID CalleeCC = CS.getCallingConv();
1636  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1637    return false;
1638
1639  return true;
1640}
1641
1642/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1643/// a tailcall target by changing its ABI.
1644static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1645  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1646}
1647
1648SDValue
1649X86TargetLowering::LowerMemArgument(SDValue Chain,
1650                                    CallingConv::ID CallConv,
1651                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1652                                    DebugLoc dl, SelectionDAG &DAG,
1653                                    const CCValAssign &VA,
1654                                    MachineFrameInfo *MFI,
1655                                    unsigned i) const {
1656  // Create the nodes corresponding to a load from this parameter slot.
1657  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1658  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1659  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1660  EVT ValVT;
1661
1662  // If value is passed by pointer we have address passed instead of the value
1663  // itself.
1664  if (VA.getLocInfo() == CCValAssign::Indirect)
1665    ValVT = VA.getLocVT();
1666  else
1667    ValVT = VA.getValVT();
1668
1669  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1670  // changed with more analysis.
1671  // In case of tail call optimization mark all arguments mutable. Since they
1672  // could be overwritten by lowering of arguments in case of a tail call.
1673  if (Flags.isByVal()) {
1674    unsigned Bytes = Flags.getByValSize();
1675    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1676    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1677    return DAG.getFrameIndex(FI, getPointerTy());
1678  } else {
1679    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1680                                    VA.getLocMemOffset(), isImmutable);
1681    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1682    return DAG.getLoad(ValVT, dl, Chain, FIN,
1683                       MachinePointerInfo::getFixedStack(FI),
1684                       false, false, 0);
1685  }
1686}
1687
1688SDValue
1689X86TargetLowering::LowerFormalArguments(SDValue Chain,
1690                                        CallingConv::ID CallConv,
1691                                        bool isVarArg,
1692                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1693                                        DebugLoc dl,
1694                                        SelectionDAG &DAG,
1695                                        SmallVectorImpl<SDValue> &InVals)
1696                                          const {
1697  MachineFunction &MF = DAG.getMachineFunction();
1698  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1699
1700  const Function* Fn = MF.getFunction();
1701  if (Fn->hasExternalLinkage() &&
1702      Subtarget->isTargetCygMing() &&
1703      Fn->getName() == "main")
1704    FuncInfo->setForceFramePointer(true);
1705
1706  MachineFrameInfo *MFI = MF.getFrameInfo();
1707  bool Is64Bit = Subtarget->is64Bit();
1708  bool IsWin64 = Subtarget->isTargetWin64();
1709
1710  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1711         "Var args not supported with calling convention fastcc or ghc");
1712
1713  // Assign locations to all of the incoming arguments.
1714  SmallVector<CCValAssign, 16> ArgLocs;
1715  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1716                 ArgLocs, *DAG.getContext());
1717
1718  // Allocate shadow area for Win64
1719  if (IsWin64) {
1720    CCInfo.AllocateStack(32, 8);
1721  }
1722
1723  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1724
1725  unsigned LastVal = ~0U;
1726  SDValue ArgValue;
1727  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1728    CCValAssign &VA = ArgLocs[i];
1729    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1730    // places.
1731    assert(VA.getValNo() != LastVal &&
1732           "Don't support value assigned to multiple locs yet");
1733    LastVal = VA.getValNo();
1734
1735    if (VA.isRegLoc()) {
1736      EVT RegVT = VA.getLocVT();
1737      TargetRegisterClass *RC = NULL;
1738      if (RegVT == MVT::i32)
1739        RC = X86::GR32RegisterClass;
1740      else if (Is64Bit && RegVT == MVT::i64)
1741        RC = X86::GR64RegisterClass;
1742      else if (RegVT == MVT::f32)
1743        RC = X86::FR32RegisterClass;
1744      else if (RegVT == MVT::f64)
1745        RC = X86::FR64RegisterClass;
1746      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1747        RC = X86::VR256RegisterClass;
1748      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1749        RC = X86::VR128RegisterClass;
1750      else if (RegVT == MVT::x86mmx)
1751        RC = X86::VR64RegisterClass;
1752      else
1753        llvm_unreachable("Unknown argument type!");
1754
1755      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1756      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1757
1758      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1759      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1760      // right size.
1761      if (VA.getLocInfo() == CCValAssign::SExt)
1762        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1763                               DAG.getValueType(VA.getValVT()));
1764      else if (VA.getLocInfo() == CCValAssign::ZExt)
1765        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1766                               DAG.getValueType(VA.getValVT()));
1767      else if (VA.getLocInfo() == CCValAssign::BCvt)
1768        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1769
1770      if (VA.isExtInLoc()) {
1771        // Handle MMX values passed in XMM regs.
1772        if (RegVT.isVector()) {
1773          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1774                                 ArgValue);
1775        } else
1776          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1777      }
1778    } else {
1779      assert(VA.isMemLoc());
1780      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1781    }
1782
1783    // If value is passed via pointer - do a load.
1784    if (VA.getLocInfo() == CCValAssign::Indirect)
1785      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1786                             MachinePointerInfo(), false, false, 0);
1787
1788    InVals.push_back(ArgValue);
1789  }
1790
1791  // The x86-64 ABI for returning structs by value requires that we copy
1792  // the sret argument into %rax for the return. Save the argument into
1793  // a virtual register so that we can access it from the return points.
1794  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1795    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1796    unsigned Reg = FuncInfo->getSRetReturnReg();
1797    if (!Reg) {
1798      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1799      FuncInfo->setSRetReturnReg(Reg);
1800    }
1801    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1802    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1803  }
1804
1805  unsigned StackSize = CCInfo.getNextStackOffset();
1806  // Align stack specially for tail calls.
1807  if (FuncIsMadeTailCallSafe(CallConv))
1808    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1809
1810  // If the function takes variable number of arguments, make a frame index for
1811  // the start of the first vararg value... for expansion of llvm.va_start.
1812  if (isVarArg) {
1813    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1814                    CallConv != CallingConv::X86_ThisCall)) {
1815      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1816    }
1817    if (Is64Bit) {
1818      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1819
1820      // FIXME: We should really autogenerate these arrays
1821      static const unsigned GPR64ArgRegsWin64[] = {
1822        X86::RCX, X86::RDX, X86::R8,  X86::R9
1823      };
1824      static const unsigned GPR64ArgRegs64Bit[] = {
1825        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1826      };
1827      static const unsigned XMMArgRegs64Bit[] = {
1828        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1829        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1830      };
1831      const unsigned *GPR64ArgRegs;
1832      unsigned NumXMMRegs = 0;
1833
1834      if (IsWin64) {
1835        // The XMM registers which might contain var arg parameters are shadowed
1836        // in their paired GPR.  So we only need to save the GPR to their home
1837        // slots.
1838        TotalNumIntRegs = 4;
1839        GPR64ArgRegs = GPR64ArgRegsWin64;
1840      } else {
1841        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1842        GPR64ArgRegs = GPR64ArgRegs64Bit;
1843
1844        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1845      }
1846      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1847                                                       TotalNumIntRegs);
1848
1849      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1850      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1851             "SSE register cannot be used when SSE is disabled!");
1852      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1853             "SSE register cannot be used when SSE is disabled!");
1854      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1855        // Kernel mode asks for SSE to be disabled, so don't push them
1856        // on the stack.
1857        TotalNumXMMRegs = 0;
1858
1859      if (IsWin64) {
1860        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1861        // Get to the caller-allocated home save location.  Add 8 to account
1862        // for the return address.
1863        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1864        FuncInfo->setRegSaveFrameIndex(
1865          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1866        // Fixup to set vararg frame on shadow area (4 x i64).
1867        if (NumIntRegs < 4)
1868          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1869      } else {
1870        // For X86-64, if there are vararg parameters that are passed via
1871        // registers, then we must store them to their spots on the stack so they
1872        // may be loaded by deferencing the result of va_next.
1873        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1874        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1875        FuncInfo->setRegSaveFrameIndex(
1876          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1877                               false));
1878      }
1879
1880      // Store the integer parameter registers.
1881      SmallVector<SDValue, 8> MemOps;
1882      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1883                                        getPointerTy());
1884      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1885      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1886        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1887                                  DAG.getIntPtrConstant(Offset));
1888        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1889                                     X86::GR64RegisterClass);
1890        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1891        SDValue Store =
1892          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1893                       MachinePointerInfo::getFixedStack(
1894                         FuncInfo->getRegSaveFrameIndex(), Offset),
1895                       false, false, 0);
1896        MemOps.push_back(Store);
1897        Offset += 8;
1898      }
1899
1900      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1901        // Now store the XMM (fp + vector) parameter registers.
1902        SmallVector<SDValue, 11> SaveXMMOps;
1903        SaveXMMOps.push_back(Chain);
1904
1905        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1906        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1907        SaveXMMOps.push_back(ALVal);
1908
1909        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1910                               FuncInfo->getRegSaveFrameIndex()));
1911        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1912                               FuncInfo->getVarArgsFPOffset()));
1913
1914        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1915          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1916                                       X86::VR128RegisterClass);
1917          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1918          SaveXMMOps.push_back(Val);
1919        }
1920        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1921                                     MVT::Other,
1922                                     &SaveXMMOps[0], SaveXMMOps.size()));
1923      }
1924
1925      if (!MemOps.empty())
1926        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1927                            &MemOps[0], MemOps.size());
1928    }
1929  }
1930
1931  // Some CCs need callee pop.
1932  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1933    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1934  } else {
1935    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1936    // If this is an sret function, the return should pop the hidden pointer.
1937    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1938      FuncInfo->setBytesToPopOnReturn(4);
1939  }
1940
1941  if (!Is64Bit) {
1942    // RegSaveFrameIndex is X86-64 only.
1943    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1944    if (CallConv == CallingConv::X86_FastCall ||
1945        CallConv == CallingConv::X86_ThisCall)
1946      // fastcc functions can't have varargs.
1947      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1948  }
1949
1950  FuncInfo->setArgumentStackSize(StackSize);
1951
1952  return Chain;
1953}
1954
1955SDValue
1956X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1957                                    SDValue StackPtr, SDValue Arg,
1958                                    DebugLoc dl, SelectionDAG &DAG,
1959                                    const CCValAssign &VA,
1960                                    ISD::ArgFlagsTy Flags) const {
1961  unsigned LocMemOffset = VA.getLocMemOffset();
1962  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1963  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1964  if (Flags.isByVal())
1965    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1966
1967  return DAG.getStore(Chain, dl, Arg, PtrOff,
1968                      MachinePointerInfo::getStack(LocMemOffset),
1969                      false, false, 0);
1970}
1971
1972/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1973/// optimization is performed and it is required.
1974SDValue
1975X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1976                                           SDValue &OutRetAddr, SDValue Chain,
1977                                           bool IsTailCall, bool Is64Bit,
1978                                           int FPDiff, DebugLoc dl) const {
1979  // Adjust the Return address stack slot.
1980  EVT VT = getPointerTy();
1981  OutRetAddr = getReturnAddressFrameIndex(DAG);
1982
1983  // Load the "old" Return address.
1984  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1985                           false, false, 0);
1986  return SDValue(OutRetAddr.getNode(), 1);
1987}
1988
1989/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
1990/// optimization is performed and it is required (FPDiff!=0).
1991static SDValue
1992EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1993                         SDValue Chain, SDValue RetAddrFrIdx,
1994                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1995  // Store the return address to the appropriate stack slot.
1996  if (!FPDiff) return Chain;
1997  // Calculate the new stack slot for the return address.
1998  int SlotSize = Is64Bit ? 8 : 4;
1999  int NewReturnAddrFI =
2000    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2001  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2002  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2003  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2004                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2005                       false, false, 0);
2006  return Chain;
2007}
2008
2009SDValue
2010X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2011                             CallingConv::ID CallConv, bool isVarArg,
2012                             bool &isTailCall,
2013                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2014                             const SmallVectorImpl<SDValue> &OutVals,
2015                             const SmallVectorImpl<ISD::InputArg> &Ins,
2016                             DebugLoc dl, SelectionDAG &DAG,
2017                             SmallVectorImpl<SDValue> &InVals) const {
2018  MachineFunction &MF = DAG.getMachineFunction();
2019  bool Is64Bit        = Subtarget->is64Bit();
2020  bool IsWin64        = Subtarget->isTargetWin64();
2021  bool IsStructRet    = CallIsStructReturn(Outs);
2022  bool IsSibcall      = false;
2023
2024  if (isTailCall) {
2025    // Check if it's really possible to do a tail call.
2026    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2027                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2028                                                   Outs, OutVals, Ins, DAG);
2029
2030    // Sibcalls are automatically detected tailcalls which do not require
2031    // ABI changes.
2032    if (!GuaranteedTailCallOpt && isTailCall)
2033      IsSibcall = true;
2034
2035    if (isTailCall)
2036      ++NumTailCalls;
2037  }
2038
2039  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2040         "Var args not supported with calling convention fastcc or ghc");
2041
2042  // Analyze operands of the call, assigning locations to each operand.
2043  SmallVector<CCValAssign, 16> ArgLocs;
2044  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2045                 ArgLocs, *DAG.getContext());
2046
2047  // Allocate shadow area for Win64
2048  if (IsWin64) {
2049    CCInfo.AllocateStack(32, 8);
2050  }
2051
2052  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2053
2054  // Get a count of how many bytes are to be pushed on the stack.
2055  unsigned NumBytes = CCInfo.getNextStackOffset();
2056  if (IsSibcall)
2057    // This is a sibcall. The memory operands are available in caller's
2058    // own caller's stack.
2059    NumBytes = 0;
2060  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2061    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2062
2063  int FPDiff = 0;
2064  if (isTailCall && !IsSibcall) {
2065    // Lower arguments at fp - stackoffset + fpdiff.
2066    unsigned NumBytesCallerPushed =
2067      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2068    FPDiff = NumBytesCallerPushed - NumBytes;
2069
2070    // Set the delta of movement of the returnaddr stackslot.
2071    // But only set if delta is greater than previous delta.
2072    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2073      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2074  }
2075
2076  if (!IsSibcall)
2077    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2078
2079  SDValue RetAddrFrIdx;
2080  // Load return address for tail calls.
2081  if (isTailCall && FPDiff)
2082    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2083                                    Is64Bit, FPDiff, dl);
2084
2085  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2086  SmallVector<SDValue, 8> MemOpChains;
2087  SDValue StackPtr;
2088
2089  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2090  // of tail call optimization arguments are handle later.
2091  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2092    CCValAssign &VA = ArgLocs[i];
2093    EVT RegVT = VA.getLocVT();
2094    SDValue Arg = OutVals[i];
2095    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2096    bool isByVal = Flags.isByVal();
2097
2098    // Promote the value if needed.
2099    switch (VA.getLocInfo()) {
2100    default: llvm_unreachable("Unknown loc info!");
2101    case CCValAssign::Full: break;
2102    case CCValAssign::SExt:
2103      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2104      break;
2105    case CCValAssign::ZExt:
2106      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2107      break;
2108    case CCValAssign::AExt:
2109      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2110        // Special case: passing MMX values in XMM registers.
2111        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2112        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2113        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2114      } else
2115        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2116      break;
2117    case CCValAssign::BCvt:
2118      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2119      break;
2120    case CCValAssign::Indirect: {
2121      // Store the argument.
2122      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2123      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2124      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2125                           MachinePointerInfo::getFixedStack(FI),
2126                           false, false, 0);
2127      Arg = SpillSlot;
2128      break;
2129    }
2130    }
2131
2132    if (VA.isRegLoc()) {
2133      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2134      if (isVarArg && IsWin64) {
2135        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2136        // shadow reg if callee is a varargs function.
2137        unsigned ShadowReg = 0;
2138        switch (VA.getLocReg()) {
2139        case X86::XMM0: ShadowReg = X86::RCX; break;
2140        case X86::XMM1: ShadowReg = X86::RDX; break;
2141        case X86::XMM2: ShadowReg = X86::R8; break;
2142        case X86::XMM3: ShadowReg = X86::R9; break;
2143        }
2144        if (ShadowReg)
2145          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2146      }
2147    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2148      assert(VA.isMemLoc());
2149      if (StackPtr.getNode() == 0)
2150        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2151      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2152                                             dl, DAG, VA, Flags));
2153    }
2154  }
2155
2156  if (!MemOpChains.empty())
2157    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2158                        &MemOpChains[0], MemOpChains.size());
2159
2160  // Build a sequence of copy-to-reg nodes chained together with token chain
2161  // and flag operands which copy the outgoing args into registers.
2162  SDValue InFlag;
2163  // Tail call byval lowering might overwrite argument registers so in case of
2164  // tail call optimization the copies to registers are lowered later.
2165  if (!isTailCall)
2166    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2167      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2168                               RegsToPass[i].second, InFlag);
2169      InFlag = Chain.getValue(1);
2170    }
2171
2172  if (Subtarget->isPICStyleGOT()) {
2173    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2174    // GOT pointer.
2175    if (!isTailCall) {
2176      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2177                               DAG.getNode(X86ISD::GlobalBaseReg,
2178                                           DebugLoc(), getPointerTy()),
2179                               InFlag);
2180      InFlag = Chain.getValue(1);
2181    } else {
2182      // If we are tail calling and generating PIC/GOT style code load the
2183      // address of the callee into ECX. The value in ecx is used as target of
2184      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2185      // for tail calls on PIC/GOT architectures. Normally we would just put the
2186      // address of GOT into ebx and then call target@PLT. But for tail calls
2187      // ebx would be restored (since ebx is callee saved) before jumping to the
2188      // target@PLT.
2189
2190      // Note: The actual moving to ECX is done further down.
2191      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2192      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2193          !G->getGlobal()->hasProtectedVisibility())
2194        Callee = LowerGlobalAddress(Callee, DAG);
2195      else if (isa<ExternalSymbolSDNode>(Callee))
2196        Callee = LowerExternalSymbol(Callee, DAG);
2197    }
2198  }
2199
2200  if (Is64Bit && isVarArg && !IsWin64) {
2201    // From AMD64 ABI document:
2202    // For calls that may call functions that use varargs or stdargs
2203    // (prototype-less calls or calls to functions containing ellipsis (...) in
2204    // the declaration) %al is used as hidden argument to specify the number
2205    // of SSE registers used. The contents of %al do not need to match exactly
2206    // the number of registers, but must be an ubound on the number of SSE
2207    // registers used and is in the range 0 - 8 inclusive.
2208
2209    // Count the number of XMM registers allocated.
2210    static const unsigned XMMArgRegs[] = {
2211      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2212      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2213    };
2214    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2215    assert((Subtarget->hasXMM() || !NumXMMRegs)
2216           && "SSE registers cannot be used when SSE is disabled");
2217
2218    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2219                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2220    InFlag = Chain.getValue(1);
2221  }
2222
2223
2224  // For tail calls lower the arguments to the 'real' stack slot.
2225  if (isTailCall) {
2226    // Force all the incoming stack arguments to be loaded from the stack
2227    // before any new outgoing arguments are stored to the stack, because the
2228    // outgoing stack slots may alias the incoming argument stack slots, and
2229    // the alias isn't otherwise explicit. This is slightly more conservative
2230    // than necessary, because it means that each store effectively depends
2231    // on every argument instead of just those arguments it would clobber.
2232    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2233
2234    SmallVector<SDValue, 8> MemOpChains2;
2235    SDValue FIN;
2236    int FI = 0;
2237    // Do not flag preceding copytoreg stuff together with the following stuff.
2238    InFlag = SDValue();
2239    if (GuaranteedTailCallOpt) {
2240      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2241        CCValAssign &VA = ArgLocs[i];
2242        if (VA.isRegLoc())
2243          continue;
2244        assert(VA.isMemLoc());
2245        SDValue Arg = OutVals[i];
2246        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2247        // Create frame index.
2248        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2249        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2250        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2251        FIN = DAG.getFrameIndex(FI, getPointerTy());
2252
2253        if (Flags.isByVal()) {
2254          // Copy relative to framepointer.
2255          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2256          if (StackPtr.getNode() == 0)
2257            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2258                                          getPointerTy());
2259          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2260
2261          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2262                                                           ArgChain,
2263                                                           Flags, DAG, dl));
2264        } else {
2265          // Store relative to framepointer.
2266          MemOpChains2.push_back(
2267            DAG.getStore(ArgChain, dl, Arg, FIN,
2268                         MachinePointerInfo::getFixedStack(FI),
2269                         false, false, 0));
2270        }
2271      }
2272    }
2273
2274    if (!MemOpChains2.empty())
2275      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2276                          &MemOpChains2[0], MemOpChains2.size());
2277
2278    // Copy arguments to their registers.
2279    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2280      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2281                               RegsToPass[i].second, InFlag);
2282      InFlag = Chain.getValue(1);
2283    }
2284    InFlag =SDValue();
2285
2286    // Store the return address to the appropriate stack slot.
2287    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2288                                     FPDiff, dl);
2289  }
2290
2291  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2292    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2293    // In the 64-bit large code model, we have to make all calls
2294    // through a register, since the call instruction's 32-bit
2295    // pc-relative offset may not be large enough to hold the whole
2296    // address.
2297  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2298    // If the callee is a GlobalAddress node (quite common, every direct call
2299    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2300    // it.
2301
2302    // We should use extra load for direct calls to dllimported functions in
2303    // non-JIT mode.
2304    const GlobalValue *GV = G->getGlobal();
2305    if (!GV->hasDLLImportLinkage()) {
2306      unsigned char OpFlags = 0;
2307      bool ExtraLoad = false;
2308      unsigned WrapperKind = ISD::DELETED_NODE;
2309
2310      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2311      // external symbols most go through the PLT in PIC mode.  If the symbol
2312      // has hidden or protected visibility, or if it is static or local, then
2313      // we don't need to use the PLT - we can directly call it.
2314      if (Subtarget->isTargetELF() &&
2315          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2316          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2317        OpFlags = X86II::MO_PLT;
2318      } else if (Subtarget->isPICStyleStubAny() &&
2319                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2320                 (!Subtarget->getTargetTriple().isMacOSX() ||
2321                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2322        // PC-relative references to external symbols should go through $stub,
2323        // unless we're building with the leopard linker or later, which
2324        // automatically synthesizes these stubs.
2325        OpFlags = X86II::MO_DARWIN_STUB;
2326      } else if (Subtarget->isPICStyleRIPRel() &&
2327                 isa<Function>(GV) &&
2328                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2329        // If the function is marked as non-lazy, generate an indirect call
2330        // which loads from the GOT directly. This avoids runtime overhead
2331        // at the cost of eager binding (and one extra byte of encoding).
2332        OpFlags = X86II::MO_GOTPCREL;
2333        WrapperKind = X86ISD::WrapperRIP;
2334        ExtraLoad = true;
2335      }
2336
2337      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2338                                          G->getOffset(), OpFlags);
2339
2340      // Add a wrapper if needed.
2341      if (WrapperKind != ISD::DELETED_NODE)
2342        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2343      // Add extra indirection if needed.
2344      if (ExtraLoad)
2345        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2346                             MachinePointerInfo::getGOT(),
2347                             false, false, 0);
2348    }
2349  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2350    unsigned char OpFlags = 0;
2351
2352    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2353    // external symbols should go through the PLT.
2354    if (Subtarget->isTargetELF() &&
2355        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2356      OpFlags = X86II::MO_PLT;
2357    } else if (Subtarget->isPICStyleStubAny() &&
2358               (!Subtarget->getTargetTriple().isMacOSX() ||
2359                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2360      // PC-relative references to external symbols should go through $stub,
2361      // unless we're building with the leopard linker or later, which
2362      // automatically synthesizes these stubs.
2363      OpFlags = X86II::MO_DARWIN_STUB;
2364    }
2365
2366    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2367                                         OpFlags);
2368  }
2369
2370  // Returns a chain & a flag for retval copy to use.
2371  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2372  SmallVector<SDValue, 8> Ops;
2373
2374  if (!IsSibcall && isTailCall) {
2375    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2376                           DAG.getIntPtrConstant(0, true), InFlag);
2377    InFlag = Chain.getValue(1);
2378  }
2379
2380  Ops.push_back(Chain);
2381  Ops.push_back(Callee);
2382
2383  if (isTailCall)
2384    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2385
2386  // Add argument registers to the end of the list so that they are known live
2387  // into the call.
2388  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2389    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2390                                  RegsToPass[i].second.getValueType()));
2391
2392  // Add an implicit use GOT pointer in EBX.
2393  if (!isTailCall && Subtarget->isPICStyleGOT())
2394    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2395
2396  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2397  if (Is64Bit && isVarArg && !IsWin64)
2398    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2399
2400  if (InFlag.getNode())
2401    Ops.push_back(InFlag);
2402
2403  if (isTailCall) {
2404    // We used to do:
2405    //// If this is the first return lowered for this function, add the regs
2406    //// to the liveout set for the function.
2407    // This isn't right, although it's probably harmless on x86; liveouts
2408    // should be computed from returns not tail calls.  Consider a void
2409    // function making a tail call to a function returning int.
2410    return DAG.getNode(X86ISD::TC_RETURN, dl,
2411                       NodeTys, &Ops[0], Ops.size());
2412  }
2413
2414  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2415  InFlag = Chain.getValue(1);
2416
2417  // Create the CALLSEQ_END node.
2418  unsigned NumBytesForCalleeToPush;
2419  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2420    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2421  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2422    // If this is a call to a struct-return function, the callee
2423    // pops the hidden struct pointer, so we have to push it back.
2424    // This is common for Darwin/X86, Linux & Mingw32 targets.
2425    NumBytesForCalleeToPush = 4;
2426  else
2427    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2428
2429  // Returns a flag for retval copy to use.
2430  if (!IsSibcall) {
2431    Chain = DAG.getCALLSEQ_END(Chain,
2432                               DAG.getIntPtrConstant(NumBytes, true),
2433                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2434                                                     true),
2435                               InFlag);
2436    InFlag = Chain.getValue(1);
2437  }
2438
2439  // Handle result values, copying them out of physregs into vregs that we
2440  // return.
2441  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2442                         Ins, dl, DAG, InVals);
2443}
2444
2445
2446//===----------------------------------------------------------------------===//
2447//                Fast Calling Convention (tail call) implementation
2448//===----------------------------------------------------------------------===//
2449
2450//  Like std call, callee cleans arguments, convention except that ECX is
2451//  reserved for storing the tail called function address. Only 2 registers are
2452//  free for argument passing (inreg). Tail call optimization is performed
2453//  provided:
2454//                * tailcallopt is enabled
2455//                * caller/callee are fastcc
2456//  On X86_64 architecture with GOT-style position independent code only local
2457//  (within module) calls are supported at the moment.
2458//  To keep the stack aligned according to platform abi the function
2459//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2460//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2461//  If a tail called function callee has more arguments than the caller the
2462//  caller needs to make sure that there is room to move the RETADDR to. This is
2463//  achieved by reserving an area the size of the argument delta right after the
2464//  original REtADDR, but before the saved framepointer or the spilled registers
2465//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2466//  stack layout:
2467//    arg1
2468//    arg2
2469//    RETADDR
2470//    [ new RETADDR
2471//      move area ]
2472//    (possible EBP)
2473//    ESI
2474//    EDI
2475//    local1 ..
2476
2477/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2478/// for a 16 byte align requirement.
2479unsigned
2480X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2481                                               SelectionDAG& DAG) const {
2482  MachineFunction &MF = DAG.getMachineFunction();
2483  const TargetMachine &TM = MF.getTarget();
2484  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2485  unsigned StackAlignment = TFI.getStackAlignment();
2486  uint64_t AlignMask = StackAlignment - 1;
2487  int64_t Offset = StackSize;
2488  uint64_t SlotSize = TD->getPointerSize();
2489  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2490    // Number smaller than 12 so just add the difference.
2491    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2492  } else {
2493    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2494    Offset = ((~AlignMask) & Offset) + StackAlignment +
2495      (StackAlignment-SlotSize);
2496  }
2497  return Offset;
2498}
2499
2500/// MatchingStackOffset - Return true if the given stack call argument is
2501/// already available in the same position (relatively) of the caller's
2502/// incoming argument stack.
2503static
2504bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2505                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2506                         const X86InstrInfo *TII) {
2507  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2508  int FI = INT_MAX;
2509  if (Arg.getOpcode() == ISD::CopyFromReg) {
2510    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2511    if (!TargetRegisterInfo::isVirtualRegister(VR))
2512      return false;
2513    MachineInstr *Def = MRI->getVRegDef(VR);
2514    if (!Def)
2515      return false;
2516    if (!Flags.isByVal()) {
2517      if (!TII->isLoadFromStackSlot(Def, FI))
2518        return false;
2519    } else {
2520      unsigned Opcode = Def->getOpcode();
2521      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2522          Def->getOperand(1).isFI()) {
2523        FI = Def->getOperand(1).getIndex();
2524        Bytes = Flags.getByValSize();
2525      } else
2526        return false;
2527    }
2528  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2529    if (Flags.isByVal())
2530      // ByVal argument is passed in as a pointer but it's now being
2531      // dereferenced. e.g.
2532      // define @foo(%struct.X* %A) {
2533      //   tail call @bar(%struct.X* byval %A)
2534      // }
2535      return false;
2536    SDValue Ptr = Ld->getBasePtr();
2537    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2538    if (!FINode)
2539      return false;
2540    FI = FINode->getIndex();
2541  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2542    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2543    FI = FINode->getIndex();
2544    Bytes = Flags.getByValSize();
2545  } else
2546    return false;
2547
2548  assert(FI != INT_MAX);
2549  if (!MFI->isFixedObjectIndex(FI))
2550    return false;
2551  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2552}
2553
2554/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2555/// for tail call optimization. Targets which want to do tail call
2556/// optimization should implement this function.
2557bool
2558X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2559                                                     CallingConv::ID CalleeCC,
2560                                                     bool isVarArg,
2561                                                     bool isCalleeStructRet,
2562                                                     bool isCallerStructRet,
2563                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2564                                    const SmallVectorImpl<SDValue> &OutVals,
2565                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2566                                                     SelectionDAG& DAG) const {
2567  if (!IsTailCallConvention(CalleeCC) &&
2568      CalleeCC != CallingConv::C)
2569    return false;
2570
2571  // If -tailcallopt is specified, make fastcc functions tail-callable.
2572  const MachineFunction &MF = DAG.getMachineFunction();
2573  const Function *CallerF = DAG.getMachineFunction().getFunction();
2574  CallingConv::ID CallerCC = CallerF->getCallingConv();
2575  bool CCMatch = CallerCC == CalleeCC;
2576
2577  if (GuaranteedTailCallOpt) {
2578    if (IsTailCallConvention(CalleeCC) && CCMatch)
2579      return true;
2580    return false;
2581  }
2582
2583  // Look for obvious safe cases to perform tail call optimization that do not
2584  // require ABI changes. This is what gcc calls sibcall.
2585
2586  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2587  // emit a special epilogue.
2588  if (RegInfo->needsStackRealignment(MF))
2589    return false;
2590
2591  // Also avoid sibcall optimization if either caller or callee uses struct
2592  // return semantics.
2593  if (isCalleeStructRet || isCallerStructRet)
2594    return false;
2595
2596  // An stdcall caller is expected to clean up its arguments; the callee
2597  // isn't going to do that.
2598  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2599    return false;
2600
2601  // Do not sibcall optimize vararg calls unless all arguments are passed via
2602  // registers.
2603  if (isVarArg && !Outs.empty()) {
2604
2605    // Optimizing for varargs on Win64 is unlikely to be safe without
2606    // additional testing.
2607    if (Subtarget->isTargetWin64())
2608      return false;
2609
2610    SmallVector<CCValAssign, 16> ArgLocs;
2611    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2612		   getTargetMachine(), ArgLocs, *DAG.getContext());
2613
2614    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2615    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2616      if (!ArgLocs[i].isRegLoc())
2617        return false;
2618  }
2619
2620  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2621  // Therefore if it's not used by the call it is not safe to optimize this into
2622  // a sibcall.
2623  bool Unused = false;
2624  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2625    if (!Ins[i].Used) {
2626      Unused = true;
2627      break;
2628    }
2629  }
2630  if (Unused) {
2631    SmallVector<CCValAssign, 16> RVLocs;
2632    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2633		   getTargetMachine(), RVLocs, *DAG.getContext());
2634    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2635    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2636      CCValAssign &VA = RVLocs[i];
2637      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2638        return false;
2639    }
2640  }
2641
2642  // If the calling conventions do not match, then we'd better make sure the
2643  // results are returned in the same way as what the caller expects.
2644  if (!CCMatch) {
2645    SmallVector<CCValAssign, 16> RVLocs1;
2646    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2647		    getTargetMachine(), RVLocs1, *DAG.getContext());
2648    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2649
2650    SmallVector<CCValAssign, 16> RVLocs2;
2651    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2652		    getTargetMachine(), RVLocs2, *DAG.getContext());
2653    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2654
2655    if (RVLocs1.size() != RVLocs2.size())
2656      return false;
2657    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2658      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2659        return false;
2660      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2661        return false;
2662      if (RVLocs1[i].isRegLoc()) {
2663        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2664          return false;
2665      } else {
2666        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2667          return false;
2668      }
2669    }
2670  }
2671
2672  // If the callee takes no arguments then go on to check the results of the
2673  // call.
2674  if (!Outs.empty()) {
2675    // Check if stack adjustment is needed. For now, do not do this if any
2676    // argument is passed on the stack.
2677    SmallVector<CCValAssign, 16> ArgLocs;
2678    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2679		   getTargetMachine(), ArgLocs, *DAG.getContext());
2680
2681    // Allocate shadow area for Win64
2682    if (Subtarget->isTargetWin64()) {
2683      CCInfo.AllocateStack(32, 8);
2684    }
2685
2686    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2687    if (CCInfo.getNextStackOffset()) {
2688      MachineFunction &MF = DAG.getMachineFunction();
2689      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2690        return false;
2691
2692      // Check if the arguments are already laid out in the right way as
2693      // the caller's fixed stack objects.
2694      MachineFrameInfo *MFI = MF.getFrameInfo();
2695      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2696      const X86InstrInfo *TII =
2697        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2698      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2699        CCValAssign &VA = ArgLocs[i];
2700        SDValue Arg = OutVals[i];
2701        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2702        if (VA.getLocInfo() == CCValAssign::Indirect)
2703          return false;
2704        if (!VA.isRegLoc()) {
2705          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2706                                   MFI, MRI, TII))
2707            return false;
2708        }
2709      }
2710    }
2711
2712    // If the tailcall address may be in a register, then make sure it's
2713    // possible to register allocate for it. In 32-bit, the call address can
2714    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2715    // callee-saved registers are restored. These happen to be the same
2716    // registers used to pass 'inreg' arguments so watch out for those.
2717    if (!Subtarget->is64Bit() &&
2718        !isa<GlobalAddressSDNode>(Callee) &&
2719        !isa<ExternalSymbolSDNode>(Callee)) {
2720      unsigned NumInRegs = 0;
2721      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2722        CCValAssign &VA = ArgLocs[i];
2723        if (!VA.isRegLoc())
2724          continue;
2725        unsigned Reg = VA.getLocReg();
2726        switch (Reg) {
2727        default: break;
2728        case X86::EAX: case X86::EDX: case X86::ECX:
2729          if (++NumInRegs == 3)
2730            return false;
2731          break;
2732        }
2733      }
2734    }
2735  }
2736
2737  return true;
2738}
2739
2740FastISel *
2741X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2742  return X86::createFastISel(funcInfo);
2743}
2744
2745
2746//===----------------------------------------------------------------------===//
2747//                           Other Lowering Hooks
2748//===----------------------------------------------------------------------===//
2749
2750static bool MayFoldLoad(SDValue Op) {
2751  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2752}
2753
2754static bool MayFoldIntoStore(SDValue Op) {
2755  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2756}
2757
2758static bool isTargetShuffle(unsigned Opcode) {
2759  switch(Opcode) {
2760  default: return false;
2761  case X86ISD::PSHUFD:
2762  case X86ISD::PSHUFHW:
2763  case X86ISD::PSHUFLW:
2764  case X86ISD::SHUFPD:
2765  case X86ISD::PALIGN:
2766  case X86ISD::SHUFPS:
2767  case X86ISD::MOVLHPS:
2768  case X86ISD::MOVLHPD:
2769  case X86ISD::MOVHLPS:
2770  case X86ISD::MOVLPS:
2771  case X86ISD::MOVLPD:
2772  case X86ISD::MOVSHDUP:
2773  case X86ISD::MOVSLDUP:
2774  case X86ISD::MOVDDUP:
2775  case X86ISD::MOVSS:
2776  case X86ISD::MOVSD:
2777  case X86ISD::UNPCKLPS:
2778  case X86ISD::UNPCKLPD:
2779  case X86ISD::VUNPCKLPSY:
2780  case X86ISD::VUNPCKLPDY:
2781  case X86ISD::PUNPCKLWD:
2782  case X86ISD::PUNPCKLBW:
2783  case X86ISD::PUNPCKLDQ:
2784  case X86ISD::PUNPCKLQDQ:
2785  case X86ISD::UNPCKHPS:
2786  case X86ISD::UNPCKHPD:
2787  case X86ISD::VUNPCKHPSY:
2788  case X86ISD::VUNPCKHPDY:
2789  case X86ISD::PUNPCKHWD:
2790  case X86ISD::PUNPCKHBW:
2791  case X86ISD::PUNPCKHDQ:
2792  case X86ISD::PUNPCKHQDQ:
2793  case X86ISD::VPERMILPS:
2794  case X86ISD::VPERMILPSY:
2795  case X86ISD::VPERMILPD:
2796  case X86ISD::VPERMILPDY:
2797  case X86ISD::VPERM2F128:
2798    return true;
2799  }
2800  return false;
2801}
2802
2803static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2804                                               SDValue V1, SelectionDAG &DAG) {
2805  switch(Opc) {
2806  default: llvm_unreachable("Unknown x86 shuffle node");
2807  case X86ISD::MOVSHDUP:
2808  case X86ISD::MOVSLDUP:
2809  case X86ISD::MOVDDUP:
2810    return DAG.getNode(Opc, dl, VT, V1);
2811  }
2812
2813  return SDValue();
2814}
2815
2816static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2817                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2818  switch(Opc) {
2819  default: llvm_unreachable("Unknown x86 shuffle node");
2820  case X86ISD::PSHUFD:
2821  case X86ISD::PSHUFHW:
2822  case X86ISD::PSHUFLW:
2823  case X86ISD::VPERMILPS:
2824  case X86ISD::VPERMILPSY:
2825  case X86ISD::VPERMILPD:
2826  case X86ISD::VPERMILPDY:
2827    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2828  }
2829
2830  return SDValue();
2831}
2832
2833static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2834               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2835  switch(Opc) {
2836  default: llvm_unreachable("Unknown x86 shuffle node");
2837  case X86ISD::PALIGN:
2838  case X86ISD::SHUFPD:
2839  case X86ISD::SHUFPS:
2840  case X86ISD::VPERM2F128:
2841    return DAG.getNode(Opc, dl, VT, V1, V2,
2842                       DAG.getConstant(TargetMask, MVT::i8));
2843  }
2844  return SDValue();
2845}
2846
2847static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2848                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2849  switch(Opc) {
2850  default: llvm_unreachable("Unknown x86 shuffle node");
2851  case X86ISD::MOVLHPS:
2852  case X86ISD::MOVLHPD:
2853  case X86ISD::MOVHLPS:
2854  case X86ISD::MOVLPS:
2855  case X86ISD::MOVLPD:
2856  case X86ISD::MOVSS:
2857  case X86ISD::MOVSD:
2858  case X86ISD::UNPCKLPS:
2859  case X86ISD::UNPCKLPD:
2860  case X86ISD::VUNPCKLPSY:
2861  case X86ISD::VUNPCKLPDY:
2862  case X86ISD::PUNPCKLWD:
2863  case X86ISD::PUNPCKLBW:
2864  case X86ISD::PUNPCKLDQ:
2865  case X86ISD::PUNPCKLQDQ:
2866  case X86ISD::UNPCKHPS:
2867  case X86ISD::UNPCKHPD:
2868  case X86ISD::VUNPCKHPSY:
2869  case X86ISD::VUNPCKHPDY:
2870  case X86ISD::PUNPCKHWD:
2871  case X86ISD::PUNPCKHBW:
2872  case X86ISD::PUNPCKHDQ:
2873  case X86ISD::PUNPCKHQDQ:
2874    return DAG.getNode(Opc, dl, VT, V1, V2);
2875  }
2876  return SDValue();
2877}
2878
2879SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2880  MachineFunction &MF = DAG.getMachineFunction();
2881  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2882  int ReturnAddrIndex = FuncInfo->getRAIndex();
2883
2884  if (ReturnAddrIndex == 0) {
2885    // Set up a frame object for the return address.
2886    uint64_t SlotSize = TD->getPointerSize();
2887    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2888                                                           false);
2889    FuncInfo->setRAIndex(ReturnAddrIndex);
2890  }
2891
2892  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2893}
2894
2895
2896bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2897                                       bool hasSymbolicDisplacement) {
2898  // Offset should fit into 32 bit immediate field.
2899  if (!isInt<32>(Offset))
2900    return false;
2901
2902  // If we don't have a symbolic displacement - we don't have any extra
2903  // restrictions.
2904  if (!hasSymbolicDisplacement)
2905    return true;
2906
2907  // FIXME: Some tweaks might be needed for medium code model.
2908  if (M != CodeModel::Small && M != CodeModel::Kernel)
2909    return false;
2910
2911  // For small code model we assume that latest object is 16MB before end of 31
2912  // bits boundary. We may also accept pretty large negative constants knowing
2913  // that all objects are in the positive half of address space.
2914  if (M == CodeModel::Small && Offset < 16*1024*1024)
2915    return true;
2916
2917  // For kernel code model we know that all object resist in the negative half
2918  // of 32bits address space. We may not accept negative offsets, since they may
2919  // be just off and we may accept pretty large positive ones.
2920  if (M == CodeModel::Kernel && Offset > 0)
2921    return true;
2922
2923  return false;
2924}
2925
2926/// isCalleePop - Determines whether the callee is required to pop its
2927/// own arguments. Callee pop is necessary to support tail calls.
2928bool X86::isCalleePop(CallingConv::ID CallingConv,
2929                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2930  if (IsVarArg)
2931    return false;
2932
2933  switch (CallingConv) {
2934  default:
2935    return false;
2936  case CallingConv::X86_StdCall:
2937    return !is64Bit;
2938  case CallingConv::X86_FastCall:
2939    return !is64Bit;
2940  case CallingConv::X86_ThisCall:
2941    return !is64Bit;
2942  case CallingConv::Fast:
2943    return TailCallOpt;
2944  case CallingConv::GHC:
2945    return TailCallOpt;
2946  }
2947}
2948
2949/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2950/// specific condition code, returning the condition code and the LHS/RHS of the
2951/// comparison to make.
2952static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2953                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2954  if (!isFP) {
2955    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2956      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2957        // X > -1   -> X == 0, jump !sign.
2958        RHS = DAG.getConstant(0, RHS.getValueType());
2959        return X86::COND_NS;
2960      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2961        // X < 0   -> X == 0, jump on sign.
2962        return X86::COND_S;
2963      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2964        // X < 1   -> X <= 0
2965        RHS = DAG.getConstant(0, RHS.getValueType());
2966        return X86::COND_LE;
2967      }
2968    }
2969
2970    switch (SetCCOpcode) {
2971    default: llvm_unreachable("Invalid integer condition!");
2972    case ISD::SETEQ:  return X86::COND_E;
2973    case ISD::SETGT:  return X86::COND_G;
2974    case ISD::SETGE:  return X86::COND_GE;
2975    case ISD::SETLT:  return X86::COND_L;
2976    case ISD::SETLE:  return X86::COND_LE;
2977    case ISD::SETNE:  return X86::COND_NE;
2978    case ISD::SETULT: return X86::COND_B;
2979    case ISD::SETUGT: return X86::COND_A;
2980    case ISD::SETULE: return X86::COND_BE;
2981    case ISD::SETUGE: return X86::COND_AE;
2982    }
2983  }
2984
2985  // First determine if it is required or is profitable to flip the operands.
2986
2987  // If LHS is a foldable load, but RHS is not, flip the condition.
2988  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2989      !ISD::isNON_EXTLoad(RHS.getNode())) {
2990    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2991    std::swap(LHS, RHS);
2992  }
2993
2994  switch (SetCCOpcode) {
2995  default: break;
2996  case ISD::SETOLT:
2997  case ISD::SETOLE:
2998  case ISD::SETUGT:
2999  case ISD::SETUGE:
3000    std::swap(LHS, RHS);
3001    break;
3002  }
3003
3004  // On a floating point condition, the flags are set as follows:
3005  // ZF  PF  CF   op
3006  //  0 | 0 | 0 | X > Y
3007  //  0 | 0 | 1 | X < Y
3008  //  1 | 0 | 0 | X == Y
3009  //  1 | 1 | 1 | unordered
3010  switch (SetCCOpcode) {
3011  default: llvm_unreachable("Condcode should be pre-legalized away");
3012  case ISD::SETUEQ:
3013  case ISD::SETEQ:   return X86::COND_E;
3014  case ISD::SETOLT:              // flipped
3015  case ISD::SETOGT:
3016  case ISD::SETGT:   return X86::COND_A;
3017  case ISD::SETOLE:              // flipped
3018  case ISD::SETOGE:
3019  case ISD::SETGE:   return X86::COND_AE;
3020  case ISD::SETUGT:              // flipped
3021  case ISD::SETULT:
3022  case ISD::SETLT:   return X86::COND_B;
3023  case ISD::SETUGE:              // flipped
3024  case ISD::SETULE:
3025  case ISD::SETLE:   return X86::COND_BE;
3026  case ISD::SETONE:
3027  case ISD::SETNE:   return X86::COND_NE;
3028  case ISD::SETUO:   return X86::COND_P;
3029  case ISD::SETO:    return X86::COND_NP;
3030  case ISD::SETOEQ:
3031  case ISD::SETUNE:  return X86::COND_INVALID;
3032  }
3033}
3034
3035/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3036/// code. Current x86 isa includes the following FP cmov instructions:
3037/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3038static bool hasFPCMov(unsigned X86CC) {
3039  switch (X86CC) {
3040  default:
3041    return false;
3042  case X86::COND_B:
3043  case X86::COND_BE:
3044  case X86::COND_E:
3045  case X86::COND_P:
3046  case X86::COND_A:
3047  case X86::COND_AE:
3048  case X86::COND_NE:
3049  case X86::COND_NP:
3050    return true;
3051  }
3052}
3053
3054/// isFPImmLegal - Returns true if the target can instruction select the
3055/// specified FP immediate natively. If false, the legalizer will
3056/// materialize the FP immediate as a load from a constant pool.
3057bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3058  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3059    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3060      return true;
3061  }
3062  return false;
3063}
3064
3065/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3066/// the specified range (L, H].
3067static bool isUndefOrInRange(int Val, int Low, int Hi) {
3068  return (Val < 0) || (Val >= Low && Val < Hi);
3069}
3070
3071/// isUndefOrInRange - Return true if every element in Mask, begining
3072/// from position Pos and ending in Pos+Size, falls within the specified
3073/// range (L, L+Pos]. or is undef.
3074static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3075                             int Pos, int Size, int Low, int Hi) {
3076  for (int i = Pos, e = Pos+Size; i != e; ++i)
3077    if (!isUndefOrInRange(Mask[i], Low, Hi))
3078      return false;
3079  return true;
3080}
3081
3082/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3083/// specified value.
3084static bool isUndefOrEqual(int Val, int CmpVal) {
3085  if (Val < 0 || Val == CmpVal)
3086    return true;
3087  return false;
3088}
3089
3090/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3091/// from position Pos and ending in Pos+Size, falls within the specified
3092/// sequential range (L, L+Pos]. or is undef.
3093static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3094                                       int Pos, int Size, int Low) {
3095  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3096    if (!isUndefOrEqual(Mask[i], Low))
3097      return false;
3098  return true;
3099}
3100
3101/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3102/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3103/// the second operand.
3104static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3105  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3106    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3107  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3108    return (Mask[0] < 2 && Mask[1] < 2);
3109  return false;
3110}
3111
3112bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3113  SmallVector<int, 8> M;
3114  N->getMask(M);
3115  return ::isPSHUFDMask(M, N->getValueType(0));
3116}
3117
3118/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3119/// is suitable for input to PSHUFHW.
3120static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3121  if (VT != MVT::v8i16)
3122    return false;
3123
3124  // Lower quadword copied in order or undef.
3125  for (int i = 0; i != 4; ++i)
3126    if (Mask[i] >= 0 && Mask[i] != i)
3127      return false;
3128
3129  // Upper quadword shuffled.
3130  for (int i = 4; i != 8; ++i)
3131    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3132      return false;
3133
3134  return true;
3135}
3136
3137bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3138  SmallVector<int, 8> M;
3139  N->getMask(M);
3140  return ::isPSHUFHWMask(M, N->getValueType(0));
3141}
3142
3143/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3144/// is suitable for input to PSHUFLW.
3145static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3146  if (VT != MVT::v8i16)
3147    return false;
3148
3149  // Upper quadword copied in order.
3150  for (int i = 4; i != 8; ++i)
3151    if (Mask[i] >= 0 && Mask[i] != i)
3152      return false;
3153
3154  // Lower quadword shuffled.
3155  for (int i = 0; i != 4; ++i)
3156    if (Mask[i] >= 4)
3157      return false;
3158
3159  return true;
3160}
3161
3162bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3163  SmallVector<int, 8> M;
3164  N->getMask(M);
3165  return ::isPSHUFLWMask(M, N->getValueType(0));
3166}
3167
3168/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3169/// is suitable for input to PALIGNR.
3170static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3171                          bool hasSSSE3) {
3172  int i, e = VT.getVectorNumElements();
3173  if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3174    return false;
3175
3176  // Do not handle v2i64 / v2f64 shuffles with palignr.
3177  if (e < 4 || !hasSSSE3)
3178    return false;
3179
3180  for (i = 0; i != e; ++i)
3181    if (Mask[i] >= 0)
3182      break;
3183
3184  // All undef, not a palignr.
