X86ISelLowering.cpp revision f238f50aaf8a68f16dcc43a017aa32cbb73e938e
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include "llvm/Target/TargetOptions.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76/// simple subregister reference.  Idx is an index in the 128 bits we
77/// want.  It need not be aligned to a 128-bit bounday.  That makes
78/// lowering EXTRACT_VECTOR_ELT operations easier.
79static SDValue Extract128BitVector(SDValue Vec,
80                                   SDValue Idx,
81                                   SelectionDAG &DAG,
82                                   DebugLoc dl) {
83  EVT VT = Vec.getValueType();
84  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85  EVT ElVT = VT.getVectorElementType();
86  int Factor = VT.getSizeInBits()/128;
87  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88                                  VT.getVectorNumElements()/Factor);
89
90  // Extract from UNDEF is UNDEF.
91  if (Vec.getOpcode() == ISD::UNDEF)
92    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93
94  if (isa<ConstantSDNode>(Idx)) {
95    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96
97    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98    // we can match to VEXTRACTF128.
99    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100
101    // This is the index of the first element of the 128-bit chunk
102    // we want.
103    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104                                 * ElemsPerChunk);
105
106    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108                                 VecIdx);
109
110    return Result;
111  }
112
113  return SDValue();
114}
115
116/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117/// sets things up to match to an AVX VINSERTF128 instruction or a
118/// simple superregister reference.  Idx is an index in the 128 bits
119/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120/// lowering INSERT_VECTOR_ELT operations easier.
121static SDValue Insert128BitVector(SDValue Result,
122                                  SDValue Vec,
123                                  SDValue Idx,
124                                  SelectionDAG &DAG,
125                                  DebugLoc dl) {
126  if (isa<ConstantSDNode>(Idx)) {
127    EVT VT = Vec.getValueType();
128    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129
130    EVT ElVT = VT.getVectorElementType();
131    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132    EVT ResultVT = Result.getValueType();
133
134    // Insert the relevant 128 bits.
135    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136
137    // This is the index of the first element of the 128-bit chunk
138    // we want.
139    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140                                 * ElemsPerChunk);
141
142    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144                         VecIdx);
145    return Result;
146  }
147
148  return SDValue();
149}
150
151static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153  bool is64Bit = Subtarget->is64Bit();
154
155  if (Subtarget->isTargetEnvMacho()) {
156    if (is64Bit)
157      return new X8664_MachoTargetObjectFile();
158    return new TargetLoweringObjectFileMachO();
159  }
160
161  if (Subtarget->isTargetELF())
162    return new TargetLoweringObjectFileELF();
163  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164    return new TargetLoweringObjectFileCOFF();
165  llvm_unreachable("unknown subtarget type");
166}
167
168X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169  : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<X86Subtarget>();
171  X86ScalarSSEf64 = Subtarget->hasXMMInt();
172  X86ScalarSSEf32 = Subtarget->hasXMM();
173  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174
175  RegInfo = TM.getRegisterInfo();
176  TD = getTargetData();
177
178  // Set up the TargetLowering object.
179  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180
181  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182  setBooleanContents(ZeroOrOneBooleanContent);
183  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
184  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
185
186  // For 64-bit since we have so many registers use the ILP scheduler, for
187  // 32-bit code use the register pressure specific scheduling.
188  if (Subtarget->is64Bit())
189    setSchedulingPreference(Sched::ILP);
190  else
191    setSchedulingPreference(Sched::RegPressure);
192  setStackPointerRegisterToSaveRestore(X86StackPtr);
193
194  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
195    // Setup Windows compiler runtime calls.
196    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
197    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
198    setLibcallName(RTLIB::SREM_I64, "_allrem");
199    setLibcallName(RTLIB::UREM_I64, "_aullrem");
200    setLibcallName(RTLIB::MUL_I64, "_allmul");
201    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
202    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
203    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
209    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
210  }
211
212  if (Subtarget->isTargetDarwin()) {
213    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
214    setUseUnderscoreSetJmp(false);
215    setUseUnderscoreLongJmp(false);
216  } else if (Subtarget->isTargetMingw()) {
217    // MS runtime is weird: it exports _setjmp, but longjmp!
218    setUseUnderscoreSetJmp(true);
219    setUseUnderscoreLongJmp(false);
220  } else {
221    setUseUnderscoreSetJmp(true);
222    setUseUnderscoreLongJmp(true);
223  }
224
225  // Set up the register classes.
226  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
227  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
228  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
229  if (Subtarget->is64Bit())
230    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
231
232  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
233
234  // We don't accept any truncstore of integer registers.
235  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
236  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
239  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
240  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
241
242  // SETOEQ and SETUNE require checking two conditions.
243  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
244  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
245  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
248  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
249
250  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
251  // operation.
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
254  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
255
256  if (Subtarget->is64Bit()) {
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
259  } else if (!UseSoftFloat) {
260    // We have an algorithm for SSE2->double, and we turn this into a
261    // 64-bit FILD followed by conditional FADD for other targets.
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
263    // We have an algorithm for SSE2, and we turn this into a 64-bit
264    // FILD for other targets.
265    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
266  }
267
268  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
269  // this operation.
270  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
271  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
272
273  if (!UseSoftFloat) {
274    // SSE has no i16 to fp conversion, only i32
275    if (X86ScalarSSEf32) {
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277      // f32 and f64 cases are Legal, f80 case is not
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
279    } else {
280      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
282    }
283  } else {
284    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
285    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
286  }
287
288  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
289  // are Legal, f80 is custom lowered.
290  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
291  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
292
293  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
294  // this operation.
295  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
296  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
297
298  if (X86ScalarSSEf32) {
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
300    // f32 and f64 cases are Legal, f80 case is not
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
302  } else {
303    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
305  }
306
307  // Handle FP_TO_UINT by promoting the destination to a larger signed
308  // conversion.
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
311  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
312
313  if (Subtarget->is64Bit()) {
314    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
315    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
316  } else if (!UseSoftFloat) {
317    // Since AVX is a superset of SSE3, only check for SSE here.
318    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
319      // Expand FP_TO_UINT into a select.
320      // FIXME: We would like to use a Custom expander here eventually to do
321      // the optimal thing for SSE vs. the default expansion in the legalizer.
322      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
323    else
324      // With SSE3 we can use fisttpll to convert to a signed i64; without
325      // SSE, we're stuck with a fistpll.
326      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
327  }
328
329  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
330  if (!X86ScalarSSEf64) {
331    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
332    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
333    if (Subtarget->is64Bit()) {
334      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
335      // Without SSE, i64->f64 goes through memory.
336      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
337    }
338  }
339
340  // Scalar integer divide and remainder are lowered to use operations that
341  // produce two results, to match the available instructions. This exposes
342  // the two-result form to trivial CSE, which is able to combine x/y and x%y
343  // into a single instruction.
344  //
345  // Scalar integer multiply-high is also lowered to use two-result
346  // operations, to match the available instructions. However, plain multiply
347  // (low) operations are left as Legal, as there are single-result
348  // instructions for this in x86. Using the two-result multiply instructions
349  // when both high and low results are needed must be arranged by dagcombine.
350  for (unsigned i = 0, e = 4; i != e; ++i) {
351    MVT VT = IntVTs[i];
352    setOperationAction(ISD::MULHS, VT, Expand);
353    setOperationAction(ISD::MULHU, VT, Expand);
354    setOperationAction(ISD::SDIV, VT, Expand);
355    setOperationAction(ISD::UDIV, VT, Expand);
356    setOperationAction(ISD::SREM, VT, Expand);
357    setOperationAction(ISD::UREM, VT, Expand);
358
359    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
360    setOperationAction(ISD::ADDC, VT, Custom);
361    setOperationAction(ISD::ADDE, VT, Custom);
362    setOperationAction(ISD::SUBC, VT, Custom);
363    setOperationAction(ISD::SUBE, VT, Custom);
364  }
365
366  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
367  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
368  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
369  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
370  if (Subtarget->is64Bit())
371    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
375  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
379  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
380
381  if (Subtarget->hasBMI()) {
382    setOperationAction(ISD::CTTZ           , MVT::i8   , Promote);
383  } else {
384    setOperationAction(ISD::CTTZ           , MVT::i8   , Custom);
385    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
386    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
387    if (Subtarget->is64Bit())
388      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
389  }
390
391  if (Subtarget->hasLZCNT()) {
392    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
393  } else {
394    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
395    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
396    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
397    if (Subtarget->is64Bit())
398      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
399  }
400
401  if (Subtarget->hasPOPCNT()) {
402    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
403  } else {
404    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
405    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
406    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
407    if (Subtarget->is64Bit())
408      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
409  }
410
411  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
412  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
413
414  // These should be promoted to a larger select which is supported.
415  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
416  // X86 wants to expand cmov itself.
417  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
418  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
419  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
420  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
421  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
422  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
423  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
424  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
425  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
426  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
427  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
428  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
429  if (Subtarget->is64Bit()) {
430    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
431    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
432  }
433  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
434
435  // Darwin ABI issue.
436  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
437  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
438  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
439  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
440  if (Subtarget->is64Bit())
441    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
442  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
443  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
444  if (Subtarget->is64Bit()) {
445    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
446    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
447    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
448    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
449    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
450  }
451  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
452  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
453  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
454  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
455  if (Subtarget->is64Bit()) {
456    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
457    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
458    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
459  }
460
461  if (Subtarget->hasXMM())
462    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
463
464  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
465  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
466
467  // On X86 and X86-64, atomic operations are lowered to locked instructions.
468  // Locked instructions, in turn, have implicit fence semantics (all memory
469  // operations are flushed before issuing the locked instruction, and they
470  // are not buffered), so we can fold away the common pattern of
471  // fence-atomic-fence.
472  setShouldFoldAtomicFences(true);
473
474  // Expand certain atomics
475  for (unsigned i = 0, e = 4; i != e; ++i) {
476    MVT VT = IntVTs[i];
477    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
478    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
479    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
480  }
481
482  if (!Subtarget->is64Bit()) {
483    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
484    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
485    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
486    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
487    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
488    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
489    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
490    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
491  }
492
493  if (Subtarget->hasCmpxchg16b()) {
494    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
495  }
496
497  // FIXME - use subtarget debug flags
498  if (!Subtarget->isTargetDarwin() &&
499      !Subtarget->isTargetELF() &&
500      !Subtarget->isTargetCygMing()) {
501    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
502  }
503
504  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
505  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
506  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
507  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
508  if (Subtarget->is64Bit()) {
509    setExceptionPointerRegister(X86::RAX);
510    setExceptionSelectorRegister(X86::RDX);
511  } else {
512    setExceptionPointerRegister(X86::EAX);
513    setExceptionSelectorRegister(X86::EDX);
514  }
515  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
516  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
517
518  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
519  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
520
521  setOperationAction(ISD::TRAP, MVT::Other, Legal);
522
523  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
524  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
525  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
526  if (Subtarget->is64Bit()) {
527    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
528    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
529  } else {
530    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
531    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
532  }
533
534  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
535  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
536
537  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
538    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
539                       MVT::i64 : MVT::i32, Custom);
540  else if (EnableSegmentedStacks)
541    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
542                       MVT::i64 : MVT::i32, Custom);
543  else
544    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
545                       MVT::i64 : MVT::i32, Expand);
546
547  if (!UseSoftFloat && X86ScalarSSEf64) {
548    // f32 and f64 use SSE.
549    // Set up the FP register classes.
550    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
551    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
552
553    // Use ANDPD to simulate FABS.
554    setOperationAction(ISD::FABS , MVT::f64, Custom);
555    setOperationAction(ISD::FABS , MVT::f32, Custom);
556
557    // Use XORP to simulate FNEG.
558    setOperationAction(ISD::FNEG , MVT::f64, Custom);
559    setOperationAction(ISD::FNEG , MVT::f32, Custom);
560
561    // Use ANDPD and ORPD to simulate FCOPYSIGN.
562    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
563    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
564
565    // Lower this to FGETSIGNx86 plus an AND.
566    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
567    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
568
569    // We don't support sin/cos/fmod
570    setOperationAction(ISD::FSIN , MVT::f64, Expand);
571    setOperationAction(ISD::FCOS , MVT::f64, Expand);
572    setOperationAction(ISD::FSIN , MVT::f32, Expand);
573    setOperationAction(ISD::FCOS , MVT::f32, Expand);
574
575    // Expand FP immediates into loads from the stack, except for the special
576    // cases we handle.
577    addLegalFPImmediate(APFloat(+0.0)); // xorpd
578    addLegalFPImmediate(APFloat(+0.0f)); // xorps
579  } else if (!UseSoftFloat && X86ScalarSSEf32) {
580    // Use SSE for f32, x87 for f64.
581    // Set up the FP register classes.
582    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
583    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
584
585    // Use ANDPS to simulate FABS.
586    setOperationAction(ISD::FABS , MVT::f32, Custom);
587
588    // Use XORP to simulate FNEG.
589    setOperationAction(ISD::FNEG , MVT::f32, Custom);
590
591    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
592
593    // Use ANDPS and ORPS to simulate FCOPYSIGN.
594    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
595    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
596
597    // We don't support sin/cos/fmod
598    setOperationAction(ISD::FSIN , MVT::f32, Expand);
599    setOperationAction(ISD::FCOS , MVT::f32, Expand);
600
601    // Special cases we handle for FP constants.
602    addLegalFPImmediate(APFloat(+0.0f)); // xorps
603    addLegalFPImmediate(APFloat(+0.0)); // FLD0
604    addLegalFPImmediate(APFloat(+1.0)); // FLD1
605    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
606    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
607
608    if (!UnsafeFPMath) {
609      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
610      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
611    }
612  } else if (!UseSoftFloat) {
613    // f32 and f64 in x87.
614    // Set up the FP register classes.
615    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
616    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
617
618    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
619    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
620    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
622
623    if (!UnsafeFPMath) {
624      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
625      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
626    }
627    addLegalFPImmediate(APFloat(+0.0)); // FLD0
628    addLegalFPImmediate(APFloat(+1.0)); // FLD1
629    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
630    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
631    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
632    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
633    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
634    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
635  }
636
637  // We don't support FMA.
638  setOperationAction(ISD::FMA, MVT::f64, Expand);
639  setOperationAction(ISD::FMA, MVT::f32, Expand);
640
641  // Long double always uses X87.
642  if (!UseSoftFloat) {
643    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
644    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
645    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
646    {
647      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
648      addLegalFPImmediate(TmpFlt);  // FLD0
649      TmpFlt.changeSign();
650      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
651
652      bool ignored;
653      APFloat TmpFlt2(+1.0);
654      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
655                      &ignored);
656      addLegalFPImmediate(TmpFlt2);  // FLD1
657      TmpFlt2.changeSign();
658      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
659    }
660
661    if (!UnsafeFPMath) {
662      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
663      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
664    }
665
666    setOperationAction(ISD::FMA, MVT::f80, Expand);
667  }
668
669  // Always use a library call for pow.
670  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
671  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
672  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
673
674  setOperationAction(ISD::FLOG, MVT::f80, Expand);
675  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
676  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
677  setOperationAction(ISD::FEXP, MVT::f80, Expand);
678  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
679
680  // First set operation action for all vector types to either promote
681  // (for widening) or expand (for scalarization). Then we will selectively
682  // turn on ones that can be effectively codegen'd.
683  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
684       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
685    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
700    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
702    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
703    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
735    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
740    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
741         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
742      setTruncStoreAction((MVT::SimpleValueType)VT,
743                          (MVT::SimpleValueType)InnerVT, Expand);
744    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
745    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
746    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
747  }
748
749  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
750  // with -msoft-float, disable use of MMX as well.
751  if (!UseSoftFloat && Subtarget->hasMMX()) {
752    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
753    // No operations on x86mmx supported, everything uses intrinsics.
754  }
755
756  // MMX-sized vectors (other than x86mmx) are expected to be expanded
757  // into smaller operations.
758  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
759  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
760  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
761  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
762  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
763  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
764  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
765  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
766  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
767  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
768  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
769  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
770  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
771  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
772  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
773  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
774  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
775  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
776  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
777  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
778  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
779  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
780  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
781  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
782  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
783  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
784  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
785  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
786  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
787
788  if (!UseSoftFloat && Subtarget->hasXMM()) {
789    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
790
791    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
792    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
793    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
794    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
795    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
796    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
797    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
798    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
799    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
800    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
801    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
802    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
803  }
804
805  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
806    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
807
808    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
809    // registers cannot be used even for integer operations.
810    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
811    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
812    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
813    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
814
815    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
816    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
817    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
818    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
819    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
820    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
821    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
822    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
823    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
824    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
825    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
826    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
827    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
828    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
829    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
830    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
831
832    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
833    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
834    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
835    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
836
837    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
838    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
839    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
840    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
842
843    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
844    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
845    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
846    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
847    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
848
849    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
850    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
851      EVT VT = (MVT::SimpleValueType)i;
852      // Do not attempt to custom lower non-power-of-2 vectors
853      if (!isPowerOf2_32(VT.getVectorNumElements()))
854        continue;
855      // Do not attempt to custom lower non-128-bit vectors
856      if (!VT.is128BitVector())
857        continue;
858      setOperationAction(ISD::BUILD_VECTOR,
859                         VT.getSimpleVT().SimpleTy, Custom);
860      setOperationAction(ISD::VECTOR_SHUFFLE,
861                         VT.getSimpleVT().SimpleTy, Custom);
862      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
863                         VT.getSimpleVT().SimpleTy, Custom);
864    }
865
866    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
867    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
868    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
869    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
870    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
871    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
872
873    if (Subtarget->is64Bit()) {
874      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
875      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
876    }
877
878    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
879    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
880      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
881      EVT VT = SVT;
882
883      // Do not attempt to promote non-128-bit vectors
884      if (!VT.is128BitVector())
885        continue;
886
887      setOperationAction(ISD::AND,    SVT, Promote);
888      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
889      setOperationAction(ISD::OR,     SVT, Promote);
890      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
891      setOperationAction(ISD::XOR,    SVT, Promote);
892      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
893      setOperationAction(ISD::LOAD,   SVT, Promote);
894      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
895      setOperationAction(ISD::SELECT, SVT, Promote);
896      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
897    }
898
899    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
900
901    // Custom lower v2i64 and v2f64 selects.
902    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
903    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
904    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
905    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
906
907    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
908    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
909  }
910
911  if (Subtarget->hasSSE41orAVX()) {
912    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
913    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
914    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
915    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
916    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
917    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
918    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
919    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
920    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
921    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
922
923    // FIXME: Do we need to handle scalar-to-vector here?
924    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
925
926    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
927    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
928    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
929    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
930    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
931
932    // i8 and i16 vectors are custom , because the source register and source
933    // source memory operand types are not the same width.  f32 vectors are
934    // custom since the immediate controlling the insert encodes additional
935    // information.
936    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
937    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
938    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
939    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
940
941    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
942    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
943    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
944    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
945
946    // FIXME: these should be Legal but thats only for the case where
947    // the index is constant.  For now custom expand to deal with that
948    if (Subtarget->is64Bit()) {
949      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
950      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
951    }
952  }
953
954  if (Subtarget->hasXMMInt()) {
955    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
956    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
957
958    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
959    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
960
961    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
962    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
963
964    if (Subtarget->hasAVX2()) {
965      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
966      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
967
968      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
969      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
970
971      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
972    } else {
973      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
974      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
975
976      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
977      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
978
979      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
980    }
981  }
982
983  if (Subtarget->hasSSE42orAVX())
984    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
985
986  if (!UseSoftFloat && Subtarget->hasAVX()) {
987    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
988    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
989    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
990    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
991    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
992    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
993
994    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
995    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
996    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
997
998    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
999    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1000    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1001    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1002    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1003    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1004
1005    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1006    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1007    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1008    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1009    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1010    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1011
1012    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1013    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1014    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1015
1016    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1017    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1018    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1019    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1020    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1021    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1022
1023    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1024    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1025
1026    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1027    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1028
1029    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1030    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1031
1032    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1033    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1034    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1035    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1036
1037    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1038    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1039    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1040
1041    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1042    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1043    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1044    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1045
1046    if (Subtarget->hasAVX2()) {
1047      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1048      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1049      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1050      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1051
1052      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1053      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1054      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1055      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1056
1057      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1058      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1059      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1060      // Don't lower v32i8 because there is no 128-bit byte mul
1061
1062      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1063
1064      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1065      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1066
1067      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1068      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1069
1070      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1071    } else {
1072      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1073      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1074      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1075      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1076
1077      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1078      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1079      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1080      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1081
1082      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1083      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1084      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1085      // Don't lower v32i8 because there is no 128-bit byte mul
1086
1087      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1088      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1089
1090      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1091      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1092
1093      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1094    }
1095
1096    // Custom lower several nodes for 256-bit types.
1097    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1098                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1099      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1100      EVT VT = SVT;
1101
1102      // Extract subvector is special because the value type
1103      // (result) is 128-bit but the source is 256-bit wide.
1104      if (VT.is128BitVector())
1105        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1106
1107      // Do not attempt to custom lower other non-256-bit vectors
1108      if (!VT.is256BitVector())
1109        continue;
1110
1111      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1112      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1113      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1114      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1115      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1116      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1117    }
1118
1119    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1120    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1121      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1122      EVT VT = SVT;
1123
1124      // Do not attempt to promote non-256-bit vectors
1125      if (!VT.is256BitVector())
1126        continue;
1127
1128      setOperationAction(ISD::AND,    SVT, Promote);
1129      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1130      setOperationAction(ISD::OR,     SVT, Promote);
1131      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1132      setOperationAction(ISD::XOR,    SVT, Promote);
1133      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1134      setOperationAction(ISD::LOAD,   SVT, Promote);
1135      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1136      setOperationAction(ISD::SELECT, SVT, Promote);
1137      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1138    }
1139  }
1140
1141  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1142  // of this type with custom code.
1143  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1144         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1145    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1146  }
1147
1148  // We want to custom lower some of our intrinsics.
1149  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1150
1151
1152  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1153  // handle type legalization for these operations here.
1154  //
1155  // FIXME: We really should do custom legalization for addition and
1156  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1157  // than generic legalization for 64-bit multiplication-with-overflow, though.
1158  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1159    // Add/Sub/Mul with overflow operations are custom lowered.
1160    MVT VT = IntVTs[i];
1161    setOperationAction(ISD::SADDO, VT, Custom);
1162    setOperationAction(ISD::UADDO, VT, Custom);
1163    setOperationAction(ISD::SSUBO, VT, Custom);
1164    setOperationAction(ISD::USUBO, VT, Custom);
1165    setOperationAction(ISD::SMULO, VT, Custom);
1166    setOperationAction(ISD::UMULO, VT, Custom);
1167  }
1168
1169  // There are no 8-bit 3-address imul/mul instructions
1170  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1171  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1172
1173  if (!Subtarget->is64Bit()) {
1174    // These libcalls are not available in 32-bit.
1175    setLibcallName(RTLIB::SHL_I128, 0);
1176    setLibcallName(RTLIB::SRL_I128, 0);
1177    setLibcallName(RTLIB::SRA_I128, 0);
1178  }
1179
1180  // We have target-specific dag combine patterns for the following nodes:
1181  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1182  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1183  setTargetDAGCombine(ISD::BUILD_VECTOR);
1184  setTargetDAGCombine(ISD::VSELECT);
1185  setTargetDAGCombine(ISD::SELECT);
1186  setTargetDAGCombine(ISD::SHL);
1187  setTargetDAGCombine(ISD::SRA);
1188  setTargetDAGCombine(ISD::SRL);
1189  setTargetDAGCombine(ISD::OR);
1190  setTargetDAGCombine(ISD::AND);
1191  setTargetDAGCombine(ISD::ADD);
1192  setTargetDAGCombine(ISD::FADD);
1193  setTargetDAGCombine(ISD::FSUB);
1194  setTargetDAGCombine(ISD::SUB);
1195  setTargetDAGCombine(ISD::LOAD);
1196  setTargetDAGCombine(ISD::STORE);
1197  setTargetDAGCombine(ISD::ZERO_EXTEND);
1198  setTargetDAGCombine(ISD::SINT_TO_FP);
1199  if (Subtarget->is64Bit())
1200    setTargetDAGCombine(ISD::MUL);
1201  if (Subtarget->hasBMI())
1202    setTargetDAGCombine(ISD::XOR);
1203
1204  computeRegisterProperties();
1205
1206  // On Darwin, -Os means optimize for size without hurting performance,
1207  // do not reduce the limit.
1208  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1209  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1210  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1211  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1212  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1213  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1214  setPrefLoopAlignment(16);
1215  benefitFromCodePlacementOpt = true;
1216
1217  setPrefFunctionAlignment(4);
1218}
1219
1220
1221EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1222  if (!VT.isVector()) return MVT::i8;
1223  return VT.changeVectorElementTypeToInteger();
1224}
1225
1226
1227/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1228/// the desired ByVal argument alignment.
1229static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1230  if (MaxAlign == 16)
1231    return;
1232  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1233    if (VTy->getBitWidth() == 128)
1234      MaxAlign = 16;
1235  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1236    unsigned EltAlign = 0;
1237    getMaxByValAlign(ATy->getElementType(), EltAlign);
1238    if (EltAlign > MaxAlign)
1239      MaxAlign = EltAlign;
1240  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1241    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1242      unsigned EltAlign = 0;
1243      getMaxByValAlign(STy->getElementType(i), EltAlign);
1244      if (EltAlign > MaxAlign)
1245        MaxAlign = EltAlign;
1246      if (MaxAlign == 16)
1247        break;
1248    }
1249  }
1250  return;
1251}
1252
1253/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1254/// function arguments in the caller parameter area. For X86, aggregates
1255/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1256/// are at 4-byte boundaries.
1257unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1258  if (Subtarget->is64Bit()) {
1259    // Max of 8 and alignment of type.
1260    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1261    if (TyAlign > 8)
1262      return TyAlign;
1263    return 8;
1264  }
1265
1266  unsigned Align = 4;
1267  if (Subtarget->hasXMM())
1268    getMaxByValAlign(Ty, Align);
1269  return Align;
1270}
1271
1272/// getOptimalMemOpType - Returns the target specific optimal type for load
1273/// and store operations as a result of memset, memcpy, and memmove
1274/// lowering. If DstAlign is zero that means it's safe to destination
1275/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1276/// means there isn't a need to check it against alignment requirement,
1277/// probably because the source does not need to be loaded. If
1278/// 'IsZeroVal' is true, that means it's safe to return a
1279/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1280/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1281/// constant so it does not need to be loaded.
1282/// It returns EVT::Other if the type should be determined using generic
1283/// target-independent logic.
1284EVT
1285X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1286                                       unsigned DstAlign, unsigned SrcAlign,
1287                                       bool IsZeroVal,
1288                                       bool MemcpyStrSrc,
1289                                       MachineFunction &MF) const {
1290  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1291  // linux.  This is because the stack realignment code can't handle certain
1292  // cases like PR2962.  This should be removed when PR2962 is fixed.
