X86ISelLowering.cpp revision f04afdbb48568ef09f11fd10ac03426101f2dbf8
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/ParameterAttributes.h"
38using namespace llvm;
39
40X86TargetLowering::X86TargetLowering(TargetMachine &TM)
41  : TargetLowering(TM) {
42  Subtarget = &TM.getSubtarget<X86Subtarget>();
43  X86ScalarSSE = Subtarget->hasSSE2();
44  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
45
46  RegInfo = TM.getRegisterInfo();
47
48  // Set up the TargetLowering object.
49
50  // X86 is weird, it always uses i8 for shift amounts and setcc results.
51  setShiftAmountType(MVT::i8);
52  setSetCCResultType(MVT::i8);
53  setSetCCResultContents(ZeroOrOneSetCCResult);
54  setSchedulingPreference(SchedulingForRegPressure);
55  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
56  setStackPointerRegisterToSaveRestore(X86StackPtr);
57
58  if (Subtarget->isTargetDarwin()) {
59    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
60    setUseUnderscoreSetJmp(false);
61    setUseUnderscoreLongJmp(false);
62  } else if (Subtarget->isTargetMingw()) {
63    // MS runtime is weird: it exports _setjmp, but longjmp!
64    setUseUnderscoreSetJmp(true);
65    setUseUnderscoreLongJmp(false);
66  } else {
67    setUseUnderscoreSetJmp(true);
68    setUseUnderscoreLongJmp(true);
69  }
70
71  // Set up the register classes.
72  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
73  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
74  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
75  if (Subtarget->is64Bit())
76    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
77
78  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
79
80  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
81  // operation.
82  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
83  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
84  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
85
86  if (Subtarget->is64Bit()) {
87    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
88    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
89  } else {
90    if (X86ScalarSSE)
91      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
92      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
93    else
94      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
95  }
96
97  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
98  // this operation.
99  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
100  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
101  // SSE has no i16 to fp conversion, only i32
102  if (X86ScalarSSE)
103    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
104  else {
105    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
106    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
107  }
108
109  if (!Subtarget->is64Bit()) {
110    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
111    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
112    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
113  }
114
115  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
116  // this operation.
117  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
118  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
119
120  if (X86ScalarSSE) {
121    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
122  } else {
123    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
124    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
125  }
126
127  // Handle FP_TO_UINT by promoting the destination to a larger signed
128  // conversion.
129  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
130  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
131  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
132
133  if (Subtarget->is64Bit()) {
134    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
135    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
136  } else {
137    if (X86ScalarSSE && !Subtarget->hasSSE3())
138      // Expand FP_TO_UINT into a select.
139      // FIXME: We would like to use a Custom expander here eventually to do
140      // the optimal thing for SSE vs. the default expansion in the legalizer.
141      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
142    else
143      // With SSE3 we can use fisttpll to convert to a signed i64.
144      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
145  }
146
147  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
148  if (!X86ScalarSSE) {
149    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
150    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
151  }
152
153  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
154  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
155  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
156  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
157  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
158  if (Subtarget->is64Bit())
159    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
160  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
161  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
162  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
163  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
164  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
165
166  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
167  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
168  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
169  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
170  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
171  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
172  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
173  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
174  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
175  if (Subtarget->is64Bit()) {
176    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
177    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
178    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
179  }
180
181  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
182  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
183
184  // These should be promoted to a larger select which is supported.
185  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
186  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
187  // X86 wants to expand cmov itself.
188  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
189  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
190  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
191  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
192  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
193  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
194  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
195  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
196  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
197  if (Subtarget->is64Bit()) {
198    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
199    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
200  }
201  // X86 ret instruction may pop stack.
202  setOperationAction(ISD::RET             , MVT::Other, Custom);
203  if (!Subtarget->is64Bit())
204    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
205
206  // Darwin ABI issue.
207  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
208  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
209  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
210  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
211  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
212  if (Subtarget->is64Bit()) {
213    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
214    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
215    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
216    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
217  }
218  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
219  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
220  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
221  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
222  // X86 wants to expand memset / memcpy itself.
223  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
224  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
225
226  // We don't have line number support yet.
227  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
228  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
229  // FIXME - use subtarget debug flags
230  if (!Subtarget->isTargetDarwin() &&
231      !Subtarget->isTargetELF() &&
232      !Subtarget->isTargetCygMing())
233    setOperationAction(ISD::LABEL, MVT::Other, Expand);
234
235  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
236  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
237  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
238  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
239  if (Subtarget->is64Bit()) {
240    // FIXME: Verify
241    setExceptionPointerRegister(X86::RAX);
242    setExceptionSelectorRegister(X86::RDX);
243  } else {
244    setExceptionPointerRegister(X86::EAX);
245    setExceptionSelectorRegister(X86::EDX);
246  }
247
248  setOperationAction(ISD::ADJUST_TRAMP, MVT::i32,   Expand);
249  setOperationAction(ISD::ADJUST_TRAMP, MVT::i64,   Expand);
250  setOperationAction(ISD::TRAMPOLINE,   MVT::Other, Custom);
251
252  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
253  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
254  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
255  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
256  if (Subtarget->is64Bit())
257    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
258  else
259    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
260
261  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
262  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
263  if (Subtarget->is64Bit())
264    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
265  if (Subtarget->isTargetCygMing())
266    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
267  else
268    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
269
270  if (X86ScalarSSE) {
271    // Set up the FP register classes.
272    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
273    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
274
275    // Use ANDPD to simulate FABS.
276    setOperationAction(ISD::FABS , MVT::f64, Custom);
277    setOperationAction(ISD::FABS , MVT::f32, Custom);
278
279    // Use XORP to simulate FNEG.
280    setOperationAction(ISD::FNEG , MVT::f64, Custom);
281    setOperationAction(ISD::FNEG , MVT::f32, Custom);
282
283    // Use ANDPD and ORPD to simulate FCOPYSIGN.
284    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
285    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
286
287    // We don't support sin/cos/fmod
288    setOperationAction(ISD::FSIN , MVT::f64, Expand);
289    setOperationAction(ISD::FCOS , MVT::f64, Expand);
290    setOperationAction(ISD::FREM , MVT::f64, Expand);
291    setOperationAction(ISD::FSIN , MVT::f32, Expand);
292    setOperationAction(ISD::FCOS , MVT::f32, Expand);
293    setOperationAction(ISD::FREM , MVT::f32, Expand);
294
295    // Expand FP immediates into loads from the stack, except for the special
296    // cases we handle.
297    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
298    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
299    addLegalFPImmediate(APFloat(+0.0)); // xorps / xorpd
300
301    // Conversions to long double (in X87) go through memory.
302    setConvertAction(MVT::f32, MVT::f80, Expand);
303    setConvertAction(MVT::f64, MVT::f80, Expand);
304
305    // Conversions from long double (in X87) go through memory.
306    setConvertAction(MVT::f80, MVT::f32, Expand);
307    setConvertAction(MVT::f80, MVT::f64, Expand);
308  } else {
309    // Set up the FP register classes.
310    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
311    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
312
313    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
314    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
315    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
316    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
317
318    // Floating truncations need to go through memory.
319    setConvertAction(MVT::f80, MVT::f32, Expand);
320    setConvertAction(MVT::f64, MVT::f32, Expand);
321    setConvertAction(MVT::f80, MVT::f64, Expand);
322
323    if (!UnsafeFPMath) {
324      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
325      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
326    }
327
328    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
329    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
330    addLegalFPImmediate(APFloat(+0.0)); // FLD0
331    addLegalFPImmediate(APFloat(+1.0)); // FLD1
332    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
333    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
334  }
335
336  // Long double always uses X87.
337  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
338
339  // First set operation action for all vector types to expand. Then we
340  // will selectively turn on ones that can be effectively codegen'd.
341  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
342       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
343    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
344    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
345    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
346    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
347    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
348    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
349    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
350    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
351    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
352    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
353    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
354    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
355    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
356    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
357    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
358    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
359    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
360    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
361    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
362    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
363    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
364    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
365    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
366  }
367
368  if (Subtarget->hasMMX()) {
369    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
370    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
371    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
372    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
373
374    // FIXME: add MMX packed arithmetics
375
376    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
377    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
378    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
379    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
380
381    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
382    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
383    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
384
385    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
386    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
387
388    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
389    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
390    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
391    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
392    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
393    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
394    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
395
396    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
397    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
398    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
399    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
400    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
401    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
402    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
403
404    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
405    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
406    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
407    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
408    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
409    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
410    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
411
412    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
413    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
414    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
415    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
416    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
417    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
418    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
419
420    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
421    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
422    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
423    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
424
425    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
426    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
427    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
428    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
429
430    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
431    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
432    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
433    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
434  }
435
436  if (Subtarget->hasSSE1()) {
437    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
438
439    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
440    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
441    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
442    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
443    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
444    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
445    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
446    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
447    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
448    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
449    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
450  }
451
452  if (Subtarget->hasSSE2()) {
453    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
454    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
455    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
456    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
457    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
458
459    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
460    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
461    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
462    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
463    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
464    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
465    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
466    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
467    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
468    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
469    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
470    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
471    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
472    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
473    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
474
475    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
476    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
477    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
478    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
479    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
480    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
481
482    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
483    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
484      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
485      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
486      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
487    }
488    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
489    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
490    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
491    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
492    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
493    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
494
495    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
496    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
497      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
498      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
499      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
500      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
501      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
502      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
503      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
504      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
505      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
506      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
507    }
508
509    // Custom lower v2i64 and v2f64 selects.
510    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
511    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
512    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
513    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
514  }
515
516  // We want to custom lower some of our intrinsics.
517  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
518
519  // We have target-specific dag combine patterns for the following nodes:
520  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
521  setTargetDAGCombine(ISD::SELECT);
522
523  computeRegisterProperties();
524
525  // FIXME: These should be based on subtarget info. Plus, the values should
526  // be smaller when we are in optimizing for size mode.
527  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
528  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
529  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
530  allowUnalignedMemoryAccesses = true; // x86 supports it!
531}
532
533
534//===----------------------------------------------------------------------===//
535//               Return Value Calling Convention Implementation
536//===----------------------------------------------------------------------===//
537
538#include "X86GenCallingConv.inc"
539
540/// LowerRET - Lower an ISD::RET node.
541SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
542  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
543
544  SmallVector<CCValAssign, 16> RVLocs;
545  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
546  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
547  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
548  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
549
550
551  // If this is the first return lowered for this function, add the regs to the
552  // liveout set for the function.
553  if (DAG.getMachineFunction().liveout_empty()) {
554    for (unsigned i = 0; i != RVLocs.size(); ++i)
555      if (RVLocs[i].isRegLoc())
556        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
557  }
558
559  SDOperand Chain = Op.getOperand(0);
560  SDOperand Flag;
561
562  // Copy the result values into the output registers.
563  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
564      RVLocs[0].getLocReg() != X86::ST0) {
565    for (unsigned i = 0; i != RVLocs.size(); ++i) {
566      CCValAssign &VA = RVLocs[i];
567      assert(VA.isRegLoc() && "Can only return in registers!");
568      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
569                               Flag);
570      Flag = Chain.getValue(1);
571    }
572  } else {
573    // We need to handle a destination of ST0 specially, because it isn't really
574    // a register.
575    SDOperand Value = Op.getOperand(1);
576
577    // If this is an FP return with ScalarSSE, we need to move the value from
578    // an XMM register onto the fp-stack.
579    if (X86ScalarSSE) {
580      SDOperand MemLoc;
581
582      // If this is a load into a scalarsse value, don't store the loaded value
583      // back to the stack, only to reload it: just replace the scalar-sse load.
584      if (ISD::isNON_EXTLoad(Value.Val) &&
585          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
586        Chain  = Value.getOperand(0);
587        MemLoc = Value.getOperand(1);
588      } else {
589        // Spill the value to memory and reload it into top of stack.
590        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
591        MachineFunction &MF = DAG.getMachineFunction();
592        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
593        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
594        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
595      }
596      SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
597      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
598      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
599      Chain = Value.getValue(1);
600    }
601
602    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
603    SDOperand Ops[] = { Chain, Value };
604    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
605    Flag = Chain.getValue(1);
606  }
607
608  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
609  if (Flag.Val)
610    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
611  else
612    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
613}
614
615
616/// LowerCallResult - Lower the result values of an ISD::CALL into the
617/// appropriate copies out of appropriate physical registers.  This assumes that
618/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
619/// being lowered.  The returns a SDNode with the same number of values as the
620/// ISD::CALL.
621SDNode *X86TargetLowering::
622LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
623                unsigned CallingConv, SelectionDAG &DAG) {
624
625  // Assign locations to each value returned by this call.
626  SmallVector<CCValAssign, 16> RVLocs;
627  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
628  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
629  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
630
631
632  SmallVector<SDOperand, 8> ResultVals;
633
634  // Copy all of the result registers out of their specified physreg.
635  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
636    for (unsigned i = 0; i != RVLocs.size(); ++i) {
637      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
638                                 RVLocs[i].getValVT(), InFlag).getValue(1);
639      InFlag = Chain.getValue(2);
640      ResultVals.push_back(Chain.getValue(0));
641    }
642  } else {
643    // Copies from the FP stack are special, as ST0 isn't a valid register
644    // before the fp stackifier runs.
645
646    // Copy ST0 into an RFP register with FP_GET_RESULT.
647    SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
648    SDOperand GROps[] = { Chain, InFlag };
649    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
650    Chain  = RetVal.getValue(1);
651    InFlag = RetVal.getValue(2);
652
653    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
654    // an XMM register.
655    if (X86ScalarSSE) {
656      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
657      // shouldn't be necessary except that RFP cannot be live across
658      // multiple blocks. When stackifier is fixed, they can be uncoupled.
659      MachineFunction &MF = DAG.getMachineFunction();
660      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
661      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
662      SDOperand Ops[] = {
663        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
664      };
665      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
666      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
667      Chain = RetVal.getValue(1);
668    }
669    ResultVals.push_back(RetVal);
670  }
671
672  // Merge everything together with a MERGE_VALUES node.
673  ResultVals.push_back(Chain);
674  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
675                     &ResultVals[0], ResultVals.size()).Val;
676}
677
678
679//===----------------------------------------------------------------------===//
680//                C & StdCall Calling Convention implementation
681//===----------------------------------------------------------------------===//
682//  StdCall calling convention seems to be standard for many Windows' API
683//  routines and around. It differs from C calling convention just a little:
684//  callee should clean up the stack, not caller. Symbols should be also
685//  decorated in some fancy way :) It doesn't support any vector arguments.
686
687/// AddLiveIn - This helper function adds the specified physical register to the
688/// MachineFunction as a live in value.  It also creates a corresponding virtual
689/// register for it.
690static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
691                          const TargetRegisterClass *RC) {
692  assert(RC->contains(PReg) && "Not the correct regclass!");
693  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
694  MF.addLiveIn(PReg, VReg);
695  return VReg;
696}
697
698SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
699                                               bool isStdCall) {
700  unsigned NumArgs = Op.Val->getNumValues() - 1;
701  MachineFunction &MF = DAG.getMachineFunction();
702  MachineFrameInfo *MFI = MF.getFrameInfo();
703  SDOperand Root = Op.getOperand(0);
704  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
705
706  // Assign locations to all of the incoming arguments.
707  SmallVector<CCValAssign, 16> ArgLocs;
708  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
709                 getTargetMachine(), ArgLocs);
710  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
711
712  SmallVector<SDOperand, 8> ArgValues;
713  unsigned LastVal = ~0U;
714  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
715    CCValAssign &VA = ArgLocs[i];
716    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
717    // places.
718    assert(VA.getValNo() != LastVal &&
719           "Don't support value assigned to multiple locs yet");
720    LastVal = VA.getValNo();
721
722    if (VA.isRegLoc()) {
723      MVT::ValueType RegVT = VA.getLocVT();
724      TargetRegisterClass *RC;
725      if (RegVT == MVT::i32)
726        RC = X86::GR32RegisterClass;
727      else {
728        assert(MVT::isVector(RegVT));
729        RC = X86::VR128RegisterClass;
730      }
731
732      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
733      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
734
735      // If this is an 8 or 16-bit value, it is really passed promoted to 32
736      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
737      // right size.
738      if (VA.getLocInfo() == CCValAssign::SExt)
739        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
740                               DAG.getValueType(VA.getValVT()));
741      else if (VA.getLocInfo() == CCValAssign::ZExt)
742        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
743                               DAG.getValueType(VA.getValVT()));
744
745      if (VA.getLocInfo() != CCValAssign::Full)
746        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
747
748      ArgValues.push_back(ArgValue);
749    } else {
750      assert(VA.isMemLoc());
751
752      // Create the nodes corresponding to a load from this parameter slot.
753      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
754                                      VA.getLocMemOffset());
755      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
756      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
757    }
758  }
759
760  unsigned StackSize = CCInfo.getNextStackOffset();
761
762  ArgValues.push_back(Root);
763
764  // If the function takes variable number of arguments, make a frame index for
765  // the start of the first vararg value... for expansion of llvm.va_start.
766  if (isVarArg)
767    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
768
769  if (isStdCall && !isVarArg) {
770    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
771    BytesCallerReserves = 0;
772  } else {
773    BytesToPopOnReturn  = 0; // Callee pops nothing.
774
775    // If this is an sret function, the return should pop the hidden pointer.
776    if (NumArgs &&
777        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
778         ISD::ParamFlags::StructReturn))
779      BytesToPopOnReturn = 4;
780
781    BytesCallerReserves = StackSize;
782  }
783
784  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
785
786  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
787  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
788
789  // Return the new list of results.
790  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
791                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
792}
793
794SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
795                                            unsigned CC) {
796  SDOperand Chain     = Op.getOperand(0);
797  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
798  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
799  SDOperand Callee    = Op.getOperand(4);
800  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
801
802  // Analyze operands of the call, assigning locations to each operand.
803  SmallVector<CCValAssign, 16> ArgLocs;
804  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
805  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
806
807  // Get a count of how many bytes are to be pushed on the stack.
808  unsigned NumBytes = CCInfo.getNextStackOffset();
809
810  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
811
812  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
813  SmallVector<SDOperand, 8> MemOpChains;
814
815  SDOperand StackPtr;
816
817  // Walk the register/memloc assignments, inserting copies/loads.
818  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
819    CCValAssign &VA = ArgLocs[i];
820    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
821
822    // Promote the value if needed.
823    switch (VA.getLocInfo()) {
824    default: assert(0 && "Unknown loc info!");
825    case CCValAssign::Full: break;
826    case CCValAssign::SExt:
827      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
828      break;
829    case CCValAssign::ZExt:
830      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
831      break;
832    case CCValAssign::AExt:
833      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
834      break;
835    }
836
837    if (VA.isRegLoc()) {
838      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
839    } else {
840      assert(VA.isMemLoc());
841      if (StackPtr.Val == 0)
842        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
843      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
844      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
845      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
846    }
847  }
848
849  // If the first argument is an sret pointer, remember it.