3185  if (i == e)
3186    return false;
3187
3188  // Make sure we're shifting in the right direction.
3189  if (Mask[i] <= i)
3190    return false;
3191
3192  int s = Mask[i] - i;
3193
3194  // Check the rest of the elements to see if they are consecutive.
3195  for (++i; i != e; ++i) {
3196    int m = Mask[i];
3197    if (m >= 0 && m != s+i)
3198      return false;
3199  }
3200  return true;
3201}
3202
3203/// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
3204/// specifies a shuffle of elements that is suitable for input to 256-bit
3205/// VSHUFPSY.
3206static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3207                          const X86Subtarget *Subtarget) {
3208  int NumElems = VT.getVectorNumElements();
3209
3210  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3211    return false;
3212
3213  if (NumElems != 8)
3214    return false;
3215
3216  // VSHUFPSY divides the resulting vector into 4 chunks.
3217  // The sources are also splitted into 4 chunks, and each destination
3218  // chunk must come from a different source chunk.
3219  //
3220  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3221  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3222  //
3223  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3224  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3225  //
3226  int QuarterSize = NumElems/4;
3227  int HalfSize = QuarterSize*2;
3228  for (int i = 0; i < QuarterSize; ++i)
3229    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3230      return false;
3231  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3232    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3233      return false;
3234
3235  // The mask of the second half must be the same as the first but with
3236  // the appropriate offsets. This works in the same way as VPERMILPS
3237  // works with masks.
3238  for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3239    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3240      return false;
3241    int FstHalfIdx = i-HalfSize;
3242    if (Mask[FstHalfIdx] < 0)
3243      continue;
3244    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3245      return false;
3246  }
3247  for (int i = QuarterSize*3; i < NumElems; ++i) {
3248    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3249      return false;
3250    int FstHalfIdx = i-HalfSize;
3251    if (Mask[FstHalfIdx] < 0)
3252      continue;
3253    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3254      return false;
3255
3256  }
3257
3258  return true;
3259}
3260
3261/// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
3262/// the specified VECTOR_MASK mask with VSHUFPSY instruction.
3263static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
3264  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3265  EVT VT = SVOp->getValueType(0);
3266  int NumElems = VT.getVectorNumElements();
3267
3268  assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
3269         "Only supports v8i32 and v8f32 types");
3270
3271  int HalfSize = NumElems/2;
3272  unsigned Mask = 0;
3273  for (int i = 0; i != NumElems ; ++i) {
3274    if (SVOp->getMaskElt(i) < 0)
3275      continue;
3276    // The mask of the first half must be equal to the second one.
3277    unsigned Shamt = (i%HalfSize)*2;
3278    unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
3279    Mask |= Elt << Shamt;
3280  }
3281
3282  return Mask;
3283}
3284
3285/// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
3286/// specifies a shuffle of elements that is suitable for input to 256-bit
3287/// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
3288/// version and the mask of the second half isn't binded with the first
3289/// one.
3290static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3291                           const X86Subtarget *Subtarget) {
3292  int NumElems = VT.getVectorNumElements();
3293
3294  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3295    return false;
3296
3297  if (NumElems != 4)
3298    return false;
3299
3300  // VSHUFPSY divides the resulting vector into 4 chunks.
3301  // The sources are also splitted into 4 chunks, and each destination
3302  // chunk must come from a different source chunk.
3303  //
3304  //  SRC1 =>      X3       X2       X1       X0
3305  //  SRC2 =>      Y3       Y2       Y1       Y0
3306  //
3307  //  DST  =>  Y2..Y3,  X2..X3,  Y1..Y0,  X1..X0
3308  //
3309  int QuarterSize = NumElems/4;
3310  int HalfSize = QuarterSize*2;
3311  for (int i = 0; i < QuarterSize; ++i)
3312    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3313      return false;
3314  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3315    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3316      return false;
3317  for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
3318    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3319      return false;
3320  for (int i = QuarterSize*3; i < NumElems; ++i)
3321    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3322      return false;
3323
3324  return true;
3325}
3326
3327/// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
3328/// the specified VECTOR_MASK mask with VSHUFPDY instruction.
3329static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
3330  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3331  EVT VT = SVOp->getValueType(0);
3332  int NumElems = VT.getVectorNumElements();
3333
3334  assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
3335         "Only supports v4i64 and v4f64 types");
3336
3337  int HalfSize = NumElems/2;
3338  unsigned Mask = 0;
3339  for (int i = 0; i != NumElems ; ++i) {
3340    if (SVOp->getMaskElt(i) < 0)
3341      continue;
3342    int Elt = SVOp->getMaskElt(i) % HalfSize;
3343    Mask |= Elt << i;
3344  }
3345
3346  return Mask;
3347}
3348
3349/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3350/// specifies a shuffle of elements that is suitable for input to 128-bit
3351/// SHUFPS and SHUFPD.
3352static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3353  int NumElems = VT.getVectorNumElements();
3354
3355  if (VT.getSizeInBits() != 128)
3356    return false;
3357
3358  if (NumElems != 2 && NumElems != 4)
3359    return false;
3360
3361  int Half = NumElems / 2;
3362  for (int i = 0; i < Half; ++i)
3363    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3364      return false;
3365  for (int i = Half; i < NumElems; ++i)
3366    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3367      return false;
3368
3369  return true;
3370}
3371
3372bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3373  SmallVector<int, 8> M;
3374  N->getMask(M);
3375  return ::isSHUFPMask(M, N->getValueType(0));
3376}
3377
3378/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3379/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3380/// half elements to come from vector 1 (which would equal the dest.) and
3381/// the upper half to come from vector 2.
3382static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3383  int NumElems = VT.getVectorNumElements();
3384
3385  if (NumElems != 2 && NumElems != 4)
3386    return false;
3387
3388  int Half = NumElems / 2;
3389  for (int i = 0; i < Half; ++i)
3390    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3391      return false;
3392  for (int i = Half; i < NumElems; ++i)
3393    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3394      return false;
3395  return true;
3396}
3397
3398static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3399  SmallVector<int, 8> M;
3400  N->getMask(M);
3401  return isCommutedSHUFPMask(M, N->getValueType(0));
3402}
3403
3404/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3405/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3406bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3407  EVT VT = N->getValueType(0);
3408  unsigned NumElems = VT.getVectorNumElements();
3409
3410  if (VT.getSizeInBits() != 128)
3411    return false;
3412
3413  if (NumElems != 4)
3414    return false;
3415
3416  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3417  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3418         isUndefOrEqual(N->getMaskElt(1), 7) &&
3419         isUndefOrEqual(N->getMaskElt(2), 2) &&
3420         isUndefOrEqual(N->getMaskElt(3), 3);
3421}
3422
3423/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3424/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3425/// <2, 3, 2, 3>
3426bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3427  EVT VT = N->getValueType(0);
3428  unsigned NumElems = VT.getVectorNumElements();
3429
3430  if (VT.getSizeInBits() != 128)
3431    return false;
3432
3433  if (NumElems != 4)
3434    return false;
3435
3436  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3437         isUndefOrEqual(N->getMaskElt(1), 3) &&
3438         isUndefOrEqual(N->getMaskElt(2), 2) &&
3439         isUndefOrEqual(N->getMaskElt(3), 3);
3440}
3441
3442/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3443/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3444bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3445  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3446
3447  if (NumElems != 2 && NumElems != 4)
3448    return false;
3449
3450  for (unsigned i = 0; i < NumElems/2; ++i)
3451    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3452      return false;
3453
3454  for (unsigned i = NumElems/2; i < NumElems; ++i)
3455    if (!isUndefOrEqual(N->getMaskElt(i), i))
3456      return false;
3457
3458  return true;
3459}
3460
3461/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3462/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3463bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3464  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3465
3466  if ((NumElems != 2 && NumElems != 4)
3467      || N->getValueType(0).getSizeInBits() > 128)
3468    return false;
3469
3470  for (unsigned i = 0; i < NumElems/2; ++i)
3471    if (!isUndefOrEqual(N->getMaskElt(i), i))
3472      return false;
3473
3474  for (unsigned i = 0; i < NumElems/2; ++i)
3475    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3476      return false;
3477
3478  return true;
3479}
3480
3481/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3482/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3483static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3484                         bool V2IsSplat = false) {
3485  int NumElts = VT.getVectorNumElements();
3486
3487  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3488         "Unsupported vector type for unpckh");
3489
3490  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3491    return false;
3492
3493  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3494  // independently on 128-bit lanes.
3495  unsigned NumLanes = VT.getSizeInBits()/128;
3496  unsigned NumLaneElts = NumElts/NumLanes;
3497
3498  unsigned Start = 0;
3499  unsigned End = NumLaneElts;
3500  for (unsigned s = 0; s < NumLanes; ++s) {
3501    for (unsigned i = Start, j = s * NumLaneElts;
3502         i != End;
3503         i += 2, ++j) {
3504      int BitI  = Mask[i];
3505      int BitI1 = Mask[i+1];
3506      if (!isUndefOrEqual(BitI, j))
3507        return false;
3508      if (V2IsSplat) {
3509        if (!isUndefOrEqual(BitI1, NumElts))
3510          return false;
3511      } else {
3512        if (!isUndefOrEqual(BitI1, j + NumElts))
3513          return false;
3514      }
3515    }
3516    // Process the next 128 bits.
3517    Start += NumLaneElts;
3518    End += NumLaneElts;
3519  }
3520
3521  return true;
3522}
3523
3524bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3525  SmallVector<int, 8> M;
3526  N->getMask(M);
3527  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3528}
3529
3530/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3531/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3532static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3533                         bool V2IsSplat = false) {
3534  int NumElts = VT.getVectorNumElements();
3535
3536  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3537         "Unsupported vector type for unpckh");
3538
3539  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3540    return false;
3541
3542  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3543  // independently on 128-bit lanes.
3544  unsigned NumLanes = VT.getSizeInBits()/128;
3545  unsigned NumLaneElts = NumElts/NumLanes;
3546
3547  unsigned Start = 0;
3548  unsigned End = NumLaneElts;
3549  for (unsigned l = 0; l != NumLanes; ++l) {
3550    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3551                             i != End; i += 2, ++j) {
3552      int BitI  = Mask[i];
3553      int BitI1 = Mask[i+1];
3554      if (!isUndefOrEqual(BitI, j))
3555        return false;
3556      if (V2IsSplat) {
3557        if (isUndefOrEqual(BitI1, NumElts))
3558          return false;
3559      } else {
3560        if (!isUndefOrEqual(BitI1, j+NumElts))
3561          return false;
3562      }
3563    }
3564    // Process the next 128 bits.
3565    Start += NumLaneElts;
3566    End += NumLaneElts;
3567  }
3568  return true;
3569}
3570
3571bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3572  SmallVector<int, 8> M;
3573  N->getMask(M);
3574  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3575}
3576
3577/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3578/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3579/// <0, 0, 1, 1>
3580static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3581  int NumElems = VT.getVectorNumElements();
3582  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3583    return false;
3584
3585  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3586  // FIXME: Need a better way to get rid of this, there's no latency difference
3587  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3588  // the former later. We should also remove the "_undef" special mask.
3589  if (NumElems == 4 && VT.getSizeInBits() == 256)
3590    return false;
3591
3592  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3593  // independently on 128-bit lanes.
3594  unsigned NumLanes = VT.getSizeInBits() / 128;
3595  unsigned NumLaneElts = NumElems / NumLanes;
3596
3597  for (unsigned s = 0; s < NumLanes; ++s) {
3598    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3599         i != NumLaneElts * (s + 1);
3600         i += 2, ++j) {
3601      int BitI  = Mask[i];
3602      int BitI1 = Mask[i+1];
3603
3604      if (!isUndefOrEqual(BitI, j))
3605        return false;
3606      if (!isUndefOrEqual(BitI1, j))
3607        return false;
3608    }
3609  }
3610
3611  return true;
3612}
3613
3614bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3615  SmallVector<int, 8> M;
3616  N->getMask(M);
3617  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3618}
3619
3620/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3621/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3622/// <2, 2, 3, 3>
3623static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3624  int NumElems = VT.getVectorNumElements();
3625  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3626    return false;
3627
3628  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3629    int BitI  = Mask[i];
3630    int BitI1 = Mask[i+1];
3631    if (!isUndefOrEqual(BitI, j))
3632      return false;
3633    if (!isUndefOrEqual(BitI1, j))
3634      return false;
3635  }
3636  return true;
3637}
3638
3639bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3640  SmallVector<int, 8> M;
3641  N->getMask(M);
3642  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3643}
3644
3645/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3646/// specifies a shuffle of elements that is suitable for input to MOVSS,
3647/// MOVSD, and MOVD, i.e. setting the lowest element.
3648static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3649  if (VT.getVectorElementType().getSizeInBits() < 32)
3650    return false;
3651
3652  int NumElts = VT.getVectorNumElements();
3653
3654  if (!isUndefOrEqual(Mask[0], NumElts))
3655    return false;
3656
3657  for (int i = 1; i < NumElts; ++i)
3658    if (!isUndefOrEqual(Mask[i], i))
3659      return false;
3660
3661  return true;
3662}
3663
3664bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3665  SmallVector<int, 8> M;
3666  N->getMask(M);
3667  return ::isMOVLMask(M, N->getValueType(0));
3668}
3669
3670/// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
3671/// as permutations between 128-bit chunks or halves. As an example: this
3672/// shuffle bellow:
3673///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3674/// The first half comes from the second half of V1 and the second half from the
3675/// the second half of V2.
3676static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3677                             const X86Subtarget *Subtarget) {
3678  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3679    return false;
3680
3681  // The shuffle result is divided into half A and half B. In total the two
3682  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3683  // B must come from C, D, E or F.
3684  int HalfSize = VT.getVectorNumElements()/2;
3685  bool MatchA = false, MatchB = false;
3686
3687  // Check if A comes from one of C, D, E, F.
3688  for (int Half = 0; Half < 4; ++Half) {
3689    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3690      MatchA = true;
3691      break;
3692    }
3693  }
3694
3695  // Check if B comes from one of C, D, E, F.
3696  for (int Half = 0; Half < 4; ++Half) {
3697    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3698      MatchB = true;
3699      break;
3700    }
3701  }
3702
3703  return MatchA && MatchB;
3704}
3705
3706/// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
3707/// the specified VECTOR_MASK mask with VPERM2F128 instructions.
3708static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
3709  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3710  EVT VT = SVOp->getValueType(0);
3711
3712  int HalfSize = VT.getVectorNumElements()/2;
3713
3714  int FstHalf = 0, SndHalf = 0;
3715  for (int i = 0; i < HalfSize; ++i) {
3716    if (SVOp->getMaskElt(i) > 0) {
3717      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3718      break;
3719    }
3720  }
3721  for (int i = HalfSize; i < HalfSize*2; ++i) {
3722    if (SVOp->getMaskElt(i) > 0) {
3723      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3724      break;
3725    }
3726  }
3727
3728  return (FstHalf | (SndHalf << 4));
3729}
3730
3731/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3732/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3733/// Note that VPERMIL mask matching is different depending whether theunderlying
3734/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3735/// to the same elements of the low, but to the higher half of the source.
3736/// In VPERMILPD the two lanes could be shuffled independently of each other
3737/// with the same restriction that lanes can't be crossed.
3738static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3739                            const X86Subtarget *Subtarget) {
3740  int NumElts = VT.getVectorNumElements();
3741  int NumLanes = VT.getSizeInBits()/128;
3742
3743  if (!Subtarget->hasAVX())
3744    return false;
3745
3746  // Match any permutation of 128-bit vector with 64-bit types
3747  if (NumLanes == 1 && NumElts != 2)
3748    return false;
3749
3750  // Only match 256-bit with 32 types
3751  if (VT.getSizeInBits() == 256 && NumElts != 4)
3752    return false;
3753
3754  // The mask on the high lane is independent of the low. Both can match
3755  // any element in inside its own lane, but can't cross.
3756  int LaneSize = NumElts/NumLanes;
3757  for (int l = 0; l < NumLanes; ++l)
3758    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3759      int LaneStart = l*LaneSize;
3760      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3761        return false;
3762    }
3763
3764  return true;
3765}
3766
3767/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3768/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3769/// Note that VPERMIL mask matching is different depending whether theunderlying
3770/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3771/// to the same elements of the low, but to the higher half of the source.
3772/// In VPERMILPD the two lanes could be shuffled independently of each other
3773/// with the same restriction that lanes can't be crossed.
3774static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3775                            const X86Subtarget *Subtarget) {
3776  unsigned NumElts = VT.getVectorNumElements();
3777  unsigned NumLanes = VT.getSizeInBits()/128;
3778
3779  if (!Subtarget->hasAVX())
3780    return false;
3781
3782  // Match any permutation of 128-bit vector with 32-bit types
3783  if (NumLanes == 1 && NumElts != 4)
3784    return false;
3785
3786  // Only match 256-bit with 32 types
3787  if (VT.getSizeInBits() == 256 && NumElts != 8)
3788    return false;
3789
3790  // The mask on the high lane should be the same as the low. Actually,
3791  // they can differ if any of the corresponding index in a lane is undef
3792  // and the other stays in range.
3793  int LaneSize = NumElts/NumLanes;
3794  for (int i = 0; i < LaneSize; ++i) {
3795    int HighElt = i+LaneSize;
3796    bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
3797    bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
3798
3799    if (!HighValid || !LowValid)
3800      return false;
3801    if (Mask[i] < 0 || Mask[HighElt] < 0)
3802      continue;
3803    if (Mask[HighElt]-Mask[i] != LaneSize)
3804      return false;
3805  }
3806
3807  return true;
3808}
3809
3810/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3811/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3812static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3813  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3814  EVT VT = SVOp->getValueType(0);
3815
3816  int NumElts = VT.getVectorNumElements();
3817  int NumLanes = VT.getSizeInBits()/128;
3818  int LaneSize = NumElts/NumLanes;
3819
3820  // Although the mask is equal for both lanes do it twice to get the cases
3821  // where a mask will match because the same mask element is undef on the
3822  // first half but valid on the second. This would get pathological cases
3823  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3824  unsigned Mask = 0;
3825  for (int l = 0; l < NumLanes; ++l) {
3826    for (int i = 0; i < LaneSize; ++i) {
3827      int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3828      if (MaskElt < 0)
3829        continue;
3830      if (MaskElt >= LaneSize)
3831        MaskElt -= LaneSize;
3832      Mask |= MaskElt << (i*2);
3833    }
3834  }
3835
3836  return Mask;
3837}
3838
3839/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3840/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3841static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3842  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3843  EVT VT = SVOp->getValueType(0);
3844
3845  int NumElts = VT.getVectorNumElements();
3846  int NumLanes = VT.getSizeInBits()/128;
3847
3848  unsigned Mask = 0;
3849  int LaneSize = NumElts/NumLanes;
3850  for (int l = 0; l < NumLanes; ++l)
3851    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3852      int MaskElt = SVOp->getMaskElt(i);
3853      if (MaskElt < 0)
3854        continue;
3855      Mask |= (MaskElt-l*LaneSize) << i;
3856    }
3857
3858  return Mask;
3859}
3860
3861/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3862/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3863/// element of vector 2 and the other elements to come from vector 1 in order.
3864static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3865                               bool V2IsSplat = false, bool V2IsUndef = false) {
3866  int NumOps = VT.getVectorNumElements();
3867  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3868    return false;
3869
3870  if (!isUndefOrEqual(Mask[0], 0))
3871    return false;
3872
3873  for (int i = 1; i < NumOps; ++i)
3874    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3875          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3876          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3877      return false;
3878
3879  return true;
3880}
3881
3882static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3883                           bool V2IsUndef = false) {
3884  SmallVector<int, 8> M;
3885  N->getMask(M);
3886  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3887}
3888
3889/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3890/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3891/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3892bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3893                         const X86Subtarget *Subtarget) {
3894  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3895    return false;
3896
3897  // The second vector must be undef
3898  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3899    return false;
3900
3901  EVT VT = N->getValueType(0);
3902  unsigned NumElems = VT.getVectorNumElements();
3903
3904  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3905      (VT.getSizeInBits() == 256 && NumElems != 8))
3906    return false;
3907
3908  // "i+1" is the value the indexed mask element must have
3909  for (unsigned i = 0; i < NumElems; i += 2)
3910    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3911        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3912      return false;
3913
3914  return true;
3915}
3916
3917/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3918/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3919/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3920bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3921                         const X86Subtarget *Subtarget) {
3922  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3923    return false;
3924
3925  // The second vector must be undef
3926  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3927    return false;
3928
3929  EVT VT = N->getValueType(0);
3930  unsigned NumElems = VT.getVectorNumElements();
3931
3932  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3933      (VT.getSizeInBits() == 256 && NumElems != 8))
3934    return false;
3935
3936  // "i" is the value the indexed mask element must have
3937  for (unsigned i = 0; i < NumElems; i += 2)
3938    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3939        !isUndefOrEqual(N->getMaskElt(i+1), i))
3940      return false;
3941
3942  return true;
3943}
3944
3945/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3946/// specifies a shuffle of elements that is suitable for input to 256-bit
3947/// version of MOVDDUP.
3948static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
3949                           const X86Subtarget *Subtarget) {
3950  EVT VT = N->getValueType(0);
3951  int NumElts = VT.getVectorNumElements();
3952  bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
3953
3954  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
3955      !V2IsUndef || NumElts != 4)
3956    return false;
3957
3958  for (int i = 0; i != NumElts/2; ++i)
3959    if (!isUndefOrEqual(N->getMaskElt(i), 0))
3960      return false;
3961  for (int i = NumElts/2; i != NumElts; ++i)
3962    if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
3963      return false;
3964  return true;
3965}
3966
3967/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3968/// specifies a shuffle of elements that is suitable for input to 128-bit
3969/// version of MOVDDUP.
3970bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3971  EVT VT = N->getValueType(0);
3972
3973  if (VT.getSizeInBits() != 128)
3974    return false;
3975
3976  int e = VT.getVectorNumElements() / 2;
3977  for (int i = 0; i < e; ++i)
3978    if (!isUndefOrEqual(N->getMaskElt(i), i))
3979      return false;
3980  for (int i = 0; i < e; ++i)
3981    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3982      return false;
3983  return true;
3984}
3985
3986/// isVEXTRACTF128Index - Return true if the specified
3987/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3988/// suitable for input to VEXTRACTF128.
3989bool X86::isVEXTRACTF128Index(SDNode *N) {
3990  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3991    return false;
3992
3993  // The index should be aligned on a 128-bit boundary.
3994  uint64_t Index =
3995    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3996
3997  unsigned VL = N->getValueType(0).getVectorNumElements();
3998  unsigned VBits = N->getValueType(0).getSizeInBits();
3999  unsigned ElSize = VBits / VL;
4000  bool Result = (Index * ElSize) % 128 == 0;
4001
4002  return Result;
4003}
4004
4005/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4006/// operand specifies a subvector insert that is suitable for input to
4007/// VINSERTF128.
4008bool X86::isVINSERTF128Index(SDNode *N) {
4009  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4010    return false;
4011
4012  // The index should be aligned on a 128-bit boundary.
4013  uint64_t Index =
4014    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4015
4016  unsigned VL = N->getValueType(0).getVectorNumElements();
4017  unsigned VBits = N->getValueType(0).getSizeInBits();
4018  unsigned ElSize = VBits / VL;
4019  bool Result = (Index * ElSize) % 128 == 0;
4020
4021  return Result;
4022}
4023
4024/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4025/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4026unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
4027  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4028  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
4029
4030  unsigned Shift = (NumOperands == 4) ? 2 : 1;
4031  unsigned Mask = 0;
4032  for (int i = 0; i < NumOperands; ++i) {
4033    int Val = SVOp->getMaskElt(NumOperands-i-1);
4034    if (Val < 0) Val = 0;
4035    if (Val >= NumOperands) Val -= NumOperands;
4036    Mask |= Val;
4037    if (i != NumOperands - 1)
4038      Mask <<= Shift;
4039  }
4040  return Mask;
4041}
4042
4043/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4044/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4045unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
4046  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4047  unsigned Mask = 0;
4048  // 8 nodes, but we only care about the last 4.
4049  for (unsigned i = 7; i >= 4; --i) {
4050    int Val = SVOp->getMaskElt(i);
4051    if (Val >= 0)
4052      Mask |= (Val - 4);
4053    if (i != 4)
4054      Mask <<= 2;
4055  }
4056  return Mask;
4057}
4058
4059/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4060/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4061unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4062  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4063  unsigned Mask = 0;
4064  // 8 nodes, but we only care about the first 4.
4065  for (int i = 3; i >= 0; --i) {
4066    int Val = SVOp->getMaskElt(i);
4067    if (Val >= 0)
4068      Mask |= Val;
4069    if (i != 0)
4070      Mask <<= 2;
4071  }
4072  return Mask;
4073}
4074
4075/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4076/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4077unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
4078  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4079  EVT VVT = N->getValueType(0);
4080  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
4081  int Val = 0;
4082
4083  unsigned i, e;
4084  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
4085    Val = SVOp->getMaskElt(i);
4086    if (Val >= 0)
4087      break;
4088  }
4089  assert(Val - i > 0 && "PALIGNR imm should be positive");
4090  return (Val - i) * EltSize;
4091}
4092
4093/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4094/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4095/// instructions.
4096unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4097  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4098    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4099
4100  uint64_t Index =
4101    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4102
4103  EVT VecVT = N->getOperand(0).getValueType();
4104  EVT ElVT = VecVT.getVectorElementType();
4105
4106  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4107  return Index / NumElemsPerChunk;
4108}
4109
4110/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4111/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4112/// instructions.
4113unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4114  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4115    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4116
4117  uint64_t Index =
4118    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4119
4120  EVT VecVT = N->getValueType(0);
4121  EVT ElVT = VecVT.getVectorElementType();
4122
4123  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4124  return Index / NumElemsPerChunk;
4125}
4126
4127/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4128/// constant +0.0.
4129bool X86::isZeroNode(SDValue Elt) {
4130  return ((isa<ConstantSDNode>(Elt) &&
4131           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4132          (isa<ConstantFPSDNode>(Elt) &&
4133           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4134}
4135
4136/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4137/// their permute mask.
4138static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4139                                    SelectionDAG &DAG) {
4140  EVT VT = SVOp->getValueType(0);
4141  unsigned NumElems = VT.getVectorNumElements();
4142  SmallVector<int, 8> MaskVec;
4143
4144  for (unsigned i = 0; i != NumElems; ++i) {
4145    int idx = SVOp->getMaskElt(i);
4146    if (idx < 0)
4147      MaskVec.push_back(idx);
4148    else if (idx < (int)NumElems)
4149      MaskVec.push_back(idx + NumElems);
4150    else
4151      MaskVec.push_back(idx - NumElems);
4152  }
4153  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4154                              SVOp->getOperand(0), &MaskVec[0]);
4155}
4156
4157/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
4158/// the two vector operands have swapped position.
4159static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
4160  unsigned NumElems = VT.getVectorNumElements();
4161  for (unsigned i = 0; i != NumElems; ++i) {
4162    int idx = Mask[i];
4163    if (idx < 0)
4164      continue;
4165    else if (idx < (int)NumElems)
4166      Mask[i] = idx + NumElems;
4167    else
4168      Mask[i] = idx - NumElems;
4169  }
4170}
4171
4172/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4173/// match movhlps. The lower half elements should come from upper half of
4174/// V1 (and in order), and the upper half elements should come from the upper
4175/// half of V2 (and in order).
4176static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4177  EVT VT = Op->getValueType(0);
4178  if (VT.getSizeInBits() != 128)
4179    return false;
4180  if (VT.getVectorNumElements() != 4)
4181    return false;
4182  for (unsigned i = 0, e = 2; i != e; ++i)
4183    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4184      return false;
4185  for (unsigned i = 2; i != 4; ++i)
4186    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4187      return false;
4188  return true;
4189}
4190
4191/// isScalarLoadToVector - Returns true if the node is a scalar load that
4192/// is promoted to a vector. It also returns the LoadSDNode by reference if
4193/// required.
4194static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4195  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4196    return false;
4197  N = N->getOperand(0).getNode();
4198  if (!ISD::isNON_EXTLoad(N))
4199    return false;
4200  if (LD)
4201    *LD = cast<LoadSDNode>(N);
4202  return true;
4203}
4204
4205/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4206/// match movlp{s|d}. The lower half elements should come from lower half of
4207/// V1 (and in order), and the upper half elements should come from the upper
4208/// half of V2 (and in order). And since V1 will become the source of the
4209/// MOVLP, it must be either a vector load or a scalar load to vector.
4210static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4211                               ShuffleVectorSDNode *Op) {
4212  EVT VT = Op->getValueType(0);
4213  if (VT.getSizeInBits() != 128)
4214    return false;
4215
4216  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4217    return false;
4218  // Is V2 is a vector load, don't do this transformation. We will try to use
4219  // load folding shufps op.
4220  if (ISD::isNON_EXTLoad(V2))
4221    return false;
4222
4223  unsigned NumElems = VT.getVectorNumElements();
4224
4225  if (NumElems != 2 && NumElems != 4)
4226    return false;
4227  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4228    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4229      return false;
4230  for (unsigned i = NumElems/2; i != NumElems; ++i)
4231    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4232      return false;
4233  return true;
4234}
4235
4236/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4237/// all the same.
4238static bool isSplatVector(SDNode *N) {
4239  if (N->getOpcode() != ISD::BUILD_VECTOR)
4240    return false;
4241
4242  SDValue SplatValue = N->getOperand(0);
4243  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4244    if (N->getOperand(i) != SplatValue)
4245      return false;
4246  return true;
4247}
4248
4249/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4250/// to an zero vector.
4251/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4252static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4253  SDValue V1 = N->getOperand(0);
4254  SDValue V2 = N->getOperand(1);
4255  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4256  for (unsigned i = 0; i != NumElems; ++i) {
4257    int Idx = N->getMaskElt(i);
4258    if (Idx >= (int)NumElems) {
4259      unsigned Opc = V2.getOpcode();
4260      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4261        continue;
4262      if (Opc != ISD::BUILD_VECTOR ||
4263          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4264        return false;
4265    } else if (Idx >= 0) {
4266      unsigned Opc = V1.getOpcode();
4267      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4268        continue;
4269      if (Opc != ISD::BUILD_VECTOR ||
4270          !X86::isZeroNode(V1.getOperand(Idx)))
4271        return false;
4272    }
4273  }
4274  return true;
4275}
4276
4277/// getZeroVector - Returns a vector of specified type with all zero elements.
4278///
4279static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
4280                             DebugLoc dl) {
4281  assert(VT.isVector() && "Expected a vector type");
4282
4283  // Always build SSE zero vectors as <4 x i32> bitcasted
4284  // to their dest type. This ensures they get CSE'd.
4285  SDValue Vec;
4286  if (VT.getSizeInBits() == 128) {  // SSE
4287    if (HasSSE2) {  // SSE2
4288      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4289      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4290    } else { // SSE1
4291      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4292      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4293    }
4294  } else if (VT.getSizeInBits() == 256) { // AVX
4295    // 256-bit logic and arithmetic instructions in AVX are
4296    // all floating-point, no support for integer ops. Default
4297    // to emitting fp zeroed vectors then.
4298    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4299    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4300    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4301  }
4302  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4303}
4304
4305/// getOnesVector - Returns a vector of specified type with all bits set.
4306/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
4307/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
4308/// original type, ensuring they get CSE'd.
4309static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4310  assert(VT.isVector() && "Expected a vector type");
4311  assert((VT.is128BitVector() || VT.is256BitVector())
4312         && "Expected a 128-bit or 256-bit vector type");
4313
4314  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4315  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
4316                            Cst, Cst, Cst, Cst);
4317
4318  if (VT.is256BitVector()) {
4319    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4320                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4321    Vec = Insert128BitVector(InsV, Vec,
4322                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4323  }
4324
4325  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4326}
4327
4328/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4329/// that point to V2 points to its first element.
4330static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4331  EVT VT = SVOp->getValueType(0);
4332  unsigned NumElems = VT.getVectorNumElements();
4333
4334  bool Changed = false;
4335  SmallVector<int, 8> MaskVec;
4336  SVOp->getMask(MaskVec);
4337
4338  for (unsigned i = 0; i != NumElems; ++i) {
4339    if (MaskVec[i] > (int)NumElems) {
4340      MaskVec[i] = NumElems;
4341      Changed = true;
4342    }
4343  }
4344  if (Changed)
4345    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4346                                SVOp->getOperand(1), &MaskVec[0]);
4347  return SDValue(SVOp, 0);
4348}
4349
4350/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4351/// operation of specified width.
4352static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4353                       SDValue V2) {
4354  unsigned NumElems = VT.getVectorNumElements();
4355  SmallVector<int, 8> Mask;
4356  Mask.push_back(NumElems);
4357  for (unsigned i = 1; i != NumElems; ++i)
4358    Mask.push_back(i);
4359  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4360}
4361
4362/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4363static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4364                          SDValue V2) {
4365  unsigned NumElems = VT.getVectorNumElements();
4366  SmallVector<int, 8> Mask;
4367  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4368    Mask.push_back(i);
4369    Mask.push_back(i + NumElems);
4370  }
4371  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4372}
4373
4374/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4375static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4376                          SDValue V2) {
4377  unsigned NumElems = VT.getVectorNumElements();
4378  unsigned Half = NumElems/2;
4379  SmallVector<int, 8> Mask;
4380  for (unsigned i = 0; i != Half; ++i) {
4381    Mask.push_back(i + Half);
4382    Mask.push_back(i + NumElems + Half);
4383  }
4384  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4385}
4386
4387// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4388// a generic shuffle instruction because the target has no such instructions.
4389// Generate shuffles which repeat i16 and i8 several times until they can be
4390// represented by v4f32 and then be manipulated by target suported shuffles.
4391static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4392  EVT VT = V.getValueType();
4393  int NumElems = VT.getVectorNumElements();
4394  DebugLoc dl = V.getDebugLoc();
4395
4396  while (NumElems > 4) {
4397    if (EltNo < NumElems/2) {
4398      V = getUnpackl(DAG, dl, VT, V, V);
4399    } else {
4400      V = getUnpackh(DAG, dl, VT, V, V);
4401      EltNo -= NumElems/2;
4402    }
4403    NumElems >>= 1;
4404  }
4405  return V;
4406}
4407
4408/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4409static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4410  EVT VT = V.getValueType();
4411  DebugLoc dl = V.getDebugLoc();
4412  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4413         && "Vector size not supported");
4414
4415  if (VT.getSizeInBits() == 128) {
4416    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4417    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4418    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4419                             &SplatMask[0]);
4420  } else {
4421    // To use VPERMILPS to splat scalars, the second half of indicies must
4422    // refer to the higher part, which is a duplication of the lower one,
4423    // because VPERMILPS can only handle in-lane permutations.
4424    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4425                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4426
4427    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4428    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4429                             &SplatMask[0]);
4430  }
4431
4432  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4433}
4434
4435/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4436static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4437  EVT SrcVT = SV->getValueType(0);
4438  SDValue V1 = SV->getOperand(0);
4439  DebugLoc dl = SV->getDebugLoc();
4440
4441  int EltNo = SV->getSplatIndex();
4442  int NumElems = SrcVT.getVectorNumElements();
4443  unsigned Size = SrcVT.getSizeInBits();
4444
4445  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4446          "Unknown how to promote splat for type");
4447
4448  // Extract the 128-bit part containing the splat element and update
4449  // the splat element index when it refers to the higher register.
4450  if (Size == 256) {
4451    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4452    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4453    if (Idx > 0)
4454      EltNo -= NumElems/2;
4455  }
4456
4457  // All i16 and i8 vector types can't be used directly by a generic shuffle
4458  // instruction because the target has no such instruction. Generate shuffles
4459  // which repeat i16 and i8 several times until they fit in i32, and then can
4460  // be manipulated by target suported shuffles.
4461  EVT EltVT = SrcVT.getVectorElementType();
4462  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4463    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4464
4465  // Recreate the 256-bit vector and place the same 128-bit vector
4466  // into the low and high part. This is necessary because we want
4467  // to use VPERM* to shuffle the vectors
4468  if (Size == 256) {
4469    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4470                         DAG.getConstant(0, MVT::i32), DAG, dl);
4471    V1 = Insert128BitVector(InsV, V1,
4472               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4473  }
4474
4475  return getLegalSplat(DAG, V1, EltNo);
4476}
4477
4478/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4479/// vector of zero or undef vector.  This produces a shuffle where the low
4480/// element of V2 is swizzled into the zero/undef vector, landing at element
4481/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4482static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4483                                             bool isZero, bool HasSSE2,
4484                                             SelectionDAG &DAG) {
4485  EVT VT = V2.getValueType();
4486  SDValue V1 = isZero
4487    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4488  unsigned NumElems = VT.getVectorNumElements();
4489  SmallVector<int, 16> MaskVec;
4490  for (unsigned i = 0; i != NumElems; ++i)
4491    // If this is the insertion idx, put the low elt of V2 here.
4492    MaskVec.push_back(i == Idx ? NumElems : i);
4493  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4494}
4495
4496/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4497/// element of the result of the vector shuffle.
4498static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4499                                   unsigned Depth) {
4500  if (Depth == 6)
4501    return SDValue();  // Limit search depth.
4502
4503  SDValue V = SDValue(N, 0);
4504  EVT VT = V.getValueType();
4505  unsigned Opcode = V.getOpcode();
4506
4507  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4508  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4509    Index = SV->getMaskElt(Index);
4510
4511    if (Index < 0)
4512      return DAG.getUNDEF(VT.getVectorElementType());
4513
4514    int NumElems = VT.getVectorNumElements();
4515    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4516    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4517  }
4518
4519  // Recurse into target specific vector shuffles to find scalars.
4520  if (isTargetShuffle(Opcode)) {
4521    int NumElems = VT.getVectorNumElements();
4522    SmallVector<unsigned, 16> ShuffleMask;
4523    SDValue ImmN;
4524
4525    switch(Opcode) {
4526    case X86ISD::SHUFPS:
4527    case X86ISD::SHUFPD:
4528      ImmN = N->getOperand(N->getNumOperands()-1);
4529      DecodeSHUFPSMask(NumElems,
4530                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4531                       ShuffleMask);
4532      break;
4533    case X86ISD::PUNPCKHBW:
4534    case X86ISD::PUNPCKHWD:
4535    case X86ISD::PUNPCKHDQ:
4536    case X86ISD::PUNPCKHQDQ:
4537      DecodePUNPCKHMask(NumElems, ShuffleMask);
4538      break;
4539    case X86ISD::UNPCKHPS:
4540    case X86ISD::UNPCKHPD:
4541    case X86ISD::VUNPCKHPSY:
4542    case X86ISD::VUNPCKHPDY:
4543      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4544      break;
4545    case X86ISD::PUNPCKLBW:
4546    case X86ISD::PUNPCKLWD:
4547    case X86ISD::PUNPCKLDQ:
4548    case X86ISD::PUNPCKLQDQ:
4549      DecodePUNPCKLMask(VT, ShuffleMask);
4550      break;
4551    case X86ISD::UNPCKLPS:
4552    case X86ISD::UNPCKLPD:
4553    case X86ISD::VUNPCKLPSY:
4554    case X86ISD::VUNPCKLPDY:
4555      DecodeUNPCKLPMask(VT, ShuffleMask);
4556      break;
4557    case X86ISD::MOVHLPS:
4558      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4559      break;
4560    case X86ISD::MOVLHPS:
4561      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4562      break;
4563    case X86ISD::PSHUFD:
4564      ImmN = N->getOperand(N->getNumOperands()-1);
4565      DecodePSHUFMask(NumElems,
4566                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4567                      ShuffleMask);
4568      break;
4569    case X86ISD::PSHUFHW:
4570      ImmN = N->getOperand(N->getNumOperands()-1);
4571      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4572                        ShuffleMask);
4573      break;
4574    case X86ISD::PSHUFLW:
4575      ImmN = N->getOperand(N->getNumOperands()-1);
4576      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4577                        ShuffleMask);
4578      break;
4579    case X86ISD::MOVSS:
4580    case X86ISD::MOVSD: {
4581      // The index 0 always comes from the first element of the second source,
4582      // this is why MOVSS and MOVSD are used in the first place. The other
4583      // elements come from the other positions of the first source vector.
4584      unsigned OpNum = (Index == 0) ? 1 : 0;
4585      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4586                                 Depth+1);
4587    }
4588    case X86ISD::VPERMILPS:
4589      ImmN = N->getOperand(N->getNumOperands()-1);
4590      DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4591                        ShuffleMask);
4592      break;
4593    case X86ISD::VPERMILPSY:
4594      ImmN = N->getOperand(N->getNumOperands()-1);
4595      DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4596                        ShuffleMask);
4597      break;
4598    case X86ISD::VPERMILPD:
4599      ImmN = N->getOperand(N->getNumOperands()-1);
4600      DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4601                        ShuffleMask);
4602      break;
4603    case X86ISD::VPERMILPDY:
4604      ImmN = N->getOperand(N->getNumOperands()-1);
4605      DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4606                        ShuffleMask);
4607      break;
4608    case X86ISD::VPERM2F128:
4609      ImmN = N->getOperand(N->getNumOperands()-1);
4610      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4611                           ShuffleMask);
4612      break;
4613    default:
4614      assert("not implemented for target shuffle node");
4615      return SDValue();
4616    }
4617
4618    Index = ShuffleMask[Index];
4619    if (Index < 0)
4620      return DAG.getUNDEF(VT.getVectorElementType());
4621
4622    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4623    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4624                               Depth+1);
4625  }
4626
4627  // Actual nodes that may contain scalar elements
4628  if (Opcode == ISD::BITCAST) {
4629    V = V.getOperand(0);
4630    EVT SrcVT = V.getValueType();
4631    unsigned NumElems = VT.getVectorNumElements();
4632
4633    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4634      return SDValue();
4635  }
4636
4637  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4638    return (Index == 0) ? V.getOperand(0)
4639                          : DAG.getUNDEF(VT.getVectorElementType());
4640
4641  if (V.getOpcode() == ISD::BUILD_VECTOR)
4642    return V.getOperand(Index);
4643
4644  return SDValue();
4645}
4646
4647/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4648/// shuffle operation which come from a consecutively from a zero. The
4649/// search can start in two different directions, from left or right.
4650static
4651unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4652                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4653  int i = 0;
4654
4655  while (i < NumElems) {
4656    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4657    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4658    if (!(Elt.getNode() &&
4659         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4660      break;
4661    ++i;
4662  }
4663
4664  return i;
4665}
4666
4667/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4668/// MaskE correspond consecutively to elements from one of the vector operands,
4669/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4670static
4671bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4672                              int OpIdx, int NumElems, unsigned &OpNum) {
4673  bool SeenV1 = false;
4674  bool SeenV2 = false;
4675
4676  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4677    int Idx = SVOp->getMaskElt(i);
4678    // Ignore undef indicies
4679    if (Idx < 0)
4680      continue;
4681
4682    if (Idx < NumElems)
4683      SeenV1 = true;
4684    else
4685      SeenV2 = true;
4686
4687    // Only accept consecutive elements from the same vector
4688    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4689      return false;
4690  }
4691
4692  OpNum = SeenV1 ? 0 : 1;
4693  return true;
4694}
4695
4696/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4697/// logical left shift of a vector.
4698static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4699                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4700  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4701  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4702              false /* check zeros from right */, DAG);
4703  unsigned OpSrc;
4704
4705  if (!NumZeros)
4706    return false;
4707
4708  // Considering the elements in the mask that are not consecutive zeros,
4709  // check if they consecutively come from only one of the source vectors.
4710  //
4711  //               V1 = {X, A, B, C}     0
4712  //                         \  \  \    /
4713  //   vector_shuffle V1, V2 <1, 2, 3, X>
4714  //
4715  if (!isShuffleMaskConsecutive(SVOp,
4716            0,                   // Mask Start Index
4717            NumElems-NumZeros-1, // Mask End Index
4718            NumZeros,            // Where to start looking in the src vector
4719            NumElems,            // Number of elements in vector
4720            OpSrc))              // Which source operand ?
4721    return false;
4722
4723  isLeft = false;
4724  ShAmt = NumZeros;
4725  ShVal = SVOp->getOperand(OpSrc);
4726  return true;
4727}
4728
4729/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4730/// logical left shift of a vector.
4731static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4732                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4733  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4734  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4735              true /* check zeros from left */, DAG);
4736  unsigned OpSrc;
4737
4738  if (!NumZeros)
4739    return false;
4740
4741  // Considering the elements in the mask that are not consecutive zeros,
4742  // check if they consecutively come from only one of the source vectors.
4743  //
4744  //                           0    { A, B, X, X } = V2
4745  //                          / \    /  /
4746  //   vector_shuffle V1, V2 <X, X, 4, 5>
4747  //
4748  if (!isShuffleMaskConsecutive(SVOp,
4749            NumZeros,     // Mask Start Index
4750            NumElems-1,   // Mask End Index
4751            0,            // Where to start looking in the src vector
4752            NumElems,     // Number of elements in vector
4753            OpSrc))       // Which source operand ?
4754    return false;
4755
4756  isLeft = true;
4757  ShAmt = NumZeros;
4758  ShVal = SVOp->getOperand(OpSrc);
4759  return true;
4760}
4761
4762/// isVectorShift - Returns true if the shuffle can be implemented as a
4763/// logical left or right shift of a vector.
4764static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4765                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4766  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4767      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4768    return true;
4769
4770  return false;
4771}
4772
4773/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4774///
4775static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4776                                       unsigned NumNonZero, unsigned NumZero,
4777                                       SelectionDAG &DAG,
4778                                       const TargetLowering &TLI) {
4779  if (NumNonZero > 8)
4780    return SDValue();
4781
4782  DebugLoc dl = Op.getDebugLoc();
4783  SDValue V(0, 0);
4784  bool First = true;
4785  for (unsigned i = 0; i < 16; ++i) {
4786    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4787    if (ThisIsNonZero && First) {
4788      if (NumZero)
4789        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4790      else
4791        V = DAG.getUNDEF(MVT::v8i16);
4792      First = false;
4793    }
4794
4795    if ((i & 1) != 0) {
4796      SDValue ThisElt(0, 0), LastElt(0, 0);
4797      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4798      if (LastIsNonZero) {
4799        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4800                              MVT::i16, Op.getOperand(i-1));
4801      }
4802      if (ThisIsNonZero) {
4803        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4804        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4805                              ThisElt, DAG.getConstant(8, MVT::i8));
4806        if (LastIsNonZero)
4807          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4808      } else
4809        ThisElt = LastElt;
4810
4811      if (ThisElt.getNode())
4812        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4813                        DAG.getIntPtrConstant(i/2));
4814    }
4815  }
4816
4817  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4818}
4819
4820/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4821///
4822static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4823                                     unsigned NumNonZero, unsigned NumZero,
4824                                     SelectionDAG &DAG,
4825                                     const TargetLowering &TLI) {
4826  if (NumNonZero > 4)
4827    return SDValue();
4828
4829  DebugLoc dl = Op.getDebugLoc();
4830  SDValue V(0, 0);
4831  bool First = true;
4832  for (unsigned i = 0; i < 8; ++i) {
4833    bool isNonZero = (NonZeros & (1 << i)) != 0;
4834    if (isNonZero) {
4835      if (First) {
4836        if (NumZero)
4837          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4838        else
4839          V = DAG.getUNDEF(MVT::v8i16);
4840        First = false;
4841      }
4842      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4843                      MVT::v8i16, V, Op.getOperand(i),
4844                      DAG.getIntPtrConstant(i));
4845    }
4846  }
4847
4848  return V;
4849}
4850
4851/// getVShift - Return a vector logical shift node.
4852///
4853static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4854                         unsigned NumBits, SelectionDAG &DAG,
4855                         const TargetLowering &TLI, DebugLoc dl) {
4856  EVT ShVT = MVT::v2i64;
4857  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4858  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4859  return DAG.getNode(ISD::BITCAST, dl, VT,
4860                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4861                             DAG.getConstant(NumBits,
4862                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4863}
4864
4865SDValue
4866X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4867                                          SelectionDAG &DAG) const {
4868
4869  // Check if the scalar load can be widened into a vector load. And if
4870  // the address is "base + cst" see if the cst can be "absorbed" into
4871  // the shuffle mask.
4872  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4873    SDValue Ptr = LD->getBasePtr();
4874    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4875      return SDValue();
4876    EVT PVT = LD->getValueType(0);
4877    if (PVT != MVT::i32 && PVT != MVT::f32)
4878      return SDValue();
4879
4880    int FI = -1;
4881    int64_t Offset = 0;
4882    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4883      FI = FINode->getIndex();
4884      Offset = 0;
4885    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4886               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4887      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4888      Offset = Ptr.getConstantOperandVal(1);
4889      Ptr = Ptr.getOperand(0);
4890    } else {
4891      return SDValue();
4892    }
4893
4894    // FIXME: 256-bit vector instructions don't require a strict alignment,
4895    // improve this code to support it better.
4896    unsigned RequiredAlign = VT.getSizeInBits()/8;
4897    SDValue Chain = LD->getChain();
4898    // Make sure the stack object alignment is at least 16 or 32.
4899    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4900    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4901      if (MFI->isFixedObjectIndex(FI)) {
4902        // Can't change the alignment. FIXME: It's possible to compute
4903        // the exact stack offset and reference FI + adjust offset instead.
4904        // If someone *really* cares about this. That's the way to implement it.
4905        return SDValue();
4906      } else {
4907        MFI->setObjectAlignment(FI, RequiredAlign);
4908      }
4909    }
4910
4911    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4912    // Ptr + (Offset & ~15).
4913    if (Offset < 0)
4914      return SDValue();
4915    if ((Offset % RequiredAlign) & 3)
4916      return SDValue();
4917    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4918    if (StartOffset)
4919      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4920                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4921
4922    int EltNo = (Offset - StartOffset) >> 2;
4923    int NumElems = VT.getVectorNumElements();
4924
4925    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4926    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4927    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4928                             LD->getPointerInfo().getWithOffset(StartOffset),
4929                             false, false, 0);
4930
4931    // Canonicalize it to a v4i32 or v8i32 shuffle.