1293  const Function *F = MF.getFunction();
1294  if (IsZeroVal &&
1295      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1296    if (Size >= 16 &&
1297        (Subtarget->isUnalignedMemAccessFast() ||
1298         ((DstAlign == 0 || DstAlign >= 16) &&
1299          (SrcAlign == 0 || SrcAlign >= 16))) &&
1300        Subtarget->getStackAlignment() >= 16) {
1301      if (Subtarget->hasAVX() &&
1302          Subtarget->getStackAlignment() >= 32)
1303        return MVT::v8f32;
1304      if (Subtarget->hasXMMInt())
1305        return MVT::v4i32;
1306      if (Subtarget->hasXMM())
1307        return MVT::v4f32;
1308    } else if (!MemcpyStrSrc && Size >= 8 &&
1309               !Subtarget->is64Bit() &&
1310               Subtarget->getStackAlignment() >= 8 &&
1311               Subtarget->hasXMMInt()) {
1312      // Do not use f64 to lower memcpy if source is string constant. It's
1313      // better to use i32 to avoid the loads.
1314      return MVT::f64;
1315    }
1316  }
1317  if (Subtarget->is64Bit() && Size >= 8)
1318    return MVT::i64;
1319  return MVT::i32;
1320}
1321
1322/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1323/// current function.  The returned value is a member of the
1324/// MachineJumpTableInfo::JTEntryKind enum.
1325unsigned X86TargetLowering::getJumpTableEncoding() const {
1326  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1327  // symbol.
1328  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1329      Subtarget->isPICStyleGOT())
1330    return MachineJumpTableInfo::EK_Custom32;
1331
1332  // Otherwise, use the normal jump table encoding heuristics.
1333  return TargetLowering::getJumpTableEncoding();
1334}
1335
1336const MCExpr *
1337X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1338                                             const MachineBasicBlock *MBB,
1339                                             unsigned uid,MCContext &Ctx) const{
1340  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1341         Subtarget->isPICStyleGOT());
1342  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1343  // entries.
1344  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1345                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1346}
1347
1348/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1349/// jumptable.
1350SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1351                                                    SelectionDAG &DAG) const {
1352  if (!Subtarget->is64Bit())
1353    // This doesn't have DebugLoc associated with it, but is not really the
1354    // same as a Register.
1355    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1356  return Table;
1357}
1358
1359/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1360/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1361/// MCExpr.
1362const MCExpr *X86TargetLowering::
1363getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1364                             MCContext &Ctx) const {
1365  // X86-64 uses RIP relative addressing based on the jump table label.
1366  if (Subtarget->isPICStyleRIPRel())
1367    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1368
1369  // Otherwise, the reference is relative to the PIC base.
1370  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1371}
1372
1373// FIXME: Why this routine is here? Move to RegInfo!
1374std::pair<const TargetRegisterClass*, uint8_t>
1375X86TargetLowering::findRepresentativeClass(EVT VT) const{
1376  const TargetRegisterClass *RRC = 0;
1377  uint8_t Cost = 1;
1378  switch (VT.getSimpleVT().SimpleTy) {
1379  default:
1380    return TargetLowering::findRepresentativeClass(VT);
1381  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1382    RRC = (Subtarget->is64Bit()
1383           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1384    break;
1385  case MVT::x86mmx:
1386    RRC = X86::VR64RegisterClass;
1387    break;
1388  case MVT::f32: case MVT::f64:
1389  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1390  case MVT::v4f32: case MVT::v2f64:
1391  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1392  case MVT::v4f64:
1393    RRC = X86::VR128RegisterClass;
1394    break;
1395  }
1396  return std::make_pair(RRC, Cost);
1397}
1398
1399bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1400                                               unsigned &Offset) const {
1401  if (!Subtarget->isTargetLinux())
1402    return false;
1403
1404  if (Subtarget->is64Bit()) {
1405    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1406    Offset = 0x28;
1407    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1408      AddressSpace = 256;
1409    else
1410      AddressSpace = 257;
1411  } else {
1412    // %gs:0x14 on i386
1413    Offset = 0x14;
1414    AddressSpace = 256;
1415  }
1416  return true;
1417}
1418
1419
1420//===----------------------------------------------------------------------===//
1421//               Return Value Calling Convention Implementation
1422//===----------------------------------------------------------------------===//
1423
1424#include "X86GenCallingConv.inc"
1425
1426bool
1427X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1428				  MachineFunction &MF, bool isVarArg,
1429                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1430                        LLVMContext &Context) const {
1431  SmallVector<CCValAssign, 16> RVLocs;
1432  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1433                 RVLocs, Context);
1434  return CCInfo.CheckReturn(Outs, RetCC_X86);
1435}
1436
1437SDValue
1438X86TargetLowering::LowerReturn(SDValue Chain,
1439                               CallingConv::ID CallConv, bool isVarArg,
1440                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1441                               const SmallVectorImpl<SDValue> &OutVals,
1442                               DebugLoc dl, SelectionDAG &DAG) const {
1443  MachineFunction &MF = DAG.getMachineFunction();
1444  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1445
1446  SmallVector<CCValAssign, 16> RVLocs;
1447  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1448                 RVLocs, *DAG.getContext());
1449  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1450
1451  // Add the regs to the liveout set for the function.
1452  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1453  for (unsigned i = 0; i != RVLocs.size(); ++i)
1454    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1455      MRI.addLiveOut(RVLocs[i].getLocReg());
1456
1457  SDValue Flag;
1458
1459  SmallVector<SDValue, 6> RetOps;
1460  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1461  // Operand #1 = Bytes To Pop
1462  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1463                   MVT::i16));
1464
1465  // Copy the result values into the output registers.
1466  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1467    CCValAssign &VA = RVLocs[i];
1468    assert(VA.isRegLoc() && "Can only return in registers!");
1469    SDValue ValToCopy = OutVals[i];
1470    EVT ValVT = ValToCopy.getValueType();
1471
1472    // If this is x86-64, and we disabled SSE, we can't return FP values,
1473    // or SSE or MMX vectors.
1474    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1475         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1476          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1477      report_fatal_error("SSE register return with SSE disabled");
1478    }
1479    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1480    // llvm-gcc has never done it right and no one has noticed, so this
1481    // should be OK for now.
1482    if (ValVT == MVT::f64 &&
1483        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1484      report_fatal_error("SSE2 register return with SSE2 disabled");
1485
1486    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1487    // the RET instruction and handled by the FP Stackifier.
1488    if (VA.getLocReg() == X86::ST0 ||
1489        VA.getLocReg() == X86::ST1) {
1490      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1491      // change the value to the FP stack register class.
1492      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1493        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1494      RetOps.push_back(ValToCopy);
1495      // Don't emit a copytoreg.
1496      continue;
1497    }
1498
1499    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1500    // which is returned in RAX / RDX.
1501    if (Subtarget->is64Bit()) {
1502      if (ValVT == MVT::x86mmx) {
1503        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1504          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1505          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1506                                  ValToCopy);
1507          // If we don't have SSE2 available, convert to v4f32 so the generated
1508          // register is legal.
1509          if (!Subtarget->hasXMMInt())
1510            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1511        }
1512      }
1513    }
1514
1515    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1516    Flag = Chain.getValue(1);
1517  }
1518
1519  // The x86-64 ABI for returning structs by value requires that we copy
1520  // the sret argument into %rax for the return. We saved the argument into
1521  // a virtual register in the entry block, so now we copy the value out
1522  // and into %rax.
1523  if (Subtarget->is64Bit() &&
1524      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1525    MachineFunction &MF = DAG.getMachineFunction();
1526    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1527    unsigned Reg = FuncInfo->getSRetReturnReg();
1528    assert(Reg &&
1529           "SRetReturnReg should have been set in LowerFormalArguments().");
1530    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1531
1532    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1533    Flag = Chain.getValue(1);
1534
1535    // RAX now acts like a return value.
1536    MRI.addLiveOut(X86::RAX);
1537  }
1538
1539  RetOps[0] = Chain;  // Update chain.
1540
1541  // Add the flag if we have it.
1542  if (Flag.getNode())
1543    RetOps.push_back(Flag);
1544
1545  return DAG.getNode(X86ISD::RET_FLAG, dl,
1546                     MVT::Other, &RetOps[0], RetOps.size());
1547}
1548
1549bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1550  if (N->getNumValues() != 1)
1551    return false;
1552  if (!N->hasNUsesOfValue(1, 0))
1553    return false;
1554
1555  SDNode *Copy = *N->use_begin();
1556  if (Copy->getOpcode() != ISD::CopyToReg &&
1557      Copy->getOpcode() != ISD::FP_EXTEND)
1558    return false;
1559
1560  bool HasRet = false;
1561  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1562       UI != UE; ++UI) {
1563    if (UI->getOpcode() != X86ISD::RET_FLAG)
1564      return false;
1565    HasRet = true;
1566  }
1567
1568  return HasRet;
1569}
1570
1571EVT
1572X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1573                                            ISD::NodeType ExtendKind) const {
1574  MVT ReturnMVT;
1575  // TODO: Is this also valid on 32-bit?
1576  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1577    ReturnMVT = MVT::i8;
1578  else
1579    ReturnMVT = MVT::i32;
1580
1581  EVT MinVT = getRegisterType(Context, ReturnMVT);
1582  return VT.bitsLT(MinVT) ? MinVT : VT;
1583}
1584
1585/// LowerCallResult - Lower the result values of a call into the
1586/// appropriate copies out of appropriate physical registers.
1587///
1588SDValue
1589X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1590                                   CallingConv::ID CallConv, bool isVarArg,
1591                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1592                                   DebugLoc dl, SelectionDAG &DAG,
1593                                   SmallVectorImpl<SDValue> &InVals) const {
1594
1595  // Assign locations to each value returned by this call.
1596  SmallVector<CCValAssign, 16> RVLocs;
1597  bool Is64Bit = Subtarget->is64Bit();
1598  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1599		 getTargetMachine(), RVLocs, *DAG.getContext());
1600  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1601
1602  // Copy all of the result registers out of their specified physreg.
1603  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1604    CCValAssign &VA = RVLocs[i];
1605    EVT CopyVT = VA.getValVT();
1606
1607    // If this is x86-64, and we disabled SSE, we can't return FP values
1608    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1609        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1610      report_fatal_error("SSE register return with SSE disabled");
1611    }
1612
1613    SDValue Val;
1614
1615    // If this is a call to a function that returns an fp value on the floating
1616    // point stack, we must guarantee the the value is popped from the stack, so
1617    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1618    // if the return value is not used. We use the FpPOP_RETVAL instruction
1619    // instead.
1620    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1621      // If we prefer to use the value in xmm registers, copy it out as f80 and
1622      // use a truncate to move it from fp stack reg to xmm reg.
1623      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1624      SDValue Ops[] = { Chain, InFlag };
1625      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1626                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1627      Val = Chain.getValue(0);
1628
1629      // Round the f80 to the right size, which also moves it to the appropriate
1630      // xmm register.
1631      if (CopyVT != VA.getValVT())
1632        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1633                          // This truncation won't change the value.
1634                          DAG.getIntPtrConstant(1));
1635    } else {
1636      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1637                                 CopyVT, InFlag).getValue(1);
1638      Val = Chain.getValue(0);
1639    }
1640    InFlag = Chain.getValue(2);
1641    InVals.push_back(Val);
1642  }
1643
1644  return Chain;
1645}
1646
1647
1648//===----------------------------------------------------------------------===//
1649//                C & StdCall & Fast Calling Convention implementation
1650//===----------------------------------------------------------------------===//
1651//  StdCall calling convention seems to be standard for many Windows' API
1652//  routines and around. It differs from C calling convention just a little:
1653//  callee should clean up the stack, not caller. Symbols should be also
1654//  decorated in some fancy way :) It doesn't support any vector arguments.
1655//  For info on fast calling convention see Fast Calling Convention (tail call)
1656//  implementation LowerX86_32FastCCCallTo.
1657
1658/// CallIsStructReturn - Determines whether a call uses struct return
1659/// semantics.
1660static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1661  if (Outs.empty())
1662    return false;
1663
1664  return Outs[0].Flags.isSRet();
1665}
1666
1667/// ArgsAreStructReturn - Determines whether a function uses struct
1668/// return semantics.
1669static bool
1670ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1671  if (Ins.empty())
1672    return false;
1673
1674  return Ins[0].Flags.isSRet();
1675}
1676
1677/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1678/// by "Src" to address "Dst" with size and alignment information specified by
1679/// the specific parameter attribute. The copy will be passed as a byval
1680/// function parameter.
1681static SDValue
1682CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1683                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1684                          DebugLoc dl) {
1685  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1686
1687  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1688                       /*isVolatile*/false, /*AlwaysInline=*/true,
1689                       MachinePointerInfo(), MachinePointerInfo());
1690}
1691
1692/// IsTailCallConvention - Return true if the calling convention is one that
1693/// supports tail call optimization.
1694static bool IsTailCallConvention(CallingConv::ID CC) {
1695  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1696}
1697
1698bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1699  if (!CI->isTailCall())
1700    return false;
1701
1702  CallSite CS(CI);
1703  CallingConv::ID CalleeCC = CS.getCallingConv();
1704  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1705    return false;
1706
1707  return true;
1708}
1709
1710/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1711/// a tailcall target by changing its ABI.
1712static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1713  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1714}
1715
1716SDValue
1717X86TargetLowering::LowerMemArgument(SDValue Chain,
1718                                    CallingConv::ID CallConv,
1719                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1720                                    DebugLoc dl, SelectionDAG &DAG,
1721                                    const CCValAssign &VA,
1722                                    MachineFrameInfo *MFI,
1723                                    unsigned i) const {
1724  // Create the nodes corresponding to a load from this parameter slot.
1725  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1726  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1727  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1728  EVT ValVT;
1729
1730  // If value is passed by pointer we have address passed instead of the value
1731  // itself.
1732  if (VA.getLocInfo() == CCValAssign::Indirect)
1733    ValVT = VA.getLocVT();
1734  else
1735    ValVT = VA.getValVT();
1736
1737  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1738  // changed with more analysis.
1739  // In case of tail call optimization mark all arguments mutable. Since they
1740  // could be overwritten by lowering of arguments in case of a tail call.
1741  if (Flags.isByVal()) {
1742    unsigned Bytes = Flags.getByValSize();
1743    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1744    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1745    return DAG.getFrameIndex(FI, getPointerTy());
1746  } else {
1747    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1748                                    VA.getLocMemOffset(), isImmutable);
1749    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1750    return DAG.getLoad(ValVT, dl, Chain, FIN,
1751                       MachinePointerInfo::getFixedStack(FI),
1752                       false, false, false, 0);
1753  }
1754}
1755
1756SDValue
1757X86TargetLowering::LowerFormalArguments(SDValue Chain,
1758                                        CallingConv::ID CallConv,
1759                                        bool isVarArg,
1760                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1761                                        DebugLoc dl,
1762                                        SelectionDAG &DAG,
1763                                        SmallVectorImpl<SDValue> &InVals)
1764                                          const {
1765  MachineFunction &MF = DAG.getMachineFunction();
1766  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1767
1768  const Function* Fn = MF.getFunction();
1769  if (Fn->hasExternalLinkage() &&
1770      Subtarget->isTargetCygMing() &&
1771      Fn->getName() == "main")
1772    FuncInfo->setForceFramePointer(true);
1773
1774  MachineFrameInfo *MFI = MF.getFrameInfo();
1775  bool Is64Bit = Subtarget->is64Bit();
1776  bool IsWin64 = Subtarget->isTargetWin64();
1777
1778  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1779         "Var args not supported with calling convention fastcc or ghc");
1780
1781  // Assign locations to all of the incoming arguments.
1782  SmallVector<CCValAssign, 16> ArgLocs;
1783  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1784                 ArgLocs, *DAG.getContext());
1785
1786  // Allocate shadow area for Win64
1787  if (IsWin64) {
1788    CCInfo.AllocateStack(32, 8);
1789  }
1790
1791  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1792
1793  unsigned LastVal = ~0U;
1794  SDValue ArgValue;
1795  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1796    CCValAssign &VA = ArgLocs[i];
1797    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1798    // places.
1799    assert(VA.getValNo() != LastVal &&
1800           "Don't support value assigned to multiple locs yet");
1801    (void)LastVal;
1802    LastVal = VA.getValNo();
1803
1804    if (VA.isRegLoc()) {
1805      EVT RegVT = VA.getLocVT();
1806      TargetRegisterClass *RC = NULL;
1807      if (RegVT == MVT::i32)
1808        RC = X86::GR32RegisterClass;
1809      else if (Is64Bit && RegVT == MVT::i64)
1810        RC = X86::GR64RegisterClass;
1811      else if (RegVT == MVT::f32)
1812        RC = X86::FR32RegisterClass;
1813      else if (RegVT == MVT::f64)
1814        RC = X86::FR64RegisterClass;
1815      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1816        RC = X86::VR256RegisterClass;
1817      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1818        RC = X86::VR128RegisterClass;
1819      else if (RegVT == MVT::x86mmx)
1820        RC = X86::VR64RegisterClass;
1821      else
1822        llvm_unreachable("Unknown argument type!");
1823
1824      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1825      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1826
1827      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1828      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1829      // right size.
1830      if (VA.getLocInfo() == CCValAssign::SExt)
1831        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1832                               DAG.getValueType(VA.getValVT()));
1833      else if (VA.getLocInfo() == CCValAssign::ZExt)
1834        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1835                               DAG.getValueType(VA.getValVT()));
1836      else if (VA.getLocInfo() == CCValAssign::BCvt)
1837        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1838
1839      if (VA.isExtInLoc()) {
1840        // Handle MMX values passed in XMM regs.
1841        if (RegVT.isVector()) {
1842          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1843                                 ArgValue);
1844        } else
1845          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1846      }
1847    } else {
1848      assert(VA.isMemLoc());
1849      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1850    }
1851
1852    // If value is passed via pointer - do a load.
1853    if (VA.getLocInfo() == CCValAssign::Indirect)
1854      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1855                             MachinePointerInfo(), false, false, false, 0);
1856
1857    InVals.push_back(ArgValue);
1858  }
1859
1860  // The x86-64 ABI for returning structs by value requires that we copy
1861  // the sret argument into %rax for the return. Save the argument into
1862  // a virtual register so that we can access it from the return points.
1863  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1864    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1865    unsigned Reg = FuncInfo->getSRetReturnReg();
1866    if (!Reg) {
1867      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1868      FuncInfo->setSRetReturnReg(Reg);
1869    }
1870    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1871    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1872  }
1873
1874  unsigned StackSize = CCInfo.getNextStackOffset();
1875  // Align stack specially for tail calls.
1876  if (FuncIsMadeTailCallSafe(CallConv))
1877    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1878
1879  // If the function takes variable number of arguments, make a frame index for
1880  // the start of the first vararg value... for expansion of llvm.va_start.
1881  if (isVarArg) {
1882    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1883                    CallConv != CallingConv::X86_ThisCall)) {
1884      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1885    }
1886    if (Is64Bit) {
1887      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1888
1889      // FIXME: We should really autogenerate these arrays
1890      static const unsigned GPR64ArgRegsWin64[] = {
1891        X86::RCX, X86::RDX, X86::R8,  X86::R9
1892      };
1893      static const unsigned GPR64ArgRegs64Bit[] = {
1894        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1895      };
1896      static const unsigned XMMArgRegs64Bit[] = {
1897        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1898        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1899      };
1900      const unsigned *GPR64ArgRegs;
1901      unsigned NumXMMRegs = 0;
1902
1903      if (IsWin64) {
1904        // The XMM registers which might contain var arg parameters are shadowed
1905        // in their paired GPR.  So we only need to save the GPR to their home
1906        // slots.
1907        TotalNumIntRegs = 4;
1908        GPR64ArgRegs = GPR64ArgRegsWin64;
1909      } else {
1910        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1911        GPR64ArgRegs = GPR64ArgRegs64Bit;
1912
1913        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1914      }
1915      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1916                                                       TotalNumIntRegs);
1917
1918      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1919      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1920             "SSE register cannot be used when SSE is disabled!");
1921      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1922             "SSE register cannot be used when SSE is disabled!");
1923      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1924        // Kernel mode asks for SSE to be disabled, so don't push them
1925        // on the stack.
1926        TotalNumXMMRegs = 0;
1927
1928      if (IsWin64) {
1929        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1930        // Get to the caller-allocated home save location.  Add 8 to account
1931        // for the return address.
1932        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1933        FuncInfo->setRegSaveFrameIndex(
1934          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1935        // Fixup to set vararg frame on shadow area (4 x i64).
1936        if (NumIntRegs < 4)
1937          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1938      } else {
1939        // For X86-64, if there are vararg parameters that are passed via
1940        // registers, then we must store them to their spots on the stack so they
1941        // may be loaded by deferencing the result of va_next.
1942        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1943        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1944        FuncInfo->setRegSaveFrameIndex(
1945          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1946                               false));
1947      }
1948
1949      // Store the integer parameter registers.
1950      SmallVector<SDValue, 8> MemOps;
1951      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1952                                        getPointerTy());
1953      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1954      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1955        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1956                                  DAG.getIntPtrConstant(Offset));
1957        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1958                                     X86::GR64RegisterClass);
1959        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1960        SDValue Store =
1961          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1962                       MachinePointerInfo::getFixedStack(
1963                         FuncInfo->getRegSaveFrameIndex(), Offset),
1964                       false, false, 0);
1965        MemOps.push_back(Store);
1966        Offset += 8;
1967      }
1968
1969      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1970        // Now store the XMM (fp + vector) parameter registers.
1971        SmallVector<SDValue, 11> SaveXMMOps;
1972        SaveXMMOps.push_back(Chain);
1973
1974        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1975        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1976        SaveXMMOps.push_back(ALVal);
1977
1978        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1979                               FuncInfo->getRegSaveFrameIndex()));
1980        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1981                               FuncInfo->getVarArgsFPOffset()));
1982
1983        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1984          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1985                                       X86::VR128RegisterClass);
1986          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1987          SaveXMMOps.push_back(Val);
1988        }
1989        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1990                                     MVT::Other,
1991                                     &SaveXMMOps[0], SaveXMMOps.size()));
1992      }
1993
1994      if (!MemOps.empty())
1995        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1996                            &MemOps[0], MemOps.size());
1997    }
1998  }
1999
2000  // Some CCs need callee pop.
2001  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
2002    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2003  } else {
2004    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2005    // If this is an sret function, the return should pop the hidden pointer.
2006    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
2007      FuncInfo->setBytesToPopOnReturn(4);
2008  }
2009
2010  if (!Is64Bit) {
2011    // RegSaveFrameIndex is X86-64 only.
2012    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2013    if (CallConv == CallingConv::X86_FastCall ||
2014        CallConv == CallingConv::X86_ThisCall)
2015      // fastcc functions can't have varargs.
2016      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2017  }
2018
2019  FuncInfo->setArgumentStackSize(StackSize);
2020
2021  return Chain;
2022}
2023
2024SDValue
2025X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2026                                    SDValue StackPtr, SDValue Arg,
2027                                    DebugLoc dl, SelectionDAG &DAG,
2028                                    const CCValAssign &VA,
2029                                    ISD::ArgFlagsTy Flags) const {
2030  unsigned LocMemOffset = VA.getLocMemOffset();
2031  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2032  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2033  if (Flags.isByVal())
2034    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2035
2036  return DAG.getStore(Chain, dl, Arg, PtrOff,
2037                      MachinePointerInfo::getStack(LocMemOffset),
2038                      false, false, 0);
2039}
2040
2041/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2042/// optimization is performed and it is required.
2043SDValue
2044X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2045                                           SDValue &OutRetAddr, SDValue Chain,
2046                                           bool IsTailCall, bool Is64Bit,
2047                                           int FPDiff, DebugLoc dl) const {
2048  // Adjust the Return address stack slot.
2049  EVT VT = getPointerTy();
2050  OutRetAddr = getReturnAddressFrameIndex(DAG);
2051
2052  // Load the "old" Return address.
2053  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2054                           false, false, false, 0);
2055  return SDValue(OutRetAddr.getNode(), 1);
2056}
2057
2058/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2059/// optimization is performed and it is required (FPDiff!=0).
2060static SDValue
2061EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2062                         SDValue Chain, SDValue RetAddrFrIdx,
2063                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2064  // Store the return address to the appropriate stack slot.
2065  if (!FPDiff) return Chain;
2066  // Calculate the new stack slot for the return address.
2067  int SlotSize = Is64Bit ? 8 : 4;
2068  int NewReturnAddrFI =
2069    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2070  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2071  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2072  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2073                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2074                       false, false, 0);
2075  return Chain;
2076}
2077
2078SDValue
2079X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2080                             CallingConv::ID CallConv, bool isVarArg,
2081                             bool &isTailCall,
2082                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2083                             const SmallVectorImpl<SDValue> &OutVals,
2084                             const SmallVectorImpl<ISD::InputArg> &Ins,
2085                             DebugLoc dl, SelectionDAG &DAG,
2086                             SmallVectorImpl<SDValue> &InVals) const {
2087  MachineFunction &MF = DAG.getMachineFunction();
2088  bool Is64Bit        = Subtarget->is64Bit();
2089  bool IsWin64        = Subtarget->isTargetWin64();
2090  bool IsStructRet    = CallIsStructReturn(Outs);
2091  bool IsSibcall      = false;
2092
2093  if (isTailCall) {
2094    // Check if it's really possible to do a tail call.
2095    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2096                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2097                                                   Outs, OutVals, Ins, DAG);
2098
2099    // Sibcalls are automatically detected tailcalls which do not require
2100    // ABI changes.
2101    if (!GuaranteedTailCallOpt && isTailCall)
2102      IsSibcall = true;
2103
2104    if (isTailCall)
2105      ++NumTailCalls;
2106  }
2107
2108  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2109         "Var args not supported with calling convention fastcc or ghc");
2110
2111  // Analyze operands of the call, assigning locations to each operand.
2112  SmallVector<CCValAssign, 16> ArgLocs;
2113  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2114                 ArgLocs, *DAG.getContext());
2115
2116  // Allocate shadow area for Win64
2117  if (IsWin64) {
2118    CCInfo.AllocateStack(32, 8);
2119  }
2120
2121  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2122
2123  // Get a count of how many bytes are to be pushed on the stack.
2124  unsigned NumBytes = CCInfo.getNextStackOffset();
2125  if (IsSibcall)
2126    // This is a sibcall. The memory operands are available in caller's
2127    // own caller's stack.
2128    NumBytes = 0;
2129  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2130    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2131
2132  int FPDiff = 0;
2133  if (isTailCall && !IsSibcall) {
2134    // Lower arguments at fp - stackoffset + fpdiff.
2135    unsigned NumBytesCallerPushed =
2136      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2137    FPDiff = NumBytesCallerPushed - NumBytes;
2138
2139    // Set the delta of movement of the returnaddr stackslot.
2140    // But only set if delta is greater than previous delta.
2141    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2142      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2143  }
2144
2145  if (!IsSibcall)
2146    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2147
2148  SDValue RetAddrFrIdx;
2149  // Load return address for tail calls.
2150  if (isTailCall && FPDiff)
2151    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2152                                    Is64Bit, FPDiff, dl);
2153
2154  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2155  SmallVector<SDValue, 8> MemOpChains;
2156  SDValue StackPtr;
2157
2158  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2159  // of tail call optimization arguments are handle later.
2160  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2161    CCValAssign &VA = ArgLocs[i];
2162    EVT RegVT = VA.getLocVT();
2163    SDValue Arg = OutVals[i];
2164    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2165    bool isByVal = Flags.isByVal();
2166
2167    // Promote the value if needed.