850  bool isSRet = NumOps &&
851    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
852     ISD::ParamFlags::StructReturn);
853
854  if (!MemOpChains.empty())
855    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
856                        &MemOpChains[0], MemOpChains.size());
857
858  // Build a sequence of copy-to-reg nodes chained together with token chain
859  // and flag operands which copy the outgoing args into registers.
860  SDOperand InFlag;
861  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
862    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
863                             InFlag);
864    InFlag = Chain.getValue(1);
865  }
866
867  // ELF / PIC requires GOT in the EBX register before function calls via PLT
868  // GOT pointer.
869  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
870      Subtarget->isPICStyleGOT()) {
871    Chain = DAG.getCopyToReg(Chain, X86::EBX,
872                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
873                             InFlag);
874    InFlag = Chain.getValue(1);
875  }
876
877  // If the callee is a GlobalAddress node (quite common, every direct call is)
878  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
879  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
880    // We should use extra load for direct calls to dllimported functions in
881    // non-JIT mode.
882    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
883                                        getTargetMachine(), true))
884      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
885  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
886    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
887
888  // Returns a chain & a flag for retval copy to use.
889  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
890  SmallVector<SDOperand, 8> Ops;
891  Ops.push_back(Chain);
892  Ops.push_back(Callee);
893
894  // Add argument registers to the end of the list so that they are known live
895  // into the call.
896  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
897    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
898                                  RegsToPass[i].second.getValueType()));
899
900  // Add an implicit use GOT pointer in EBX.
901  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
902      Subtarget->isPICStyleGOT())
903    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
904
905  if (InFlag.Val)
906    Ops.push_back(InFlag);
907
908  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
909                      NodeTys, &Ops[0], Ops.size());
910  InFlag = Chain.getValue(1);
911
912  // Create the CALLSEQ_END node.
913  unsigned NumBytesForCalleeToPush = 0;
914
915  if (CC == CallingConv::X86_StdCall) {
916    if (isVarArg)
917      NumBytesForCalleeToPush = isSRet ? 4 : 0;
918    else
919      NumBytesForCalleeToPush = NumBytes;
920  } else {
921    // If this is is a call to a struct-return function, the callee
922    // pops the hidden struct pointer, so we have to push it back.
923    // This is common for Darwin/X86, Linux & Mingw32 targets.
924    NumBytesForCalleeToPush = isSRet ? 4 : 0;
925  }
926
927  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
928  Ops.clear();
929  Ops.push_back(Chain);
930  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
931  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
932  Ops.push_back(InFlag);
933  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
934  InFlag = Chain.getValue(1);
935
936  // Handle result values, copying them out of physregs into vregs that we
937  // return.
938  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
939}
940
941
942//===----------------------------------------------------------------------===//
943//                   FastCall Calling Convention implementation
944//===----------------------------------------------------------------------===//
945//
946// The X86 'fastcall' calling convention passes up to two integer arguments in
947// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
948// and requires that the callee pop its arguments off the stack (allowing proper
949// tail calls), and has the same return value conventions as C calling convs.
950//
951// This calling convention always arranges for the callee pop value to be 8n+4
952// bytes, which is needed for tail recursion elimination and stack alignment
953// reasons.
954SDOperand
955X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
956  MachineFunction &MF = DAG.getMachineFunction();
957  MachineFrameInfo *MFI = MF.getFrameInfo();
958  SDOperand Root = Op.getOperand(0);
959  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
960
961  // Assign locations to all of the incoming arguments.
962  SmallVector<CCValAssign, 16> ArgLocs;
963  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
964                 getTargetMachine(), ArgLocs);
965  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
966
967  SmallVector<SDOperand, 8> ArgValues;
968  unsigned LastVal = ~0U;
969  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
970    CCValAssign &VA = ArgLocs[i];
971    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
972    // places.
973    assert(VA.getValNo() != LastVal &&
974           "Don't support value assigned to multiple locs yet");
975    LastVal = VA.getValNo();
976
977    if (VA.isRegLoc()) {
978      MVT::ValueType RegVT = VA.getLocVT();
979      TargetRegisterClass *RC;
980      if (RegVT == MVT::i32)
981        RC = X86::GR32RegisterClass;
982      else {
983        assert(MVT::isVector(RegVT));
984        RC = X86::VR128RegisterClass;
985      }
986
987      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
988      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
989
990      // If this is an 8 or 16-bit value, it is really passed promoted to 32
991      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
992      // right size.
993      if (VA.getLocInfo() == CCValAssign::SExt)
994        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
995                               DAG.getValueType(VA.getValVT()));
996      else if (VA.getLocInfo() == CCValAssign::ZExt)
997        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
998                               DAG.getValueType(VA.getValVT()));
999
1000      if (VA.getLocInfo() != CCValAssign::Full)
1001        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1002
1003      ArgValues.push_back(ArgValue);
1004    } else {
1005      assert(VA.isMemLoc());
1006
1007      // Create the nodes corresponding to a load from this parameter slot.
1008      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1009                                      VA.getLocMemOffset());
1010      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1011      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
1012    }
1013  }
1014
1015  ArgValues.push_back(Root);
1016
1017  unsigned StackSize = CCInfo.getNextStackOffset();
1018
1019  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1020    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1021    // arguments and the arguments after the retaddr has been pushed are aligned.
1022    if ((StackSize & 7) == 0)
1023      StackSize += 4;
1024  }
1025
1026  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1027  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1028  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
1029  BytesCallerReserves = 0;
1030
1031  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1032  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1033
1034  // Return the new list of results.
1035  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1036                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1037}
1038
1039SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1040                                               unsigned CC) {
1041  SDOperand Chain     = Op.getOperand(0);
1042  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1043  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1044  SDOperand Callee    = Op.getOperand(4);
1045
1046  // Analyze operands of the call, assigning locations to each operand.
1047  SmallVector<CCValAssign, 16> ArgLocs;
1048  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1049  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1050
1051  // Get a count of how many bytes are to be pushed on the stack.
1052  unsigned NumBytes = CCInfo.getNextStackOffset();
1053
1054  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1055    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1056    // arguments and the arguments after the retaddr has been pushed are aligned.
1057    if ((NumBytes & 7) == 0)
1058      NumBytes += 4;
1059  }
1060
1061  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1062
1063  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1064  SmallVector<SDOperand, 8> MemOpChains;
1065
1066  SDOperand StackPtr;
1067
1068  // Walk the register/memloc assignments, inserting copies/loads.
1069  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1070    CCValAssign &VA = ArgLocs[i];
1071    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1072
1073    // Promote the value if needed.
1074    switch (VA.getLocInfo()) {
1075      default: assert(0 && "Unknown loc info!");
1076      case CCValAssign::Full: break;
1077      case CCValAssign::SExt:
1078        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1079        break;
1080      case CCValAssign::ZExt:
1081        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1082        break;
1083      case CCValAssign::AExt:
1084        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1085        break;
1086    }
1087
1088    if (VA.isRegLoc()) {
1089      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1090    } else {
1091      assert(VA.isMemLoc());
1092      if (StackPtr.Val == 0)
1093        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1094      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1095      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1096      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1097    }
1098  }
1099
1100  if (!MemOpChains.empty())
1101    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1102                        &MemOpChains[0], MemOpChains.size());
1103
1104  // Build a sequence of copy-to-reg nodes chained together with token chain
1105  // and flag operands which copy the outgoing args into registers.
1106  SDOperand InFlag;
1107  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1108    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1109                             InFlag);
1110    InFlag = Chain.getValue(1);
1111  }
1112
1113  // If the callee is a GlobalAddress node (quite common, every direct call is)
1114  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1115  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1116    // We should use extra load for direct calls to dllimported functions in
1117    // non-JIT mode.
1118    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1119                                        getTargetMachine(), true))
1120      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1121  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1122    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1123
1124  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1125  // GOT pointer.
1126  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1127      Subtarget->isPICStyleGOT()) {
1128    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1129                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1130                             InFlag);
1131    InFlag = Chain.getValue(1);
1132  }
1133
1134  // Returns a chain & a flag for retval copy to use.
1135  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1136  SmallVector<SDOperand, 8> Ops;
1137  Ops.push_back(Chain);
1138  Ops.push_back(Callee);
1139
1140  // Add argument registers to the end of the list so that they are known live
1141  // into the call.
1142  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1143    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1144                                  RegsToPass[i].second.getValueType()));
1145
1146  // Add an implicit use GOT pointer in EBX.
1147  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1148      Subtarget->isPICStyleGOT())
1149    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1150
1151  if (InFlag.Val)
1152    Ops.push_back(InFlag);
1153
1154  // FIXME: Do not generate X86ISD::TAILCALL for now.
1155  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1156                      NodeTys, &Ops[0], Ops.size());
1157  InFlag = Chain.getValue(1);
1158
1159  // Returns a flag for retval copy to use.
1160  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1161  Ops.clear();
1162  Ops.push_back(Chain);
1163  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1164  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1165  Ops.push_back(InFlag);
1166  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1167  InFlag = Chain.getValue(1);
1168
1169  // Handle result values, copying them out of physregs into vregs that we
1170  // return.
1171  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1172}
1173
1174
1175//===----------------------------------------------------------------------===//
1176//                 X86-64 C Calling Convention implementation
1177//===----------------------------------------------------------------------===//
1178
1179SDOperand
1180X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1181  MachineFunction &MF = DAG.getMachineFunction();
1182  MachineFrameInfo *MFI = MF.getFrameInfo();
1183  SDOperand Root = Op.getOperand(0);
1184  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1185
1186  static const unsigned GPR64ArgRegs[] = {
1187    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1188  };
1189  static const unsigned XMMArgRegs[] = {
1190    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1191    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1192  };
1193
1194
1195  // Assign locations to all of the incoming arguments.
1196  SmallVector<CCValAssign, 16> ArgLocs;
1197  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1198                 getTargetMachine(), ArgLocs);
1199  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1200
1201  SmallVector<SDOperand, 8> ArgValues;
1202  unsigned LastVal = ~0U;
1203  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1204    CCValAssign &VA = ArgLocs[i];
1205    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1206    // places.
1207    assert(VA.getValNo() != LastVal &&
1208           "Don't support value assigned to multiple locs yet");
1209    LastVal = VA.getValNo();
1210
1211    if (VA.isRegLoc()) {
1212      MVT::ValueType RegVT = VA.getLocVT();
1213      TargetRegisterClass *RC;
1214      if (RegVT == MVT::i32)
1215        RC = X86::GR32RegisterClass;
1216      else if (RegVT == MVT::i64)
1217        RC = X86::GR64RegisterClass;
1218      else if (RegVT == MVT::f32)
1219        RC = X86::FR32RegisterClass;
1220      else if (RegVT == MVT::f64)
1221        RC = X86::FR64RegisterClass;
1222      else {
1223        assert(MVT::isVector(RegVT));
1224        if (MVT::getSizeInBits(RegVT) == 64) {
1225          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1226          RegVT = MVT::i64;
1227        } else
1228          RC = X86::VR128RegisterClass;
1229      }
1230
1231      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1232      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1233
1234      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1235      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1236      // right size.
1237      if (VA.getLocInfo() == CCValAssign::SExt)
1238        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1239                               DAG.getValueType(VA.getValVT()));
1240      else if (VA.getLocInfo() == CCValAssign::ZExt)
1241        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1242                               DAG.getValueType(VA.getValVT()));
1243
1244      if (VA.getLocInfo() != CCValAssign::Full)
1245        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1246
1247      // Handle MMX values passed in GPRs.
1248      if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1249          MVT::getSizeInBits(RegVT) == 64)
1250        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1251
1252      ArgValues.push_back(ArgValue);
1253    } else {
1254      assert(VA.isMemLoc());
1255
1256      // Create the nodes corresponding to a load from this parameter slot.
1257      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1258                                      VA.getLocMemOffset());
1259      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1260
1261      unsigned Flags =  cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
1262      if (Flags & ISD::ParamFlags::ByVal)
1263        ArgValues.push_back(FIN);
1264      else
1265        ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
1266    }
1267  }
1268
1269  unsigned StackSize = CCInfo.getNextStackOffset();
1270
1271  // If the function takes variable number of arguments, make a frame index for
1272  // the start of the first vararg value... for expansion of llvm.va_start.
1273  if (isVarArg) {
1274    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1275    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1276
1277    // For X86-64, if there are vararg parameters that are passed via
1278    // registers, then we must store them to their spots on the stack so they
1279    // may be loaded by deferencing the result of va_next.
1280    VarArgsGPOffset = NumIntRegs * 8;
1281    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1282    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1283    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1284
1285    // Store the integer parameter registers.
1286    SmallVector<SDOperand, 8> MemOps;
1287    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1288    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1289                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1290    for (; NumIntRegs != 6; ++NumIntRegs) {
1291      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1292                                X86::GR64RegisterClass);
1293      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1294      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1295      MemOps.push_back(Store);
1296      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1297                        DAG.getConstant(8, getPointerTy()));
1298    }
1299
1300    // Now store the XMM (fp + vector) parameter registers.
1301    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1302                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1303    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1304      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1305                                X86::VR128RegisterClass);
1306      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1307      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1308      MemOps.push_back(Store);
1309      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1310                        DAG.getConstant(16, getPointerTy()));
1311    }
1312    if (!MemOps.empty())
1313        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1314                           &MemOps[0], MemOps.size());
1315  }
1316
1317  ArgValues.push_back(Root);
1318
1319  BytesToPopOnReturn = 0;  // Callee pops nothing.
1320  BytesCallerReserves = StackSize;
1321
1322  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1323  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1324
1325  // Return the new list of results.
1326  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1327                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1328}
1329
1330SDOperand
1331X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1332                                        unsigned CC) {
1333  SDOperand Chain     = Op.getOperand(0);
1334  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1335  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1336  SDOperand Callee    = Op.getOperand(4);
1337
1338  // Analyze operands of the call, assigning locations to each operand.
1339  SmallVector<CCValAssign, 16> ArgLocs;
1340  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1341  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1342
1343  // Get a count of how many bytes are to be pushed on the stack.
1344  unsigned NumBytes = CCInfo.getNextStackOffset();
1345  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1346
1347  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1348  SmallVector<SDOperand, 8> MemOpChains;
1349
1350  SDOperand StackPtr;
1351
1352  // Walk the register/memloc assignments, inserting copies/loads.
1353  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1354    CCValAssign &VA = ArgLocs[i];
1355    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1356
1357    // Promote the value if needed.
1358    switch (VA.getLocInfo()) {
1359    default: assert(0 && "Unknown loc info!");
1360    case CCValAssign::Full: break;
1361    case CCValAssign::SExt:
1362      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1363      break;
1364    case CCValAssign::ZExt:
1365      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1366      break;
1367    case CCValAssign::AExt:
1368      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1369      break;
1370    }
1371
1372    if (VA.isRegLoc()) {
1373      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1374    } else {
1375      assert(VA.isMemLoc());
1376      if (StackPtr.Val == 0)
1377        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1378      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1379      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1380
1381      SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1382      unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1383      if (Flags & ISD::ParamFlags::ByVal) {
1384        unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1385                               ISD::ParamFlags::ByValAlignOffs);
1386        unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1387            ISD::ParamFlags::ByValSizeOffs;
1388
1389        SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1390        SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1391
1392        assert(0 && "Not Implemented");
1393
1394        SDOperand Copy = DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff,
1395                                     Arg, SizeNode, AlignNode);
1396        MemOpChains.push_back(Copy);
1397      }
1398      else {
1399        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1400      }
1401    }
1402  }
1403
1404  if (!MemOpChains.empty())
1405    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1406                        &MemOpChains[0], MemOpChains.size());
1407
1408  // Build a sequence of copy-to-reg nodes chained together with token chain
1409  // and flag operands which copy the outgoing args into registers.
1410  SDOperand InFlag;
1411  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1412    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1413                             InFlag);
1414    InFlag = Chain.getValue(1);
1415  }
1416
1417  if (isVarArg) {
1418    // From AMD64 ABI document:
1419    // For calls that may call functions that use varargs or stdargs
1420    // (prototype-less calls or calls to functions containing ellipsis (...) in
1421    // the declaration) %al is used as hidden argument to specify the number
1422    // of SSE registers used. The contents of %al do not need to match exactly
1423    // the number of registers, but must be an ubound on the number of SSE
1424    // registers used and is in the range 0 - 8 inclusive.
1425
1426    // Count the number of XMM registers allocated.
1427    static const unsigned XMMArgRegs[] = {
1428      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1429      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1430    };
1431    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1432
1433    Chain = DAG.getCopyToReg(Chain, X86::AL,
1434                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1435    InFlag = Chain.getValue(1);
1436  }
1437
1438  // If the callee is a GlobalAddress node (quite common, every direct call is)
1439  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1440  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1441    // We should use extra load for direct calls to dllimported functions in
1442    // non-JIT mode.
1443    if (getTargetMachine().getCodeModel() != CodeModel::Large
1444        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1445                                           getTargetMachine(), true))
1446      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1447  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1448    if (getTargetMachine().getCodeModel() != CodeModel::Large)
1449      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1450
1451  // Returns a chain & a flag for retval copy to use.
1452  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1453  SmallVector<SDOperand, 8> Ops;
1454  Ops.push_back(Chain);
1455  Ops.push_back(Callee);
1456
1457  // Add argument registers to the end of the list so that they are known live
1458  // into the call.
1459  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1460    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1461                                  RegsToPass[i].second.getValueType()));
1462
1463  if (InFlag.Val)
1464    Ops.push_back(InFlag);
1465
1466  // FIXME: Do not generate X86ISD::TAILCALL for now.
1467  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1468                      NodeTys, &Ops[0], Ops.size());
1469  InFlag = Chain.getValue(1);
1470
1471  // Returns a flag for retval copy to use.
1472  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1473  Ops.clear();
1474  Ops.push_back(Chain);
1475  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1476  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1477  Ops.push_back(InFlag);
1478  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1479  InFlag = Chain.getValue(1);
1480
1481  // Handle result values, copying them out of physregs into vregs that we
1482  // return.
1483  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1484}
1485
1486
1487//===----------------------------------------------------------------------===//
1488//                           Other Lowering Hooks
1489//===----------------------------------------------------------------------===//
1490
1491
1492SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1493  MachineFunction &MF = DAG.getMachineFunction();
1494  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1495  int ReturnAddrIndex = FuncInfo->getRAIndex();
1496
1497  if (ReturnAddrIndex == 0) {
1498    // Set up a frame object for the return address.