4932    SmallVector<int, 8> Mask;
4933    for (int i = 0; i < NumElems; ++i)
4934      Mask.push_back(EltNo);
4935
4936    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4937    return DAG.getNode(ISD::BITCAST, dl, NVT,
4938                       DAG.getVectorShuffle(CanonVT, dl, V1,
4939                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4940  }
4941
4942  return SDValue();
4943}
4944
4945/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4946/// vector of type 'VT', see if the elements can be replaced by a single large
4947/// load which has the same value as a build_vector whose operands are 'elts'.
4948///
4949/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4950///
4951/// FIXME: we'd also like to handle the case where the last elements are zero
4952/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4953/// There's even a handy isZeroNode for that purpose.
4954static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4955                                        DebugLoc &DL, SelectionDAG &DAG) {
4956  EVT EltVT = VT.getVectorElementType();
4957  unsigned NumElems = Elts.size();
4958
4959  LoadSDNode *LDBase = NULL;
4960  unsigned LastLoadedElt = -1U;
4961
4962  // For each element in the initializer, see if we've found a load or an undef.
4963  // If we don't find an initial load element, or later load elements are
4964  // non-consecutive, bail out.
4965  for (unsigned i = 0; i < NumElems; ++i) {
4966    SDValue Elt = Elts[i];
4967
4968    if (!Elt.getNode() ||
4969        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4970      return SDValue();
4971    if (!LDBase) {
4972      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4973        return SDValue();
4974      LDBase = cast<LoadSDNode>(Elt.getNode());
4975      LastLoadedElt = i;
4976      continue;
4977    }
4978    if (Elt.getOpcode() == ISD::UNDEF)
4979      continue;
4980
4981    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4982    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4983      return SDValue();
4984    LastLoadedElt = i;
4985  }
4986
4987  // If we have found an entire vector of loads and undefs, then return a large
4988  // load of the entire vector width starting at the base pointer.  If we found
4989  // consecutive loads for the low half, generate a vzext_load node.
4990  if (LastLoadedElt == NumElems - 1) {
4991    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4992      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4993                         LDBase->getPointerInfo(),
4994                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4995    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4996                       LDBase->getPointerInfo(),
4997                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4998                       LDBase->getAlignment());
4999  } else if (NumElems == 4 && LastLoadedElt == 1 &&
5000             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5001    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5002    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5003    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
5004                                              Ops, 2, MVT::i32,
5005                                              LDBase->getMemOperand());
5006    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5007  }
5008  return SDValue();
5009}
5010
5011SDValue
5012X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5013  DebugLoc dl = Op.getDebugLoc();
5014
5015  EVT VT = Op.getValueType();
5016  EVT ExtVT = VT.getVectorElementType();
5017  unsigned NumElems = Op.getNumOperands();
5018
5019  // Vectors containing all zeros can be matched by pxor and xorps later
5020  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5021    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5022    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5023    if (Op.getValueType() == MVT::v4i32 ||
5024        Op.getValueType() == MVT::v8i32)
5025      return Op;
5026
5027    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
5028  }
5029
5030  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5031  // vectors or broken into v4i32 operations on 256-bit vectors.
5032  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5033    if (Op.getValueType() == MVT::v4i32)
5034      return Op;
5035
5036    return getOnesVector(Op.getValueType(), DAG, dl);
5037  }
5038
5039  unsigned EVTBits = ExtVT.getSizeInBits();
5040
5041  unsigned NumZero  = 0;
5042  unsigned NumNonZero = 0;
5043  unsigned NonZeros = 0;
5044  bool IsAllConstants = true;
5045  SmallSet<SDValue, 8> Values;
5046  for (unsigned i = 0; i < NumElems; ++i) {
5047    SDValue Elt = Op.getOperand(i);
5048    if (Elt.getOpcode() == ISD::UNDEF)
5049      continue;
5050    Values.insert(Elt);
5051    if (Elt.getOpcode() != ISD::Constant &&
5052        Elt.getOpcode() != ISD::ConstantFP)
5053      IsAllConstants = false;
5054    if (X86::isZeroNode(Elt))
5055      NumZero++;
5056    else {
5057      NonZeros |= (1 << i);
5058      NumNonZero++;
5059    }
5060  }
5061
5062  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5063  if (NumNonZero == 0)
5064    return DAG.getUNDEF(VT);
5065
5066  // Special case for single non-zero, non-undef, element.
5067  if (NumNonZero == 1) {
5068    unsigned Idx = CountTrailingZeros_32(NonZeros);
5069    SDValue Item = Op.getOperand(Idx);
5070
5071    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5072    // the value are obviously zero, truncate the value to i32 and do the
5073    // insertion that way.  Only do this if the value is non-constant or if the
5074    // value is a constant being inserted into element 0.  It is cheaper to do
5075    // a constant pool load than it is to do a movd + shuffle.
5076    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5077        (!IsAllConstants || Idx == 0)) {
5078      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5079        // Handle SSE only.
5080        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5081        EVT VecVT = MVT::v4i32;
5082        unsigned VecElts = 4;
5083
5084        // Truncate the value (which may itself be a constant) to i32, and
5085        // convert it to a vector with movd (S2V+shuffle to zero extend).
5086        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5087        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5088        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5089                                           Subtarget->hasSSE2(), DAG);
5090
5091        // Now we have our 32-bit value zero extended in the low element of
5092        // a vector.  If Idx != 0, swizzle it into place.
5093        if (Idx != 0) {
5094          SmallVector<int, 4> Mask;
5095          Mask.push_back(Idx);
5096          for (unsigned i = 1; i != VecElts; ++i)
5097            Mask.push_back(i);
5098          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5099                                      DAG.getUNDEF(Item.getValueType()),
5100                                      &Mask[0]);
5101        }
5102        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5103      }
5104    }
5105
5106    // If we have a constant or non-constant insertion into the low element of
5107    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5108    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5109    // depending on what the source datatype is.
5110    if (Idx == 0) {
5111      if (NumZero == 0) {
5112        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5113      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5114          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5115        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5116        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5117        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
5118                                           DAG);
5119      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5120        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5121        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5122        EVT MiddleVT = MVT::v4i32;
5123        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5124        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5125                                           Subtarget->hasSSE2(), DAG);
5126        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5127      }
5128    }
5129
5130    // Is it a vector logical left shift?
5131    if (NumElems == 2 && Idx == 1 &&
5132        X86::isZeroNode(Op.getOperand(0)) &&
5133        !X86::isZeroNode(Op.getOperand(1))) {
5134      unsigned NumBits = VT.getSizeInBits();
5135      return getVShift(true, VT,
5136                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5137                                   VT, Op.getOperand(1)),
5138                       NumBits/2, DAG, *this, dl);
5139    }
5140
5141    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5142      return SDValue();
5143
5144    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5145    // is a non-constant being inserted into an element other than the low one,
5146    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5147    // movd/movss) to move this into the low element, then shuffle it into
5148    // place.
5149    if (EVTBits == 32) {
5150      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5151
5152      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5153      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5154                                         Subtarget->hasSSE2(), DAG);
5155      SmallVector<int, 8> MaskVec;
5156      for (unsigned i = 0; i < NumElems; i++)
5157        MaskVec.push_back(i == Idx ? 0 : 1);
5158      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5159    }
5160  }
5161
5162  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5163  if (Values.size() == 1) {
5164    if (EVTBits == 32) {
5165      // Instead of a shuffle like this:
5166      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5167      // Check if it's possible to issue this instead.
5168      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5169      unsigned Idx = CountTrailingZeros_32(NonZeros);
5170      SDValue Item = Op.getOperand(Idx);
5171      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5172        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5173    }
5174    return SDValue();
5175  }
5176
5177  // A vector full of immediates; various special cases are already
5178  // handled, so this is best done with a single constant-pool load.
5179  if (IsAllConstants)
5180    return SDValue();
5181
5182  // For AVX-length vectors, build the individual 128-bit pieces and use
5183  // shuffles to put them in place.
5184  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5185    SmallVector<SDValue, 32> V;
5186    for (unsigned i = 0; i < NumElems; ++i)
5187      V.push_back(Op.getOperand(i));
5188
5189    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5190
5191    // Build both the lower and upper subvector.
5192    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5193    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5194                                NumElems/2);
5195
5196    // Recreate the wider vector with the lower and upper part.
5197    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5198                                DAG.getConstant(0, MVT::i32), DAG, dl);
5199    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5200                              DAG, dl);
5201  }
5202
5203  // Let legalizer expand 2-wide build_vectors.
5204  if (EVTBits == 64) {
5205    if (NumNonZero == 1) {
5206      // One half is zero or undef.
5207      unsigned Idx = CountTrailingZeros_32(NonZeros);
5208      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5209                                 Op.getOperand(Idx));
5210      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5211                                         Subtarget->hasSSE2(), DAG);
5212    }
5213    return SDValue();
5214  }
5215
5216  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5217  if (EVTBits == 8 && NumElems == 16) {
5218    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5219                                        *this);
5220    if (V.getNode()) return V;
5221  }
5222
5223  if (EVTBits == 16 && NumElems == 8) {
5224    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5225                                      *this);
5226    if (V.getNode()) return V;
5227  }
5228
5229  // If element VT is == 32 bits, turn it into a number of shuffles.
5230  SmallVector<SDValue, 8> V;
5231  V.resize(NumElems);
5232  if (NumElems == 4 && NumZero > 0) {
5233    for (unsigned i = 0; i < 4; ++i) {
5234      bool isZero = !(NonZeros & (1 << i));
5235      if (isZero)
5236        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5237      else
5238        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5239    }
5240
5241    for (unsigned i = 0; i < 2; ++i) {
5242      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5243        default: break;
5244        case 0:
5245          V[i] = V[i*2];  // Must be a zero vector.
5246          break;
5247        case 1:
5248          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5249          break;
5250        case 2:
5251          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5252          break;
5253        case 3:
5254          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5255          break;
5256      }
5257    }
5258
5259    SmallVector<int, 8> MaskVec;
5260    bool Reverse = (NonZeros & 0x3) == 2;
5261    for (unsigned i = 0; i < 2; ++i)
5262      MaskVec.push_back(Reverse ? 1-i : i);
5263    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5264    for (unsigned i = 0; i < 2; ++i)
5265      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5266    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5267  }
5268
5269  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5270    // Check for a build vector of consecutive loads.
5271    for (unsigned i = 0; i < NumElems; ++i)
5272      V[i] = Op.getOperand(i);
5273
5274    // Check for elements which are consecutive loads.
5275    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5276    if (LD.getNode())
5277      return LD;
5278
5279    // For SSE 4.1, use insertps to put the high elements into the low element.
5280    if (getSubtarget()->hasSSE41()) {
5281      SDValue Result;
5282      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5283        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5284      else
5285        Result = DAG.getUNDEF(VT);
5286
5287      for (unsigned i = 1; i < NumElems; ++i) {
5288        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5289        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5290                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5291      }
5292      return Result;
5293    }
5294
5295    // Otherwise, expand into a number of unpckl*, start by extending each of
5296    // our (non-undef) elements to the full vector width with the element in the
5297    // bottom slot of the vector (which generates no code for SSE).
5298    for (unsigned i = 0; i < NumElems; ++i) {
5299      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5300        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5301      else
5302        V[i] = DAG.getUNDEF(VT);
5303    }
5304
5305    // Next, we iteratively mix elements, e.g. for v4f32:
5306    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5307    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5308    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5309    unsigned EltStride = NumElems >> 1;
5310    while (EltStride != 0) {
5311      for (unsigned i = 0; i < EltStride; ++i) {
5312        // If V[i+EltStride] is undef and this is the first round of mixing,
5313        // then it is safe to just drop this shuffle: V[i] is already in the
5314        // right place, the one element (since it's the first round) being
5315        // inserted as undef can be dropped.  This isn't safe for successive
5316        // rounds because they will permute elements within both vectors.
5317        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5318            EltStride == NumElems/2)
5319          continue;
5320
5321        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5322      }
5323      EltStride >>= 1;
5324    }
5325    return V[0];
5326  }
5327  return SDValue();
5328}
5329
5330// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5331// them in a MMX register.  This is better than doing a stack convert.
5332static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5333  DebugLoc dl = Op.getDebugLoc();
5334  EVT ResVT = Op.getValueType();
5335
5336  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5337         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5338  int Mask[2];
5339  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5340  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5341  InVec = Op.getOperand(1);
5342  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5343    unsigned NumElts = ResVT.getVectorNumElements();
5344    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5345    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5346                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5347  } else {
5348    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5349    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5350    Mask[0] = 0; Mask[1] = 2;
5351    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5352  }
5353  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5354}
5355
5356// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5357// to create 256-bit vectors from two other 128-bit ones.
5358static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5359  DebugLoc dl = Op.getDebugLoc();
5360  EVT ResVT = Op.getValueType();
5361
5362  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5363
5364  SDValue V1 = Op.getOperand(0);
5365  SDValue V2 = Op.getOperand(1);
5366  unsigned NumElems = ResVT.getVectorNumElements();
5367
5368  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5369                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5370  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5371                            DAG, dl);
5372}
5373
5374SDValue
5375X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5376  EVT ResVT = Op.getValueType();
5377
5378  assert(Op.getNumOperands() == 2);
5379  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5380         "Unsupported CONCAT_VECTORS for value type");
5381
5382  // We support concatenate two MMX registers and place them in a MMX register.
5383  // This is better than doing a stack convert.
5384  if (ResVT.is128BitVector())
5385    return LowerMMXCONCAT_VECTORS(Op, DAG);
5386
5387  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5388  // from two other 128-bit ones.
5389  return LowerAVXCONCAT_VECTORS(Op, DAG);
5390}
5391
5392// v8i16 shuffles - Prefer shuffles in the following order:
5393// 1. [all]   pshuflw, pshufhw, optional move
5394// 2. [ssse3] 1 x pshufb
5395// 3. [ssse3] 2 x pshufb + 1 x por
5396// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5397SDValue
5398X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5399                                            SelectionDAG &DAG) const {
5400  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5401  SDValue V1 = SVOp->getOperand(0);
5402  SDValue V2 = SVOp->getOperand(1);
5403  DebugLoc dl = SVOp->getDebugLoc();
5404  SmallVector<int, 8> MaskVals;
5405
5406  // Determine if more than 1 of the words in each of the low and high quadwords
5407  // of the result come from the same quadword of one of the two inputs.  Undef
5408  // mask values count as coming from any quadword, for better codegen.
5409  SmallVector<unsigned, 4> LoQuad(4);
5410  SmallVector<unsigned, 4> HiQuad(4);
5411  BitVector InputQuads(4);
5412  for (unsigned i = 0; i < 8; ++i) {
5413    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
5414    int EltIdx = SVOp->getMaskElt(i);
5415    MaskVals.push_back(EltIdx);
5416    if (EltIdx < 0) {
5417      ++Quad[0];
5418      ++Quad[1];
5419      ++Quad[2];
5420      ++Quad[3];
5421      continue;
5422    }
5423    ++Quad[EltIdx / 4];
5424    InputQuads.set(EltIdx / 4);
5425  }
5426
5427  int BestLoQuad = -1;
5428  unsigned MaxQuad = 1;
5429  for (unsigned i = 0; i < 4; ++i) {
5430    if (LoQuad[i] > MaxQuad) {
5431      BestLoQuad = i;
5432      MaxQuad = LoQuad[i];
5433    }
5434  }
5435
5436  int BestHiQuad = -1;
5437  MaxQuad = 1;
5438  for (unsigned i = 0; i < 4; ++i) {
5439    if (HiQuad[i] > MaxQuad) {
5440      BestHiQuad = i;
5441      MaxQuad = HiQuad[i];
5442    }
5443  }
5444
5445  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5446  // of the two input vectors, shuffle them into one input vector so only a
5447  // single pshufb instruction is necessary. If There are more than 2 input
5448  // quads, disable the next transformation since it does not help SSSE3.
5449  bool V1Used = InputQuads[0] || InputQuads[1];
5450  bool V2Used = InputQuads[2] || InputQuads[3];
5451  if (Subtarget->hasSSSE3()) {
5452    if (InputQuads.count() == 2 && V1Used && V2Used) {
5453      BestLoQuad = InputQuads.find_first();
5454      BestHiQuad = InputQuads.find_next(BestLoQuad);
5455    }
5456    if (InputQuads.count() > 2) {
5457      BestLoQuad = -1;
5458      BestHiQuad = -1;
5459    }
5460  }
5461
5462  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5463  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5464  // words from all 4 input quadwords.
5465  SDValue NewV;
5466  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5467    SmallVector<int, 8> MaskV;
5468    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5469    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5470    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5471                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5472                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5473    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5474
5475    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5476    // source words for the shuffle, to aid later transformations.
5477    bool AllWordsInNewV = true;
5478    bool InOrder[2] = { true, true };
5479    for (unsigned i = 0; i != 8; ++i) {
5480      int idx = MaskVals[i];
5481      if (idx != (int)i)
5482        InOrder[i/4] = false;
5483      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5484        continue;
5485      AllWordsInNewV = false;
5486      break;
5487    }
5488
5489    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5490    if (AllWordsInNewV) {
5491      for (int i = 0; i != 8; ++i) {
5492        int idx = MaskVals[i];
5493        if (idx < 0)
5494          continue;
5495        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5496        if ((idx != i) && idx < 4)
5497          pshufhw = false;
5498        if ((idx != i) && idx > 3)
5499          pshuflw = false;
5500      }
5501      V1 = NewV;
5502      V2Used = false;
5503      BestLoQuad = 0;
5504      BestHiQuad = 1;
5505    }
5506
5507    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5508    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5509    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5510      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5511      unsigned TargetMask = 0;
5512      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5513                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5514      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5515                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5516      V1 = NewV.getOperand(0);
5517      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5518    }
5519  }
5520
5521  // If we have SSSE3, and all words of the result are from 1 input vector,
5522  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5523  // is present, fall back to case 4.
5524  if (Subtarget->hasSSSE3()) {
5525    SmallVector<SDValue,16> pshufbMask;
5526
5527    // If we have elements from both input vectors, set the high bit of the
5528    // shuffle mask element to zero out elements that come from V2 in the V1
5529    // mask, and elements that come from V1 in the V2 mask, so that the two
5530    // results can be OR'd together.
5531    bool TwoInputs = V1Used && V2Used;
5532    for (unsigned i = 0; i != 8; ++i) {
5533      int EltIdx = MaskVals[i] * 2;
5534      if (TwoInputs && (EltIdx >= 16)) {
5535        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5536        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5537        continue;
5538      }
5539      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5540      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5541    }
5542    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5543    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5544                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5545                                 MVT::v16i8, &pshufbMask[0], 16));
5546    if (!TwoInputs)
5547      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5548
5549    // Calculate the shuffle mask for the second input, shuffle it, and
5550    // OR it with the first shuffled input.
5551    pshufbMask.clear();
5552    for (unsigned i = 0; i != 8; ++i) {
5553      int EltIdx = MaskVals[i] * 2;
5554      if (EltIdx < 16) {
5555        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5556        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5557        continue;
5558      }
5559      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5560      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5561    }
5562    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5563    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5564                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5565                                 MVT::v16i8, &pshufbMask[0], 16));
5566    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5567    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5568  }
5569
5570  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5571  // and update MaskVals with new element order.
5572  BitVector InOrder(8);
5573  if (BestLoQuad >= 0) {
5574    SmallVector<int, 8> MaskV;
5575    for (int i = 0; i != 4; ++i) {
5576      int idx = MaskVals[i];
5577      if (idx < 0) {
5578        MaskV.push_back(-1);
5579        InOrder.set(i);
5580      } else if ((idx / 4) == BestLoQuad) {
5581        MaskV.push_back(idx & 3);
5582        InOrder.set(i);
5583      } else {
5584        MaskV.push_back(-1);
5585      }
5586    }
5587    for (unsigned i = 4; i != 8; ++i)
5588      MaskV.push_back(i);
5589    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5590                                &MaskV[0]);
5591
5592    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5593      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5594                               NewV.getOperand(0),
5595                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5596                               DAG);
5597  }
5598
5599  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5600  // and update MaskVals with the new element order.
5601  if (BestHiQuad >= 0) {
5602    SmallVector<int, 8> MaskV;
5603    for (unsigned i = 0; i != 4; ++i)
5604      MaskV.push_back(i);
5605    for (unsigned i = 4; i != 8; ++i) {
5606      int idx = MaskVals[i];
5607      if (idx < 0) {
5608        MaskV.push_back(-1);
5609        InOrder.set(i);
5610      } else if ((idx / 4) == BestHiQuad) {
5611        MaskV.push_back((idx & 3) + 4);
5612        InOrder.set(i);
5613      } else {
5614        MaskV.push_back(-1);
5615      }
5616    }
5617    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5618                                &MaskV[0]);
5619
5620    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5621      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5622                              NewV.getOperand(0),
5623                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5624                              DAG);
5625  }
5626
5627  // In case BestHi & BestLo were both -1, which means each quadword has a word
5628  // from each of the four input quadwords, calculate the InOrder bitvector now
5629  // before falling through to the insert/extract cleanup.
5630  if (BestLoQuad == -1 && BestHiQuad == -1) {
5631    NewV = V1;
5632    for (int i = 0; i != 8; ++i)
5633      if (MaskVals[i] < 0 || MaskVals[i] == i)
5634        InOrder.set(i);
5635  }
5636
5637  // The other elements are put in the right place using pextrw and pinsrw.
5638  for (unsigned i = 0; i != 8; ++i) {
5639    if (InOrder[i])
5640      continue;
5641    int EltIdx = MaskVals[i];
5642    if (EltIdx < 0)
5643      continue;
5644    SDValue ExtOp = (EltIdx < 8)
5645    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5646                  DAG.getIntPtrConstant(EltIdx))
5647    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5648                  DAG.getIntPtrConstant(EltIdx - 8));
5649    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5650                       DAG.getIntPtrConstant(i));
5651  }
5652  return NewV;
5653}
5654
5655// v16i8 shuffles - Prefer shuffles in the following order:
5656// 1. [ssse3] 1 x pshufb
5657// 2. [ssse3] 2 x pshufb + 1 x por
5658// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5659static
5660SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5661                                 SelectionDAG &DAG,
5662                                 const X86TargetLowering &TLI) {
5663  SDValue V1 = SVOp->getOperand(0);
5664  SDValue V2 = SVOp->getOperand(1);
5665  DebugLoc dl = SVOp->getDebugLoc();
5666  SmallVector<int, 16> MaskVals;
5667  SVOp->getMask(MaskVals);
5668
5669  // If we have SSSE3, case 1 is generated when all result bytes come from
5670  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5671  // present, fall back to case 3.
5672  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5673  bool V1Only = true;
5674  bool V2Only = true;
5675  for (unsigned i = 0; i < 16; ++i) {
5676    int EltIdx = MaskVals[i];
5677    if (EltIdx < 0)
5678      continue;
5679    if (EltIdx < 16)
5680      V2Only = false;
5681    else
5682      V1Only = false;
5683  }
5684
5685  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5686  if (TLI.getSubtarget()->hasSSSE3()) {
5687    SmallVector<SDValue,16> pshufbMask;
5688
5689    // If all result elements are from one input vector, then only translate
5690    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5691    //
5692    // Otherwise, we have elements from both input vectors, and must zero out
5693    // elements that come from V2 in the first mask, and V1 in the second mask
5694    // so that we can OR them together.
5695    bool TwoInputs = !(V1Only || V2Only);
5696    for (unsigned i = 0; i != 16; ++i) {
5697      int EltIdx = MaskVals[i];
5698      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5699        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5700        continue;
5701      }
5702      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5703    }
5704    // If all the elements are from V2, assign it to V1 and return after
5705    // building the first pshufb.
5706    if (V2Only)
5707      V1 = V2;
5708    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5709                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5710                                 MVT::v16i8, &pshufbMask[0], 16));
5711    if (!TwoInputs)
5712      return V1;
5713
5714    // Calculate the shuffle mask for the second input, shuffle it, and
5715    // OR it with the first shuffled input.
5716    pshufbMask.clear();
5717    for (unsigned i = 0; i != 16; ++i) {
5718      int EltIdx = MaskVals[i];
5719      if (EltIdx < 16) {
5720        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5721        continue;
5722      }
5723      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5724    }
5725    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5726                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5727                                 MVT::v16i8, &pshufbMask[0], 16));
5728    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5729  }
5730
5731  // No SSSE3 - Calculate in place words and then fix all out of place words
5732  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5733  // the 16 different words that comprise the two doublequadword input vectors.
5734  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5735  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5736  SDValue NewV = V2Only ? V2 : V1;
5737  for (int i = 0; i != 8; ++i) {
5738    int Elt0 = MaskVals[i*2];
5739    int Elt1 = MaskVals[i*2+1];
5740
5741    // This word of the result is all undef, skip it.
5742    if (Elt0 < 0 && Elt1 < 0)
5743      continue;
5744
5745    // This word of the result is already in the correct place, skip it.
5746    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5747      continue;
5748    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5749      continue;
5750
5751    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5752    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5753    SDValue InsElt;
5754
5755    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5756    // using a single extract together, load it and store it.
5757    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5758      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5759                           DAG.getIntPtrConstant(Elt1 / 2));
5760      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5761                        DAG.getIntPtrConstant(i));
5762      continue;
5763    }
5764
5765    // If Elt1 is defined, extract it from the appropriate source.  If the
5766    // source byte is not also odd, shift the extracted word left 8 bits
5767    // otherwise clear the bottom 8 bits if we need to do an or.
5768    if (Elt1 >= 0) {
5769      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5770                           DAG.getIntPtrConstant(Elt1 / 2));
5771      if ((Elt1 & 1) == 0)
5772        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5773                             DAG.getConstant(8,
5774                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5775      else if (Elt0 >= 0)
5776        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5777                             DAG.getConstant(0xFF00, MVT::i16));
5778    }
5779    // If Elt0 is defined, extract it from the appropriate source.  If the
5780    // source byte is not also even, shift the extracted word right 8 bits. If
5781    // Elt1 was also defined, OR the extracted values together before
5782    // inserting them in the result.
5783    if (Elt0 >= 0) {
5784      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5785                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5786      if ((Elt0 & 1) != 0)
5787        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5788                              DAG.getConstant(8,
5789                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5790      else if (Elt1 >= 0)
5791        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5792                             DAG.getConstant(0x00FF, MVT::i16));
5793      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5794                         : InsElt0;
5795    }
5796    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5797                       DAG.getIntPtrConstant(i));
5798  }
5799  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5800}
5801
5802/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5803/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5804/// done when every pair / quad of shuffle mask elements point to elements in
5805/// the right sequence. e.g.
5806/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5807static
5808SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5809                                 SelectionDAG &DAG, DebugLoc dl) {
5810  EVT VT = SVOp->getValueType(0);
5811  SDValue V1 = SVOp->getOperand(0);
5812  SDValue V2 = SVOp->getOperand(1);
5813  unsigned NumElems = VT.getVectorNumElements();
5814  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5815  EVT NewVT;
5816  switch (VT.getSimpleVT().SimpleTy) {
5817  default: assert(false && "Unexpected!");
5818  case MVT::v4f32: NewVT = MVT::v2f64; break;
5819  case MVT::v4i32: NewVT = MVT::v2i64; break;
5820  case MVT::v8i16: NewVT = MVT::v4i32; break;
5821  case MVT::v16i8: NewVT = MVT::v4i32; break;
5822  }
5823
5824  int Scale = NumElems / NewWidth;
5825  SmallVector<int, 8> MaskVec;
5826  for (unsigned i = 0; i < NumElems; i += Scale) {
5827    int StartIdx = -1;
5828    for (int j = 0; j < Scale; ++j) {
5829      int EltIdx = SVOp->getMaskElt(i+j);
5830      if (EltIdx < 0)
5831        continue;
5832      if (StartIdx == -1)
5833        StartIdx = EltIdx - (EltIdx % Scale);
5834      if (EltIdx != StartIdx + j)
5835        return SDValue();
5836    }
5837    if (StartIdx == -1)
5838      MaskVec.push_back(-1);
5839    else
5840      MaskVec.push_back(StartIdx / Scale);
5841  }
5842
5843  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5844  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5845  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5846}
5847
5848/// getVZextMovL - Return a zero-extending vector move low node.
5849///
5850static SDValue getVZextMovL(EVT VT, EVT OpVT,
5851                            SDValue SrcOp, SelectionDAG &DAG,
5852                            const X86Subtarget *Subtarget, DebugLoc dl) {
5853  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5854    LoadSDNode *LD = NULL;
5855    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5856      LD = dyn_cast<LoadSDNode>(SrcOp);
5857    if (!LD) {
5858      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5859      // instead.
5860      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5861      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5862          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5863          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5864          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5865        // PR2108
5866        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5867        return DAG.getNode(ISD::BITCAST, dl, VT,
5868                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5869                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5870                                                   OpVT,
5871                                                   SrcOp.getOperand(0)
5872                                                          .getOperand(0))));
5873      }
5874    }
5875  }
5876
5877  return DAG.getNode(ISD::BITCAST, dl, VT,
5878                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5879                                 DAG.getNode(ISD::BITCAST, dl,
5880                                             OpVT, SrcOp)));
5881}
5882
5883/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5884/// shuffle node referes to only one lane in the sources.
5885static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5886  EVT VT = SVOp->getValueType(0);
5887  int NumElems = VT.getVectorNumElements();
5888  int HalfSize = NumElems/2;
5889  SmallVector<int, 16> M;
5890  SVOp->getMask(M);
5891  bool MatchA = false, MatchB = false;
5892
5893  for (int l = 0; l < NumElems*2; l += HalfSize) {
5894    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5895      MatchA = true;
5896      break;
5897    }
5898  }
5899
5900  for (int l = 0; l < NumElems*2; l += HalfSize) {
5901    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5902      MatchB = true;
5903      break;
5904    }
5905  }
5906
5907  return MatchA && MatchB;
5908}
5909
5910/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5911/// which could not be matched by any known target speficic shuffle
5912static SDValue
5913LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5914  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5915    // If each half of a vector shuffle node referes to only one lane in the
5916    // source vectors, extract each used 128-bit lane and shuffle them using
5917    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5918    // the work to the legalizer.
5919    DebugLoc dl = SVOp->getDebugLoc();
5920    EVT VT = SVOp->getValueType(0);
5921    int NumElems = VT.getVectorNumElements();
5922    int HalfSize = NumElems/2;
5923
5924    // Extract the reference for each half
5925    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5926    int FstVecOpNum = 0, SndVecOpNum = 0;
5927    for (int i = 0; i < HalfSize; ++i) {
5928      int Elt = SVOp->getMaskElt(i);
5929      if (SVOp->getMaskElt(i) < 0)
5930        continue;
5931      FstVecOpNum = Elt/NumElems;
5932      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5933      break;
5934    }
5935    for (int i = HalfSize; i < NumElems; ++i) {
5936      int Elt = SVOp->getMaskElt(i);
5937      if (SVOp->getMaskElt(i) < 0)
5938        continue;
5939      SndVecOpNum = Elt/NumElems;
5940      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5941      break;
5942    }
5943
5944    // Extract the subvectors
5945    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
5946                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
5947    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
5948                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
5949
5950    // Generate 128-bit shuffles
5951    SmallVector<int, 16> MaskV1, MaskV2;
5952    for (int i = 0; i < HalfSize; ++i) {
5953      int Elt = SVOp->getMaskElt(i);
5954      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5955    }
5956    for (int i = HalfSize; i < NumElems; ++i) {
5957      int Elt = SVOp->getMaskElt(i);
5958      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5959    }
5960
5961    EVT NVT = V1.getValueType();
5962    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
5963    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
5964
5965    // Concatenate the result back
5966    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
5967                                   DAG.getConstant(0, MVT::i32), DAG, dl);
5968    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5969                              DAG, dl);
5970  }
5971
5972  return SDValue();
5973}
5974
5975/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5976/// 4 elements, and match them with several different shuffle types.
5977static SDValue
5978LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5979  SDValue V1 = SVOp->getOperand(0);
5980  SDValue V2 = SVOp->getOperand(1);
5981  DebugLoc dl = SVOp->getDebugLoc();
5982  EVT VT = SVOp->getValueType(0);
5983
5984  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5985
5986  SmallVector<std::pair<int, int>, 8> Locs;
5987  Locs.resize(4);
5988  SmallVector<int, 8> Mask1(4U, -1);
5989  SmallVector<int, 8> PermMask;
5990  SVOp->getMask(PermMask);
5991
5992  unsigned NumHi = 0;
5993  unsigned NumLo = 0;
5994  for (unsigned i = 0; i != 4; ++i) {
5995    int Idx = PermMask[i];
5996    if (Idx < 0) {
5997      Locs[i] = std::make_pair(-1, -1);
5998    } else {
5999      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6000      if (Idx < 4) {
6001        Locs[i] = std::make_pair(0, NumLo);
6002        Mask1[NumLo] = Idx;
6003        NumLo++;
6004      } else {
6005        Locs[i] = std::make_pair(1, NumHi);
6006        if (2+NumHi < 4)
6007          Mask1[2+NumHi] = Idx;
6008        NumHi++;
6009      }
6010    }
6011  }
6012
6013  if (NumLo <= 2 && NumHi <= 2) {
6014    // If no more than two elements come from either vector. This can be
6015    // implemented with two shuffles. First shuffle gather the elements.
6016    // The second shuffle, which takes the first shuffle as both of its
6017    // vector operands, put the elements into the right order.
6018    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6019
6020    SmallVector<int, 8> Mask2(4U, -1);
6021
6022    for (unsigned i = 0; i != 4; ++i) {
6023      if (Locs[i].first == -1)
6024        continue;
6025      else {
6026        unsigned Idx = (i < 2) ? 0 : 4;
6027        Idx += Locs[i].first * 2 + Locs[i].second;
6028        Mask2[i] = Idx;
6029      }
6030    }
6031
6032    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6033  } else if (NumLo == 3 || NumHi == 3) {
6034    // Otherwise, we must have three elements from one vector, call it X, and
6035    // one element from the other, call it Y.  First, use a shufps to build an
6036    // intermediate vector with the one element from Y and the element from X
6037    // that will be in the same half in the final destination (the indexes don't
6038    // matter). Then, use a shufps to build the final vector, taking the half
6039    // containing the element from Y from the intermediate, and the other half
6040    // from X.
6041    if (NumHi == 3) {
6042      // Normalize it so the 3 elements come from V1.
6043      CommuteVectorShuffleMask(PermMask, VT);
6044      std::swap(V1, V2);
6045    }
6046
6047    // Find the element from V2.
6048    unsigned HiIndex;
6049    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6050      int Val = PermMask[HiIndex];
6051      if (Val < 0)
6052        continue;
6053      if (Val >= 4)
6054        break;
6055    }
6056
6057    Mask1[0] = PermMask[HiIndex];
6058    Mask1[1] = -1;
6059    Mask1[2] = PermMask[HiIndex^1];
6060    Mask1[3] = -1;
6061    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6062
6063    if (HiIndex >= 2) {
6064      Mask1[0] = PermMask[0];
6065      Mask1[1] = PermMask[1];
6066      Mask1[2] = HiIndex & 1 ? 6 : 4;
6067      Mask1[3] = HiIndex & 1 ? 4 : 6;
6068      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6069    } else {
6070      Mask1[0] = HiIndex & 1 ? 2 : 0;
6071      Mask1[1] = HiIndex & 1 ? 0 : 2;
6072      Mask1[2] = PermMask[2];
6073      Mask1[3] = PermMask[3];
6074      if (Mask1[2] >= 0)
6075        Mask1[2] += 4;
6076      if (Mask1[3] >= 0)
6077        Mask1[3] += 4;
6078      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6079    }
6080  }
6081
6082  // Break it into (shuffle shuffle_hi, shuffle_lo).
6083  Locs.clear();
6084  Locs.resize(4);
6085  SmallVector<int,8> LoMask(4U, -1);
6086  SmallVector<int,8> HiMask(4U, -1);
6087
6088  SmallVector<int,8> *MaskPtr = &LoMask;
6089  unsigned MaskIdx = 0;
6090  unsigned LoIdx = 0;
6091  unsigned HiIdx = 2;
6092  for (unsigned i = 0; i != 4; ++i) {
6093    if (i == 2) {
6094      MaskPtr = &HiMask;
6095      MaskIdx = 1;
6096      LoIdx = 0;
6097      HiIdx = 2;
6098    }
6099    int Idx = PermMask[i];
6100    if (Idx < 0) {
6101      Locs[i] = std::make_pair(-1, -1);
6102    } else if (Idx < 4) {
6103      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6104      (*MaskPtr)[LoIdx] = Idx;
6105      LoIdx++;
6106    } else {
6107      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6108      (*MaskPtr)[HiIdx] = Idx;
6109      HiIdx++;
6110    }
6111  }
6112
6113  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6114  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6115  SmallVector<int, 8> MaskOps;
6116  for (unsigned i = 0; i != 4; ++i) {
6117    if (Locs[i].first == -1) {
6118      MaskOps.push_back(-1);
6119    } else {
6120      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6121      MaskOps.push_back(Idx);
6122    }
6123  }
6124  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6125}
6126
6127static bool MayFoldVectorLoad(SDValue V) {
6128  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6129    V = V.getOperand(0);
6130  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6131    V = V.getOperand(0);
6132  if (MayFoldLoad(V))
6133    return true;
6134  return false;
6135}
6136
6137// FIXME: the version above should always be used. Since there's
6138// a bug where several vector shuffles can't be folded because the
6139// DAG is not updated during lowering and a node claims to have two
6140// uses while it only has one, use this version, and let isel match
6141// another instruction if the load really happens to have more than
6142// one use. Remove this version after this bug get fixed.
6143// rdar://8434668, PR8156
6144static bool RelaxedMayFoldVectorLoad(SDValue V) {
6145  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6146    V = V.getOperand(0);
6147  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6148    V = V.getOperand(0);
6149  if (ISD::isNormalLoad(V.getNode()))
6150    return true;
6151  return false;
6152}
6153
6154/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6155/// a vector extract, and if both can be later optimized into a single load.
6156/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6157/// here because otherwise a target specific shuffle node is going to be
6158/// emitted for this shuffle, and the optimization not done.
6159/// FIXME: This is probably not the best approach, but fix the problem
6160/// until the right path is decided.
6161static
6162bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6163                                         const TargetLowering &TLI) {
6164  EVT VT = V.getValueType();
6165  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6166
6167  // Be sure that the vector shuffle is present in a pattern like this:
6168  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6169  if (!V.hasOneUse())
6170    return false;
6171
6172  SDNode *N = *V.getNode()->use_begin();
6173  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6174    return false;
6175
6176  SDValue EltNo = N->getOperand(1);
6177  if (!isa<ConstantSDNode>(EltNo))
6178    return false;
6179
6180  // If the bit convert changed the number of elements, it is unsafe
6181  // to examine the mask.
6182  bool HasShuffleIntoBitcast = false;
6183  if (V.getOpcode() == ISD::BITCAST) {
6184    EVT SrcVT = V.getOperand(0).getValueType();
6185    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6186      return false;
6187    V = V.getOperand(0);
6188    HasShuffleIntoBitcast = true;
6189  }
6190
6191  // Select the input vector, guarding against out of range extract vector.
6192  unsigned NumElems = VT.getVectorNumElements();
6193  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6194  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6195  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6196
6197  // Skip one more bit_convert if necessary
6198  if (V.getOpcode() == ISD::BITCAST)
6199    V = V.getOperand(0);
6200
6201  if (ISD::isNormalLoad(V.getNode())) {
6202    // Is the original load suitable?
6203    LoadSDNode *LN0 = cast<LoadSDNode>(V);
6204
6205    // FIXME: avoid the multi-use bug that is preventing lots of
6206    // of foldings to be detected, this is still wrong of course, but
6207    // give the temporary desired behavior, and if it happens that
6208    // the load has real more uses, during isel it will not fold, and
6209    // will generate poor code.
6210    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6211      return false;
6212
6213    if (!HasShuffleIntoBitcast)
6214      return true;
6215
6216    // If there's a bitcast before the shuffle, check if the load type and
6217    // alignment is valid.
6218    unsigned Align = LN0->getAlignment();
6219    unsigned NewAlign =
6220      TLI.getTargetData()->getABITypeAlignment(
6221                                    VT.getTypeForEVT(*DAG.getContext()));
6222
6223    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6224      return false;
6225  }
6226
6227  return true;
6228}
6229
6230static
6231SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6232  EVT VT = Op.getValueType();
6233
6234  // Canonizalize to v2f64.
6235  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6236  return DAG.getNode(ISD::BITCAST, dl, VT,
6237                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6238                                          V1, DAG));
6239}
6240
6241static
6242SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6243                        bool HasSSE2) {
6244  SDValue V1 = Op.getOperand(0);
6245  SDValue V2 = Op.getOperand(1);
6246  EVT VT = Op.getValueType();
6247
6248  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6249
6250  if (HasSSE2 && VT == MVT::v2f64)
6251    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6252
6253  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6254  return DAG.getNode(ISD::BITCAST, dl, VT,
6255                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6256                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6257                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6258}
6259
6260static
6261SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6262  SDValue V1 = Op.getOperand(0);
6263  SDValue V2 = Op.getOperand(1);
6264  EVT VT = Op.getValueType();
6265
6266  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6267         "unsupported shuffle type");
6268
6269  if (V2.getOpcode() == ISD::UNDEF)
6270    V2 = V1;
6271
6272  // v4i32 or v4f32
6273  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6274}
6275
6276static inline unsigned getSHUFPOpcode(EVT VT) {
6277  switch(VT.getSimpleVT().SimpleTy) {
6278  case MVT::v8i32: // Use fp unit for int unpack.
6279  case MVT::v8f32:
6280  case MVT::v4i32: // Use fp unit for int unpack.
6281  case MVT::v4f32: return X86ISD::SHUFPS;
6282  case MVT::v4i64: // Use fp unit for int unpack.
6283  case MVT::v4f64:
6284  case MVT::v2i64: // Use fp unit for int unpack.
6285  case MVT::v2f64: return X86ISD::SHUFPD;
6286  default:
6287    llvm_unreachable("Unknown type for shufp*");
6288  }
6289  return 0;
6290}
6291
6292static
6293SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6294  SDValue V1 = Op.getOperand(0);
6295  SDValue V2 = Op.getOperand(1);
6296  EVT VT = Op.getValueType();
6297  unsigned NumElems = VT.getVectorNumElements();
6298
6299  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6300  // operand of these instructions is only memory, so check if there's a
6301  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6302  // same masks.
6303  bool CanFoldLoad = false;
6304
6305  // Trivial case, when V2 comes from a load.
6306  if (MayFoldVectorLoad(V2))
6307    CanFoldLoad = true;
6308
6309  // When V1 is a load, it can be folded later into a store in isel, example:
6310  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6311  //    turns into:
6312  //  (MOVLPSmr addr:$src1, VR128:$src2)
6313  // So, recognize this potential and also use MOVLPS or MOVLPD
6314  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6315    CanFoldLoad = true;
6316
6317  // Both of them can't be memory operations though.
6318  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
6319    CanFoldLoad = false;
6320
6321  if (CanFoldLoad) {
6322    if (HasSSE2 && NumElems == 2)
6323      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6324
6325    if (NumElems == 4)
6326      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6327  }
6328
6329  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6330  // movl and movlp will both match v2i64, but v2i64 is never matched by
6331  // movl earlier because we make it strict to avoid messing with the movlp load
6332  // folding logic (see the code above getMOVLP call). Match it here then,
6333  // this is horrible, but will stay like this until we move all shuffle
6334  // matching to x86 specific nodes. Note that for the 1st condition all
6335  // types are matched with movsd.
6336  if (HasSSE2) {
6337    if (NumElems == 2)
6338      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6339    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6340  }
6341
6342  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6343
6344  // Invert the operand order and use SHUFPS to match it.
6345  return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6346                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6347}
6348
6349static inline unsigned getUNPCKLOpcode(EVT VT) {
6350  switch(VT.getSimpleVT().SimpleTy) {
6351  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
6352  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
6353  case MVT::v4f32: return X86ISD::UNPCKLPS;
6354  case MVT::v2f64: return X86ISD::UNPCKLPD;
6355  case MVT::v8i32: // Use fp unit for int unpack.
6356  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
6357  case MVT::v4i64: // Use fp unit for int unpack.
6358  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
6359  case MVT::v16i8: return X86ISD::PUNPCKLBW;
6360  case MVT::v8i16: return X86ISD::PUNPCKLWD;
6361  default:
6362    llvm_unreachable("Unknown type for unpckl");
6363  }
6364  return 0;
6365}
6366
6367static inline unsigned getUNPCKHOpcode(EVT VT) {
6368  switch(VT.getSimpleVT().SimpleTy) {
6369  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
6370  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
6371  case MVT::v4f32: return X86ISD::UNPCKHPS;
6372  case MVT::v2f64: return X86ISD::UNPCKHPD;
6373  case MVT::v8i32: // Use fp unit for int unpack.
6374  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
6375  case MVT::v4i64: // Use fp unit for int unpack.
6376  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
6377  case MVT::v16i8: return X86ISD::PUNPCKHBW;
6378  case MVT::v8i16: return X86ISD::PUNPCKHWD;
6379  default:
6380    llvm_unreachable("Unknown type for unpckh");
6381  }
6382  return 0;
6383}
6384
6385static inline unsigned getVPERMILOpcode(EVT VT) {
6386  switch(VT.getSimpleVT().SimpleTy) {
6387  case MVT::v4i32:
6388  case MVT::v4f32: return X86ISD::VPERMILPS;
6389  case MVT::v2i64:
6390  case MVT::v2f64: return X86ISD::VPERMILPD;
6391  case MVT::v8i32:
6392  case MVT::v8f32: return X86ISD::VPERMILPSY;
6393  case MVT::v4i64:
6394  case MVT::v4f64: return X86ISD::VPERMILPDY;
6395  default:
6396    llvm_unreachable("Unknown type for vpermil");
6397  }
6398  return 0;
6399}
6400
6401/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
6402/// a vbroadcast node. The nodes are suitable whenever we can fold a load coming
6403/// from a 32 or 64 bit scalar. Update Op to the desired load to be folded.
6404static bool isVectorBroadcast(SDValue &Op) {
6405  EVT VT = Op.getValueType();
6406  bool Is256 = VT.getSizeInBits() == 256;
6407
6408  assert((VT.getSizeInBits() == 128 || Is256) &&
6409         "Unsupported type for vbroadcast node");
6410
6411  SDValue V = Op;
6412  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6413    V = V.getOperand(0);
6414
6415  if (Is256 && !(V.hasOneUse() &&
6416                 V.getOpcode() == ISD::INSERT_SUBVECTOR &&
6417                 V.getOperand(0).getOpcode() == ISD::UNDEF))
6418    return false;
6419
6420  if (Is256)
6421    V = V.getOperand(1);
6422
6423  if (!V.hasOneUse())
6424    return false;
6425
6426  // Check the source scalar_to_vector type. 256-bit broadcasts are
6427  // supported for 32/64-bit sizes, while 128-bit ones are only supported
6428  // for 32-bit scalars.
6429  if (V.getOpcode() != ISD::SCALAR_TO_VECTOR)
6430    return false;
6431
6432  unsigned ScalarSize = V.getOperand(0).getValueType().getSizeInBits();
6433  if (ScalarSize != 32 && ScalarSize != 64)
6434    return false;
6435  if (!Is256 && ScalarSize == 64)
6436    return false;
6437
6438  V = V.getOperand(0);
6439  if (!MayFoldLoad(V))
6440    return false;
6441
6442  // Return the load node
6443  Op = V;
6444  return true;
6445}
6446
6447static
6448SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6449                               const TargetLowering &TLI,
6450                               const X86Subtarget *Subtarget) {
6451  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6452  EVT VT = Op.getValueType();
6453  DebugLoc dl = Op.getDebugLoc();
6454  SDValue V1 = Op.getOperand(0);
6455  SDValue V2 = Op.getOperand(1);
6456
6457  if (isZeroShuffle(SVOp))
6458    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
6459
6460  // Handle splat operations
6461  if (SVOp->isSplat()) {
6462    unsigned NumElem = VT.getVectorNumElements();
6463    int Size = VT.getSizeInBits();
6464    // Special case, this is the only place now where it's allowed to return
6465    // a vector_shuffle operation without using a target specific node, because
6466    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6467    // this be moved to DAGCombine instead?
6468    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6469      return Op;
6470
6471    // Use vbroadcast whenever the splat comes from a foldable load
6472    if (Subtarget->hasAVX() && isVectorBroadcast(V1))
6473      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, V1);
6474
6475    // Handle splats by matching through known shuffle masks
6476    if ((Size == 128 && NumElem <= 4) ||
6477        (Size == 256 && NumElem < 8))
6478      return SDValue();
6479
6480    // All remaning splats are promoted to target supported vector shuffles.
6481    return PromoteSplat(SVOp, DAG);
6482  }
6483
6484  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6485  // do it!
6486  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6487    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6488    if (NewOp.getNode())
6489      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6490  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6491    // FIXME: Figure out a cleaner way to do this.
6492    // Try to make use of movq to zero out the top part.
6493    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6494      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6495      if (NewOp.getNode()) {
6496        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6497          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6498                              DAG, Subtarget, dl);
6499      }
6500    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6501      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6502      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6503        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6504                            DAG, Subtarget, dl);
6505    }
6506  }
6507  return SDValue();
6508}
6509
6510SDValue
6511X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6512  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6513  SDValue V1 = Op.getOperand(0);
6514  SDValue V2 = Op.getOperand(1);
6515  EVT VT = Op.getValueType();
6516  DebugLoc dl = Op.getDebugLoc();
6517  unsigned NumElems = VT.getVectorNumElements();
6518  bool isMMX = VT.getSizeInBits() == 64;
6519  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6520  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6521  bool V1IsSplat = false;
6522  bool V2IsSplat = false;
6523  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
6524  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
6525  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
6526  MachineFunction &MF = DAG.getMachineFunction();
6527  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6528
6529  // Shuffle operations on MMX not supported.