2168    switch (VA.getLocInfo()) {
2169    default: llvm_unreachable("Unknown loc info!");
2170    case CCValAssign::Full: break;
2171    case CCValAssign::SExt:
2172      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2173      break;
2174    case CCValAssign::ZExt:
2175      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2176      break;
2177    case CCValAssign::AExt:
2178      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2179        // Special case: passing MMX values in XMM registers.
2180        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2181        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2182        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2183      } else
2184        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2185      break;
2186    case CCValAssign::BCvt:
2187      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2188      break;
2189    case CCValAssign::Indirect: {
2190      // Store the argument.
2191      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2192      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2193      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2194                           MachinePointerInfo::getFixedStack(FI),
2195                           false, false, 0);
2196      Arg = SpillSlot;
2197      break;
2198    }
2199    }
2200
2201    if (VA.isRegLoc()) {
2202      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2203      if (isVarArg && IsWin64) {
2204        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2205        // shadow reg if callee is a varargs function.
2206        unsigned ShadowReg = 0;
2207        switch (VA.getLocReg()) {
2208        case X86::XMM0: ShadowReg = X86::RCX; break;
2209        case X86::XMM1: ShadowReg = X86::RDX; break;
2210        case X86::XMM2: ShadowReg = X86::R8; break;
2211        case X86::XMM3: ShadowReg = X86::R9; break;
2212        }
2213        if (ShadowReg)
2214          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2215      }
2216    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2217      assert(VA.isMemLoc());
2218      if (StackPtr.getNode() == 0)
2219        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2220      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2221                                             dl, DAG, VA, Flags));
2222    }
2223  }
2224
2225  if (!MemOpChains.empty())
2226    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2227                        &MemOpChains[0], MemOpChains.size());
2228
2229  // Build a sequence of copy-to-reg nodes chained together with token chain
2230  // and flag operands which copy the outgoing args into registers.
2231  SDValue InFlag;
2232  // Tail call byval lowering might overwrite argument registers so in case of
2233  // tail call optimization the copies to registers are lowered later.
2234  if (!isTailCall)
2235    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2236      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2237                               RegsToPass[i].second, InFlag);
2238      InFlag = Chain.getValue(1);
2239    }
2240
2241  if (Subtarget->isPICStyleGOT()) {
2242    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2243    // GOT pointer.
2244    if (!isTailCall) {
2245      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2246                               DAG.getNode(X86ISD::GlobalBaseReg,
2247                                           DebugLoc(), getPointerTy()),
2248                               InFlag);
2249      InFlag = Chain.getValue(1);
2250    } else {
2251      // If we are tail calling and generating PIC/GOT style code load the
2252      // address of the callee into ECX. The value in ecx is used as target of
2253      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2254      // for tail calls on PIC/GOT architectures. Normally we would just put the
2255      // address of GOT into ebx and then call target@PLT. But for tail calls
2256      // ebx would be restored (since ebx is callee saved) before jumping to the
2257      // target@PLT.
2258
2259      // Note: The actual moving to ECX is done further down.
2260      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2261      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2262          !G->getGlobal()->hasProtectedVisibility())
2263        Callee = LowerGlobalAddress(Callee, DAG);
2264      else if (isa<ExternalSymbolSDNode>(Callee))
2265        Callee = LowerExternalSymbol(Callee, DAG);
2266    }
2267  }
2268
2269  if (Is64Bit && isVarArg && !IsWin64) {
2270    // From AMD64 ABI document:
2271    // For calls that may call functions that use varargs or stdargs
2272    // (prototype-less calls or calls to functions containing ellipsis (...) in
2273    // the declaration) %al is used as hidden argument to specify the number
2274    // of SSE registers used. The contents of %al do not need to match exactly
2275    // the number of registers, but must be an ubound on the number of SSE
2276    // registers used and is in the range 0 - 8 inclusive.
2277
2278    // Count the number of XMM registers allocated.
2279    static const unsigned XMMArgRegs[] = {
2280      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2281      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2282    };
2283    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2284    assert((Subtarget->hasXMM() || !NumXMMRegs)
2285           && "SSE registers cannot be used when SSE is disabled");
2286
2287    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2288                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2289    InFlag = Chain.getValue(1);
2290  }
2291
2292
2293  // For tail calls lower the arguments to the 'real' stack slot.
2294  if (isTailCall) {
2295    // Force all the incoming stack arguments to be loaded from the stack
2296    // before any new outgoing arguments are stored to the stack, because the
2297    // outgoing stack slots may alias the incoming argument stack slots, and
2298    // the alias isn't otherwise explicit. This is slightly more conservative
2299    // than necessary, because it means that each store effectively depends
2300    // on every argument instead of just those arguments it would clobber.
2301    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2302
2303    SmallVector<SDValue, 8> MemOpChains2;
2304    SDValue FIN;
2305    int FI = 0;
2306    // Do not flag preceding copytoreg stuff together with the following stuff.
2307    InFlag = SDValue();
2308    if (GuaranteedTailCallOpt) {
2309      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2310        CCValAssign &VA = ArgLocs[i];
2311        if (VA.isRegLoc())
2312          continue;
2313        assert(VA.isMemLoc());
2314        SDValue Arg = OutVals[i];
2315        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2316        // Create frame index.
2317        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2318        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2319        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2320        FIN = DAG.getFrameIndex(FI, getPointerTy());
2321
2322        if (Flags.isByVal()) {
2323          // Copy relative to framepointer.
2324          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2325          if (StackPtr.getNode() == 0)
2326            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2327                                          getPointerTy());
2328          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2329
2330          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2331                                                           ArgChain,
2332                                                           Flags, DAG, dl));
2333        } else {
2334          // Store relative to framepointer.
2335          MemOpChains2.push_back(
2336            DAG.getStore(ArgChain, dl, Arg, FIN,
2337                         MachinePointerInfo::getFixedStack(FI),
2338                         false, false, 0));
2339        }
2340      }
2341    }
2342
2343    if (!MemOpChains2.empty())
2344      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2345                          &MemOpChains2[0], MemOpChains2.size());
2346
2347    // Copy arguments to their registers.
2348    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2349      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2350                               RegsToPass[i].second, InFlag);
2351      InFlag = Chain.getValue(1);
2352    }
2353    InFlag =SDValue();
2354
2355    // Store the return address to the appropriate stack slot.
2356    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2357                                     FPDiff, dl);
2358  }
2359
2360  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2361    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2362    // In the 64-bit large code model, we have to make all calls
2363    // through a register, since the call instruction's 32-bit
2364    // pc-relative offset may not be large enough to hold the whole
2365    // address.
2366  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2367    // If the callee is a GlobalAddress node (quite common, every direct call
2368    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2369    // it.
2370
2371    // We should use extra load for direct calls to dllimported functions in
2372    // non-JIT mode.
2373    const GlobalValue *GV = G->getGlobal();
2374    if (!GV->hasDLLImportLinkage()) {
2375      unsigned char OpFlags = 0;
2376      bool ExtraLoad = false;
2377      unsigned WrapperKind = ISD::DELETED_NODE;
2378
2379      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2380      // external symbols most go through the PLT in PIC mode.  If the symbol
2381      // has hidden or protected visibility, or if it is static or local, then
2382      // we don't need to use the PLT - we can directly call it.
2383      if (Subtarget->isTargetELF() &&
2384          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2385          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2386        OpFlags = X86II::MO_PLT;
2387      } else if (Subtarget->isPICStyleStubAny() &&
2388                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2389                 (!Subtarget->getTargetTriple().isMacOSX() ||
2390                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2391        // PC-relative references to external symbols should go through $stub,
2392        // unless we're building with the leopard linker or later, which
2393        // automatically synthesizes these stubs.
2394        OpFlags = X86II::MO_DARWIN_STUB;
2395      } else if (Subtarget->isPICStyleRIPRel() &&
2396                 isa<Function>(GV) &&
2397                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2398        // If the function is marked as non-lazy, generate an indirect call
2399        // which loads from the GOT directly. This avoids runtime overhead
2400        // at the cost of eager binding (and one extra byte of encoding).
2401        OpFlags = X86II::MO_GOTPCREL;
2402        WrapperKind = X86ISD::WrapperRIP;
2403        ExtraLoad = true;
2404      }
2405
2406      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2407                                          G->getOffset(), OpFlags);
2408
2409      // Add a wrapper if needed.
2410      if (WrapperKind != ISD::DELETED_NODE)
2411        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2412      // Add extra indirection if needed.
2413      if (ExtraLoad)
2414        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2415                             MachinePointerInfo::getGOT(),
2416                             false, false, false, 0);
2417    }
2418  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2419    unsigned char OpFlags = 0;
2420
2421    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2422    // external symbols should go through the PLT.
2423    if (Subtarget->isTargetELF() &&
2424        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2425      OpFlags = X86II::MO_PLT;
2426    } else if (Subtarget->isPICStyleStubAny() &&
2427               (!Subtarget->getTargetTriple().isMacOSX() ||
2428                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2429      // PC-relative references to external symbols should go through $stub,
2430      // unless we're building with the leopard linker or later, which
2431      // automatically synthesizes these stubs.
2432      OpFlags = X86II::MO_DARWIN_STUB;
2433    }
2434
2435    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2436                                         OpFlags);
2437  }
2438
2439  // Returns a chain & a flag for retval copy to use.
2440  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2441  SmallVector<SDValue, 8> Ops;
2442
2443  if (!IsSibcall && isTailCall) {
2444    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2445                           DAG.getIntPtrConstant(0, true), InFlag);
2446    InFlag = Chain.getValue(1);
2447  }
2448
2449  Ops.push_back(Chain);
2450  Ops.push_back(Callee);
2451
2452  if (isTailCall)
2453    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2454
2455  // Add argument registers to the end of the list so that they are known live
2456  // into the call.
2457  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2458    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2459                                  RegsToPass[i].second.getValueType()));
2460
2461  // Add an implicit use GOT pointer in EBX.
2462  if (!isTailCall && Subtarget->isPICStyleGOT())
2463    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2464
2465  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2466  if (Is64Bit && isVarArg && !IsWin64)
2467    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2468
2469  if (InFlag.getNode())
2470    Ops.push_back(InFlag);
2471
2472  if (isTailCall) {
2473    // We used to do:
2474    //// If this is the first return lowered for this function, add the regs
2475    //// to the liveout set for the function.
2476    // This isn't right, although it's probably harmless on x86; liveouts
2477    // should be computed from returns not tail calls.  Consider a void
2478    // function making a tail call to a function returning int.
2479    return DAG.getNode(X86ISD::TC_RETURN, dl,
2480                       NodeTys, &Ops[0], Ops.size());
2481  }
2482
2483  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2484  InFlag = Chain.getValue(1);
2485
2486  // Create the CALLSEQ_END node.
2487  unsigned NumBytesForCalleeToPush;
2488  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2489    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2490  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2491    // If this is a call to a struct-return function, the callee
2492    // pops the hidden struct pointer, so we have to push it back.
2493    // This is common for Darwin/X86, Linux & Mingw32 targets.
2494    NumBytesForCalleeToPush = 4;
2495  else
2496    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2497
2498  // Returns a flag for retval copy to use.
2499  if (!IsSibcall) {
2500    Chain = DAG.getCALLSEQ_END(Chain,
2501                               DAG.getIntPtrConstant(NumBytes, true),
2502                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2503                                                     true),
2504                               InFlag);
2505    InFlag = Chain.getValue(1);
2506  }
2507
2508  // Handle result values, copying them out of physregs into vregs that we
2509  // return.
2510  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2511                         Ins, dl, DAG, InVals);
2512}
2513
2514
2515//===----------------------------------------------------------------------===//
2516//                Fast Calling Convention (tail call) implementation
2517//===----------------------------------------------------------------------===//
2518
2519//  Like std call, callee cleans arguments, convention except that ECX is
2520//  reserved for storing the tail called function address. Only 2 registers are
2521//  free for argument passing (inreg). Tail call optimization is performed
2522//  provided:
2523//                * tailcallopt is enabled
2524//                * caller/callee are fastcc
2525//  On X86_64 architecture with GOT-style position independent code only local
2526//  (within module) calls are supported at the moment.
2527//  To keep the stack aligned according to platform abi the function
2528//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2529//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2530//  If a tail called function callee has more arguments than the caller the
2531//  caller needs to make sure that there is room to move the RETADDR to. This is
2532//  achieved by reserving an area the size of the argument delta right after the
2533//  original REtADDR, but before the saved framepointer or the spilled registers
2534//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2535//  stack layout:
2536//    arg1
2537//    arg2
2538//    RETADDR
2539//    [ new RETADDR
2540//      move area ]
2541//    (possible EBP)
2542//    ESI
2543//    EDI
2544//    local1 ..
2545
2546/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2547/// for a 16 byte align requirement.
2548unsigned
2549X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2550                                               SelectionDAG& DAG) const {
2551  MachineFunction &MF = DAG.getMachineFunction();
2552  const TargetMachine &TM = MF.getTarget();
2553  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2554  unsigned StackAlignment = TFI.getStackAlignment();
2555  uint64_t AlignMask = StackAlignment - 1;
2556  int64_t Offset = StackSize;
2557  uint64_t SlotSize = TD->getPointerSize();
2558  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2559    // Number smaller than 12 so just add the difference.
2560    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2561  } else {
2562    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2563    Offset = ((~AlignMask) & Offset) + StackAlignment +
2564      (StackAlignment-SlotSize);
2565  }
2566  return Offset;
2567}
2568
2569/// MatchingStackOffset - Return true if the given stack call argument is
2570/// already available in the same position (relatively) of the caller's
2571/// incoming argument stack.
2572static
2573bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2574                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2575                         const X86InstrInfo *TII) {
2576  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2577  int FI = INT_MAX;
2578  if (Arg.getOpcode() == ISD::CopyFromReg) {
2579    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2580    if (!TargetRegisterInfo::isVirtualRegister(VR))
2581      return false;
2582    MachineInstr *Def = MRI->getVRegDef(VR);
2583    if (!Def)
2584      return false;
2585    if (!Flags.isByVal()) {
2586      if (!TII->isLoadFromStackSlot(Def, FI))
2587        return false;
2588    } else {
2589      unsigned Opcode = Def->getOpcode();
2590      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2591          Def->getOperand(1).isFI()) {
2592        FI = Def->getOperand(1).getIndex();
2593        Bytes = Flags.getByValSize();
2594      } else
2595        return false;
2596    }
2597  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2598    if (Flags.isByVal())
2599      // ByVal argument is passed in as a pointer but it's now being
2600      // dereferenced. e.g.
2601      // define @foo(%struct.X* %A) {
2602      //   tail call @bar(%struct.X* byval %A)
2603      // }
2604      return false;
2605    SDValue Ptr = Ld->getBasePtr();
2606    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2607    if (!FINode)
2608      return false;
2609    FI = FINode->getIndex();
2610  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2611    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2612    FI = FINode->getIndex();
2613    Bytes = Flags.getByValSize();
2614  } else
2615    return false;
2616
2617  assert(FI != INT_MAX);
2618  if (!MFI->isFixedObjectIndex(FI))
2619    return false;
2620  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2621}
2622
2623/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2624/// for tail call optimization. Targets which want to do tail call
2625/// optimization should implement this function.
2626bool
2627X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2628                                                     CallingConv::ID CalleeCC,
2629                                                     bool isVarArg,
2630                                                     bool isCalleeStructRet,
2631                                                     bool isCallerStructRet,
2632                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2633                                    const SmallVectorImpl<SDValue> &OutVals,
2634                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2635                                                     SelectionDAG& DAG) const {
2636  if (!IsTailCallConvention(CalleeCC) &&
2637      CalleeCC != CallingConv::C)
2638    return false;
2639
2640  // If -tailcallopt is specified, make fastcc functions tail-callable.
2641  const MachineFunction &MF = DAG.getMachineFunction();
2642  const Function *CallerF = DAG.getMachineFunction().getFunction();
2643  CallingConv::ID CallerCC = CallerF->getCallingConv();
2644  bool CCMatch = CallerCC == CalleeCC;
2645
2646  if (GuaranteedTailCallOpt) {
2647    if (IsTailCallConvention(CalleeCC) && CCMatch)
2648      return true;
2649    return false;
2650  }
2651
2652  // Look for obvious safe cases to perform tail call optimization that do not
2653  // require ABI changes. This is what gcc calls sibcall.
2654
2655  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2656  // emit a special epilogue.
2657  if (RegInfo->needsStackRealignment(MF))
2658    return false;
2659
2660  // Also avoid sibcall optimization if either caller or callee uses struct
2661  // return semantics.
2662  if (isCalleeStructRet || isCallerStructRet)
2663    return false;
2664
2665  // An stdcall caller is expected to clean up its arguments; the callee
2666  // isn't going to do that.
2667  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2668    return false;
2669
2670  // Do not sibcall optimize vararg calls unless all arguments are passed via
2671  // registers.
2672  if (isVarArg && !Outs.empty()) {
2673
2674    // Optimizing for varargs on Win64 is unlikely to be safe without
2675    // additional testing.
2676    if (Subtarget->isTargetWin64())
2677      return false;
2678
2679    SmallVector<CCValAssign, 16> ArgLocs;
2680    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2681		   getTargetMachine(), ArgLocs, *DAG.getContext());
2682
2683    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2684    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2685      if (!ArgLocs[i].isRegLoc())
2686        return false;
2687  }
2688
2689  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2690  // Therefore if it's not used by the call it is not safe to optimize this into
2691  // a sibcall.
2692  bool Unused = false;
2693  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2694    if (!Ins[i].Used) {
2695      Unused = true;
2696      break;
2697    }
2698  }
2699  if (Unused) {
2700    SmallVector<CCValAssign, 16> RVLocs;
2701    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2702		   getTargetMachine(), RVLocs, *DAG.getContext());
2703    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2704    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2705      CCValAssign &VA = RVLocs[i];
2706      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2707        return false;
2708    }
2709  }
2710
2711  // If the calling conventions do not match, then we'd better make sure the
2712  // results are returned in the same way as what the caller expects.
2713  if (!CCMatch) {
2714    SmallVector<CCValAssign, 16> RVLocs1;
2715    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2716		    getTargetMachine(), RVLocs1, *DAG.getContext());
2717    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2718
2719    SmallVector<CCValAssign, 16> RVLocs2;
2720    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2721		    getTargetMachine(), RVLocs2, *DAG.getContext());
2722    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2723
2724    if (RVLocs1.size() != RVLocs2.size())
2725      return false;
2726    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2727      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2728        return false;
2729      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2730        return false;
2731      if (RVLocs1[i].isRegLoc()) {
2732        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2733          return false;
2734      } else {
2735        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2736          return false;
2737      }
2738    }
2739  }
2740
2741  // If the callee takes no arguments then go on to check the results of the
2742  // call.
2743  if (!Outs.empty()) {
2744    // Check if stack adjustment is needed. For now, do not do this if any
2745    // argument is passed on the stack.
2746    SmallVector<CCValAssign, 16> ArgLocs;
2747    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2748		   getTargetMachine(), ArgLocs, *DAG.getContext());
2749
2750    // Allocate shadow area for Win64
2751    if (Subtarget->isTargetWin64()) {
2752      CCInfo.AllocateStack(32, 8);
2753    }
2754
2755    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2756    if (CCInfo.getNextStackOffset()) {
2757      MachineFunction &MF = DAG.getMachineFunction();
2758      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2759        return false;
2760
2761      // Check if the arguments are already laid out in the right way as
2762      // the caller's fixed stack objects.
2763      MachineFrameInfo *MFI = MF.getFrameInfo();
2764      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2765      const X86InstrInfo *TII =
2766        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2767      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2768        CCValAssign &VA = ArgLocs[i];
2769        SDValue Arg = OutVals[i];
2770        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2771        if (VA.getLocInfo() == CCValAssign::Indirect)
2772          return false;
2773        if (!VA.isRegLoc()) {
2774          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2775                                   MFI, MRI, TII))
2776            return false;
2777        }
2778      }
2779    }
2780
2781    // If the tailcall address may be in a register, then make sure it's
2782    // possible to register allocate for it. In 32-bit, the call address can
2783    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2784    // callee-saved registers are restored. These happen to be the same
2785    // registers used to pass 'inreg' arguments so watch out for those.
2786    if (!Subtarget->is64Bit() &&
2787        !isa<GlobalAddressSDNode>(Callee) &&
2788        !isa<ExternalSymbolSDNode>(Callee)) {
2789      unsigned NumInRegs = 0;
2790      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2791        CCValAssign &VA = ArgLocs[i];
2792        if (!VA.isRegLoc())
2793          continue;
2794        unsigned Reg = VA.getLocReg();
2795        switch (Reg) {
2796        default: break;
2797        case X86::EAX: case X86::EDX: case X86::ECX:
2798          if (++NumInRegs == 3)
2799            return false;
2800          break;
2801        }
2802      }
2803    }
2804  }
2805
2806  return true;
2807}
2808
2809FastISel *
2810X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2811  return X86::createFastISel(funcInfo);
2812}
2813
2814
2815//===----------------------------------------------------------------------===//
2816//                           Other Lowering Hooks
2817//===----------------------------------------------------------------------===//
2818
2819static bool MayFoldLoad(SDValue Op) {
2820  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2821}
2822
2823static bool MayFoldIntoStore(SDValue Op) {
2824  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2825}
2826
2827static bool isTargetShuffle(unsigned Opcode) {
2828  switch(Opcode) {
2829  default: return false;
2830  case X86ISD::PSHUFD:
2831  case X86ISD::PSHUFHW:
2832  case X86ISD::PSHUFLW:
2833  case X86ISD::SHUFPD:
2834  case X86ISD::PALIGN:
2835  case X86ISD::SHUFPS:
2836  case X86ISD::MOVLHPS:
2837  case X86ISD::MOVLHPD:
2838  case X86ISD::MOVHLPS:
2839  case X86ISD::MOVLPS:
2840  case X86ISD::MOVLPD:
2841  case X86ISD::MOVSHDUP:
2842  case X86ISD::MOVSLDUP:
2843  case X86ISD::MOVDDUP:
2844  case X86ISD::MOVSS:
2845  case X86ISD::MOVSD:
2846  case X86ISD::UNPCKLPS:
2847  case X86ISD::UNPCKLPD:
2848  case X86ISD::VUNPCKLPSY:
2849  case X86ISD::VUNPCKLPDY:
2850  case X86ISD::PUNPCKLWD:
2851  case X86ISD::PUNPCKLBW:
2852  case X86ISD::PUNPCKLDQ:
2853  case X86ISD::PUNPCKLQDQ:
2854  case X86ISD::VPUNPCKLWDY:
2855  case X86ISD::VPUNPCKLBWY:
2856  case X86ISD::VPUNPCKLDQY:
2857  case X86ISD::VPUNPCKLQDQY:
2858  case X86ISD::UNPCKHPS:
2859  case X86ISD::UNPCKHPD:
2860  case X86ISD::VUNPCKHPSY:
2861  case X86ISD::VUNPCKHPDY:
2862  case X86ISD::PUNPCKHWD:
2863  case X86ISD::PUNPCKHBW:
2864  case X86ISD::PUNPCKHDQ:
2865  case X86ISD::PUNPCKHQDQ:
2866  case X86ISD::VPUNPCKHWDY:
2867  case X86ISD::VPUNPCKHBWY:
2868  case X86ISD::VPUNPCKHDQY:
2869  case X86ISD::VPUNPCKHQDQY:
2870  case X86ISD::VPERMILPS:
2871  case X86ISD::VPERMILPSY:
2872  case X86ISD::VPERMILPD:
2873  case X86ISD::VPERMILPDY:
2874  case X86ISD::VPERM2F128:
2875    return true;
2876  }
2877  return false;
2878}
2879
2880static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2881                                               SDValue V1, SelectionDAG &DAG) {
2882  switch(Opc) {
2883  default: llvm_unreachable("Unknown x86 shuffle node");
2884  case X86ISD::MOVSHDUP:
2885  case X86ISD::MOVSLDUP:
2886  case X86ISD::MOVDDUP:
2887    return DAG.getNode(Opc, dl, VT, V1);
2888  }
2889
2890  return SDValue();
2891}
2892
2893static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2894                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2895  switch(Opc) {
2896  default: llvm_unreachable("Unknown x86 shuffle node");
2897  case X86ISD::PSHUFD:
2898  case X86ISD::PSHUFHW:
2899  case X86ISD::PSHUFLW:
2900  case X86ISD::VPERMILPS:
2901  case X86ISD::VPERMILPSY:
2902  case X86ISD::VPERMILPD:
2903  case X86ISD::VPERMILPDY:
2904    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2905  }
2906
2907  return SDValue();
2908}
2909
2910static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2911               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2912  switch(Opc) {
2913  default: llvm_unreachable("Unknown x86 shuffle node");
2914  case X86ISD::PALIGN:
2915  case X86ISD::SHUFPD:
2916  case X86ISD::SHUFPS:
2917  case X86ISD::VPERM2F128:
2918    return DAG.getNode(Opc, dl, VT, V1, V2,
2919                       DAG.getConstant(TargetMask, MVT::i8));
2920  }
2921  return SDValue();
2922}
2923
2924static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2925                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2926  switch(Opc) {
2927  default: llvm_unreachable("Unknown x86 shuffle node");
2928  case X86ISD::MOVLHPS:
2929  case X86ISD::MOVLHPD:
2930  case X86ISD::MOVHLPS:
2931  case X86ISD::MOVLPS:
2932  case X86ISD::MOVLPD:
2933  case X86ISD::MOVSS:
2934  case X86ISD::MOVSD:
2935  case X86ISD::UNPCKLPS:
2936  case X86ISD::UNPCKLPD:
2937  case X86ISD::VUNPCKLPSY:
2938  case X86ISD::VUNPCKLPDY:
2939  case X86ISD::PUNPCKLWD:
2940  case X86ISD::PUNPCKLBW:
2941  case X86ISD::PUNPCKLDQ:
2942  case X86ISD::PUNPCKLQDQ:
2943  case X86ISD::VPUNPCKLWDY:
2944  case X86ISD::VPUNPCKLBWY:
2945  case X86ISD::VPUNPCKLDQY:
2946  case X86ISD::VPUNPCKLQDQY:
2947  case X86ISD::UNPCKHPS:
2948  case X86ISD::UNPCKHPD:
2949  case X86ISD::VUNPCKHPSY:
2950  case X86ISD::VUNPCKHPDY:
2951  case X86ISD::PUNPCKHWD:
2952  case X86ISD::PUNPCKHBW:
2953  case X86ISD::PUNPCKHDQ:
2954  case X86ISD::PUNPCKHQDQ:
2955  case X86ISD::VPUNPCKHWDY:
2956  case X86ISD::VPUNPCKHBWY:
2957  case X86ISD::VPUNPCKHDQY:
2958  case X86ISD::VPUNPCKHQDQY:
2959    return DAG.getNode(Opc, dl, VT, V1, V2);
2960  }
2961  return SDValue();
2962}
2963
2964SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2965  MachineFunction &MF = DAG.getMachineFunction();
2966  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2967  int ReturnAddrIndex = FuncInfo->getRAIndex();
2968
2969  if (ReturnAddrIndex == 0) {
2970    // Set up a frame object for the return address.