1499    if (Subtarget->is64Bit())
1500      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1501    else
1502      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1503
1504    FuncInfo->setRAIndex(ReturnAddrIndex);
1505  }
1506
1507  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1508}
1509
1510
1511
1512/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1513/// specific condition code. It returns a false if it cannot do a direct
1514/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1515/// needed.
1516static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1517                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1518                           SelectionDAG &DAG) {
1519  X86CC = X86::COND_INVALID;
1520  if (!isFP) {
1521    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1522      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1523        // X > -1   -> X == 0, jump !sign.
1524        RHS = DAG.getConstant(0, RHS.getValueType());
1525        X86CC = X86::COND_NS;
1526        return true;
1527      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1528        // X < 0   -> X == 0, jump on sign.
1529        X86CC = X86::COND_S;
1530        return true;
1531      }
1532    }
1533
1534    switch (SetCCOpcode) {
1535    default: break;
1536    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1537    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1538    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1539    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1540    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1541    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1542    case ISD::SETULT: X86CC = X86::COND_B;  break;
1543    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1544    case ISD::SETULE: X86CC = X86::COND_BE; break;
1545    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1546    }
1547  } else {
1548    // On a floating point condition, the flags are set as follows:
1549    // ZF  PF  CF   op
1550    //  0 | 0 | 0 | X > Y
1551    //  0 | 0 | 1 | X < Y
1552    //  1 | 0 | 0 | X == Y
1553    //  1 | 1 | 1 | unordered
1554    bool Flip = false;
1555    switch (SetCCOpcode) {
1556    default: break;
1557    case ISD::SETUEQ:
1558    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1559    case ISD::SETOLT: Flip = true; // Fallthrough
1560    case ISD::SETOGT:
1561    case ISD::SETGT: X86CC = X86::COND_A;  break;
1562    case ISD::SETOLE: Flip = true; // Fallthrough
1563    case ISD::SETOGE:
1564    case ISD::SETGE: X86CC = X86::COND_AE; break;
1565    case ISD::SETUGT: Flip = true; // Fallthrough
1566    case ISD::SETULT:
1567    case ISD::SETLT: X86CC = X86::COND_B;  break;
1568    case ISD::SETUGE: Flip = true; // Fallthrough
1569    case ISD::SETULE:
1570    case ISD::SETLE: X86CC = X86::COND_BE; break;
1571    case ISD::SETONE:
1572    case ISD::SETNE: X86CC = X86::COND_NE; break;
1573    case ISD::SETUO: X86CC = X86::COND_P;  break;
1574    case ISD::SETO:  X86CC = X86::COND_NP; break;
1575    }
1576    if (Flip)
1577      std::swap(LHS, RHS);
1578  }
1579
1580  return X86CC != X86::COND_INVALID;
1581}
1582
1583/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1584/// code. Current x86 isa includes the following FP cmov instructions:
1585/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1586static bool hasFPCMov(unsigned X86CC) {
1587  switch (X86CC) {
1588  default:
1589    return false;
1590  case X86::COND_B:
1591  case X86::COND_BE:
1592  case X86::COND_E:
1593  case X86::COND_P:
1594  case X86::COND_A:
1595  case X86::COND_AE:
1596  case X86::COND_NE:
1597  case X86::COND_NP:
1598    return true;
1599  }
1600}
1601
1602/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1603/// true if Op is undef or if its value falls within the specified range (L, H].
1604static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1605  if (Op.getOpcode() == ISD::UNDEF)
1606    return true;
1607
1608  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1609  return (Val >= Low && Val < Hi);
1610}
1611
1612/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1613/// true if Op is undef or if its value equal to the specified value.
1614static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1615  if (Op.getOpcode() == ISD::UNDEF)
1616    return true;
1617  return cast<ConstantSDNode>(Op)->getValue() == Val;
1618}
1619
1620/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1621/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1622bool X86::isPSHUFDMask(SDNode *N) {
1623  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1624
1625  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
1626    return false;
1627
1628  // Check if the value doesn't reference the second vector.
1629  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1630    SDOperand Arg = N->getOperand(i);
1631    if (Arg.getOpcode() == ISD::UNDEF) continue;
1632    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1633    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
1634      return false;
1635  }
1636
1637  return true;
1638}
1639
1640/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1641/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1642bool X86::isPSHUFHWMask(SDNode *N) {
1643  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1644
1645  if (N->getNumOperands() != 8)
1646    return false;
1647
1648  // Lower quadword copied in order.
1649  for (unsigned i = 0; i != 4; ++i) {
1650    SDOperand Arg = N->getOperand(i);
1651    if (Arg.getOpcode() == ISD::UNDEF) continue;
1652    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1653    if (cast<ConstantSDNode>(Arg)->getValue() != i)
1654      return false;
1655  }
1656
1657  // Upper quadword shuffled.
1658  for (unsigned i = 4; i != 8; ++i) {
1659    SDOperand Arg = N->getOperand(i);
1660    if (Arg.getOpcode() == ISD::UNDEF) continue;
1661    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1662    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1663    if (Val < 4 || Val > 7)
1664      return false;
1665  }
1666
1667  return true;
1668}
1669
1670/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1671/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1672bool X86::isPSHUFLWMask(SDNode *N) {
1673  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1674
1675  if (N->getNumOperands() != 8)
1676    return false;
1677
1678  // Upper quadword copied in order.
1679  for (unsigned i = 4; i != 8; ++i)
1680    if (!isUndefOrEqual(N->getOperand(i), i))
1681      return false;
1682
1683  // Lower quadword shuffled.
1684  for (unsigned i = 0; i != 4; ++i)
1685    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1686      return false;
1687
1688  return true;
1689}
1690
1691/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1692/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1693static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1694  if (NumElems != 2 && NumElems != 4) return false;
1695
1696  unsigned Half = NumElems / 2;
1697  for (unsigned i = 0; i < Half; ++i)
1698    if (!isUndefOrInRange(Elems[i], 0, NumElems))
1699      return false;
1700  for (unsigned i = Half; i < NumElems; ++i)
1701    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1702      return false;
1703
1704  return true;
1705}
1706
1707bool X86::isSHUFPMask(SDNode *N) {
1708  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1709  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1710}
1711
1712/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1713/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1714/// half elements to come from vector 1 (which would equal the dest.) and
1715/// the upper half to come from vector 2.
1716static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1717  if (NumOps != 2 && NumOps != 4) return false;
1718
1719  unsigned Half = NumOps / 2;
1720  for (unsigned i = 0; i < Half; ++i)
1721    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1722      return false;
1723  for (unsigned i = Half; i < NumOps; ++i)
1724    if (!isUndefOrInRange(Ops[i], 0, NumOps))
1725      return false;
1726  return true;
1727}
1728
1729static bool isCommutedSHUFP(SDNode *N) {
1730  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1731  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1732}
1733
1734/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1735/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1736bool X86::isMOVHLPSMask(SDNode *N) {
1737  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1738
1739  if (N->getNumOperands() != 4)
1740    return false;
1741
1742  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1743  return isUndefOrEqual(N->getOperand(0), 6) &&
1744         isUndefOrEqual(N->getOperand(1), 7) &&
1745         isUndefOrEqual(N->getOperand(2), 2) &&
1746         isUndefOrEqual(N->getOperand(3), 3);
1747}
1748
1749/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1750/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1751/// <2, 3, 2, 3>
1752bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1753  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1754
1755  if (N->getNumOperands() != 4)
1756    return false;
1757
1758  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1759  return isUndefOrEqual(N->getOperand(0), 2) &&
1760         isUndefOrEqual(N->getOperand(1), 3) &&
1761         isUndefOrEqual(N->getOperand(2), 2) &&
1762         isUndefOrEqual(N->getOperand(3), 3);
1763}
1764
1765/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1766/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1767bool X86::isMOVLPMask(SDNode *N) {
1768  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1769
1770  unsigned NumElems = N->getNumOperands();
1771  if (NumElems != 2 && NumElems != 4)
1772    return false;
1773
1774  for (unsigned i = 0; i < NumElems/2; ++i)
1775    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1776      return false;
1777
1778  for (unsigned i = NumElems/2; i < NumElems; ++i)
1779    if (!isUndefOrEqual(N->getOperand(i), i))
1780      return false;
1781
1782  return true;
1783}
1784
1785/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1786/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1787/// and MOVLHPS.
1788bool X86::isMOVHPMask(SDNode *N) {
1789  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1790
1791  unsigned NumElems = N->getNumOperands();
1792  if (NumElems != 2 && NumElems != 4)
1793    return false;
1794
1795  for (unsigned i = 0; i < NumElems/2; ++i)
1796    if (!isUndefOrEqual(N->getOperand(i), i))
1797      return false;
1798
1799  for (unsigned i = 0; i < NumElems/2; ++i) {
1800    SDOperand Arg = N->getOperand(i + NumElems/2);
1801    if (!isUndefOrEqual(Arg, i + NumElems))
1802      return false;
1803  }
1804
1805  return true;
1806}
1807
1808/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1809/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1810bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1811                         bool V2IsSplat = false) {
1812  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1813    return false;
1814
1815  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1816    SDOperand BitI  = Elts[i];
1817    SDOperand BitI1 = Elts[i+1];
1818    if (!isUndefOrEqual(BitI, j))
1819      return false;
1820    if (V2IsSplat) {
1821      if (isUndefOrEqual(BitI1, NumElts))
1822        return false;
1823    } else {
1824      if (!isUndefOrEqual(BitI1, j + NumElts))
1825        return false;
1826    }
1827  }
1828
1829  return true;
1830}
1831
1832bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1833  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1834  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1835}
1836
1837/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1838/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1839bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1840                         bool V2IsSplat = false) {
1841  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1842    return false;
1843
1844  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1845    SDOperand BitI  = Elts[i];
1846    SDOperand BitI1 = Elts[i+1];
1847    if (!isUndefOrEqual(BitI, j + NumElts/2))
1848      return false;
1849    if (V2IsSplat) {
1850      if (isUndefOrEqual(BitI1, NumElts))
1851        return false;
1852    } else {
1853      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1854        return false;
1855    }
1856  }
1857
1858  return true;
1859}
1860
1861bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1862  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1863  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1864}
1865
1866/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1867/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1868/// <0, 0, 1, 1>
1869bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1870  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1871
1872  unsigned NumElems = N->getNumOperands();
1873  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1874    return false;
1875
1876  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1877    SDOperand BitI  = N->getOperand(i);
1878    SDOperand BitI1 = N->getOperand(i+1);
1879
1880    if (!isUndefOrEqual(BitI, j))
1881      return false;
1882    if (!isUndefOrEqual(BitI1, j))
1883      return false;
1884  }
1885
1886  return true;
1887}
1888
1889/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1890/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1891/// <2, 2, 3, 3>
1892bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1893  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1894
1895  unsigned NumElems = N->getNumOperands();
1896  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1897    return false;
1898
1899  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1900    SDOperand BitI  = N->getOperand(i);
1901    SDOperand BitI1 = N->getOperand(i + 1);
1902
1903    if (!isUndefOrEqual(BitI, j))
1904      return false;
1905    if (!isUndefOrEqual(BitI1, j))
1906      return false;
1907  }
1908
1909  return true;
1910}
1911
1912/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1913/// specifies a shuffle of elements that is suitable for input to MOVSS,
1914/// MOVSD, and MOVD, i.e. setting the lowest element.
1915static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1916  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1917    return false;
1918
1919  if (!isUndefOrEqual(Elts[0], NumElts))
1920    return false;
1921
1922  for (unsigned i = 1; i < NumElts; ++i) {
1923    if (!isUndefOrEqual(Elts[i], i))
1924      return false;
1925  }
1926
1927  return true;
1928}
1929
1930bool X86::isMOVLMask(SDNode *N) {
1931  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1932  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
1933}
1934
1935/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
1936/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
1937/// element of vector 2 and the other elements to come from vector 1 in order.
1938static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
1939                           bool V2IsSplat = false,
1940                           bool V2IsUndef = false) {
1941  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
1942    return false;
1943
1944  if (!isUndefOrEqual(Ops[0], 0))
1945    return false;
1946
1947  for (unsigned i = 1; i < NumOps; ++i) {
1948    SDOperand Arg = Ops[i];
1949    if (!(isUndefOrEqual(Arg, i+NumOps) ||
1950          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
1951          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
1952      return false;
1953  }
1954
1955  return true;
1956}
1957
1958static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
1959                           bool V2IsUndef = false) {
1960  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1961  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
1962                        V2IsSplat, V2IsUndef);
1963}
1964
1965/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1966/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
1967bool X86::isMOVSHDUPMask(SDNode *N) {
1968  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1969
1970  if (N->getNumOperands() != 4)
1971    return false;
1972
1973  // Expect 1, 1, 3, 3
1974  for (unsigned i = 0; i < 2; ++i) {
1975    SDOperand Arg = N->getOperand(i);
1976    if (Arg.getOpcode() == ISD::UNDEF) continue;
1977    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1978    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1979    if (Val != 1) return false;
1980  }
1981
1982  bool HasHi = false;
1983  for (unsigned i = 2; i < 4; ++i) {
1984    SDOperand Arg = N->getOperand(i);
1985    if (Arg.getOpcode() == ISD::UNDEF) continue;
1986    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1987    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1988    if (Val != 3) return false;
1989    HasHi = true;
1990  }
1991
1992  // Don't use movshdup if it can be done with a shufps.
1993  return HasHi;
1994}
1995
1996/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1997/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
1998bool X86::isMOVSLDUPMask(SDNode *N) {
1999  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2000
2001  if (N->getNumOperands() != 4)
2002    return false;
2003
2004  // Expect 0, 0, 2, 2
2005  for (unsigned i = 0; i < 2; ++i) {
2006    SDOperand Arg = N->getOperand(i);
2007    if (Arg.getOpcode() == ISD::UNDEF) continue;
2008    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2009    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2010    if (Val != 0) return false;
2011  }
2012
2013  bool HasHi = false;
2014  for (unsigned i = 2; i < 4; ++i) {
2015    SDOperand Arg = N->getOperand(i);
2016    if (Arg.getOpcode() == ISD::UNDEF) continue;
2017    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2018    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2019    if (Val != 2) return false;
2020    HasHi = true;
2021  }
2022
2023  // Don't use movshdup if it can be done with a shufps.
2024  return HasHi;
2025}
2026
2027/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2028/// specifies a identity operation on the LHS or RHS.
2029static bool isIdentityMask(SDNode *N, bool RHS = false) {
2030  unsigned NumElems = N->getNumOperands();
2031  for (unsigned i = 0; i < NumElems; ++i)
2032    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2033      return false;
2034  return true;
2035}
2036
2037/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2038/// a splat of a single element.
2039static bool isSplatMask(SDNode *N) {
2040  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2041
2042  // This is a splat operation if each element of the permute is the same, and
2043  // if the value doesn't reference the second vector.
2044  unsigned NumElems = N->getNumOperands();
2045  SDOperand ElementBase;
2046  unsigned i = 0;
2047  for (; i != NumElems; ++i) {
2048    SDOperand Elt = N->getOperand(i);
2049    if (isa<ConstantSDNode>(Elt)) {
2050      ElementBase = Elt;
2051      break;
2052    }
2053  }
2054
2055  if (!ElementBase.Val)
2056    return false;
2057
2058  for (; i != NumElems; ++i) {
2059    SDOperand Arg = N->getOperand(i);
2060    if (Arg.getOpcode() == ISD::UNDEF) continue;
2061    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2062    if (Arg != ElementBase) return false;
2063  }
2064
2065  // Make sure it is a splat of the first vector operand.
2066  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2067}
2068
2069/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2070/// a splat of a single element and it's a 2 or 4 element mask.
2071bool X86::isSplatMask(SDNode *N) {
2072  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2073
2074  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2075  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2076    return false;
2077  return ::isSplatMask(N);
2078}
2079
2080/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2081/// specifies a splat of zero element.
2082bool X86::isSplatLoMask(SDNode *N) {
2083  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2084
2085  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2086    if (!isUndefOrEqual(N->getOperand(i), 0))
2087      return false;
2088  return true;
2089}
2090
2091/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2092/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2093/// instructions.
2094unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2095  unsigned NumOperands = N->getNumOperands();
2096  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2097  unsigned Mask = 0;
2098  for (unsigned i = 0; i < NumOperands; ++i) {
2099    unsigned Val = 0;
2100    SDOperand Arg = N->getOperand(NumOperands-i-1);
2101    if (Arg.getOpcode() != ISD::UNDEF)
2102      Val = cast<ConstantSDNode>(Arg)->getValue();
2103    if (Val >= NumOperands) Val -= NumOperands;
2104    Mask |= Val;
2105    if (i != NumOperands - 1)
2106      Mask <<= Shift;
2107  }
2108
2109  return Mask;
2110}
2111
2112/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2113/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2114/// instructions.
2115unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2116  unsigned Mask = 0;
2117  // 8 nodes, but we only care about the last 4.
2118  for (unsigned i = 7; i >= 4; --i) {
2119    unsigned Val = 0;
2120    SDOperand Arg = N->getOperand(i);
2121    if (Arg.getOpcode() != ISD::UNDEF)
2122      Val = cast<ConstantSDNode>(Arg)->getValue();
2123    Mask |= (Val - 4);
2124    if (i != 4)
2125      Mask <<= 2;
2126  }
2127
2128  return Mask;
2129}
2130
2131/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2132/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2133/// instructions.
2134unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2135  unsigned Mask = 0;
2136  // 8 nodes, but we only care about the first 4.
2137  for (int i = 3; i >= 0; --i) {
2138    unsigned Val = 0;
2139    SDOperand Arg = N->getOperand(i);
2140    if (Arg.getOpcode() != ISD::UNDEF)
2141      Val = cast<ConstantSDNode>(Arg)->getValue();
2142    Mask |= Val;
2143    if (i != 0)
2144      Mask <<= 2;
2145  }
2146
2147  return Mask;
2148}
2149
2150/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2151/// specifies a 8 element shuffle that can be broken into a pair of
2152/// PSHUFHW and PSHUFLW.
2153static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2154  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2155
2156  if (N->getNumOperands() != 8)
2157    return false;
2158
2159  // Lower quadword shuffled.
2160  for (unsigned i = 0; i != 4; ++i) {
2161    SDOperand Arg = N->getOperand(i);
2162    if (Arg.getOpcode() == ISD::UNDEF) continue;
2163    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2164    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2165    if (Val > 4)
2166      return false;
2167  }
2168
2169  // Upper quadword shuffled.