6530  if (isMMX)
6531    return Op;
6532
6533  // Vector shuffle lowering takes 3 steps:
6534  //
6535  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6536  //    narrowing and commutation of operands should be handled.
6537  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6538  //    shuffle nodes.
6539  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6540  //    so the shuffle can be broken into other shuffles and the legalizer can
6541  //    try the lowering again.
6542  //
6543  // The general ideia is that no vector_shuffle operation should be left to
6544  // be matched during isel, all of them must be converted to a target specific
6545  // node here.
6546
6547  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6548  // narrowing and commutation of operands should be handled. The actual code
6549  // doesn't include all of those, work in progress...
6550  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6551  if (NewOp.getNode())
6552    return NewOp;
6553
6554  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6555  // unpckh_undef). Only use pshufd if speed is more important than size.
6556  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6557    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6558  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6559    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6560
6561  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
6562      RelaxedMayFoldVectorLoad(V1))
6563    return getMOVDDup(Op, dl, V1, DAG);
6564
6565  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6566    return getMOVHighToLow(Op, dl, DAG);
6567
6568  // Use to match splats
6569  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6570      (VT == MVT::v2f64 || VT == MVT::v2i64))
6571    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6572
6573  if (X86::isPSHUFDMask(SVOp)) {
6574    // The actual implementation will match the mask in the if above and then
6575    // during isel it can match several different instructions, not only pshufd
6576    // as its name says, sad but true, emulate the behavior for now...
6577    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6578        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6579
6580    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6581
6582    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6583      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6584
6585    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6586                                TargetMask, DAG);
6587  }
6588
6589  // Check if this can be converted into a logical shift.
6590  bool isLeft = false;
6591  unsigned ShAmt = 0;
6592  SDValue ShVal;
6593  bool isShift = getSubtarget()->hasSSE2() &&
6594    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6595  if (isShift && ShVal.hasOneUse()) {
6596    // If the shifted value has multiple uses, it may be cheaper to use
6597    // v_set0 + movlhps or movhlps, etc.
6598    EVT EltVT = VT.getVectorElementType();
6599    ShAmt *= EltVT.getSizeInBits();
6600    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6601  }
6602
6603  if (X86::isMOVLMask(SVOp)) {
6604    if (V1IsUndef)
6605      return V2;
6606    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6607      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6608    if (!X86::isMOVLPMask(SVOp)) {
6609      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6610        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6611
6612      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6613        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6614    }
6615  }
6616
6617  // FIXME: fold these into legal mask.
6618  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6619    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6620
6621  if (X86::isMOVHLPSMask(SVOp))
6622    return getMOVHighToLow(Op, dl, DAG);
6623
6624  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6625    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6626
6627  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6628    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6629
6630  if (X86::isMOVLPMask(SVOp))
6631    return getMOVLP(Op, dl, DAG, HasSSE2);
6632
6633  if (ShouldXformToMOVHLPS(SVOp) ||
6634      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6635    return CommuteVectorShuffle(SVOp, DAG);
6636
6637  if (isShift) {
6638    // No better options. Use a vshl / vsrl.
6639    EVT EltVT = VT.getVectorElementType();
6640    ShAmt *= EltVT.getSizeInBits();
6641    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6642  }
6643
6644  bool Commuted = false;
6645  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6646  // 1,1,1,1 -> v8i16 though.
6647  V1IsSplat = isSplatVector(V1.getNode());
6648  V2IsSplat = isSplatVector(V2.getNode());
6649
6650  // Canonicalize the splat or undef, if present, to be on the RHS.
6651  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6652    Op = CommuteVectorShuffle(SVOp, DAG);
6653    SVOp = cast<ShuffleVectorSDNode>(Op);
6654    V1 = SVOp->getOperand(0);
6655    V2 = SVOp->getOperand(1);
6656    std::swap(V1IsSplat, V2IsSplat);
6657    std::swap(V1IsUndef, V2IsUndef);
6658    Commuted = true;
6659  }
6660
6661  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6662    // Shuffling low element of v1 into undef, just return v1.
6663    if (V2IsUndef)
6664      return V1;
6665    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6666    // the instruction selector will not match, so get a canonical MOVL with
6667    // swapped operands to undo the commute.
6668    return getMOVL(DAG, dl, VT, V2, V1);
6669  }
6670
6671  if (X86::isUNPCKLMask(SVOp))
6672    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6673
6674  if (X86::isUNPCKHMask(SVOp))
6675    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6676
6677  if (V2IsSplat) {
6678    // Normalize mask so all entries that point to V2 points to its first
6679    // element then try to match unpck{h|l} again. If match, return a
6680    // new vector_shuffle with the corrected mask.
6681    SDValue NewMask = NormalizeMask(SVOp, DAG);
6682    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6683    if (NSVOp != SVOp) {
6684      if (X86::isUNPCKLMask(NSVOp, true)) {
6685        return NewMask;
6686      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6687        return NewMask;
6688      }
6689    }
6690  }
6691
6692  if (Commuted) {
6693    // Commute is back and try unpck* again.
6694    // FIXME: this seems wrong.
6695    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6696    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6697
6698    if (X86::isUNPCKLMask(NewSVOp))
6699      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6700
6701    if (X86::isUNPCKHMask(NewSVOp))
6702      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6703  }
6704
6705  // Normalize the node to match x86 shuffle ops if needed
6706  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6707    return CommuteVectorShuffle(SVOp, DAG);
6708
6709  // The checks below are all present in isShuffleMaskLegal, but they are
6710  // inlined here right now to enable us to directly emit target specific
6711  // nodes, and remove one by one until they don't return Op anymore.
6712  SmallVector<int, 16> M;
6713  SVOp->getMask(M);
6714
6715  if (isPALIGNRMask(M, VT, HasSSSE3))
6716    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6717                                X86::getShufflePALIGNRImmediate(SVOp),
6718                                DAG);
6719
6720  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6721      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6722    if (VT == MVT::v2f64)
6723      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6724    if (VT == MVT::v2i64)
6725      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6726  }
6727
6728  if (isPSHUFHWMask(M, VT))
6729    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6730                                X86::getShufflePSHUFHWImmediate(SVOp),
6731                                DAG);
6732
6733  if (isPSHUFLWMask(M, VT))
6734    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6735                                X86::getShufflePSHUFLWImmediate(SVOp),
6736                                DAG);
6737
6738  if (isSHUFPMask(M, VT))
6739    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6740                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6741
6742  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6743    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6744  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6745    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6746
6747  //===--------------------------------------------------------------------===//
6748  // Generate target specific nodes for 128 or 256-bit shuffles only
6749  // supported in the AVX instruction set.
6750  //
6751
6752  // Handle VMOVDDUPY permutations
6753  if (isMOVDDUPYMask(SVOp, Subtarget))
6754    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6755
6756  // Handle VPERMILPS* permutations
6757  if (isVPERMILPSMask(M, VT, Subtarget))
6758    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6759                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6760
6761  // Handle VPERMILPD* permutations
6762  if (isVPERMILPDMask(M, VT, Subtarget))
6763    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6764                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6765
6766  // Handle VPERM2F128 permutations
6767  if (isVPERM2F128Mask(M, VT, Subtarget))
6768    return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
6769                                getShuffleVPERM2F128Immediate(SVOp), DAG);
6770
6771  // Handle VSHUFPSY permutations
6772  if (isVSHUFPSYMask(M, VT, Subtarget))
6773    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6774                                getShuffleVSHUFPSYImmediate(SVOp), DAG);
6775
6776  // Handle VSHUFPDY permutations
6777  if (isVSHUFPDYMask(M, VT, Subtarget))
6778    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6779                                getShuffleVSHUFPDYImmediate(SVOp), DAG);
6780
6781  //===--------------------------------------------------------------------===//
6782  // Since no target specific shuffle was selected for this generic one,
6783  // lower it into other known shuffles. FIXME: this isn't true yet, but
6784  // this is the plan.
6785  //
6786
6787  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6788  if (VT == MVT::v8i16) {
6789    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6790    if (NewOp.getNode())
6791      return NewOp;
6792  }
6793
6794  if (VT == MVT::v16i8) {
6795    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6796    if (NewOp.getNode())
6797      return NewOp;
6798  }
6799
6800  // Handle all 128-bit wide vectors with 4 elements, and match them with
6801  // several different shuffle types.
6802  if (NumElems == 4 && VT.getSizeInBits() == 128)
6803    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6804
6805  // Handle general 256-bit shuffles
6806  if (VT.is256BitVector())
6807    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6808
6809  return SDValue();
6810}
6811
6812SDValue
6813X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6814                                                SelectionDAG &DAG) const {
6815  EVT VT = Op.getValueType();
6816  DebugLoc dl = Op.getDebugLoc();
6817
6818  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6819    return SDValue();
6820
6821  if (VT.getSizeInBits() == 8) {
6822    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6823                                    Op.getOperand(0), Op.getOperand(1));
6824    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6825                                    DAG.getValueType(VT));
6826    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6827  } else if (VT.getSizeInBits() == 16) {
6828    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6829    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6830    if (Idx == 0)
6831      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6832                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6833                                     DAG.getNode(ISD::BITCAST, dl,
6834                                                 MVT::v4i32,
6835                                                 Op.getOperand(0)),
6836                                     Op.getOperand(1)));
6837    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6838                                    Op.getOperand(0), Op.getOperand(1));
6839    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6840                                    DAG.getValueType(VT));
6841    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6842  } else if (VT == MVT::f32) {
6843    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6844    // the result back to FR32 register. It's only worth matching if the
6845    // result has a single use which is a store or a bitcast to i32.  And in
6846    // the case of a store, it's not worth it if the index is a constant 0,
6847    // because a MOVSSmr can be used instead, which is smaller and faster.
6848    if (!Op.hasOneUse())
6849      return SDValue();
6850    SDNode *User = *Op.getNode()->use_begin();
6851    if ((User->getOpcode() != ISD::STORE ||
6852         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6853          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6854        (User->getOpcode() != ISD::BITCAST ||
6855         User->getValueType(0) != MVT::i32))
6856      return SDValue();
6857    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6858                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6859                                              Op.getOperand(0)),
6860                                              Op.getOperand(1));
6861    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6862  } else if (VT == MVT::i32) {
6863    // ExtractPS works with constant index.
6864    if (isa<ConstantSDNode>(Op.getOperand(1)))
6865      return Op;
6866  }
6867  return SDValue();
6868}
6869
6870
6871SDValue
6872X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6873                                           SelectionDAG &DAG) const {
6874  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6875    return SDValue();
6876
6877  SDValue Vec = Op.getOperand(0);
6878  EVT VecVT = Vec.getValueType();
6879
6880  // If this is a 256-bit vector result, first extract the 128-bit vector and
6881  // then extract the element from the 128-bit vector.
6882  if (VecVT.getSizeInBits() == 256) {
6883    DebugLoc dl = Op.getNode()->getDebugLoc();
6884    unsigned NumElems = VecVT.getVectorNumElements();
6885    SDValue Idx = Op.getOperand(1);
6886    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6887
6888    // Get the 128-bit vector.
6889    bool Upper = IdxVal >= NumElems/2;
6890    Vec = Extract128BitVector(Vec,
6891                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6892
6893    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6894                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6895  }
6896
6897  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6898
6899  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
6900    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6901    if (Res.getNode())
6902      return Res;
6903  }
6904
6905  EVT VT = Op.getValueType();
6906  DebugLoc dl = Op.getDebugLoc();
6907  // TODO: handle v16i8.
6908  if (VT.getSizeInBits() == 16) {
6909    SDValue Vec = Op.getOperand(0);
6910    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6911    if (Idx == 0)
6912      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6913                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6914                                     DAG.getNode(ISD::BITCAST, dl,
6915                                                 MVT::v4i32, Vec),
6916                                     Op.getOperand(1)));
6917    // Transform it so it match pextrw which produces a 32-bit result.
6918    EVT EltVT = MVT::i32;
6919    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6920                                    Op.getOperand(0), Op.getOperand(1));
6921    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6922                                    DAG.getValueType(VT));
6923    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6924  } else if (VT.getSizeInBits() == 32) {
6925    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6926    if (Idx == 0)
6927      return Op;
6928
6929    // SHUFPS the element to the lowest double word, then movss.
6930    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6931    EVT VVT = Op.getOperand(0).getValueType();
6932    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6933                                       DAG.getUNDEF(VVT), Mask);
6934    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6935                       DAG.getIntPtrConstant(0));
6936  } else if (VT.getSizeInBits() == 64) {
6937    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6938    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6939    //        to match extract_elt for f64.
6940    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6941    if (Idx == 0)
6942      return Op;
6943
6944    // UNPCKHPD the element to the lowest double word, then movsd.
6945    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6946    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6947    int Mask[2] = { 1, -1 };
6948    EVT VVT = Op.getOperand(0).getValueType();
6949    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6950                                       DAG.getUNDEF(VVT), Mask);
6951    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6952                       DAG.getIntPtrConstant(0));
6953  }
6954
6955  return SDValue();
6956}
6957
6958SDValue
6959X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6960                                               SelectionDAG &DAG) const {
6961  EVT VT = Op.getValueType();
6962  EVT EltVT = VT.getVectorElementType();
6963  DebugLoc dl = Op.getDebugLoc();
6964
6965  SDValue N0 = Op.getOperand(0);
6966  SDValue N1 = Op.getOperand(1);
6967  SDValue N2 = Op.getOperand(2);
6968
6969  if (VT.getSizeInBits() == 256)
6970    return SDValue();
6971
6972  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6973      isa<ConstantSDNode>(N2)) {
6974    unsigned Opc;
6975    if (VT == MVT::v8i16)
6976      Opc = X86ISD::PINSRW;
6977    else if (VT == MVT::v16i8)
6978      Opc = X86ISD::PINSRB;
6979    else
6980      Opc = X86ISD::PINSRB;
6981
6982    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6983    // argument.
6984    if (N1.getValueType() != MVT::i32)
6985      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6986    if (N2.getValueType() != MVT::i32)
6987      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6988    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6989  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6990    // Bits [7:6] of the constant are the source select.  This will always be
6991    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6992    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6993    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6994    // Bits [5:4] of the constant are the destination select.  This is the
6995    //  value of the incoming immediate.
6996    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6997    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6998    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6999    // Create this as a scalar to vector..
7000    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7001    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7002  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
7003    // PINSR* works with constant index.
7004    return Op;
7005  }
7006  return SDValue();
7007}
7008
7009SDValue
7010X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7011  EVT VT = Op.getValueType();
7012  EVT EltVT = VT.getVectorElementType();
7013
7014  DebugLoc dl = Op.getDebugLoc();
7015  SDValue N0 = Op.getOperand(0);
7016  SDValue N1 = Op.getOperand(1);
7017  SDValue N2 = Op.getOperand(2);
7018
7019  // If this is a 256-bit vector result, first extract the 128-bit vector,
7020  // insert the element into the extracted half and then place it back.
7021  if (VT.getSizeInBits() == 256) {
7022    if (!isa<ConstantSDNode>(N2))
7023      return SDValue();
7024
7025    // Get the desired 128-bit vector half.
7026    unsigned NumElems = VT.getVectorNumElements();
7027    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7028    bool Upper = IdxVal >= NumElems/2;
7029    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
7030    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
7031
7032    // Insert the element into the desired half.
7033    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
7034                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
7035
7036    // Insert the changed part back to the 256-bit vector
7037    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
7038  }
7039
7040  if (Subtarget->hasSSE41() || Subtarget->hasAVX())
7041    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7042
7043  if (EltVT == MVT::i8)
7044    return SDValue();
7045
7046  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7047    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7048    // as its second argument.
7049    if (N1.getValueType() != MVT::i32)
7050      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7051    if (N2.getValueType() != MVT::i32)
7052      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7053    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7054  }
7055  return SDValue();
7056}
7057
7058SDValue
7059X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7060  LLVMContext *Context = DAG.getContext();
7061  DebugLoc dl = Op.getDebugLoc();
7062  EVT OpVT = Op.getValueType();
7063
7064  // If this is a 256-bit vector result, first insert into a 128-bit
7065  // vector and then insert into the 256-bit vector.
7066  if (OpVT.getSizeInBits() > 128) {
7067    // Insert into a 128-bit vector.
7068    EVT VT128 = EVT::getVectorVT(*Context,
7069                                 OpVT.getVectorElementType(),
7070                                 OpVT.getVectorNumElements() / 2);
7071
7072    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7073
7074    // Insert the 128-bit vector.
7075    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7076                              DAG.getConstant(0, MVT::i32),
7077                              DAG, dl);
7078  }
7079
7080  if (Op.getValueType() == MVT::v1i64 &&
7081      Op.getOperand(0).getValueType() == MVT::i64)
7082    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7083
7084  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7085  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7086         "Expected an SSE type!");
7087  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7088                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7089}
7090
7091// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7092// a simple subregister reference or explicit instructions to grab
7093// upper bits of a vector.
7094SDValue
7095X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7096  if (Subtarget->hasAVX()) {
7097    DebugLoc dl = Op.getNode()->getDebugLoc();
7098    SDValue Vec = Op.getNode()->getOperand(0);
7099    SDValue Idx = Op.getNode()->getOperand(1);
7100
7101    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7102        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7103        return Extract128BitVector(Vec, Idx, DAG, dl);
7104    }
7105  }
7106  return SDValue();
7107}
7108
7109// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7110// simple superregister reference or explicit instructions to insert
7111// the upper bits of a vector.
7112SDValue
7113X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7114  if (Subtarget->hasAVX()) {
7115    DebugLoc dl = Op.getNode()->getDebugLoc();
7116    SDValue Vec = Op.getNode()->getOperand(0);
7117    SDValue SubVec = Op.getNode()->getOperand(1);
7118    SDValue Idx = Op.getNode()->getOperand(2);
7119
7120    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7121        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7122      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7123    }
7124  }
7125  return SDValue();
7126}
7127
7128// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7129// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7130// one of the above mentioned nodes. It has to be wrapped because otherwise
7131// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7132// be used to form addressing mode. These wrapped nodes will be selected
7133// into MOV32ri.
7134SDValue
7135X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7136  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7137
7138  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7139  // global base reg.
7140  unsigned char OpFlag = 0;
7141  unsigned WrapperKind = X86ISD::Wrapper;
7142  CodeModel::Model M = getTargetMachine().getCodeModel();
7143
7144  if (Subtarget->isPICStyleRIPRel() &&
7145      (M == CodeModel::Small || M == CodeModel::Kernel))
7146    WrapperKind = X86ISD::WrapperRIP;
7147  else if (Subtarget->isPICStyleGOT())
7148    OpFlag = X86II::MO_GOTOFF;
7149  else if (Subtarget->isPICStyleStubPIC())
7150    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7151
7152  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7153                                             CP->getAlignment(),
7154                                             CP->getOffset(), OpFlag);
7155  DebugLoc DL = CP->getDebugLoc();
7156  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7157  // With PIC, the address is actually $g + Offset.
7158  if (OpFlag) {
7159    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7160                         DAG.getNode(X86ISD::GlobalBaseReg,
7161                                     DebugLoc(), getPointerTy()),
7162                         Result);
7163  }
7164
7165  return Result;
7166}
7167
7168SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7169  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7170
7171  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7172  // global base reg.
7173  unsigned char OpFlag = 0;
7174  unsigned WrapperKind = X86ISD::Wrapper;
7175  CodeModel::Model M = getTargetMachine().getCodeModel();
7176
7177  if (Subtarget->isPICStyleRIPRel() &&
7178      (M == CodeModel::Small || M == CodeModel::Kernel))
7179    WrapperKind = X86ISD::WrapperRIP;
7180  else if (Subtarget->isPICStyleGOT())
7181    OpFlag = X86II::MO_GOTOFF;
7182  else if (Subtarget->isPICStyleStubPIC())
7183    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7184
7185  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7186                                          OpFlag);
7187  DebugLoc DL = JT->getDebugLoc();
7188  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7189
7190  // With PIC, the address is actually $g + Offset.
7191  if (OpFlag)
7192    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7193                         DAG.getNode(X86ISD::GlobalBaseReg,
7194                                     DebugLoc(), getPointerTy()),
7195                         Result);
7196
7197  return Result;
7198}
7199
7200SDValue
7201X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7202  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7203
7204  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7205  // global base reg.
7206  unsigned char OpFlag = 0;
7207  unsigned WrapperKind = X86ISD::Wrapper;
7208  CodeModel::Model M = getTargetMachine().getCodeModel();
7209
7210  if (Subtarget->isPICStyleRIPRel() &&
7211      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7212    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7213      OpFlag = X86II::MO_GOTPCREL;
7214    WrapperKind = X86ISD::WrapperRIP;
7215  } else if (Subtarget->isPICStyleGOT()) {
7216    OpFlag = X86II::MO_GOT;
7217  } else if (Subtarget->isPICStyleStubPIC()) {
7218    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7219  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7220    OpFlag = X86II::MO_DARWIN_NONLAZY;
7221  }
7222
7223  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7224
7225  DebugLoc DL = Op.getDebugLoc();
7226  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7227
7228
7229  // With PIC, the address is actually $g + Offset.
7230  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7231      !Subtarget->is64Bit()) {
7232    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7233                         DAG.getNode(X86ISD::GlobalBaseReg,
7234                                     DebugLoc(), getPointerTy()),
7235                         Result);
7236  }
7237
7238  // For symbols that require a load from a stub to get the address, emit the
7239  // load.
7240  if (isGlobalStubReference(OpFlag))
7241    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7242                         MachinePointerInfo::getGOT(), false, false, 0);
7243
7244  return Result;
7245}
7246
7247SDValue
7248X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7249  // Create the TargetBlockAddressAddress node.
7250  unsigned char OpFlags =
7251    Subtarget->ClassifyBlockAddressReference();
7252  CodeModel::Model M = getTargetMachine().getCodeModel();
7253  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7254  DebugLoc dl = Op.getDebugLoc();
7255  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7256                                       /*isTarget=*/true, OpFlags);
7257
7258  if (Subtarget->isPICStyleRIPRel() &&
7259      (M == CodeModel::Small || M == CodeModel::Kernel))
7260    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7261  else
7262    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7263
7264  // With PIC, the address is actually $g + Offset.
7265  if (isGlobalRelativeToPICBase(OpFlags)) {
7266    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7267                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7268                         Result);
7269  }
7270
7271  return Result;
7272}
7273
7274SDValue
7275X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7276                                      int64_t Offset,
7277                                      SelectionDAG &DAG) const {
7278  // Create the TargetGlobalAddress node, folding in the constant
7279  // offset if it is legal.
7280  unsigned char OpFlags =
7281    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7282  CodeModel::Model M = getTargetMachine().getCodeModel();
7283  SDValue Result;
7284  if (OpFlags == X86II::MO_NO_FLAG &&
7285      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7286    // A direct static reference to a global.
7287    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7288    Offset = 0;
7289  } else {
7290    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7291  }
7292
7293  if (Subtarget->isPICStyleRIPRel() &&
7294      (M == CodeModel::Small || M == CodeModel::Kernel))
7295    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7296  else
7297    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7298
7299  // With PIC, the address is actually $g + Offset.
7300  if (isGlobalRelativeToPICBase(OpFlags)) {
7301    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7302                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7303                         Result);
7304  }
7305
7306  // For globals that require a load from a stub to get the address, emit the
7307  // load.
7308  if (isGlobalStubReference(OpFlags))
7309    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7310                         MachinePointerInfo::getGOT(), false, false, 0);
7311
7312  // If there was a non-zero offset that we didn't fold, create an explicit
7313  // addition for it.
7314  if (Offset != 0)
7315    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7316                         DAG.getConstant(Offset, getPointerTy()));
7317
7318  return Result;
7319}
7320
7321SDValue
7322X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7323  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7324  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7325  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7326}
7327
7328static SDValue
7329GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7330           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7331           unsigned char OperandFlags) {
7332  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7333  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7334  DebugLoc dl = GA->getDebugLoc();
7335  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7336                                           GA->getValueType(0),
7337                                           GA->getOffset(),
7338                                           OperandFlags);
7339  if (InFlag) {
7340    SDValue Ops[] = { Chain,  TGA, *InFlag };
7341    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7342  } else {
7343    SDValue Ops[]  = { Chain, TGA };
7344    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7345  }
7346
7347  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7348  MFI->setAdjustsStack(true);
7349
7350  SDValue Flag = Chain.getValue(1);
7351  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7352}
7353
7354// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7355static SDValue
7356LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7357                                const EVT PtrVT) {
7358  SDValue InFlag;
7359  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7360  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7361                                     DAG.getNode(X86ISD::GlobalBaseReg,
7362                                                 DebugLoc(), PtrVT), InFlag);
7363  InFlag = Chain.getValue(1);
7364
7365  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7366}
7367
7368// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7369static SDValue
7370LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7371                                const EVT PtrVT) {
7372  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7373                    X86::RAX, X86II::MO_TLSGD);
7374}
7375
7376// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7377// "local exec" model.
7378static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7379                                   const EVT PtrVT, TLSModel::Model model,
7380                                   bool is64Bit) {
7381  DebugLoc dl = GA->getDebugLoc();
7382
7383  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7384  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7385                                                         is64Bit ? 257 : 256));
7386
7387  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7388                                      DAG.getIntPtrConstant(0),
7389                                      MachinePointerInfo(Ptr), false, false, 0);
7390
7391  unsigned char OperandFlags = 0;
7392  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7393  // initialexec.
7394  unsigned WrapperKind = X86ISD::Wrapper;
7395  if (model == TLSModel::LocalExec) {
7396    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7397  } else if (is64Bit) {
7398    assert(model == TLSModel::InitialExec);
7399    OperandFlags = X86II::MO_GOTTPOFF;
7400    WrapperKind = X86ISD::WrapperRIP;
7401  } else {
7402    assert(model == TLSModel::InitialExec);
7403    OperandFlags = X86II::MO_INDNTPOFF;
7404  }
7405
7406  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7407  // exec)
7408  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7409                                           GA->getValueType(0),
7410                                           GA->getOffset(), OperandFlags);
7411  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7412
7413  if (model == TLSModel::InitialExec)
7414    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7415                         MachinePointerInfo::getGOT(), false, false, 0);
7416
7417  // The address of the thread local variable is the add of the thread
7418  // pointer with the offset of the variable.
7419  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7420}
7421
7422SDValue
7423X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7424
7425  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7426  const GlobalValue *GV = GA->getGlobal();
7427
7428  if (Subtarget->isTargetELF()) {
7429    // TODO: implement the "local dynamic" model
7430    // TODO: implement the "initial exec"model for pic executables
7431
7432    // If GV is an alias then use the aliasee for determining
7433    // thread-localness.
7434    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7435      GV = GA->resolveAliasedGlobal(false);
7436
7437    TLSModel::Model model
7438      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7439
7440    switch (model) {
7441      case TLSModel::GeneralDynamic:
7442      case TLSModel::LocalDynamic: // not implemented
7443        if (Subtarget->is64Bit())
7444          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7445        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7446
7447      case TLSModel::InitialExec:
7448      case TLSModel::LocalExec:
7449        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7450                                   Subtarget->is64Bit());
7451    }
7452  } else if (Subtarget->isTargetDarwin()) {
7453    // Darwin only has one model of TLS.  Lower to that.
7454    unsigned char OpFlag = 0;
7455    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7456                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7457
7458    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7459    // global base reg.
7460    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7461                  !Subtarget->is64Bit();
7462    if (PIC32)
7463      OpFlag = X86II::MO_TLVP_PIC_BASE;
7464    else
7465      OpFlag = X86II::MO_TLVP;
7466    DebugLoc DL = Op.getDebugLoc();
7467    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7468                                                GA->getValueType(0),
7469                                                GA->getOffset(), OpFlag);
7470    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7471
7472    // With PIC32, the address is actually $g + Offset.
7473    if (PIC32)
7474      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7475                           DAG.getNode(X86ISD::GlobalBaseReg,
7476                                       DebugLoc(), getPointerTy()),
7477                           Offset);
7478
7479    // Lowering the machine isd will make sure everything is in the right
7480    // location.
7481    SDValue Chain = DAG.getEntryNode();
7482    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7483    SDValue Args[] = { Chain, Offset };
7484    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7485
7486    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7487    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7488    MFI->setAdjustsStack(true);
7489
7490    // And our return value (tls address) is in the standard call return value
7491    // location.
7492    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7493    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
7494  }
7495
7496  assert(false &&
7497         "TLS not implemented for this target.");
7498
7499  llvm_unreachable("Unreachable");
7500  return SDValue();
7501}
7502
7503
7504/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7505/// take a 2 x i32 value to shift plus a shift amount.
7506SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7507  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7508  EVT VT = Op.getValueType();
7509  unsigned VTBits = VT.getSizeInBits();
7510  DebugLoc dl = Op.getDebugLoc();
7511  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7512  SDValue ShOpLo = Op.getOperand(0);
7513  SDValue ShOpHi = Op.getOperand(1);
7514  SDValue ShAmt  = Op.getOperand(2);
7515  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7516                                     DAG.getConstant(VTBits - 1, MVT::i8))
7517                       : DAG.getConstant(0, VT);
7518
7519  SDValue Tmp2, Tmp3;
7520  if (Op.getOpcode() == ISD::SHL_PARTS) {
7521    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7522    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7523  } else {
7524    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7525    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7526  }
7527
7528  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7529                                DAG.getConstant(VTBits, MVT::i8));
7530  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7531                             AndNode, DAG.getConstant(0, MVT::i8));
7532
7533  SDValue Hi, Lo;
7534  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7535  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7536  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7537
7538  if (Op.getOpcode() == ISD::SHL_PARTS) {
7539    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7540    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7541  } else {
7542    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7543    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7544  }
7545
7546  SDValue Ops[2] = { Lo, Hi };
7547  return DAG.getMergeValues(Ops, 2, dl);
7548}
7549
7550SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7551                                           SelectionDAG &DAG) const {
7552  EVT SrcVT = Op.getOperand(0).getValueType();
7553
7554  if (SrcVT.isVector())
7555    return SDValue();
7556
7557  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7558         "Unknown SINT_TO_FP to lower!");
7559
7560  // These are really Legal; return the operand so the caller accepts it as
7561  // Legal.
7562  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7563    return Op;
7564  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7565      Subtarget->is64Bit()) {
7566    return Op;
7567  }
7568
7569  DebugLoc dl = Op.getDebugLoc();
7570  unsigned Size = SrcVT.getSizeInBits()/8;
7571  MachineFunction &MF = DAG.getMachineFunction();
7572  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7573  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7574  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7575                               StackSlot,
7576                               MachinePointerInfo::getFixedStack(SSFI),
7577                               false, false, 0);
7578  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7579}
7580
7581SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7582                                     SDValue StackSlot,
7583                                     SelectionDAG &DAG) const {
7584  // Build the FILD
7585  DebugLoc DL = Op.getDebugLoc();
7586  SDVTList Tys;
7587  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7588  if (useSSE)
7589    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7590  else
7591    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7592
7593  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7594
7595  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7596  MachineMemOperand *MMO;
7597  if (FI) {
7598    int SSFI = FI->getIndex();
7599    MMO =
7600      DAG.getMachineFunction()
7601      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7602                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7603  } else {
7604    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7605    StackSlot = StackSlot.getOperand(1);
7606  }
7607  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7608  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7609                                           X86ISD::FILD, DL,
7610                                           Tys, Ops, array_lengthof(Ops),
7611                                           SrcVT, MMO);
7612
7613  if (useSSE) {
7614    Chain = Result.getValue(1);
7615    SDValue InFlag = Result.getValue(2);
7616
7617    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7618    // shouldn't be necessary except that RFP cannot be live across
7619    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7620    MachineFunction &MF = DAG.getMachineFunction();
7621    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7622    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7623    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7624    Tys = DAG.getVTList(MVT::Other);
7625    SDValue Ops[] = {
7626      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7627    };
7628    MachineMemOperand *MMO =
7629      DAG.getMachineFunction()
7630      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7631                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7632
7633    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7634                                    Ops, array_lengthof(Ops),
7635                                    Op.getValueType(), MMO);
7636    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7637                         MachinePointerInfo::getFixedStack(SSFI),
7638                         false, false, 0);
7639  }
7640
7641  return Result;
7642}
7643
7644// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7645SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7646                                               SelectionDAG &DAG) const {
7647  // This algorithm is not obvious. Here it is in C code, more or less:
7648  /*
7649    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7650      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7651      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7652
7653      // Copy ints to xmm registers.
7654      __m128i xh = _mm_cvtsi32_si128( hi );
7655      __m128i xl = _mm_cvtsi32_si128( lo );
7656
7657      // Combine into low half of a single xmm register.
7658      __m128i x = _mm_unpacklo_epi32( xh, xl );
7659      __m128d d;
7660      double sd;
7661
7662      // Merge in appropriate exponents to give the integer bits the right
7663      // magnitude.
7664      x = _mm_unpacklo_epi32( x, exp );
7665
7666      // Subtract away the biases to deal with the IEEE-754 double precision
7667      // implicit 1.
7668      d = _mm_sub_pd( (__m128d) x, bias );
7669
7670      // All conversions up to here are exact. The correctly rounded result is
7671      // calculated using the current rounding mode using the following
7672      // horizontal add.
7673      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7674      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7675                                // store doesn't really need to be here (except
7676                                // maybe to zero the other double)
7677      return sd;
7678    }
7679  */
7680
7681  DebugLoc dl = Op.getDebugLoc();
7682  LLVMContext *Context = DAG.getContext();
7683
7684  // Build some magic constants.
7685  std::vector<Constant*> CV0;
7686  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7687  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7688  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7689  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7690  Constant *C0 = ConstantVector::get(CV0);
7691  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7692
7693  std::vector<Constant*> CV1;
7694  CV1.push_back(
7695    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7696  CV1.push_back(
7697    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7698  Constant *C1 = ConstantVector::get(CV1);
7699  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7700
7701  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7702                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7703                                        Op.getOperand(0),
7704                                        DAG.getIntPtrConstant(1)));
7705  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7706                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7707                                        Op.getOperand(0),
7708                                        DAG.getIntPtrConstant(0)));
7709  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7710  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7711                              MachinePointerInfo::getConstantPool(),
7712                              false, false, 16);
7713  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7714  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7715  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7716                              MachinePointerInfo::getConstantPool(),
7717                              false, false, 16);
7718  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7719
7720  // Add the halves; easiest way is to swap them into another reg first.
7721  int ShufMask[2] = { 1, -1 };
7722  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7723                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7724  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7725  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7726                     DAG.getIntPtrConstant(0));
7727}
7728
7729// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7730SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7731                                               SelectionDAG &DAG) const {
7732  DebugLoc dl = Op.getDebugLoc();
7733  // FP constant to bias correct the final result.
7734  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7735                                   MVT::f64);
7736
7737  // Load the 32-bit value into an XMM register.
7738  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7739                             Op.getOperand(0));
7740
7741  // Zero out the upper parts of the register.
7742  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasSSE2(), DAG);
7743
7744  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7745                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7746                     DAG.getIntPtrConstant(0));
7747
7748  // Or the load with the bias.
7749  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7750                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7751                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7752                                                   MVT::v2f64, Load)),
7753                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7754                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7755                                                   MVT::v2f64, Bias)));
7756  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7757                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7758                   DAG.getIntPtrConstant(0));
7759
7760  // Subtract the bias.
7761  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7762
7763  // Handle final rounding.
7764  EVT DestVT = Op.getValueType();
7765
7766  if (DestVT.bitsLT(MVT::f64)) {
7767    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7768                       DAG.getIntPtrConstant(0));
7769  } else if (DestVT.bitsGT(MVT::f64)) {
7770    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7771  }
7772
7773  // Handle final rounding.
7774  return Sub;
7775}
7776
7777SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7778                                           SelectionDAG &DAG) const {
7779  SDValue N0 = Op.getOperand(0);
7780  DebugLoc dl = Op.getDebugLoc();
7781
7782  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7783  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7784  // the optimization here.
7785  if (DAG.SignBitIsZero(N0))
7786    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7787
7788  EVT SrcVT = N0.getValueType();
7789  EVT DstVT = Op.getValueType();
7790  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7791    return LowerUINT_TO_FP_i64(Op, DAG);
7792  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7793    return LowerUINT_TO_FP_i32(Op, DAG);
7794
7795  // Make a 64-bit buffer, and use it to build an FILD.
7796  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7797  if (SrcVT == MVT::i32) {
7798    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7799    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7800                                     getPointerTy(), StackSlot, WordOff);
7801    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7802                                  StackSlot, MachinePointerInfo(),
7803                                  false, false, 0);
7804    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7805                                  OffsetSlot, MachinePointerInfo(),
7806                                  false, false, 0);
7807    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7808    return Fild;
7809  }
7810
7811  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7812  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7813                                StackSlot, MachinePointerInfo(),
7814                               false, false, 0);
7815  // For i64 source, we need to add the appropriate power of 2 if the input
7816  // was negative.  This is the same as the optimization in
7817  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7818  // we must be careful to do the computation in x87 extended precision, not
7819  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7820  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7821  MachineMemOperand *MMO =
7822    DAG.getMachineFunction()
7823    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7824                          MachineMemOperand::MOLoad, 8, 8);
7825
7826  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7827  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7828  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7829                                         MVT::i64, MMO);
7830
7831  APInt FF(32, 0x5F800000ULL);
7832
7833  // Check whether the sign bit is set.
7834  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7835                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7836                                 ISD::SETLT);
7837
7838  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7839  SDValue FudgePtr = DAG.getConstantPool(
7840                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7841                                         getPointerTy());
7842
7843  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7844  SDValue Zero = DAG.getIntPtrConstant(0);
7845  SDValue Four = DAG.getIntPtrConstant(4);
7846  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7847                               Zero, Four);
7848  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7849
7850  // Load the value out, extending it from f32 to f80.
7851  // FIXME: Avoid the extend by constructing the right constant pool?
7852  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7853                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7854                                 MVT::f32, false, false, 4);
7855  // Extend everything to 80 bits to force it to be done on x87.
7856  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7857  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7858}
7859
7860std::pair<SDValue,SDValue> X86TargetLowering::
7861FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7862  DebugLoc DL = Op.getDebugLoc();
7863
7864  EVT DstTy = Op.getValueType();
7865
7866  if (!IsSigned) {
7867    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7868    DstTy = MVT::i64;
7869  }
7870
7871  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7872         DstTy.getSimpleVT() >= MVT::i16 &&
7873         "Unknown FP_TO_SINT to lower!");
7874
7875  // These are really Legal.
7876  if (DstTy == MVT::i32 &&
7877      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7878    return std::make_pair(SDValue(), SDValue());
7879  if (Subtarget->is64Bit() &&
7880      DstTy == MVT::i64 &&
7881      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7882    return std::make_pair(SDValue(), SDValue());
7883
7884  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7885  // stack slot.
7886  MachineFunction &MF = DAG.getMachineFunction();
7887  unsigned MemSize = DstTy.getSizeInBits()/8;
7888  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7889  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7890
7891
7892
7893  unsigned Opc;
7894  switch (DstTy.getSimpleVT().SimpleTy) {
7895  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7896  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7897  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7898  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7899  }
7900
7901  SDValue Chain = DAG.getEntryNode();
7902  SDValue Value = Op.getOperand(0);
7903  EVT TheVT = Op.getOperand(0).getValueType();
7904  if (isScalarFPTypeInSSEReg(TheVT)) {
7905    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7906    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7907                         MachinePointerInfo::getFixedStack(SSFI),
7908                         false, false, 0);
7909    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7910    SDValue Ops[] = {
7911      Chain, StackSlot, DAG.getValueType(TheVT)
7912    };
7913
7914    MachineMemOperand *MMO =
7915      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7916                              MachineMemOperand::MOLoad, MemSize, MemSize);
7917    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7918                                    DstTy, MMO);
7919    Chain = Value.getValue(1);
7920    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7921    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7922  }
7923
7924  MachineMemOperand *MMO =
7925    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7926                            MachineMemOperand::MOStore, MemSize, MemSize);
7927
7928  // Build the FP_TO_INT*_IN_MEM
7929  SDValue Ops[] = { Chain, Value, StackSlot };
7930  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7931                                         Ops, 3, DstTy, MMO);
7932
7933  return std::make_pair(FIST, StackSlot);
7934}
7935
7936SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7937                                           SelectionDAG &DAG) const {
7938  if (Op.getValueType().isVector())
7939    return SDValue();
7940
7941  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7942  SDValue FIST = Vals.first, StackSlot = Vals.second;
7943  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7944  if (FIST.getNode() == 0) return Op;
7945
7946  // Load the result.
7947  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7948                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7949}
7950
7951SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7952                                           SelectionDAG &DAG) const {
7953  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7954  SDValue FIST = Vals.first, StackSlot = Vals.second;
7955  assert(FIST.getNode() && "Unexpected failure");
7956
7957  // Load the result.
7958  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7959                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7960}
7961
7962SDValue X86TargetLowering::LowerFABS(SDValue Op,
7963                                     SelectionDAG &DAG) const {
7964  LLVMContext *Context = DAG.getContext();
7965  DebugLoc dl = Op.getDebugLoc();
7966  EVT VT = Op.getValueType();
7967  EVT EltVT = VT;
7968  if (VT.isVector())
7969    EltVT = VT.getVectorElementType();
7970  std::vector<Constant*> CV;
7971  if (EltVT == MVT::f64) {
7972    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7973    CV.push_back(C);
7974    CV.push_back(C);
7975  } else {
7976    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7977    CV.push_back(C);
7978    CV.push_back(C);
7979    CV.push_back(C);
7980    CV.push_back(C);
7981  }
7982  Constant *C = ConstantVector::get(CV);
7983  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7984  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7985                             MachinePointerInfo::getConstantPool(),
7986                             false, false, 16);
7987  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7988}
7989
7990SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7991  LLVMContext *Context = DAG.getContext();
7992  DebugLoc dl = Op.getDebugLoc();
7993  EVT VT = Op.getValueType();
7994  EVT EltVT = VT;
7995  if (VT.isVector())
7996    EltVT = VT.getVectorElementType();
7997  std::vector<Constant*> CV;
7998  if (EltVT == MVT::f64) {
7999    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8000    CV.push_back(C);
8001    CV.push_back(C);
8002  } else {
8003    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8004    CV.push_back(C);
8005    CV.push_back(C);
8006    CV.push_back(C);
8007    CV.push_back(C);
8008  }
8009  Constant *C = ConstantVector::get(CV);
8010  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8011  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8012                             MachinePointerInfo::getConstantPool(),
8013                             false, false, 16);
8014  if (VT.isVector()) {
8015    return DAG.getNode(ISD::BITCAST, dl, VT,
8016                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
8017                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8018                                Op.getOperand(0)),
8019                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
8020  } else {
8021    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8022  }
8023}
8024
8025SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8026  LLVMContext *Context = DAG.getContext();
8027  SDValue Op0 = Op.getOperand(0);
8028  SDValue Op1 = Op.getOperand(1);
8029  DebugLoc dl = Op.getDebugLoc();
8030  EVT VT = Op.getValueType();
8031  EVT SrcVT = Op1.getValueType();
8032
8033  // If second operand is smaller, extend it first.
8034  if (SrcVT.bitsLT(VT)) {
8035    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8036    SrcVT = VT;
8037  }
8038  // And if it is bigger, shrink it first.
8039  if (SrcVT.bitsGT(VT)) {
8040    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8041    SrcVT = VT;
8042  }
8043
8044  // At this point the operands and the result should have the same
8045  // type, and that won't be f80 since that is not custom lowered.
8046
8047  // First get the sign bit of second operand.
8048  std::vector<Constant*> CV;
8049  if (SrcVT == MVT::f64) {
8050    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8051    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8052  } else {
8053    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8054    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8055    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8056    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8057  }
8058  Constant *C = ConstantVector::get(CV);
8059  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8060  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8061                              MachinePointerInfo::getConstantPool(),
8062                              false, false, 16);
8063  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8064
8065  // Shift sign bit right or left if the two operands have different types.
8066  if (SrcVT.bitsGT(VT)) {
8067    // Op0 is MVT::f32, Op1 is MVT::f64.
8068    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8069    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8070                          DAG.getConstant(32, MVT::i32));
8071    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8072    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8073                          DAG.getIntPtrConstant(0));
8074  }
8075
8076  // Clear first operand sign bit.
8077  CV.clear();
8078  if (VT == MVT::f64) {
8079    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8080    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8081  } else {
8082    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8083    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8084    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8085    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8086  }
8087  C = ConstantVector::get(CV);
8088  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8089  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8090                              MachinePointerInfo::getConstantPool(),
8091                              false, false, 16);
8092  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8093
8094  // Or the value with the sign bit.
8095  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8096}
8097
8098SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8099  SDValue N0 = Op.getOperand(0);
8100  DebugLoc dl = Op.getDebugLoc();
8101  EVT VT = Op.getValueType();
8102
8103  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8104  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8105                                  DAG.getConstant(1, VT));
8106  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8107}
8108
8109/// Emit nodes that will be selected as "test Op0,Op0", or something
8110/// equivalent.
8111SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8112                                    SelectionDAG &DAG) const {
8113  DebugLoc dl = Op.getDebugLoc();
8114
8115  // CF and OF aren't always set the way we want. Determine which
8116  // of these we need.
8117  bool NeedCF = false;
8118  bool NeedOF = false;
8119  switch (X86CC) {
8120  default: break;
8121  case X86::COND_A: case X86::COND_AE:
8122  case X86::COND_B: case X86::COND_BE:
8123    NeedCF = true;
8124    break;
8125  case X86::COND_G: case X86::COND_GE:
8126  case X86::COND_L: case X86::COND_LE:
8127  case X86::COND_O: case X86::COND_NO:
8128    NeedOF = true;
8129    break;
8130  }
8131
8132  // See if we can use the EFLAGS value from the operand instead of
8133  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8134  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8135  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8136    // Emit a CMP with 0, which is the TEST pattern.
8137    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8138                       DAG.getConstant(0, Op.getValueType()));
8139
8140  unsigned Opcode = 0;
8141  unsigned NumOperands = 0;
8142  switch (Op.getNode()->getOpcode()) {
8143  case ISD::ADD:
8144    // Due to an isel shortcoming, be conservative if this add is likely to be
8145    // selected as part of a load-modify-store instruction. When the root node
8146    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8147    // uses of other nodes in the match, such as the ADD in this case. This
8148    // leads to the ADD being left around and reselected, with the result being
8149    // two adds in the output.  Alas, even if none our users are stores, that
8150    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8151    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8152    // climbing the DAG back to the root, and it doesn't seem to be worth the
8153    // effort.
8154    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8155           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8156      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
8157        goto default_case;
8158
8159    if (ConstantSDNode *C =
8160        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8161      // An add of one will be selected as an INC.
8162      if (C->getAPIntValue() == 1) {
8163        Opcode = X86ISD::INC;
8164        NumOperands = 1;
8165        break;
8166      }
8167
8168      // An add of negative one (subtract of one) will be selected as a DEC.
8169      if (C->getAPIntValue().isAllOnesValue()) {
8170        Opcode = X86ISD::DEC;
8171        NumOperands = 1;
8172        break;
8173      }
8174    }
8175
8176    // Otherwise use a regular EFLAGS-setting add.
8177    Opcode = X86ISD::ADD;
8178    NumOperands = 2;
8179    break;
8180  case ISD::AND: {
8181    // If the primary and result isn't used, don't bother using X86ISD::AND,
8182    // because a TEST instruction will be better.
8183    bool NonFlagUse = false;
8184    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8185           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8186      SDNode *User = *UI;
8187      unsigned UOpNo = UI.getOperandNo();
8188      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8189        // Look pass truncate.
8190        UOpNo = User->use_begin().getOperandNo();
8191        User = *User->use_begin();
8192      }
8193
8194      if (User->getOpcode() != ISD::BRCOND &&
8195          User->getOpcode() != ISD::SETCC &&
8196          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8197        NonFlagUse = true;
8198        break;
8199      }
8200    }
8201
8202    if (!NonFlagUse)
8203      break;
8204  }
8205    // FALL THROUGH
8206  case ISD::SUB:
8207  case ISD::OR:
8208  case ISD::XOR:
8209    // Due to the ISEL shortcoming noted above, be conservative if this op is
8210    // likely to be selected as part of a load-modify-store instruction.
8211    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8212           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8213      if (UI->getOpcode() == ISD::STORE)
8214        goto default_case;
8215
8216    // Otherwise use a regular EFLAGS-setting instruction.
8217    switch (Op.getNode()->getOpcode()) {
8218    default: llvm_unreachable("unexpected operator!");
8219    case ISD::SUB: Opcode = X86ISD::SUB; break;
8220    case ISD::OR:  Opcode = X86ISD::OR;  break;
8221    case ISD::XOR: Opcode = X86ISD::XOR; break;
8222    case ISD::AND: Opcode = X86ISD::AND; break;
8223    }
8224
8225    NumOperands = 2;
8226    break;
8227  case X86ISD::ADD:
8228  case X86ISD::SUB:
8229  case X86ISD::INC:
8230  case X86ISD::DEC:
8231  case X86ISD::OR:
8232  case X86ISD::XOR:
8233  case X86ISD::AND:
8234    return SDValue(Op.getNode(), 1);
8235  default:
8236  default_case:
8237    break;
8238  }
8239
8240  if (Opcode == 0)
8241    // Emit a CMP with 0, which is the TEST pattern.
8242    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8243                       DAG.getConstant(0, Op.getValueType()));
8244
8245  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8246  SmallVector<SDValue, 4> Ops;
8247  for (unsigned i = 0; i != NumOperands; ++i)
8248    Ops.push_back(Op.getOperand(i));
8249
8250  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8251  DAG.ReplaceAllUsesWith(Op, New);
8252  return SDValue(New.getNode(), 1);
8253}
8254
8255/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8256/// equivalent.