2971    uint64_t SlotSize = TD->getPointerSize();
2972    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2973                                                           false);
2974    FuncInfo->setRAIndex(ReturnAddrIndex);
2975  }
2976
2977  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2978}
2979
2980
2981bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2982                                       bool hasSymbolicDisplacement) {
2983  // Offset should fit into 32 bit immediate field.
2984  if (!isInt<32>(Offset))
2985    return false;
2986
2987  // If we don't have a symbolic displacement - we don't have any extra
2988  // restrictions.
2989  if (!hasSymbolicDisplacement)
2990    return true;
2991
2992  // FIXME: Some tweaks might be needed for medium code model.
2993  if (M != CodeModel::Small && M != CodeModel::Kernel)
2994    return false;
2995
2996  // For small code model we assume that latest object is 16MB before end of 31
2997  // bits boundary. We may also accept pretty large negative constants knowing
2998  // that all objects are in the positive half of address space.
2999  if (M == CodeModel::Small && Offset < 16*1024*1024)
3000    return true;
3001
3002  // For kernel code model we know that all object resist in the negative half
3003  // of 32bits address space. We may not accept negative offsets, since they may
3004  // be just off and we may accept pretty large positive ones.
3005  if (M == CodeModel::Kernel && Offset > 0)
3006    return true;
3007
3008  return false;
3009}
3010
3011/// isCalleePop - Determines whether the callee is required to pop its
3012/// own arguments. Callee pop is necessary to support tail calls.
3013bool X86::isCalleePop(CallingConv::ID CallingConv,
3014                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3015  if (IsVarArg)
3016    return false;
3017
3018  switch (CallingConv) {
3019  default:
3020    return false;
3021  case CallingConv::X86_StdCall:
3022    return !is64Bit;
3023  case CallingConv::X86_FastCall:
3024    return !is64Bit;
3025  case CallingConv::X86_ThisCall:
3026    return !is64Bit;
3027  case CallingConv::Fast:
3028    return TailCallOpt;
3029  case CallingConv::GHC:
3030    return TailCallOpt;
3031  }
3032}
3033
3034/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3035/// specific condition code, returning the condition code and the LHS/RHS of the
3036/// comparison to make.
3037static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3038                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3039  if (!isFP) {
3040    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3041      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3042        // X > -1   -> X == 0, jump !sign.
3043        RHS = DAG.getConstant(0, RHS.getValueType());
3044        return X86::COND_NS;
3045      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3046        // X < 0   -> X == 0, jump on sign.
3047        return X86::COND_S;
3048      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3049        // X < 1   -> X <= 0
3050        RHS = DAG.getConstant(0, RHS.getValueType());
3051        return X86::COND_LE;
3052      }
3053    }
3054
3055    switch (SetCCOpcode) {
3056    default: llvm_unreachable("Invalid integer condition!");
3057    case ISD::SETEQ:  return X86::COND_E;
3058    case ISD::SETGT:  return X86::COND_G;
3059    case ISD::SETGE:  return X86::COND_GE;
3060    case ISD::SETLT:  return X86::COND_L;
3061    case ISD::SETLE:  return X86::COND_LE;
3062    case ISD::SETNE:  return X86::COND_NE;
3063    case ISD::SETULT: return X86::COND_B;
3064    case ISD::SETUGT: return X86::COND_A;
3065    case ISD::SETULE: return X86::COND_BE;
3066    case ISD::SETUGE: return X86::COND_AE;
3067    }
3068  }
3069
3070  // First determine if it is required or is profitable to flip the operands.
3071
3072  // If LHS is a foldable load, but RHS is not, flip the condition.
3073  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3074      !ISD::isNON_EXTLoad(RHS.getNode())) {
3075    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3076    std::swap(LHS, RHS);
3077  }
3078
3079  switch (SetCCOpcode) {
3080  default: break;
3081  case ISD::SETOLT:
3082  case ISD::SETOLE:
3083  case ISD::SETUGT:
3084  case ISD::SETUGE:
3085    std::swap(LHS, RHS);
3086    break;
3087  }
3088
3089  // On a floating point condition, the flags are set as follows:
3090  // ZF  PF  CF   op
3091  //  0 | 0 | 0 | X > Y
3092  //  0 | 0 | 1 | X < Y
3093  //  1 | 0 | 0 | X == Y
3094  //  1 | 1 | 1 | unordered
3095  switch (SetCCOpcode) {
3096  default: llvm_unreachable("Condcode should be pre-legalized away");
3097  case ISD::SETUEQ:
3098  case ISD::SETEQ:   return X86::COND_E;
3099  case ISD::SETOLT:              // flipped
3100  case ISD::SETOGT:
3101  case ISD::SETGT:   return X86::COND_A;
3102  case ISD::SETOLE:              // flipped
3103  case ISD::SETOGE:
3104  case ISD::SETGE:   return X86::COND_AE;
3105  case ISD::SETUGT:              // flipped
3106  case ISD::SETULT:
3107  case ISD::SETLT:   return X86::COND_B;
3108  case ISD::SETUGE:              // flipped
3109  case ISD::SETULE:
3110  case ISD::SETLE:   return X86::COND_BE;
3111  case ISD::SETONE:
3112  case ISD::SETNE:   return X86::COND_NE;
3113  case ISD::SETUO:   return X86::COND_P;
3114  case ISD::SETO:    return X86::COND_NP;
3115  case ISD::SETOEQ:
3116  case ISD::SETUNE:  return X86::COND_INVALID;
3117  }
3118}
3119
3120/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3121/// code. Current x86 isa includes the following FP cmov instructions:
3122/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3123static bool hasFPCMov(unsigned X86CC) {
3124  switch (X86CC) {
3125  default:
3126    return false;
3127  case X86::COND_B:
3128  case X86::COND_BE:
3129  case X86::COND_E:
3130  case X86::COND_P:
3131  case X86::COND_A:
3132  case X86::COND_AE:
3133  case X86::COND_NE:
3134  case X86::COND_NP:
3135    return true;
3136  }
3137}
3138
3139/// isFPImmLegal - Returns true if the target can instruction select the
3140/// specified FP immediate natively. If false, the legalizer will
3141/// materialize the FP immediate as a load from a constant pool.
3142bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3143  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3144    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3145      return true;
3146  }
3147  return false;
3148}
3149
3150/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3151/// the specified range (L, H].
3152static bool isUndefOrInRange(int Val, int Low, int Hi) {
3153  return (Val < 0) || (Val >= Low && Val < Hi);
3154}
3155
3156/// isUndefOrInRange - Return true if every element in Mask, begining
3157/// from position Pos and ending in Pos+Size, falls within the specified
3158/// range (L, L+Pos]. or is undef.
3159static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3160                             int Pos, int Size, int Low, int Hi) {
3161  for (int i = Pos, e = Pos+Size; i != e; ++i)
3162    if (!isUndefOrInRange(Mask[i], Low, Hi))
3163      return false;
3164  return true;
3165}
3166
3167/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3168/// specified value.
3169static bool isUndefOrEqual(int Val, int CmpVal) {
3170  if (Val < 0 || Val == CmpVal)
3171    return true;
3172  return false;
3173}
3174
3175/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3176/// from position Pos and ending in Pos+Size, falls within the specified
3177/// sequential range (L, L+Pos]. or is undef.
3178static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3179                                       int Pos, int Size, int Low) {
3180  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3181    if (!isUndefOrEqual(Mask[i], Low))
3182      return false;
3183  return true;
3184}
3185
3186/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3187/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3188/// the second operand.
3189static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3190  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3191    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3192  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3193    return (Mask[0] < 2 && Mask[1] < 2);
3194  return false;
3195}
3196
3197bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3198  SmallVector<int, 8> M;
3199  N->getMask(M);
3200  return ::isPSHUFDMask(M, N->getValueType(0));
3201}
3202
3203/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3204/// is suitable for input to PSHUFHW.
3205static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3206  if (VT != MVT::v8i16)
3207    return false;
3208
3209  // Lower quadword copied in order or undef.
3210  for (int i = 0; i != 4; ++i)
3211    if (Mask[i] >= 0 && Mask[i] != i)
3212      return false;
3213
3214  // Upper quadword shuffled.
3215  for (int i = 4; i != 8; ++i)
3216    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3217      return false;
3218
3219  return true;
3220}
3221
3222bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3223  SmallVector<int, 8> M;
3224  N->getMask(M);
3225  return ::isPSHUFHWMask(M, N->getValueType(0));
3226}
3227
3228/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3229/// is suitable for input to PSHUFLW.
3230static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3231  if (VT != MVT::v8i16)
3232    return false;
3233
3234  // Upper quadword copied in order.
3235  for (int i = 4; i != 8; ++i)
3236    if (Mask[i] >= 0 && Mask[i] != i)
3237      return false;
3238
3239  // Lower quadword shuffled.
3240  for (int i = 0; i != 4; ++i)
3241    if (Mask[i] >= 4)
3242      return false;
3243
3244  return true;
3245}
3246
3247bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3248  SmallVector<int, 8> M;
3249  N->getMask(M);
3250  return ::isPSHUFLWMask(M, N->getValueType(0));
3251}
3252
3253/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3254/// is suitable for input to PALIGNR.
3255static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3256                          bool hasSSSE3OrAVX) {
3257  int i, e = VT.getVectorNumElements();
3258  if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3259    return false;
3260
3261  // Do not handle v2i64 / v2f64 shuffles with palignr.
3262  if (e < 4 || !hasSSSE3OrAVX)
3263    return false;
3264
3265  for (i = 0; i != e; ++i)
3266    if (Mask[i] >= 0)
3267      break;
3268
3269  // All undef, not a palignr.
3270  if (i == e)
3271    return false;
3272
3273  // Make sure we're shifting in the right direction.
3274  if (Mask[i] <= i)
3275    return false;
3276
3277  int s = Mask[i] - i;
3278
3279  // Check the rest of the elements to see if they are consecutive.
3280  for (++i; i != e; ++i) {
3281    int m = Mask[i];
3282    if (m >= 0 && m != s+i)
3283      return false;
3284  }
3285  return true;
3286}
3287
3288/// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
3289/// specifies a shuffle of elements that is suitable for input to 256-bit
3290/// VSHUFPSY.
3291static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3292                          const X86Subtarget *Subtarget) {
3293  int NumElems = VT.getVectorNumElements();
3294
3295  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3296    return false;
3297
3298  if (NumElems != 8)
3299    return false;
3300
3301  // VSHUFPSY divides the resulting vector into 4 chunks.
3302  // The sources are also splitted into 4 chunks, and each destination
3303  // chunk must come from a different source chunk.
3304  //
3305  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3306  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3307  //
3308  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3309  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3310  //
3311  int QuarterSize = NumElems/4;
3312  int HalfSize = QuarterSize*2;
3313  for (int i = 0; i < QuarterSize; ++i)
3314    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3315      return false;
3316  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3317    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3318      return false;
3319
3320  // The mask of the second half must be the same as the first but with
3321  // the appropriate offsets. This works in the same way as VPERMILPS
3322  // works with masks.
3323  for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3324    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3325      return false;
3326    int FstHalfIdx = i-HalfSize;
3327    if (Mask[FstHalfIdx] < 0)
3328      continue;
3329    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3330      return false;
3331  }
3332  for (int i = QuarterSize*3; i < NumElems; ++i) {
3333    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3334      return false;
3335    int FstHalfIdx = i-HalfSize;
3336    if (Mask[FstHalfIdx] < 0)
3337      continue;
3338    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3339      return false;
3340
3341  }
3342
3343  return true;
3344}
3345
3346/// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
3347/// the specified VECTOR_MASK mask with VSHUFPSY instruction.
3348static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
3349  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3350  EVT VT = SVOp->getValueType(0);
3351  int NumElems = VT.getVectorNumElements();
3352
3353  assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
3354         "Only supports v8i32 and v8f32 types");
3355
3356  int HalfSize = NumElems/2;
3357  unsigned Mask = 0;
3358  for (int i = 0; i != NumElems ; ++i) {
3359    if (SVOp->getMaskElt(i) < 0)
3360      continue;
3361    // The mask of the first half must be equal to the second one.
3362    unsigned Shamt = (i%HalfSize)*2;
3363    unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
3364    Mask |= Elt << Shamt;
3365  }
3366
3367  return Mask;
3368}
3369
3370/// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
3371/// specifies a shuffle of elements that is suitable for input to 256-bit
3372/// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
3373/// version and the mask of the second half isn't binded with the first
3374/// one.
3375static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3376                           const X86Subtarget *Subtarget) {
3377  int NumElems = VT.getVectorNumElements();
3378
3379  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3380    return false;
3381
3382  if (NumElems != 4)
3383    return false;
3384
3385  // VSHUFPSY divides the resulting vector into 4 chunks.
3386  // The sources are also splitted into 4 chunks, and each destination
3387  // chunk must come from a different source chunk.
3388  //
3389  //  SRC1 =>      X3       X2       X1       X0
3390  //  SRC2 =>      Y3       Y2       Y1       Y0
3391  //
3392  //  DST  =>  Y2..Y3,  X2..X3,  Y1..Y0,  X1..X0
3393  //
3394  int QuarterSize = NumElems/4;
3395  int HalfSize = QuarterSize*2;
3396  for (int i = 0; i < QuarterSize; ++i)
3397    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3398      return false;
3399  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3400    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3401      return false;
3402  for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
3403    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3404      return false;
3405  for (int i = QuarterSize*3; i < NumElems; ++i)
3406    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3407      return false;
3408
3409  return true;
3410}
3411
3412/// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
3413/// the specified VECTOR_MASK mask with VSHUFPDY instruction.
3414static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
3415  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3416  EVT VT = SVOp->getValueType(0);
3417  int NumElems = VT.getVectorNumElements();
3418
3419  assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
3420         "Only supports v4i64 and v4f64 types");
3421
3422  int HalfSize = NumElems/2;
3423  unsigned Mask = 0;
3424  for (int i = 0; i != NumElems ; ++i) {
3425    if (SVOp->getMaskElt(i) < 0)
3426      continue;
3427    int Elt = SVOp->getMaskElt(i) % HalfSize;
3428    Mask |= Elt << i;
3429  }
3430
3431  return Mask;
3432}
3433
3434/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3435/// the two vector operands have swapped position.
3436static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3437  unsigned NumElems = VT.getVectorNumElements();
3438  for (unsigned i = 0; i != NumElems; ++i) {
3439    int idx = Mask[i];
3440    if (idx < 0)
3441      continue;
3442    else if (idx < (int)NumElems)
3443      Mask[i] = idx + NumElems;
3444    else
3445      Mask[i] = idx - NumElems;
3446  }
3447}
3448
3449/// isCommutedVSHUFP() - Return true if swapping operands will
3450///  allow to use the "vshufpd" or "vshufps" instruction
3451///  for 256-bit vectors
3452static bool isCommutedVSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT,
3453                               const X86Subtarget *Subtarget) {
3454
3455  unsigned NumElems = VT.getVectorNumElements();
3456  if ((VT.getSizeInBits() != 256) || ((NumElems != 4) && (NumElems != 8)))
3457    return false;
3458
3459  SmallVector<int, 8> CommutedMask;
3460  for (unsigned i = 0; i < NumElems; ++i)
3461    CommutedMask.push_back(Mask[i]);
3462
3463  CommuteVectorShuffleMask(CommutedMask, VT);
3464  return (NumElems == 4) ? isVSHUFPDYMask(CommutedMask, VT, Subtarget):
3465      isVSHUFPSYMask(CommutedMask, VT, Subtarget);
3466}
3467
3468
3469/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3470/// specifies a shuffle of elements that is suitable for input to 128-bit
3471/// SHUFPS and SHUFPD.
3472static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3473  int NumElems = VT.getVectorNumElements();
3474
3475  if (VT.getSizeInBits() != 128)
3476    return false;
3477
3478  if (NumElems != 2 && NumElems != 4)
3479    return false;
3480
3481  int Half = NumElems / 2;
3482  for (int i = 0; i < Half; ++i)
3483    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3484      return false;
3485  for (int i = Half; i < NumElems; ++i)
3486    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3487      return false;
3488
3489  return true;
3490}
3491
3492bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3493  SmallVector<int, 8> M;
3494  N->getMask(M);
3495  return ::isSHUFPMask(M, N->getValueType(0));
3496}
3497
3498/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3499/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3500/// half elements to come from vector 1 (which would equal the dest.) and
3501/// the upper half to come from vector 2.
3502static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3503  int NumElems = VT.getVectorNumElements();
3504
3505  if (NumElems != 2 && NumElems != 4)
3506    return false;
3507
3508  int Half = NumElems / 2;
3509  for (int i = 0; i < Half; ++i)
3510    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3511      return false;
3512  for (int i = Half; i < NumElems; ++i)
3513    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3514      return false;
3515  return true;
3516}
3517
3518static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3519  SmallVector<int, 8> M;
3520  N->getMask(M);
3521  return isCommutedSHUFPMask(M, N->getValueType(0));
3522}
3523
3524/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3525/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3526bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3527  EVT VT = N->getValueType(0);
3528  unsigned NumElems = VT.getVectorNumElements();
3529
3530  if (VT.getSizeInBits() != 128)
3531    return false;
3532
3533  if (NumElems != 4)
3534    return false;
3535
3536  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3537  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3538         isUndefOrEqual(N->getMaskElt(1), 7) &&
3539         isUndefOrEqual(N->getMaskElt(2), 2) &&
3540         isUndefOrEqual(N->getMaskElt(3), 3);
3541}
3542
3543/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3544/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3545/// <2, 3, 2, 3>
3546bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3547  EVT VT = N->getValueType(0);
3548  unsigned NumElems = VT.getVectorNumElements();
3549
3550  if (VT.getSizeInBits() != 128)
3551    return false;
3552
3553  if (NumElems != 4)
3554    return false;
3555
3556  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3557         isUndefOrEqual(N->getMaskElt(1), 3) &&
3558         isUndefOrEqual(N->getMaskElt(2), 2) &&
3559         isUndefOrEqual(N->getMaskElt(3), 3);
3560}
3561
3562/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3563/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3564bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3565  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3566
3567  if (NumElems != 2 && NumElems != 4)
3568    return false;
3569
3570  for (unsigned i = 0; i < NumElems/2; ++i)
3571    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3572      return false;
3573
3574  for (unsigned i = NumElems/2; i < NumElems; ++i)
3575    if (!isUndefOrEqual(N->getMaskElt(i), i))
3576      return false;
3577
3578  return true;
3579}
3580
3581/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3582/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3583bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3584  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3585
3586  if ((NumElems != 2 && NumElems != 4)
3587      || N->getValueType(0).getSizeInBits() > 128)
3588    return false;
3589
3590  for (unsigned i = 0; i < NumElems/2; ++i)
3591    if (!isUndefOrEqual(N->getMaskElt(i), i))
3592      return false;
3593
3594  for (unsigned i = 0; i < NumElems/2; ++i)
3595    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3596      return false;
3597
3598  return true;
3599}
3600
3601/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3602/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3603static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3604                         bool HasAVX2, bool V2IsSplat = false) {
3605  int NumElts = VT.getVectorNumElements();
3606
3607  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3608         "Unsupported vector type for unpckh");
3609
3610  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3611      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3612    return false;
3613
3614  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3615  // independently on 128-bit lanes.
3616  unsigned NumLanes = VT.getSizeInBits()/128;
3617  unsigned NumLaneElts = NumElts/NumLanes;
3618
3619  unsigned Start = 0;
3620  unsigned End = NumLaneElts;
3621  for (unsigned s = 0; s < NumLanes; ++s) {
3622    for (unsigned i = Start, j = s * NumLaneElts;
3623         i != End;
3624         i += 2, ++j) {
3625      int BitI  = Mask[i];
3626      int BitI1 = Mask[i+1];
3627      if (!isUndefOrEqual(BitI, j))
3628        return false;
3629      if (V2IsSplat) {
3630        if (!isUndefOrEqual(BitI1, NumElts))
3631          return false;
3632      } else {
3633        if (!isUndefOrEqual(BitI1, j + NumElts))
3634          return false;
3635      }
3636    }
3637    // Process the next 128 bits.
3638    Start += NumLaneElts;
3639    End += NumLaneElts;
3640  }
3641
3642  return true;
3643}
3644
3645bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3646  SmallVector<int, 8> M;
3647  N->getMask(M);
3648  return ::isUNPCKLMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3649}
3650
3651/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3652/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3653static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3654                         bool HasAVX2, bool V2IsSplat = false) {
3655  int NumElts = VT.getVectorNumElements();
3656
3657  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3658         "Unsupported vector type for unpckh");
3659
3660  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3661      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3662    return false;
3663
3664  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3665  // independently on 128-bit lanes.
3666  unsigned NumLanes = VT.getSizeInBits()/128;
3667  unsigned NumLaneElts = NumElts/NumLanes;
3668
3669  unsigned Start = 0;
3670  unsigned End = NumLaneElts;
3671  for (unsigned l = 0; l != NumLanes; ++l) {
3672    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3673                             i != End; i += 2, ++j) {
3674      int BitI  = Mask[i];
3675      int BitI1 = Mask[i+1];
3676      if (!isUndefOrEqual(BitI, j))
3677        return false;
3678      if (V2IsSplat) {
3679        if (isUndefOrEqual(BitI1, NumElts))
3680          return false;
3681      } else {
3682        if (!isUndefOrEqual(BitI1, j+NumElts))
3683          return false;
3684      }
3685    }
3686    // Process the next 128 bits.
3687    Start += NumLaneElts;
3688    End += NumLaneElts;
3689  }
3690  return true;
3691}
3692
3693bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3694  SmallVector<int, 8> M;
3695  N->getMask(M);
3696  return ::isUNPCKHMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3697}
3698
3699/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3700/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3701/// <0, 0, 1, 1>
3702static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3703  int NumElems = VT.getVectorNumElements();
3704  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3705    return false;
3706
3707  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3708  // FIXME: Need a better way to get rid of this, there's no latency difference
3709  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3710  // the former later. We should also remove the "_undef" special mask.
3711  if (NumElems == 4 && VT.getSizeInBits() == 256)
3712    return false;
3713
3714  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3715  // independently on 128-bit lanes.
3716  unsigned NumLanes = VT.getSizeInBits() / 128;
3717  unsigned NumLaneElts = NumElems / NumLanes;
3718
3719  for (unsigned s = 0; s < NumLanes; ++s) {
3720    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3721         i != NumLaneElts * (s + 1);
3722         i += 2, ++j) {
3723      int BitI  = Mask[i];
3724      int BitI1 = Mask[i+1];
3725
3726      if (!isUndefOrEqual(BitI, j))
3727        return false;
3728      if (!isUndefOrEqual(BitI1, j))
3729        return false;
3730    }
3731  }
3732
3733  return true;
3734}
3735
3736bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3737  SmallVector<int, 8> M;
3738  N->getMask(M);
3739  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3740}
3741
3742/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3743/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3744/// <2, 2, 3, 3>
3745static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3746  int NumElems = VT.getVectorNumElements();
3747  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3748    return false;
3749
3750  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3751    int BitI  = Mask[i];
3752    int BitI1 = Mask[i+1];
3753    if (!isUndefOrEqual(BitI, j))
3754      return false;
3755    if (!isUndefOrEqual(BitI1, j))
3756      return false;
3757  }
3758  return true;
3759}
3760
3761bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3762  SmallVector<int, 8> M;
3763  N->getMask(M);
3764  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3765}
3766
3767/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3768/// specifies a shuffle of elements that is suitable for input to MOVSS,
3769/// MOVSD, and MOVD, i.e. setting the lowest element.
3770static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3771  if (VT.getVectorElementType().getSizeInBits() < 32)
3772    return false;
3773
3774  int NumElts = VT.getVectorNumElements();
3775
3776  if (!isUndefOrEqual(Mask[0], NumElts))
3777    return false;
3778
3779  for (int i = 1; i < NumElts; ++i)
3780    if (!isUndefOrEqual(Mask[i], i))
3781      return false;
3782
3783  return true;
3784}
3785
3786bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3787  SmallVector<int, 8> M;
3788  N->getMask(M);
3789  return ::isMOVLMask(M, N->getValueType(0));
3790}
3791
3792/// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
3793/// as permutations between 128-bit chunks or halves. As an example: this
3794/// shuffle bellow:
3795///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3796/// The first half comes from the second half of V1 and the second half from the
3797/// the second half of V2.
3798static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3799                             const X86Subtarget *Subtarget) {
3800  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3801    return false;
3802
3803  // The shuffle result is divided into half A and half B. In total the two
3804  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3805  // B must come from C, D, E or F.
3806  int HalfSize = VT.getVectorNumElements()/2;
3807  bool MatchA = false, MatchB = false;
3808
3809  // Check if A comes from one of C, D, E, F.
3810  for (int Half = 0; Half < 4; ++Half) {
3811    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3812      MatchA = true;
3813      break;
3814    }
3815  }
3816
3817  // Check if B comes from one of C, D, E, F.
3818  for (int Half = 0; Half < 4; ++Half) {
3819    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3820      MatchB = true;
3821      break;
3822    }
3823  }
3824
3825  return MatchA && MatchB;
3826}
3827
3828/// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
3829/// the specified VECTOR_MASK mask with VPERM2F128 instructions.
3830static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
3831  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3832  EVT VT = SVOp->getValueType(0);
3833
3834  int HalfSize = VT.getVectorNumElements()/2;
3835
3836  int FstHalf = 0, SndHalf = 0;
3837  for (int i = 0; i < HalfSize; ++i) {
3838    if (SVOp->getMaskElt(i) > 0) {
3839      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3840      break;
3841    }
3842  }
3843  for (int i = HalfSize; i < HalfSize*2; ++i) {
3844    if (SVOp->getMaskElt(i) > 0) {
3845      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3846      break;
3847    }
3848  }
3849
3850  return (FstHalf | (SndHalf << 4));
3851}
3852
3853/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3854/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3855/// Note that VPERMIL mask matching is different depending whether theunderlying
3856/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3857/// to the same elements of the low, but to the higher half of the source.
3858/// In VPERMILPD the two lanes could be shuffled independently of each other
3859/// with the same restriction that lanes can't be crossed.
3860static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3861                            const X86Subtarget *Subtarget) {
3862  int NumElts = VT.getVectorNumElements();
3863  int NumLanes = VT.getSizeInBits()/128;
3864
3865  if (!Subtarget->hasAVX())
3866    return false;
3867
3868  // Only match 256-bit with 64-bit types
3869  if (VT.getSizeInBits() != 256 || NumElts != 4)
3870    return false;
3871
3872  // The mask on the high lane is independent of the low. Both can match
3873  // any element in inside its own lane, but can't cross.
3874  int LaneSize = NumElts/NumLanes;
3875  for (int l = 0; l < NumLanes; ++l)
3876    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3877      int LaneStart = l*LaneSize;
3878      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3879        return false;
3880    }
3881
3882  return true;
3883}
3884
3885/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3886/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3887/// Note that VPERMIL mask matching is different depending whether theunderlying
3888/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3889/// to the same elements of the low, but to the higher half of the source.
3890/// In VPERMILPD the two lanes could be shuffled independently of each other
3891/// with the same restriction that lanes can't be crossed.