2170  for (unsigned i = 4; i != 8; ++i) {
2171    SDOperand Arg = N->getOperand(i);
2172    if (Arg.getOpcode() == ISD::UNDEF) continue;
2173    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2174    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2175    if (Val < 4 || Val > 7)
2176      return false;
2177  }
2178
2179  return true;
2180}
2181
2182/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2183/// values in ther permute mask.
2184static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2185                                      SDOperand &V2, SDOperand &Mask,
2186                                      SelectionDAG &DAG) {
2187  MVT::ValueType VT = Op.getValueType();
2188  MVT::ValueType MaskVT = Mask.getValueType();
2189  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2190  unsigned NumElems = Mask.getNumOperands();
2191  SmallVector<SDOperand, 8> MaskVec;
2192
2193  for (unsigned i = 0; i != NumElems; ++i) {
2194    SDOperand Arg = Mask.getOperand(i);
2195    if (Arg.getOpcode() == ISD::UNDEF) {
2196      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2197      continue;
2198    }
2199    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2200    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2201    if (Val < NumElems)
2202      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2203    else
2204      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2205  }
2206
2207  std::swap(V1, V2);
2208  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2209  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2210}
2211
2212/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2213/// match movhlps. The lower half elements should come from upper half of
2214/// V1 (and in order), and the upper half elements should come from the upper
2215/// half of V2 (and in order).
2216static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2217  unsigned NumElems = Mask->getNumOperands();
2218  if (NumElems != 4)
2219    return false;
2220  for (unsigned i = 0, e = 2; i != e; ++i)
2221    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2222      return false;
2223  for (unsigned i = 2; i != 4; ++i)
2224    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2225      return false;
2226  return true;
2227}
2228
2229/// isScalarLoadToVector - Returns true if the node is a scalar load that
2230/// is promoted to a vector.
2231static inline bool isScalarLoadToVector(SDNode *N) {
2232  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2233    N = N->getOperand(0).Val;
2234    return ISD::isNON_EXTLoad(N);
2235  }
2236  return false;
2237}
2238
2239/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2240/// match movlp{s|d}. The lower half elements should come from lower half of
2241/// V1 (and in order), and the upper half elements should come from the upper
2242/// half of V2 (and in order). And since V1 will become the source of the
2243/// MOVLP, it must be either a vector load or a scalar load to vector.
2244static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2245  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2246    return false;
2247  // Is V2 is a vector load, don't do this transformation. We will try to use
2248  // load folding shufps op.
2249  if (ISD::isNON_EXTLoad(V2))
2250    return false;
2251
2252  unsigned NumElems = Mask->getNumOperands();
2253  if (NumElems != 2 && NumElems != 4)
2254    return false;
2255  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2256    if (!isUndefOrEqual(Mask->getOperand(i), i))
2257      return false;
2258  for (unsigned i = NumElems/2; i != NumElems; ++i)
2259    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2260      return false;
2261  return true;
2262}
2263
2264/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2265/// all the same.
2266static bool isSplatVector(SDNode *N) {
2267  if (N->getOpcode() != ISD::BUILD_VECTOR)
2268    return false;
2269
2270  SDOperand SplatValue = N->getOperand(0);
2271  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2272    if (N->getOperand(i) != SplatValue)
2273      return false;
2274  return true;
2275}
2276
2277/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2278/// to an undef.
2279static bool isUndefShuffle(SDNode *N) {
2280  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2281    return false;
2282
2283  SDOperand V1 = N->getOperand(0);
2284  SDOperand V2 = N->getOperand(1);
2285  SDOperand Mask = N->getOperand(2);
2286  unsigned NumElems = Mask.getNumOperands();
2287  for (unsigned i = 0; i != NumElems; ++i) {
2288    SDOperand Arg = Mask.getOperand(i);
2289    if (Arg.getOpcode() != ISD::UNDEF) {
2290      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2291      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2292        return false;
2293      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2294        return false;
2295    }
2296  }
2297  return true;
2298}
2299
2300/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2301/// constant +0.0.
2302static inline bool isZeroNode(SDOperand Elt) {
2303  return ((isa<ConstantSDNode>(Elt) &&
2304           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2305          (isa<ConstantFPSDNode>(Elt) &&
2306           cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
2307}
2308
2309/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2310/// to an zero vector.
2311static bool isZeroShuffle(SDNode *N) {
2312  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2313    return false;
2314
2315  SDOperand V1 = N->getOperand(0);
2316  SDOperand V2 = N->getOperand(1);
2317  SDOperand Mask = N->getOperand(2);
2318  unsigned NumElems = Mask.getNumOperands();
2319  for (unsigned i = 0; i != NumElems; ++i) {
2320    SDOperand Arg = Mask.getOperand(i);
2321    if (Arg.getOpcode() != ISD::UNDEF) {
2322      unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2323      if (Idx < NumElems) {
2324        unsigned Opc = V1.Val->getOpcode();
2325        if (Opc == ISD::UNDEF)
2326          continue;
2327        if (Opc != ISD::BUILD_VECTOR ||
2328            !isZeroNode(V1.Val->getOperand(Idx)))
2329          return false;
2330      } else if (Idx >= NumElems) {
2331        unsigned Opc = V2.Val->getOpcode();
2332        if (Opc == ISD::UNDEF)
2333          continue;
2334        if (Opc != ISD::BUILD_VECTOR ||
2335            !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2336          return false;
2337      }
2338    }
2339  }
2340  return true;
2341}
2342
2343/// getZeroVector - Returns a vector of specified type with all zero elements.
2344///
2345static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2346  assert(MVT::isVector(VT) && "Expected a vector type");
2347  unsigned NumElems = MVT::getVectorNumElements(VT);
2348  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2349  bool isFP = MVT::isFloatingPoint(EVT);
2350  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2351  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2352  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2353}
2354
2355/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2356/// that point to V2 points to its first element.
2357static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2358  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2359
2360  bool Changed = false;
2361  SmallVector<SDOperand, 8> MaskVec;
2362  unsigned NumElems = Mask.getNumOperands();
2363  for (unsigned i = 0; i != NumElems; ++i) {
2364    SDOperand Arg = Mask.getOperand(i);
2365    if (Arg.getOpcode() != ISD::UNDEF) {
2366      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2367      if (Val > NumElems) {
2368        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2369        Changed = true;
2370      }
2371    }
2372    MaskVec.push_back(Arg);
2373  }
2374
2375  if (Changed)
2376    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2377                       &MaskVec[0], MaskVec.size());
2378  return Mask;
2379}
2380
2381/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2382/// operation of specified width.
2383static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2384  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2385  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2386
2387  SmallVector<SDOperand, 8> MaskVec;
2388  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2389  for (unsigned i = 1; i != NumElems; ++i)
2390    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2391  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2392}
2393
2394/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2395/// of specified width.
2396static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2397  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2398  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2399  SmallVector<SDOperand, 8> MaskVec;
2400  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2401    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2402    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2403  }
2404  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2405}
2406
2407/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2408/// of specified width.
2409static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2410  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2411  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2412  unsigned Half = NumElems/2;
2413  SmallVector<SDOperand, 8> MaskVec;
2414  for (unsigned i = 0; i != Half; ++i) {
2415    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2416    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2417  }
2418  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2419}
2420
2421/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2422///
2423static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2424  SDOperand V1 = Op.getOperand(0);
2425  SDOperand Mask = Op.getOperand(2);
2426  MVT::ValueType VT = Op.getValueType();
2427  unsigned NumElems = Mask.getNumOperands();
2428  Mask = getUnpacklMask(NumElems, DAG);
2429  while (NumElems != 4) {
2430    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2431    NumElems >>= 1;
2432  }
2433  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2434
2435  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2436  Mask = getZeroVector(MaskVT, DAG);
2437  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2438                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2439  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2440}
2441
2442/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2443/// vector of zero or undef vector.
2444static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2445                                             unsigned NumElems, unsigned Idx,
2446                                             bool isZero, SelectionDAG &DAG) {
2447  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2448  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2449  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2450  SDOperand Zero = DAG.getConstant(0, EVT);
2451  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2452  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2453  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2454                               &MaskVec[0], MaskVec.size());
2455  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2456}
2457
2458/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2459///
2460static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2461                                       unsigned NumNonZero, unsigned NumZero,
2462                                       SelectionDAG &DAG, TargetLowering &TLI) {
2463  if (NumNonZero > 8)
2464    return SDOperand();
2465
2466  SDOperand V(0, 0);
2467  bool First = true;
2468  for (unsigned i = 0; i < 16; ++i) {
2469    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2470    if (ThisIsNonZero && First) {
2471      if (NumZero)
2472        V = getZeroVector(MVT::v8i16, DAG);
2473      else
2474        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2475      First = false;
2476    }
2477
2478    if ((i & 1) != 0) {
2479      SDOperand ThisElt(0, 0), LastElt(0, 0);
2480      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2481      if (LastIsNonZero) {
2482        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2483      }
2484      if (ThisIsNonZero) {
2485        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2486        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2487                              ThisElt, DAG.getConstant(8, MVT::i8));
2488        if (LastIsNonZero)
2489          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2490      } else
2491        ThisElt = LastElt;
2492
2493      if (ThisElt.Val)
2494        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2495                        DAG.getConstant(i/2, TLI.getPointerTy()));
2496    }
2497  }
2498
2499  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2500}
2501
2502/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2503///
2504static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2505                                       unsigned NumNonZero, unsigned NumZero,
2506                                       SelectionDAG &DAG, TargetLowering &TLI) {
2507  if (NumNonZero > 4)
2508    return SDOperand();
2509
2510  SDOperand V(0, 0);
2511  bool First = true;
2512  for (unsigned i = 0; i < 8; ++i) {
2513    bool isNonZero = (NonZeros & (1 << i)) != 0;
2514    if (isNonZero) {
2515      if (First) {
2516        if (NumZero)
2517          V = getZeroVector(MVT::v8i16, DAG);
2518        else
2519          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2520        First = false;
2521      }
2522      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2523                      DAG.getConstant(i, TLI.getPointerTy()));
2524    }
2525  }
2526
2527  return V;
2528}
2529
2530SDOperand
2531X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2532  // All zero's are handled with pxor.
2533  if (ISD::isBuildVectorAllZeros(Op.Val))
2534    return Op;
2535
2536  // All one's are handled with pcmpeqd.
2537  if (ISD::isBuildVectorAllOnes(Op.Val))
2538    return Op;
2539
2540  MVT::ValueType VT = Op.getValueType();
2541  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2542  unsigned EVTBits = MVT::getSizeInBits(EVT);
2543
2544  unsigned NumElems = Op.getNumOperands();
2545  unsigned NumZero  = 0;
2546  unsigned NumNonZero = 0;
2547  unsigned NonZeros = 0;
2548  unsigned NumNonZeroImms = 0;
2549  std::set<SDOperand> Values;
2550  for (unsigned i = 0; i < NumElems; ++i) {
2551    SDOperand Elt = Op.getOperand(i);
2552    if (Elt.getOpcode() != ISD::UNDEF) {
2553      Values.insert(Elt);
2554      if (isZeroNode(Elt))
2555        NumZero++;
2556      else {
2557        NonZeros |= (1 << i);
2558        NumNonZero++;
2559        if (Elt.getOpcode() == ISD::Constant ||
2560            Elt.getOpcode() == ISD::ConstantFP)
2561          NumNonZeroImms++;
2562      }
2563    }
2564  }
2565
2566  if (NumNonZero == 0) {
2567    if (NumZero == 0)
2568      // All undef vector. Return an UNDEF.
2569      return DAG.getNode(ISD::UNDEF, VT);
2570    else
2571      // A mix of zero and undef. Return a zero vector.
2572      return getZeroVector(VT, DAG);
2573  }
2574
2575  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2576  if (Values.size() == 1)
2577    return SDOperand();
2578
2579  // Special case for single non-zero element.
2580  if (NumNonZero == 1) {
2581    unsigned Idx = CountTrailingZeros_32(NonZeros);
2582    SDOperand Item = Op.getOperand(Idx);
2583    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2584    if (Idx == 0)
2585      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2586      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2587                                         NumZero > 0, DAG);
2588
2589    if (EVTBits == 32) {
2590      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2591      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2592                                         DAG);
2593      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2594      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2595      SmallVector<SDOperand, 8> MaskVec;
2596      for (unsigned i = 0; i < NumElems; i++)
2597        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2598      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2599                                   &MaskVec[0], MaskVec.size());
2600      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2601                         DAG.getNode(ISD::UNDEF, VT), Mask);
2602    }
2603  }
2604
2605  // A vector full of immediates; various special cases are already
2606  // handled, so this is best done with a single constant-pool load.
2607  if (NumNonZero == NumNonZeroImms)
2608    return SDOperand();
2609
2610  // Let legalizer expand 2-wide build_vectors.
2611  if (EVTBits == 64)
2612    return SDOperand();
2613
2614  // If element VT is < 32 bits, convert it to inserts into a zero vector.
2615  if (EVTBits == 8 && NumElems == 16) {
2616    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2617                                        *this);
2618    if (V.Val) return V;
2619  }
2620
2621  if (EVTBits == 16 && NumElems == 8) {
2622    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2623                                        *this);
2624    if (V.Val) return V;
2625  }
2626
2627  // If element VT is == 32 bits, turn it into a number of shuffles.
2628  SmallVector<SDOperand, 8> V;
2629  V.resize(NumElems);
2630  if (NumElems == 4 && NumZero > 0) {
2631    for (unsigned i = 0; i < 4; ++i) {
2632      bool isZero = !(NonZeros & (1 << i));
2633      if (isZero)
2634        V[i] = getZeroVector(VT, DAG);
2635      else
2636        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2637    }
2638
2639    for (unsigned i = 0; i < 2; ++i) {
2640      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2641        default: break;
2642        case 0:
2643          V[i] = V[i*2];  // Must be a zero vector.
2644          break;
2645        case 1:
2646          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2647                             getMOVLMask(NumElems, DAG));
2648          break;
2649        case 2:
2650          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2651                             getMOVLMask(NumElems, DAG));
2652          break;
2653        case 3:
2654          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2655                             getUnpacklMask(NumElems, DAG));
2656          break;
2657      }
2658    }
2659
2660    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2661    // clears the upper bits.
2662    // FIXME: we can do the same for v4f32 case when we know both parts of
2663    // the lower half come from scalar_to_vector (loadf32). We should do
2664    // that in post legalizer dag combiner with target specific hooks.
2665    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2666      return V[0];
2667    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2668    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2669    SmallVector<SDOperand, 8> MaskVec;
2670    bool Reverse = (NonZeros & 0x3) == 2;
2671    for (unsigned i = 0; i < 2; ++i)
2672      if (Reverse)
2673        MaskVec.push_back(DAG.getConstant(1-i, EVT));
2674      else
2675        MaskVec.push_back(DAG.getConstant(i, EVT));
2676    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2677    for (unsigned i = 0; i < 2; ++i)
2678      if (Reverse)
2679        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2680      else
2681        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2682    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2683                                     &MaskVec[0], MaskVec.size());
2684    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2685  }
2686
2687  if (Values.size() > 2) {
2688    // Expand into a number of unpckl*.
2689    // e.g. for v4f32
2690    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2691    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2692    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
2693    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2694    for (unsigned i = 0; i < NumElems; ++i)
2695      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2696    NumElems >>= 1;
2697    while (NumElems != 0) {
2698      for (unsigned i = 0; i < NumElems; ++i)
2699        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2700                           UnpckMask);
2701      NumElems >>= 1;
2702    }
2703    return V[0];
2704  }
2705
2706  return SDOperand();
2707}
2708
2709SDOperand
2710X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2711  SDOperand V1 = Op.getOperand(0);
2712  SDOperand V2 = Op.getOperand(1);
2713  SDOperand PermMask = Op.getOperand(2);
2714  MVT::ValueType VT = Op.getValueType();
2715  unsigned NumElems = PermMask.getNumOperands();
2716  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2717  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2718  bool V1IsSplat = false;
2719  bool V2IsSplat = false;
2720
2721  if (isUndefShuffle(Op.Val))
2722    return DAG.getNode(ISD::UNDEF, VT);
2723
2724  if (isZeroShuffle(Op.Val))
2725    return getZeroVector(VT, DAG);
2726
2727  if (isIdentityMask(PermMask.Val))
2728    return V1;
2729  else if (isIdentityMask(PermMask.Val, true))
2730    return V2;
2731
2732  if (isSplatMask(PermMask.Val)) {
2733    if (NumElems <= 4) return Op;
2734    // Promote it to a v4i32 splat.
2735    return PromoteSplat(Op, DAG);
2736  }
2737
2738  if (X86::isMOVLMask(PermMask.Val))
2739    return (V1IsUndef) ? V2 : Op;
2740
2741  if (X86::isMOVSHDUPMask(PermMask.Val) ||
2742      X86::isMOVSLDUPMask(PermMask.Val) ||
2743      X86::isMOVHLPSMask(PermMask.Val) ||
2744      X86::isMOVHPMask(PermMask.Val) ||
2745      X86::isMOVLPMask(PermMask.Val))
2746    return Op;
2747
2748  if (ShouldXformToMOVHLPS(PermMask.Val) ||
2749      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2750    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2751
2752  bool Commuted = false;
2753  V1IsSplat = isSplatVector(V1.Val);
2754  V2IsSplat = isSplatVector(V2.Val);
2755  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2756    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2757    std::swap(V1IsSplat, V2IsSplat);
2758    std::swap(V1IsUndef, V2IsUndef);
2759    Commuted = true;
2760  }
2761
2762  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2763    if (V2IsUndef) return V1;
2764    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2765    if (V2IsSplat) {
2766      // V2 is a splat, so the mask may be malformed. That is, it may point
2767      // to any V2 element. The instruction selectior won't like this. Get
2768      // a corrected mask and commute to form a proper MOVS{S|D}.
2769      SDOperand NewMask = getMOVLMask(NumElems, DAG);
2770      if (NewMask.Val != PermMask.Val)
2771        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2772    }
2773    return Op;
2774  }
2775
2776  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2777      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2778      X86::isUNPCKLMask(PermMask.Val) ||
2779      X86::isUNPCKHMask(PermMask.Val))
2780    return Op;
2781
2782  if (V2IsSplat) {
2783    // Normalize mask so all entries that point to V2 points to its first
2784    // element then try to match unpck{h|l} again. If match, return a
2785    // new vector_shuffle with the corrected mask.
2786    SDOperand NewMask = NormalizeMask(PermMask, DAG);
2787    if (NewMask.Val != PermMask.Val) {
2788      if (X86::isUNPCKLMask(PermMask.Val, true)) {
2789        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2790        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2791      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2792        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2793        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2794      }
2795    }
2796  }
2797
2798  // Normalize the node to match x86 shuffle ops if needed
2799  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2800      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2801
2802  if (Commuted) {
2803    // Commute is back and try unpck* again.