8257SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8258                                   SelectionDAG &DAG) const {
8259  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8260    if (C->getAPIntValue() == 0)
8261      return EmitTest(Op0, X86CC, DAG);
8262
8263  DebugLoc dl = Op0.getDebugLoc();
8264  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8265}
8266
8267/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8268/// if it's possible.
8269SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8270                                     DebugLoc dl, SelectionDAG &DAG) const {
8271  SDValue Op0 = And.getOperand(0);
8272  SDValue Op1 = And.getOperand(1);
8273  if (Op0.getOpcode() == ISD::TRUNCATE)
8274    Op0 = Op0.getOperand(0);
8275  if (Op1.getOpcode() == ISD::TRUNCATE)
8276    Op1 = Op1.getOperand(0);
8277
8278  SDValue LHS, RHS;
8279  if (Op1.getOpcode() == ISD::SHL)
8280    std::swap(Op0, Op1);
8281  if (Op0.getOpcode() == ISD::SHL) {
8282    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8283      if (And00C->getZExtValue() == 1) {
8284        // If we looked past a truncate, check that it's only truncating away
8285        // known zeros.
8286        unsigned BitWidth = Op0.getValueSizeInBits();
8287        unsigned AndBitWidth = And.getValueSizeInBits();
8288        if (BitWidth > AndBitWidth) {
8289          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8290          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8291          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8292            return SDValue();
8293        }
8294        LHS = Op1;
8295        RHS = Op0.getOperand(1);
8296      }
8297  } else if (Op1.getOpcode() == ISD::Constant) {
8298    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8299    SDValue AndLHS = Op0;
8300    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
8301      LHS = AndLHS.getOperand(0);
8302      RHS = AndLHS.getOperand(1);
8303    }
8304  }
8305
8306  if (LHS.getNode()) {
8307    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8308    // instruction.  Since the shift amount is in-range-or-undefined, we know
8309    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8310    // the encoding for the i16 version is larger than the i32 version.
8311    // Also promote i16 to i32 for performance / code size reason.
8312    if (LHS.getValueType() == MVT::i8 ||
8313        LHS.getValueType() == MVT::i16)
8314      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8315
8316    // If the operand types disagree, extend the shift amount to match.  Since
8317    // BT ignores high bits (like shifts) we can use anyextend.
8318    if (LHS.getValueType() != RHS.getValueType())
8319      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8320
8321    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8322    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8323    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8324                       DAG.getConstant(Cond, MVT::i8), BT);
8325  }
8326
8327  return SDValue();
8328}
8329
8330SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8331
8332  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8333
8334  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8335  SDValue Op0 = Op.getOperand(0);
8336  SDValue Op1 = Op.getOperand(1);
8337  DebugLoc dl = Op.getDebugLoc();
8338  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8339
8340  // Optimize to BT if possible.
8341  // Lower (X & (1 << N)) == 0 to BT(X, N).
8342  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8343  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8344  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8345      Op1.getOpcode() == ISD::Constant &&
8346      cast<ConstantSDNode>(Op1)->isNullValue() &&
8347      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8348    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8349    if (NewSetCC.getNode())
8350      return NewSetCC;
8351  }
8352
8353  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8354  // these.
8355  if (Op1.getOpcode() == ISD::Constant &&
8356      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8357       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8358      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8359
8360    // If the input is a setcc, then reuse the input setcc or use a new one with
8361    // the inverted condition.
8362    if (Op0.getOpcode() == X86ISD::SETCC) {
8363      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8364      bool Invert = (CC == ISD::SETNE) ^
8365        cast<ConstantSDNode>(Op1)->isNullValue();
8366      if (!Invert) return Op0;
8367
8368      CCode = X86::GetOppositeBranchCondition(CCode);
8369      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8370                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8371    }
8372  }
8373
8374  bool isFP = Op1.getValueType().isFloatingPoint();
8375  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8376  if (X86CC == X86::COND_INVALID)
8377    return SDValue();
8378
8379  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8380  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8381                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8382}
8383
8384// Lower256IntVETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8385// ones, and then concatenate the result back.
8386static SDValue Lower256IntVETCC(SDValue Op, SelectionDAG &DAG) {
8387  EVT VT = Op.getValueType();
8388
8389  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8390         "Unsupported value type for operation");
8391
8392  int NumElems = VT.getVectorNumElements();
8393  DebugLoc dl = Op.getDebugLoc();
8394  SDValue CC = Op.getOperand(2);
8395  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8396  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8397
8398  // Extract the LHS vectors
8399  SDValue LHS = Op.getOperand(0);
8400  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8401  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8402
8403  // Extract the RHS vectors
8404  SDValue RHS = Op.getOperand(1);
8405  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8406  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8407
8408  // Issue the operation on the smaller types and concatenate the result back
8409  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8410  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8411  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8412                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8413                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8414}
8415
8416
8417SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8418  SDValue Cond;
8419  SDValue Op0 = Op.getOperand(0);
8420  SDValue Op1 = Op.getOperand(1);
8421  SDValue CC = Op.getOperand(2);
8422  EVT VT = Op.getValueType();
8423  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8424  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8425  DebugLoc dl = Op.getDebugLoc();
8426
8427  if (isFP) {
8428    unsigned SSECC = 8;
8429    EVT EltVT = Op0.getValueType().getVectorElementType();
8430    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8431
8432    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8433    bool Swap = false;
8434
8435    switch (SetCCOpcode) {
8436    default: break;
8437    case ISD::SETOEQ:
8438    case ISD::SETEQ:  SSECC = 0; break;
8439    case ISD::SETOGT:
8440    case ISD::SETGT: Swap = true; // Fallthrough
8441    case ISD::SETLT:
8442    case ISD::SETOLT: SSECC = 1; break;
8443    case ISD::SETOGE:
8444    case ISD::SETGE: Swap = true; // Fallthrough
8445    case ISD::SETLE:
8446    case ISD::SETOLE: SSECC = 2; break;
8447    case ISD::SETUO:  SSECC = 3; break;
8448    case ISD::SETUNE:
8449    case ISD::SETNE:  SSECC = 4; break;
8450    case ISD::SETULE: Swap = true;
8451    case ISD::SETUGE: SSECC = 5; break;
8452    case ISD::SETULT: Swap = true;
8453    case ISD::SETUGT: SSECC = 6; break;
8454    case ISD::SETO:   SSECC = 7; break;
8455    }
8456    if (Swap)
8457      std::swap(Op0, Op1);
8458
8459    // In the two special cases we can't handle, emit two comparisons.
8460    if (SSECC == 8) {
8461      if (SetCCOpcode == ISD::SETUEQ) {
8462        SDValue UNORD, EQ;
8463        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8464        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8465        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8466      }
8467      else if (SetCCOpcode == ISD::SETONE) {
8468        SDValue ORD, NEQ;
8469        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8470        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8471        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8472      }
8473      llvm_unreachable("Illegal FP comparison");
8474    }
8475    // Handle all other FP comparisons here.
8476    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8477  }
8478
8479  // Break 256-bit integer vector compare into smaller ones.
8480  if (!isFP && VT.getSizeInBits() == 256)
8481    return Lower256IntVETCC(Op, DAG);
8482
8483  // We are handling one of the integer comparisons here.  Since SSE only has
8484  // GT and EQ comparisons for integer, swapping operands and multiple
8485  // operations may be required for some comparisons.
8486  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8487  bool Swap = false, Invert = false, FlipSigns = false;
8488
8489  switch (VT.getSimpleVT().SimpleTy) {
8490  default: break;
8491  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8492  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8493  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8494  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8495  }
8496
8497  switch (SetCCOpcode) {
8498  default: break;
8499  case ISD::SETNE:  Invert = true;
8500  case ISD::SETEQ:  Opc = EQOpc; break;
8501  case ISD::SETLT:  Swap = true;
8502  case ISD::SETGT:  Opc = GTOpc; break;
8503  case ISD::SETGE:  Swap = true;
8504  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8505  case ISD::SETULT: Swap = true;
8506  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8507  case ISD::SETUGE: Swap = true;
8508  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8509  }
8510  if (Swap)
8511    std::swap(Op0, Op1);
8512
8513  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8514  // bits of the inputs before performing those operations.
8515  if (FlipSigns) {
8516    EVT EltVT = VT.getVectorElementType();
8517    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8518                                      EltVT);
8519    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8520    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8521                                    SignBits.size());
8522    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8523    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8524  }
8525
8526  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8527
8528  // If the logical-not of the result is required, perform that now.
8529  if (Invert)
8530    Result = DAG.getNOT(dl, Result, VT);
8531
8532  return Result;
8533}
8534
8535// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8536static bool isX86LogicalCmp(SDValue Op) {
8537  unsigned Opc = Op.getNode()->getOpcode();
8538  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8539    return true;
8540  if (Op.getResNo() == 1 &&
8541      (Opc == X86ISD::ADD ||
8542       Opc == X86ISD::SUB ||
8543       Opc == X86ISD::ADC ||
8544       Opc == X86ISD::SBB ||
8545       Opc == X86ISD::SMUL ||
8546       Opc == X86ISD::UMUL ||
8547       Opc == X86ISD::INC ||
8548       Opc == X86ISD::DEC ||
8549       Opc == X86ISD::OR ||
8550       Opc == X86ISD::XOR ||
8551       Opc == X86ISD::AND))
8552    return true;
8553
8554  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8555    return true;
8556
8557  return false;
8558}
8559
8560static bool isZero(SDValue V) {
8561  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8562  return C && C->isNullValue();
8563}
8564
8565static bool isAllOnes(SDValue V) {
8566  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8567  return C && C->isAllOnesValue();
8568}
8569
8570SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8571  bool addTest = true;
8572  SDValue Cond  = Op.getOperand(0);
8573  SDValue Op1 = Op.getOperand(1);
8574  SDValue Op2 = Op.getOperand(2);
8575  DebugLoc DL = Op.getDebugLoc();
8576  SDValue CC;
8577
8578  if (Cond.getOpcode() == ISD::SETCC) {
8579    SDValue NewCond = LowerSETCC(Cond, DAG);
8580    if (NewCond.getNode())
8581      Cond = NewCond;
8582  }
8583
8584  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8585  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8586  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8587  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8588  if (Cond.getOpcode() == X86ISD::SETCC &&
8589      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8590      isZero(Cond.getOperand(1).getOperand(1))) {
8591    SDValue Cmp = Cond.getOperand(1);
8592
8593    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8594
8595    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8596        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8597      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8598
8599      SDValue CmpOp0 = Cmp.getOperand(0);
8600      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8601                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8602
8603      SDValue Res =   // Res = 0 or -1.
8604        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8605                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8606
8607      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8608        Res = DAG.getNOT(DL, Res, Res.getValueType());
8609
8610      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8611      if (N2C == 0 || !N2C->isNullValue())
8612        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8613      return Res;
8614    }
8615  }
8616
8617  // Look past (and (setcc_carry (cmp ...)), 1).
8618  if (Cond.getOpcode() == ISD::AND &&
8619      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8620    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8621    if (C && C->getAPIntValue() == 1)
8622      Cond = Cond.getOperand(0);
8623  }
8624
8625  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8626  // setting operand in place of the X86ISD::SETCC.
8627  if (Cond.getOpcode() == X86ISD::SETCC ||
8628      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8629    CC = Cond.getOperand(0);
8630
8631    SDValue Cmp = Cond.getOperand(1);
8632    unsigned Opc = Cmp.getOpcode();
8633    EVT VT = Op.getValueType();
8634
8635    bool IllegalFPCMov = false;
8636    if (VT.isFloatingPoint() && !VT.isVector() &&
8637        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8638      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8639
8640    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8641        Opc == X86ISD::BT) { // FIXME
8642      Cond = Cmp;
8643      addTest = false;
8644    }
8645  }
8646
8647  if (addTest) {
8648    // Look pass the truncate.
8649    if (Cond.getOpcode() == ISD::TRUNCATE)
8650      Cond = Cond.getOperand(0);
8651
8652    // We know the result of AND is compared against zero. Try to match
8653    // it to BT.
8654    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8655      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8656      if (NewSetCC.getNode()) {
8657        CC = NewSetCC.getOperand(0);
8658        Cond = NewSetCC.getOperand(1);
8659        addTest = false;
8660      }
8661    }
8662  }
8663
8664  if (addTest) {
8665    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8666    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8667  }
8668
8669  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8670  // a <  b ?  0 : -1 -> RES = setcc_carry
8671  // a >= b ? -1 :  0 -> RES = setcc_carry
8672  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8673  if (Cond.getOpcode() == X86ISD::CMP) {
8674    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8675
8676    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8677        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8678      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8679                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8680      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8681        return DAG.getNOT(DL, Res, Res.getValueType());
8682      return Res;
8683    }
8684  }
8685
8686  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8687  // condition is true.
8688  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8689  SDValue Ops[] = { Op2, Op1, CC, Cond };
8690  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8691}
8692
8693SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
8694  SDValue Cond  = Op.getOperand(0);
8695  SDValue Op1 = Op.getOperand(1);
8696  SDValue Op2 = Op.getOperand(2);
8697  DebugLoc DL = Op.getDebugLoc();
8698
8699  SDValue Ops[] = {Op1, Op2, Cond};
8700
8701  assert(Op1.getValueType().isVector() && "Op1 must be a vector");
8702  assert(Op2.getValueType().isVector() && "Op2 must be a vector");
8703  assert(Cond.getValueType().isVector() && "Cond must be a vector");
8704  assert(Op1.getValueType() == Op2.getValueType() && "Type mismatch");
8705
8706  EVT VT = Op1.getValueType();
8707  switch (VT.getSimpleVT().SimpleTy) {
8708    default: break;
8709    case MVT::v2i64:
8710    case MVT::v2f64:
8711         return DAG.getNode(X86ISD::BLENDVPD, DL, VT, Ops, array_lengthof(Ops));
8712    case MVT::v4i32:
8713    case MVT::v4f32:
8714         return DAG.getNode(X86ISD::BLENDVPS, DL, VT , Ops, array_lengthof(Ops));
8715    case MVT::v16i8:
8716         return DAG.getNode(X86ISD::PBLENDVB, DL, VT , Ops, array_lengthof(Ops));
8717  }
8718
8719  return SDValue();
8720}
8721
8722
8723// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8724// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8725// from the AND / OR.
8726static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8727  Opc = Op.getOpcode();
8728  if (Opc != ISD::OR && Opc != ISD::AND)
8729    return false;
8730  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8731          Op.getOperand(0).hasOneUse() &&
8732          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8733          Op.getOperand(1).hasOneUse());
8734}
8735
8736// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8737// 1 and that the SETCC node has a single use.
8738static bool isXor1OfSetCC(SDValue Op) {
8739  if (Op.getOpcode() != ISD::XOR)
8740    return false;
8741  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8742  if (N1C && N1C->getAPIntValue() == 1) {
8743    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8744      Op.getOperand(0).hasOneUse();
8745  }
8746  return false;
8747}
8748
8749SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8750  bool addTest = true;
8751  SDValue Chain = Op.getOperand(0);
8752  SDValue Cond  = Op.getOperand(1);
8753  SDValue Dest  = Op.getOperand(2);
8754  DebugLoc dl = Op.getDebugLoc();
8755  SDValue CC;
8756
8757  if (Cond.getOpcode() == ISD::SETCC) {
8758    SDValue NewCond = LowerSETCC(Cond, DAG);
8759    if (NewCond.getNode())
8760      Cond = NewCond;
8761  }
8762#if 0
8763  // FIXME: LowerXALUO doesn't handle these!!
8764  else if (Cond.getOpcode() == X86ISD::ADD  ||
8765           Cond.getOpcode() == X86ISD::SUB  ||
8766           Cond.getOpcode() == X86ISD::SMUL ||
8767           Cond.getOpcode() == X86ISD::UMUL)
8768    Cond = LowerXALUO(Cond, DAG);
8769#endif
8770
8771  // Look pass (and (setcc_carry (cmp ...)), 1).
8772  if (Cond.getOpcode() == ISD::AND &&
8773      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8774    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8775    if (C && C->getAPIntValue() == 1)
8776      Cond = Cond.getOperand(0);
8777  }
8778
8779  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8780  // setting operand in place of the X86ISD::SETCC.
8781  if (Cond.getOpcode() == X86ISD::SETCC ||
8782      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8783    CC = Cond.getOperand(0);
8784
8785    SDValue Cmp = Cond.getOperand(1);
8786    unsigned Opc = Cmp.getOpcode();
8787    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8788    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8789      Cond = Cmp;
8790      addTest = false;
8791    } else {
8792      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8793      default: break;
8794      case X86::COND_O:
8795      case X86::COND_B:
8796        // These can only come from an arithmetic instruction with overflow,
8797        // e.g. SADDO, UADDO.
8798        Cond = Cond.getNode()->getOperand(1);
8799        addTest = false;
8800        break;
8801      }
8802    }
8803  } else {
8804    unsigned CondOpc;
8805    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8806      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8807      if (CondOpc == ISD::OR) {
8808        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8809        // two branches instead of an explicit OR instruction with a
8810        // separate test.
8811        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8812            isX86LogicalCmp(Cmp)) {
8813          CC = Cond.getOperand(0).getOperand(0);
8814          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8815                              Chain, Dest, CC, Cmp);
8816          CC = Cond.getOperand(1).getOperand(0);
8817          Cond = Cmp;
8818          addTest = false;
8819        }
8820      } else { // ISD::AND
8821        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8822        // two branches instead of an explicit AND instruction with a
8823        // separate test. However, we only do this if this block doesn't
8824        // have a fall-through edge, because this requires an explicit
8825        // jmp when the condition is false.
8826        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8827            isX86LogicalCmp(Cmp) &&
8828            Op.getNode()->hasOneUse()) {
8829          X86::CondCode CCode =
8830            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8831          CCode = X86::GetOppositeBranchCondition(CCode);
8832          CC = DAG.getConstant(CCode, MVT::i8);
8833          SDNode *User = *Op.getNode()->use_begin();
8834          // Look for an unconditional branch following this conditional branch.
8835          // We need this because we need to reverse the successors in order
8836          // to implement FCMP_OEQ.
8837          if (User->getOpcode() == ISD::BR) {
8838            SDValue FalseBB = User->getOperand(1);
8839            SDNode *NewBR =
8840              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8841            assert(NewBR == User);
8842            (void)NewBR;
8843            Dest = FalseBB;
8844
8845            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8846                                Chain, Dest, CC, Cmp);
8847            X86::CondCode CCode =
8848              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8849            CCode = X86::GetOppositeBranchCondition(CCode);
8850            CC = DAG.getConstant(CCode, MVT::i8);
8851            Cond = Cmp;
8852            addTest = false;
8853          }
8854        }
8855      }
8856    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8857      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8858      // It should be transformed during dag combiner except when the condition
8859      // is set by a arithmetics with overflow node.
8860      X86::CondCode CCode =
8861        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8862      CCode = X86::GetOppositeBranchCondition(CCode);
8863      CC = DAG.getConstant(CCode, MVT::i8);
8864      Cond = Cond.getOperand(0).getOperand(1);
8865      addTest = false;
8866    }
8867  }
8868
8869  if (addTest) {
8870    // Look pass the truncate.
8871    if (Cond.getOpcode() == ISD::TRUNCATE)
8872      Cond = Cond.getOperand(0);
8873
8874    // We know the result of AND is compared against zero. Try to match
8875    // it to BT.
8876    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8877      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8878      if (NewSetCC.getNode()) {
8879        CC = NewSetCC.getOperand(0);
8880        Cond = NewSetCC.getOperand(1);
8881        addTest = false;
8882      }
8883    }
8884  }
8885
8886  if (addTest) {
8887    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8888    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8889  }
8890  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8891                     Chain, Dest, CC, Cond);
8892}
8893
8894
8895// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8896// Calls to _alloca is needed to probe the stack when allocating more than 4k
8897// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8898// that the guard pages used by the OS virtual memory manager are allocated in
8899// correct sequence.
8900SDValue
8901X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8902                                           SelectionDAG &DAG) const {
8903  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8904          EnableSegmentedStacks) &&
8905         "This should be used only on Windows targets or when segmented stacks "
8906         "are being used");
8907  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8908  DebugLoc dl = Op.getDebugLoc();
8909
8910  // Get the inputs.
8911  SDValue Chain = Op.getOperand(0);
8912  SDValue Size  = Op.getOperand(1);
8913  // FIXME: Ensure alignment here
8914
8915  bool Is64Bit = Subtarget->is64Bit();
8916  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8917
8918  if (EnableSegmentedStacks) {
8919    MachineFunction &MF = DAG.getMachineFunction();
8920    MachineRegisterInfo &MRI = MF.getRegInfo();
8921
8922    if (Is64Bit) {
8923      // The 64 bit implementation of segmented stacks needs to clobber both r10
8924      // r11. This makes it impossible to use it along with nested parameters.
8925      const Function *F = MF.getFunction();
8926
8927      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8928           I != E; I++)
8929        if (I->hasNestAttr())
8930          report_fatal_error("Cannot use segmented stacks with functions that "
8931                             "have nested arguments.");
8932    }
8933
8934    const TargetRegisterClass *AddrRegClass =
8935      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8936    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8937    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8938    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8939                                DAG.getRegister(Vreg, SPTy));
8940    SDValue Ops1[2] = { Value, Chain };
8941    return DAG.getMergeValues(Ops1, 2, dl);
8942  } else {
8943    SDValue Flag;
8944    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8945
8946    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8947    Flag = Chain.getValue(1);
8948    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8949
8950    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8951    Flag = Chain.getValue(1);
8952
8953    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8954
8955    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8956    return DAG.getMergeValues(Ops1, 2, dl);
8957  }
8958}
8959
8960SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8961  MachineFunction &MF = DAG.getMachineFunction();
8962  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8963
8964  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8965  DebugLoc DL = Op.getDebugLoc();
8966
8967  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8968    // vastart just stores the address of the VarArgsFrameIndex slot into the
8969    // memory location argument.
8970    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8971                                   getPointerTy());
8972    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8973                        MachinePointerInfo(SV), false, false, 0);
8974  }
8975
8976  // __va_list_tag:
8977  //   gp_offset         (0 - 6 * 8)
8978  //   fp_offset         (48 - 48 + 8 * 16)
8979  //   overflow_arg_area (point to parameters coming in memory).
8980  //   reg_save_area
8981  SmallVector<SDValue, 8> MemOps;
8982  SDValue FIN = Op.getOperand(1);
8983  // Store gp_offset
8984  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8985                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8986                                               MVT::i32),
8987                               FIN, MachinePointerInfo(SV), false, false, 0);
8988  MemOps.push_back(Store);
8989
8990  // Store fp_offset
8991  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8992                    FIN, DAG.getIntPtrConstant(4));
8993  Store = DAG.getStore(Op.getOperand(0), DL,
8994                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8995                                       MVT::i32),
8996                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8997  MemOps.push_back(Store);
8998
8999  // Store ptr to overflow_arg_area
9000  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9001                    FIN, DAG.getIntPtrConstant(4));
9002  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9003                                    getPointerTy());
9004  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9005                       MachinePointerInfo(SV, 8),
9006                       false, false, 0);
9007  MemOps.push_back(Store);
9008
9009  // Store ptr to reg_save_area.
9010  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9011                    FIN, DAG.getIntPtrConstant(8));
9012  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9013                                    getPointerTy());
9014  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9015                       MachinePointerInfo(SV, 16), false, false, 0);
9016  MemOps.push_back(Store);
9017  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9018                     &MemOps[0], MemOps.size());
9019}
9020
9021SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9022  assert(Subtarget->is64Bit() &&
9023         "LowerVAARG only handles 64-bit va_arg!");
9024  assert((Subtarget->isTargetLinux() ||
9025          Subtarget->isTargetDarwin()) &&
9026          "Unhandled target in LowerVAARG");
9027  assert(Op.getNode()->getNumOperands() == 4);
9028  SDValue Chain = Op.getOperand(0);
9029  SDValue SrcPtr = Op.getOperand(1);
9030  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9031  unsigned Align = Op.getConstantOperandVal(3);
9032  DebugLoc dl = Op.getDebugLoc();
9033
9034  EVT ArgVT = Op.getNode()->getValueType(0);
9035  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9036  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9037  uint8_t ArgMode;
9038
9039  // Decide which area this value should be read from.
9040  // TODO: Implement the AMD64 ABI in its entirety. This simple
9041  // selection mechanism works only for the basic types.
9042  if (ArgVT == MVT::f80) {
9043    llvm_unreachable("va_arg for f80 not yet implemented");
9044  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9045    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9046  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9047    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9048  } else {
9049    llvm_unreachable("Unhandled argument type in LowerVAARG");
9050  }
9051
9052  if (ArgMode == 2) {
9053    // Sanity Check: Make sure using fp_offset makes sense.
9054    assert(!UseSoftFloat &&
9055           !(DAG.getMachineFunction()
9056                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9057           Subtarget->hasXMM());
9058  }
9059
9060  // Insert VAARG_64 node into the DAG
9061  // VAARG_64 returns two values: Variable Argument Address, Chain
9062  SmallVector<SDValue, 11> InstOps;
9063  InstOps.push_back(Chain);
9064  InstOps.push_back(SrcPtr);
9065  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9066  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9067  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9068  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9069  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9070                                          VTs, &InstOps[0], InstOps.size(),
9071                                          MVT::i64,
9072                                          MachinePointerInfo(SV),
9073                                          /*Align=*/0,
9074                                          /*Volatile=*/false,
9075                                          /*ReadMem=*/true,
9076                                          /*WriteMem=*/true);
9077  Chain = VAARG.getValue(1);
9078
9079  // Load the next argument and return it
9080  return DAG.getLoad(ArgVT, dl,
9081                     Chain,
9082                     VAARG,
9083                     MachinePointerInfo(),
9084                     false, false, 0);
9085}
9086
9087SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9088  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9089  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9090  SDValue Chain = Op.getOperand(0);
9091  SDValue DstPtr = Op.getOperand(1);
9092  SDValue SrcPtr = Op.getOperand(2);
9093  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9094  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9095  DebugLoc DL = Op.getDebugLoc();
9096
9097  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9098                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9099                       false,
9100                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9101}
9102
9103SDValue
9104X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9105  DebugLoc dl = Op.getDebugLoc();
9106  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9107  switch (IntNo) {
9108  default: return SDValue();    // Don't custom lower most intrinsics.
9109  // Comparison intrinsics.
9110  case Intrinsic::x86_sse_comieq_ss:
9111  case Intrinsic::x86_sse_comilt_ss:
9112  case Intrinsic::x86_sse_comile_ss:
9113  case Intrinsic::x86_sse_comigt_ss:
9114  case Intrinsic::x86_sse_comige_ss:
9115  case Intrinsic::x86_sse_comineq_ss:
9116  case Intrinsic::x86_sse_ucomieq_ss:
9117  case Intrinsic::x86_sse_ucomilt_ss:
9118  case Intrinsic::x86_sse_ucomile_ss:
9119  case Intrinsic::x86_sse_ucomigt_ss:
9120  case Intrinsic::x86_sse_ucomige_ss:
9121  case Intrinsic::x86_sse_ucomineq_ss:
9122  case Intrinsic::x86_sse2_comieq_sd:
9123  case Intrinsic::x86_sse2_comilt_sd:
9124  case Intrinsic::x86_sse2_comile_sd:
9125  case Intrinsic::x86_sse2_comigt_sd:
9126  case Intrinsic::x86_sse2_comige_sd:
9127  case Intrinsic::x86_sse2_comineq_sd:
9128  case Intrinsic::x86_sse2_ucomieq_sd:
9129  case Intrinsic::x86_sse2_ucomilt_sd:
9130  case Intrinsic::x86_sse2_ucomile_sd:
9131  case Intrinsic::x86_sse2_ucomigt_sd:
9132  case Intrinsic::x86_sse2_ucomige_sd:
9133  case Intrinsic::x86_sse2_ucomineq_sd: {
9134    unsigned Opc = 0;
9135    ISD::CondCode CC = ISD::SETCC_INVALID;
9136    switch (IntNo) {
9137    default: break;
9138    case Intrinsic::x86_sse_comieq_ss:
9139    case Intrinsic::x86_sse2_comieq_sd:
9140      Opc = X86ISD::COMI;
9141      CC = ISD::SETEQ;
9142      break;
9143    case Intrinsic::x86_sse_comilt_ss:
9144    case Intrinsic::x86_sse2_comilt_sd:
9145      Opc = X86ISD::COMI;
9146      CC = ISD::SETLT;
9147      break;
9148    case Intrinsic::x86_sse_comile_ss:
9149    case Intrinsic::x86_sse2_comile_sd:
9150      Opc = X86ISD::COMI;
9151      CC = ISD::SETLE;
9152      break;
9153    case Intrinsic::x86_sse_comigt_ss:
9154    case Intrinsic::x86_sse2_comigt_sd:
9155      Opc = X86ISD::COMI;
9156      CC = ISD::SETGT;
9157      break;
9158    case Intrinsic::x86_sse_comige_ss:
9159    case Intrinsic::x86_sse2_comige_sd:
9160      Opc = X86ISD::COMI;
9161      CC = ISD::SETGE;
9162      break;
9163    case Intrinsic::x86_sse_comineq_ss:
9164    case Intrinsic::x86_sse2_comineq_sd:
9165      Opc = X86ISD::COMI;
9166      CC = ISD::SETNE;
9167      break;
9168    case Intrinsic::x86_sse_ucomieq_ss:
9169    case Intrinsic::x86_sse2_ucomieq_sd:
9170      Opc = X86ISD::UCOMI;
9171      CC = ISD::SETEQ;
9172      break;
9173    case Intrinsic::x86_sse_ucomilt_ss:
9174    case Intrinsic::x86_sse2_ucomilt_sd:
9175      Opc = X86ISD::UCOMI;
9176      CC = ISD::SETLT;
9177      break;
9178    case Intrinsic::x86_sse_ucomile_ss:
9179    case Intrinsic::x86_sse2_ucomile_sd:
9180      Opc = X86ISD::UCOMI;
9181      CC = ISD::SETLE;
9182      break;
9183    case Intrinsic::x86_sse_ucomigt_ss:
9184    case Intrinsic::x86_sse2_ucomigt_sd:
9185      Opc = X86ISD::UCOMI;
9186      CC = ISD::SETGT;
9187      break;
9188    case Intrinsic::x86_sse_ucomige_ss:
9189    case Intrinsic::x86_sse2_ucomige_sd:
9190      Opc = X86ISD::UCOMI;
9191      CC = ISD::SETGE;
9192      break;
9193    case Intrinsic::x86_sse_ucomineq_ss:
9194    case Intrinsic::x86_sse2_ucomineq_sd:
9195      Opc = X86ISD::UCOMI;
9196      CC = ISD::SETNE;
9197      break;
9198    }
9199
9200    SDValue LHS = Op.getOperand(1);
9201    SDValue RHS = Op.getOperand(2);
9202    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9203    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9204    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9205    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9206                                DAG.getConstant(X86CC, MVT::i8), Cond);
9207    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9208  }
9209  // ptest and testp intrinsics. The intrinsic these come from are designed to
9210  // return an integer value, not just an instruction so lower it to the ptest
9211  // or testp pattern and a setcc for the result.
9212  case Intrinsic::x86_sse41_ptestz:
9213  case Intrinsic::x86_sse41_ptestc:
9214  case Intrinsic::x86_sse41_ptestnzc:
9215  case Intrinsic::x86_avx_ptestz_256:
9216  case Intrinsic::x86_avx_ptestc_256:
9217  case Intrinsic::x86_avx_ptestnzc_256:
9218  case Intrinsic::x86_avx_vtestz_ps:
9219  case Intrinsic::x86_avx_vtestc_ps:
9220  case Intrinsic::x86_avx_vtestnzc_ps:
9221  case Intrinsic::x86_avx_vtestz_pd:
9222  case Intrinsic::x86_avx_vtestc_pd:
9223  case Intrinsic::x86_avx_vtestnzc_pd:
9224  case Intrinsic::x86_avx_vtestz_ps_256:
9225  case Intrinsic::x86_avx_vtestc_ps_256:
9226  case Intrinsic::x86_avx_vtestnzc_ps_256:
9227  case Intrinsic::x86_avx_vtestz_pd_256:
9228  case Intrinsic::x86_avx_vtestc_pd_256:
9229  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9230    bool IsTestPacked = false;
9231    unsigned X86CC = 0;
9232    switch (IntNo) {
9233    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9234    case Intrinsic::x86_avx_vtestz_ps:
9235    case Intrinsic::x86_avx_vtestz_pd:
9236    case Intrinsic::x86_avx_vtestz_ps_256:
9237    case Intrinsic::x86_avx_vtestz_pd_256:
9238      IsTestPacked = true; // Fallthrough
9239    case Intrinsic::x86_sse41_ptestz:
9240    case Intrinsic::x86_avx_ptestz_256:
9241      // ZF = 1
9242      X86CC = X86::COND_E;
9243      break;
9244    case Intrinsic::x86_avx_vtestc_ps:
9245    case Intrinsic::x86_avx_vtestc_pd:
9246    case Intrinsic::x86_avx_vtestc_ps_256:
9247    case Intrinsic::x86_avx_vtestc_pd_256:
9248      IsTestPacked = true; // Fallthrough
9249    case Intrinsic::x86_sse41_ptestc:
9250    case Intrinsic::x86_avx_ptestc_256:
9251      // CF = 1
9252      X86CC = X86::COND_B;
9253      break;
9254    case Intrinsic::x86_avx_vtestnzc_ps:
9255    case Intrinsic::x86_avx_vtestnzc_pd:
9256    case Intrinsic::x86_avx_vtestnzc_ps_256:
9257    case Intrinsic::x86_avx_vtestnzc_pd_256:
9258      IsTestPacked = true; // Fallthrough
9259    case Intrinsic::x86_sse41_ptestnzc:
9260    case Intrinsic::x86_avx_ptestnzc_256:
9261      // ZF and CF = 0
9262      X86CC = X86::COND_A;
9263      break;
9264    }
9265
9266    SDValue LHS = Op.getOperand(1);
9267    SDValue RHS = Op.getOperand(2);
9268    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9269    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9270    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9271    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9272    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9273  }
9274
9275  // Fix vector shift instructions where the last operand is a non-immediate
9276  // i32 value.
9277  case Intrinsic::x86_sse2_pslli_w:
9278  case Intrinsic::x86_sse2_pslli_d:
9279  case Intrinsic::x86_sse2_pslli_q:
9280  case Intrinsic::x86_sse2_psrli_w:
9281  case Intrinsic::x86_sse2_psrli_d:
9282  case Intrinsic::x86_sse2_psrli_q:
9283  case Intrinsic::x86_sse2_psrai_w:
9284  case Intrinsic::x86_sse2_psrai_d:
9285  case Intrinsic::x86_mmx_pslli_w:
9286  case Intrinsic::x86_mmx_pslli_d:
9287  case Intrinsic::x86_mmx_pslli_q:
9288  case Intrinsic::x86_mmx_psrli_w:
9289  case Intrinsic::x86_mmx_psrli_d:
9290  case Intrinsic::x86_mmx_psrli_q:
9291  case Intrinsic::x86_mmx_psrai_w:
9292  case Intrinsic::x86_mmx_psrai_d: {
9293    SDValue ShAmt = Op.getOperand(2);
9294    if (isa<ConstantSDNode>(ShAmt))
9295      return SDValue();
9296
9297    unsigned NewIntNo = 0;
9298    EVT ShAmtVT = MVT::v4i32;
9299    switch (IntNo) {
9300    case Intrinsic::x86_sse2_pslli_w:
9301      NewIntNo = Intrinsic::x86_sse2_psll_w;
9302      break;
9303    case Intrinsic::x86_sse2_pslli_d:
9304      NewIntNo = Intrinsic::x86_sse2_psll_d;
9305      break;
9306    case Intrinsic::x86_sse2_pslli_q:
9307      NewIntNo = Intrinsic::x86_sse2_psll_q;
9308      break;
9309    case Intrinsic::x86_sse2_psrli_w:
9310      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9311      break;
9312    case Intrinsic::x86_sse2_psrli_d:
9313      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9314      break;
9315    case Intrinsic::x86_sse2_psrli_q:
9316      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9317      break;
9318    case Intrinsic::x86_sse2_psrai_w:
9319      NewIntNo = Intrinsic::x86_sse2_psra_w;
9320      break;
9321    case Intrinsic::x86_sse2_psrai_d:
9322      NewIntNo = Intrinsic::x86_sse2_psra_d;
9323      break;
9324    default: {
9325      ShAmtVT = MVT::v2i32;
9326      switch (IntNo) {
9327      case Intrinsic::x86_mmx_pslli_w:
9328        NewIntNo = Intrinsic::x86_mmx_psll_w;
9329        break;
9330      case Intrinsic::x86_mmx_pslli_d:
9331        NewIntNo = Intrinsic::x86_mmx_psll_d;
9332        break;
9333      case Intrinsic::x86_mmx_pslli_q:
9334        NewIntNo = Intrinsic::x86_mmx_psll_q;
9335        break;
9336      case Intrinsic::x86_mmx_psrli_w:
9337        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9338        break;
9339      case Intrinsic::x86_mmx_psrli_d:
9340        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9341        break;
9342      case Intrinsic::x86_mmx_psrli_q:
9343        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9344        break;
9345      case Intrinsic::x86_mmx_psrai_w:
9346        NewIntNo = Intrinsic::x86_mmx_psra_w;
9347        break;
9348      case Intrinsic::x86_mmx_psrai_d:
9349        NewIntNo = Intrinsic::x86_mmx_psra_d;
9350        break;
9351      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9352      }
9353      break;
9354    }
9355    }
9356
9357    // The vector shift intrinsics with scalars uses 32b shift amounts but
9358    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9359    // to be zero.
9360    SDValue ShOps[4];
9361    ShOps[0] = ShAmt;
9362    ShOps[1] = DAG.getConstant(0, MVT::i32);
9363    if (ShAmtVT == MVT::v4i32) {
9364      ShOps[2] = DAG.getUNDEF(MVT::i32);
9365      ShOps[3] = DAG.getUNDEF(MVT::i32);
9366      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9367    } else {
9368      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9369// FIXME this must be lowered to get rid of the invalid type.
9370    }
9371
9372    EVT VT = Op.getValueType();
9373    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9374    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9375                       DAG.getConstant(NewIntNo, MVT::i32),
9376                       Op.getOperand(1), ShAmt);
9377  }
9378  }
9379}
9380
9381SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9382                                           SelectionDAG &DAG) const {
9383  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9384  MFI->setReturnAddressIsTaken(true);
9385
9386  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9387  DebugLoc dl = Op.getDebugLoc();
9388
9389  if (Depth > 0) {
9390    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9391    SDValue Offset =
9392      DAG.getConstant(TD->getPointerSize(),
9393                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9394    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9395                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9396                                   FrameAddr, Offset),
9397                       MachinePointerInfo(), false, false, 0);
9398  }
9399
9400  // Just load the return address.
9401  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9402  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9403                     RetAddrFI, MachinePointerInfo(), false, false, 0);
9404}
9405
9406SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9407  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9408  MFI->setFrameAddressIsTaken(true);
9409
9410  EVT VT = Op.getValueType();
9411  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9412  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9413  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9414  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9415  while (Depth--)
9416    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9417                            MachinePointerInfo(),
9418                            false, false, 0);
9419  return FrameAddr;
9420}
9421
9422SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9423                                                     SelectionDAG &DAG) const {
9424  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9425}
9426
9427SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9428  MachineFunction &MF = DAG.getMachineFunction();
9429  SDValue Chain     = Op.getOperand(0);
9430  SDValue Offset    = Op.getOperand(1);
9431  SDValue Handler   = Op.getOperand(2);
9432  DebugLoc dl       = Op.getDebugLoc();
9433
9434  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9435                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9436                                     getPointerTy());
9437  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9438
9439  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9440                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9441  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9442  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9443                       false, false, 0);
9444  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9445  MF.getRegInfo().addLiveOut(StoreAddrReg);
9446
9447  return DAG.getNode(X86ISD::EH_RETURN, dl,
9448                     MVT::Other,
9449                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9450}
9451
9452SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9453                                                  SelectionDAG &DAG) const {
9454  return Op.getOperand(0);
9455}
9456
9457SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9458                                                SelectionDAG &DAG) const {
9459  SDValue Root = Op.getOperand(0);
9460  SDValue Trmp = Op.getOperand(1); // trampoline
9461  SDValue FPtr = Op.getOperand(2); // nested function
9462  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9463  DebugLoc dl  = Op.getDebugLoc();
9464
9465  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9466
9467  if (Subtarget->is64Bit()) {
9468    SDValue OutChains[6];
9469
9470    // Large code-model.
9471    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9472    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9473
9474    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9475    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9476
9477    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9478
9479    // Load the pointer to the nested function into R11.
9480    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9481    SDValue Addr = Trmp;
9482    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9483                                Addr, MachinePointerInfo(TrmpAddr),
9484                                false, false, 0);
9485
9486    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9487                       DAG.getConstant(2, MVT::i64));
9488    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9489                                MachinePointerInfo(TrmpAddr, 2),
9490                                false, false, 2);
9491
9492    // Load the 'nest' parameter value into R10.
9493    // R10 is specified in X86CallingConv.td
9494    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9495    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9496                       DAG.getConstant(10, MVT::i64));
9497    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9498                                Addr, MachinePointerInfo(TrmpAddr, 10),
9499                                false, false, 0);
9500
9501    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9502                       DAG.getConstant(12, MVT::i64));
9503    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9504                                MachinePointerInfo(TrmpAddr, 12),
9505                                false, false, 2);
9506
9507    // Jump to the nested function.
9508    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9509    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9510                       DAG.getConstant(20, MVT::i64));
9511    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9512                                Addr, MachinePointerInfo(TrmpAddr, 20),
9513                                false, false, 0);
9514
9515    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9516    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9517                       DAG.getConstant(22, MVT::i64));
9518    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9519                                MachinePointerInfo(TrmpAddr, 22),
9520                                false, false, 0);
9521
9522    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9523  } else {
9524    const Function *Func =
9525      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9526    CallingConv::ID CC = Func->getCallingConv();
9527    unsigned NestReg;
9528
9529    switch (CC) {
9530    default:
9531      llvm_unreachable("Unsupported calling convention");
9532    case CallingConv::C:
9533    case CallingConv::X86_StdCall: {
9534      // Pass 'nest' parameter in ECX.
9535      // Must be kept in sync with X86CallingConv.td
9536      NestReg = X86::ECX;
9537
9538      // Check that ECX wasn't needed by an 'inreg' parameter.
9539      FunctionType *FTy = Func->getFunctionType();
9540      const AttrListPtr &Attrs = Func->getAttributes();
9541
9542      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9543        unsigned InRegCount = 0;
9544        unsigned Idx = 1;
9545
9546        for (FunctionType::param_iterator I = FTy->param_begin(),
9547             E = FTy->param_end(); I != E; ++I, ++Idx)
9548          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9549            // FIXME: should only count parameters that are lowered to integers.
9550            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9551
9552        if (InRegCount > 2) {
9553          report_fatal_error("Nest register in use - reduce number of inreg"
9554                             " parameters!");
9555        }
9556      }
9557      break;
9558    }
9559    case CallingConv::X86_FastCall:
9560    case CallingConv::X86_ThisCall:
9561    case CallingConv::Fast:
9562      // Pass 'nest' parameter in EAX.
9563      // Must be kept in sync with X86CallingConv.td
9564      NestReg = X86::EAX;
9565      break;
9566    }
9567
9568    SDValue OutChains[4];
9569    SDValue Addr, Disp;
9570
9571    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9572                       DAG.getConstant(10, MVT::i32));
9573    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9574
9575    // This is storing the opcode for MOV32ri.
9576    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9577    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9578    OutChains[0] = DAG.getStore(Root, dl,
9579                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9580                                Trmp, MachinePointerInfo(TrmpAddr),
9581                                false, false, 0);
9582
9583    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9584                       DAG.getConstant(1, MVT::i32));
9585    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9586                                MachinePointerInfo(TrmpAddr, 1),
9587                                false, false, 1);
9588
9589    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9590    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9591                       DAG.getConstant(5, MVT::i32));
9592    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9593                                MachinePointerInfo(TrmpAddr, 5),
9594                                false, false, 1);
9595
9596    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9597                       DAG.getConstant(6, MVT::i32));
9598    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9599                                MachinePointerInfo(TrmpAddr, 6),
9600                                false, false, 1);
9601
9602    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9603  }
9604}
9605
9606SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9607                                            SelectionDAG &DAG) const {
9608  /*
9609   The rounding mode is in bits 11:10 of FPSR, and has the following
9610   settings:
9611     00 Round to nearest
9612     01 Round to -inf
9613     10 Round to +inf
9614     11 Round to 0
9615
9616  FLT_ROUNDS, on the other hand, expects the following:
9617    -1 Undefined
9618     0 Round to 0
9619     1 Round to nearest
9620     2 Round to +inf
9621     3 Round to -inf
9622
9623  To perform the conversion, we do:
9624    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9625  */
9626
9627  MachineFunction &MF = DAG.getMachineFunction();
9628  const TargetMachine &TM = MF.getTarget();
9629  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9630  unsigned StackAlignment = TFI.getStackAlignment();
9631  EVT VT = Op.getValueType();
9632  DebugLoc DL = Op.getDebugLoc();
9633
9634  // Save FP Control Word to stack slot
9635  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9636  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9637
9638
9639  MachineMemOperand *MMO =
9640   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9641                           MachineMemOperand::MOStore, 2, 2);
9642
9643  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9644  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9645                                          DAG.getVTList(MVT::Other),
9646                                          Ops, 2, MVT::i16, MMO);
9647
9648  // Load FP Control Word from stack slot
9649  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9650                            MachinePointerInfo(), false, false, 0);
9651
9652  // Transform as necessary
9653  SDValue CWD1 =
9654    DAG.getNode(ISD::SRL, DL, MVT::i16,
9655                DAG.getNode(ISD::AND, DL, MVT::i16,
9656                            CWD, DAG.getConstant(0x800, MVT::i16)),
9657                DAG.getConstant(11, MVT::i8));
9658  SDValue CWD2 =
9659    DAG.getNode(ISD::SRL, DL, MVT::i16,
9660                DAG.getNode(ISD::AND, DL, MVT::i16,
9661                            CWD, DAG.getConstant(0x400, MVT::i16)),
9662                DAG.getConstant(9, MVT::i8));
9663
9664  SDValue RetVal =
9665    DAG.getNode(ISD::AND, DL, MVT::i16,
9666                DAG.getNode(ISD::ADD, DL, MVT::i16,
9667                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9668                            DAG.getConstant(1, MVT::i16)),
9669                DAG.getConstant(3, MVT::i16));
9670
9671
9672  return DAG.getNode((VT.getSizeInBits() < 16 ?
9673                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9674}
9675
9676SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9677  EVT VT = Op.getValueType();
9678  EVT OpVT = VT;
9679  unsigned NumBits = VT.getSizeInBits();
9680  DebugLoc dl = Op.getDebugLoc();
9681
9682  Op = Op.getOperand(0);
9683  if (VT == MVT::i8) {
9684    // Zero extend to i32 since there is not an i8 bsr.
9685    OpVT = MVT::i32;
9686    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9687  }
9688
9689  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9690  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9691  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9692
9693  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9694  SDValue Ops[] = {
9695    Op,
9696    DAG.getConstant(NumBits+NumBits-1, OpVT),
9697    DAG.getConstant(X86::COND_E, MVT::i8),
9698    Op.getValue(1)
9699  };
9700  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9701
9702  // Finally xor with NumBits-1.
9703  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9704
9705  if (VT == MVT::i8)
9706    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9707  return Op;
9708}
9709
9710SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9711  EVT VT = Op.getValueType();
9712  EVT OpVT = VT;
9713  unsigned NumBits = VT.getSizeInBits();
9714  DebugLoc dl = Op.getDebugLoc();
9715
9716  Op = Op.getOperand(0);
9717  if (VT == MVT::i8) {
9718    OpVT = MVT::i32;
9719    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9720  }
9721
9722  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9723  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9724  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9725
9726  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9727  SDValue Ops[] = {
9728    Op,
9729    DAG.getConstant(NumBits, OpVT),
9730    DAG.getConstant(X86::COND_E, MVT::i8),
9731    Op.getValue(1)
9732  };
9733  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9734
9735  if (VT == MVT::i8)
9736    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9737  return Op;
9738}
9739
9740// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9741// ones, and then concatenate the result back.
9742static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9743  EVT VT = Op.getValueType();
9744
9745  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9746         "Unsupported value type for operation");
9747
9748  int NumElems = VT.getVectorNumElements();
9749  DebugLoc dl = Op.getDebugLoc();
9750  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9751  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9752
9753  // Extract the LHS vectors
9754  SDValue LHS = Op.getOperand(0);
9755  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9756  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9757
9758  // Extract the RHS vectors
9759  SDValue RHS = Op.getOperand(1);
9760  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9761  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9762
9763  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9764  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9765
9766  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9767                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9768                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9769}
9770
9771SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9772  assert(Op.getValueType().getSizeInBits() == 256 &&
9773         Op.getValueType().isInteger() &&
9774         "Only handle AVX 256-bit vector integer operation");
9775  return Lower256IntArith(Op, DAG);
9776}
9777
9778SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9779  assert(Op.getValueType().getSizeInBits() == 256 &&
9780         Op.getValueType().isInteger() &&
9781         "Only handle AVX 256-bit vector integer operation");
9782  return Lower256IntArith(Op, DAG);
9783}
9784
9785SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9786  EVT VT = Op.getValueType();
9787
9788  // Decompose 256-bit ops into smaller 128-bit ops.