3892static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3893                            const X86Subtarget *Subtarget) {
3894  unsigned NumElts = VT.getVectorNumElements();
3895  unsigned NumLanes = VT.getSizeInBits()/128;
3896
3897  if (!Subtarget->hasAVX())
3898    return false;
3899
3900  // Only match 256-bit with 32-bit types
3901  if (VT.getSizeInBits() != 256 || NumElts != 8)
3902    return false;
3903
3904  // The mask on the high lane should be the same as the low. Actually,
3905  // they can differ if any of the corresponding index in a lane is undef
3906  // and the other stays in range.
3907  int LaneSize = NumElts/NumLanes;
3908  for (int i = 0; i < LaneSize; ++i) {
3909    int HighElt = i+LaneSize;
3910    bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
3911    bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
3912
3913    if (!HighValid || !LowValid)
3914      return false;
3915    if (Mask[i] < 0 || Mask[HighElt] < 0)
3916      continue;
3917    if (Mask[HighElt]-Mask[i] != LaneSize)
3918      return false;
3919  }
3920
3921  return true;
3922}
3923
3924/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3925/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3926static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3927  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3928  EVT VT = SVOp->getValueType(0);
3929
3930  int NumElts = VT.getVectorNumElements();
3931  int NumLanes = VT.getSizeInBits()/128;
3932  int LaneSize = NumElts/NumLanes;
3933
3934  // Although the mask is equal for both lanes do it twice to get the cases
3935  // where a mask will match because the same mask element is undef on the
3936  // first half but valid on the second. This would get pathological cases
3937  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3938  unsigned Mask = 0;
3939  for (int l = 0; l < NumLanes; ++l) {
3940    for (int i = 0; i < LaneSize; ++i) {
3941      int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3942      if (MaskElt < 0)
3943        continue;
3944      if (MaskElt >= LaneSize)
3945        MaskElt -= LaneSize;
3946      Mask |= MaskElt << (i*2);
3947    }
3948  }
3949
3950  return Mask;
3951}
3952
3953/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3954/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3955static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3956  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3957  EVT VT = SVOp->getValueType(0);
3958
3959  int NumElts = VT.getVectorNumElements();
3960  int NumLanes = VT.getSizeInBits()/128;
3961
3962  unsigned Mask = 0;
3963  int LaneSize = NumElts/NumLanes;
3964  for (int l = 0; l < NumLanes; ++l)
3965    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3966      int MaskElt = SVOp->getMaskElt(i);
3967      if (MaskElt < 0)
3968        continue;
3969      Mask |= (MaskElt-l*LaneSize) << i;
3970    }
3971
3972  return Mask;
3973}
3974
3975/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3976/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3977/// element of vector 2 and the other elements to come from vector 1 in order.
3978static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3979                               bool V2IsSplat = false, bool V2IsUndef = false) {
3980  int NumOps = VT.getVectorNumElements();
3981  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3982    return false;
3983
3984  if (!isUndefOrEqual(Mask[0], 0))
3985    return false;
3986
3987  for (int i = 1; i < NumOps; ++i)
3988    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3989          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3990          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3991      return false;
3992
3993  return true;
3994}
3995
3996static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3997                           bool V2IsUndef = false) {
3998  SmallVector<int, 8> M;
3999  N->getMask(M);
4000  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
4001}
4002
4003/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4004/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
4005/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
4006bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
4007                         const X86Subtarget *Subtarget) {
4008  if (!Subtarget->hasSSE3orAVX())
4009    return false;
4010
4011  // The second vector must be undef
4012  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
4013    return false;
4014
4015  EVT VT = N->getValueType(0);
4016  unsigned NumElems = VT.getVectorNumElements();
4017
4018  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
4019      (VT.getSizeInBits() == 256 && NumElems != 8))
4020    return false;
4021
4022  // "i+1" is the value the indexed mask element must have
4023  for (unsigned i = 0; i < NumElems; i += 2)
4024    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
4025        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
4026      return false;
4027
4028  return true;
4029}
4030
4031/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4032/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
4033/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
4034bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
4035                         const X86Subtarget *Subtarget) {
4036  if (!Subtarget->hasSSE3orAVX())
4037    return false;
4038
4039  // The second vector must be undef
4040  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
4041    return false;
4042
4043  EVT VT = N->getValueType(0);
4044  unsigned NumElems = VT.getVectorNumElements();
4045
4046  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
4047      (VT.getSizeInBits() == 256 && NumElems != 8))
4048    return false;
4049
4050  // "i" is the value the indexed mask element must have
4051  for (unsigned i = 0; i < NumElems; i += 2)
4052    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
4053        !isUndefOrEqual(N->getMaskElt(i+1), i))
4054      return false;
4055
4056  return true;
4057}
4058
4059/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4060/// specifies a shuffle of elements that is suitable for input to 256-bit
4061/// version of MOVDDUP.
4062static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
4063                           const X86Subtarget *Subtarget) {
4064  EVT VT = N->getValueType(0);
4065  int NumElts = VT.getVectorNumElements();
4066  bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
4067
4068  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
4069      !V2IsUndef || NumElts != 4)
4070    return false;
4071
4072  for (int i = 0; i != NumElts/2; ++i)
4073    if (!isUndefOrEqual(N->getMaskElt(i), 0))
4074      return false;
4075  for (int i = NumElts/2; i != NumElts; ++i)
4076    if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
4077      return false;
4078  return true;
4079}
4080
4081/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4082/// specifies a shuffle of elements that is suitable for input to 128-bit
4083/// version of MOVDDUP.
4084bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
4085  EVT VT = N->getValueType(0);
4086
4087  if (VT.getSizeInBits() != 128)
4088    return false;
4089
4090  int e = VT.getVectorNumElements() / 2;
4091  for (int i = 0; i < e; ++i)
4092    if (!isUndefOrEqual(N->getMaskElt(i), i))
4093      return false;
4094  for (int i = 0; i < e; ++i)
4095    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
4096      return false;
4097  return true;
4098}
4099
4100/// isVEXTRACTF128Index - Return true if the specified
4101/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4102/// suitable for input to VEXTRACTF128.
4103bool X86::isVEXTRACTF128Index(SDNode *N) {
4104  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4105    return false;
4106
4107  // The index should be aligned on a 128-bit boundary.
4108  uint64_t Index =
4109    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4110
4111  unsigned VL = N->getValueType(0).getVectorNumElements();
4112  unsigned VBits = N->getValueType(0).getSizeInBits();
4113  unsigned ElSize = VBits / VL;
4114  bool Result = (Index * ElSize) % 128 == 0;
4115
4116  return Result;
4117}
4118
4119/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4120/// operand specifies a subvector insert that is suitable for input to
4121/// VINSERTF128.
4122bool X86::isVINSERTF128Index(SDNode *N) {
4123  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4124    return false;
4125
4126  // The index should be aligned on a 128-bit boundary.
4127  uint64_t Index =
4128    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4129
4130  unsigned VL = N->getValueType(0).getVectorNumElements();
4131  unsigned VBits = N->getValueType(0).getSizeInBits();
4132  unsigned ElSize = VBits / VL;
4133  bool Result = (Index * ElSize) % 128 == 0;
4134
4135  return Result;
4136}
4137
4138/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4139/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4140unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
4141  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4142  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
4143
4144  unsigned Shift = (NumOperands == 4) ? 2 : 1;
4145  unsigned Mask = 0;
4146  for (int i = 0; i < NumOperands; ++i) {
4147    int Val = SVOp->getMaskElt(NumOperands-i-1);
4148    if (Val < 0) Val = 0;
4149    if (Val >= NumOperands) Val -= NumOperands;
4150    Mask |= Val;
4151    if (i != NumOperands - 1)
4152      Mask <<= Shift;
4153  }
4154  return Mask;
4155}
4156
4157/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4158/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4159unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
4160  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4161  unsigned Mask = 0;
4162  // 8 nodes, but we only care about the last 4.
4163  for (unsigned i = 7; i >= 4; --i) {
4164    int Val = SVOp->getMaskElt(i);
4165    if (Val >= 0)
4166      Mask |= (Val - 4);
4167    if (i != 4)
4168      Mask <<= 2;
4169  }
4170  return Mask;
4171}
4172
4173/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4174/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4175unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4176  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4177  unsigned Mask = 0;
4178  // 8 nodes, but we only care about the first 4.
4179  for (int i = 3; i >= 0; --i) {
4180    int Val = SVOp->getMaskElt(i);
4181    if (Val >= 0)
4182      Mask |= Val;
4183    if (i != 0)
4184      Mask <<= 2;
4185  }
4186  return Mask;
4187}
4188
4189/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4190/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4191unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
4192  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4193  EVT VVT = N->getValueType(0);
4194  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
4195  int Val = 0;
4196
4197  unsigned i, e;
4198  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
4199    Val = SVOp->getMaskElt(i);
4200    if (Val >= 0)
4201      break;
4202  }
4203  assert(Val - i > 0 && "PALIGNR imm should be positive");
4204  return (Val - i) * EltSize;
4205}
4206
4207/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4208/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4209/// instructions.
4210unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4211  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4212    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4213
4214  uint64_t Index =
4215    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4216
4217  EVT VecVT = N->getOperand(0).getValueType();
4218  EVT ElVT = VecVT.getVectorElementType();
4219
4220  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4221  return Index / NumElemsPerChunk;
4222}
4223
4224/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4225/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4226/// instructions.
4227unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4228  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4229    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4230
4231  uint64_t Index =
4232    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4233
4234  EVT VecVT = N->getValueType(0);
4235  EVT ElVT = VecVT.getVectorElementType();
4236
4237  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4238  return Index / NumElemsPerChunk;
4239}
4240
4241/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4242/// constant +0.0.
4243bool X86::isZeroNode(SDValue Elt) {
4244  return ((isa<ConstantSDNode>(Elt) &&
4245           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4246          (isa<ConstantFPSDNode>(Elt) &&
4247           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4248}
4249
4250/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4251/// their permute mask.
4252static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4253                                    SelectionDAG &DAG) {
4254  EVT VT = SVOp->getValueType(0);
4255  unsigned NumElems = VT.getVectorNumElements();
4256  SmallVector<int, 8> MaskVec;
4257
4258  for (unsigned i = 0; i != NumElems; ++i) {
4259    int idx = SVOp->getMaskElt(i);
4260    if (idx < 0)
4261      MaskVec.push_back(idx);
4262    else if (idx < (int)NumElems)
4263      MaskVec.push_back(idx + NumElems);
4264    else
4265      MaskVec.push_back(idx - NumElems);
4266  }
4267  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4268                              SVOp->getOperand(0), &MaskVec[0]);
4269}
4270
4271/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4272/// match movhlps. The lower half elements should come from upper half of
4273/// V1 (and in order), and the upper half elements should come from the upper
4274/// half of V2 (and in order).
4275static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4276  EVT VT = Op->getValueType(0);
4277  if (VT.getSizeInBits() != 128)
4278    return false;
4279  if (VT.getVectorNumElements() != 4)
4280    return false;
4281  for (unsigned i = 0, e = 2; i != e; ++i)
4282    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4283      return false;
4284  for (unsigned i = 2; i != 4; ++i)
4285    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4286      return false;
4287  return true;
4288}
4289
4290/// isScalarLoadToVector - Returns true if the node is a scalar load that
4291/// is promoted to a vector. It also returns the LoadSDNode by reference if
4292/// required.
4293static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4294  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4295    return false;
4296  N = N->getOperand(0).getNode();
4297  if (!ISD::isNON_EXTLoad(N))
4298    return false;
4299  if (LD)
4300    *LD = cast<LoadSDNode>(N);
4301  return true;
4302}
4303
4304// Test whether the given value is a vector value which will be legalized
4305// into a load.
4306static bool WillBeConstantPoolLoad(SDNode *N) {
4307  if (N->getOpcode() != ISD::BUILD_VECTOR)
4308    return false;
4309
4310  // Check for any non-constant elements.
4311  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4312    switch (N->getOperand(i).getNode()->getOpcode()) {
4313    case ISD::UNDEF:
4314    case ISD::ConstantFP:
4315    case ISD::Constant:
4316      break;
4317    default:
4318      return false;
4319    }
4320
4321  // Vectors of all-zeros and all-ones are materialized with special
4322  // instructions rather than being loaded.
4323  return !ISD::isBuildVectorAllZeros(N) &&
4324         !ISD::isBuildVectorAllOnes(N);
4325}
4326
4327/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4328/// match movlp{s|d}. The lower half elements should come from lower half of
4329/// V1 (and in order), and the upper half elements should come from the upper
4330/// half of V2 (and in order). And since V1 will become the source of the
4331/// MOVLP, it must be either a vector load or a scalar load to vector.
4332static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4333                               ShuffleVectorSDNode *Op) {
4334  EVT VT = Op->getValueType(0);
4335  if (VT.getSizeInBits() != 128)
4336    return false;
4337
4338  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4339    return false;
4340  // Is V2 is a vector load, don't do this transformation. We will try to use
4341  // load folding shufps op.
4342  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4343    return false;
4344
4345  unsigned NumElems = VT.getVectorNumElements();
4346
4347  if (NumElems != 2 && NumElems != 4)
4348    return false;
4349  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4350    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4351      return false;
4352  for (unsigned i = NumElems/2; i != NumElems; ++i)
4353    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4354      return false;
4355  return true;
4356}
4357
4358/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4359/// all the same.
4360static bool isSplatVector(SDNode *N) {
4361  if (N->getOpcode() != ISD::BUILD_VECTOR)
4362    return false;
4363
4364  SDValue SplatValue = N->getOperand(0);
4365  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4366    if (N->getOperand(i) != SplatValue)
4367      return false;
4368  return true;
4369}
4370
4371/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4372/// to an zero vector.
4373/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4374static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4375  SDValue V1 = N->getOperand(0);
4376  SDValue V2 = N->getOperand(1);
4377  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4378  for (unsigned i = 0; i != NumElems; ++i) {
4379    int Idx = N->getMaskElt(i);
4380    if (Idx >= (int)NumElems) {
4381      unsigned Opc = V2.getOpcode();
4382      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4383        continue;
4384      if (Opc != ISD::BUILD_VECTOR ||
4385          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4386        return false;
4387    } else if (Idx >= 0) {
4388      unsigned Opc = V1.getOpcode();
4389      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4390        continue;
4391      if (Opc != ISD::BUILD_VECTOR ||
4392          !X86::isZeroNode(V1.getOperand(Idx)))
4393        return false;
4394    }
4395  }
4396  return true;
4397}
4398
4399/// getZeroVector - Returns a vector of specified type with all zero elements.
4400///
4401static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
4402                             DebugLoc dl) {
4403  assert(VT.isVector() && "Expected a vector type");
4404
4405  // Always build SSE zero vectors as <4 x i32> bitcasted
4406  // to their dest type. This ensures they get CSE'd.
4407  SDValue Vec;
4408  if (VT.getSizeInBits() == 128) {  // SSE
4409    if (HasXMMInt) {  // SSE2
4410      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4411      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4412    } else { // SSE1
4413      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4414      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4415    }
4416  } else if (VT.getSizeInBits() == 256) { // AVX
4417    // 256-bit logic and arithmetic instructions in AVX are
4418    // all floating-point, no support for integer ops. Default
4419    // to emitting fp zeroed vectors then.
4420    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4421    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4422    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4423  }
4424  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4425}
4426
4427/// getOnesVector - Returns a vector of specified type with all bits set.
4428/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4429/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4430/// Then bitcast to their original type, ensuring they get CSE'd.
4431static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4432                             DebugLoc dl) {
4433  assert(VT.isVector() && "Expected a vector type");
4434  assert((VT.is128BitVector() || VT.is256BitVector())
4435         && "Expected a 128-bit or 256-bit vector type");
4436
4437  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4438  SDValue Vec;
4439  if (VT.getSizeInBits() == 256) {
4440    if (HasAVX2) { // AVX2
4441      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4442      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4443    } else { // AVX
4444      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4445      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4446                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4447      Vec = Insert128BitVector(InsV, Vec,
4448                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4449    }
4450  } else {
4451    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4452  }
4453
4454  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4455}
4456
4457/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4458/// that point to V2 points to its first element.
4459static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4460  EVT VT = SVOp->getValueType(0);
4461  unsigned NumElems = VT.getVectorNumElements();
4462
4463  bool Changed = false;
4464  SmallVector<int, 8> MaskVec;
4465  SVOp->getMask(MaskVec);
4466
4467  for (unsigned i = 0; i != NumElems; ++i) {
4468    if (MaskVec[i] > (int)NumElems) {
4469      MaskVec[i] = NumElems;
4470      Changed = true;
4471    }
4472  }
4473  if (Changed)
4474    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4475                                SVOp->getOperand(1), &MaskVec[0]);
4476  return SDValue(SVOp, 0);
4477}
4478
4479/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4480/// operation of specified width.
4481static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4482                       SDValue V2) {
4483  unsigned NumElems = VT.getVectorNumElements();
4484  SmallVector<int, 8> Mask;
4485  Mask.push_back(NumElems);
4486  for (unsigned i = 1; i != NumElems; ++i)
4487    Mask.push_back(i);
4488  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4489}
4490
4491/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4492static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4493                          SDValue V2) {
4494  unsigned NumElems = VT.getVectorNumElements();
4495  SmallVector<int, 8> Mask;
4496  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4497    Mask.push_back(i);
4498    Mask.push_back(i + NumElems);
4499  }
4500  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4501}
4502
4503/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4504static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4505                          SDValue V2) {
4506  unsigned NumElems = VT.getVectorNumElements();
4507  unsigned Half = NumElems/2;
4508  SmallVector<int, 8> Mask;
4509  for (unsigned i = 0; i != Half; ++i) {
4510    Mask.push_back(i + Half);
4511    Mask.push_back(i + NumElems + Half);
4512  }
4513  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4514}
4515
4516// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4517// a generic shuffle instruction because the target has no such instructions.
4518// Generate shuffles which repeat i16 and i8 several times until they can be
4519// represented by v4f32 and then be manipulated by target suported shuffles.
4520static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4521  EVT VT = V.getValueType();
4522  int NumElems = VT.getVectorNumElements();
4523  DebugLoc dl = V.getDebugLoc();
4524
4525  while (NumElems > 4) {
4526    if (EltNo < NumElems/2) {
4527      V = getUnpackl(DAG, dl, VT, V, V);
4528    } else {
4529      V = getUnpackh(DAG, dl, VT, V, V);
4530      EltNo -= NumElems/2;
4531    }
4532    NumElems >>= 1;
4533  }
4534  return V;
4535}
4536
4537/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4538static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4539  EVT VT = V.getValueType();
4540  DebugLoc dl = V.getDebugLoc();
4541  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4542         && "Vector size not supported");
4543
4544  if (VT.getSizeInBits() == 128) {
4545    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4546    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4547    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4548                             &SplatMask[0]);
4549  } else {
4550    // To use VPERMILPS to splat scalars, the second half of indicies must
4551    // refer to the higher part, which is a duplication of the lower one,
4552    // because VPERMILPS can only handle in-lane permutations.
4553    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4554                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4555
4556    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4557    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4558                             &SplatMask[0]);
4559  }
4560
4561  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4562}
4563
4564/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4565static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4566  EVT SrcVT = SV->getValueType(0);
4567  SDValue V1 = SV->getOperand(0);
4568  DebugLoc dl = SV->getDebugLoc();
4569
4570  int EltNo = SV->getSplatIndex();
4571  int NumElems = SrcVT.getVectorNumElements();
4572  unsigned Size = SrcVT.getSizeInBits();
4573
4574  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4575          "Unknown how to promote splat for type");
4576
4577  // Extract the 128-bit part containing the splat element and update
4578  // the splat element index when it refers to the higher register.
4579  if (Size == 256) {
4580    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4581    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4582    if (Idx > 0)
4583      EltNo -= NumElems/2;
4584  }
4585
4586  // All i16 and i8 vector types can't be used directly by a generic shuffle
4587  // instruction because the target has no such instruction. Generate shuffles
4588  // which repeat i16 and i8 several times until they fit in i32, and then can
4589  // be manipulated by target suported shuffles.
4590  EVT EltVT = SrcVT.getVectorElementType();
4591  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4592    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4593
4594  // Recreate the 256-bit vector and place the same 128-bit vector
4595  // into the low and high part. This is necessary because we want
4596  // to use VPERM* to shuffle the vectors
4597  if (Size == 256) {
4598    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4599                         DAG.getConstant(0, MVT::i32), DAG, dl);
4600    V1 = Insert128BitVector(InsV, V1,
4601               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4602  }
4603
4604  return getLegalSplat(DAG, V1, EltNo);
4605}
4606
4607/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4608/// vector of zero or undef vector.  This produces a shuffle where the low
4609/// element of V2 is swizzled into the zero/undef vector, landing at element
4610/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4611static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4612                                           bool isZero, bool HasXMMInt,
4613                                           SelectionDAG &DAG) {
4614  EVT VT = V2.getValueType();
4615  SDValue V1 = isZero
4616    ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4617  unsigned NumElems = VT.getVectorNumElements();
4618  SmallVector<int, 16> MaskVec;
4619  for (unsigned i = 0; i != NumElems; ++i)
4620    // If this is the insertion idx, put the low elt of V2 here.
4621    MaskVec.push_back(i == Idx ? NumElems : i);
4622  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4623}
4624
4625/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4626/// element of the result of the vector shuffle.
4627static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4628                                   unsigned Depth) {
4629  if (Depth == 6)
4630    return SDValue();  // Limit search depth.
4631
4632  SDValue V = SDValue(N, 0);
4633  EVT VT = V.getValueType();
4634  unsigned Opcode = V.getOpcode();
4635
4636  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4637  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4638    Index = SV->getMaskElt(Index);
4639
4640    if (Index < 0)
4641      return DAG.getUNDEF(VT.getVectorElementType());
4642
4643    int NumElems = VT.getVectorNumElements();
4644    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4645    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4646  }
4647
4648  // Recurse into target specific vector shuffles to find scalars.
4649  if (isTargetShuffle(Opcode)) {
4650    int NumElems = VT.getVectorNumElements();
4651    SmallVector<unsigned, 16> ShuffleMask;
4652    SDValue ImmN;
4653
4654    switch(Opcode) {
4655    case X86ISD::SHUFPS:
4656    case X86ISD::SHUFPD:
4657      ImmN = N->getOperand(N->getNumOperands()-1);
4658      DecodeSHUFPSMask(NumElems,
4659                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4660                       ShuffleMask);
4661      break;
4662    case X86ISD::PUNPCKHBW:
4663    case X86ISD::PUNPCKHWD:
4664    case X86ISD::PUNPCKHDQ:
4665    case X86ISD::PUNPCKHQDQ:
4666    case X86ISD::VPUNPCKHBWY:
4667    case X86ISD::VPUNPCKHWDY:
4668    case X86ISD::VPUNPCKHDQY:
4669    case X86ISD::VPUNPCKHQDQY:
4670      DecodePUNPCKHMask(NumElems, ShuffleMask);
4671      break;
4672    case X86ISD::UNPCKHPS:
4673    case X86ISD::UNPCKHPD:
4674    case X86ISD::VUNPCKHPSY:
4675    case X86ISD::VUNPCKHPDY:
4676      DecodeUNPCKHPMask(VT, ShuffleMask);
4677      break;
4678    case X86ISD::PUNPCKLBW:
4679    case X86ISD::PUNPCKLWD:
4680    case X86ISD::PUNPCKLDQ:
4681    case X86ISD::PUNPCKLQDQ:
4682    case X86ISD::VPUNPCKLBWY:
4683    case X86ISD::VPUNPCKLWDY:
4684    case X86ISD::VPUNPCKLDQY:
4685    case X86ISD::VPUNPCKLQDQY:
4686      DecodePUNPCKLMask(VT, ShuffleMask);
4687      break;
4688    case X86ISD::UNPCKLPS:
4689    case X86ISD::UNPCKLPD:
4690    case X86ISD::VUNPCKLPSY:
4691    case X86ISD::VUNPCKLPDY:
4692      DecodeUNPCKLPMask(VT, ShuffleMask);
4693      break;
4694    case X86ISD::MOVHLPS:
4695      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4696      break;
4697    case X86ISD::MOVLHPS:
4698      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4699      break;
4700    case X86ISD::PSHUFD:
4701      ImmN = N->getOperand(N->getNumOperands()-1);
4702      DecodePSHUFMask(NumElems,
4703                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4704                      ShuffleMask);
4705      break;
4706    case X86ISD::PSHUFHW:
4707      ImmN = N->getOperand(N->getNumOperands()-1);
4708      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4709                        ShuffleMask);
4710      break;
4711    case X86ISD::PSHUFLW:
4712      ImmN = N->getOperand(N->getNumOperands()-1);
4713      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4714                        ShuffleMask);
4715      break;
4716    case X86ISD::MOVSS:
4717    case X86ISD::MOVSD: {
4718      // The index 0 always comes from the first element of the second source,
4719      // this is why MOVSS and MOVSD are used in the first place. The other
4720      // elements come from the other positions of the first source vector.
4721      unsigned OpNum = (Index == 0) ? 1 : 0;
4722      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4723                                 Depth+1);
4724    }
4725    case X86ISD::VPERMILPS:
4726      ImmN = N->getOperand(N->getNumOperands()-1);
4727      DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4728                        ShuffleMask);
4729      break;
4730    case X86ISD::VPERMILPSY:
4731      ImmN = N->getOperand(N->getNumOperands()-1);
4732      DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4733                        ShuffleMask);
4734      break;
4735    case X86ISD::VPERMILPD:
4736      ImmN = N->getOperand(N->getNumOperands()-1);
4737      DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4738                        ShuffleMask);
4739      break;
4740    case X86ISD::VPERMILPDY:
4741      ImmN = N->getOperand(N->getNumOperands()-1);
4742      DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4743                        ShuffleMask);
4744      break;
4745    case X86ISD::VPERM2F128:
4746      ImmN = N->getOperand(N->getNumOperands()-1);
4747      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4748                           ShuffleMask);
4749      break;
4750    case X86ISD::MOVDDUP:
4751    case X86ISD::MOVLHPD:
4752    case X86ISD::MOVLPD:
4753    case X86ISD::MOVLPS:
4754    case X86ISD::MOVSHDUP:
4755    case X86ISD::MOVSLDUP:
4756    case X86ISD::PALIGN:
4757      return SDValue(); // Not yet implemented.
4758    default:
4759      assert(0 && "unknown target shuffle node");
4760      return SDValue();
4761    }
4762
4763    Index = ShuffleMask[Index];
4764    if (Index < 0)
4765      return DAG.getUNDEF(VT.getVectorElementType());
4766
4767    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4768    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4769                               Depth+1);
4770  }
4771
4772  // Actual nodes that may contain scalar elements
4773  if (Opcode == ISD::BITCAST) {
4774    V = V.getOperand(0);
4775    EVT SrcVT = V.getValueType();
4776    unsigned NumElems = VT.getVectorNumElements();
4777
4778    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4779      return SDValue();
4780  }
4781
4782  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4783    return (Index == 0) ? V.getOperand(0)
4784                          : DAG.getUNDEF(VT.getVectorElementType());
4785
4786  if (V.getOpcode() == ISD::BUILD_VECTOR)
4787    return V.getOperand(Index);
4788
4789  return SDValue();
4790}
4791
4792/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4793/// shuffle operation which come from a consecutively from a zero. The
4794/// search can start in two different directions, from left or right.