2804    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2805    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2806        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2807        X86::isUNPCKLMask(PermMask.Val) ||
2808        X86::isUNPCKHMask(PermMask.Val))
2809      return Op;
2810  }
2811
2812  // If VT is integer, try PSHUF* first, then SHUFP*.
2813  if (MVT::isInteger(VT)) {
2814    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
2815    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
2816    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
2817         X86::isPSHUFDMask(PermMask.Val)) ||
2818        X86::isPSHUFHWMask(PermMask.Val) ||
2819        X86::isPSHUFLWMask(PermMask.Val)) {
2820      if (V2.getOpcode() != ISD::UNDEF)
2821        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2822                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2823      return Op;
2824    }
2825
2826    if (X86::isSHUFPMask(PermMask.Val) &&
2827        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
2828      return Op;
2829
2830    // Handle v8i16 shuffle high / low shuffle node pair.
2831    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2832      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2833      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2834      SmallVector<SDOperand, 8> MaskVec;
2835      for (unsigned i = 0; i != 4; ++i)
2836        MaskVec.push_back(PermMask.getOperand(i));
2837      for (unsigned i = 4; i != 8; ++i)
2838        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2839      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2840                                   &MaskVec[0], MaskVec.size());
2841      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2842      MaskVec.clear();
2843      for (unsigned i = 0; i != 4; ++i)
2844        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2845      for (unsigned i = 4; i != 8; ++i)
2846        MaskVec.push_back(PermMask.getOperand(i));
2847      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2848      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2849    }
2850  } else {
2851    // Floating point cases in the other order.
2852    if (X86::isSHUFPMask(PermMask.Val))
2853      return Op;
2854    if (X86::isPSHUFDMask(PermMask.Val) ||
2855        X86::isPSHUFHWMask(PermMask.Val) ||
2856        X86::isPSHUFLWMask(PermMask.Val)) {
2857      if (V2.getOpcode() != ISD::UNDEF)
2858        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2859                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2860      return Op;
2861    }
2862  }
2863
2864  if (NumElems == 4 &&
2865      // Don't do this for MMX.
2866      MVT::getSizeInBits(VT) != 64) {
2867    MVT::ValueType MaskVT = PermMask.getValueType();
2868    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2869    SmallVector<std::pair<int, int>, 8> Locs;
2870    Locs.reserve(NumElems);
2871    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2872    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2873    unsigned NumHi = 0;
2874    unsigned NumLo = 0;
2875    // If no more than two elements come from either vector. This can be
2876    // implemented with two shuffles. First shuffle gather the elements.
2877    // The second shuffle, which takes the first shuffle as both of its
2878    // vector operands, put the elements into the right order.
2879    for (unsigned i = 0; i != NumElems; ++i) {
2880      SDOperand Elt = PermMask.getOperand(i);
2881      if (Elt.getOpcode() == ISD::UNDEF) {
2882        Locs[i] = std::make_pair(-1, -1);
2883      } else {
2884        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2885        if (Val < NumElems) {
2886          Locs[i] = std::make_pair(0, NumLo);
2887          Mask1[NumLo] = Elt;
2888          NumLo++;
2889        } else {
2890          Locs[i] = std::make_pair(1, NumHi);
2891          if (2+NumHi < NumElems)
2892            Mask1[2+NumHi] = Elt;
2893          NumHi++;
2894        }
2895      }
2896    }
2897    if (NumLo <= 2 && NumHi <= 2) {
2898      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2899                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2900                                   &Mask1[0], Mask1.size()));
2901      for (unsigned i = 0; i != NumElems; ++i) {
2902        if (Locs[i].first == -1)
2903          continue;
2904        else {
2905          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2906          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2907          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2908        }
2909      }
2910
2911      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2912                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2913                                     &Mask2[0], Mask2.size()));
2914    }
2915
2916    // Break it into (shuffle shuffle_hi, shuffle_lo).
2917    Locs.clear();
2918    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2919    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2920    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2921    unsigned MaskIdx = 0;
2922    unsigned LoIdx = 0;
2923    unsigned HiIdx = NumElems/2;
2924    for (unsigned i = 0; i != NumElems; ++i) {
2925      if (i == NumElems/2) {
2926        MaskPtr = &HiMask;
2927        MaskIdx = 1;
2928        LoIdx = 0;
2929        HiIdx = NumElems/2;
2930      }
2931      SDOperand Elt = PermMask.getOperand(i);
2932      if (Elt.getOpcode() == ISD::UNDEF) {
2933        Locs[i] = std::make_pair(-1, -1);
2934      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
2935        Locs[i] = std::make_pair(MaskIdx, LoIdx);
2936        (*MaskPtr)[LoIdx] = Elt;
2937        LoIdx++;
2938      } else {
2939        Locs[i] = std::make_pair(MaskIdx, HiIdx);
2940        (*MaskPtr)[HiIdx] = Elt;
2941        HiIdx++;
2942      }
2943    }
2944
2945    SDOperand LoShuffle =
2946      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2947                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2948                              &LoMask[0], LoMask.size()));
2949    SDOperand HiShuffle =
2950      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2951                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2952                              &HiMask[0], HiMask.size()));
2953    SmallVector<SDOperand, 8> MaskOps;
2954    for (unsigned i = 0; i != NumElems; ++i) {
2955      if (Locs[i].first == -1) {
2956        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
2957      } else {
2958        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
2959        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
2960      }
2961    }
2962    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
2963                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2964                                   &MaskOps[0], MaskOps.size()));
2965  }
2966
2967  return SDOperand();
2968}
2969
2970SDOperand
2971X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2972  if (!isa<ConstantSDNode>(Op.getOperand(1)))
2973    return SDOperand();
2974
2975  MVT::ValueType VT = Op.getValueType();
2976  // TODO: handle v16i8.
2977  if (MVT::getSizeInBits(VT) == 16) {
2978    // Transform it so it match pextrw which produces a 32-bit result.
2979    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
2980    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
2981                                    Op.getOperand(0), Op.getOperand(1));
2982    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
2983                                    DAG.getValueType(VT));
2984    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
2985  } else if (MVT::getSizeInBits(VT) == 32) {
2986    SDOperand Vec = Op.getOperand(0);
2987    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2988    if (Idx == 0)
2989      return Op;
2990    // SHUFPS the element to the lowest double word, then movss.
2991    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2992    SmallVector<SDOperand, 8> IdxVec;
2993    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
2994    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2995    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2996    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2997    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2998                                 &IdxVec[0], IdxVec.size());
2999    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3000                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3001    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3002                       DAG.getConstant(0, getPointerTy()));
3003  } else if (MVT::getSizeInBits(VT) == 64) {
3004    SDOperand Vec = Op.getOperand(0);
3005    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3006    if (Idx == 0)
3007      return Op;
3008
3009    // UNPCKHPD the element to the lowest double word, then movsd.
3010    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3011    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3012    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3013    SmallVector<SDOperand, 8> IdxVec;
3014    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3015    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3016    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3017                                 &IdxVec[0], IdxVec.size());
3018    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3019                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3020    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3021                       DAG.getConstant(0, getPointerTy()));
3022  }
3023
3024  return SDOperand();
3025}
3026
3027SDOperand
3028X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3029  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3030  // as its second argument.
3031  MVT::ValueType VT = Op.getValueType();
3032  MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3033  SDOperand N0 = Op.getOperand(0);
3034  SDOperand N1 = Op.getOperand(1);
3035  SDOperand N2 = Op.getOperand(2);
3036  if (MVT::getSizeInBits(BaseVT) == 16) {
3037    if (N1.getValueType() != MVT::i32)
3038      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3039    if (N2.getValueType() != MVT::i32)
3040      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3041    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3042  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3043    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3044    if (Idx == 0) {
3045      // Use a movss.
3046      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3047      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3048      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3049      SmallVector<SDOperand, 8> MaskVec;
3050      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3051      for (unsigned i = 1; i <= 3; ++i)
3052        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3053      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3054                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3055                                     &MaskVec[0], MaskVec.size()));
3056    } else {
3057      // Use two pinsrw instructions to insert a 32 bit value.
3058      Idx <<= 1;
3059      if (MVT::isFloatingPoint(N1.getValueType())) {
3060        N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3061        N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3062        N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3063                         DAG.getConstant(0, getPointerTy()));
3064      }
3065      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3066      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3067                       DAG.getConstant(Idx, getPointerTy()));
3068      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3069      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3070                       DAG.getConstant(Idx+1, getPointerTy()));
3071      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3072    }
3073  }
3074
3075  return SDOperand();
3076}
3077
3078SDOperand
3079X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3080  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3081  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3082}
3083
3084// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3085// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3086// one of the above mentioned nodes. It has to be wrapped because otherwise
3087// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3088// be used to form addressing mode. These wrapped nodes will be selected
3089// into MOV32ri.
3090SDOperand
3091X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3092  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3093  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3094                                               getPointerTy(),
3095                                               CP->getAlignment());
3096  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3097  // With PIC, the address is actually $g + Offset.
3098  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3099      !Subtarget->isPICStyleRIPRel()) {
3100    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3101                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3102                         Result);
3103  }
3104
3105  return Result;
3106}
3107
3108SDOperand
3109X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3110  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3111  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3112  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3113  // With PIC, the address is actually $g + Offset.
3114  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3115      !Subtarget->isPICStyleRIPRel()) {
3116    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3117                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3118                         Result);
3119  }
3120
3121  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3122  // load the value at address GV, not the value of GV itself. This means that
3123  // the GlobalAddress must be in the base or index register of the address, not
3124  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3125  // The same applies for external symbols during PIC codegen
3126  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3127    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3128
3129  return Result;
3130}
3131
3132// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3133static SDOperand
3134LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3135                              const MVT::ValueType PtrVT) {
3136  SDOperand InFlag;
3137  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3138                                     DAG.getNode(X86ISD::GlobalBaseReg,
3139                                                 PtrVT), InFlag);
3140  InFlag = Chain.getValue(1);
3141
3142  // emit leal symbol@TLSGD(,%ebx,1), %eax
3143  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3144  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3145                                             GA->getValueType(0),
3146                                             GA->getOffset());
3147  SDOperand Ops[] = { Chain,  TGA, InFlag };
3148  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3149  InFlag = Result.getValue(2);
3150  Chain = Result.getValue(1);
3151
3152  // call ___tls_get_addr. This function receives its argument in
3153  // the register EAX.
3154  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3155  InFlag = Chain.getValue(1);
3156
3157  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3158  SDOperand Ops1[] = { Chain,
3159                      DAG.getTargetExternalSymbol("___tls_get_addr",
3160                                                  PtrVT),
3161                      DAG.getRegister(X86::EAX, PtrVT),
3162                      DAG.getRegister(X86::EBX, PtrVT),
3163                      InFlag };
3164  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3165  InFlag = Chain.getValue(1);
3166
3167  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3168}
3169
3170// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3171// "local exec" model.
3172static SDOperand
3173LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3174                         const MVT::ValueType PtrVT) {
3175  // Get the Thread Pointer
3176  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3177  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3178  // exec)
3179  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3180                                             GA->getValueType(0),
3181                                             GA->getOffset());
3182  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3183
3184  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3185    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3186
3187  // The address of the thread local variable is the add of the thread
3188  // pointer with the offset of the variable.
3189  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3190}
3191
3192SDOperand
3193X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3194  // TODO: implement the "local dynamic" model
3195  // TODO: implement the "initial exec"model for pic executables
3196  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3197         "TLS not implemented for non-ELF and 64-bit targets");
3198  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3199  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3200  // otherwise use the "Local Exec"TLS Model
3201  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3202    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3203  else
3204    return LowerToTLSExecModel(GA, DAG, getPointerTy());
3205}
3206
3207SDOperand
3208X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3209  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3210  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3211  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3212  // With PIC, the address is actually $g + Offset.
3213  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3214      !Subtarget->isPICStyleRIPRel()) {
3215    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3216                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3217                         Result);
3218  }
3219
3220  return Result;
3221}
3222
3223SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3224  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3225  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3226  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3227  // With PIC, the address is actually $g + Offset.
3228  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3229      !Subtarget->isPICStyleRIPRel()) {
3230    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3231                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3232                         Result);
3233  }
3234
3235  return Result;
3236}
3237
3238SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3239    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3240           "Not an i64 shift!");
3241    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3242    SDOperand ShOpLo = Op.getOperand(0);
3243    SDOperand ShOpHi = Op.getOperand(1);
3244    SDOperand ShAmt  = Op.getOperand(2);
3245    SDOperand Tmp1 = isSRA ?
3246      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3247      DAG.getConstant(0, MVT::i32);
3248
3249    SDOperand Tmp2, Tmp3;
3250    if (Op.getOpcode() == ISD::SHL_PARTS) {
3251      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3252      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3253    } else {
3254      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3255      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3256    }
3257
3258    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3259    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3260                                    DAG.getConstant(32, MVT::i8));
3261    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3262    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3263
3264    SDOperand Hi, Lo;
3265    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3266
3267    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3268    SmallVector<SDOperand, 4> Ops;
3269    if (Op.getOpcode() == ISD::SHL_PARTS) {
3270      Ops.push_back(Tmp2);
3271      Ops.push_back(Tmp3);
3272      Ops.push_back(CC);
3273      Ops.push_back(InFlag);
3274      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3275      InFlag = Hi.getValue(1);
3276
3277      Ops.clear();
3278      Ops.push_back(Tmp3);
3279      Ops.push_back(Tmp1);
3280      Ops.push_back(CC);
3281      Ops.push_back(InFlag);
3282      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3283    } else {
3284      Ops.push_back(Tmp2);
3285      Ops.push_back(Tmp3);
3286      Ops.push_back(CC);
3287      Ops.push_back(InFlag);
3288      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3289      InFlag = Lo.getValue(1);
3290
3291      Ops.clear();
3292      Ops.push_back(Tmp3);
3293      Ops.push_back(Tmp1);
3294      Ops.push_back(CC);
3295      Ops.push_back(InFlag);
3296      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3297    }
3298
3299    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3300    Ops.clear();
3301    Ops.push_back(Lo);
3302    Ops.push_back(Hi);
3303    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3304}
3305
3306SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3307  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3308         Op.getOperand(0).getValueType() >= MVT::i16 &&
3309         "Unknown SINT_TO_FP to lower!");
3310
3311  SDOperand Result;
3312  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3313  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3314  MachineFunction &MF = DAG.getMachineFunction();
3315  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3316  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3317  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3318                                 StackSlot, NULL, 0);
3319
3320  // Build the FILD
3321  SDVTList Tys;
3322  if (X86ScalarSSE)
3323    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3324  else
3325    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3326  SmallVector<SDOperand, 8> Ops;
3327  Ops.push_back(Chain);
3328  Ops.push_back(StackSlot);
3329  Ops.push_back(DAG.getValueType(SrcVT));
3330  Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3331                       Tys, &Ops[0], Ops.size());
3332
3333  if (X86ScalarSSE) {
3334    Chain = Result.getValue(1);
3335    SDOperand InFlag = Result.getValue(2);
3336
3337    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3338    // shouldn't be necessary except that RFP cannot be live across
3339    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3340    MachineFunction &MF = DAG.getMachineFunction();
3341    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3342    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3343    Tys = DAG.getVTList(MVT::Other);
3344    SmallVector<SDOperand, 8> Ops;
3345    Ops.push_back(Chain);
3346    Ops.push_back(Result);
3347    Ops.push_back(StackSlot);
3348    Ops.push_back(DAG.getValueType(Op.getValueType()));
3349    Ops.push_back(InFlag);
3350    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3351    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3352  }
3353
3354  return Result;
3355}
3356
3357SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3358  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3359         "Unknown FP_TO_SINT to lower!");
3360  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3361  // stack slot.
3362  MachineFunction &MF = DAG.getMachineFunction();
3363  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3364  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3365  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3366
3367  unsigned Opc;
3368  switch (Op.getValueType()) {
3369    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3370    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3371    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3372    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3373  }
3374
3375  SDOperand Chain = DAG.getEntryNode();
3376  SDOperand Value = Op.getOperand(0);
3377  if (X86ScalarSSE) {
3378    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3379    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3380    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3381    SDOperand Ops[] = {
3382      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3383    };
3384    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3385    Chain = Value.getValue(1);
3386    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3387    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3388  }
3389
3390  // Build the FP_TO_INT*_IN_MEM
3391  SDOperand Ops[] = { Chain, Value, StackSlot };
3392  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3393
3394  // Load the result.
3395  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3396}
3397
3398SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3399  MVT::ValueType VT = Op.getValueType();
3400  MVT::ValueType EltVT = VT;
3401  if (MVT::isVector(VT))
3402    EltVT = MVT::getVectorElementType(VT);
3403  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3404  std::vector<Constant*> CV;
3405  if (EltVT == MVT::f64) {
3406    Constant *C = ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63)));
3407    CV.push_back(C);
3408    CV.push_back(C);
3409  } else {
3410    Constant *C = ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31)));
3411    CV.push_back(C);
3412    CV.push_back(C);
3413    CV.push_back(C);
3414    CV.push_back(C);
3415  }
3416  Constant *C = ConstantVector::get(CV);
3417  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3418  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3419                               false, 16);
3420  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3421}
3422
3423SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3424  MVT::ValueType VT = Op.getValueType();
3425  MVT::ValueType EltVT = VT;
3426  unsigned EltNum = 1;
3427  if (MVT::isVector(VT)) {
3428    EltVT = MVT::getVectorElementType(VT);
3429    EltNum = MVT::getVectorNumElements(VT);
3430  }
3431  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3432  std::vector<Constant*> CV;
3433  if (EltVT == MVT::f64) {
3434    Constant *C = ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63));
3435    CV.push_back(C);
3436    CV.push_back(C);
3437  } else {
3438    Constant *C = ConstantFP::get(OpNTy, BitsToFloat(1U << 31));
3439    CV.push_back(C);
3440    CV.push_back(C);
3441    CV.push_back(C);
3442    CV.push_back(C);
3443  }
3444  Constant *C = ConstantVector::get(CV);
3445  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3446  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3447                               false, 16);
3448  if (MVT::isVector(VT)) {
3449    return DAG.getNode(ISD::BIT_CONVERT, VT,
3450                       DAG.getNode(ISD::XOR, MVT::v2i64,
3451                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
3452                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
3453  } else {
3454    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3455  }
3456}
3457
3458SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3459  SDOperand Op0 = Op.getOperand(0);
3460  SDOperand Op1 = Op.getOperand(1);
3461  MVT::ValueType VT = Op.getValueType();
3462  MVT::ValueType SrcVT = Op1.getValueType();
3463  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
3464
3465  // If second operand is smaller, extend it first.