9789  if (VT.getSizeInBits() == 256)
9790    return Lower256IntArith(Op, DAG);
9791
9792  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9793  DebugLoc dl = Op.getDebugLoc();
9794
9795  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9796  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9797  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9798  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9799  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9800  //
9801  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9802  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9803  //  return AloBlo + AloBhi + AhiBlo;
9804
9805  SDValue A = Op.getOperand(0);
9806  SDValue B = Op.getOperand(1);
9807
9808  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9809                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9810                       A, DAG.getConstant(32, MVT::i32));
9811  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9812                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9813                       B, DAG.getConstant(32, MVT::i32));
9814  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9815                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9816                       A, B);
9817  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9818                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9819                       A, Bhi);
9820  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9821                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9822                       Ahi, B);
9823  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9824                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9825                       AloBhi, DAG.getConstant(32, MVT::i32));
9826  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9827                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9828                       AhiBlo, DAG.getConstant(32, MVT::i32));
9829  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9830  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9831  return Res;
9832}
9833
9834SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9835
9836  EVT VT = Op.getValueType();
9837  DebugLoc dl = Op.getDebugLoc();
9838  SDValue R = Op.getOperand(0);
9839  SDValue Amt = Op.getOperand(1);
9840  LLVMContext *Context = DAG.getContext();
9841
9842  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
9843    return SDValue();
9844
9845  // Decompose 256-bit shifts into smaller 128-bit shifts.
9846  if (VT.getSizeInBits() == 256) {
9847    int NumElems = VT.getVectorNumElements();
9848    MVT EltVT = VT.getVectorElementType().getSimpleVT();
9849    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9850
9851    // Extract the two vectors
9852    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
9853    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
9854                                     DAG, dl);
9855
9856    // Recreate the shift amount vectors
9857    SDValue Amt1, Amt2;
9858    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
9859      // Constant shift amount
9860      SmallVector<SDValue, 4> Amt1Csts;
9861      SmallVector<SDValue, 4> Amt2Csts;
9862      for (int i = 0; i < NumElems/2; ++i)
9863        Amt1Csts.push_back(Amt->getOperand(i));
9864      for (int i = NumElems/2; i < NumElems; ++i)
9865        Amt2Csts.push_back(Amt->getOperand(i));
9866
9867      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9868                                 &Amt1Csts[0], NumElems/2);
9869      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9870                                 &Amt2Csts[0], NumElems/2);
9871    } else {
9872      // Variable shift amount
9873      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
9874      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
9875                                 DAG, dl);
9876    }
9877
9878    // Issue new vector shifts for the smaller types
9879    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
9880    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
9881
9882    // Concatenate the result back
9883    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
9884  }
9885
9886  // Optimize shl/srl/sra with constant shift amount.
9887  if (isSplatVector(Amt.getNode())) {
9888    SDValue SclrAmt = Amt->getOperand(0);
9889    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9890      uint64_t ShiftAmt = C->getZExtValue();
9891
9892      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9893       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9894                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9895                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9896
9897      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9898       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9899                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9900                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9901
9902      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9903       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9904                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9905                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9906
9907      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9908       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9909                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9910                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9911
9912      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9913       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9914                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9915                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9916
9917      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9918       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9919                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9920                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9921
9922      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9923       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9924                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9925                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9926
9927      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9928       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9929                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9930                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9931    }
9932  }
9933
9934  // Lower SHL with variable shift amount.
9935  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9936    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9937                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9938                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9939
9940    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9941
9942    std::vector<Constant*> CV(4, CI);
9943    Constant *C = ConstantVector::get(CV);
9944    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9945    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9946                                 MachinePointerInfo::getConstantPool(),
9947                                 false, false, 16);
9948
9949    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9950    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9951    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9952    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9953  }
9954  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9955    // a = a << 5;
9956    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9957                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9958                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9959
9960    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
9961    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
9962
9963    std::vector<Constant*> CVM1(16, CM1);
9964    std::vector<Constant*> CVM2(16, CM2);
9965    Constant *C = ConstantVector::get(CVM1);
9966    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9967    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9968                            MachinePointerInfo::getConstantPool(),
9969                            false, false, 16);
9970
9971    // r = pblendv(r, psllw(r & (char16)15, 4), a);
9972    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9973    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9974                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9975                    DAG.getConstant(4, MVT::i32));
9976    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9977    // a += a
9978    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9979
9980    C = ConstantVector::get(CVM2);
9981    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9982    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9983                    MachinePointerInfo::getConstantPool(),
9984                    false, false, 16);
9985
9986    // r = pblendv(r, psllw(r & (char16)63, 2), a);
9987    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9988    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9989                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9990                    DAG.getConstant(2, MVT::i32));
9991    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9992    // a += a
9993    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9994
9995    // return pblendv(r, r+r, a);
9996    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
9997                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
9998    return R;
9999  }
10000  return SDValue();
10001}
10002
10003SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10004  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10005  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10006  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10007  // has only one use.
10008  SDNode *N = Op.getNode();
10009  SDValue LHS = N->getOperand(0);
10010  SDValue RHS = N->getOperand(1);
10011  unsigned BaseOp = 0;
10012  unsigned Cond = 0;
10013  DebugLoc DL = Op.getDebugLoc();
10014  switch (Op.getOpcode()) {
10015  default: llvm_unreachable("Unknown ovf instruction!");
10016  case ISD::SADDO:
10017    // A subtract of one will be selected as a INC. Note that INC doesn't
10018    // set CF, so we can't do this for UADDO.
10019    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10020      if (C->isOne()) {
10021        BaseOp = X86ISD::INC;
10022        Cond = X86::COND_O;
10023        break;
10024      }
10025    BaseOp = X86ISD::ADD;
10026    Cond = X86::COND_O;
10027    break;
10028  case ISD::UADDO:
10029    BaseOp = X86ISD::ADD;
10030    Cond = X86::COND_B;
10031    break;
10032  case ISD::SSUBO:
10033    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10034    // set CF, so we can't do this for USUBO.
10035    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10036      if (C->isOne()) {
10037        BaseOp = X86ISD::DEC;
10038        Cond = X86::COND_O;
10039        break;
10040      }
10041    BaseOp = X86ISD::SUB;
10042    Cond = X86::COND_O;
10043    break;
10044  case ISD::USUBO:
10045    BaseOp = X86ISD::SUB;
10046    Cond = X86::COND_B;
10047    break;
10048  case ISD::SMULO:
10049    BaseOp = X86ISD::SMUL;
10050    Cond = X86::COND_O;
10051    break;
10052  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10053    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10054                                 MVT::i32);
10055    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10056
10057    SDValue SetCC =
10058      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10059                  DAG.getConstant(X86::COND_O, MVT::i32),
10060                  SDValue(Sum.getNode(), 2));
10061
10062    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10063  }
10064  }
10065
10066  // Also sets EFLAGS.
10067  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10068  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10069
10070  SDValue SetCC =
10071    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10072                DAG.getConstant(Cond, MVT::i32),
10073                SDValue(Sum.getNode(), 1));
10074
10075  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10076}
10077
10078SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
10079  DebugLoc dl = Op.getDebugLoc();
10080  SDNode* Node = Op.getNode();
10081  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
10082  EVT VT = Node->getValueType(0);
10083  if (Subtarget->hasSSE2() && VT.isVector()) {
10084    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10085                        ExtraVT.getScalarType().getSizeInBits();
10086    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10087
10088    unsigned SHLIntrinsicsID = 0;
10089    unsigned SRAIntrinsicsID = 0;
10090    switch (VT.getSimpleVT().SimpleTy) {
10091      default:
10092        return SDValue();
10093      case MVT::v2i64: {
10094        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_q;
10095        SRAIntrinsicsID = 0;
10096        break;
10097      }
10098      case MVT::v4i32: {
10099        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10100        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10101        break;
10102      }
10103      case MVT::v8i16: {
10104        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10105        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10106        break;
10107      }
10108    }
10109
10110    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10111                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10112                         Node->getOperand(0), ShAmt);
10113
10114    // In case of 1 bit sext, no need to shr
10115    if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
10116
10117    if (SRAIntrinsicsID) {
10118      Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10119                         DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10120                         Tmp1, ShAmt);
10121    }
10122    return Tmp1;
10123  }
10124
10125  return SDValue();
10126}
10127
10128
10129SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10130  DebugLoc dl = Op.getDebugLoc();
10131
10132  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10133  // There isn't any reason to disable it if the target processor supports it.
10134  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10135    SDValue Chain = Op.getOperand(0);
10136    SDValue Zero = DAG.getConstant(0, MVT::i32);
10137    SDValue Ops[] = {
10138      DAG.getRegister(X86::ESP, MVT::i32), // Base
10139      DAG.getTargetConstant(1, MVT::i8),   // Scale
10140      DAG.getRegister(0, MVT::i32),        // Index
10141      DAG.getTargetConstant(0, MVT::i32),  // Disp
10142      DAG.getRegister(0, MVT::i32),        // Segment.
10143      Zero,
10144      Chain
10145    };
10146    SDNode *Res =
10147      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10148                          array_lengthof(Ops));
10149    return SDValue(Res, 0);
10150  }
10151
10152  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10153  if (!isDev)
10154    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10155
10156  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10157  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10158  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10159  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10160
10161  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10162  if (!Op1 && !Op2 && !Op3 && Op4)
10163    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10164
10165  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10166  if (Op1 && !Op2 && !Op3 && !Op4)
10167    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10168
10169  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10170  //           (MFENCE)>;
10171  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10172}
10173
10174SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10175                                             SelectionDAG &DAG) const {
10176  DebugLoc dl = Op.getDebugLoc();
10177  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10178    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10179  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10180    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10181
10182  // The only fence that needs an instruction is a sequentially-consistent
10183  // cross-thread fence.
10184  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10185    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10186    // no-sse2). There isn't any reason to disable it if the target processor
10187    // supports it.
10188    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10189      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10190
10191    SDValue Chain = Op.getOperand(0);
10192    SDValue Zero = DAG.getConstant(0, MVT::i32);
10193    SDValue Ops[] = {
10194      DAG.getRegister(X86::ESP, MVT::i32), // Base
10195      DAG.getTargetConstant(1, MVT::i8),   // Scale
10196      DAG.getRegister(0, MVT::i32),        // Index
10197      DAG.getTargetConstant(0, MVT::i32),  // Disp
10198      DAG.getRegister(0, MVT::i32),        // Segment.
10199      Zero,
10200      Chain
10201    };
10202    SDNode *Res =
10203      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10204                         array_lengthof(Ops));
10205    return SDValue(Res, 0);
10206  }
10207
10208  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10209  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10210}
10211
10212
10213SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10214  EVT T = Op.getValueType();
10215  DebugLoc DL = Op.getDebugLoc();
10216  unsigned Reg = 0;
10217  unsigned size = 0;
10218  switch(T.getSimpleVT().SimpleTy) {
10219  default:
10220    assert(false && "Invalid value type!");
10221  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10222  case MVT::i16: Reg = X86::AX;  size = 2; break;
10223  case MVT::i32: Reg = X86::EAX; size = 4; break;
10224  case MVT::i64:
10225    assert(Subtarget->is64Bit() && "Node not type legal!");
10226    Reg = X86::RAX; size = 8;
10227    break;
10228  }
10229  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10230                                    Op.getOperand(2), SDValue());
10231  SDValue Ops[] = { cpIn.getValue(0),
10232                    Op.getOperand(1),
10233                    Op.getOperand(3),
10234                    DAG.getTargetConstant(size, MVT::i8),
10235                    cpIn.getValue(1) };
10236  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10237  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10238  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10239                                           Ops, 5, T, MMO);
10240  SDValue cpOut =
10241    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10242  return cpOut;
10243}
10244
10245SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10246                                                 SelectionDAG &DAG) const {
10247  assert(Subtarget->is64Bit() && "Result not type legalized?");
10248  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10249  SDValue TheChain = Op.getOperand(0);
10250  DebugLoc dl = Op.getDebugLoc();
10251  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10252  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10253  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10254                                   rax.getValue(2));
10255  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10256                            DAG.getConstant(32, MVT::i8));
10257  SDValue Ops[] = {
10258    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10259    rdx.getValue(1)
10260  };
10261  return DAG.getMergeValues(Ops, 2, dl);
10262}
10263
10264SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10265                                            SelectionDAG &DAG) const {
10266  EVT SrcVT = Op.getOperand(0).getValueType();
10267  EVT DstVT = Op.getValueType();
10268  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10269         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10270  assert((DstVT == MVT::i64 ||
10271          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10272         "Unexpected custom BITCAST");
10273  // i64 <=> MMX conversions are Legal.
10274  if (SrcVT==MVT::i64 && DstVT.isVector())
10275    return Op;
10276  if (DstVT==MVT::i64 && SrcVT.isVector())
10277    return Op;
10278  // MMX <=> MMX conversions are Legal.
10279  if (SrcVT.isVector() && DstVT.isVector())
10280    return Op;
10281  // All other conversions need to be expanded.
10282  return SDValue();
10283}
10284
10285SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10286  SDNode *Node = Op.getNode();
10287  DebugLoc dl = Node->getDebugLoc();
10288  EVT T = Node->getValueType(0);
10289  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10290                              DAG.getConstant(0, T), Node->getOperand(2));
10291  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10292                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10293                       Node->getOperand(0),
10294                       Node->getOperand(1), negOp,
10295                       cast<AtomicSDNode>(Node)->getSrcValue(),
10296                       cast<AtomicSDNode>(Node)->getAlignment(),
10297                       cast<AtomicSDNode>(Node)->getOrdering(),
10298                       cast<AtomicSDNode>(Node)->getSynchScope());
10299}
10300
10301static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10302  SDNode *Node = Op.getNode();
10303  DebugLoc dl = Node->getDebugLoc();
10304  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10305
10306  // Convert seq_cst store -> xchg
10307  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10308  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10309  //        (The only way to get a 16-byte store is cmpxchg16b)
10310  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10311  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10312      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10313    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10314                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10315                                 Node->getOperand(0),
10316                                 Node->getOperand(1), Node->getOperand(2),
10317                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10318                                 cast<AtomicSDNode>(Node)->getOrdering(),
10319                                 cast<AtomicSDNode>(Node)->getSynchScope());
10320    return Swap.getValue(1);
10321  }
10322  // Other atomic stores have a simple pattern.
10323  return Op;
10324}
10325
10326static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10327  EVT VT = Op.getNode()->getValueType(0);
10328
10329  // Let legalize expand this if it isn't a legal type yet.
10330  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10331    return SDValue();
10332
10333  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10334
10335  unsigned Opc;
10336  bool ExtraOp = false;
10337  switch (Op.getOpcode()) {
10338  default: assert(0 && "Invalid code");
10339  case ISD::ADDC: Opc = X86ISD::ADD; break;
10340  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10341  case ISD::SUBC: Opc = X86ISD::SUB; break;
10342  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10343  }
10344
10345  if (!ExtraOp)
10346    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10347                       Op.getOperand(1));
10348  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10349                     Op.getOperand(1), Op.getOperand(2));
10350}
10351
10352/// LowerOperation - Provide custom lowering hooks for some operations.
10353///
10354SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10355  switch (Op.getOpcode()) {
10356  default: llvm_unreachable("Should not custom lower this!");
10357  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10358  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10359  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10360  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10361  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10362  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10363  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10364  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10365  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10366  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10367  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10368  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10369  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10370  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10371  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10372  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10373  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10374  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10375  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10376  case ISD::SHL_PARTS:
10377  case ISD::SRA_PARTS:
10378  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10379  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10380  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10381  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10382  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10383  case ISD::FABS:               return LowerFABS(Op, DAG);
10384  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10385  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10386  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10387  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10388  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10389  case ISD::VSELECT:            return LowerVSELECT(Op, DAG);
10390  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10391  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10392  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10393  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10394  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10395  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10396  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10397  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10398  case ISD::FRAME_TO_ARGS_OFFSET:
10399                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10400  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10401  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10402  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10403  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10404  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10405  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10406  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10407  case ISD::MUL:                return LowerMUL(Op, DAG);
10408  case ISD::SRA:
10409  case ISD::SRL:
10410  case ISD::SHL:                return LowerShift(Op, DAG);
10411  case ISD::SADDO:
10412  case ISD::UADDO:
10413  case ISD::SSUBO:
10414  case ISD::USUBO:
10415  case ISD::SMULO:
10416  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10417  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10418  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10419  case ISD::ADDC:
10420  case ISD::ADDE:
10421  case ISD::SUBC:
10422  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10423  case ISD::ADD:                return LowerADD(Op, DAG);
10424  case ISD::SUB:                return LowerSUB(Op, DAG);
10425  }
10426}
10427
10428static void ReplaceATOMIC_LOAD(SDNode *Node,
10429                                  SmallVectorImpl<SDValue> &Results,
10430                                  SelectionDAG &DAG) {
10431  DebugLoc dl = Node->getDebugLoc();
10432  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10433
10434  // Convert wide load -> cmpxchg8b/cmpxchg16b
10435  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10436  //        (The only way to get a 16-byte load is cmpxchg16b)
10437  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10438  SDValue Zero = DAG.getConstant(0, VT);
10439  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10440                               Node->getOperand(0),
10441                               Node->getOperand(1), Zero, Zero,
10442                               cast<AtomicSDNode>(Node)->getMemOperand(),
10443                               cast<AtomicSDNode>(Node)->getOrdering(),
10444                               cast<AtomicSDNode>(Node)->getSynchScope());
10445  Results.push_back(Swap.getValue(0));
10446  Results.push_back(Swap.getValue(1));
10447}
10448
10449void X86TargetLowering::
10450ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10451                        SelectionDAG &DAG, unsigned NewOp) const {
10452  EVT T = Node->getValueType(0);
10453  DebugLoc dl = Node->getDebugLoc();
10454  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
10455
10456  SDValue Chain = Node->getOperand(0);
10457  SDValue In1 = Node->getOperand(1);
10458  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10459                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10460  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10461                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10462  SDValue Ops[] = { Chain, In1, In2L, In2H };
10463  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10464  SDValue Result =
10465    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10466                            cast<MemSDNode>(Node)->getMemOperand());
10467  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10468  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10469  Results.push_back(Result.getValue(2));
10470}
10471
10472/// ReplaceNodeResults - Replace a node with an illegal result type
10473/// with a new node built out of custom code.
10474void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10475                                           SmallVectorImpl<SDValue>&Results,
10476                                           SelectionDAG &DAG) const {
10477  DebugLoc dl = N->getDebugLoc();
10478  switch (N->getOpcode()) {
10479  default:
10480    assert(false && "Do not know how to custom type legalize this operation!");
10481    return;
10482  case ISD::SIGN_EXTEND_INREG:
10483  case ISD::ADDC:
10484  case ISD::ADDE:
10485  case ISD::SUBC:
10486  case ISD::SUBE:
10487    // We don't want to expand or promote these.
10488    return;
10489  case ISD::FP_TO_SINT: {
10490    std::pair<SDValue,SDValue> Vals =
10491        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10492    SDValue FIST = Vals.first, StackSlot = Vals.second;
10493    if (FIST.getNode() != 0) {
10494      EVT VT = N->getValueType(0);
10495      // Return a load from the stack slot.
10496      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10497                                    MachinePointerInfo(), false, false, 0));
10498    }
10499    return;
10500  }
10501  case ISD::READCYCLECOUNTER: {
10502    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10503    SDValue TheChain = N->getOperand(0);
10504    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10505    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10506                                     rd.getValue(1));
10507    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10508                                     eax.getValue(2));
10509    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10510    SDValue Ops[] = { eax, edx };
10511    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10512    Results.push_back(edx.getValue(1));
10513    return;
10514  }
10515  case ISD::ATOMIC_CMP_SWAP: {
10516    EVT T = N->getValueType(0);
10517    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10518    bool Regs64bit = T == MVT::i128;
10519    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10520    SDValue cpInL, cpInH;
10521    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10522                        DAG.getConstant(0, HalfT));
10523    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10524                        DAG.getConstant(1, HalfT));
10525    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10526                             Regs64bit ? X86::RAX : X86::EAX,
10527                             cpInL, SDValue());
10528    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10529                             Regs64bit ? X86::RDX : X86::EDX,
10530                             cpInH, cpInL.getValue(1));
10531    SDValue swapInL, swapInH;
10532    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10533                          DAG.getConstant(0, HalfT));
10534    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10535                          DAG.getConstant(1, HalfT));
10536    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10537                               Regs64bit ? X86::RBX : X86::EBX,
10538                               swapInL, cpInH.getValue(1));
10539    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10540                               Regs64bit ? X86::RCX : X86::ECX,
10541                               swapInH, swapInL.getValue(1));
10542    SDValue Ops[] = { swapInH.getValue(0),
10543                      N->getOperand(1),
10544                      swapInH.getValue(1) };
10545    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10546    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10547    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10548                                  X86ISD::LCMPXCHG8_DAG;
10549    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10550                                             Ops, 3, T, MMO);
10551    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10552                                        Regs64bit ? X86::RAX : X86::EAX,
10553                                        HalfT, Result.getValue(1));
10554    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10555                                        Regs64bit ? X86::RDX : X86::EDX,
10556                                        HalfT, cpOutL.getValue(2));
10557    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10558    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10559    Results.push_back(cpOutH.getValue(1));
10560    return;
10561  }
10562  case ISD::ATOMIC_LOAD_ADD:
10563    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10564    return;
10565  case ISD::ATOMIC_LOAD_AND:
10566    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10567    return;
10568  case ISD::ATOMIC_LOAD_NAND:
10569    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10570    return;
10571  case ISD::ATOMIC_LOAD_OR:
10572    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10573    return;
10574  case ISD::ATOMIC_LOAD_SUB:
10575    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10576    return;
10577  case ISD::ATOMIC_LOAD_XOR:
10578    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10579    return;
10580  case ISD::ATOMIC_SWAP:
10581    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10582    return;
10583  case ISD::ATOMIC_LOAD:
10584    ReplaceATOMIC_LOAD(N, Results, DAG);
10585  }
10586}
10587
10588const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10589  switch (Opcode) {
10590  default: return NULL;
10591  case X86ISD::BSF:                return "X86ISD::BSF";
10592  case X86ISD::BSR:                return "X86ISD::BSR";
10593  case X86ISD::SHLD:               return "X86ISD::SHLD";
10594  case X86ISD::SHRD:               return "X86ISD::SHRD";
10595  case X86ISD::FAND:               return "X86ISD::FAND";
10596  case X86ISD::FOR:                return "X86ISD::FOR";
10597  case X86ISD::FXOR:               return "X86ISD::FXOR";
10598  case X86ISD::FSRL:               return "X86ISD::FSRL";
10599  case X86ISD::FILD:               return "X86ISD::FILD";
10600  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10601  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10602  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10603  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10604  case X86ISD::FLD:                return "X86ISD::FLD";
10605  case X86ISD::FST:                return "X86ISD::FST";
10606  case X86ISD::CALL:               return "X86ISD::CALL";
10607  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10608  case X86ISD::BT:                 return "X86ISD::BT";
10609  case X86ISD::CMP:                return "X86ISD::CMP";
10610  case X86ISD::COMI:               return "X86ISD::COMI";
10611  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10612  case X86ISD::SETCC:              return "X86ISD::SETCC";
10613  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10614  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10615  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10616  case X86ISD::CMOV:               return "X86ISD::CMOV";
10617  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10618  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10619  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10620  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10621  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10622  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10623  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10624  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10625  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10626  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10627  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10628  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10629  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10630  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10631  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
10632  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
10633  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
10634  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
10635  case X86ISD::FMAX:               return "X86ISD::FMAX";
10636  case X86ISD::FMIN:               return "X86ISD::FMIN";
10637  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10638  case X86ISD::FRCP:               return "X86ISD::FRCP";
10639  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10640  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10641  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10642  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10643  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10644  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10645  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10646  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10647  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10648  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10649  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10650  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10651  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10652  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10653  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10654  case X86ISD::VSHL:               return "X86ISD::VSHL";
10655  case X86ISD::VSRL:               return "X86ISD::VSRL";
10656  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10657  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10658  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10659  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10660  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10661  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10662  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10663  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10664  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10665  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10666  case X86ISD::ADD:                return "X86ISD::ADD";
10667  case X86ISD::SUB:                return "X86ISD::SUB";
10668  case X86ISD::ADC:                return "X86ISD::ADC";
10669  case X86ISD::SBB:                return "X86ISD::SBB";
10670  case X86ISD::SMUL:               return "X86ISD::SMUL";
10671  case X86ISD::UMUL:               return "X86ISD::UMUL";
10672  case X86ISD::INC:                return "X86ISD::INC";
10673  case X86ISD::DEC:                return "X86ISD::DEC";
10674  case X86ISD::OR:                 return "X86ISD::OR";
10675  case X86ISD::XOR:                return "X86ISD::XOR";
10676  case X86ISD::AND:                return "X86ISD::AND";
10677  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10678  case X86ISD::PTEST:              return "X86ISD::PTEST";
10679  case X86ISD::TESTP:              return "X86ISD::TESTP";
10680  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10681  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10682  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10683  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10684  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10685  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10686  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
10687  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
10688  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10689  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10690  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10691  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
10692  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10693  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10694  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10695  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10696  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10697  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10698  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10699  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10700  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10701  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
10702  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
10703  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
10704  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
10705  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
10706  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
10707  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
10708  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
10709  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
10710  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
10711  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
10712  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
10713  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
10714  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
10715  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
10716  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
10717  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
10718  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
10719  case X86ISD::VPERM2F128:         return "X86ISD::VPERM2F128";
10720  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10721  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
10722  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
10723  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
10724  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
10725  }
10726}
10727
10728// isLegalAddressingMode - Return true if the addressing mode represented
10729// by AM is legal for this target, for a load/store of the specified type.
10730bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10731                                              Type *Ty) const {
10732  // X86 supports extremely general addressing modes.
10733  CodeModel::Model M = getTargetMachine().getCodeModel();
10734  Reloc::Model R = getTargetMachine().getRelocationModel();
10735
10736  // X86 allows a sign-extended 32-bit immediate field as a displacement.
10737  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10738    return false;
10739
10740  if (AM.BaseGV) {
10741    unsigned GVFlags =
10742      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
10743
10744    // If a reference to this global requires an extra load, we can't fold it.
10745    if (isGlobalStubReference(GVFlags))
10746      return false;
10747
10748    // If BaseGV requires a register for the PIC base, we cannot also have a
10749    // BaseReg specified.
10750    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
10751      return false;
10752
10753    // If lower 4G is not available, then we must use rip-relative addressing.
10754    if ((M != CodeModel::Small || R != Reloc::Static) &&
10755        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
10756      return false;
10757  }
10758
10759  switch (AM.Scale) {
10760  case 0:
10761  case 1:
10762  case 2:
10763  case 4:
10764  case 8:
10765    // These scales always work.
10766    break;
10767  case 3:
10768  case 5:
10769  case 9:
10770    // These scales are formed with basereg+scalereg.  Only accept if there is
10771    // no basereg yet.
10772    if (AM.HasBaseReg)
10773      return false;
10774    break;
10775  default:  // Other stuff never works.
10776    return false;
10777  }
10778
10779  return true;
10780}
10781
10782
10783bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
10784  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10785    return false;
10786  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
10787  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
10788  if (NumBits1 <= NumBits2)
10789    return false;
10790  return true;
10791}
10792
10793bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
10794  if (!VT1.isInteger() || !VT2.isInteger())
10795    return false;
10796  unsigned NumBits1 = VT1.getSizeInBits();
10797  unsigned NumBits2 = VT2.getSizeInBits();
10798  if (NumBits1 <= NumBits2)
10799    return false;
10800  return true;
10801}
10802
10803bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
10804  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10805  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
10806}
10807
10808bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
10809  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10810  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
10811}
10812
10813bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
10814  // i16 instructions are longer (0x66 prefix) and potentially slower.
10815  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
10816}
10817
10818/// isShuffleMaskLegal - Targets can use this to indicate that they only
10819/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
10820/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
10821/// are assumed to be legal.
10822bool
10823X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
10824                                      EVT VT) const {
10825  // Very little shuffling can be done for 64-bit vectors right now.
10826  if (VT.getSizeInBits() == 64)
10827    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
10828
10829  // FIXME: pshufb, blends, shifts.
10830  return (VT.getVectorNumElements() == 2 ||
10831          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
10832          isMOVLMask(M, VT) ||
10833          isSHUFPMask(M, VT) ||
10834          isPSHUFDMask(M, VT) ||
10835          isPSHUFHWMask(M, VT) ||
10836          isPSHUFLWMask(M, VT) ||
10837          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
10838          isUNPCKLMask(M, VT) ||
10839          isUNPCKHMask(M, VT) ||
10840          isUNPCKL_v_undef_Mask(M, VT) ||
10841          isUNPCKH_v_undef_Mask(M, VT));
10842}
10843
10844bool
10845X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
10846                                          EVT VT) const {
10847  unsigned NumElts = VT.getVectorNumElements();
10848  // FIXME: This collection of masks seems suspect.
10849  if (NumElts == 2)
10850    return true;
10851  if (NumElts == 4 && VT.getSizeInBits() == 128) {
10852    return (isMOVLMask(Mask, VT)  ||
10853            isCommutedMOVLMask(Mask, VT, true) ||
10854            isSHUFPMask(Mask, VT) ||
10855            isCommutedSHUFPMask(Mask, VT));
10856  }
10857  return false;
10858}
10859
10860//===----------------------------------------------------------------------===//
10861//                           X86 Scheduler Hooks
10862//===----------------------------------------------------------------------===//
10863
10864// private utility function
10865MachineBasicBlock *
10866X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
10867                                                       MachineBasicBlock *MBB,
10868                                                       unsigned regOpc,
10869                                                       unsigned immOpc,
10870                                                       unsigned LoadOpc,
10871                                                       unsigned CXchgOpc,
10872                                                       unsigned notOpc,
10873                                                       unsigned EAXreg,
10874                                                       TargetRegisterClass *RC,
10875                                                       bool invSrc) const {
10876  // For the atomic bitwise operator, we generate
10877  //   thisMBB:
10878  //   newMBB:
10879  //     ld  t1 = [bitinstr.addr]
10880  //     op  t2 = t1, [bitinstr.val]
10881  //     mov EAX = t1
10882  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10883  //     bz  newMBB
10884  //     fallthrough -->nextMBB
10885  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10886  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10887  MachineFunction::iterator MBBIter = MBB;
10888  ++MBBIter;
10889
10890  /// First build the CFG
10891  MachineFunction *F = MBB->getParent();
10892  MachineBasicBlock *thisMBB = MBB;
10893  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10894  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10895  F->insert(MBBIter, newMBB);
10896  F->insert(MBBIter, nextMBB);
10897
10898  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10899  nextMBB->splice(nextMBB->begin(), thisMBB,
10900                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10901                  thisMBB->end());
10902  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10903
10904  // Update thisMBB to fall through to newMBB
10905  thisMBB->addSuccessor(newMBB);
10906
10907  // newMBB jumps to itself and fall through to nextMBB
10908  newMBB->addSuccessor(nextMBB);
10909  newMBB->addSuccessor(newMBB);
10910
10911  // Insert instructions into newMBB based on incoming instruction
10912  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10913         "unexpected number of operands");
10914  DebugLoc dl = bInstr->getDebugLoc();
10915  MachineOperand& destOper = bInstr->getOperand(0);
10916  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10917  int numArgs = bInstr->getNumOperands() - 1;
10918  for (int i=0; i < numArgs; ++i)
10919    argOpers[i] = &bInstr->getOperand(i+1);
10920
10921  // x86 address has 4 operands: base, index, scale, and displacement
10922  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10923  int valArgIndx = lastAddrIndx + 1;
10924
10925  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10926  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10927  for (int i=0; i <= lastAddrIndx; ++i)
10928    (*MIB).addOperand(*argOpers[i]);
10929
10930  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10931  if (invSrc) {
10932    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10933  }
10934  else
10935    tt = t1;
10936
10937  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10938  assert((argOpers[valArgIndx]->isReg() ||
10939          argOpers[valArgIndx]->isImm()) &&
10940         "invalid operand");
10941  if (argOpers[valArgIndx]->isReg())
10942    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10943  else
10944    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10945  MIB.addReg(tt);
10946  (*MIB).addOperand(*argOpers[valArgIndx]);
10947
10948  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10949  MIB.addReg(t1);
10950
10951  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10952  for (int i=0; i <= lastAddrIndx; ++i)
10953    (*MIB).addOperand(*argOpers[i]);
10954  MIB.addReg(t2);
10955  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10956  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10957                    bInstr->memoperands_end());
10958
10959  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10960  MIB.addReg(EAXreg);
10961
10962  // insert branch
10963  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10964
10965  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10966  return nextMBB;
10967}
10968
10969// private utility function:  64 bit atomics on 32 bit host.
10970MachineBasicBlock *
10971X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
10972                                                       MachineBasicBlock *MBB,
10973                                                       unsigned regOpcL,
10974                                                       unsigned regOpcH,
10975                                                       unsigned immOpcL,
10976                                                       unsigned immOpcH,
10977                                                       bool invSrc) const {
10978  // For the atomic bitwise operator, we generate
10979  //   thisMBB (instructions are in pairs, except cmpxchg8b)
10980  //     ld t1,t2 = [bitinstr.addr]
10981  //   newMBB:
10982  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
10983  //     op  t5, t6 <- out1, out2, [bitinstr.val]
10984  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
10985  //     mov ECX, EBX <- t5, t6
10986  //     mov EAX, EDX <- t1, t2
10987  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
10988  //     mov t3, t4 <- EAX, EDX
10989  //     bz  newMBB
10990  //     result in out1, out2
10991  //     fallthrough -->nextMBB
10992
10993  const TargetRegisterClass *RC = X86::GR32RegisterClass;
10994  const unsigned LoadOpc = X86::MOV32rm;
10995  const unsigned NotOpc = X86::NOT32r;
10996  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10997  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10998  MachineFunction::iterator MBBIter = MBB;
10999  ++MBBIter;
11000
11001  /// First build the CFG
11002  MachineFunction *F = MBB->getParent();
11003  MachineBasicBlock *thisMBB = MBB;
11004  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11005  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11006  F->insert(MBBIter, newMBB);
11007  F->insert(MBBIter, nextMBB);
11008
11009  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11010  nextMBB->splice(nextMBB->begin(), thisMBB,
11011                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11012                  thisMBB->end());
11013  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11014
11015  // Update thisMBB to fall through to newMBB
11016  thisMBB->addSuccessor(newMBB);
11017
11018  // newMBB jumps to itself and fall through to nextMBB
11019  newMBB->addSuccessor(nextMBB);
11020  newMBB->addSuccessor(newMBB);
11021
11022  DebugLoc dl = bInstr->getDebugLoc();
11023  // Insert instructions into newMBB based on incoming instruction
11024  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11025  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11026         "unexpected number of operands");
11027  MachineOperand& dest1Oper = bInstr->getOperand(0);
11028  MachineOperand& dest2Oper = bInstr->getOperand(1);
11029  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11030  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11031    argOpers[i] = &bInstr->getOperand(i+2);
11032
11033    // We use some of the operands multiple times, so conservatively just
11034    // clear any kill flags that might be present.
11035    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11036      argOpers[i]->setIsKill(false);
11037  }
11038
11039  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11040  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11041
11042  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11043  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11044  for (int i=0; i <= lastAddrIndx; ++i)
11045    (*MIB).addOperand(*argOpers[i]);
11046  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11047  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11048  // add 4 to displacement.
11049  for (int i=0; i <= lastAddrIndx-2; ++i)
11050    (*MIB).addOperand(*argOpers[i]);
11051  MachineOperand newOp3 = *(argOpers[3]);
11052  if (newOp3.isImm())
11053    newOp3.setImm(newOp3.getImm()+4);
11054  else
11055    newOp3.setOffset(newOp3.getOffset()+4);
11056  (*MIB).addOperand(newOp3);
11057  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11058
11059  // t3/4 are defined later, at the bottom of the loop
11060  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11061  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11062  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11063    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11064  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11065    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11066
11067  // The subsequent operations should be using the destination registers of
11068  //the PHI instructions.
11069  if (invSrc) {
11070    t1 = F->getRegInfo().createVirtualRegister(RC);
11071    t2 = F->getRegInfo().createVirtualRegister(RC);
11072    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11073    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11074  } else {
11075    t1 = dest1Oper.getReg();
11076    t2 = dest2Oper.getReg();
11077  }
11078
11079  int valArgIndx = lastAddrIndx + 1;
11080  assert((argOpers[valArgIndx]->isReg() ||
11081          argOpers[valArgIndx]->isImm()) &&
11082         "invalid operand");
11083  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11084  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11085  if (argOpers[valArgIndx]->isReg())
11086    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11087  else
11088    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11089  if (regOpcL != X86::MOV32rr)
11090    MIB.addReg(t1);
11091  (*MIB).addOperand(*argOpers[valArgIndx]);
11092  assert(argOpers[valArgIndx + 1]->isReg() ==
11093         argOpers[valArgIndx]->isReg());
11094  assert(argOpers[valArgIndx + 1]->isImm() ==
11095         argOpers[valArgIndx]->isImm());
11096  if (argOpers[valArgIndx + 1]->isReg())
11097    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11098  else
11099    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11100  if (regOpcH != X86::MOV32rr)
11101    MIB.addReg(t2);
11102  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11103
11104  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11105  MIB.addReg(t1);
11106  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11107  MIB.addReg(t2);
11108
11109  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11110  MIB.addReg(t5);
11111  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11112  MIB.addReg(t6);
11113
11114  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11115  for (int i=0; i <= lastAddrIndx; ++i)
11116    (*MIB).addOperand(*argOpers[i]);
11117
11118  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11119  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11120                    bInstr->memoperands_end());
11121
11122  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11123  MIB.addReg(X86::EAX);
11124  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11125  MIB.addReg(X86::EDX);
11126
11127  // insert branch
11128  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11129
11130  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11131  return nextMBB;
11132}
11133
11134// private utility function
11135MachineBasicBlock *
11136X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11137                                                      MachineBasicBlock *MBB,
11138                                                      unsigned cmovOpc) const {
11139  // For the atomic min/max operator, we generate
11140  //   thisMBB:
11141  //   newMBB:
11142  //     ld t1 = [min/max.addr]
11143  //     mov t2 = [min/max.val]
11144  //     cmp  t1, t2
11145  //     cmov[cond] t2 = t1
11146  //     mov EAX = t1
11147  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11148  //     bz   newMBB
11149  //     fallthrough -->nextMBB
11150  //
11151  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11152  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11153  MachineFunction::iterator MBBIter = MBB;
11154  ++MBBIter;
11155
11156  /// First build the CFG
11157  MachineFunction *F = MBB->getParent();
11158  MachineBasicBlock *thisMBB = MBB;
11159  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11160  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11161  F->insert(MBBIter, newMBB);
11162  F->insert(MBBIter, nextMBB);
11163
11164  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11165  nextMBB->splice(nextMBB->begin(), thisMBB,
11166                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11167                  thisMBB->end());
11168  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11169
11170  // Update thisMBB to fall through to newMBB
11171  thisMBB->addSuccessor(newMBB);
11172
11173  // newMBB jumps to newMBB and fall through to nextMBB
11174  newMBB->addSuccessor(nextMBB);
11175  newMBB->addSuccessor(newMBB);
11176
11177  DebugLoc dl = mInstr->getDebugLoc();
11178  // Insert instructions into newMBB based on incoming instruction
11179  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11180         "unexpected number of operands");
11181  MachineOperand& destOper = mInstr->getOperand(0);
11182  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11183  int numArgs = mInstr->getNumOperands() - 1;
11184  for (int i=0; i < numArgs; ++i)
11185    argOpers[i] = &mInstr->getOperand(i+1);
11186
11187  // x86 address has 4 operands: base, index, scale, and displacement
11188  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11189  int valArgIndx = lastAddrIndx + 1;
11190
11191  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11192  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11193  for (int i=0; i <= lastAddrIndx; ++i)
11194    (*MIB).addOperand(*argOpers[i]);
11195
11196  // We only support register and immediate values
11197  assert((argOpers[valArgIndx]->isReg() ||
11198          argOpers[valArgIndx]->isImm()) &&
11199         "invalid operand");
11200
11201  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11202  if (argOpers[valArgIndx]->isReg())
11203    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11204  else
11205    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11206  (*MIB).addOperand(*argOpers[valArgIndx]);
11207
11208  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11209  MIB.addReg(t1);
11210
11211  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11212  MIB.addReg(t1);
11213  MIB.addReg(t2);
11214
11215  // Generate movc
11216  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11217  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11218  MIB.addReg(t2);
11219  MIB.addReg(t1);
11220
11221  // Cmp and exchange if none has modified the memory location
11222  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11223  for (int i=0; i <= lastAddrIndx; ++i)
11224    (*MIB).addOperand(*argOpers[i]);
11225  MIB.addReg(t3);
11226  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11227  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11228                    mInstr->memoperands_end());
11229
11230  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11231  MIB.addReg(X86::EAX);
11232
11233  // insert branch
11234  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11235
11236  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11237  return nextMBB;
11238}
11239
11240// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11241// or XMM0_V32I8 in AVX all of this code can be replaced with that
11242// in the .td file.
11243MachineBasicBlock *
11244X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11245                            unsigned numArgs, bool memArg) const {
11246  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
11247         "Target must have SSE4.2 or AVX features enabled");
11248
11249  DebugLoc dl = MI->getDebugLoc();
11250  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11251  unsigned Opc;
11252  if (!Subtarget->hasAVX()) {
11253    if (memArg)
11254      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11255    else
11256      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11257  } else {
11258    if (memArg)
11259      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11260    else
11261      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11262  }
11263
11264  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11265  for (unsigned i = 0; i < numArgs; ++i) {
11266    MachineOperand &Op = MI->getOperand(i+1);
11267    if (!(Op.isReg() && Op.isImplicit()))
11268      MIB.addOperand(Op);
11269  }
11270  BuildMI(*BB, MI, dl,
11271    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11272             MI->getOperand(0).getReg())
11273    .addReg(X86::XMM0);
11274
11275  MI->eraseFromParent();
11276  return BB;
11277}
11278
11279MachineBasicBlock *
11280X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11281  DebugLoc dl = MI->getDebugLoc();
11282  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11283
11284  // Address into RAX/EAX, other two args into ECX, EDX.
11285  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11286  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11287  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11288  for (int i = 0; i < X86::AddrNumOperands; ++i)
11289    MIB.addOperand(MI->getOperand(i));
11290
11291  unsigned ValOps = X86::AddrNumOperands;
11292  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11293    .addReg(MI->getOperand(ValOps).getReg());
11294  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11295    .addReg(MI->getOperand(ValOps+1).getReg());
11296
11297  // The instruction doesn't actually take any operands though.
11298  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11299
11300  MI->eraseFromParent(); // The pseudo is gone now.
11301  return BB;
11302}
11303
11304MachineBasicBlock *
11305X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11306  DebugLoc dl = MI->getDebugLoc();
11307  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11308
11309  // First arg in ECX, the second in EAX.
11310  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11311    .addReg(MI->getOperand(0).getReg());
11312  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11313    .addReg(MI->getOperand(1).getReg());
11314
11315  // The instruction doesn't actually take any operands though.
11316  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11317
11318  MI->eraseFromParent(); // The pseudo is gone now.
11319  return BB;
11320}
11321
11322MachineBasicBlock *
11323X86TargetLowering::EmitVAARG64WithCustomInserter(
11324                   MachineInstr *MI,
11325                   MachineBasicBlock *MBB) const {
11326  // Emit va_arg instruction on X86-64.
11327
11328  // Operands to this pseudo-instruction:
11329  // 0  ) Output        : destination address (reg)
11330  // 1-5) Input         : va_list address (addr, i64mem)
11331  // 6  ) ArgSize       : Size (in bytes) of vararg type
11332  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11333  // 8  ) Align         : Alignment of type
11334  // 9  ) EFLAGS (implicit-def)
11335
11336  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11337  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11338
11339  unsigned DestReg = MI->getOperand(0).getReg();
11340  MachineOperand &Base = MI->getOperand(1);
11341  MachineOperand &Scale = MI->getOperand(2);
11342  MachineOperand &Index = MI->getOperand(3);
11343  MachineOperand &Disp = MI->getOperand(4);
11344  MachineOperand &Segment = MI->getOperand(5);
11345  unsigned ArgSize = MI->getOperand(6).getImm();
11346  unsigned ArgMode = MI->getOperand(7).getImm();
11347  unsigned Align = MI->getOperand(8).getImm();
11348
11349  // Memory Reference
11350  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11351  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11352  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11353
11354  // Machine Information
11355  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11356  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11357  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11358  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11359  DebugLoc DL = MI->getDebugLoc();
11360
11361  // struct va_list {
11362  //   i32   gp_offset
11363  //   i32   fp_offset
11364  //   i64   overflow_area (address)
11365  //   i64   reg_save_area (address)
11366  // }
11367  // sizeof(va_list) = 24
11368  // alignment(va_list) = 8
11369
11370  unsigned TotalNumIntRegs = 6;
11371  unsigned TotalNumXMMRegs = 8;
11372  bool UseGPOffset = (ArgMode == 1);
11373  bool UseFPOffset = (ArgMode == 2);
11374  unsigned MaxOffset = TotalNumIntRegs * 8 +
11375                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11376
11377  /* Align ArgSize to a multiple of 8 */
11378  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11379  bool NeedsAlign = (Align > 8);
11380
11381  MachineBasicBlock *thisMBB = MBB;
11382  MachineBasicBlock *overflowMBB;
11383  MachineBasicBlock *offsetMBB;
11384  MachineBasicBlock *endMBB;
11385
11386  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11387  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11388  unsigned OffsetReg = 0;
11389
11390  if (!UseGPOffset && !UseFPOffset) {
11391    // If we only pull from the overflow region, we don't create a branch.
11392    // We don't need to alter control flow.
11393    OffsetDestReg = 0; // unused
11394    OverflowDestReg = DestReg;
11395
11396    offsetMBB = NULL;
11397    overflowMBB = thisMBB;
11398    endMBB = thisMBB;
11399  } else {
11400    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11401    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11402    // If not, pull from overflow_area. (branch to overflowMBB)
11403    //
11404    //       thisMBB
11405    //         |     .
11406    //         |        .
11407    //     offsetMBB   overflowMBB
11408    //         |        .
11409    //         |     .
11410    //        endMBB
11411
11412    // Registers for the PHI in endMBB
11413    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11414    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11415
11416    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11417    MachineFunction *MF = MBB->getParent();
11418    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11419    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11420    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11421
11422    MachineFunction::iterator MBBIter = MBB;
11423    ++MBBIter;
11424
11425    // Insert the new basic blocks
11426    MF->insert(MBBIter, offsetMBB);
11427    MF->insert(MBBIter, overflowMBB);
11428    MF->insert(MBBIter, endMBB);
11429
11430    // Transfer the remainder of MBB and its successor edges to endMBB.
11431    endMBB->splice(endMBB->begin(), thisMBB,
11432                    llvm::next(MachineBasicBlock::iterator(MI)),
11433                    thisMBB->end());
11434    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11435
11436    // Make offsetMBB and overflowMBB successors of thisMBB
11437    thisMBB->addSuccessor(offsetMBB);
11438    thisMBB->addSuccessor(overflowMBB);
11439
11440    // endMBB is a successor of both offsetMBB and overflowMBB
11441    offsetMBB->addSuccessor(endMBB);
11442    overflowMBB->addSuccessor(endMBB);
11443
11444    // Load the offset value into a register
11445    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11446    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11447      .addOperand(Base)
11448      .addOperand(Scale)
11449      .addOperand(Index)
11450      .addDisp(Disp, UseFPOffset ? 4 : 0)
11451      .addOperand(Segment)
11452      .setMemRefs(MMOBegin, MMOEnd);
11453
11454    // Check if there is enough room left to pull this argument.
11455    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11456      .addReg(OffsetReg)
11457      .addImm(MaxOffset + 8 - ArgSizeA8);
11458
11459    // Branch to "overflowMBB" if offset >= max
11460    // Fall through to "offsetMBB" otherwise
11461    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11462      .addMBB(overflowMBB);
11463  }
11464
11465  // In offsetMBB, emit code to use the reg_save_area.
11466  if (offsetMBB) {
11467    assert(OffsetReg != 0);
11468
11469    // Read the reg_save_area address.
11470    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11471    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11472      .addOperand(Base)
11473      .addOperand(Scale)
11474      .addOperand(Index)
11475      .addDisp(Disp, 16)
11476      .addOperand(Segment)
11477      .setMemRefs(MMOBegin, MMOEnd);
11478
11479    // Zero-extend the offset
11480    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11481      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11482        .addImm(0)
11483        .addReg(OffsetReg)
11484        .addImm(X86::sub_32bit);
11485
11486    // Add the offset to the reg_save_area to get the final address.
11487    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11488      .addReg(OffsetReg64)
11489      .addReg(RegSaveReg);
11490
11491    // Compute the offset for the next argument
11492    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11493    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11494      .addReg(OffsetReg)
11495      .addImm(UseFPOffset ? 16 : 8);
11496
11497    // Store it back into the va_list.
11498    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11499      .addOperand(Base)
11500      .addOperand(Scale)
11501      .addOperand(Index)
11502      .addDisp(Disp, UseFPOffset ? 4 : 0)
11503      .addOperand(Segment)
11504      .addReg(NextOffsetReg)
11505      .setMemRefs(MMOBegin, MMOEnd);
11506
11507    // Jump to endMBB
11508    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11509      .addMBB(endMBB);
11510  }
11511
11512  //
11513  // Emit code to use overflow area
11514  //
11515
11516  // Load the overflow_area address into a register.
11517  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11518  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11519    .addOperand(Base)
11520    .addOperand(Scale)
11521    .addOperand(Index)
11522    .addDisp(Disp, 8)
11523    .addOperand(Segment)
11524    .setMemRefs(MMOBegin, MMOEnd);
11525
11526  // If we need to align it, do so. Otherwise, just copy the address
11527  // to OverflowDestReg.
11528  if (NeedsAlign) {
11529    // Align the overflow address
11530    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11531    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11532
11533    // aligned_addr = (addr + (align-1)) & ~(align-1)
11534    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11535      .addReg(OverflowAddrReg)
11536      .addImm(Align-1);
11537
11538    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11539      .addReg(TmpReg)
11540      .addImm(~(uint64_t)(Align-1));
11541  } else {
11542    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11543      .addReg(OverflowAddrReg);
11544  }
11545
11546  // Compute the next overflow address after this argument.