4795static
4796unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4797                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4798  int i = 0;
4799
4800  while (i < NumElems) {
4801    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4802    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4803    if (!(Elt.getNode() &&
4804         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4805      break;
4806    ++i;
4807  }
4808
4809  return i;
4810}
4811
4812/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4813/// MaskE correspond consecutively to elements from one of the vector operands,
4814/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4815static
4816bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4817                              int OpIdx, int NumElems, unsigned &OpNum) {
4818  bool SeenV1 = false;
4819  bool SeenV2 = false;
4820
4821  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4822    int Idx = SVOp->getMaskElt(i);
4823    // Ignore undef indicies
4824    if (Idx < 0)
4825      continue;
4826
4827    if (Idx < NumElems)
4828      SeenV1 = true;
4829    else
4830      SeenV2 = true;
4831
4832    // Only accept consecutive elements from the same vector
4833    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4834      return false;
4835  }
4836
4837  OpNum = SeenV1 ? 0 : 1;
4838  return true;
4839}
4840
4841/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4842/// logical left shift of a vector.
4843static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4844                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4845  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4846  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4847              false /* check zeros from right */, DAG);
4848  unsigned OpSrc;
4849
4850  if (!NumZeros)
4851    return false;
4852
4853  // Considering the elements in the mask that are not consecutive zeros,
4854  // check if they consecutively come from only one of the source vectors.
4855  //
4856  //               V1 = {X, A, B, C}     0
4857  //                         \  \  \    /
4858  //   vector_shuffle V1, V2 <1, 2, 3, X>
4859  //
4860  if (!isShuffleMaskConsecutive(SVOp,
4861            0,                   // Mask Start Index
4862            NumElems-NumZeros-1, // Mask End Index
4863            NumZeros,            // Where to start looking in the src vector
4864            NumElems,            // Number of elements in vector
4865            OpSrc))              // Which source operand ?
4866    return false;
4867
4868  isLeft = false;
4869  ShAmt = NumZeros;
4870  ShVal = SVOp->getOperand(OpSrc);
4871  return true;
4872}
4873
4874/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4875/// logical left shift of a vector.
4876static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4877                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4878  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4879  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4880              true /* check zeros from left */, DAG);
4881  unsigned OpSrc;
4882
4883  if (!NumZeros)
4884    return false;
4885
4886  // Considering the elements in the mask that are not consecutive zeros,
4887  // check if they consecutively come from only one of the source vectors.
4888  //
4889  //                           0    { A, B, X, X } = V2
4890  //                          / \    /  /
4891  //   vector_shuffle V1, V2 <X, X, 4, 5>
4892  //
4893  if (!isShuffleMaskConsecutive(SVOp,
4894            NumZeros,     // Mask Start Index
4895            NumElems-1,   // Mask End Index
4896            0,            // Where to start looking in the src vector
4897            NumElems,     // Number of elements in vector
4898            OpSrc))       // Which source operand ?
4899    return false;
4900
4901  isLeft = true;
4902  ShAmt = NumZeros;
4903  ShVal = SVOp->getOperand(OpSrc);
4904  return true;
4905}
4906
4907/// isVectorShift - Returns true if the shuffle can be implemented as a
4908/// logical left or right shift of a vector.
4909static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4910                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4911  // Although the logic below support any bitwidth size, there are no
4912  // shift instructions which handle more than 128-bit vectors.
4913  if (SVOp->getValueType(0).getSizeInBits() > 128)
4914    return false;
4915
4916  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4917      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4918    return true;
4919
4920  return false;
4921}
4922
4923/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4924///
4925static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4926                                       unsigned NumNonZero, unsigned NumZero,
4927                                       SelectionDAG &DAG,
4928                                       const TargetLowering &TLI) {
4929  if (NumNonZero > 8)
4930    return SDValue();
4931
4932  DebugLoc dl = Op.getDebugLoc();
4933  SDValue V(0, 0);
4934  bool First = true;
4935  for (unsigned i = 0; i < 16; ++i) {
4936    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4937    if (ThisIsNonZero && First) {
4938      if (NumZero)
4939        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4940      else
4941        V = DAG.getUNDEF(MVT::v8i16);
4942      First = false;
4943    }
4944
4945    if ((i & 1) != 0) {
4946      SDValue ThisElt(0, 0), LastElt(0, 0);
4947      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4948      if (LastIsNonZero) {
4949        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4950                              MVT::i16, Op.getOperand(i-1));
4951      }
4952      if (ThisIsNonZero) {
4953        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4954        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4955                              ThisElt, DAG.getConstant(8, MVT::i8));
4956        if (LastIsNonZero)
4957          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4958      } else
4959        ThisElt = LastElt;
4960
4961      if (ThisElt.getNode())
4962        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4963                        DAG.getIntPtrConstant(i/2));
4964    }
4965  }
4966
4967  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4968}
4969
4970/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4971///
4972static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4973                                     unsigned NumNonZero, unsigned NumZero,
4974                                     SelectionDAG &DAG,
4975                                     const TargetLowering &TLI) {
4976  if (NumNonZero > 4)
4977    return SDValue();
4978
4979  DebugLoc dl = Op.getDebugLoc();
4980  SDValue V(0, 0);
4981  bool First = true;
4982  for (unsigned i = 0; i < 8; ++i) {
4983    bool isNonZero = (NonZeros & (1 << i)) != 0;
4984    if (isNonZero) {
4985      if (First) {
4986        if (NumZero)
4987          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4988        else
4989          V = DAG.getUNDEF(MVT::v8i16);
4990        First = false;
4991      }
4992      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4993                      MVT::v8i16, V, Op.getOperand(i),
4994                      DAG.getIntPtrConstant(i));
4995    }
4996  }
4997
4998  return V;
4999}
5000
5001/// getVShift - Return a vector logical shift node.
5002///
5003static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
5004                         unsigned NumBits, SelectionDAG &DAG,
5005                         const TargetLowering &TLI, DebugLoc dl) {
5006  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
5007  EVT ShVT = MVT::v2i64;
5008  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
5009  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
5010  return DAG.getNode(ISD::BITCAST, dl, VT,
5011                     DAG.getNode(Opc, dl, ShVT, SrcOp,
5012                             DAG.getConstant(NumBits,
5013                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
5014}
5015
5016SDValue
5017X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
5018                                          SelectionDAG &DAG) const {
5019
5020  // Check if the scalar load can be widened into a vector load. And if
5021  // the address is "base + cst" see if the cst can be "absorbed" into
5022  // the shuffle mask.
5023  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
5024    SDValue Ptr = LD->getBasePtr();
5025    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
5026      return SDValue();
5027    EVT PVT = LD->getValueType(0);
5028    if (PVT != MVT::i32 && PVT != MVT::f32)
5029      return SDValue();
5030
5031    int FI = -1;
5032    int64_t Offset = 0;
5033    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
5034      FI = FINode->getIndex();
5035      Offset = 0;
5036    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
5037               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
5038      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5039      Offset = Ptr.getConstantOperandVal(1);
5040      Ptr = Ptr.getOperand(0);
5041    } else {
5042      return SDValue();
5043    }
5044
5045    // FIXME: 256-bit vector instructions don't require a strict alignment,
5046    // improve this code to support it better.
5047    unsigned RequiredAlign = VT.getSizeInBits()/8;
5048    SDValue Chain = LD->getChain();
5049    // Make sure the stack object alignment is at least 16 or 32.
5050    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5051    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
5052      if (MFI->isFixedObjectIndex(FI)) {
5053        // Can't change the alignment. FIXME: It's possible to compute
5054        // the exact stack offset and reference FI + adjust offset instead.
5055        // If someone *really* cares about this. That's the way to implement it.
5056        return SDValue();
5057      } else {
5058        MFI->setObjectAlignment(FI, RequiredAlign);
5059      }
5060    }
5061
5062    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5063    // Ptr + (Offset & ~15).
5064    if (Offset < 0)
5065      return SDValue();
5066    if ((Offset % RequiredAlign) & 3)
5067      return SDValue();
5068    int64_t StartOffset = Offset & ~(RequiredAlign-1);
5069    if (StartOffset)
5070      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
5071                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5072
5073    int EltNo = (Offset - StartOffset) >> 2;
5074    int NumElems = VT.getVectorNumElements();
5075
5076    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
5077    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5078    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5079                             LD->getPointerInfo().getWithOffset(StartOffset),
5080                             false, false, false, 0);
5081
5082    // Canonicalize it to a v4i32 or v8i32 shuffle.
5083    SmallVector<int, 8> Mask;
5084    for (int i = 0; i < NumElems; ++i)
5085      Mask.push_back(EltNo);
5086
5087    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
5088    return DAG.getNode(ISD::BITCAST, dl, NVT,
5089                       DAG.getVectorShuffle(CanonVT, dl, V1,
5090                                            DAG.getUNDEF(CanonVT),&Mask[0]));
5091  }
5092
5093  return SDValue();
5094}
5095
5096/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5097/// vector of type 'VT', see if the elements can be replaced by a single large
5098/// load which has the same value as a build_vector whose operands are 'elts'.
5099///
5100/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5101///
5102/// FIXME: we'd also like to handle the case where the last elements are zero
5103/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5104/// There's even a handy isZeroNode for that purpose.
5105static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5106                                        DebugLoc &DL, SelectionDAG &DAG) {
5107  EVT EltVT = VT.getVectorElementType();
5108  unsigned NumElems = Elts.size();
5109
5110  LoadSDNode *LDBase = NULL;
5111  unsigned LastLoadedElt = -1U;
5112
5113  // For each element in the initializer, see if we've found a load or an undef.
5114  // If we don't find an initial load element, or later load elements are
5115  // non-consecutive, bail out.
5116  for (unsigned i = 0; i < NumElems; ++i) {
5117    SDValue Elt = Elts[i];
5118
5119    if (!Elt.getNode() ||
5120        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5121      return SDValue();
5122    if (!LDBase) {
5123      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5124        return SDValue();
5125      LDBase = cast<LoadSDNode>(Elt.getNode());
5126      LastLoadedElt = i;
5127      continue;
5128    }
5129    if (Elt.getOpcode() == ISD::UNDEF)
5130      continue;
5131
5132    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5133    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5134      return SDValue();
5135    LastLoadedElt = i;
5136  }
5137
5138  // If we have found an entire vector of loads and undefs, then return a large
5139  // load of the entire vector width starting at the base pointer.  If we found
5140  // consecutive loads for the low half, generate a vzext_load node.
5141  if (LastLoadedElt == NumElems - 1) {
5142    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5143      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5144                         LDBase->getPointerInfo(),
5145                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5146                         LDBase->isInvariant(), 0);
5147    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5148                       LDBase->getPointerInfo(),
5149                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5150                       LDBase->isInvariant(), LDBase->getAlignment());
5151  } else if (NumElems == 4 && LastLoadedElt == 1 &&
5152             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5153    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5154    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5155    SDValue ResNode =
5156        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5157                                LDBase->getPointerInfo(),
5158                                LDBase->getAlignment(),
5159                                false/*isVolatile*/, true/*ReadMem*/,
5160                                false/*WriteMem*/);
5161    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5162  }
5163  return SDValue();
5164}
5165
5166/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
5167/// a vbroadcast node. We support two patterns:
5168/// 1. A splat BUILD_VECTOR which uses a single scalar load.
5169/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5170/// a scalar load.
5171/// The scalar load node is returned when a pattern is found,
5172/// or SDValue() otherwise.
5173static SDValue isVectorBroadcast(SDValue &Op, bool hasAVX2) {
5174  EVT VT = Op.getValueType();
5175  SDValue V = Op;
5176
5177  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5178    V = V.getOperand(0);
5179
5180  //A suspected load to be broadcasted.
5181  SDValue Ld;
5182
5183  switch (V.getOpcode()) {
5184    default:
5185      // Unknown pattern found.
5186      return SDValue();
5187
5188    case ISD::BUILD_VECTOR: {
5189      // The BUILD_VECTOR node must be a splat.
5190      if (!isSplatVector(V.getNode()))
5191        return SDValue();
5192
5193      Ld = V.getOperand(0);
5194
5195      // The suspected load node has several users. Make sure that all
5196      // of its users are from the BUILD_VECTOR node.
5197      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5198        return SDValue();
5199      break;
5200    }
5201
5202    case ISD::VECTOR_SHUFFLE: {
5203      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5204
5205      // Shuffles must have a splat mask where the first element is
5206      // broadcasted.
5207      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5208        return SDValue();
5209
5210      SDValue Sc = Op.getOperand(0);
5211      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
5212        return SDValue();
5213
5214      Ld = Sc.getOperand(0);
5215
5216      // The scalar_to_vector node and the suspected
5217      // load node must have exactly one user.
5218      if (!Sc.hasOneUse() || !Ld.hasOneUse())
5219        return SDValue();
5220      break;
5221    }
5222  }
5223
5224  // The scalar source must be a normal load.
5225  if (!ISD::isNormalLoad(Ld.getNode()))
5226    return SDValue();
5227
5228  bool Is256 = VT.getSizeInBits() == 256;
5229  bool Is128 = VT.getSizeInBits() == 128;
5230  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5231
5232  if (hasAVX2) {
5233    // VBroadcast to YMM
5234    if (Is256 && (ScalarSize == 8  || ScalarSize == 16 ||
5235                  ScalarSize == 32 || ScalarSize == 64 ))
5236      return Ld;
5237
5238    // VBroadcast to XMM
5239    if (Is128 && (ScalarSize ==  8 || ScalarSize == 32 ||
5240                  ScalarSize == 16 || ScalarSize == 64 ))
5241      return Ld;
5242  }
5243
5244  // VBroadcast to YMM
5245  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5246    return Ld;
5247
5248  // VBroadcast to XMM
5249  if (Is128 && (ScalarSize == 32))
5250    return Ld;
5251
5252
5253  // Unsupported broadcast.
5254  return SDValue();
5255}
5256
5257SDValue
5258X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5259  DebugLoc dl = Op.getDebugLoc();
5260
5261  EVT VT = Op.getValueType();
5262  EVT ExtVT = VT.getVectorElementType();
5263  unsigned NumElems = Op.getNumOperands();
5264
5265  // Vectors containing all zeros can be matched by pxor and xorps later
5266  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5267    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5268    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5269    if (Op.getValueType() == MVT::v4i32 ||
5270        Op.getValueType() == MVT::v8i32)
5271      return Op;
5272
5273    return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
5274  }
5275
5276  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5277  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5278  // vpcmpeqd on 256-bit vectors.
5279  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5280    if (Op.getValueType() == MVT::v4i32 ||
5281        (Op.getValueType() == MVT::v8i32 && Subtarget->hasAVX2()))
5282      return Op;
5283
5284    return getOnesVector(Op.getValueType(), Subtarget->hasAVX2(), DAG, dl);
5285  }
5286
5287  SDValue LD = isVectorBroadcast(Op, Subtarget->hasAVX2());
5288  if (Subtarget->hasAVX() && LD.getNode())
5289      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5290
5291  unsigned EVTBits = ExtVT.getSizeInBits();
5292
5293  unsigned NumZero  = 0;
5294  unsigned NumNonZero = 0;
5295  unsigned NonZeros = 0;
5296  bool IsAllConstants = true;
5297  SmallSet<SDValue, 8> Values;
5298  for (unsigned i = 0; i < NumElems; ++i) {
5299    SDValue Elt = Op.getOperand(i);
5300    if (Elt.getOpcode() == ISD::UNDEF)
5301      continue;
5302    Values.insert(Elt);
5303    if (Elt.getOpcode() != ISD::Constant &&
5304        Elt.getOpcode() != ISD::ConstantFP)
5305      IsAllConstants = false;
5306    if (X86::isZeroNode(Elt))
5307      NumZero++;
5308    else {
5309      NonZeros |= (1 << i);
5310      NumNonZero++;
5311    }
5312  }
5313
5314  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5315  if (NumNonZero == 0)
5316    return DAG.getUNDEF(VT);
5317
5318  // Special case for single non-zero, non-undef, element.
5319  if (NumNonZero == 1) {
5320    unsigned Idx = CountTrailingZeros_32(NonZeros);
5321    SDValue Item = Op.getOperand(Idx);
5322
5323    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5324    // the value are obviously zero, truncate the value to i32 and do the
5325    // insertion that way.  Only do this if the value is non-constant or if the
5326    // value is a constant being inserted into element 0.  It is cheaper to do
5327    // a constant pool load than it is to do a movd + shuffle.
5328    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5329        (!IsAllConstants || Idx == 0)) {
5330      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5331        // Handle SSE only.
5332        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5333        EVT VecVT = MVT::v4i32;
5334        unsigned VecElts = 4;
5335
5336        // Truncate the value (which may itself be a constant) to i32, and
5337        // convert it to a vector with movd (S2V+shuffle to zero extend).
5338        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5339        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5340        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5341                                           Subtarget->hasXMMInt(), DAG);
5342
5343        // Now we have our 32-bit value zero extended in the low element of
5344        // a vector.  If Idx != 0, swizzle it into place.
5345        if (Idx != 0) {
5346          SmallVector<int, 4> Mask;
5347          Mask.push_back(Idx);
5348          for (unsigned i = 1; i != VecElts; ++i)
5349            Mask.push_back(i);
5350          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5351                                      DAG.getUNDEF(Item.getValueType()),
5352                                      &Mask[0]);
5353        }
5354        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5355      }
5356    }
5357
5358    // If we have a constant or non-constant insertion into the low element of
5359    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5360    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5361    // depending on what the source datatype is.
5362    if (Idx == 0) {
5363      if (NumZero == 0) {
5364        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5365      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5366          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5367        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5368        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5369        return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
5370                                           DAG);
5371      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5372        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5373        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5374        EVT MiddleVT = MVT::v4i32;
5375        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5376        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5377                                           Subtarget->hasXMMInt(), DAG);
5378        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5379      }
5380    }
5381
5382    // Is it a vector logical left shift?
5383    if (NumElems == 2 && Idx == 1 &&
5384        X86::isZeroNode(Op.getOperand(0)) &&
5385        !X86::isZeroNode(Op.getOperand(1))) {
5386      unsigned NumBits = VT.getSizeInBits();
5387      return getVShift(true, VT,
5388                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5389                                   VT, Op.getOperand(1)),
5390                       NumBits/2, DAG, *this, dl);
5391    }
5392
5393    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5394      return SDValue();
5395
5396    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5397    // is a non-constant being inserted into an element other than the low one,
5398    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5399    // movd/movss) to move this into the low element, then shuffle it into
5400    // place.
5401    if (EVTBits == 32) {
5402      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5403
5404      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5405      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5406                                         Subtarget->hasXMMInt(), DAG);
5407      SmallVector<int, 8> MaskVec;
5408      for (unsigned i = 0; i < NumElems; i++)
5409        MaskVec.push_back(i == Idx ? 0 : 1);
5410      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5411    }
5412  }
5413
5414  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5415  if (Values.size() == 1) {
5416    if (EVTBits == 32) {
5417      // Instead of a shuffle like this:
5418      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5419      // Check if it's possible to issue this instead.
5420      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5421      unsigned Idx = CountTrailingZeros_32(NonZeros);
5422      SDValue Item = Op.getOperand(Idx);
5423      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5424        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5425    }
5426    return SDValue();
5427  }
5428
5429  // A vector full of immediates; various special cases are already
5430  // handled, so this is best done with a single constant-pool load.
5431  if (IsAllConstants)
5432    return SDValue();
5433
5434  // For AVX-length vectors, build the individual 128-bit pieces and use
5435  // shuffles to put them in place.
5436  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5437    SmallVector<SDValue, 32> V;
5438    for (unsigned i = 0; i < NumElems; ++i)
5439      V.push_back(Op.getOperand(i));
5440
5441    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5442
5443    // Build both the lower and upper subvector.
5444    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5445    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5446                                NumElems/2);
5447
5448    // Recreate the wider vector with the lower and upper part.
5449    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5450                                DAG.getConstant(0, MVT::i32), DAG, dl);
5451    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5452                              DAG, dl);
5453  }
5454
5455  // Let legalizer expand 2-wide build_vectors.
5456  if (EVTBits == 64) {
5457    if (NumNonZero == 1) {
5458      // One half is zero or undef.
5459      unsigned Idx = CountTrailingZeros_32(NonZeros);
5460      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5461                                 Op.getOperand(Idx));
5462      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5463                                         Subtarget->hasXMMInt(), DAG);
5464    }
5465    return SDValue();
5466  }
5467
5468  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5469  if (EVTBits == 8 && NumElems == 16) {
5470    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5471                                        *this);
5472    if (V.getNode()) return V;
5473  }
5474
5475  if (EVTBits == 16 && NumElems == 8) {
5476    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5477                                      *this);
5478    if (V.getNode()) return V;
5479  }
5480
5481  // If element VT is == 32 bits, turn it into a number of shuffles.
5482  SmallVector<SDValue, 8> V;
5483  V.resize(NumElems);
5484  if (NumElems == 4 && NumZero > 0) {
5485    for (unsigned i = 0; i < 4; ++i) {
5486      bool isZero = !(NonZeros & (1 << i));
5487      if (isZero)
5488        V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
5489      else
5490        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5491    }
5492
5493    for (unsigned i = 0; i < 2; ++i) {
5494      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5495        default: break;
5496        case 0:
5497          V[i] = V[i*2];  // Must be a zero vector.
5498          break;
5499        case 1:
5500          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5501          break;
5502        case 2:
5503          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5504          break;
5505        case 3:
5506          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5507          break;
5508      }
5509    }
5510
5511    SmallVector<int, 8> MaskVec;
5512    bool Reverse = (NonZeros & 0x3) == 2;
5513    for (unsigned i = 0; i < 2; ++i)
5514      MaskVec.push_back(Reverse ? 1-i : i);
5515    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5516    for (unsigned i = 0; i < 2; ++i)
5517      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5518    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5519  }
5520
5521  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5522    // Check for a build vector of consecutive loads.
5523    for (unsigned i = 0; i < NumElems; ++i)
5524      V[i] = Op.getOperand(i);
5525
5526    // Check for elements which are consecutive loads.
5527    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5528    if (LD.getNode())
5529      return LD;
5530
5531    // For SSE 4.1, use insertps to put the high elements into the low element.
5532    if (getSubtarget()->hasSSE41orAVX()) {
5533      SDValue Result;
5534      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5535        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5536      else
5537        Result = DAG.getUNDEF(VT);
5538
5539      for (unsigned i = 1; i < NumElems; ++i) {
5540        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5541        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5542                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5543      }
5544      return Result;
5545    }
5546
5547    // Otherwise, expand into a number of unpckl*, start by extending each of
5548    // our (non-undef) elements to the full vector width with the element in the
5549    // bottom slot of the vector (which generates no code for SSE).
5550    for (unsigned i = 0; i < NumElems; ++i) {
5551      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5552        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5553      else
5554        V[i] = DAG.getUNDEF(VT);
5555    }
5556
5557    // Next, we iteratively mix elements, e.g. for v4f32:
5558    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5559    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5560    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5561    unsigned EltStride = NumElems >> 1;
5562    while (EltStride != 0) {
5563      for (unsigned i = 0; i < EltStride; ++i) {
5564        // If V[i+EltStride] is undef and this is the first round of mixing,
5565        // then it is safe to just drop this shuffle: V[i] is already in the
5566        // right place, the one element (since it's the first round) being
5567        // inserted as undef can be dropped.  This isn't safe for successive
5568        // rounds because they will permute elements within both vectors.
5569        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5570            EltStride == NumElems/2)
5571          continue;
5572
5573        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5574      }
5575      EltStride >>= 1;
5576    }
5577    return V[0];
5578  }
5579  return SDValue();
5580}
5581
5582// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5583// them in a MMX register.  This is better than doing a stack convert.
5584static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5585  DebugLoc dl = Op.getDebugLoc();
5586  EVT ResVT = Op.getValueType();
5587
5588  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5589         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5590  int Mask[2];
5591  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5592  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5593  InVec = Op.getOperand(1);
5594  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5595    unsigned NumElts = ResVT.getVectorNumElements();
5596    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5597    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5598                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5599  } else {
5600    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5601    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5602    Mask[0] = 0; Mask[1] = 2;
5603    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5604  }
5605  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5606}
5607
5608// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5609// to create 256-bit vectors from two other 128-bit ones.
5610static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5611  DebugLoc dl = Op.getDebugLoc();
5612  EVT ResVT = Op.getValueType();
5613
5614  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5615
5616  SDValue V1 = Op.getOperand(0);
5617  SDValue V2 = Op.getOperand(1);
5618  unsigned NumElems = ResVT.getVectorNumElements();
5619
5620  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5621                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5622  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5623                            DAG, dl);
5624}
5625
5626SDValue
5627X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5628  EVT ResVT = Op.getValueType();
5629
5630  assert(Op.getNumOperands() == 2);
5631  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5632         "Unsupported CONCAT_VECTORS for value type");
5633
5634  // We support concatenate two MMX registers and place them in a MMX register.
5635  // This is better than doing a stack convert.
5636  if (ResVT.is128BitVector())
5637    return LowerMMXCONCAT_VECTORS(Op, DAG);
5638
5639  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5640  // from two other 128-bit ones.
5641  return LowerAVXCONCAT_VECTORS(Op, DAG);
5642}
5643
5644// v8i16 shuffles - Prefer shuffles in the following order:
5645// 1. [all]   pshuflw, pshufhw, optional move
5646// 2. [ssse3] 1 x pshufb
5647// 3. [ssse3] 2 x pshufb + 1 x por
5648// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5649SDValue
5650X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5651                                            SelectionDAG &DAG) const {
5652  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5653  SDValue V1 = SVOp->getOperand(0);
5654  SDValue V2 = SVOp->getOperand(1);
5655  DebugLoc dl = SVOp->getDebugLoc();
5656  SmallVector<int, 8> MaskVals;
5657
5658  // Determine if more than 1 of the words in each of the low and high quadwords
5659  // of the result come from the same quadword of one of the two inputs.  Undef
5660  // mask values count as coming from any quadword, for better codegen.
5661  unsigned LoQuad[] = { 0, 0, 0, 0 };
5662  unsigned HiQuad[] = { 0, 0, 0, 0 };
5663  BitVector InputQuads(4);
5664  for (unsigned i = 0; i < 8; ++i) {
5665    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5666    int EltIdx = SVOp->getMaskElt(i);
5667    MaskVals.push_back(EltIdx);
5668    if (EltIdx < 0) {
5669      ++Quad[0];
5670      ++Quad[1];
5671      ++Quad[2];
5672      ++Quad[3];
5673      continue;
5674    }
5675    ++Quad[EltIdx / 4];
5676    InputQuads.set(EltIdx / 4);
5677  }
5678
5679  int BestLoQuad = -1;
5680  unsigned MaxQuad = 1;
5681  for (unsigned i = 0; i < 4; ++i) {
5682    if (LoQuad[i] > MaxQuad) {
5683      BestLoQuad = i;
5684      MaxQuad = LoQuad[i];
5685    }
5686  }
5687
5688  int BestHiQuad = -1;
5689  MaxQuad = 1;
5690  for (unsigned i = 0; i < 4; ++i) {
5691    if (HiQuad[i] > MaxQuad) {
5692      BestHiQuad = i;
5693      MaxQuad = HiQuad[i];
5694    }
5695  }
5696
5697  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5698  // of the two input vectors, shuffle them into one input vector so only a
5699  // single pshufb instruction is necessary. If There are more than 2 input
5700  // quads, disable the next transformation since it does not help SSSE3.