3466  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3467    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3468    SrcVT = VT;
3469  }
3470
3471  // First get the sign bit of second operand.
3472  std::vector<Constant*> CV;
3473  if (SrcVT == MVT::f64) {
3474    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
3475    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3476  } else {
3477    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
3478    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3479    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3480    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3481  }
3482  Constant *C = ConstantVector::get(CV);
3483  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3484  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
3485                                false, 16);
3486  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3487
3488  // Shift sign bit right or left if the two operands have different types.
3489  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3490    // Op0 is MVT::f32, Op1 is MVT::f64.
3491    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3492    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3493                          DAG.getConstant(32, MVT::i32));
3494    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3495    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3496                          DAG.getConstant(0, getPointerTy()));
3497  }
3498
3499  // Clear first operand sign bit.
3500  CV.clear();
3501  if (VT == MVT::f64) {
3502    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
3503    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3504  } else {
3505    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
3506    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3507    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3508    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3509  }
3510  C = ConstantVector::get(CV);
3511  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3512  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3513                                false, 16);
3514  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3515
3516  // Or the value with the sign bit.
3517  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3518}
3519
3520SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3521                                        SDOperand Chain) {
3522  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3523  SDOperand Cond;
3524  SDOperand Op0 = Op.getOperand(0);
3525  SDOperand Op1 = Op.getOperand(1);
3526  SDOperand CC = Op.getOperand(2);
3527  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3528  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3529  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3530  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3531  unsigned X86CC;
3532
3533  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3534                     Op0, Op1, DAG)) {
3535    SDOperand Ops1[] = { Chain, Op0, Op1 };
3536    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3537    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3538    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3539  }
3540
3541  assert(isFP && "Illegal integer SetCC!");
3542
3543  SDOperand COps[] = { Chain, Op0, Op1 };
3544  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3545
3546  switch (SetCCOpcode) {
3547  default: assert(false && "Illegal floating point SetCC!");
3548  case ISD::SETOEQ: {  // !PF & ZF
3549    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3550    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3551    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3552                         Tmp1.getValue(1) };
3553    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3554    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3555  }
3556  case ISD::SETUNE: {  // PF | !ZF
3557    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3558    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3559    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3560                         Tmp1.getValue(1) };
3561    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3562    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3563  }
3564  }
3565}
3566
3567SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3568  bool addTest = true;
3569  SDOperand Chain = DAG.getEntryNode();
3570  SDOperand Cond  = Op.getOperand(0);
3571  SDOperand CC;
3572  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3573
3574  if (Cond.getOpcode() == ISD::SETCC)
3575    Cond = LowerSETCC(Cond, DAG, Chain);
3576
3577  if (Cond.getOpcode() == X86ISD::SETCC) {
3578    CC = Cond.getOperand(0);
3579
3580    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3581    // (since flag operand cannot be shared). Use it as the condition setting
3582    // operand in place of the X86ISD::SETCC.
3583    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3584    // to use a test instead of duplicating the X86ISD::CMP (for register
3585    // pressure reason)?
3586    SDOperand Cmp = Cond.getOperand(1);
3587    unsigned Opc = Cmp.getOpcode();
3588    bool IllegalFPCMov = !X86ScalarSSE &&
3589      MVT::isFloatingPoint(Op.getValueType()) &&
3590      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3591    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3592        !IllegalFPCMov) {
3593      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3594      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3595      addTest = false;
3596    }
3597  }
3598
3599  if (addTest) {
3600    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3601    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3602    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3603  }
3604
3605  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3606  SmallVector<SDOperand, 4> Ops;
3607  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3608  // condition is true.
3609  Ops.push_back(Op.getOperand(2));
3610  Ops.push_back(Op.getOperand(1));
3611  Ops.push_back(CC);
3612  Ops.push_back(Cond.getValue(1));
3613  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3614}
3615
3616SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3617  bool addTest = true;
3618  SDOperand Chain = Op.getOperand(0);
3619  SDOperand Cond  = Op.getOperand(1);
3620  SDOperand Dest  = Op.getOperand(2);
3621  SDOperand CC;
3622  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3623
3624  if (Cond.getOpcode() == ISD::SETCC)
3625    Cond = LowerSETCC(Cond, DAG, Chain);
3626
3627  if (Cond.getOpcode() == X86ISD::SETCC) {
3628    CC = Cond.getOperand(0);
3629
3630    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3631    // (since flag operand cannot be shared). Use it as the condition setting
3632    // operand in place of the X86ISD::SETCC.
3633    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3634    // to use a test instead of duplicating the X86ISD::CMP (for register
3635    // pressure reason)?
3636    SDOperand Cmp = Cond.getOperand(1);
3637    unsigned Opc = Cmp.getOpcode();
3638    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3639      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3640      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3641      addTest = false;
3642    }
3643  }
3644
3645  if (addTest) {
3646    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3647    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3648    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3649  }
3650  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3651                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
3652}
3653
3654SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3655  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3656
3657  if (Subtarget->is64Bit())
3658    return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3659  else
3660    switch (CallingConv) {
3661    default:
3662      assert(0 && "Unsupported calling convention");
3663    case CallingConv::Fast:
3664      // TODO: Implement fastcc
3665      // Falls through
3666    case CallingConv::C:
3667    case CallingConv::X86_StdCall:
3668      return LowerCCCCallTo(Op, DAG, CallingConv);
3669    case CallingConv::X86_FastCall:
3670      return LowerFastCCCallTo(Op, DAG, CallingConv);
3671    }
3672}
3673
3674
3675// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3676// Calls to _alloca is needed to probe the stack when allocating more than 4k
3677// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3678// that the guard pages used by the OS virtual memory manager are allocated in
3679// correct sequence.
3680SDOperand
3681X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3682                                           SelectionDAG &DAG) {
3683  assert(Subtarget->isTargetCygMing() &&
3684         "This should be used only on Cygwin/Mingw targets");
3685
3686  // Get the inputs.
3687  SDOperand Chain = Op.getOperand(0);
3688  SDOperand Size  = Op.getOperand(1);
3689  // FIXME: Ensure alignment here
3690
3691  SDOperand Flag;
3692
3693  MVT::ValueType IntPtr = getPointerTy();
3694  MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3695
3696  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
3697  Flag = Chain.getValue(1);
3698
3699  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3700  SDOperand Ops[] = { Chain,
3701                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
3702                      DAG.getRegister(X86::EAX, IntPtr),
3703                      Flag };
3704  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
3705  Flag = Chain.getValue(1);
3706
3707  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
3708
3709  std::vector<MVT::ValueType> Tys;
3710  Tys.push_back(SPTy);
3711  Tys.push_back(MVT::Other);
3712  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
3713  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
3714}
3715
3716SDOperand
3717X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3718  MachineFunction &MF = DAG.getMachineFunction();
3719  const Function* Fn = MF.getFunction();
3720  if (Fn->hasExternalLinkage() &&
3721      Subtarget->isTargetCygMing() &&
3722      Fn->getName() == "main")
3723    MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3724
3725  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3726  if (Subtarget->is64Bit())
3727    return LowerX86_64CCCArguments(Op, DAG);
3728  else
3729    switch(CC) {
3730    default:
3731      assert(0 && "Unsupported calling convention");
3732    case CallingConv::Fast:
3733      // TODO: implement fastcc.
3734
3735      // Falls through
3736    case CallingConv::C:
3737      return LowerCCCArguments(Op, DAG);
3738    case CallingConv::X86_StdCall:
3739      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3740      return LowerCCCArguments(Op, DAG, true);
3741    case CallingConv::X86_FastCall:
3742      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3743      return LowerFastCCArguments(Op, DAG);
3744    }
3745}
3746
3747SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3748  SDOperand InFlag(0, 0);
3749  SDOperand Chain = Op.getOperand(0);
3750  unsigned Align =
3751    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3752  if (Align == 0) Align = 1;
3753
3754  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3755  // If not DWORD aligned or size is more than the threshold, call memset.
3756  // The libc version is likely to be faster for these cases. It can use the
3757  // address value and run time information about the CPU.
3758  if ((Align & 3) != 0 ||
3759      (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
3760    MVT::ValueType IntPtr = getPointerTy();
3761    const Type *IntPtrTy = getTargetData()->getIntPtrType();
3762    TargetLowering::ArgListTy Args;
3763    TargetLowering::ArgListEntry Entry;
3764    Entry.Node = Op.getOperand(1);
3765    Entry.Ty = IntPtrTy;
3766    Args.push_back(Entry);
3767    // Extend the unsigned i8 argument to be an int value for the call.
3768    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3769    Entry.Ty = IntPtrTy;
3770    Args.push_back(Entry);
3771    Entry.Node = Op.getOperand(3);
3772    Args.push_back(Entry);
3773    std::pair<SDOperand,SDOperand> CallResult =
3774      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3775                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3776    return CallResult.second;
3777  }
3778
3779  MVT::ValueType AVT;
3780  SDOperand Count;
3781  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3782  unsigned BytesLeft = 0;
3783  bool TwoRepStos = false;
3784  if (ValC) {
3785    unsigned ValReg;
3786    uint64_t Val = ValC->getValue() & 255;
3787
3788    // If the value is a constant, then we can potentially use larger sets.
3789    switch (Align & 3) {
3790      case 2:   // WORD aligned
3791        AVT = MVT::i16;
3792        ValReg = X86::AX;
3793        Val = (Val << 8) | Val;
3794        break;
3795      case 0:  // DWORD aligned
3796        AVT = MVT::i32;
3797        ValReg = X86::EAX;
3798        Val = (Val << 8)  | Val;
3799        Val = (Val << 16) | Val;
3800        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
3801          AVT = MVT::i64;
3802          ValReg = X86::RAX;
3803          Val = (Val << 32) | Val;
3804        }
3805        break;
3806      default:  // Byte aligned
3807        AVT = MVT::i8;
3808        ValReg = X86::AL;
3809        Count = Op.getOperand(3);
3810        break;
3811    }
3812
3813    if (AVT > MVT::i8) {
3814      if (I) {
3815        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3816        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3817        BytesLeft = I->getValue() % UBytes;
3818      } else {
3819        assert(AVT >= MVT::i32 &&
3820               "Do not use rep;stos if not at least DWORD aligned");
3821        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3822                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3823        TwoRepStos = true;
3824      }
3825    }
3826
3827    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3828                              InFlag);
3829    InFlag = Chain.getValue(1);
3830  } else {
3831    AVT = MVT::i8;
3832    Count  = Op.getOperand(3);
3833    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3834    InFlag = Chain.getValue(1);
3835  }
3836
3837  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3838                            Count, InFlag);
3839  InFlag = Chain.getValue(1);
3840  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3841                            Op.getOperand(1), InFlag);
3842  InFlag = Chain.getValue(1);
3843
3844  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3845  SmallVector<SDOperand, 8> Ops;
3846  Ops.push_back(Chain);
3847  Ops.push_back(DAG.getValueType(AVT));
3848  Ops.push_back(InFlag);
3849  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3850
3851  if (TwoRepStos) {
3852    InFlag = Chain.getValue(1);
3853    Count = Op.getOperand(3);
3854    MVT::ValueType CVT = Count.getValueType();
3855    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3856                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3857    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3858                              Left, InFlag);
3859    InFlag = Chain.getValue(1);
3860    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3861    Ops.clear();
3862    Ops.push_back(Chain);
3863    Ops.push_back(DAG.getValueType(MVT::i8));
3864    Ops.push_back(InFlag);
3865    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3866  } else if (BytesLeft) {
3867    // Issue stores for the last 1 - 7 bytes.
3868    SDOperand Value;
3869    unsigned Val = ValC->getValue() & 255;
3870    unsigned Offset = I->getValue() - BytesLeft;
3871    SDOperand DstAddr = Op.getOperand(1);
3872    MVT::ValueType AddrVT = DstAddr.getValueType();
3873    if (BytesLeft >= 4) {
3874      Val = (Val << 8)  | Val;
3875      Val = (Val << 16) | Val;
3876      Value = DAG.getConstant(Val, MVT::i32);
3877      Chain = DAG.getStore(Chain, Value,
3878                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3879                                       DAG.getConstant(Offset, AddrVT)),
3880                           NULL, 0);
3881      BytesLeft -= 4;
3882      Offset += 4;
3883    }
3884    if (BytesLeft >= 2) {
3885      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3886      Chain = DAG.getStore(Chain, Value,
3887                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3888                                       DAG.getConstant(Offset, AddrVT)),
3889                           NULL, 0);
3890      BytesLeft -= 2;
3891      Offset += 2;
3892    }
3893    if (BytesLeft == 1) {
3894      Value = DAG.getConstant(Val, MVT::i8);
3895      Chain = DAG.getStore(Chain, Value,
3896                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3897                                       DAG.getConstant(Offset, AddrVT)),
3898                           NULL, 0);
3899    }
3900  }
3901
3902  return Chain;
3903}
3904
3905SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
3906  SDOperand Chain = Op.getOperand(0);
3907  unsigned Align =
3908    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3909  if (Align == 0) Align = 1;
3910
3911  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3912  // If not DWORD aligned or size is more than the threshold, call memcpy.
3913  // The libc version is likely to be faster for these cases. It can use the
3914  // address value and run time information about the CPU.
3915  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
3916  if ((Align & 3) != 0 ||
3917      (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
3918    MVT::ValueType IntPtr = getPointerTy();
3919    TargetLowering::ArgListTy Args;
3920    TargetLowering::ArgListEntry Entry;
3921    Entry.Ty = getTargetData()->getIntPtrType();
3922    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
3923    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
3924    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
3925    std::pair<SDOperand,SDOperand> CallResult =
3926      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3927                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
3928    return CallResult.second;
3929  }
3930
3931  MVT::ValueType AVT;
3932  SDOperand Count;
3933  unsigned BytesLeft = 0;
3934  bool TwoRepMovs = false;
3935  switch (Align & 3) {
3936    case 2:   // WORD aligned
3937      AVT = MVT::i16;
3938      break;
3939    case 0:  // DWORD aligned
3940      AVT = MVT::i32;
3941      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
3942        AVT = MVT::i64;
3943      break;
3944    default:  // Byte aligned
3945      AVT = MVT::i8;
3946      Count = Op.getOperand(3);
3947      break;
3948  }
3949
3950  if (AVT > MVT::i8) {
3951    if (I) {
3952      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3953      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3954      BytesLeft = I->getValue() % UBytes;
3955    } else {
3956      assert(AVT >= MVT::i32 &&
3957             "Do not use rep;movs if not at least DWORD aligned");
3958      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3959                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3960      TwoRepMovs = true;
3961    }
3962  }
3963
3964  SDOperand InFlag(0, 0);
3965  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3966                            Count, InFlag);
3967  InFlag = Chain.getValue(1);
3968  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3969                            Op.getOperand(1), InFlag);
3970  InFlag = Chain.getValue(1);
3971  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
3972                            Op.getOperand(2), InFlag);
3973  InFlag = Chain.getValue(1);
3974
3975  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3976  SmallVector<SDOperand, 8> Ops;
3977  Ops.push_back(Chain);
3978  Ops.push_back(DAG.getValueType(AVT));
3979  Ops.push_back(InFlag);
3980  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3981
3982  if (TwoRepMovs) {
3983    InFlag = Chain.getValue(1);
3984    Count = Op.getOperand(3);
3985    MVT::ValueType CVT = Count.getValueType();
3986    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3987                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3988    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3989                              Left, InFlag);
3990    InFlag = Chain.getValue(1);
3991    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3992    Ops.clear();
3993    Ops.push_back(Chain);
3994    Ops.push_back(DAG.getValueType(MVT::i8));
3995    Ops.push_back(InFlag);
3996    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3997  } else if (BytesLeft) {
3998    // Issue loads and stores for the last 1 - 7 bytes.
3999    unsigned Offset = I->getValue() - BytesLeft;
4000    SDOperand DstAddr = Op.getOperand(1);
4001    MVT::ValueType DstVT = DstAddr.getValueType();
4002    SDOperand SrcAddr = Op.getOperand(2);
4003    MVT::ValueType SrcVT = SrcAddr.getValueType();
4004    SDOperand Value;
4005    if (BytesLeft >= 4) {
4006      Value = DAG.getLoad(MVT::i32, Chain,
4007                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4008                                      DAG.getConstant(Offset, SrcVT)),
4009                          NULL, 0);
4010      Chain = Value.getValue(1);
4011      Chain = DAG.getStore(Chain, Value,
4012                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4013                                       DAG.getConstant(Offset, DstVT)),
4014                           NULL, 0);
4015      BytesLeft -= 4;
4016      Offset += 4;
4017    }
4018    if (BytesLeft >= 2) {
4019      Value = DAG.getLoad(MVT::i16, Chain,
4020                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4021                                      DAG.getConstant(Offset, SrcVT)),
4022                          NULL, 0);
4023      Chain = Value.getValue(1);
4024      Chain = DAG.getStore(Chain, Value,
4025                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4026                                       DAG.getConstant(Offset, DstVT)),
4027                           NULL, 0);
4028      BytesLeft -= 2;
4029      Offset += 2;
4030    }
4031
4032    if (BytesLeft == 1) {
4033      Value = DAG.getLoad(MVT::i8, Chain,
4034                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4035                                      DAG.getConstant(Offset, SrcVT)),
4036                          NULL, 0);
4037      Chain = Value.getValue(1);
4038      Chain = DAG.getStore(Chain, Value,
4039                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4040                                       DAG.getConstant(Offset, DstVT)),
4041                           NULL, 0);
4042    }
4043  }
4044
4045  return Chain;
4046}
4047
4048SDOperand
4049X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4050  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4051  SDOperand TheOp = Op.getOperand(0);
4052  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4053  if (Subtarget->is64Bit()) {
4054    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4055    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4056                                         MVT::i64, Copy1.getValue(2));
4057    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4058                                DAG.getConstant(32, MVT::i8));
4059    SDOperand Ops[] = {
4060      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4061    };
4062
4063    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4064    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4065  }
4066
4067  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4068  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4069                                       MVT::i32, Copy1.getValue(2));
4070  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4071  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4072  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4073}
4074
4075SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4076  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4077
4078  if (!Subtarget->is64Bit()) {
4079    // vastart just stores the address of the VarArgsFrameIndex slot into the
4080    // memory location argument.
4081    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4082    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4083                        SV->getOffset());
4084  }
4085
4086  // __va_list_tag:
4087  //   gp_offset         (0 - 6 * 8)
4088  //   fp_offset         (48 - 48 + 8 * 16)
4089  //   overflow_arg_area (point to parameters coming in memory).