11547  // (the overflow address should be kept 8-byte aligned)
11548  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11549  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11550    .addReg(OverflowDestReg)
11551    .addImm(ArgSizeA8);
11552
11553  // Store the new overflow address.
11554  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11555    .addOperand(Base)
11556    .addOperand(Scale)
11557    .addOperand(Index)
11558    .addDisp(Disp, 8)
11559    .addOperand(Segment)
11560    .addReg(NextAddrReg)
11561    .setMemRefs(MMOBegin, MMOEnd);
11562
11563  // If we branched, emit the PHI to the front of endMBB.
11564  if (offsetMBB) {
11565    BuildMI(*endMBB, endMBB->begin(), DL,
11566            TII->get(X86::PHI), DestReg)
11567      .addReg(OffsetDestReg).addMBB(offsetMBB)
11568      .addReg(OverflowDestReg).addMBB(overflowMBB);
11569  }
11570
11571  // Erase the pseudo instruction
11572  MI->eraseFromParent();
11573
11574  return endMBB;
11575}
11576
11577MachineBasicBlock *
11578X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11579                                                 MachineInstr *MI,
11580                                                 MachineBasicBlock *MBB) const {
11581  // Emit code to save XMM registers to the stack. The ABI says that the
11582  // number of registers to save is given in %al, so it's theoretically
11583  // possible to do an indirect jump trick to avoid saving all of them,
11584  // however this code takes a simpler approach and just executes all
11585  // of the stores if %al is non-zero. It's less code, and it's probably
11586  // easier on the hardware branch predictor, and stores aren't all that
11587  // expensive anyway.
11588
11589  // Create the new basic blocks. One block contains all the XMM stores,
11590  // and one block is the final destination regardless of whether any
11591  // stores were performed.
11592  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11593  MachineFunction *F = MBB->getParent();
11594  MachineFunction::iterator MBBIter = MBB;
11595  ++MBBIter;
11596  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11597  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11598  F->insert(MBBIter, XMMSaveMBB);
11599  F->insert(MBBIter, EndMBB);
11600
11601  // Transfer the remainder of MBB and its successor edges to EndMBB.
11602  EndMBB->splice(EndMBB->begin(), MBB,
11603                 llvm::next(MachineBasicBlock::iterator(MI)),
11604                 MBB->end());
11605  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11606
11607  // The original block will now fall through to the XMM save block.
11608  MBB->addSuccessor(XMMSaveMBB);
11609  // The XMMSaveMBB will fall through to the end block.
11610  XMMSaveMBB->addSuccessor(EndMBB);
11611
11612  // Now add the instructions.
11613  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11614  DebugLoc DL = MI->getDebugLoc();
11615
11616  unsigned CountReg = MI->getOperand(0).getReg();
11617  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11618  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11619
11620  if (!Subtarget->isTargetWin64()) {
11621    // If %al is 0, branch around the XMM save block.
11622    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11623    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11624    MBB->addSuccessor(EndMBB);
11625  }
11626
11627  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11628  // In the XMM save block, save all the XMM argument registers.
11629  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11630    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11631    MachineMemOperand *MMO =
11632      F->getMachineMemOperand(
11633          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11634        MachineMemOperand::MOStore,
11635        /*Size=*/16, /*Align=*/16);
11636    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11637      .addFrameIndex(RegSaveFrameIndex)
11638      .addImm(/*Scale=*/1)
11639      .addReg(/*IndexReg=*/0)
11640      .addImm(/*Disp=*/Offset)
11641      .addReg(/*Segment=*/0)
11642      .addReg(MI->getOperand(i).getReg())
11643      .addMemOperand(MMO);
11644  }
11645
11646  MI->eraseFromParent();   // The pseudo instruction is gone now.
11647
11648  return EndMBB;
11649}
11650
11651MachineBasicBlock *
11652X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11653                                     MachineBasicBlock *BB) const {
11654  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11655  DebugLoc DL = MI->getDebugLoc();
11656
11657  // To "insert" a SELECT_CC instruction, we actually have to insert the
11658  // diamond control-flow pattern.  The incoming instruction knows the
11659  // destination vreg to set, the condition code register to branch on, the
11660  // true/false values to select between, and a branch opcode to use.
11661  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11662  MachineFunction::iterator It = BB;
11663  ++It;
11664
11665  //  thisMBB:
11666  //  ...
11667  //   TrueVal = ...
11668  //   cmpTY ccX, r1, r2
11669  //   bCC copy1MBB
11670  //   fallthrough --> copy0MBB
11671  MachineBasicBlock *thisMBB = BB;
11672  MachineFunction *F = BB->getParent();
11673  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11674  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11675  F->insert(It, copy0MBB);
11676  F->insert(It, sinkMBB);
11677
11678  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11679  // live into the sink and copy blocks.
11680  if (!MI->killsRegister(X86::EFLAGS)) {
11681    copy0MBB->addLiveIn(X86::EFLAGS);
11682    sinkMBB->addLiveIn(X86::EFLAGS);
11683  }
11684
11685  // Transfer the remainder of BB and its successor edges to sinkMBB.
11686  sinkMBB->splice(sinkMBB->begin(), BB,
11687                  llvm::next(MachineBasicBlock::iterator(MI)),
11688                  BB->end());
11689  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11690
11691  // Add the true and fallthrough blocks as its successors.
11692  BB->addSuccessor(copy0MBB);
11693  BB->addSuccessor(sinkMBB);
11694
11695  // Create the conditional branch instruction.
11696  unsigned Opc =
11697    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11698  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11699
11700  //  copy0MBB:
11701  //   %FalseValue = ...
11702  //   # fallthrough to sinkMBB
11703  copy0MBB->addSuccessor(sinkMBB);
11704
11705  //  sinkMBB:
11706  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11707  //  ...
11708  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11709          TII->get(X86::PHI), MI->getOperand(0).getReg())
11710    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11711    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11712
11713  MI->eraseFromParent();   // The pseudo instruction is gone now.
11714  return sinkMBB;
11715}
11716
11717MachineBasicBlock *
11718X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
11719                                        bool Is64Bit) const {
11720  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11721  DebugLoc DL = MI->getDebugLoc();
11722  MachineFunction *MF = BB->getParent();
11723  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11724
11725  assert(EnableSegmentedStacks);
11726
11727  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
11728  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
11729
11730  // BB:
11731  //  ... [Till the alloca]
11732  // If stacklet is not large enough, jump to mallocMBB
11733  //
11734  // bumpMBB:
11735  //  Allocate by subtracting from RSP
11736  //  Jump to continueMBB
11737  //
11738  // mallocMBB:
11739  //  Allocate by call to runtime
11740  //
11741  // continueMBB:
11742  //  ...
11743  //  [rest of original BB]
11744  //
11745
11746  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11747  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11748  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11749
11750  MachineRegisterInfo &MRI = MF->getRegInfo();
11751  const TargetRegisterClass *AddrRegClass =
11752    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
11753
11754  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11755    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11756    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
11757    sizeVReg = MI->getOperand(1).getReg(),
11758    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
11759
11760  MachineFunction::iterator MBBIter = BB;
11761  ++MBBIter;
11762
11763  MF->insert(MBBIter, bumpMBB);
11764  MF->insert(MBBIter, mallocMBB);
11765  MF->insert(MBBIter, continueMBB);
11766
11767  continueMBB->splice(continueMBB->begin(), BB, llvm::next
11768                      (MachineBasicBlock::iterator(MI)), BB->end());
11769  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
11770
11771  // Add code to the main basic block to check if the stack limit has been hit,
11772  // and if so, jump to mallocMBB otherwise to bumpMBB.
11773  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
11774  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), tmpSPVReg)
11775    .addReg(tmpSPVReg).addReg(sizeVReg);
11776  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
11777    .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
11778    .addReg(tmpSPVReg);
11779  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
11780
11781  // bumpMBB simply decreases the stack pointer, since we know the current
11782  // stacklet has enough space.
11783  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
11784    .addReg(tmpSPVReg);
11785  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
11786    .addReg(tmpSPVReg);
11787  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11788
11789  // Calls into a routine in libgcc to allocate more space from the heap.
11790  if (Is64Bit) {
11791    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
11792      .addReg(sizeVReg);
11793    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
11794    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
11795  } else {
11796    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
11797      .addImm(12);
11798    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
11799    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
11800      .addExternalSymbol("__morestack_allocate_stack_space");
11801  }
11802
11803  if (!Is64Bit)
11804    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
11805      .addImm(16);
11806
11807  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
11808    .addReg(Is64Bit ? X86::RAX : X86::EAX);
11809  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11810
11811  // Set up the CFG correctly.
11812  BB->addSuccessor(bumpMBB);
11813  BB->addSuccessor(mallocMBB);
11814  mallocMBB->addSuccessor(continueMBB);
11815  bumpMBB->addSuccessor(continueMBB);
11816
11817  // Take care of the PHI nodes.
11818  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
11819          MI->getOperand(0).getReg())
11820    .addReg(mallocPtrVReg).addMBB(mallocMBB)
11821    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
11822
11823  // Delete the original pseudo instruction.
11824  MI->eraseFromParent();
11825
11826  // And we're done.
11827  return continueMBB;
11828}
11829
11830MachineBasicBlock *
11831X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
11832                                          MachineBasicBlock *BB) const {
11833  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11834  DebugLoc DL = MI->getDebugLoc();
11835
11836  assert(!Subtarget->isTargetEnvMacho());
11837
11838  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
11839  // non-trivial part is impdef of ESP.
11840
11841  if (Subtarget->isTargetWin64()) {
11842    if (Subtarget->isTargetCygMing()) {
11843      // ___chkstk(Mingw64):
11844      // Clobbers R10, R11, RAX and EFLAGS.
11845      // Updates RSP.
11846      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11847        .addExternalSymbol("___chkstk")
11848        .addReg(X86::RAX, RegState::Implicit)
11849        .addReg(X86::RSP, RegState::Implicit)
11850        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
11851        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
11852        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11853    } else {
11854      // __chkstk(MSVCRT): does not update stack pointer.
11855      // Clobbers R10, R11 and EFLAGS.
11856      // FIXME: RAX(allocated size) might be reused and not killed.
11857      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11858        .addExternalSymbol("__chkstk")
11859        .addReg(X86::RAX, RegState::Implicit)
11860        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11861      // RAX has the offset to subtracted from RSP.
11862      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
11863        .addReg(X86::RSP)
11864        .addReg(X86::RAX);
11865    }
11866  } else {
11867    const char *StackProbeSymbol =
11868      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
11869
11870    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
11871      .addExternalSymbol(StackProbeSymbol)
11872      .addReg(X86::EAX, RegState::Implicit)
11873      .addReg(X86::ESP, RegState::Implicit)
11874      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
11875      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
11876      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11877  }
11878
11879  MI->eraseFromParent();   // The pseudo instruction is gone now.
11880  return BB;
11881}
11882
11883MachineBasicBlock *
11884X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
11885                                      MachineBasicBlock *BB) const {
11886  // This is pretty easy.  We're taking the value that we received from
11887  // our load from the relocation, sticking it in either RDI (x86-64)
11888  // or EAX and doing an indirect call.  The return value will then
11889  // be in the normal return register.
11890  const X86InstrInfo *TII
11891    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
11892  DebugLoc DL = MI->getDebugLoc();
11893  MachineFunction *F = BB->getParent();
11894
11895  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
11896  assert(MI->getOperand(3).isGlobal() && "This should be a global");
11897
11898  if (Subtarget->is64Bit()) {
11899    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11900                                      TII->get(X86::MOV64rm), X86::RDI)
11901    .addReg(X86::RIP)
11902    .addImm(0).addReg(0)
11903    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11904                      MI->getOperand(3).getTargetFlags())
11905    .addReg(0);
11906    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
11907    addDirectMem(MIB, X86::RDI);
11908  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
11909    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11910                                      TII->get(X86::MOV32rm), X86::EAX)
11911    .addReg(0)
11912    .addImm(0).addReg(0)
11913    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11914                      MI->getOperand(3).getTargetFlags())
11915    .addReg(0);
11916    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11917    addDirectMem(MIB, X86::EAX);
11918  } else {
11919    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11920                                      TII->get(X86::MOV32rm), X86::EAX)
11921    .addReg(TII->getGlobalBaseReg(F))
11922    .addImm(0).addReg(0)
11923    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11924                      MI->getOperand(3).getTargetFlags())
11925    .addReg(0);
11926    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11927    addDirectMem(MIB, X86::EAX);
11928  }
11929
11930  MI->eraseFromParent(); // The pseudo instruction is gone now.
11931  return BB;
11932}
11933
11934MachineBasicBlock *
11935X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
11936                                               MachineBasicBlock *BB) const {
11937  switch (MI->getOpcode()) {
11938  default: assert(false && "Unexpected instr type to insert");
11939  case X86::TAILJMPd64:
11940  case X86::TAILJMPr64:
11941  case X86::TAILJMPm64:
11942    assert(!"TAILJMP64 would not be touched here.");
11943  case X86::TCRETURNdi64:
11944  case X86::TCRETURNri64:
11945  case X86::TCRETURNmi64:
11946    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
11947    // On AMD64, additional defs should be added before register allocation.
11948    if (!Subtarget->isTargetWin64()) {
11949      MI->addRegisterDefined(X86::RSI);
11950      MI->addRegisterDefined(X86::RDI);
11951      MI->addRegisterDefined(X86::XMM6);
11952      MI->addRegisterDefined(X86::XMM7);
11953      MI->addRegisterDefined(X86::XMM8);
11954      MI->addRegisterDefined(X86::XMM9);
11955      MI->addRegisterDefined(X86::XMM10);
11956      MI->addRegisterDefined(X86::XMM11);
11957      MI->addRegisterDefined(X86::XMM12);
11958      MI->addRegisterDefined(X86::XMM13);
11959      MI->addRegisterDefined(X86::XMM14);
11960      MI->addRegisterDefined(X86::XMM15);
11961    }
11962    return BB;
11963  case X86::WIN_ALLOCA:
11964    return EmitLoweredWinAlloca(MI, BB);
11965  case X86::SEG_ALLOCA_32:
11966    return EmitLoweredSegAlloca(MI, BB, false);
11967  case X86::SEG_ALLOCA_64:
11968    return EmitLoweredSegAlloca(MI, BB, true);
11969  case X86::TLSCall_32:
11970  case X86::TLSCall_64:
11971    return EmitLoweredTLSCall(MI, BB);
11972  case X86::CMOV_GR8:
11973  case X86::CMOV_FR32:
11974  case X86::CMOV_FR64:
11975  case X86::CMOV_V4F32:
11976  case X86::CMOV_V2F64:
11977  case X86::CMOV_V2I64:
11978  case X86::CMOV_V8F32:
11979  case X86::CMOV_V4F64:
11980  case X86::CMOV_V4I64:
11981  case X86::CMOV_GR16:
11982  case X86::CMOV_GR32:
11983  case X86::CMOV_RFP32:
11984  case X86::CMOV_RFP64:
11985  case X86::CMOV_RFP80:
11986    return EmitLoweredSelect(MI, BB);
11987
11988  case X86::FP32_TO_INT16_IN_MEM:
11989  case X86::FP32_TO_INT32_IN_MEM:
11990  case X86::FP32_TO_INT64_IN_MEM:
11991  case X86::FP64_TO_INT16_IN_MEM:
11992  case X86::FP64_TO_INT32_IN_MEM:
11993  case X86::FP64_TO_INT64_IN_MEM:
11994  case X86::FP80_TO_INT16_IN_MEM:
11995  case X86::FP80_TO_INT32_IN_MEM:
11996  case X86::FP80_TO_INT64_IN_MEM: {
11997    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11998    DebugLoc DL = MI->getDebugLoc();
11999
12000    // Change the floating point control register to use "round towards zero"
12001    // mode when truncating to an integer value.
12002    MachineFunction *F = BB->getParent();
12003    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12004    addFrameReference(BuildMI(*BB, MI, DL,
12005                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12006
12007    // Load the old value of the high byte of the control word...
12008    unsigned OldCW =
12009      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12010    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12011                      CWFrameIdx);
12012
12013    // Set the high part to be round to zero...
12014    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12015      .addImm(0xC7F);
12016
12017    // Reload the modified control word now...
12018    addFrameReference(BuildMI(*BB, MI, DL,
12019                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12020
12021    // Restore the memory image of control word to original value
12022    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12023      .addReg(OldCW);
12024
12025    // Get the X86 opcode to use.
12026    unsigned Opc;
12027    switch (MI->getOpcode()) {
12028    default: llvm_unreachable("illegal opcode!");
12029    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12030    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12031    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12032    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12033    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12034    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12035    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12036    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12037    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12038    }
12039
12040    X86AddressMode AM;
12041    MachineOperand &Op = MI->getOperand(0);
12042    if (Op.isReg()) {
12043      AM.BaseType = X86AddressMode::RegBase;
12044      AM.Base.Reg = Op.getReg();
12045    } else {
12046      AM.BaseType = X86AddressMode::FrameIndexBase;
12047      AM.Base.FrameIndex = Op.getIndex();
12048    }
12049    Op = MI->getOperand(1);
12050    if (Op.isImm())
12051      AM.Scale = Op.getImm();
12052    Op = MI->getOperand(2);
12053    if (Op.isImm())
12054      AM.IndexReg = Op.getImm();
12055    Op = MI->getOperand(3);
12056    if (Op.isGlobal()) {
12057      AM.GV = Op.getGlobal();
12058    } else {
12059      AM.Disp = Op.getImm();
12060    }
12061    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12062                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12063
12064    // Reload the original control word now.
12065    addFrameReference(BuildMI(*BB, MI, DL,
12066                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12067
12068    MI->eraseFromParent();   // The pseudo instruction is gone now.
12069    return BB;
12070  }
12071    // String/text processing lowering.
12072  case X86::PCMPISTRM128REG:
12073  case X86::VPCMPISTRM128REG:
12074    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12075  case X86::PCMPISTRM128MEM:
12076  case X86::VPCMPISTRM128MEM:
12077    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12078  case X86::PCMPESTRM128REG:
12079  case X86::VPCMPESTRM128REG:
12080    return EmitPCMP(MI, BB, 5, false /* in mem */);
12081  case X86::PCMPESTRM128MEM:
12082  case X86::VPCMPESTRM128MEM:
12083    return EmitPCMP(MI, BB, 5, true /* in mem */);
12084
12085    // Thread synchronization.
12086  case X86::MONITOR:
12087    return EmitMonitor(MI, BB);
12088  case X86::MWAIT:
12089    return EmitMwait(MI, BB);
12090
12091    // Atomic Lowering.
12092  case X86::ATOMAND32:
12093    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12094                                               X86::AND32ri, X86::MOV32rm,
12095                                               X86::LCMPXCHG32,
12096                                               X86::NOT32r, X86::EAX,
12097                                               X86::GR32RegisterClass);
12098  case X86::ATOMOR32:
12099    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12100                                               X86::OR32ri, X86::MOV32rm,
12101                                               X86::LCMPXCHG32,
12102                                               X86::NOT32r, X86::EAX,
12103                                               X86::GR32RegisterClass);
12104  case X86::ATOMXOR32:
12105    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12106                                               X86::XOR32ri, X86::MOV32rm,
12107                                               X86::LCMPXCHG32,
12108                                               X86::NOT32r, X86::EAX,
12109                                               X86::GR32RegisterClass);
12110  case X86::ATOMNAND32:
12111    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12112                                               X86::AND32ri, X86::MOV32rm,
12113                                               X86::LCMPXCHG32,
12114                                               X86::NOT32r, X86::EAX,
12115                                               X86::GR32RegisterClass, true);
12116  case X86::ATOMMIN32:
12117    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12118  case X86::ATOMMAX32:
12119    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12120  case X86::ATOMUMIN32:
12121    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12122  case X86::ATOMUMAX32:
12123    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12124
12125  case X86::ATOMAND16:
12126    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12127                                               X86::AND16ri, X86::MOV16rm,
12128                                               X86::LCMPXCHG16,
12129                                               X86::NOT16r, X86::AX,
12130                                               X86::GR16RegisterClass);
12131  case X86::ATOMOR16:
12132    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12133                                               X86::OR16ri, X86::MOV16rm,
12134                                               X86::LCMPXCHG16,
12135                                               X86::NOT16r, X86::AX,
12136                                               X86::GR16RegisterClass);
12137  case X86::ATOMXOR16:
12138    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12139                                               X86::XOR16ri, X86::MOV16rm,
12140                                               X86::LCMPXCHG16,
12141                                               X86::NOT16r, X86::AX,
12142                                               X86::GR16RegisterClass);
12143  case X86::ATOMNAND16:
12144    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12145                                               X86::AND16ri, X86::MOV16rm,
12146                                               X86::LCMPXCHG16,
12147                                               X86::NOT16r, X86::AX,
12148                                               X86::GR16RegisterClass, true);
12149  case X86::ATOMMIN16:
12150    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12151  case X86::ATOMMAX16:
12152    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12153  case X86::ATOMUMIN16:
12154    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12155  case X86::ATOMUMAX16:
12156    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12157
12158  case X86::ATOMAND8:
12159    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12160                                               X86::AND8ri, X86::MOV8rm,
12161                                               X86::LCMPXCHG8,
12162                                               X86::NOT8r, X86::AL,
12163                                               X86::GR8RegisterClass);
12164  case X86::ATOMOR8:
12165    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12166                                               X86::OR8ri, X86::MOV8rm,
12167                                               X86::LCMPXCHG8,
12168                                               X86::NOT8r, X86::AL,
12169                                               X86::GR8RegisterClass);
12170  case X86::ATOMXOR8:
12171    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12172                                               X86::XOR8ri, X86::MOV8rm,
12173                                               X86::LCMPXCHG8,
12174                                               X86::NOT8r, X86::AL,
12175                                               X86::GR8RegisterClass);
12176  case X86::ATOMNAND8:
12177    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12178                                               X86::AND8ri, X86::MOV8rm,
12179                                               X86::LCMPXCHG8,
12180                                               X86::NOT8r, X86::AL,
12181                                               X86::GR8RegisterClass, true);
12182  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12183  // This group is for 64-bit host.
12184  case X86::ATOMAND64:
12185    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12186                                               X86::AND64ri32, X86::MOV64rm,
12187                                               X86::LCMPXCHG64,
12188                                               X86::NOT64r, X86::RAX,
12189                                               X86::GR64RegisterClass);
12190  case X86::ATOMOR64:
12191    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12192                                               X86::OR64ri32, X86::MOV64rm,
12193                                               X86::LCMPXCHG64,
12194                                               X86::NOT64r, X86::RAX,
12195                                               X86::GR64RegisterClass);
12196  case X86::ATOMXOR64:
12197    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12198                                               X86::XOR64ri32, X86::MOV64rm,
12199                                               X86::LCMPXCHG64,
12200                                               X86::NOT64r, X86::RAX,
12201                                               X86::GR64RegisterClass);
12202  case X86::ATOMNAND64:
12203    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12204                                               X86::AND64ri32, X86::MOV64rm,
12205                                               X86::LCMPXCHG64,
12206                                               X86::NOT64r, X86::RAX,
12207                                               X86::GR64RegisterClass, true);
12208  case X86::ATOMMIN64:
12209    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12210  case X86::ATOMMAX64:
12211    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12212  case X86::ATOMUMIN64:
12213    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12214  case X86::ATOMUMAX64:
12215    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12216
12217  // This group does 64-bit operations on a 32-bit host.
12218  case X86::ATOMAND6432:
12219    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12220                                               X86::AND32rr, X86::AND32rr,
12221                                               X86::AND32ri, X86::AND32ri,
12222                                               false);
12223  case X86::ATOMOR6432:
12224    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12225                                               X86::OR32rr, X86::OR32rr,
12226                                               X86::OR32ri, X86::OR32ri,
12227                                               false);
12228  case X86::ATOMXOR6432:
12229    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12230                                               X86::XOR32rr, X86::XOR32rr,
12231                                               X86::XOR32ri, X86::XOR32ri,
12232                                               false);
12233  case X86::ATOMNAND6432:
12234    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12235                                               X86::AND32rr, X86::AND32rr,
12236                                               X86::AND32ri, X86::AND32ri,
12237                                               true);
12238  case X86::ATOMADD6432:
12239    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12240                                               X86::ADD32rr, X86::ADC32rr,
12241                                               X86::ADD32ri, X86::ADC32ri,
12242                                               false);
12243  case X86::ATOMSUB6432:
12244    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12245                                               X86::SUB32rr, X86::SBB32rr,
12246                                               X86::SUB32ri, X86::SBB32ri,
12247                                               false);
12248  case X86::ATOMSWAP6432:
12249    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12250                                               X86::MOV32rr, X86::MOV32rr,
12251                                               X86::MOV32ri, X86::MOV32ri,
12252                                               false);
12253  case X86::VASTART_SAVE_XMM_REGS:
12254    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12255
12256  case X86::VAARG_64:
12257    return EmitVAARG64WithCustomInserter(MI, BB);
12258  }
12259}
12260
12261//===----------------------------------------------------------------------===//
12262//                           X86 Optimization Hooks
12263//===----------------------------------------------------------------------===//
12264
12265void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12266                                                       const APInt &Mask,
12267                                                       APInt &KnownZero,
12268                                                       APInt &KnownOne,
12269                                                       const SelectionDAG &DAG,
12270                                                       unsigned Depth) const {
12271  unsigned Opc = Op.getOpcode();
12272  assert((Opc >= ISD::BUILTIN_OP_END ||
12273          Opc == ISD::INTRINSIC_WO_CHAIN ||
12274          Opc == ISD::INTRINSIC_W_CHAIN ||
12275          Opc == ISD::INTRINSIC_VOID) &&
12276         "Should use MaskedValueIsZero if you don't know whether Op"
12277         " is a target node!");
12278
12279  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12280  switch (Opc) {
12281  default: break;
12282  case X86ISD::ADD:
12283  case X86ISD::SUB:
12284  case X86ISD::ADC:
12285  case X86ISD::SBB:
12286  case X86ISD::SMUL:
12287  case X86ISD::UMUL:
12288  case X86ISD::INC:
12289  case X86ISD::DEC:
12290  case X86ISD::OR:
12291  case X86ISD::XOR:
12292  case X86ISD::AND:
12293    // These nodes' second result is a boolean.
12294    if (Op.getResNo() == 0)
12295      break;
12296    // Fallthrough
12297  case X86ISD::SETCC:
12298    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12299                                       Mask.getBitWidth() - 1);
12300    break;
12301  }
12302}
12303
12304unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12305                                                         unsigned Depth) const {
12306  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12307  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12308    return Op.getValueType().getScalarType().getSizeInBits();
12309
12310  // Fallback case.
12311  return 1;
12312}
12313
12314/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12315/// node is a GlobalAddress + offset.
12316bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12317                                       const GlobalValue* &GA,
12318                                       int64_t &Offset) const {
12319  if (N->getOpcode() == X86ISD::Wrapper) {
12320    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12321      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12322      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12323      return true;
12324    }
12325  }
12326  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12327}
12328
12329/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12330/// same as extracting the high 128-bit part of 256-bit vector and then
12331/// inserting the result into the low part of a new 256-bit vector
12332static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12333  EVT VT = SVOp->getValueType(0);
12334  int NumElems = VT.getVectorNumElements();
12335
12336  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12337  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12338    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12339        SVOp->getMaskElt(j) >= 0)
12340      return false;
12341
12342  return true;
12343}
12344
12345/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12346/// same as extracting the low 128-bit part of 256-bit vector and then
12347/// inserting the result into the high part of a new 256-bit vector
12348static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12349  EVT VT = SVOp->getValueType(0);
12350  int NumElems = VT.getVectorNumElements();
12351
12352  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12353  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12354    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12355        SVOp->getMaskElt(j) >= 0)
12356      return false;
12357
12358  return true;
12359}
12360
12361/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12362static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12363                                        TargetLowering::DAGCombinerInfo &DCI) {
12364  DebugLoc dl = N->getDebugLoc();
12365  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12366  SDValue V1 = SVOp->getOperand(0);
12367  SDValue V2 = SVOp->getOperand(1);
12368  EVT VT = SVOp->getValueType(0);
12369  int NumElems = VT.getVectorNumElements();
12370
12371  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12372      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12373    //
12374    //                   0,0,0,...
12375    //                      |
12376    //    V      UNDEF    BUILD_VECTOR    UNDEF
12377    //     \      /           \           /
12378    //  CONCAT_VECTOR         CONCAT_VECTOR
12379    //         \                  /
12380    //          \                /
12381    //          RESULT: V + zero extended
12382    //
12383    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12384        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12385        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12386      return SDValue();
12387
12388    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12389      return SDValue();
12390
12391    // To match the shuffle mask, the first half of the mask should
12392    // be exactly the first vector, and all the rest a splat with the
12393    // first element of the second one.
12394    for (int i = 0; i < NumElems/2; ++i)
12395      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12396          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12397        return SDValue();
12398
12399    // Emit a zeroed vector and insert the desired subvector on its
12400    // first half.
12401    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
12402    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12403                         DAG.getConstant(0, MVT::i32), DAG, dl);
12404    return DCI.CombineTo(N, InsV);
12405  }
12406
12407  //===--------------------------------------------------------------------===//
12408  // Combine some shuffles into subvector extracts and inserts:
12409  //
12410
12411  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12412  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12413    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12414                                    DAG, dl);
12415    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12416                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12417    return DCI.CombineTo(N, InsV);
12418  }
12419
12420  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12421  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12422    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12423    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12424                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12425    return DCI.CombineTo(N, InsV);
12426  }
12427
12428  return SDValue();
12429}
12430
12431/// PerformShuffleCombine - Performs several different shuffle combines.
12432static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12433                                     TargetLowering::DAGCombinerInfo &DCI,
12434                                     const X86Subtarget *Subtarget) {
12435  DebugLoc dl = N->getDebugLoc();
12436  EVT VT = N->getValueType(0);
12437
12438  // Don't create instructions with illegal types after legalize types has run.
12439  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12440  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12441    return SDValue();
12442
12443  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12444  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12445      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12446    return PerformShuffleCombine256(N, DAG, DCI);
12447
12448  // Only handle 128 wide vector from here on.
12449  if (VT.getSizeInBits() != 128)
12450    return SDValue();
12451
12452  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12453  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12454  // consecutive, non-overlapping, and in the right order.
12455  SmallVector<SDValue, 16> Elts;
12456  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12457    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12458
12459  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12460}
12461
12462/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12463/// generation and convert it from being a bunch of shuffles and extracts
12464/// to a simple store and scalar loads to extract the elements.
12465static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12466                                                const TargetLowering &TLI) {
12467  SDValue InputVector = N->getOperand(0);
12468
12469  // Only operate on vectors of 4 elements, where the alternative shuffling
12470  // gets to be more expensive.
12471  if (InputVector.getValueType() != MVT::v4i32)
12472    return SDValue();
12473
12474  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12475  // single use which is a sign-extend or zero-extend, and all elements are
12476  // used.
12477  SmallVector<SDNode *, 4> Uses;
12478  unsigned ExtractedElements = 0;
12479  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12480       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12481    if (UI.getUse().getResNo() != InputVector.getResNo())
12482      return SDValue();
12483
12484    SDNode *Extract = *UI;
12485    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12486      return SDValue();
12487
12488    if (Extract->getValueType(0) != MVT::i32)
12489      return SDValue();
12490    if (!Extract->hasOneUse())
12491      return SDValue();
12492    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12493        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12494      return SDValue();
12495    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12496      return SDValue();
12497
12498    // Record which element was extracted.
12499    ExtractedElements |=
12500      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12501
12502    Uses.push_back(Extract);
12503  }
12504
12505  // If not all the elements were used, this may not be worthwhile.
12506  if (ExtractedElements != 15)
12507    return SDValue();
12508
12509  // Ok, we've now decided to do the transformation.
12510  DebugLoc dl = InputVector.getDebugLoc();
12511
12512  // Store the value to a temporary stack slot.
12513  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12514  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12515                            MachinePointerInfo(), false, false, 0);
12516
12517  // Replace each use (extract) with a load of the appropriate element.
12518  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12519       UE = Uses.end(); UI != UE; ++UI) {
12520    SDNode *Extract = *UI;
12521
12522    // cOMpute the element's address.
12523    SDValue Idx = Extract->getOperand(1);
12524    unsigned EltSize =
12525        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12526    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12527    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12528
12529    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12530                                     StackPtr, OffsetVal);
12531
12532    // Load the scalar.
12533    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12534                                     ScalarAddr, MachinePointerInfo(),
12535                                     false, false, 0);
12536
12537    // Replace the exact with the load.
12538    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12539  }
12540
12541  // The replacement was made in place; don't return anything.
12542  return SDValue();
12543}
12544
12545/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
12546static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12547                                    const X86Subtarget *Subtarget) {
12548  DebugLoc DL = N->getDebugLoc();
12549  SDValue Cond = N->getOperand(0);
12550  // Get the LHS/RHS of the select.
12551  SDValue LHS = N->getOperand(1);
12552  SDValue RHS = N->getOperand(2);
12553
12554  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12555  // instructions match the semantics of the common C idiom x<y?x:y but not
12556  // x<=y?x:y, because of how they handle negative zero (which can be
12557  // ignored in unsafe-math mode).
12558  if (Subtarget->hasSSE2() &&
12559      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
12560      Cond.getOpcode() == ISD::SETCC) {
12561    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12562
12563    unsigned Opcode = 0;
12564    // Check for x CC y ? x : y.
12565    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12566        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12567      switch (CC) {
12568      default: break;
12569      case ISD::SETULT:
12570        // Converting this to a min would handle NaNs incorrectly, and swapping
12571        // the operands would cause it to handle comparisons between positive
12572        // and negative zero incorrectly.
12573        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12574          if (!UnsafeFPMath &&
12575              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12576            break;
12577          std::swap(LHS, RHS);
12578        }
12579        Opcode = X86ISD::FMIN;
12580        break;
12581      case ISD::SETOLE:
12582        // Converting this to a min would handle comparisons between positive
12583        // and negative zero incorrectly.
12584        if (!UnsafeFPMath &&
12585            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12586          break;
12587        Opcode = X86ISD::FMIN;
12588        break;
12589      case ISD::SETULE:
12590        // Converting this to a min would handle both negative zeros and NaNs
12591        // incorrectly, but we can swap the operands to fix both.
12592        std::swap(LHS, RHS);
12593      case ISD::SETOLT:
12594      case ISD::SETLT:
12595      case ISD::SETLE:
12596        Opcode = X86ISD::FMIN;
12597        break;
12598
12599      case ISD::SETOGE:
12600        // Converting this to a max would handle comparisons between positive
12601        // and negative zero incorrectly.
12602        if (!UnsafeFPMath &&
12603            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12604          break;
12605        Opcode = X86ISD::FMAX;
12606        break;
12607      case ISD::SETUGT:
12608        // Converting this to a max would handle NaNs incorrectly, and swapping
12609        // the operands would cause it to handle comparisons between positive
12610        // and negative zero incorrectly.
12611        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12612          if (!UnsafeFPMath &&
12613              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12614            break;
12615          std::swap(LHS, RHS);
12616        }
12617        Opcode = X86ISD::FMAX;
12618        break;
12619      case ISD::SETUGE:
12620        // Converting this to a max would handle both negative zeros and NaNs
12621        // incorrectly, but we can swap the operands to fix both.
12622        std::swap(LHS, RHS);
12623      case ISD::SETOGT:
12624      case ISD::SETGT:
12625      case ISD::SETGE:
12626        Opcode = X86ISD::FMAX;
12627        break;
12628      }
12629    // Check for x CC y ? y : x -- a min/max with reversed arms.
12630    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12631               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12632      switch (CC) {
12633      default: break;
12634      case ISD::SETOGE:
12635        // Converting this to a min would handle comparisons between positive
12636        // and negative zero incorrectly, and swapping the operands would
12637        // cause it to handle NaNs incorrectly.
12638        if (!UnsafeFPMath &&
12639            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12640          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12641            break;
12642          std::swap(LHS, RHS);
12643        }
12644        Opcode = X86ISD::FMIN;
12645        break;
12646      case ISD::SETUGT:
12647        // Converting this to a min would handle NaNs incorrectly.
12648        if (!UnsafeFPMath &&
12649            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12650          break;
12651        Opcode = X86ISD::FMIN;
12652        break;
12653      case ISD::SETUGE:
12654        // Converting this to a min would handle both negative zeros and NaNs
12655        // incorrectly, but we can swap the operands to fix both.
12656        std::swap(LHS, RHS);
12657      case ISD::SETOGT:
12658      case ISD::SETGT:
12659      case ISD::SETGE:
12660        Opcode = X86ISD::FMIN;
12661        break;
12662
12663      case ISD::SETULT:
12664        // Converting this to a max would handle NaNs incorrectly.
12665        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12666          break;
12667        Opcode = X86ISD::FMAX;
12668        break;
12669      case ISD::SETOLE:
12670        // Converting this to a max would handle comparisons between positive
12671        // and negative zero incorrectly, and swapping the operands would
12672        // cause it to handle NaNs incorrectly.
12673        if (!UnsafeFPMath &&
12674            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
12675          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12676            break;
12677          std::swap(LHS, RHS);
12678        }
12679        Opcode = X86ISD::FMAX;
12680        break;
12681      case ISD::SETULE:
12682        // Converting this to a max would handle both negative zeros and NaNs
12683        // incorrectly, but we can swap the operands to fix both.
12684        std::swap(LHS, RHS);
12685      case ISD::SETOLT:
12686      case ISD::SETLT:
12687      case ISD::SETLE:
12688        Opcode = X86ISD::FMAX;
12689        break;
12690      }
12691    }
12692
12693    if (Opcode)
12694      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
12695  }
12696
12697  // If this is a select between two integer constants, try to do some
12698  // optimizations.
12699  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
12700    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
12701      // Don't do this for crazy integer types.
12702      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
12703        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
12704        // so that TrueC (the true value) is larger than FalseC.
12705        bool NeedsCondInvert = false;
12706
12707        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
12708            // Efficiently invertible.
12709            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
12710             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
12711              isa<ConstantSDNode>(Cond.getOperand(1))))) {
12712          NeedsCondInvert = true;
12713          std::swap(TrueC, FalseC);
12714        }
12715
12716        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
12717        if (FalseC->getAPIntValue() == 0 &&
12718            TrueC->getAPIntValue().isPowerOf2()) {
12719          if (NeedsCondInvert) // Invert the condition if needed.
12720            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12721                               DAG.getConstant(1, Cond.getValueType()));
12722
12723          // Zero extend the condition if needed.
12724          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
12725
12726          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12727          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
12728                             DAG.getConstant(ShAmt, MVT::i8));
12729        }
12730
12731        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
12732        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12733          if (NeedsCondInvert) // Invert the condition if needed.
12734            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12735                               DAG.getConstant(1, Cond.getValueType()));
12736
12737          // Zero extend the condition if needed.
12738          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12739                             FalseC->getValueType(0), Cond);
12740          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12741                             SDValue(FalseC, 0));
12742        }
12743
12744        // Optimize cases that will turn into an LEA instruction.  This requires
12745        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12746        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12747          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12748          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12749
12750          bool isFastMultiplier = false;
12751          if (Diff < 10) {
12752            switch ((unsigned char)Diff) {
12753              default: break;
12754              case 1:  // result = add base, cond
12755              case 2:  // result = lea base(    , cond*2)
12756              case 3:  // result = lea base(cond, cond*2)
12757              case 4:  // result = lea base(    , cond*4)
12758              case 5:  // result = lea base(cond, cond*4)
12759              case 8:  // result = lea base(    , cond*8)
12760              case 9:  // result = lea base(cond, cond*8)
12761                isFastMultiplier = true;
12762                break;
12763            }
12764          }
12765
12766          if (isFastMultiplier) {
12767            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12768            if (NeedsCondInvert) // Invert the condition if needed.
12769              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12770                                 DAG.getConstant(1, Cond.getValueType()));
12771
12772            // Zero extend the condition if needed.
12773            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12774                               Cond);
12775            // Scale the condition by the difference.
12776            if (Diff != 1)
12777              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12778                                 DAG.getConstant(Diff, Cond.getValueType()));
12779
12780            // Add the base if non-zero.
12781            if (FalseC->getAPIntValue() != 0)
12782              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12783                                 SDValue(FalseC, 0));
12784            return Cond;
12785          }
12786        }
12787      }
12788  }
12789
12790  return SDValue();
12791}
12792
12793/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
12794static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
12795                                  TargetLowering::DAGCombinerInfo &DCI) {
12796  DebugLoc DL = N->getDebugLoc();
12797
12798  // If the flag operand isn't dead, don't touch this CMOV.
12799  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
12800    return SDValue();
12801
12802  SDValue FalseOp = N->getOperand(0);
12803  SDValue TrueOp = N->getOperand(1);
12804  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
12805  SDValue Cond = N->getOperand(3);
12806  if (CC == X86::COND_E || CC == X86::COND_NE) {
12807    switch (Cond.getOpcode()) {
12808    default: break;
12809    case X86ISD::BSR:
12810    case X86ISD::BSF:
12811      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
12812      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
12813        return (CC == X86::COND_E) ? FalseOp : TrueOp;
12814    }
12815  }
12816
12817  // If this is a select between two integer constants, try to do some
12818  // optimizations.  Note that the operands are ordered the opposite of SELECT
12819  // operands.
12820  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
12821    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
12822      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
12823      // larger than FalseC (the false value).
12824      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
12825        CC = X86::GetOppositeBranchCondition(CC);
12826        std::swap(TrueC, FalseC);
12827      }
12828
12829      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
12830      // This is efficient for any integer data type (including i8/i16) and
12831      // shift amount.
12832      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
12833        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12834                           DAG.getConstant(CC, MVT::i8), Cond);
12835
12836        // Zero extend the condition if needed.
12837        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
12838
12839        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12840        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
12841                           DAG.getConstant(ShAmt, MVT::i8));
12842        if (N->getNumValues() == 2)  // Dead flag value?
12843          return DCI.CombineTo(N, Cond, SDValue());
12844        return Cond;
12845      }
12846
12847      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
12848      // for any integer data type, including i8/i16.
12849      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12850        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12851                           DAG.getConstant(CC, MVT::i8), Cond);
12852
12853        // Zero extend the condition if needed.
12854        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12855                           FalseC->getValueType(0), Cond);
12856        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12857                           SDValue(FalseC, 0));
12858
12859        if (N->getNumValues() == 2)  // Dead flag value?
12860          return DCI.CombineTo(N, Cond, SDValue());
12861        return Cond;
12862      }
12863
12864      // Optimize cases that will turn into an LEA instruction.  This requires
12865      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12866      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12867        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12868        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12869
12870        bool isFastMultiplier = false;
12871        if (Diff < 10) {
12872          switch ((unsigned char)Diff) {
12873          default: break;
12874          case 1:  // result = add base, cond
12875          case 2:  // result = lea base(    , cond*2)
12876          case 3:  // result = lea base(cond, cond*2)
12877          case 4:  // result = lea base(    , cond*4)
12878          case 5:  // result = lea base(cond, cond*4)
12879          case 8:  // result = lea base(    , cond*8)
12880          case 9:  // result = lea base(cond, cond*8)
12881            isFastMultiplier = true;
12882            break;
12883          }
12884        }
12885
12886        if (isFastMultiplier) {
12887          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12888          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12889                             DAG.getConstant(CC, MVT::i8), Cond);
12890          // Zero extend the condition if needed.
12891          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12892                             Cond);
12893          // Scale the condition by the difference.
12894          if (Diff != 1)
12895            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12896                               DAG.getConstant(Diff, Cond.getValueType()));
12897
12898          // Add the base if non-zero.
12899          if (FalseC->getAPIntValue() != 0)
12900            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12901                               SDValue(FalseC, 0));
12902          if (N->getNumValues() == 2)  // Dead flag value?
12903            return DCI.CombineTo(N, Cond, SDValue());
12904          return Cond;
12905        }
12906      }
12907    }
12908  }
12909  return SDValue();
12910}
12911
12912
12913/// PerformMulCombine - Optimize a single multiply with constant into two
12914/// in order to implement it with two cheaper instructions, e.g.
12915/// LEA + SHL, LEA + LEA.
12916static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
12917                                 TargetLowering::DAGCombinerInfo &DCI) {
12918  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12919    return SDValue();
12920
12921  EVT VT = N->getValueType(0);
12922  if (VT != MVT::i64)
12923    return SDValue();
12924
12925  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12926  if (!C)
12927    return SDValue();
12928  uint64_t MulAmt = C->getZExtValue();
12929  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
12930    return SDValue();
12931
12932  uint64_t MulAmt1 = 0;
12933  uint64_t MulAmt2 = 0;
12934  if ((MulAmt % 9) == 0) {
12935    MulAmt1 = 9;
12936    MulAmt2 = MulAmt / 9;
12937  } else if ((MulAmt % 5) == 0) {
12938    MulAmt1 = 5;
12939    MulAmt2 = MulAmt / 5;
12940  } else if ((MulAmt % 3) == 0) {
12941    MulAmt1 = 3;
12942    MulAmt2 = MulAmt / 3;
12943  }
12944  if (MulAmt2 &&
12945      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
12946    DebugLoc DL = N->getDebugLoc();
12947
12948    if (isPowerOf2_64(MulAmt2) &&
12949        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
12950      // If second multiplifer is pow2, issue it first. We want the multiply by
12951      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
12952      // is an add.
12953      std::swap(MulAmt1, MulAmt2);
12954
12955    SDValue NewMul;
12956    if (isPowerOf2_64(MulAmt1))
12957      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
12958                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
12959    else
12960      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
12961                           DAG.getConstant(MulAmt1, VT));
12962
12963    if (isPowerOf2_64(MulAmt2))
12964      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
12965                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
12966    else
12967      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
12968                           DAG.getConstant(MulAmt2, VT));
12969
12970    // Do not add new nodes to DAG combiner worklist.
12971    DCI.CombineTo(N, NewMul, false);
12972  }
12973  return SDValue();
12974}
12975
12976static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
12977  SDValue N0 = N->getOperand(0);
12978  SDValue N1 = N->getOperand(1);
12979  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
12980  EVT VT = N0.getValueType();
12981
12982  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
12983  // since the result of setcc_c is all zero's or all ones.
12984  if (N1C && N0.getOpcode() == ISD::AND &&
12985      N0.getOperand(1).getOpcode() == ISD::Constant) {
12986    SDValue N00 = N0.getOperand(0);
12987    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
12988        ((N00.getOpcode() == ISD::ANY_EXTEND ||
12989          N00.getOpcode() == ISD::ZERO_EXTEND) &&
12990         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
12991      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
12992      APInt ShAmt = N1C->getAPIntValue();
12993      Mask = Mask.shl(ShAmt);
12994      if (Mask != 0)
12995        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
12996                           N00, DAG.getConstant(Mask, VT));
12997    }
12998  }
12999
13000  return SDValue();
13001}
13002
13003/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13004///                       when possible.
13005static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13006                                   const X86Subtarget *Subtarget) {
13007  EVT VT = N->getValueType(0);
13008  if (!VT.isVector() && VT.isInteger() &&
13009      N->getOpcode() == ISD::SHL)
13010    return PerformSHLCombine(N, DAG);
13011
13012  // On X86 with SSE2 support, we can transform this to a vector shift if
13013  // all elements are shifted by the same amount.  We can't do this in legalize
13014  // because the a constant vector is typically transformed to a constant pool
13015  // so we have no knowledge of the shift amount.
13016  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
13017    return SDValue();
13018
13019  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
13020    return SDValue();
13021
13022  SDValue ShAmtOp = N->getOperand(1);
13023  EVT EltVT = VT.getVectorElementType();
13024  DebugLoc DL = N->getDebugLoc();
13025  SDValue BaseShAmt = SDValue();
13026  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13027    unsigned NumElts = VT.getVectorNumElements();
13028    unsigned i = 0;
13029    for (; i != NumElts; ++i) {
13030      SDValue Arg = ShAmtOp.getOperand(i);
13031      if (Arg.getOpcode() == ISD::UNDEF) continue;
13032      BaseShAmt = Arg;
13033      break;
13034    }
13035    for (; i != NumElts; ++i) {
13036      SDValue Arg = ShAmtOp.getOperand(i);
13037      if (Arg.getOpcode() == ISD::UNDEF) continue;
13038      if (Arg != BaseShAmt) {
13039        return SDValue();
13040      }
13041    }
13042  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13043             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13044    SDValue InVec = ShAmtOp.getOperand(0);
13045    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13046      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13047      unsigned i = 0;
13048      for (; i != NumElts; ++i) {
13049        SDValue Arg = InVec.getOperand(i);
13050        if (Arg.getOpcode() == ISD::UNDEF) continue;
13051        BaseShAmt = Arg;
13052        break;
13053      }
13054    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13055       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13056         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13057         if (C->getZExtValue() == SplatIdx)
13058           BaseShAmt = InVec.getOperand(1);
13059       }
13060    }
13061    if (BaseShAmt.getNode() == 0)
13062      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13063                              DAG.getIntPtrConstant(0));
13064  } else
13065    return SDValue();
13066
13067  // The shift amount is an i32.
13068  if (EltVT.bitsGT(MVT::i32))
13069    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13070  else if (EltVT.bitsLT(MVT::i32))
13071    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13072
13073  // The shift amount is identical so we can do a vector shift.
13074  SDValue  ValOp = N->getOperand(0);
13075  switch (N->getOpcode()) {
13076  default:
13077    llvm_unreachable("Unknown shift opcode!");
13078    break;
13079  case ISD::SHL:
13080    if (VT == MVT::v2i64)
13081      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13082                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13083                         ValOp, BaseShAmt);
13084    if (VT == MVT::v4i32)
13085      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13086                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13087                         ValOp, BaseShAmt);
13088    if (VT == MVT::v8i16)
13089      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13090                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13091                         ValOp, BaseShAmt);
13092    break;
13093  case ISD::SRA:
13094    if (VT == MVT::v4i32)
13095      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13096                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13097                         ValOp, BaseShAmt);
13098    if (VT == MVT::v8i16)
13099      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13100                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13101                         ValOp, BaseShAmt);
13102    break;
13103  case ISD::SRL:
13104    if (VT == MVT::v2i64)
13105      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13106                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13107                         ValOp, BaseShAmt);
13108    if (VT == MVT::v4i32)
13109      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13110                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13111                         ValOp, BaseShAmt);
13112    if (VT ==  MVT::v8i16)
13113      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13114                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13115                         ValOp, BaseShAmt);
13116    break;
13117  }
13118  return SDValue();
13119}
13120
13121
13122// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13123// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13124// and friends.  Likewise for OR -> CMPNEQSS.