5701  bool V1Used = InputQuads[0] || InputQuads[1];
5702  bool V2Used = InputQuads[2] || InputQuads[3];
5703  if (Subtarget->hasSSSE3orAVX()) {
5704    if (InputQuads.count() == 2 && V1Used && V2Used) {
5705      BestLoQuad = InputQuads.find_first();
5706      BestHiQuad = InputQuads.find_next(BestLoQuad);
5707    }
5708    if (InputQuads.count() > 2) {
5709      BestLoQuad = -1;
5710      BestHiQuad = -1;
5711    }
5712  }
5713
5714  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5715  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5716  // words from all 4 input quadwords.
5717  SDValue NewV;
5718  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5719    SmallVector<int, 8> MaskV;
5720    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5721    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5722    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5723                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5724                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5725    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5726
5727    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5728    // source words for the shuffle, to aid later transformations.
5729    bool AllWordsInNewV = true;
5730    bool InOrder[2] = { true, true };
5731    for (unsigned i = 0; i != 8; ++i) {
5732      int idx = MaskVals[i];
5733      if (idx != (int)i)
5734        InOrder[i/4] = false;
5735      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5736        continue;
5737      AllWordsInNewV = false;
5738      break;
5739    }
5740
5741    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5742    if (AllWordsInNewV) {
5743      for (int i = 0; i != 8; ++i) {
5744        int idx = MaskVals[i];
5745        if (idx < 0)
5746          continue;
5747        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5748        if ((idx != i) && idx < 4)
5749          pshufhw = false;
5750        if ((idx != i) && idx > 3)
5751          pshuflw = false;
5752      }
5753      V1 = NewV;
5754      V2Used = false;
5755      BestLoQuad = 0;
5756      BestHiQuad = 1;
5757    }
5758
5759    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5760    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5761    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5762      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5763      unsigned TargetMask = 0;
5764      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5765                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5766      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5767                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5768      V1 = NewV.getOperand(0);
5769      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5770    }
5771  }
5772
5773  // If we have SSSE3, and all words of the result are from 1 input vector,
5774  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5775  // is present, fall back to case 4.
5776  if (Subtarget->hasSSSE3orAVX()) {
5777    SmallVector<SDValue,16> pshufbMask;
5778
5779    // If we have elements from both input vectors, set the high bit of the
5780    // shuffle mask element to zero out elements that come from V2 in the V1
5781    // mask, and elements that come from V1 in the V2 mask, so that the two
5782    // results can be OR'd together.
5783    bool TwoInputs = V1Used && V2Used;
5784    for (unsigned i = 0; i != 8; ++i) {
5785      int EltIdx = MaskVals[i] * 2;
5786      if (TwoInputs && (EltIdx >= 16)) {
5787        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5788        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5789        continue;
5790      }
5791      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5792      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5793    }
5794    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5795    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5796                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5797                                 MVT::v16i8, &pshufbMask[0], 16));
5798    if (!TwoInputs)
5799      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5800
5801    // Calculate the shuffle mask for the second input, shuffle it, and
5802    // OR it with the first shuffled input.
5803    pshufbMask.clear();
5804    for (unsigned i = 0; i != 8; ++i) {
5805      int EltIdx = MaskVals[i] * 2;
5806      if (EltIdx < 16) {
5807        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5808        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5809        continue;
5810      }
5811      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5812      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5813    }
5814    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5815    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5816                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5817                                 MVT::v16i8, &pshufbMask[0], 16));
5818    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5819    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5820  }
5821
5822  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5823  // and update MaskVals with new element order.
5824  BitVector InOrder(8);
5825  if (BestLoQuad >= 0) {
5826    SmallVector<int, 8> MaskV;
5827    for (int i = 0; i != 4; ++i) {
5828      int idx = MaskVals[i];
5829      if (idx < 0) {
5830        MaskV.push_back(-1);
5831        InOrder.set(i);
5832      } else if ((idx / 4) == BestLoQuad) {
5833        MaskV.push_back(idx & 3);
5834        InOrder.set(i);
5835      } else {
5836        MaskV.push_back(-1);
5837      }
5838    }
5839    for (unsigned i = 4; i != 8; ++i)
5840      MaskV.push_back(i);
5841    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5842                                &MaskV[0]);
5843
5844    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3orAVX())
5845      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5846                               NewV.getOperand(0),
5847                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5848                               DAG);
5849  }
5850
5851  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5852  // and update MaskVals with the new element order.
5853  if (BestHiQuad >= 0) {
5854    SmallVector<int, 8> MaskV;
5855    for (unsigned i = 0; i != 4; ++i)
5856      MaskV.push_back(i);
5857    for (unsigned i = 4; i != 8; ++i) {
5858      int idx = MaskVals[i];
5859      if (idx < 0) {
5860        MaskV.push_back(-1);
5861        InOrder.set(i);
5862      } else if ((idx / 4) == BestHiQuad) {
5863        MaskV.push_back((idx & 3) + 4);
5864        InOrder.set(i);
5865      } else {
5866        MaskV.push_back(-1);
5867      }
5868    }
5869    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5870                                &MaskV[0]);
5871
5872    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3orAVX())
5873      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5874                              NewV.getOperand(0),
5875                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5876                              DAG);
5877  }
5878
5879  // In case BestHi & BestLo were both -1, which means each quadword has a word
5880  // from each of the four input quadwords, calculate the InOrder bitvector now
5881  // before falling through to the insert/extract cleanup.
5882  if (BestLoQuad == -1 && BestHiQuad == -1) {
5883    NewV = V1;
5884    for (int i = 0; i != 8; ++i)
5885      if (MaskVals[i] < 0 || MaskVals[i] == i)
5886        InOrder.set(i);
5887  }
5888
5889  // The other elements are put in the right place using pextrw and pinsrw.
5890  for (unsigned i = 0; i != 8; ++i) {
5891    if (InOrder[i])
5892      continue;
5893    int EltIdx = MaskVals[i];
5894    if (EltIdx < 0)
5895      continue;
5896    SDValue ExtOp = (EltIdx < 8)
5897    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5898                  DAG.getIntPtrConstant(EltIdx))
5899    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5900                  DAG.getIntPtrConstant(EltIdx - 8));
5901    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5902                       DAG.getIntPtrConstant(i));
5903  }
5904  return NewV;
5905}
5906
5907// v16i8 shuffles - Prefer shuffles in the following order:
5908// 1. [ssse3] 1 x pshufb
5909// 2. [ssse3] 2 x pshufb + 1 x por
5910// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5911static
5912SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5913                                 SelectionDAG &DAG,
5914                                 const X86TargetLowering &TLI) {
5915  SDValue V1 = SVOp->getOperand(0);
5916  SDValue V2 = SVOp->getOperand(1);
5917  DebugLoc dl = SVOp->getDebugLoc();
5918  SmallVector<int, 16> MaskVals;
5919  SVOp->getMask(MaskVals);
5920
5921  // If we have SSSE3, case 1 is generated when all result bytes come from
5922  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5923  // present, fall back to case 3.
5924  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5925  bool V1Only = true;
5926  bool V2Only = true;
5927  for (unsigned i = 0; i < 16; ++i) {
5928    int EltIdx = MaskVals[i];
5929    if (EltIdx < 0)
5930      continue;
5931    if (EltIdx < 16)
5932      V2Only = false;
5933    else
5934      V1Only = false;
5935  }
5936
5937  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5938  if (TLI.getSubtarget()->hasSSSE3orAVX()) {
5939    SmallVector<SDValue,16> pshufbMask;
5940
5941    // If all result elements are from one input vector, then only translate
5942    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5943    //
5944    // Otherwise, we have elements from both input vectors, and must zero out
5945    // elements that come from V2 in the first mask, and V1 in the second mask
5946    // so that we can OR them together.
5947    bool TwoInputs = !(V1Only || V2Only);
5948    for (unsigned i = 0; i != 16; ++i) {
5949      int EltIdx = MaskVals[i];
5950      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5951        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5952        continue;
5953      }
5954      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5955    }
5956    // If all the elements are from V2, assign it to V1 and return after
5957    // building the first pshufb.
5958    if (V2Only)
5959      V1 = V2;
5960    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5961                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5962                                 MVT::v16i8, &pshufbMask[0], 16));
5963    if (!TwoInputs)
5964      return V1;
5965
5966    // Calculate the shuffle mask for the second input, shuffle it, and
5967    // OR it with the first shuffled input.
5968    pshufbMask.clear();
5969    for (unsigned i = 0; i != 16; ++i) {
5970      int EltIdx = MaskVals[i];
5971      if (EltIdx < 16) {
5972        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5973        continue;
5974      }
5975      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5976    }
5977    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5978                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5979                                 MVT::v16i8, &pshufbMask[0], 16));
5980    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5981  }
5982
5983  // No SSSE3 - Calculate in place words and then fix all out of place words
5984  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5985  // the 16 different words that comprise the two doublequadword input vectors.
5986  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5987  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5988  SDValue NewV = V2Only ? V2 : V1;
5989  for (int i = 0; i != 8; ++i) {
5990    int Elt0 = MaskVals[i*2];
5991    int Elt1 = MaskVals[i*2+1];
5992
5993    // This word of the result is all undef, skip it.
5994    if (Elt0 < 0 && Elt1 < 0)
5995      continue;
5996
5997    // This word of the result is already in the correct place, skip it.
5998    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5999      continue;
6000    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
6001      continue;
6002
6003    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6004    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6005    SDValue InsElt;
6006
6007    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6008    // using a single extract together, load it and store it.
6009    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6010      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6011                           DAG.getIntPtrConstant(Elt1 / 2));
6012      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6013                        DAG.getIntPtrConstant(i));
6014      continue;
6015    }
6016
6017    // If Elt1 is defined, extract it from the appropriate source.  If the
6018    // source byte is not also odd, shift the extracted word left 8 bits
6019    // otherwise clear the bottom 8 bits if we need to do an or.
6020    if (Elt1 >= 0) {
6021      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6022                           DAG.getIntPtrConstant(Elt1 / 2));
6023      if ((Elt1 & 1) == 0)
6024        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6025                             DAG.getConstant(8,
6026                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6027      else if (Elt0 >= 0)
6028        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6029                             DAG.getConstant(0xFF00, MVT::i16));
6030    }
6031    // If Elt0 is defined, extract it from the appropriate source.  If the
6032    // source byte is not also even, shift the extracted word right 8 bits. If
6033    // Elt1 was also defined, OR the extracted values together before
6034    // inserting them in the result.
6035    if (Elt0 >= 0) {
6036      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6037                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6038      if ((Elt0 & 1) != 0)
6039        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6040                              DAG.getConstant(8,
6041                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6042      else if (Elt1 >= 0)
6043        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6044                             DAG.getConstant(0x00FF, MVT::i16));
6045      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6046                         : InsElt0;
6047    }
6048    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6049                       DAG.getIntPtrConstant(i));
6050  }
6051  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6052}
6053
6054/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6055/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6056/// done when every pair / quad of shuffle mask elements point to elements in
6057/// the right sequence. e.g.
6058/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6059static
6060SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6061                                 SelectionDAG &DAG, DebugLoc dl) {
6062  EVT VT = SVOp->getValueType(0);
6063  SDValue V1 = SVOp->getOperand(0);
6064  SDValue V2 = SVOp->getOperand(1);
6065  unsigned NumElems = VT.getVectorNumElements();
6066  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
6067  EVT NewVT;
6068  switch (VT.getSimpleVT().SimpleTy) {
6069  default: assert(false && "Unexpected!");
6070  case MVT::v4f32: NewVT = MVT::v2f64; break;
6071  case MVT::v4i32: NewVT = MVT::v2i64; break;
6072  case MVT::v8i16: NewVT = MVT::v4i32; break;
6073  case MVT::v16i8: NewVT = MVT::v4i32; break;
6074  }
6075
6076  int Scale = NumElems / NewWidth;
6077  SmallVector<int, 8> MaskVec;
6078  for (unsigned i = 0; i < NumElems; i += Scale) {
6079    int StartIdx = -1;
6080    for (int j = 0; j < Scale; ++j) {
6081      int EltIdx = SVOp->getMaskElt(i+j);
6082      if (EltIdx < 0)
6083        continue;
6084      if (StartIdx == -1)
6085        StartIdx = EltIdx - (EltIdx % Scale);
6086      if (EltIdx != StartIdx + j)
6087        return SDValue();
6088    }
6089    if (StartIdx == -1)
6090      MaskVec.push_back(-1);
6091    else
6092      MaskVec.push_back(StartIdx / Scale);
6093  }
6094
6095  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
6096  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
6097  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6098}
6099
6100/// getVZextMovL - Return a zero-extending vector move low node.
6101///
6102static SDValue getVZextMovL(EVT VT, EVT OpVT,
6103                            SDValue SrcOp, SelectionDAG &DAG,
6104                            const X86Subtarget *Subtarget, DebugLoc dl) {
6105  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6106    LoadSDNode *LD = NULL;
6107    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6108      LD = dyn_cast<LoadSDNode>(SrcOp);
6109    if (!LD) {
6110      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6111      // instead.
6112      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6113      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6114          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6115          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6116          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6117        // PR2108
6118        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6119        return DAG.getNode(ISD::BITCAST, dl, VT,
6120                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6121                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6122                                                   OpVT,
6123                                                   SrcOp.getOperand(0)
6124                                                          .getOperand(0))));
6125      }
6126    }
6127  }
6128
6129  return DAG.getNode(ISD::BITCAST, dl, VT,
6130                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6131                                 DAG.getNode(ISD::BITCAST, dl,
6132                                             OpVT, SrcOp)));
6133}
6134
6135/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
6136/// shuffle node referes to only one lane in the sources.
6137static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
6138  EVT VT = SVOp->getValueType(0);
6139  int NumElems = VT.getVectorNumElements();
6140  int HalfSize = NumElems/2;
6141  SmallVector<int, 16> M;
6142  SVOp->getMask(M);
6143  bool MatchA = false, MatchB = false;
6144
6145  for (int l = 0; l < NumElems*2; l += HalfSize) {
6146    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
6147      MatchA = true;
6148      break;
6149    }
6150  }
6151
6152  for (int l = 0; l < NumElems*2; l += HalfSize) {
6153    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
6154      MatchB = true;
6155      break;
6156    }
6157  }
6158
6159  return MatchA && MatchB;
6160}
6161
6162/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6163/// which could not be matched by any known target speficic shuffle
6164static SDValue
6165LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6166  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
6167    // If each half of a vector shuffle node referes to only one lane in the
6168    // source vectors, extract each used 128-bit lane and shuffle them using
6169    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
6170    // the work to the legalizer.
6171    DebugLoc dl = SVOp->getDebugLoc();
6172    EVT VT = SVOp->getValueType(0);
6173    int NumElems = VT.getVectorNumElements();
6174    int HalfSize = NumElems/2;
6175
6176    // Extract the reference for each half
6177    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
6178    int FstVecOpNum = 0, SndVecOpNum = 0;
6179    for (int i = 0; i < HalfSize; ++i) {
6180      int Elt = SVOp->getMaskElt(i);
6181      if (SVOp->getMaskElt(i) < 0)
6182        continue;
6183      FstVecOpNum = Elt/NumElems;
6184      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
6185      break;
6186    }
6187    for (int i = HalfSize; i < NumElems; ++i) {
6188      int Elt = SVOp->getMaskElt(i);
6189      if (SVOp->getMaskElt(i) < 0)
6190        continue;
6191      SndVecOpNum = Elt/NumElems;
6192      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
6193      break;
6194    }
6195
6196    // Extract the subvectors
6197    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
6198                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
6199    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
6200                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
6201
6202    // Generate 128-bit shuffles
6203    SmallVector<int, 16> MaskV1, MaskV2;
6204    for (int i = 0; i < HalfSize; ++i) {
6205      int Elt = SVOp->getMaskElt(i);
6206      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6207    }
6208    for (int i = HalfSize; i < NumElems; ++i) {
6209      int Elt = SVOp->getMaskElt(i);
6210      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6211    }
6212
6213    EVT NVT = V1.getValueType();
6214    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
6215    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
6216
6217    // Concatenate the result back
6218    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
6219                                   DAG.getConstant(0, MVT::i32), DAG, dl);
6220    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6221                              DAG, dl);
6222  }
6223
6224  return SDValue();
6225}
6226
6227/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6228/// 4 elements, and match them with several different shuffle types.
6229static SDValue
6230LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6231  SDValue V1 = SVOp->getOperand(0);
6232  SDValue V2 = SVOp->getOperand(1);
6233  DebugLoc dl = SVOp->getDebugLoc();
6234  EVT VT = SVOp->getValueType(0);
6235
6236  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6237
6238  SmallVector<std::pair<int, int>, 8> Locs;
6239  Locs.resize(4);
6240  SmallVector<int, 8> Mask1(4U, -1);
6241  SmallVector<int, 8> PermMask;
6242  SVOp->getMask(PermMask);
6243
6244  unsigned NumHi = 0;
6245  unsigned NumLo = 0;
6246  for (unsigned i = 0; i != 4; ++i) {
6247    int Idx = PermMask[i];
6248    if (Idx < 0) {
6249      Locs[i] = std::make_pair(-1, -1);
6250    } else {
6251      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6252      if (Idx < 4) {
6253        Locs[i] = std::make_pair(0, NumLo);
6254        Mask1[NumLo] = Idx;
6255        NumLo++;
6256      } else {
6257        Locs[i] = std::make_pair(1, NumHi);
6258        if (2+NumHi < 4)
6259          Mask1[2+NumHi] = Idx;
6260        NumHi++;
6261      }
6262    }
6263  }
6264
6265  if (NumLo <= 2 && NumHi <= 2) {
6266    // If no more than two elements come from either vector. This can be
6267    // implemented with two shuffles. First shuffle gather the elements.
6268    // The second shuffle, which takes the first shuffle as both of its
6269    // vector operands, put the elements into the right order.
6270    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6271
6272    SmallVector<int, 8> Mask2(4U, -1);
6273
6274    for (unsigned i = 0; i != 4; ++i) {
6275      if (Locs[i].first == -1)
6276        continue;
6277      else {
6278        unsigned Idx = (i < 2) ? 0 : 4;
6279        Idx += Locs[i].first * 2 + Locs[i].second;
6280        Mask2[i] = Idx;
6281      }
6282    }
6283
6284    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6285  } else if (NumLo == 3 || NumHi == 3) {
6286    // Otherwise, we must have three elements from one vector, call it X, and
6287    // one element from the other, call it Y.  First, use a shufps to build an
6288    // intermediate vector with the one element from Y and the element from X
6289    // that will be in the same half in the final destination (the indexes don't
6290    // matter). Then, use a shufps to build the final vector, taking the half
6291    // containing the element from Y from the intermediate, and the other half
6292    // from X.
6293    if (NumHi == 3) {
6294      // Normalize it so the 3 elements come from V1.
6295      CommuteVectorShuffleMask(PermMask, VT);
6296      std::swap(V1, V2);
6297    }
6298
6299    // Find the element from V2.
6300    unsigned HiIndex;
6301    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6302      int Val = PermMask[HiIndex];
6303      if (Val < 0)
6304        continue;
6305      if (Val >= 4)
6306        break;
6307    }
6308
6309    Mask1[0] = PermMask[HiIndex];
6310    Mask1[1] = -1;
6311    Mask1[2] = PermMask[HiIndex^1];
6312    Mask1[3] = -1;
6313    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6314
6315    if (HiIndex >= 2) {
6316      Mask1[0] = PermMask[0];
6317      Mask1[1] = PermMask[1];
6318      Mask1[2] = HiIndex & 1 ? 6 : 4;
6319      Mask1[3] = HiIndex & 1 ? 4 : 6;
6320      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6321    } else {
6322      Mask1[0] = HiIndex & 1 ? 2 : 0;
6323      Mask1[1] = HiIndex & 1 ? 0 : 2;
6324      Mask1[2] = PermMask[2];
6325      Mask1[3] = PermMask[3];
6326      if (Mask1[2] >= 0)
6327        Mask1[2] += 4;
6328      if (Mask1[3] >= 0)
6329        Mask1[3] += 4;
6330      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6331    }
6332  }
6333
6334  // Break it into (shuffle shuffle_hi, shuffle_lo).
6335  Locs.clear();
6336  Locs.resize(4);
6337  SmallVector<int,8> LoMask(4U, -1);
6338  SmallVector<int,8> HiMask(4U, -1);
6339
6340  SmallVector<int,8> *MaskPtr = &LoMask;
6341  unsigned MaskIdx = 0;
6342  unsigned LoIdx = 0;
6343  unsigned HiIdx = 2;
6344  for (unsigned i = 0; i != 4; ++i) {
6345    if (i == 2) {
6346      MaskPtr = &HiMask;
6347      MaskIdx = 1;
6348      LoIdx = 0;
6349      HiIdx = 2;
6350    }
6351    int Idx = PermMask[i];
6352    if (Idx < 0) {
6353      Locs[i] = std::make_pair(-1, -1);
6354    } else if (Idx < 4) {
6355      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6356      (*MaskPtr)[LoIdx] = Idx;
6357      LoIdx++;
6358    } else {
6359      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6360      (*MaskPtr)[HiIdx] = Idx;
6361      HiIdx++;
6362    }
6363  }
6364
6365  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6366  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6367  SmallVector<int, 8> MaskOps;
6368  for (unsigned i = 0; i != 4; ++i) {
6369    if (Locs[i].first == -1) {
6370      MaskOps.push_back(-1);
6371    } else {
6372      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6373      MaskOps.push_back(Idx);
6374    }
6375  }
6376  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6377}
6378
6379static bool MayFoldVectorLoad(SDValue V) {
6380  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6381    V = V.getOperand(0);
6382  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6383    V = V.getOperand(0);
6384  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6385      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6386    // BUILD_VECTOR (load), undef
6387    V = V.getOperand(0);
6388  if (MayFoldLoad(V))
6389    return true;
6390  return false;
6391}
6392
6393// FIXME: the version above should always be used. Since there's
6394// a bug where several vector shuffles can't be folded because the
6395// DAG is not updated during lowering and a node claims to have two
6396// uses while it only has one, use this version, and let isel match
6397// another instruction if the load really happens to have more than
6398// one use. Remove this version after this bug get fixed.
6399// rdar://8434668, PR8156
6400static bool RelaxedMayFoldVectorLoad(SDValue V) {
6401  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6402    V = V.getOperand(0);
6403  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6404    V = V.getOperand(0);
6405  if (ISD::isNormalLoad(V.getNode()))
6406    return true;
6407  return false;
6408}
6409
6410/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6411/// a vector extract, and if both can be later optimized into a single load.
6412/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6413/// here because otherwise a target specific shuffle node is going to be
6414/// emitted for this shuffle, and the optimization not done.
6415/// FIXME: This is probably not the best approach, but fix the problem
6416/// until the right path is decided.
6417static
6418bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6419                                         const TargetLowering &TLI) {
6420  EVT VT = V.getValueType();
6421  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6422
6423  // Be sure that the vector shuffle is present in a pattern like this:
6424  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6425  if (!V.hasOneUse())
6426    return false;
6427
6428  SDNode *N = *V.getNode()->use_begin();
6429  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6430    return false;
6431
6432  SDValue EltNo = N->getOperand(1);
6433  if (!isa<ConstantSDNode>(EltNo))
6434    return false;
6435
6436  // If the bit convert changed the number of elements, it is unsafe
6437  // to examine the mask.
6438  bool HasShuffleIntoBitcast = false;
6439  if (V.getOpcode() == ISD::BITCAST) {
6440    EVT SrcVT = V.getOperand(0).getValueType();
6441    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6442      return false;
6443    V = V.getOperand(0);
6444    HasShuffleIntoBitcast = true;
6445  }
6446
6447  // Select the input vector, guarding against out of range extract vector.
6448  unsigned NumElems = VT.getVectorNumElements();
6449  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6450  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6451  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6452
6453  // Skip one more bit_convert if necessary
6454  if (V.getOpcode() == ISD::BITCAST)
6455    V = V.getOperand(0);
6456
6457  if (ISD::isNormalLoad(V.getNode())) {
6458    // Is the original load suitable?
6459    LoadSDNode *LN0 = cast<LoadSDNode>(V);
6460
6461    // FIXME: avoid the multi-use bug that is preventing lots of
6462    // of foldings to be detected, this is still wrong of course, but
6463    // give the temporary desired behavior, and if it happens that
6464    // the load has real more uses, during isel it will not fold, and
6465    // will generate poor code.
6466    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6467      return false;
6468
6469    if (!HasShuffleIntoBitcast)
6470      return true;
6471
6472    // If there's a bitcast before the shuffle, check if the load type and
6473    // alignment is valid.
6474    unsigned Align = LN0->getAlignment();
6475    unsigned NewAlign =
6476      TLI.getTargetData()->getABITypeAlignment(
6477                                    VT.getTypeForEVT(*DAG.getContext()));
6478
6479    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6480      return false;
6481  }
6482
6483  return true;
6484}
6485
6486static
6487SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6488  EVT VT = Op.getValueType();
6489
6490  // Canonizalize to v2f64.
6491  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6492  return DAG.getNode(ISD::BITCAST, dl, VT,
6493                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6494                                          V1, DAG));
6495}
6496
6497static
6498SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6499                        bool HasXMMInt) {
6500  SDValue V1 = Op.getOperand(0);
6501  SDValue V2 = Op.getOperand(1);
6502  EVT VT = Op.getValueType();
6503
6504  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6505
6506  if (HasXMMInt && VT == MVT::v2f64)
6507    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6508
6509  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6510  return DAG.getNode(ISD::BITCAST, dl, VT,
6511                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6512                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6513                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6514}
6515
6516static
6517SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6518  SDValue V1 = Op.getOperand(0);
6519  SDValue V2 = Op.getOperand(1);
6520  EVT VT = Op.getValueType();
6521
6522  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6523         "unsupported shuffle type");
6524
6525  if (V2.getOpcode() == ISD::UNDEF)
6526    V2 = V1;
6527
6528  // v4i32 or v4f32
6529  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6530}
6531
6532static inline unsigned getSHUFPOpcode(EVT VT) {
6533  switch(VT.getSimpleVT().SimpleTy) {
6534  case MVT::v8i32: // Use fp unit for int unpack.
6535  case MVT::v8f32:
6536  case MVT::v4i32: // Use fp unit for int unpack.
6537  case MVT::v4f32: return X86ISD::SHUFPS;
6538  case MVT::v4i64: // Use fp unit for int unpack.
6539  case MVT::v4f64:
6540  case MVT::v2i64: // Use fp unit for int unpack.
6541  case MVT::v2f64: return X86ISD::SHUFPD;
6542  default:
6543    llvm_unreachable("Unknown type for shufp*");
6544  }
6545  return 0;
6546}
6547
6548static
6549SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
6550  SDValue V1 = Op.getOperand(0);
6551  SDValue V2 = Op.getOperand(1);
6552  EVT VT = Op.getValueType();
6553  unsigned NumElems = VT.getVectorNumElements();
6554
6555  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6556  // operand of these instructions is only memory, so check if there's a
6557  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6558  // same masks.