4090  //   reg_save_area
4091  SmallVector<SDOperand, 8> MemOps;
4092  SDOperand FIN = Op.getOperand(1);
4093  // Store gp_offset
4094  SDOperand Store = DAG.getStore(Op.getOperand(0),
4095                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4096                                 FIN, SV->getValue(), SV->getOffset());
4097  MemOps.push_back(Store);
4098
4099  // Store fp_offset
4100  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4101                    DAG.getConstant(4, getPointerTy()));
4102  Store = DAG.getStore(Op.getOperand(0),
4103                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4104                       FIN, SV->getValue(), SV->getOffset());
4105  MemOps.push_back(Store);
4106
4107  // Store ptr to overflow_arg_area
4108  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4109                    DAG.getConstant(4, getPointerTy()));
4110  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4111  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4112                       SV->getOffset());
4113  MemOps.push_back(Store);
4114
4115  // Store ptr to reg_save_area.
4116  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4117                    DAG.getConstant(8, getPointerTy()));
4118  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4119  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4120                       SV->getOffset());
4121  MemOps.push_back(Store);
4122  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4123}
4124
4125SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4126  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4127  SDOperand Chain = Op.getOperand(0);
4128  SDOperand DstPtr = Op.getOperand(1);
4129  SDOperand SrcPtr = Op.getOperand(2);
4130  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4131  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4132
4133  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4134                       SrcSV->getValue(), SrcSV->getOffset());
4135  Chain = SrcPtr.getValue(1);
4136  for (unsigned i = 0; i < 3; ++i) {
4137    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4138                                SrcSV->getValue(), SrcSV->getOffset());
4139    Chain = Val.getValue(1);
4140    Chain = DAG.getStore(Chain, Val, DstPtr,
4141                         DstSV->getValue(), DstSV->getOffset());
4142    if (i == 2)
4143      break;
4144    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4145                         DAG.getConstant(8, getPointerTy()));
4146    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4147                         DAG.getConstant(8, getPointerTy()));
4148  }
4149  return Chain;
4150}
4151
4152SDOperand
4153X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4154  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4155  switch (IntNo) {
4156  default: return SDOperand();    // Don't custom lower most intrinsics.
4157    // Comparison intrinsics.
4158  case Intrinsic::x86_sse_comieq_ss:
4159  case Intrinsic::x86_sse_comilt_ss:
4160  case Intrinsic::x86_sse_comile_ss:
4161  case Intrinsic::x86_sse_comigt_ss:
4162  case Intrinsic::x86_sse_comige_ss:
4163  case Intrinsic::x86_sse_comineq_ss:
4164  case Intrinsic::x86_sse_ucomieq_ss:
4165  case Intrinsic::x86_sse_ucomilt_ss:
4166  case Intrinsic::x86_sse_ucomile_ss:
4167  case Intrinsic::x86_sse_ucomigt_ss:
4168  case Intrinsic::x86_sse_ucomige_ss:
4169  case Intrinsic::x86_sse_ucomineq_ss:
4170  case Intrinsic::x86_sse2_comieq_sd:
4171  case Intrinsic::x86_sse2_comilt_sd:
4172  case Intrinsic::x86_sse2_comile_sd:
4173  case Intrinsic::x86_sse2_comigt_sd:
4174  case Intrinsic::x86_sse2_comige_sd:
4175  case Intrinsic::x86_sse2_comineq_sd:
4176  case Intrinsic::x86_sse2_ucomieq_sd:
4177  case Intrinsic::x86_sse2_ucomilt_sd:
4178  case Intrinsic::x86_sse2_ucomile_sd:
4179  case Intrinsic::x86_sse2_ucomigt_sd:
4180  case Intrinsic::x86_sse2_ucomige_sd:
4181  case Intrinsic::x86_sse2_ucomineq_sd: {
4182    unsigned Opc = 0;
4183    ISD::CondCode CC = ISD::SETCC_INVALID;
4184    switch (IntNo) {
4185    default: break;
4186    case Intrinsic::x86_sse_comieq_ss:
4187    case Intrinsic::x86_sse2_comieq_sd:
4188      Opc = X86ISD::COMI;
4189      CC = ISD::SETEQ;
4190      break;
4191    case Intrinsic::x86_sse_comilt_ss:
4192    case Intrinsic::x86_sse2_comilt_sd:
4193      Opc = X86ISD::COMI;
4194      CC = ISD::SETLT;
4195      break;
4196    case Intrinsic::x86_sse_comile_ss:
4197    case Intrinsic::x86_sse2_comile_sd:
4198      Opc = X86ISD::COMI;
4199      CC = ISD::SETLE;
4200      break;
4201    case Intrinsic::x86_sse_comigt_ss:
4202    case Intrinsic::x86_sse2_comigt_sd:
4203      Opc = X86ISD::COMI;
4204      CC = ISD::SETGT;
4205      break;
4206    case Intrinsic::x86_sse_comige_ss:
4207    case Intrinsic::x86_sse2_comige_sd:
4208      Opc = X86ISD::COMI;
4209      CC = ISD::SETGE;
4210      break;
4211    case Intrinsic::x86_sse_comineq_ss:
4212    case Intrinsic::x86_sse2_comineq_sd:
4213      Opc = X86ISD::COMI;
4214      CC = ISD::SETNE;
4215      break;
4216    case Intrinsic::x86_sse_ucomieq_ss:
4217    case Intrinsic::x86_sse2_ucomieq_sd:
4218      Opc = X86ISD::UCOMI;
4219      CC = ISD::SETEQ;
4220      break;
4221    case Intrinsic::x86_sse_ucomilt_ss:
4222    case Intrinsic::x86_sse2_ucomilt_sd:
4223      Opc = X86ISD::UCOMI;
4224      CC = ISD::SETLT;
4225      break;
4226    case Intrinsic::x86_sse_ucomile_ss:
4227    case Intrinsic::x86_sse2_ucomile_sd:
4228      Opc = X86ISD::UCOMI;
4229      CC = ISD::SETLE;
4230      break;
4231    case Intrinsic::x86_sse_ucomigt_ss:
4232    case Intrinsic::x86_sse2_ucomigt_sd:
4233      Opc = X86ISD::UCOMI;
4234      CC = ISD::SETGT;
4235      break;
4236    case Intrinsic::x86_sse_ucomige_ss:
4237    case Intrinsic::x86_sse2_ucomige_sd:
4238      Opc = X86ISD::UCOMI;
4239      CC = ISD::SETGE;
4240      break;
4241    case Intrinsic::x86_sse_ucomineq_ss:
4242    case Intrinsic::x86_sse2_ucomineq_sd:
4243      Opc = X86ISD::UCOMI;
4244      CC = ISD::SETNE;
4245      break;
4246    }
4247
4248    unsigned X86CC;
4249    SDOperand LHS = Op.getOperand(1);
4250    SDOperand RHS = Op.getOperand(2);
4251    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4252
4253    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4254    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4255    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4256    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4257    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4258    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4259    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4260  }
4261  }
4262}
4263
4264SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4265  // Depths > 0 not supported yet!
4266  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4267    return SDOperand();
4268
4269  // Just load the return address
4270  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4271  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4272}
4273
4274SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4275  // Depths > 0 not supported yet!
4276  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4277    return SDOperand();
4278
4279  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4280  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4281                     DAG.getConstant(4, getPointerTy()));
4282}
4283
4284SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4285                                                       SelectionDAG &DAG) {
4286  // Is not yet supported on x86-64
4287  if (Subtarget->is64Bit())
4288    return SDOperand();
4289
4290  return DAG.getConstant(8, getPointerTy());
4291}
4292
4293SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4294{
4295  assert(!Subtarget->is64Bit() &&
4296         "Lowering of eh_return builtin is not supported yet on x86-64");
4297
4298  MachineFunction &MF = DAG.getMachineFunction();
4299  SDOperand Chain     = Op.getOperand(0);
4300  SDOperand Offset    = Op.getOperand(1);
4301  SDOperand Handler   = Op.getOperand(2);
4302
4303  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4304                                    getPointerTy());
4305
4306  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4307                                    DAG.getConstant(-4UL, getPointerTy()));
4308  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4309  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4310  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4311  MF.addLiveOut(X86::ECX);
4312
4313  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4314                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4315}
4316
4317SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4318                                             SelectionDAG &DAG) {
4319  SDOperand Root = Op.getOperand(0);
4320  SDOperand Trmp = Op.getOperand(1); // trampoline
4321  SDOperand FPtr = Op.getOperand(2); // nested function
4322  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4323
4324  SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4325
4326  if (Subtarget->is64Bit()) {
4327    return SDOperand(); // not yet supported
4328  } else {
4329    Function *Func = (Function *)
4330      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4331    unsigned CC = Func->getCallingConv();
4332    unsigned NestReg;
4333
4334    switch (CC) {
4335    default:
4336      assert(0 && "Unsupported calling convention");
4337    case CallingConv::C:
4338    case CallingConv::Fast:
4339    case CallingConv::X86_StdCall: {
4340      // Pass 'nest' parameter in ECX.
4341      // Must be kept in sync with X86CallingConv.td
4342      NestReg = X86::ECX;
4343
4344      // Check that ECX wasn't needed by an 'inreg' parameter.
4345      const FunctionType *FTy = Func->getFunctionType();
4346      const ParamAttrsList *Attrs = FTy->getParamAttrs();
4347
4348      if (Attrs && !Func->isVarArg()) {
4349        unsigned InRegCount = 0;
4350        unsigned Idx = 1;
4351
4352        for (FunctionType::param_iterator I = FTy->param_begin(),
4353             E = FTy->param_end(); I != E; ++I, ++Idx)
4354          if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4355            // FIXME: should only count parameters that are lowered to integers.
4356            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4357
4358        if (InRegCount > 2) {
4359          cerr << "Nest register in use - reduce number of inreg parameters!\n";
4360          abort();
4361        }
4362      }
4363      break;
4364    }
4365    case CallingConv::X86_FastCall:
4366      // Pass 'nest' parameter in EAX.
4367      // Must be kept in sync with X86CallingConv.td
4368      NestReg = X86::EAX;
4369      break;
4370    }
4371
4372    const X86InstrInfo *TII =
4373      ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4374
4375    SDOperand OutChains[4];
4376    SDOperand Addr, Disp;
4377
4378    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4379    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4380
4381    unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4382    unsigned char N86Reg  = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4383    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
4384                                Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4385
4386    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4387    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4388                                TrmpSV->getOffset() + 1, false, 1);
4389
4390    unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
4391    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4392    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4393                                TrmpSV->getValue() + 5, TrmpSV->getOffset());
4394
4395    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4396    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4397                                TrmpSV->getOffset() + 6, false, 1);
4398
4399    return DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4);
4400  }
4401}
4402
4403/// LowerOperation - Provide custom lowering hooks for some operations.
4404///
4405SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4406  switch (Op.getOpcode()) {
4407  default: assert(0 && "Should not custom lower this!");
4408  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4409  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4410  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4411  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4412  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4413  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4414  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4415  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4416  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4417  case ISD::SHL_PARTS:
4418  case ISD::SRA_PARTS:
4419  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4420  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4421  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4422  case ISD::FABS:               return LowerFABS(Op, DAG);
4423  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4424  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
4425  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
4426  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4427  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4428  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4429  case ISD::CALL:               return LowerCALL(Op, DAG);
4430  case ISD::RET:                return LowerRET(Op, DAG);
4431  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4432  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4433  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4434  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4435  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4436  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
4437  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4438  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4439  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4440  case ISD::FRAME_TO_ARGS_OFFSET:
4441                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4442  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4443  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
4444  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4445  }
4446  return SDOperand();
4447}
4448
4449const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4450  switch (Opcode) {
4451  default: return NULL;
4452  case X86ISD::SHLD:               return "X86ISD::SHLD";
4453  case X86ISD::SHRD:               return "X86ISD::SHRD";
4454  case X86ISD::FAND:               return "X86ISD::FAND";
4455  case X86ISD::FOR:                return "X86ISD::FOR";
4456  case X86ISD::FXOR:               return "X86ISD::FXOR";
4457  case X86ISD::FSRL:               return "X86ISD::FSRL";
4458  case X86ISD::FILD:               return "X86ISD::FILD";
4459  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4460  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4461  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4462  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4463  case X86ISD::FLD:                return "X86ISD::FLD";
4464  case X86ISD::FST:                return "X86ISD::FST";
4465  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4466  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4467  case X86ISD::CALL:               return "X86ISD::CALL";
4468  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4469  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4470  case X86ISD::CMP:                return "X86ISD::CMP";
4471  case X86ISD::COMI:               return "X86ISD::COMI";
4472  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4473  case X86ISD::SETCC:              return "X86ISD::SETCC";
4474  case X86ISD::CMOV:               return "X86ISD::CMOV";
4475  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4476  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4477  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4478  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4479  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4480  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4481  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4482  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4483  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4484  case X86ISD::FMAX:               return "X86ISD::FMAX";
4485  case X86ISD::FMIN:               return "X86ISD::FMIN";
4486  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
4487  case X86ISD::FRCP:               return "X86ISD::FRCP";
4488  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
4489  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
4490  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
4491  }
4492}
4493
4494// isLegalAddressingMode - Return true if the addressing mode represented
4495// by AM is legal for this target, for a load/store of the specified type.
4496bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4497                                              const Type *Ty) const {
4498  // X86 supports extremely general addressing modes.
4499
4500  // X86 allows a sign-extended 32-bit immediate field as a displacement.
4501  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4502    return false;
4503
4504  if (AM.BaseGV) {
4505    // We can only fold this if we don't need an extra load.
4506    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4507      return false;
4508
4509    // X86-64 only supports addr of globals in small code model.
4510    if (Subtarget->is64Bit()) {
4511      if (getTargetMachine().getCodeModel() != CodeModel::Small)
4512        return false;
4513      // If lower 4G is not available, then we must use rip-relative addressing.
4514      if (AM.BaseOffs || AM.Scale > 1)
4515        return false;
4516    }
4517  }
4518
4519  switch (AM.Scale) {
4520  case 0:
4521  case 1:
4522  case 2:
4523  case 4:
4524  case 8:
4525    // These scales always work.
4526    break;
4527  case 3:
4528  case 5:
4529  case 9:
4530    // These scales are formed with basereg+scalereg.  Only accept if there is
4531    // no basereg yet.
4532    if (AM.HasBaseReg)
4533      return false;
4534    break;
4535  default:  // Other stuff never works.
4536    return false;
4537  }
4538
4539  return true;
4540}
4541
4542
4543/// isShuffleMaskLegal - Targets can use this to indicate that they only
4544/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4545/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4546/// are assumed to be legal.
4547bool
4548X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4549  // Only do shuffles on 128-bit vector types for now.
4550  if (MVT::getSizeInBits(VT) == 64) return false;
4551  return (Mask.Val->getNumOperands() <= 4 ||
4552          isIdentityMask(Mask.Val) ||
4553          isIdentityMask(Mask.Val, true) ||
4554          isSplatMask(Mask.Val)  ||
4555          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4556          X86::isUNPCKLMask(Mask.Val) ||
4557          X86::isUNPCKHMask(Mask.Val) ||
4558          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4559          X86::isUNPCKH_v_undef_Mask(Mask.Val));
4560}
4561
4562bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4563                                               MVT::ValueType EVT,
4564                                               SelectionDAG &DAG) const {
4565  unsigned NumElts = BVOps.size();
4566  // Only do shuffles on 128-bit vector types for now.
4567  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4568  if (NumElts == 2) return true;
4569  if (NumElts == 4) {
4570    return (isMOVLMask(&BVOps[0], 4)  ||
4571            isCommutedMOVL(&BVOps[0], 4, true) ||
4572            isSHUFPMask(&BVOps[0], 4) ||
4573            isCommutedSHUFP(&BVOps[0], 4));
4574  }
4575  return false;
4576}
4577
4578//===----------------------------------------------------------------------===//
4579//                           X86 Scheduler Hooks
4580//===----------------------------------------------------------------------===//
4581
4582MachineBasicBlock *
4583X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4584                                           MachineBasicBlock *BB) {
4585  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4586  switch (MI->getOpcode()) {
4587  default: assert(false && "Unexpected instr type to insert");
4588  case X86::CMOV_FR32:
4589  case X86::CMOV_FR64:
4590  case X86::CMOV_V4F32:
4591  case X86::CMOV_V2F64:
4592  case X86::CMOV_V2I64: {
4593    // To "insert" a SELECT_CC instruction, we actually have to insert the
4594    // diamond control-flow pattern.  The incoming instruction knows the
4595    // destination vreg to set, the condition code register to branch on, the
4596    // true/false values to select between, and a branch opcode to use.
4597    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4598    ilist<MachineBasicBlock>::iterator It = BB;
4599    ++It;
4600
4601    //  thisMBB:
4602    //  ...
4603    //   TrueVal = ...
4604    //   cmpTY ccX, r1, r2
4605    //   bCC copy1MBB
4606    //   fallthrough --> copy0MBB
4607    MachineBasicBlock *thisMBB = BB;
4608    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4609    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4610    unsigned Opc =
4611      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4612    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4613    MachineFunction *F = BB->getParent();
4614    F->getBasicBlockList().insert(It, copy0MBB);
4615    F->getBasicBlockList().insert(It, sinkMBB);
4616    // Update machine-CFG edges by first adding all successors of the current
4617    // block to the new block which will contain the Phi node for the select.
4618    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4619        e = BB->succ_end(); i != e; ++i)
4620      sinkMBB->addSuccessor(*i);
4621    // Next, remove all successors of the current block, and add the true
4622    // and fallthrough blocks as its successors.
4623    while(!BB->succ_empty())
4624      BB->removeSuccessor(BB->succ_begin());
4625    BB->addSuccessor(copy0MBB);
4626    BB->addSuccessor(sinkMBB);
4627
4628    //  copy0MBB:
4629    //   %FalseValue = ...
4630    //   # fallthrough to sinkMBB
4631    BB = copy0MBB;
4632
4633    // Update machine-CFG edges
4634    BB->addSuccessor(sinkMBB);
4635
4636    //  sinkMBB:
4637    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4638    //  ...
4639    BB = sinkMBB;
4640    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4641      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4642      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4643
4644    delete MI;   // The pseudo instruction is gone now.
4645    return BB;
4646  }
4647
4648  case X86::FP32_TO_INT16_IN_MEM:
4649  case X86::FP32_TO_INT32_IN_MEM:
4650  case X86::FP32_TO_INT64_IN_MEM:
4651  case X86::FP64_TO_INT16_IN_MEM:
4652  case X86::FP64_TO_INT32_IN_MEM:
4653  case X86::FP64_TO_INT64_IN_MEM:
4654  case X86::FP80_TO_INT16_IN_MEM:
4655  case X86::FP80_TO_INT32_IN_MEM:
4656  case X86::FP80_TO_INT64_IN_MEM: {
4657    // Change the floating point control register to use "round towards zero"
4658    // mode when truncating to an integer value.