13125static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13126                            TargetLowering::DAGCombinerInfo &DCI,
13127                            const X86Subtarget *Subtarget) {
13128  unsigned opcode;
13129
13130  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13131  // we're requiring SSE2 for both.
13132  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13133    SDValue N0 = N->getOperand(0);
13134    SDValue N1 = N->getOperand(1);
13135    SDValue CMP0 = N0->getOperand(1);
13136    SDValue CMP1 = N1->getOperand(1);
13137    DebugLoc DL = N->getDebugLoc();
13138
13139    // The SETCCs should both refer to the same CMP.
13140    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13141      return SDValue();
13142
13143    SDValue CMP00 = CMP0->getOperand(0);
13144    SDValue CMP01 = CMP0->getOperand(1);
13145    EVT     VT    = CMP00.getValueType();
13146
13147    if (VT == MVT::f32 || VT == MVT::f64) {
13148      bool ExpectingFlags = false;
13149      // Check for any users that want flags:
13150      for (SDNode::use_iterator UI = N->use_begin(),
13151             UE = N->use_end();
13152           !ExpectingFlags && UI != UE; ++UI)
13153        switch (UI->getOpcode()) {
13154        default:
13155        case ISD::BR_CC:
13156        case ISD::BRCOND:
13157        case ISD::SELECT:
13158          ExpectingFlags = true;
13159          break;
13160        case ISD::CopyToReg:
13161        case ISD::SIGN_EXTEND:
13162        case ISD::ZERO_EXTEND:
13163        case ISD::ANY_EXTEND:
13164          break;
13165        }
13166
13167      if (!ExpectingFlags) {
13168        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13169        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13170
13171        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13172          X86::CondCode tmp = cc0;
13173          cc0 = cc1;
13174          cc1 = tmp;
13175        }
13176
13177        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13178            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13179          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13180          X86ISD::NodeType NTOperator = is64BitFP ?
13181            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13182          // FIXME: need symbolic constants for these magic numbers.
13183          // See X86ATTInstPrinter.cpp:printSSECC().
13184          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13185          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13186                                              DAG.getConstant(x86cc, MVT::i8));
13187          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13188                                              OnesOrZeroesF);
13189          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13190                                      DAG.getConstant(1, MVT::i32));
13191          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13192          return OneBitOfTruth;
13193        }
13194      }
13195    }
13196  }
13197  return SDValue();
13198}
13199
13200/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13201/// so it can be folded inside ANDNP.
13202static bool CanFoldXORWithAllOnes(const SDNode *N) {
13203  EVT VT = N->getValueType(0);
13204
13205  // Match direct AllOnes for 128 and 256-bit vectors
13206  if (ISD::isBuildVectorAllOnes(N))
13207    return true;
13208
13209  // Look through a bit convert.
13210  if (N->getOpcode() == ISD::BITCAST)
13211    N = N->getOperand(0).getNode();
13212
13213  // Sometimes the operand may come from a insert_subvector building a 256-bit
13214  // allones vector
13215  if (VT.getSizeInBits() == 256 &&
13216      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13217    SDValue V1 = N->getOperand(0);
13218    SDValue V2 = N->getOperand(1);
13219
13220    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13221        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13222        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13223        ISD::isBuildVectorAllOnes(V2.getNode()))
13224      return true;
13225  }
13226
13227  return false;
13228}
13229
13230static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13231                                 TargetLowering::DAGCombinerInfo &DCI,
13232                                 const X86Subtarget *Subtarget) {
13233  if (DCI.isBeforeLegalizeOps())
13234    return SDValue();
13235
13236  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13237  if (R.getNode())
13238    return R;
13239
13240  // Want to form ANDNP nodes:
13241  // 1) In the hopes of then easily combining them with OR and AND nodes
13242  //    to form PBLEND/PSIGN.
13243  // 2) To match ANDN packed intrinsics
13244  EVT VT = N->getValueType(0);
13245  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13246    return SDValue();
13247
13248  SDValue N0 = N->getOperand(0);
13249  SDValue N1 = N->getOperand(1);
13250  DebugLoc DL = N->getDebugLoc();
13251
13252  // Check LHS for vnot
13253  if (N0.getOpcode() == ISD::XOR &&
13254      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13255      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13256    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13257
13258  // Check RHS for vnot
13259  if (N1.getOpcode() == ISD::XOR &&
13260      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13261      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13262    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13263
13264  return SDValue();
13265}
13266
13267static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13268                                TargetLowering::DAGCombinerInfo &DCI,
13269                                const X86Subtarget *Subtarget) {
13270  if (DCI.isBeforeLegalizeOps())
13271    return SDValue();
13272
13273  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13274  if (R.getNode())
13275    return R;
13276
13277  EVT VT = N->getValueType(0);
13278  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
13279    return SDValue();
13280
13281  SDValue N0 = N->getOperand(0);
13282  SDValue N1 = N->getOperand(1);
13283
13284  // look for psign/blend
13285  if (Subtarget->hasSSSE3()) {
13286    if (VT == MVT::v2i64) {
13287      // Canonicalize pandn to RHS
13288      if (N0.getOpcode() == X86ISD::ANDNP)
13289        std::swap(N0, N1);
13290      // or (and (m, x), (pandn m, y))
13291      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13292        SDValue Mask = N1.getOperand(0);
13293        SDValue X    = N1.getOperand(1);
13294        SDValue Y;
13295        if (N0.getOperand(0) == Mask)
13296          Y = N0.getOperand(1);
13297        if (N0.getOperand(1) == Mask)
13298          Y = N0.getOperand(0);
13299
13300        // Check to see if the mask appeared in both the AND and ANDNP and
13301        if (!Y.getNode())
13302          return SDValue();
13303
13304        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13305        if (Mask.getOpcode() != ISD::BITCAST ||
13306            X.getOpcode() != ISD::BITCAST ||
13307            Y.getOpcode() != ISD::BITCAST)
13308          return SDValue();
13309
13310        // Look through mask bitcast.
13311        Mask = Mask.getOperand(0);
13312        EVT MaskVT = Mask.getValueType();
13313
13314        // Validate that the Mask operand is a vector sra node.  The sra node
13315        // will be an intrinsic.
13316        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13317          return SDValue();
13318
13319        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13320        // there is no psrai.b
13321        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13322        case Intrinsic::x86_sse2_psrai_w:
13323        case Intrinsic::x86_sse2_psrai_d:
13324          break;
13325        default: return SDValue();
13326        }
13327
13328        // Check that the SRA is all signbits.
13329        SDValue SraC = Mask.getOperand(2);
13330        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13331        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13332        if ((SraAmt + 1) != EltBits)
13333          return SDValue();
13334
13335        DebugLoc DL = N->getDebugLoc();
13336
13337        // Now we know we at least have a plendvb with the mask val.  See if
13338        // we can form a psignb/w/d.
13339        // psign = x.type == y.type == mask.type && y = sub(0, x);
13340        X = X.getOperand(0);
13341        Y = Y.getOperand(0);
13342        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13343            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13344            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
13345          unsigned Opc = 0;
13346          switch (EltBits) {
13347          case 8: Opc = X86ISD::PSIGNB; break;
13348          case 16: Opc = X86ISD::PSIGNW; break;
13349          case 32: Opc = X86ISD::PSIGND; break;
13350          default: break;
13351          }
13352          if (Opc) {
13353            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
13354            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
13355          }
13356        }
13357        // PBLENDVB only available on SSE 4.1
13358        if (!Subtarget->hasSSE41())
13359          return SDValue();
13360
13361        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
13362        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
13363        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
13364        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
13365        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
13366      }
13367    }
13368  }
13369
13370  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13371  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13372    std::swap(N0, N1);
13373  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13374    return SDValue();
13375  if (!N0.hasOneUse() || !N1.hasOneUse())
13376    return SDValue();
13377
13378  SDValue ShAmt0 = N0.getOperand(1);
13379  if (ShAmt0.getValueType() != MVT::i8)
13380    return SDValue();
13381  SDValue ShAmt1 = N1.getOperand(1);
13382  if (ShAmt1.getValueType() != MVT::i8)
13383    return SDValue();
13384  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13385    ShAmt0 = ShAmt0.getOperand(0);
13386  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13387    ShAmt1 = ShAmt1.getOperand(0);
13388
13389  DebugLoc DL = N->getDebugLoc();
13390  unsigned Opc = X86ISD::SHLD;
13391  SDValue Op0 = N0.getOperand(0);
13392  SDValue Op1 = N1.getOperand(0);
13393  if (ShAmt0.getOpcode() == ISD::SUB) {
13394    Opc = X86ISD::SHRD;
13395    std::swap(Op0, Op1);
13396    std::swap(ShAmt0, ShAmt1);
13397  }
13398
13399  unsigned Bits = VT.getSizeInBits();
13400  if (ShAmt1.getOpcode() == ISD::SUB) {
13401    SDValue Sum = ShAmt1.getOperand(0);
13402    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13403      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13404      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13405        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13406      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13407        return DAG.getNode(Opc, DL, VT,
13408                           Op0, Op1,
13409                           DAG.getNode(ISD::TRUNCATE, DL,
13410                                       MVT::i8, ShAmt0));
13411    }
13412  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13413    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13414    if (ShAmt0C &&
13415        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13416      return DAG.getNode(Opc, DL, VT,
13417                         N0.getOperand(0), N1.getOperand(0),
13418                         DAG.getNode(ISD::TRUNCATE, DL,
13419                                       MVT::i8, ShAmt0));
13420  }
13421
13422  return SDValue();
13423}
13424
13425/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
13426static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13427                                   const X86Subtarget *Subtarget) {
13428  StoreSDNode *St = cast<StoreSDNode>(N);
13429  EVT VT = St->getValue().getValueType();
13430  EVT StVT = St->getMemoryVT();
13431  DebugLoc dl = St->getDebugLoc();
13432  SDValue StoredVal = St->getOperand(1);
13433  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13434
13435  // If we are saving a concatination of two XMM registers, perform two stores.
13436  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13437  // 128-bit ones. If in the future the cost becomes only one memory access the
13438  // first version would be better.
13439  if (VT.getSizeInBits() == 256 &&
13440    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13441    StoredVal.getNumOperands() == 2) {
13442
13443    SDValue Value0 = StoredVal.getOperand(0);
13444    SDValue Value1 = StoredVal.getOperand(1);
13445
13446    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13447    SDValue Ptr0 = St->getBasePtr();
13448    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13449
13450    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13451                                St->getPointerInfo(), St->isVolatile(),
13452                                St->isNonTemporal(), St->getAlignment());
13453    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13454                                St->getPointerInfo(), St->isVolatile(),
13455                                St->isNonTemporal(), St->getAlignment());
13456    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
13457  }
13458
13459  // Optimize trunc store (of multiple scalars) to shuffle and store.
13460  // First, pack all of the elements in one place. Next, store to memory
13461  // in fewer chunks.
13462  if (St->isTruncatingStore() && VT.isVector()) {
13463    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13464    unsigned NumElems = VT.getVectorNumElements();
13465    assert(StVT != VT && "Cannot truncate to the same type");
13466    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
13467    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
13468
13469    // From, To sizes and ElemCount must be pow of two
13470    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
13471    // We are going to use the original vector elt for storing.
13472    // accumulated smaller vector elements must be a multiple of bigger size.
13473    if (0 != (NumElems * ToSz) % FromSz) return SDValue();
13474    unsigned SizeRatio  = FromSz / ToSz;
13475
13476    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
13477
13478    // Create a type on which we perform the shuffle
13479    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
13480            StVT.getScalarType(), NumElems*SizeRatio);
13481
13482    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13483
13484    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
13485    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13486    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
13487
13488    // Can't shuffle using an illegal type
13489    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13490
13491    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
13492                                DAG.getUNDEF(WideVec.getValueType()),
13493                                ShuffleVec.data());
13494    // At this point all of the data is stored at the bottom of the
13495    // register. We now need to save it to mem.
13496
13497    // Find the largest store unit
13498    MVT StoreType = MVT::i8;
13499    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13500         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13501      MVT Tp = (MVT::SimpleValueType)tp;
13502      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
13503        StoreType = Tp;
13504    }
13505
13506    // Bitcast the original vector into a vector of store-size units
13507    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
13508            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
13509    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
13510    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
13511    SmallVector<SDValue, 8> Chains;
13512    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
13513                                        TLI.getPointerTy());
13514    SDValue Ptr = St->getBasePtr();
13515
13516    // Perform one or more big stores into memory.
13517    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
13518      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
13519                                   StoreType, ShuffWide,
13520                                   DAG.getIntPtrConstant(i));
13521      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
13522                                St->getPointerInfo(), St->isVolatile(),
13523                                St->isNonTemporal(), St->getAlignment());
13524      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13525      Chains.push_back(Ch);
13526    }
13527
13528    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
13529                               Chains.size());
13530  }
13531
13532
13533  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
13534  // the FP state in cases where an emms may be missing.
13535  // A preferable solution to the general problem is to figure out the right
13536  // places to insert EMMS.  This qualifies as a quick hack.
13537
13538  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
13539  if (VT.getSizeInBits() != 64)
13540    return SDValue();
13541
13542  const Function *F = DAG.getMachineFunction().getFunction();
13543  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
13544  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
13545    && Subtarget->hasSSE2();
13546  if ((VT.isVector() ||
13547       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
13548      isa<LoadSDNode>(St->getValue()) &&
13549      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
13550      St->getChain().hasOneUse() && !St->isVolatile()) {
13551    SDNode* LdVal = St->getValue().getNode();
13552    LoadSDNode *Ld = 0;
13553    int TokenFactorIndex = -1;
13554    SmallVector<SDValue, 8> Ops;
13555    SDNode* ChainVal = St->getChain().getNode();
13556    // Must be a store of a load.  We currently handle two cases:  the load
13557    // is a direct child, and it's under an intervening TokenFactor.  It is
13558    // possible to dig deeper under nested TokenFactors.
13559    if (ChainVal == LdVal)
13560      Ld = cast<LoadSDNode>(St->getChain());
13561    else if (St->getValue().hasOneUse() &&
13562             ChainVal->getOpcode() == ISD::TokenFactor) {
13563      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
13564        if (ChainVal->getOperand(i).getNode() == LdVal) {
13565          TokenFactorIndex = i;
13566          Ld = cast<LoadSDNode>(St->getValue());
13567        } else
13568          Ops.push_back(ChainVal->getOperand(i));
13569      }
13570    }
13571
13572    if (!Ld || !ISD::isNormalLoad(Ld))
13573      return SDValue();
13574
13575    // If this is not the MMX case, i.e. we are just turning i64 load/store
13576    // into f64 load/store, avoid the transformation if there are multiple
13577    // uses of the loaded value.
13578    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
13579      return SDValue();
13580
13581    DebugLoc LdDL = Ld->getDebugLoc();
13582    DebugLoc StDL = N->getDebugLoc();
13583    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
13584    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
13585    // pair instead.
13586    if (Subtarget->is64Bit() || F64IsLegal) {
13587      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
13588      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
13589                                  Ld->getPointerInfo(), Ld->isVolatile(),
13590                                  Ld->isNonTemporal(), Ld->getAlignment());
13591      SDValue NewChain = NewLd.getValue(1);
13592      if (TokenFactorIndex != -1) {
13593        Ops.push_back(NewChain);
13594        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13595                               Ops.size());
13596      }
13597      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
13598                          St->getPointerInfo(),
13599                          St->isVolatile(), St->isNonTemporal(),
13600                          St->getAlignment());
13601    }
13602
13603    // Otherwise, lower to two pairs of 32-bit loads / stores.
13604    SDValue LoAddr = Ld->getBasePtr();
13605    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
13606                                 DAG.getConstant(4, MVT::i32));
13607
13608    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
13609                               Ld->getPointerInfo(),
13610                               Ld->isVolatile(), Ld->isNonTemporal(),
13611                               Ld->getAlignment());
13612    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
13613                               Ld->getPointerInfo().getWithOffset(4),
13614                               Ld->isVolatile(), Ld->isNonTemporal(),
13615                               MinAlign(Ld->getAlignment(), 4));
13616
13617    SDValue NewChain = LoLd.getValue(1);
13618    if (TokenFactorIndex != -1) {
13619      Ops.push_back(LoLd);
13620      Ops.push_back(HiLd);
13621      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13622                             Ops.size());
13623    }
13624
13625    LoAddr = St->getBasePtr();
13626    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
13627                         DAG.getConstant(4, MVT::i32));
13628
13629    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
13630                                St->getPointerInfo(),
13631                                St->isVolatile(), St->isNonTemporal(),
13632                                St->getAlignment());
13633    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
13634                                St->getPointerInfo().getWithOffset(4),
13635                                St->isVolatile(),
13636                                St->isNonTemporal(),
13637                                MinAlign(St->getAlignment(), 4));
13638    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
13639  }
13640  return SDValue();
13641}
13642
13643/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
13644/// X86ISD::FXOR nodes.
13645static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
13646  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
13647  // F[X]OR(0.0, x) -> x
13648  // F[X]OR(x, 0.0) -> x
13649  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13650    if (C->getValueAPF().isPosZero())
13651      return N->getOperand(1);
13652  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13653    if (C->getValueAPF().isPosZero())
13654      return N->getOperand(0);
13655  return SDValue();
13656}
13657
13658/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
13659static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
13660  // FAND(0.0, x) -> 0.0
13661  // FAND(x, 0.0) -> 0.0
13662  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13663    if (C->getValueAPF().isPosZero())
13664      return N->getOperand(0);
13665  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13666    if (C->getValueAPF().isPosZero())
13667      return N->getOperand(1);
13668  return SDValue();
13669}
13670
13671static SDValue PerformBTCombine(SDNode *N,
13672                                SelectionDAG &DAG,
13673                                TargetLowering::DAGCombinerInfo &DCI) {
13674  // BT ignores high bits in the bit index operand.
13675  SDValue Op1 = N->getOperand(1);
13676  if (Op1.hasOneUse()) {
13677    unsigned BitWidth = Op1.getValueSizeInBits();
13678    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
13679    APInt KnownZero, KnownOne;
13680    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
13681                                          !DCI.isBeforeLegalizeOps());
13682    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13683    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
13684        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
13685      DCI.CommitTargetLoweringOpt(TLO);
13686  }
13687  return SDValue();
13688}
13689
13690static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
13691  SDValue Op = N->getOperand(0);
13692  if (Op.getOpcode() == ISD::BITCAST)
13693    Op = Op.getOperand(0);
13694  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
13695  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
13696      VT.getVectorElementType().getSizeInBits() ==
13697      OpVT.getVectorElementType().getSizeInBits()) {
13698    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
13699  }
13700  return SDValue();
13701}
13702
13703static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
13704  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
13705  //           (and (i32 x86isd::setcc_carry), 1)
13706  // This eliminates the zext. This transformation is necessary because
13707  // ISD::SETCC is always legalized to i8.
13708  DebugLoc dl = N->getDebugLoc();
13709  SDValue N0 = N->getOperand(0);
13710  EVT VT = N->getValueType(0);
13711  if (N0.getOpcode() == ISD::AND &&
13712      N0.hasOneUse() &&
13713      N0.getOperand(0).hasOneUse()) {
13714    SDValue N00 = N0.getOperand(0);
13715    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
13716      return SDValue();
13717    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
13718    if (!C || C->getZExtValue() != 1)
13719      return SDValue();
13720    return DAG.getNode(ISD::AND, dl, VT,
13721                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
13722                                   N00.getOperand(0), N00.getOperand(1)),
13723                       DAG.getConstant(1, VT));
13724  }
13725
13726  return SDValue();
13727}
13728
13729// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
13730static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
13731  unsigned X86CC = N->getConstantOperandVal(0);
13732  SDValue EFLAG = N->getOperand(1);
13733  DebugLoc DL = N->getDebugLoc();
13734
13735  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
13736  // a zext and produces an all-ones bit which is more useful than 0/1 in some
13737  // cases.
13738  if (X86CC == X86::COND_B)
13739    return DAG.getNode(ISD::AND, DL, MVT::i8,
13740                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
13741                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
13742                       DAG.getConstant(1, MVT::i8));
13743
13744  return SDValue();
13745}
13746
13747static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
13748                                        const X86TargetLowering *XTLI) {
13749  SDValue Op0 = N->getOperand(0);
13750  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
13751  // a 32-bit target where SSE doesn't support i64->FP operations.
13752  if (Op0.getOpcode() == ISD::LOAD) {
13753    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
13754    EVT VT = Ld->getValueType(0);
13755    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
13756        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
13757        !XTLI->getSubtarget()->is64Bit() &&
13758        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
13759      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
13760                                          Ld->getChain(), Op0, DAG);
13761      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
13762      return FILDChain;
13763    }
13764  }
13765  return SDValue();
13766}
13767
13768// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
13769static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
13770                                 X86TargetLowering::DAGCombinerInfo &DCI) {
13771  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
13772  // the result is either zero or one (depending on the input carry bit).
13773  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
13774  if (X86::isZeroNode(N->getOperand(0)) &&
13775      X86::isZeroNode(N->getOperand(1)) &&
13776      // We don't have a good way to replace an EFLAGS use, so only do this when
13777      // dead right now.
13778      SDValue(N, 1).use_empty()) {
13779    DebugLoc DL = N->getDebugLoc();
13780    EVT VT = N->getValueType(0);
13781    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
13782    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
13783                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
13784                                           DAG.getConstant(X86::COND_B,MVT::i8),
13785                                           N->getOperand(2)),
13786                               DAG.getConstant(1, VT));
13787    return DCI.CombineTo(N, Res1, CarryOut);
13788  }
13789
13790  return SDValue();
13791}
13792
13793// fold (add Y, (sete  X, 0)) -> adc  0, Y
13794//      (add Y, (setne X, 0)) -> sbb -1, Y
13795//      (sub (sete  X, 0), Y) -> sbb  0, Y
13796//      (sub (setne X, 0), Y) -> adc -1, Y
13797static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
13798  DebugLoc DL = N->getDebugLoc();
13799
13800  // Look through ZExts.
13801  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
13802  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
13803    return SDValue();
13804
13805  SDValue SetCC = Ext.getOperand(0);
13806  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
13807    return SDValue();
13808
13809  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
13810  if (CC != X86::COND_E && CC != X86::COND_NE)
13811    return SDValue();
13812
13813  SDValue Cmp = SetCC.getOperand(1);
13814  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
13815      !X86::isZeroNode(Cmp.getOperand(1)) ||
13816      !Cmp.getOperand(0).getValueType().isInteger())
13817    return SDValue();
13818
13819  SDValue CmpOp0 = Cmp.getOperand(0);
13820  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
13821                               DAG.getConstant(1, CmpOp0.getValueType()));
13822
13823  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
13824  if (CC == X86::COND_NE)
13825    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
13826                       DL, OtherVal.getValueType(), OtherVal,
13827                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
13828  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
13829                     DL, OtherVal.getValueType(), OtherVal,
13830                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
13831}
13832
13833static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
13834  SDValue Op0 = N->getOperand(0);
13835  SDValue Op1 = N->getOperand(1);
13836
13837  // X86 can't encode an immediate LHS of a sub. See if we can push the
13838  // negation into a preceding instruction.
13839  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
13840    // If the RHS of the sub is a XOR with one use and a constant, invert the
13841    // immediate. Then add one to the LHS of the sub so we can turn
13842    // X-Y -> X+~Y+1, saving one register.
13843    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
13844        isa<ConstantSDNode>(Op1.getOperand(1))) {
13845      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
13846      EVT VT = Op0.getValueType();
13847      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
13848                                   Op1.getOperand(0),
13849                                   DAG.getConstant(~XorC, VT));
13850      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
13851                         DAG.getConstant(C->getAPIntValue()+1, VT));
13852    }
13853  }
13854
13855  return OptimizeConditionalInDecrement(N, DAG);
13856}
13857
13858SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
13859                                             DAGCombinerInfo &DCI) const {
13860  SelectionDAG &DAG = DCI.DAG;
13861  switch (N->getOpcode()) {
13862  default: break;
13863  case ISD::EXTRACT_VECTOR_ELT:
13864    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
13865  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
13866  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
13867  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
13868  case ISD::SUB:            return PerformSubCombine(N, DAG);
13869  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
13870  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
13871  case ISD::SHL:
13872  case ISD::SRA:
13873  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
13874  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
13875  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
13876  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
13877  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
13878  case X86ISD::FXOR:
13879  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
13880  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
13881  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
13882  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
13883  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
13884  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
13885  case X86ISD::SHUFPS:      // Handle all target specific shuffles
13886  case X86ISD::SHUFPD:
13887  case X86ISD::PALIGN:
13888  case X86ISD::PUNPCKHBW:
13889  case X86ISD::PUNPCKHWD:
13890  case X86ISD::PUNPCKHDQ:
13891  case X86ISD::PUNPCKHQDQ:
13892  case X86ISD::UNPCKHPS:
13893  case X86ISD::UNPCKHPD:
13894  case X86ISD::VUNPCKHPSY:
13895  case X86ISD::VUNPCKHPDY:
13896  case X86ISD::PUNPCKLBW:
13897  case X86ISD::PUNPCKLWD:
13898  case X86ISD::PUNPCKLDQ:
13899  case X86ISD::PUNPCKLQDQ:
13900  case X86ISD::UNPCKLPS:
13901  case X86ISD::UNPCKLPD:
13902  case X86ISD::VUNPCKLPSY:
13903  case X86ISD::VUNPCKLPDY:
13904  case X86ISD::MOVHLPS:
13905  case X86ISD::MOVLHPS:
13906  case X86ISD::PSHUFD:
13907  case X86ISD::PSHUFHW:
13908  case X86ISD::PSHUFLW:
13909  case X86ISD::MOVSS:
13910  case X86ISD::MOVSD:
13911  case X86ISD::VPERMILPS:
13912  case X86ISD::VPERMILPSY:
13913  case X86ISD::VPERMILPD:
13914  case X86ISD::VPERMILPDY:
13915  case X86ISD::VPERM2F128:
13916  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
13917  }
13918
13919  return SDValue();
13920}
13921
13922/// isTypeDesirableForOp - Return true if the target has native support for
13923/// the specified value type and it is 'desirable' to use the type for the
13924/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
13925/// instruction encodings are longer and some i16 instructions are slow.
13926bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
13927  if (!isTypeLegal(VT))
13928    return false;
13929  if (VT != MVT::i16)
13930    return true;
13931
13932  switch (Opc) {
13933  default:
13934    return true;
13935  case ISD::LOAD:
13936  case ISD::SIGN_EXTEND:
13937  case ISD::ZERO_EXTEND:
13938  case ISD::ANY_EXTEND:
13939  case ISD::SHL:
13940  case ISD::SRL:
13941  case ISD::SUB:
13942  case ISD::ADD:
13943  case ISD::MUL:
13944  case ISD::AND:
13945  case ISD::OR:
13946  case ISD::XOR:
13947    return false;
13948  }
13949}
13950
13951/// IsDesirableToPromoteOp - This method query the target whether it is
13952/// beneficial for dag combiner to promote the specified node. If true, it
13953/// should return the desired promotion type by reference.
13954bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
13955  EVT VT = Op.getValueType();
13956  if (VT != MVT::i16)
13957    return false;
13958
13959  bool Promote = false;
13960  bool Commute = false;
13961  switch (Op.getOpcode()) {
13962  default: break;
13963  case ISD::LOAD: {
13964    LoadSDNode *LD = cast<LoadSDNode>(Op);
13965    // If the non-extending load has a single use and it's not live out, then it
13966    // might be folded.
13967    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
13968                                                     Op.hasOneUse()*/) {
13969      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
13970             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
13971        // The only case where we'd want to promote LOAD (rather then it being
13972        // promoted as an operand is when it's only use is liveout.
13973        if (UI->getOpcode() != ISD::CopyToReg)
13974          return false;
13975      }
13976    }
13977    Promote = true;
13978    break;
13979  }
13980  case ISD::SIGN_EXTEND:
13981  case ISD::ZERO_EXTEND:
13982  case ISD::ANY_EXTEND:
13983    Promote = true;
13984    break;
13985  case ISD::SHL:
13986  case ISD::SRL: {
13987    SDValue N0 = Op.getOperand(0);
13988    // Look out for (store (shl (load), x)).
13989    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
13990      return false;
13991    Promote = true;
13992    break;
13993  }
13994  case ISD::ADD:
13995  case ISD::MUL:
13996  case ISD::AND:
13997  case ISD::OR:
13998  case ISD::XOR:
13999    Commute = true;
14000    // fallthrough
14001  case ISD::SUB: {
14002    SDValue N0 = Op.getOperand(0);
14003    SDValue N1 = Op.getOperand(1);
14004    if (!Commute && MayFoldLoad(N1))
14005      return false;
14006    // Avoid disabling potential load folding opportunities.
14007    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14008      return false;
14009    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14010      return false;
14011    Promote = true;
14012  }
14013  }
14014
14015  PVT = MVT::i32;
14016  return Promote;
14017}
14018
14019//===----------------------------------------------------------------------===//
14020//                           X86 Inline Assembly Support
14021//===----------------------------------------------------------------------===//
14022
14023bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14024  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14025
14026  std::string AsmStr = IA->getAsmString();
14027
14028  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14029  SmallVector<StringRef, 4> AsmPieces;
14030  SplitString(AsmStr, AsmPieces, ";\n");
14031
14032  switch (AsmPieces.size()) {
14033  default: return false;
14034  case 1:
14035    AsmStr = AsmPieces[0];
14036    AsmPieces.clear();
14037    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
14038
14039    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14040    // we will turn this bswap into something that will be lowered to logical ops
14041    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
14042    // so don't worry about this.
14043    // bswap $0
14044    if (AsmPieces.size() == 2 &&
14045        (AsmPieces[0] == "bswap" ||
14046         AsmPieces[0] == "bswapq" ||
14047         AsmPieces[0] == "bswapl") &&
14048        (AsmPieces[1] == "$0" ||
14049         AsmPieces[1] == "${0:q}")) {
14050      // No need to check constraints, nothing other than the equivalent of
14051      // "=r,0" would be valid here.
14052      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14053      if (!Ty || Ty->getBitWidth() % 16 != 0)
14054        return false;
14055      return IntrinsicLowering::LowerToByteSwap(CI);
14056    }
14057    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14058    if (CI->getType()->isIntegerTy(16) &&
14059        AsmPieces.size() == 3 &&
14060        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
14061        AsmPieces[1] == "$$8," &&
14062        AsmPieces[2] == "${0:w}" &&
14063        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14064      AsmPieces.clear();
14065      const std::string &ConstraintsStr = IA->getConstraintString();
14066      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14067      std::sort(AsmPieces.begin(), AsmPieces.end());
14068      if (AsmPieces.size() == 4 &&
14069          AsmPieces[0] == "~{cc}" &&
14070          AsmPieces[1] == "~{dirflag}" &&
14071          AsmPieces[2] == "~{flags}" &&
14072          AsmPieces[3] == "~{fpsr}") {
14073        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14074        if (!Ty || Ty->getBitWidth() % 16 != 0)
14075          return false;
14076        return IntrinsicLowering::LowerToByteSwap(CI);
14077      }
14078    }
14079    break;
14080  case 3:
14081    if (CI->getType()->isIntegerTy(32) &&
14082        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14083      SmallVector<StringRef, 4> Words;
14084      SplitString(AsmPieces[0], Words, " \t,");
14085      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14086          Words[2] == "${0:w}") {
14087        Words.clear();
14088        SplitString(AsmPieces[1], Words, " \t,");
14089        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
14090            Words[2] == "$0") {
14091          Words.clear();
14092          SplitString(AsmPieces[2], Words, " \t,");
14093          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14094              Words[2] == "${0:w}") {
14095            AsmPieces.clear();
14096            const std::string &ConstraintsStr = IA->getConstraintString();
14097            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14098            std::sort(AsmPieces.begin(), AsmPieces.end());
14099            if (AsmPieces.size() == 4 &&
14100                AsmPieces[0] == "~{cc}" &&
14101                AsmPieces[1] == "~{dirflag}" &&
14102                AsmPieces[2] == "~{flags}" &&
14103                AsmPieces[3] == "~{fpsr}") {
14104              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14105              if (!Ty || Ty->getBitWidth() % 16 != 0)
14106                return false;
14107              return IntrinsicLowering::LowerToByteSwap(CI);
14108            }
14109          }
14110        }
14111      }
14112    }
14113
14114    if (CI->getType()->isIntegerTy(64)) {
14115      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14116      if (Constraints.size() >= 2 &&
14117          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14118          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14119        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14120        SmallVector<StringRef, 4> Words;
14121        SplitString(AsmPieces[0], Words, " \t");
14122        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
14123          Words.clear();
14124          SplitString(AsmPieces[1], Words, " \t");
14125          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
14126            Words.clear();
14127            SplitString(AsmPieces[2], Words, " \t,");
14128            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
14129                Words[2] == "%edx") {
14130              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14131              if (!Ty || Ty->getBitWidth() % 16 != 0)
14132                return false;
14133              return IntrinsicLowering::LowerToByteSwap(CI);
14134            }
14135          }
14136        }
14137      }
14138    }
14139    break;
14140  }
14141  return false;
14142}
14143
14144
14145
14146/// getConstraintType - Given a constraint letter, return the type of
14147/// constraint it is for this target.
14148X86TargetLowering::ConstraintType
14149X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14150  if (Constraint.size() == 1) {
14151    switch (Constraint[0]) {
14152    case 'R':
14153    case 'q':
14154    case 'Q':
14155    case 'f':
14156    case 't':
14157    case 'u':
14158    case 'y':
14159    case 'x':
14160    case 'Y':
14161    case 'l':
14162      return C_RegisterClass;
14163    case 'a':
14164    case 'b':
14165    case 'c':
14166    case 'd':
14167    case 'S':
14168    case 'D':
14169    case 'A':
14170      return C_Register;
14171    case 'I':
14172    case 'J':
14173    case 'K':
14174    case 'L':
14175    case 'M':
14176    case 'N':
14177    case 'G':
14178    case 'C':
14179    case 'e':
14180    case 'Z':
14181      return C_Other;
14182    default:
14183      break;
14184    }
14185  }
14186  return TargetLowering::getConstraintType(Constraint);
14187}
14188
14189/// Examine constraint type and operand type and determine a weight value.
14190/// This object must already have been set up with the operand type
14191/// and the current alternative constraint selected.
14192TargetLowering::ConstraintWeight
14193  X86TargetLowering::getSingleConstraintMatchWeight(
14194    AsmOperandInfo &info, const char *constraint) const {
14195  ConstraintWeight weight = CW_Invalid;
14196  Value *CallOperandVal = info.CallOperandVal;
14197    // If we don't have a value, we can't do a match,
14198    // but allow it at the lowest weight.
14199  if (CallOperandVal == NULL)
14200    return CW_Default;
14201  Type *type = CallOperandVal->getType();
14202  // Look at the constraint type.
14203  switch (*constraint) {
14204  default:
14205    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14206  case 'R':
14207  case 'q':
14208  case 'Q':
14209  case 'a':
14210  case 'b':
14211  case 'c':
14212  case 'd':
14213  case 'S':
14214  case 'D':
14215  case 'A':
14216    if (CallOperandVal->getType()->isIntegerTy())
14217      weight = CW_SpecificReg;
14218    break;
14219  case 'f':
14220  case 't':
14221  case 'u':
14222      if (type->isFloatingPointTy())
14223        weight = CW_SpecificReg;
14224      break;
14225  case 'y':
14226      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14227        weight = CW_SpecificReg;
14228      break;
14229  case 'x':
14230  case 'Y':
14231    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
14232      weight = CW_Register;
14233    break;
14234  case 'I':
14235    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14236      if (C->getZExtValue() <= 31)
14237        weight = CW_Constant;
14238    }
14239    break;
14240  case 'J':
14241    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14242      if (C->getZExtValue() <= 63)
14243        weight = CW_Constant;
14244    }
14245    break;
14246  case 'K':
14247    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14248      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14249        weight = CW_Constant;
14250    }
14251    break;
14252  case 'L':
14253    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14254      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14255        weight = CW_Constant;
14256    }
14257    break;
14258  case 'M':
14259    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14260      if (C->getZExtValue() <= 3)
14261        weight = CW_Constant;
14262    }
14263    break;
14264  case 'N':
14265    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14266      if (C->getZExtValue() <= 0xff)
14267        weight = CW_Constant;
14268    }
14269    break;
14270  case 'G':
14271  case 'C':
14272    if (dyn_cast<ConstantFP>(CallOperandVal)) {
14273      weight = CW_Constant;
14274    }
14275    break;
14276  case 'e':
14277    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14278      if ((C->getSExtValue() >= -0x80000000LL) &&
14279          (C->getSExtValue() <= 0x7fffffffLL))
14280        weight = CW_Constant;
14281    }
14282    break;
14283  case 'Z':
14284    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14285      if (C->getZExtValue() <= 0xffffffff)
14286        weight = CW_Constant;
14287    }
14288    break;
14289  }
14290  return weight;
14291}
14292
14293/// LowerXConstraint - try to replace an X constraint, which matches anything,
14294/// with another that has more specific requirements based on the type of the
14295/// corresponding operand.
14296const char *X86TargetLowering::
14297LowerXConstraint(EVT ConstraintVT) const {
14298  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14299  // 'f' like normal targets.
14300  if (ConstraintVT.isFloatingPoint()) {
14301    if (Subtarget->hasXMMInt())
14302      return "Y";
14303    if (Subtarget->hasXMM())
14304      return "x";
14305  }
14306
14307  return TargetLowering::LowerXConstraint(ConstraintVT);
14308}
14309
14310/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14311/// vector.  If it is invalid, don't add anything to Ops.
14312void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14313                                                     std::string &Constraint,
14314                                                     std::vector<SDValue>&Ops,
14315                                                     SelectionDAG &DAG) const {
14316  SDValue Result(0, 0);
14317
14318  // Only support length 1 constraints for now.
14319  if (Constraint.length() > 1) return;
14320
14321  char ConstraintLetter = Constraint[0];
14322  switch (ConstraintLetter) {
14323  default: break;
14324  case 'I':
14325    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14326      if (C->getZExtValue() <= 31) {
14327        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14328        break;
14329      }
14330    }
14331    return;
14332  case 'J':
14333    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14334      if (C->getZExtValue() <= 63) {
14335        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14336        break;
14337      }
14338    }
14339    return;
14340  case 'K':
14341    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14342      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
14343        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14344        break;
14345      }
14346    }
14347    return;
14348  case 'N':
14349    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14350      if (C->getZExtValue() <= 255) {
14351        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14352        break;
14353      }
14354    }
14355    return;
14356  case 'e': {
14357    // 32-bit signed value
14358    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14359      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14360                                           C->getSExtValue())) {
14361        // Widen to 64 bits here to get it sign extended.
14362        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
14363        break;
14364      }
14365    // FIXME gcc accepts some relocatable values here too, but only in certain
14366    // memory models; it's complicated.
14367    }
14368    return;
14369  }
14370  case 'Z': {
14371    // 32-bit unsigned value
14372    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14373      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14374                                           C->getZExtValue())) {
14375        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14376        break;
14377      }
14378    }
14379    // FIXME gcc accepts some relocatable values here too, but only in certain
14380    // memory models; it's complicated.
14381    return;
14382  }
14383  case 'i': {
14384    // Literal immediates are always ok.
14385    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
14386      // Widen to 64 bits here to get it sign extended.
14387      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
14388      break;
14389    }
14390
14391    // In any sort of PIC mode addresses need to be computed at runtime by
14392    // adding in a register or some sort of table lookup.  These can't
14393    // be used as immediates.
14394    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
14395      return;
14396
14397    // If we are in non-pic codegen mode, we allow the address of a global (with
14398    // an optional displacement) to be used with 'i'.
14399    GlobalAddressSDNode *GA = 0;
14400    int64_t Offset = 0;
14401
14402    // Match either (GA), (GA+C), (GA+C1+C2), etc.
14403    while (1) {
14404      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
14405        Offset += GA->getOffset();
14406        break;
14407      } else if (Op.getOpcode() == ISD::ADD) {
14408        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14409          Offset += C->getZExtValue();
14410          Op = Op.getOperand(0);
14411          continue;
14412        }
14413      } else if (Op.getOpcode() == ISD::SUB) {
14414        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14415          Offset += -C->getZExtValue();
14416          Op = Op.getOperand(0);
14417          continue;
14418        }
14419      }
14420
14421      // Otherwise, this isn't something we can handle, reject it.
14422      return;
14423    }
14424
14425    const GlobalValue *GV = GA->getGlobal();
14426    // If we require an extra load to get this address, as in PIC mode, we
14427    // can't accept it.
14428    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
14429                                                        getTargetMachine())))
14430      return;
14431
14432    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
14433                                        GA->getValueType(0), Offset);
14434    break;
14435  }
14436  }
14437
14438  if (Result.getNode()) {
14439    Ops.push_back(Result);
14440    return;
14441  }
14442  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14443}
14444
14445std::pair<unsigned, const TargetRegisterClass*>
14446X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
14447                                                EVT VT) const {
14448  // First, see if this is a constraint that directly corresponds to an LLVM
14449  // register class.
14450  if (Constraint.size() == 1) {
14451    // GCC Constraint Letters
14452    switch (Constraint[0]) {
14453    default: break;
14454      // TODO: Slight differences here in allocation order and leaving
14455      // RIP in the class. Do they matter any more here than they do
14456      // in the normal allocation?
14457    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
14458      if (Subtarget->is64Bit()) {
14459	if (VT == MVT::i32 || VT == MVT::f32)
14460	  return std::make_pair(0U, X86::GR32RegisterClass);
14461	else if (VT == MVT::i16)
14462	  return std::make_pair(0U, X86::GR16RegisterClass);
14463	else if (VT == MVT::i8 || VT == MVT::i1)
14464	  return std::make_pair(0U, X86::GR8RegisterClass);
14465	else if (VT == MVT::i64 || VT == MVT::f64)
14466	  return std::make_pair(0U, X86::GR64RegisterClass);
14467	break;
14468      }
14469      // 32-bit fallthrough
14470    case 'Q':   // Q_REGS
14471      if (VT == MVT::i32 || VT == MVT::f32)
14472	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
14473      else if (VT == MVT::i16)
14474	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
14475      else if (VT == MVT::i8 || VT == MVT::i1)
14476	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
14477      else if (VT == MVT::i64)
14478	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
14479      break;
14480    case 'r':   // GENERAL_REGS
14481    case 'l':   // INDEX_REGS
14482      if (VT == MVT::i8 || VT == MVT::i1)
14483        return std::make_pair(0U, X86::GR8RegisterClass);
14484      if (VT == MVT::i16)
14485        return std::make_pair(0U, X86::GR16RegisterClass);
14486      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
14487        return std::make_pair(0U, X86::GR32RegisterClass);
14488      return std::make_pair(0U, X86::GR64RegisterClass);
14489    case 'R':   // LEGACY_REGS
14490      if (VT == MVT::i8 || VT == MVT::i1)
14491        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
14492      if (VT == MVT::i16)
14493        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
14494      if (VT == MVT::i32 || !Subtarget->is64Bit())
14495        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
14496      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
14497    case 'f':  // FP Stack registers.
14498      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
14499      // value to the correct fpstack register class.
14500      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
14501        return std::make_pair(0U, X86::RFP32RegisterClass);
14502      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
14503        return std::make_pair(0U, X86::RFP64RegisterClass);
14504      return std::make_pair(0U, X86::RFP80RegisterClass);
14505    case 'y':   // MMX_REGS if MMX allowed.
14506      if (!Subtarget->hasMMX()) break;
14507      return std::make_pair(0U, X86::VR64RegisterClass);
14508    case 'Y':   // SSE_REGS if SSE2 allowed
14509      if (!Subtarget->hasXMMInt()) break;
14510      // FALL THROUGH.
14511    case 'x':   // SSE_REGS if SSE1 allowed
14512      if (!Subtarget->hasXMM()) break;
14513
14514      switch (VT.getSimpleVT().SimpleTy) {
14515      default: break;
14516      // Scalar SSE types.
14517      case MVT::f32:
14518      case MVT::i32:
14519        return std::make_pair(0U, X86::FR32RegisterClass);
14520      case MVT::f64:
14521      case MVT::i64:
14522        return std::make_pair(0U, X86::FR64RegisterClass);
14523      // Vector types.
14524      case MVT::v16i8:
14525      case MVT::v8i16:
14526      case MVT::v4i32:
14527      case MVT::v2i64:
14528      case MVT::v4f32:
14529      case MVT::v2f64:
14530        return std::make_pair(0U, X86::VR128RegisterClass);
14531      }
14532      break;
14533    }
14534  }
14535
14536  // Use the default implementation in TargetLowering to convert the register
14537  // constraint into a member of a register class.
14538  std::pair<unsigned, const TargetRegisterClass*> Res;
14539  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
14540
14541  // Not found as a standard register?
14542  if (Res.second == 0) {
14543    // Map st(0) -> st(7) -> ST0
14544    if (Constraint.size() == 7 && Constraint[0] == '{' &&
14545        tolower(Constraint[1]) == 's' &&
14546        tolower(Constraint[2]) == 't' &&
14547        Constraint[3] == '(' &&
14548        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
14549        Constraint[5] == ')' &&
14550        Constraint[6] == '}') {
14551
14552      Res.first = X86::ST0+Constraint[4]-'0';
14553      Res.second = X86::RFP80RegisterClass;
14554      return Res;
14555    }
14556
14557    // GCC allows "st(0)" to be called just plain "st".
14558    if (StringRef("{st}").equals_lower(Constraint)) {
14559      Res.first = X86::ST0;
14560      Res.second = X86::RFP80RegisterClass;
14561      return Res;
14562    }
14563
14564    // flags -> EFLAGS
14565    if (StringRef("{flags}").equals_lower(Constraint)) {
14566      Res.first = X86::EFLAGS;
14567      Res.second = X86::CCRRegisterClass;
14568      return Res;
14569    }
14570
14571    // 'A' means EAX + EDX.
14572    if (Constraint == "A") {
14573      Res.first = X86::EAX;
14574      Res.second = X86::GR32_ADRegisterClass;
14575      return Res;
14576    }
14577    return Res;
14578  }
14579
14580  // Otherwise, check to see if this is a register class of the wrong value
14581  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
14582  // turn into {ax},{dx}.
14583  if (Res.second->hasType(VT))
14584    return Res;   // Correct type already, nothing to do.
14585
14586  // All of the single-register GCC register classes map their values onto
14587  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
14588  // really want an 8-bit or 32-bit register, map to the appropriate register
14589  // class and return the appropriate register.
14590  if (Res.second == X86::GR16RegisterClass) {
14591    if (VT == MVT::i8) {
14592      unsigned DestReg = 0;
14593      switch (Res.first) {
14594      default: break;
14595      case X86::AX: DestReg = X86::AL; break;
14596      case X86::DX: DestReg = X86::DL; break;
14597      case X86::CX: DestReg = X86::CL; break;
14598      case X86::BX: DestReg = X86::BL; break;
14599      }
14600      if (DestReg) {
14601        Res.first = DestReg;
14602        Res.second = X86::GR8RegisterClass;
14603      }
14604    } else if (VT == MVT::i32) {
14605      unsigned DestReg = 0;
14606      switch (Res.first) {
14607      default: break;
14608      case X86::AX: DestReg = X86::EAX; break;
14609      case X86::DX: DestReg = X86::EDX; break;
14610      case X86::CX: DestReg = X86::ECX; break;
14611      case X86::BX: DestReg = X86::EBX; break;
14612      case X86::SI: DestReg = X86::ESI; break;
14613      case X86::DI: DestReg = X86::EDI; break;
14614      case X86::BP: DestReg = X86::EBP; break;
14615      case X86::SP: DestReg = X86::ESP; break;
14616      }
14617      if (DestReg) {
14618        Res.first = DestReg;
14619        Res.second = X86::GR32RegisterClass;
14620      }
14621    } else if (VT == MVT::i64) {
14622      unsigned DestReg = 0;
14623      switch (Res.first) {
14624      default: break;
14625      case X86::AX: DestReg = X86::RAX; break;
14626      case X86::DX: DestReg = X86::RDX; break;
14627      case X86::CX: DestReg = X86::RCX; break;
14628      case X86::BX: DestReg = X86::RBX; break;
14629      case X86::SI: DestReg = X86::RSI; break;
14630      case X86::DI: DestReg = X86::RDI; break;
14631      case X86::BP: DestReg = X86::RBP; break;
14632      case X86::SP: DestReg = X86::RSP; break;
14633      }
14634      if (DestReg) {
14635        Res.first = DestReg;
14636        Res.second = X86::GR64RegisterClass;
14637      }
14638    }
14639  } else if (Res.second == X86::FR32RegisterClass ||
14640             Res.second == X86::FR64RegisterClass ||
14641             Res.second == X86::VR128RegisterClass) {
14642    // Handle references to XMM physical registers that got mapped into the
14643    // wrong class.  This can happen with constraints like {xmm0} where the
14644    // target independent register mapper will just pick the first match it can
14645    // find, ignoring the required type.
14646    if (VT == MVT::f32)
14647      Res.second = X86::FR32RegisterClass;
14648    else if (VT == MVT::f64)
14649      Res.second = X86::FR64RegisterClass;
14650    else if (X86::VR128RegisterClass->hasType(VT))
14651      Res.second = X86::VR128RegisterClass;
14652  }
14653
14654  return Res;
14655}
14656