4659    MachineFunction *F = BB->getParent();
4660    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4661    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4662
4663    // Load the old value of the high byte of the control word...
4664    unsigned OldCW =
4665      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4666    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4667
4668    // Set the high part to be round to zero...
4669    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4670      .addImm(0xC7F);
4671
4672    // Reload the modified control word now...
4673    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4674
4675    // Restore the memory image of control word to original value
4676    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4677      .addReg(OldCW);
4678
4679    // Get the X86 opcode to use.
4680    unsigned Opc;
4681    switch (MI->getOpcode()) {
4682    default: assert(0 && "illegal opcode!");
4683    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
4684    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
4685    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
4686    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
4687    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
4688    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
4689    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
4690    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
4691    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
4692    }
4693
4694    X86AddressMode AM;
4695    MachineOperand &Op = MI->getOperand(0);
4696    if (Op.isRegister()) {
4697      AM.BaseType = X86AddressMode::RegBase;
4698      AM.Base.Reg = Op.getReg();
4699    } else {
4700      AM.BaseType = X86AddressMode::FrameIndexBase;
4701      AM.Base.FrameIndex = Op.getFrameIndex();
4702    }
4703    Op = MI->getOperand(1);
4704    if (Op.isImmediate())
4705      AM.Scale = Op.getImm();
4706    Op = MI->getOperand(2);
4707    if (Op.isImmediate())
4708      AM.IndexReg = Op.getImm();
4709    Op = MI->getOperand(3);
4710    if (Op.isGlobalAddress()) {
4711      AM.GV = Op.getGlobal();
4712    } else {
4713      AM.Disp = Op.getImm();
4714    }
4715    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4716                      .addReg(MI->getOperand(4).getReg());
4717
4718    // Reload the original control word now.
4719    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4720
4721    delete MI;   // The pseudo instruction is gone now.
4722    return BB;
4723  }
4724  }
4725}
4726
4727//===----------------------------------------------------------------------===//
4728//                           X86 Optimization Hooks
4729//===----------------------------------------------------------------------===//
4730
4731void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4732                                                       uint64_t Mask,
4733                                                       uint64_t &KnownZero,
4734                                                       uint64_t &KnownOne,
4735                                                       const SelectionDAG &DAG,
4736                                                       unsigned Depth) const {
4737  unsigned Opc = Op.getOpcode();
4738  assert((Opc >= ISD::BUILTIN_OP_END ||
4739          Opc == ISD::INTRINSIC_WO_CHAIN ||
4740          Opc == ISD::INTRINSIC_W_CHAIN ||
4741          Opc == ISD::INTRINSIC_VOID) &&
4742         "Should use MaskedValueIsZero if you don't know whether Op"
4743         " is a target node!");
4744
4745  KnownZero = KnownOne = 0;   // Don't know anything.
4746  switch (Opc) {
4747  default: break;
4748  case X86ISD::SETCC:
4749    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4750    break;
4751  }
4752}
4753
4754/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4755/// element of the result of the vector shuffle.
4756static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4757  MVT::ValueType VT = N->getValueType(0);
4758  SDOperand PermMask = N->getOperand(2);
4759  unsigned NumElems = PermMask.getNumOperands();
4760  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4761  i %= NumElems;
4762  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4763    return (i == 0)
4764      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4765  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4766    SDOperand Idx = PermMask.getOperand(i);
4767    if (Idx.getOpcode() == ISD::UNDEF)
4768      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4769    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4770  }
4771  return SDOperand();
4772}
4773
4774/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4775/// node is a GlobalAddress + an offset.
4776static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4777  unsigned Opc = N->getOpcode();
4778  if (Opc == X86ISD::Wrapper) {
4779    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4780      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4781      return true;
4782    }
4783  } else if (Opc == ISD::ADD) {
4784    SDOperand N1 = N->getOperand(0);
4785    SDOperand N2 = N->getOperand(1);
4786    if (isGAPlusOffset(N1.Val, GA, Offset)) {
4787      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4788      if (V) {
4789        Offset += V->getSignExtended();
4790        return true;
4791      }
4792    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4793      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4794      if (V) {
4795        Offset += V->getSignExtended();
4796        return true;
4797      }
4798    }
4799  }
4800  return false;
4801}
4802
4803/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4804/// + Dist * Size.
4805static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4806                              MachineFrameInfo *MFI) {
4807  if (N->getOperand(0).Val != Base->getOperand(0).Val)
4808    return false;
4809
4810  SDOperand Loc = N->getOperand(1);
4811  SDOperand BaseLoc = Base->getOperand(1);
4812  if (Loc.getOpcode() == ISD::FrameIndex) {
4813    if (BaseLoc.getOpcode() != ISD::FrameIndex)
4814      return false;
4815    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
4816    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
4817    int FS  = MFI->getObjectSize(FI);
4818    int BFS = MFI->getObjectSize(BFI);
4819    if (FS != BFS || FS != Size) return false;
4820    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4821  } else {
4822    GlobalValue *GV1 = NULL;
4823    GlobalValue *GV2 = NULL;
4824    int64_t Offset1 = 0;
4825    int64_t Offset2 = 0;
4826    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4827    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4828    if (isGA1 && isGA2 && GV1 == GV2)
4829      return Offset1 == (Offset2 + Dist*Size);
4830  }
4831
4832  return false;
4833}
4834
4835static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4836                              const X86Subtarget *Subtarget) {
4837  GlobalValue *GV;
4838  int64_t Offset;
4839  if (isGAPlusOffset(Base, GV, Offset))
4840    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4841  else {
4842    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
4843    int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
4844    if (BFI < 0)
4845      // Fixed objects do not specify alignment, however the offsets are known.
4846      return ((Subtarget->getStackAlignment() % 16) == 0 &&
4847              (MFI->getObjectOffset(BFI) % 16) == 0);
4848    else
4849      return MFI->getObjectAlignment(BFI) >= 16;
4850  }
4851  return false;
4852}
4853
4854
4855/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4856/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4857/// if the load addresses are consecutive, non-overlapping, and in the right
4858/// order.
4859static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4860                                       const X86Subtarget *Subtarget) {
4861  MachineFunction &MF = DAG.getMachineFunction();
4862  MachineFrameInfo *MFI = MF.getFrameInfo();
4863  MVT::ValueType VT = N->getValueType(0);
4864  MVT::ValueType EVT = MVT::getVectorElementType(VT);
4865  SDOperand PermMask = N->getOperand(2);
4866  int NumElems = (int)PermMask.getNumOperands();
4867  SDNode *Base = NULL;
4868  for (int i = 0; i < NumElems; ++i) {
4869    SDOperand Idx = PermMask.getOperand(i);
4870    if (Idx.getOpcode() == ISD::UNDEF) {
4871      if (!Base) return SDOperand();
4872    } else {
4873      SDOperand Arg =
4874        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4875      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4876        return SDOperand();
4877      if (!Base)
4878        Base = Arg.Val;
4879      else if (!isConsecutiveLoad(Arg.Val, Base,
4880                                  i, MVT::getSizeInBits(EVT)/8,MFI))
4881        return SDOperand();
4882    }
4883  }
4884
4885  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
4886  LoadSDNode *LD = cast<LoadSDNode>(Base);
4887  if (isAlign16) {
4888    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4889                       LD->getSrcValueOffset(), LD->isVolatile());
4890  } else {
4891    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4892                       LD->getSrcValueOffset(), LD->isVolatile(),
4893                       LD->getAlignment());
4894  }
4895}
4896
4897/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4898static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4899                                      const X86Subtarget *Subtarget) {
4900  SDOperand Cond = N->getOperand(0);
4901
4902  // If we have SSE[12] support, try to form min/max nodes.
4903  if (Subtarget->hasSSE2() &&
4904      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4905    if (Cond.getOpcode() == ISD::SETCC) {
4906      // Get the LHS/RHS of the select.
4907      SDOperand LHS = N->getOperand(1);
4908      SDOperand RHS = N->getOperand(2);
4909      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4910
4911      unsigned Opcode = 0;
4912      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4913        switch (CC) {
4914        default: break;
4915        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4916        case ISD::SETULE:
4917        case ISD::SETLE:
4918          if (!UnsafeFPMath) break;
4919          // FALL THROUGH.
4920        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
4921        case ISD::SETLT:
4922          Opcode = X86ISD::FMIN;
4923          break;
4924
4925        case ISD::SETOGT: // (X > Y) ? X : Y -> max
4926        case ISD::SETUGT:
4927        case ISD::SETGT:
4928          if (!UnsafeFPMath) break;
4929          // FALL THROUGH.
4930        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
4931        case ISD::SETGE:
4932          Opcode = X86ISD::FMAX;
4933          break;
4934        }
4935      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4936        switch (CC) {
4937        default: break;
4938        case ISD::SETOGT: // (X > Y) ? Y : X -> min
4939        case ISD::SETUGT:
4940        case ISD::SETGT:
4941          if (!UnsafeFPMath) break;
4942          // FALL THROUGH.
4943        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
4944        case ISD::SETGE:
4945          Opcode = X86ISD::FMIN;
4946          break;
4947
4948        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
4949        case ISD::SETULE:
4950        case ISD::SETLE:
4951          if (!UnsafeFPMath) break;
4952          // FALL THROUGH.
4953        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
4954        case ISD::SETLT:
4955          Opcode = X86ISD::FMAX;
4956          break;
4957        }
4958      }
4959
4960      if (Opcode)
4961        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
4962    }
4963
4964  }
4965
4966  return SDOperand();
4967}
4968
4969
4970SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
4971                                               DAGCombinerInfo &DCI) const {
4972  SelectionDAG &DAG = DCI.DAG;
4973  switch (N->getOpcode()) {
4974  default: break;
4975  case ISD::VECTOR_SHUFFLE:
4976    return PerformShuffleCombine(N, DAG, Subtarget);
4977  case ISD::SELECT:
4978    return PerformSELECTCombine(N, DAG, Subtarget);
4979  }
4980
4981  return SDOperand();
4982}
4983
4984//===----------------------------------------------------------------------===//
4985//                           X86 Inline Assembly Support
4986//===----------------------------------------------------------------------===//
4987
4988/// getConstraintType - Given a constraint letter, return the type of
4989/// constraint it is for this target.
4990X86TargetLowering::ConstraintType
4991X86TargetLowering::getConstraintType(const std::string &Constraint) const {
4992  if (Constraint.size() == 1) {
4993    switch (Constraint[0]) {
4994    case 'A':
4995    case 'r':
4996    case 'R':
4997    case 'l':
4998    case 'q':
4999    case 'Q':
5000    case 'x':
5001    case 'Y':
5002      return C_RegisterClass;
5003    default:
5004      break;
5005    }
5006  }
5007  return TargetLowering::getConstraintType(Constraint);
5008}
5009
5010/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5011/// vector.  If it is invalid, don't add anything to Ops.
5012void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5013                                                     char Constraint,
5014                                                     std::vector<SDOperand>&Ops,
5015                                                     SelectionDAG &DAG) {
5016  SDOperand Result(0, 0);
5017
5018  switch (Constraint) {
5019  default: break;
5020  case 'I':
5021    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5022      if (C->getValue() <= 31) {
5023        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5024        break;
5025      }
5026    }
5027    return;
5028  case 'N':
5029    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5030      if (C->getValue() <= 255) {
5031        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5032        break;
5033      }
5034    }
5035    return;
5036  case 'i': {
5037    // Literal immediates are always ok.
5038    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5039      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5040      break;
5041    }
5042
5043    // If we are in non-pic codegen mode, we allow the address of a global (with
5044    // an optional displacement) to be used with 'i'.
5045    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5046    int64_t Offset = 0;
5047
5048    // Match either (GA) or (GA+C)
5049    if (GA) {
5050      Offset = GA->getOffset();
5051    } else if (Op.getOpcode() == ISD::ADD) {
5052      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5053      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5054      if (C && GA) {
5055        Offset = GA->getOffset()+C->getValue();
5056      } else {
5057        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5058        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5059        if (C && GA)
5060          Offset = GA->getOffset()+C->getValue();
5061        else
5062          C = 0, GA = 0;
5063      }
5064    }
5065
5066    if (GA) {
5067      // If addressing this global requires a load (e.g. in PIC mode), we can't
5068      // match.
5069      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5070                                         false))
5071        return;
5072
5073      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5074                                      Offset);
5075      Result = Op;
5076      break;
5077    }
5078
5079    // Otherwise, not valid for this mode.
5080    return;
5081  }
5082  }
5083
5084  if (Result.Val) {
5085    Ops.push_back(Result);
5086    return;
5087  }
5088  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5089}
5090
5091std::vector<unsigned> X86TargetLowering::
5092getRegClassForInlineAsmConstraint(const std::string &Constraint,
5093                                  MVT::ValueType VT) const {
5094  if (Constraint.size() == 1) {
5095    // FIXME: not handling fp-stack yet!
5096    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5097    default: break;  // Unknown constraint letter
5098    case 'A':   // EAX/EDX
5099      if (VT == MVT::i32 || VT == MVT::i64)
5100        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5101      break;
5102    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5103    case 'Q':   // Q_REGS
5104      if (VT == MVT::i32)
5105        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5106      else if (VT == MVT::i16)
5107        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5108      else if (VT == MVT::i8)
5109        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
5110        break;
5111    }
5112  }
5113
5114  return std::vector<unsigned>();
5115}
5116
5117std::pair<unsigned, const TargetRegisterClass*>
5118X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5119                                                MVT::ValueType VT) const {
5120  // First, see if this is a constraint that directly corresponds to an LLVM
5121  // register class.
5122  if (Constraint.size() == 1) {
5123    // GCC Constraint Letters
5124    switch (Constraint[0]) {
5125    default: break;
5126    case 'r':   // GENERAL_REGS
5127    case 'R':   // LEGACY_REGS
5128    case 'l':   // INDEX_REGS
5129      if (VT == MVT::i64 && Subtarget->is64Bit())
5130        return std::make_pair(0U, X86::GR64RegisterClass);
5131      if (VT == MVT::i32)
5132        return std::make_pair(0U, X86::GR32RegisterClass);
5133      else if (VT == MVT::i16)
5134        return std::make_pair(0U, X86::GR16RegisterClass);
5135      else if (VT == MVT::i8)
5136        return std::make_pair(0U, X86::GR8RegisterClass);
5137      break;
5138    case 'y':   // MMX_REGS if MMX allowed.
5139      if (!Subtarget->hasMMX()) break;
5140      return std::make_pair(0U, X86::VR64RegisterClass);
5141      break;
5142    case 'Y':   // SSE_REGS if SSE2 allowed
5143      if (!Subtarget->hasSSE2()) break;
5144      // FALL THROUGH.
5145    case 'x':   // SSE_REGS if SSE1 allowed
5146      if (!Subtarget->hasSSE1()) break;
5147
5148      switch (VT) {
5149      default: break;
5150      // Scalar SSE types.
5151      case MVT::f32:
5152      case MVT::i32:
5153        return std::make_pair(0U, X86::FR32RegisterClass);
5154      case MVT::f64:
5155      case MVT::i64:
5156        return std::make_pair(0U, X86::FR64RegisterClass);
5157      // Vector types.
5158      case MVT::v16i8:
5159      case MVT::v8i16:
5160      case MVT::v4i32:
5161      case MVT::v2i64:
5162      case MVT::v4f32:
5163      case MVT::v2f64:
5164        return std::make_pair(0U, X86::VR128RegisterClass);
5165      }
5166      break;
5167    }
5168  }
5169
5170  // Use the default implementation in TargetLowering to convert the register
5171  // constraint into a member of a register class.
5172  std::pair<unsigned, const TargetRegisterClass*> Res;
5173  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5174
5175  // Not found as a standard register?
5176  if (Res.second == 0) {
5177    // GCC calls "st(0)" just plain "st".
5178    if (StringsEqualNoCase("{st}", Constraint)) {
5179      Res.first = X86::ST0;
5180      Res.second = X86::RSTRegisterClass;
5181    }
5182
5183    return Res;
5184  }
5185
5186  // Otherwise, check to see if this is a register class of the wrong value
5187  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5188  // turn into {ax},{dx}.
5189  if (Res.second->hasType(VT))
5190    return Res;   // Correct type already, nothing to do.
5191
5192  // All of the single-register GCC register classes map their values onto
5193  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5194  // really want an 8-bit or 32-bit register, map to the appropriate register
5195  // class and return the appropriate register.
5196  if (Res.second != X86::GR16RegisterClass)
5197    return Res;
5198
5199  if (VT == MVT::i8) {
5200    unsigned DestReg = 0;
5201    switch (Res.first) {
5202    default: break;
5203    case X86::AX: DestReg = X86::AL; break;
5204    case X86::DX: DestReg = X86::DL; break;
5205    case X86::CX: DestReg = X86::CL; break;
5206    case X86::BX: DestReg = X86::BL; break;
5207    }
5208    if (DestReg) {
5209      Res.first = DestReg;
5210      Res.second = Res.second = X86::GR8RegisterClass;
5211    }
5212  } else if (VT == MVT::i32) {
5213    unsigned DestReg = 0;
5214    switch (Res.first) {
5215    default: break;
5216    case X86::AX: DestReg = X86::EAX; break;
5217    case X86::DX: DestReg = X86::EDX; break;
5218    case X86::CX: DestReg = X86::ECX; break;
5219    case X86::BX: DestReg = X86::EBX; break;
5220    case X86::SI: DestReg = X86::ESI; break;
5221    case X86::DI: DestReg = X86::EDI; break;
5222    case X86::BP: DestReg = X86::EBP; break;
5223    case X86::SP: DestReg = X86::ESP; break;
5224    }
5225    if (DestReg) {
5226      Res.first = DestReg;
5227      Res.second = Res.second = X86::GR32RegisterClass;
5228    }
5229  } else if (VT == MVT::i64) {
5230    unsigned DestReg = 0;
5231    switch (Res.first) {
5232    default: break;
5233    case X86::AX: DestReg = X86::RAX; break;
5234    case X86::DX: DestReg = X86::RDX; break;
5235    case X86::CX: DestReg = X86::RCX; break;
5236    case X86::BX: DestReg = X86::RBX; break;
5237    case X86::SI: DestReg = X86::RSI; break;
5238    case X86::DI: DestReg = X86::RDI; break;
5239    case X86::BP: DestReg = X86::RBP; break;
5240    case X86::SP: DestReg = X86::RSP; break;
5241    }
5242    if (DestReg) {
5243      Res.first = DestReg;
5244      Res.second = Res.second = X86::GR64RegisterClass;
5245    }
5246  }
5247
5248  return Res;
5249}
5250