6559  bool CanFoldLoad = false;
6560
6561  // Trivial case, when V2 comes from a load.
6562  if (MayFoldVectorLoad(V2))
6563    CanFoldLoad = true;
6564
6565  // When V1 is a load, it can be folded later into a store in isel, example:
6566  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6567  //    turns into:
6568  //  (MOVLPSmr addr:$src1, VR128:$src2)
6569  // So, recognize this potential and also use MOVLPS or MOVLPD
6570  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6571    CanFoldLoad = true;
6572
6573  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6574  if (CanFoldLoad) {
6575    if (HasXMMInt && NumElems == 2)
6576      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6577
6578    if (NumElems == 4)
6579      // If we don't care about the second element, procede to use movss.
6580      if (SVOp->getMaskElt(1) != -1)
6581        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6582  }
6583
6584  // movl and movlp will both match v2i64, but v2i64 is never matched by
6585  // movl earlier because we make it strict to avoid messing with the movlp load
6586  // folding logic (see the code above getMOVLP call). Match it here then,
6587  // this is horrible, but will stay like this until we move all shuffle
6588  // matching to x86 specific nodes. Note that for the 1st condition all
6589  // types are matched with movsd.
6590  if (HasXMMInt) {
6591    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6592    // as to remove this logic from here, as much as possible
6593    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6594      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6595    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6596  }
6597
6598  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6599
6600  // Invert the operand order and use SHUFPS to match it.
6601  return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6602                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6603}
6604
6605static inline unsigned getUNPCKLOpcode(EVT VT, bool HasAVX2) {
6606  switch(VT.getSimpleVT().SimpleTy) {
6607  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
6608  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
6609  case MVT::v4f32: return X86ISD::UNPCKLPS;
6610  case MVT::v2f64: return X86ISD::UNPCKLPD;
6611  case MVT::v8i32:
6612    if (HasAVX2)   return X86ISD::VPUNPCKLDQY;
6613    // else use fp unit for int unpack.
6614  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
6615  case MVT::v4i64:
6616    if (HasAVX2)   return X86ISD::VPUNPCKLQDQY;
6617    // else use fp unit for int unpack.
6618  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
6619  case MVT::v16i8: return X86ISD::PUNPCKLBW;
6620  case MVT::v8i16: return X86ISD::PUNPCKLWD;
6621  case MVT::v16i16: return X86ISD::VPUNPCKLWDY;
6622  case MVT::v32i8: return X86ISD::VPUNPCKLBWY;
6623  default:
6624    llvm_unreachable("Unknown type for unpckl");
6625  }
6626  return 0;
6627}
6628
6629static inline unsigned getUNPCKHOpcode(EVT VT, bool HasAVX2) {
6630  switch(VT.getSimpleVT().SimpleTy) {
6631  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
6632  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
6633  case MVT::v4f32: return X86ISD::UNPCKHPS;
6634  case MVT::v2f64: return X86ISD::UNPCKHPD;
6635  case MVT::v8i32:
6636    if (HasAVX2)   return X86ISD::VPUNPCKHDQY;
6637    // else use fp unit for int unpack.
6638  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
6639  case MVT::v4i64:
6640    if (HasAVX2)   return X86ISD::VPUNPCKHQDQY;
6641    // else use fp unit for int unpack.
6642  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
6643  case MVT::v16i8: return X86ISD::PUNPCKHBW;
6644  case MVT::v8i16: return X86ISD::PUNPCKHWD;
6645  case MVT::v16i16: return X86ISD::VPUNPCKHWDY;
6646  case MVT::v32i8: return X86ISD::VPUNPCKHBWY;
6647  default:
6648    llvm_unreachable("Unknown type for unpckh");
6649  }
6650  return 0;
6651}
6652
6653static inline unsigned getVPERMILOpcode(EVT VT) {
6654  switch(VT.getSimpleVT().SimpleTy) {
6655  case MVT::v4i32:
6656  case MVT::v4f32: return X86ISD::VPERMILPS;
6657  case MVT::v2i64:
6658  case MVT::v2f64: return X86ISD::VPERMILPD;
6659  case MVT::v8i32:
6660  case MVT::v8f32: return X86ISD::VPERMILPSY;
6661  case MVT::v4i64:
6662  case MVT::v4f64: return X86ISD::VPERMILPDY;
6663  default:
6664    llvm_unreachable("Unknown type for vpermil");
6665  }
6666  return 0;
6667}
6668
6669static
6670SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6671                               const TargetLowering &TLI,
6672                               const X86Subtarget *Subtarget) {
6673  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6674  EVT VT = Op.getValueType();
6675  DebugLoc dl = Op.getDebugLoc();
6676  SDValue V1 = Op.getOperand(0);
6677  SDValue V2 = Op.getOperand(1);
6678
6679  if (isZeroShuffle(SVOp))
6680    return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
6681
6682  // Handle splat operations
6683  if (SVOp->isSplat()) {
6684    unsigned NumElem = VT.getVectorNumElements();
6685    int Size = VT.getSizeInBits();
6686    // Special case, this is the only place now where it's allowed to return
6687    // a vector_shuffle operation without using a target specific node, because
6688    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6689    // this be moved to DAGCombine instead?
6690    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6691      return Op;
6692
6693    // Use vbroadcast whenever the splat comes from a foldable load
6694    SDValue LD = isVectorBroadcast(Op, Subtarget->hasAVX2());
6695    if (Subtarget->hasAVX() && LD.getNode())
6696      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6697
6698    // Handle splats by matching through known shuffle masks
6699    if ((Size == 128 && NumElem <= 4) ||
6700        (Size == 256 && NumElem < 8))
6701      return SDValue();
6702
6703    // All remaning splats are promoted to target supported vector shuffles.
6704    return PromoteSplat(SVOp, DAG);
6705  }
6706
6707  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6708  // do it!
6709  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6710    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6711    if (NewOp.getNode())
6712      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6713  } else if ((VT == MVT::v4i32 ||
6714             (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
6715    // FIXME: Figure out a cleaner way to do this.
6716    // Try to make use of movq to zero out the top part.
6717    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6718      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6719      if (NewOp.getNode()) {
6720        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6721          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6722                              DAG, Subtarget, dl);
6723      }
6724    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6725      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6726      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6727        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6728                            DAG, Subtarget, dl);
6729    }
6730  }
6731  return SDValue();
6732}
6733
6734SDValue
6735X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6736  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6737  SDValue V1 = Op.getOperand(0);
6738  SDValue V2 = Op.getOperand(1);
6739  EVT VT = Op.getValueType();
6740  DebugLoc dl = Op.getDebugLoc();
6741  unsigned NumElems = VT.getVectorNumElements();
6742  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6743  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6744  bool V1IsSplat = false;
6745  bool V2IsSplat = false;
6746  bool HasXMMInt = Subtarget->hasXMMInt();
6747  bool HasAVX2   = Subtarget->hasAVX2();
6748  MachineFunction &MF = DAG.getMachineFunction();
6749  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6750
6751  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6752
6753  // Vector shuffle lowering takes 3 steps:
6754  //
6755  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6756  //    narrowing and commutation of operands should be handled.
6757  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6758  //    shuffle nodes.
6759  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6760  //    so the shuffle can be broken into other shuffles and the legalizer can
6761  //    try the lowering again.
6762  //
6763  // The general idea is that no vector_shuffle operation should be left to
6764  // be matched during isel, all of them must be converted to a target specific
6765  // node here.
6766
6767  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6768  // narrowing and commutation of operands should be handled. The actual code
6769  // doesn't include all of those, work in progress...
6770  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6771  if (NewOp.getNode())
6772    return NewOp;
6773
6774  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6775  // unpckh_undef). Only use pshufd if speed is more important than size.
6776  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6777    return getTargetShuffleNode(getUNPCKLOpcode(VT, HasAVX2), dl, VT, V1, V1,
6778                                DAG);
6779  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6780    return getTargetShuffleNode(getUNPCKHOpcode(VT, HasAVX2), dl, VT, V1, V1,
6781                                DAG);
6782
6783  if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3orAVX() &&
6784      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6785    return getMOVDDup(Op, dl, V1, DAG);
6786
6787  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6788    return getMOVHighToLow(Op, dl, DAG);
6789
6790  // Use to match splats
6791  if (HasXMMInt && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6792      (VT == MVT::v2f64 || VT == MVT::v2i64))
6793    return getTargetShuffleNode(getUNPCKHOpcode(VT, HasAVX2), dl, VT, V1, V1,
6794                                DAG);
6795
6796  if (X86::isPSHUFDMask(SVOp)) {
6797    // The actual implementation will match the mask in the if above and then
6798    // during isel it can match several different instructions, not only pshufd
6799    // as its name says, sad but true, emulate the behavior for now...
6800    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6801        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6802
6803    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6804
6805    if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
6806      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6807
6808    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6809                                TargetMask, DAG);
6810  }
6811
6812  // Check if this can be converted into a logical shift.
6813  bool isLeft = false;
6814  unsigned ShAmt = 0;
6815  SDValue ShVal;
6816  bool isShift = HasXMMInt && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6817  if (isShift && ShVal.hasOneUse()) {
6818    // If the shifted value has multiple uses, it may be cheaper to use
6819    // v_set0 + movlhps or movhlps, etc.
6820    EVT EltVT = VT.getVectorElementType();
6821    ShAmt *= EltVT.getSizeInBits();
6822    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6823  }
6824
6825  if (X86::isMOVLMask(SVOp)) {
6826    if (V1IsUndef)
6827      return V2;
6828    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6829      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6830    if (!X86::isMOVLPMask(SVOp)) {
6831      if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
6832        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6833
6834      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6835        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6836    }
6837  }
6838
6839  // FIXME: fold these into legal mask.
6840  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6841    return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
6842
6843  if (X86::isMOVHLPSMask(SVOp))
6844    return getMOVHighToLow(Op, dl, DAG);
6845
6846  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6847    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6848
6849  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6850    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6851
6852  if (X86::isMOVLPMask(SVOp))
6853    return getMOVLP(Op, dl, DAG, HasXMMInt);
6854
6855  if (ShouldXformToMOVHLPS(SVOp) ||
6856      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6857    return CommuteVectorShuffle(SVOp, DAG);
6858
6859  if (isShift) {
6860    // No better options. Use a vshl / vsrl.
6861    EVT EltVT = VT.getVectorElementType();
6862    ShAmt *= EltVT.getSizeInBits();
6863    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6864  }
6865
6866  bool Commuted = false;
6867  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6868  // 1,1,1,1 -> v8i16 though.
6869  V1IsSplat = isSplatVector(V1.getNode());
6870  V2IsSplat = isSplatVector(V2.getNode());
6871
6872  // Canonicalize the splat or undef, if present, to be on the RHS.
6873  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6874    Op = CommuteVectorShuffle(SVOp, DAG);
6875    SVOp = cast<ShuffleVectorSDNode>(Op);
6876    V1 = SVOp->getOperand(0);
6877    V2 = SVOp->getOperand(1);
6878    std::swap(V1IsSplat, V2IsSplat);
6879    std::swap(V1IsUndef, V2IsUndef);
6880    Commuted = true;
6881  }
6882
6883  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6884    // Shuffling low element of v1 into undef, just return v1.
6885    if (V2IsUndef)
6886      return V1;
6887    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6888    // the instruction selector will not match, so get a canonical MOVL with
6889    // swapped operands to undo the commute.
6890    return getMOVL(DAG, dl, VT, V2, V1);
6891  }
6892
6893  if (X86::isUNPCKLMask(SVOp, HasAVX2))
6894    return getTargetShuffleNode(getUNPCKLOpcode(VT, HasAVX2), dl, VT, V1, V2,
6895                                DAG);
6896
6897  if (X86::isUNPCKHMask(SVOp, HasAVX2))
6898    return getTargetShuffleNode(getUNPCKHOpcode(VT, HasAVX2), dl, VT, V1, V2,
6899                                DAG);
6900
6901  if (V2IsSplat) {
6902    // Normalize mask so all entries that point to V2 points to its first
6903    // element then try to match unpck{h|l} again. If match, return a
6904    // new vector_shuffle with the corrected mask.
6905    SDValue NewMask = NormalizeMask(SVOp, DAG);
6906    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6907    if (NSVOp != SVOp) {
6908      if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6909        return NewMask;
6910      } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6911        return NewMask;
6912      }
6913    }
6914  }
6915
6916  if (Commuted) {
6917    // Commute is back and try unpck* again.
6918    // FIXME: this seems wrong.
6919    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6920    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6921
6922    if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6923      return getTargetShuffleNode(getUNPCKLOpcode(VT, HasAVX2), dl, VT, V2, V1,
6924                                  DAG);
6925
6926    if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6927      return getTargetShuffleNode(getUNPCKHOpcode(VT, HasAVX2), dl, VT, V2, V1,
6928                                  DAG);
6929  }
6930
6931  // Normalize the node to match x86 shuffle ops if needed
6932  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6933    return CommuteVectorShuffle(SVOp, DAG);
6934
6935  // The checks below are all present in isShuffleMaskLegal, but they are
6936  // inlined here right now to enable us to directly emit target specific
6937  // nodes, and remove one by one until they don't return Op anymore.
6938  SmallVector<int, 16> M;
6939  SVOp->getMask(M);
6940
6941  if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX()))
6942    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6943                                X86::getShufflePALIGNRImmediate(SVOp),
6944                                DAG);
6945
6946  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6947      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6948    if (VT == MVT::v2f64)
6949      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6950    if (VT == MVT::v2i64)
6951      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6952  }
6953
6954  if (isPSHUFHWMask(M, VT))
6955    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6956                                X86::getShufflePSHUFHWImmediate(SVOp),
6957                                DAG);
6958
6959  if (isPSHUFLWMask(M, VT))
6960    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6961                                X86::getShufflePSHUFLWImmediate(SVOp),
6962                                DAG);
6963
6964  if (isSHUFPMask(M, VT))
6965    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6966                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6967
6968  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6969    return getTargetShuffleNode(getUNPCKLOpcode(VT, HasAVX2), dl, VT, V1, V1,
6970                                DAG);
6971  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6972    return getTargetShuffleNode(getUNPCKHOpcode(VT, HasAVX2), dl, VT, V1, V1,
6973                                DAG);
6974
6975  //===--------------------------------------------------------------------===//
6976  // Generate target specific nodes for 128 or 256-bit shuffles only
6977  // supported in the AVX instruction set.
6978  //
6979
6980  // Handle VMOVDDUPY permutations
6981  if (isMOVDDUPYMask(SVOp, Subtarget))
6982    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6983
6984  // Handle VPERMILPS* permutations
6985  if (isVPERMILPSMask(M, VT, Subtarget))
6986    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6987                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6988
6989  // Handle VPERMILPD* permutations
6990  if (isVPERMILPDMask(M, VT, Subtarget))
6991    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6992                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6993
6994  // Handle VPERM2F128 permutations
6995  if (isVPERM2F128Mask(M, VT, Subtarget))
6996    return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
6997                                getShuffleVPERM2F128Immediate(SVOp), DAG);
6998
6999  // Handle VSHUFPSY permutations
7000  if (isVSHUFPSYMask(M, VT, Subtarget))
7001    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
7002                                getShuffleVSHUFPSYImmediate(SVOp), DAG);
7003
7004  // Handle VSHUFPDY permutations
7005  if (isVSHUFPDYMask(M, VT, Subtarget))
7006    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
7007                                getShuffleVSHUFPDYImmediate(SVOp), DAG);
7008
7009  // Try to swap operands in the node to match x86 shuffle ops
7010  if (isCommutedVSHUFPMask(M, VT, Subtarget)) {
7011    // Now we need to commute operands.
7012    SVOp = cast<ShuffleVectorSDNode>(CommuteVectorShuffle(SVOp, DAG));
7013    V1 = SVOp->getOperand(0);
7014    V2 = SVOp->getOperand(1);
7015    unsigned Immediate = (NumElems == 4) ? getShuffleVSHUFPDYImmediate(SVOp):
7016        getShuffleVSHUFPSYImmediate(SVOp);
7017    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2, Immediate, DAG);
7018  }
7019
7020  //===--------------------------------------------------------------------===//
7021  // Since no target specific shuffle was selected for this generic one,
7022  // lower it into other known shuffles. FIXME: this isn't true yet, but
7023  // this is the plan.
7024  //
7025
7026  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7027  if (VT == MVT::v8i16) {
7028    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
7029    if (NewOp.getNode())
7030      return NewOp;
7031  }
7032
7033  if (VT == MVT::v16i8) {
7034    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
7035    if (NewOp.getNode())
7036      return NewOp;
7037  }
7038
7039  // Handle all 128-bit wide vectors with 4 elements, and match them with
7040  // several different shuffle types.
7041  if (NumElems == 4 && VT.getSizeInBits() == 128)
7042    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7043
7044  // Handle general 256-bit shuffles
7045  if (VT.is256BitVector())
7046    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7047
7048  return SDValue();
7049}
7050
7051SDValue
7052X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
7053                                                SelectionDAG &DAG) const {
7054  EVT VT = Op.getValueType();
7055  DebugLoc dl = Op.getDebugLoc();
7056
7057  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
7058    return SDValue();
7059
7060  if (VT.getSizeInBits() == 8) {
7061    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7062                                    Op.getOperand(0), Op.getOperand(1));
7063    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7064                                    DAG.getValueType(VT));
7065    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7066  } else if (VT.getSizeInBits() == 16) {
7067    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7068    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7069    if (Idx == 0)
7070      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7071                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7072                                     DAG.getNode(ISD::BITCAST, dl,
7073                                                 MVT::v4i32,
7074                                                 Op.getOperand(0)),
7075                                     Op.getOperand(1)));
7076    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7077                                    Op.getOperand(0), Op.getOperand(1));
7078    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7079                                    DAG.getValueType(VT));
7080    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7081  } else if (VT == MVT::f32) {
7082    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7083    // the result back to FR32 register. It's only worth matching if the
7084    // result has a single use which is a store or a bitcast to i32.  And in
7085    // the case of a store, it's not worth it if the index is a constant 0,
7086    // because a MOVSSmr can be used instead, which is smaller and faster.
7087    if (!Op.hasOneUse())
7088      return SDValue();
7089    SDNode *User = *Op.getNode()->use_begin();
7090    if ((User->getOpcode() != ISD::STORE ||
7091         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7092          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7093        (User->getOpcode() != ISD::BITCAST ||
7094         User->getValueType(0) != MVT::i32))
7095      return SDValue();
7096    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7097                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7098                                              Op.getOperand(0)),
7099                                              Op.getOperand(1));
7100    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7101  } else if (VT == MVT::i32 || VT == MVT::i64) {
7102    // ExtractPS/pextrq works with constant index.
7103    if (isa<ConstantSDNode>(Op.getOperand(1)))
7104      return Op;
7105  }
7106  return SDValue();
7107}
7108
7109
7110SDValue
7111X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7112                                           SelectionDAG &DAG) const {
7113  if (!isa<ConstantSDNode>(Op.getOperand(1)))
7114    return SDValue();
7115
7116  SDValue Vec = Op.getOperand(0);
7117  EVT VecVT = Vec.getValueType();
7118
7119  // If this is a 256-bit vector result, first extract the 128-bit vector and
7120  // then extract the element from the 128-bit vector.
7121  if (VecVT.getSizeInBits() == 256) {
7122    DebugLoc dl = Op.getNode()->getDebugLoc();
7123    unsigned NumElems = VecVT.getVectorNumElements();
7124    SDValue Idx = Op.getOperand(1);
7125    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7126
7127    // Get the 128-bit vector.
7128    bool Upper = IdxVal >= NumElems/2;
7129    Vec = Extract128BitVector(Vec,
7130                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
7131
7132    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7133                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
7134  }
7135
7136  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
7137
7138  if (Subtarget->hasSSE41orAVX()) {
7139    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7140    if (Res.getNode())
7141      return Res;
7142  }
7143
7144  EVT VT = Op.getValueType();
7145  DebugLoc dl = Op.getDebugLoc();
7146  // TODO: handle v16i8.
7147  if (VT.getSizeInBits() == 16) {
7148    SDValue Vec = Op.getOperand(0);
7149    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7150    if (Idx == 0)
7151      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7152                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7153                                     DAG.getNode(ISD::BITCAST, dl,
7154                                                 MVT::v4i32, Vec),
7155                                     Op.getOperand(1)));
7156    // Transform it so it match pextrw which produces a 32-bit result.
7157    EVT EltVT = MVT::i32;
7158    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7159                                    Op.getOperand(0), Op.getOperand(1));
7160    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7161                                    DAG.getValueType(VT));
7162    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7163  } else if (VT.getSizeInBits() == 32) {
7164    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7165    if (Idx == 0)
7166      return Op;
7167
7168    // SHUFPS the element to the lowest double word, then movss.
7169    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7170    EVT VVT = Op.getOperand(0).getValueType();
7171    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7172                                       DAG.getUNDEF(VVT), Mask);
7173    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7174                       DAG.getIntPtrConstant(0));
7175  } else if (VT.getSizeInBits() == 64) {
7176    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7177    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7178    //        to match extract_elt for f64.
7179    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7180    if (Idx == 0)
7181      return Op;
7182
7183    // UNPCKHPD the element to the lowest double word, then movsd.
7184    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7185    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7186    int Mask[2] = { 1, -1 };
7187    EVT VVT = Op.getOperand(0).getValueType();
7188    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7189                                       DAG.getUNDEF(VVT), Mask);
7190    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7191                       DAG.getIntPtrConstant(0));
7192  }
7193
7194  return SDValue();
7195}
7196
7197SDValue
7198X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
7199                                               SelectionDAG &DAG) const {
7200  EVT VT = Op.getValueType();
7201  EVT EltVT = VT.getVectorElementType();
7202  DebugLoc dl = Op.getDebugLoc();
7203
7204  SDValue N0 = Op.getOperand(0);
7205  SDValue N1 = Op.getOperand(1);
7206  SDValue N2 = Op.getOperand(2);
7207
7208  if (VT.getSizeInBits() == 256)
7209    return SDValue();
7210
7211  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7212      isa<ConstantSDNode>(N2)) {
7213    unsigned Opc;
7214    if (VT == MVT::v8i16)
7215      Opc = X86ISD::PINSRW;
7216    else if (VT == MVT::v16i8)
7217      Opc = X86ISD::PINSRB;
7218    else
7219      Opc = X86ISD::PINSRB;
7220
7221    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7222    // argument.
7223    if (N1.getValueType() != MVT::i32)
7224      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7225    if (N2.getValueType() != MVT::i32)
7226      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7227    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7228  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7229    // Bits [7:6] of the constant are the source select.  This will always be
7230    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7231    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7232    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7233    // Bits [5:4] of the constant are the destination select.  This is the
7234    //  value of the incoming immediate.
7235    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7236    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7237    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7238    // Create this as a scalar to vector..
7239    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7240    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7241  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
7242             isa<ConstantSDNode>(N2)) {
7243    // PINSR* works with constant index.
7244    return Op;
7245  }
7246  return SDValue();
7247}
7248
7249SDValue
7250X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7251  EVT VT = Op.getValueType();
7252  EVT EltVT = VT.getVectorElementType();
7253
7254  DebugLoc dl = Op.getDebugLoc();
7255  SDValue N0 = Op.getOperand(0);
7256  SDValue N1 = Op.getOperand(1);
7257  SDValue N2 = Op.getOperand(2);
7258
7259  // If this is a 256-bit vector result, first extract the 128-bit vector,
7260  // insert the element into the extracted half and then place it back.
7261  if (VT.getSizeInBits() == 256) {
7262    if (!isa<ConstantSDNode>(N2))
7263      return SDValue();
7264
7265    // Get the desired 128-bit vector half.
7266    unsigned NumElems = VT.getVectorNumElements();
7267    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7268    bool Upper = IdxVal >= NumElems/2;
7269    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
7270    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
7271
7272    // Insert the element into the desired half.
7273    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
7274                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
7275
7276    // Insert the changed part back to the 256-bit vector
7277    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
7278  }
7279
7280  if (Subtarget->hasSSE41orAVX())
7281    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7282
7283  if (EltVT == MVT::i8)
7284    return SDValue();
7285
7286  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7287    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7288    // as its second argument.
7289    if (N1.getValueType() != MVT::i32)
7290      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7291    if (N2.getValueType() != MVT::i32)
7292      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7293    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7294  }
7295  return SDValue();
7296}
7297
7298SDValue
7299X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7300  LLVMContext *Context = DAG.getContext();
7301  DebugLoc dl = Op.getDebugLoc();
7302  EVT OpVT = Op.getValueType();
7303
7304  // If this is a 256-bit vector result, first insert into a 128-bit
7305  // vector and then insert into the 256-bit vector.
7306  if (OpVT.getSizeInBits() > 128) {
7307    // Insert into a 128-bit vector.
7308    EVT VT128 = EVT::getVectorVT(*Context,
7309                                 OpVT.getVectorElementType(),
7310                                 OpVT.getVectorNumElements() / 2);
7311
7312    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7313
7314    // Insert the 128-bit vector.
7315    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7316                              DAG.getConstant(0, MVT::i32),
7317                              DAG, dl);
7318  }
7319
7320  if (Op.getValueType() == MVT::v1i64 &&
7321      Op.getOperand(0).getValueType() == MVT::i64)
7322    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7323
7324  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7325  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7326         "Expected an SSE type!");
7327  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7328                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7329}
7330
7331// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7332// a simple subregister reference or explicit instructions to grab
7333// upper bits of a vector.
7334SDValue
7335X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7336  if (Subtarget->hasAVX()) {
7337    DebugLoc dl = Op.getNode()->getDebugLoc();
7338    SDValue Vec = Op.getNode()->getOperand(0);
7339    SDValue Idx = Op.getNode()->getOperand(1);
7340
7341    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7342        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7343        return Extract128BitVector(Vec, Idx, DAG, dl);
7344    }
7345  }
7346  return SDValue();
7347}
7348
7349// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7350// simple superregister reference or explicit instructions to insert
7351// the upper bits of a vector.
7352SDValue
7353X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7354  if (Subtarget->hasAVX()) {
7355    DebugLoc dl = Op.getNode()->getDebugLoc();
7356    SDValue Vec = Op.getNode()->getOperand(0);
7357    SDValue SubVec = Op.getNode()->getOperand(1);
7358    SDValue Idx = Op.getNode()->getOperand(2);
7359
7360    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7361        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7362      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7363    }
7364  }
7365  return SDValue();
7366}
7367
7368// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7369// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7370// one of the above mentioned nodes. It has to be wrapped because otherwise
7371// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7372// be used to form addressing mode. These wrapped nodes will be selected
7373// into MOV32ri.
7374SDValue
7375X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7376  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7377
7378  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7379  // global base reg.
7380  unsigned char OpFlag = 0;
7381  unsigned WrapperKind = X86ISD::Wrapper;
7382  CodeModel::Model M = getTargetMachine().getCodeModel();
7383
7384  if (Subtarget->isPICStyleRIPRel() &&
7385      (M == CodeModel::Small || M == CodeModel::Kernel))
7386    WrapperKind = X86ISD::WrapperRIP;
7387  else if (Subtarget->isPICStyleGOT())
7388    OpFlag = X86II::MO_GOTOFF;
7389  else if (Subtarget->isPICStyleStubPIC())
7390    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7391
7392  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7393                                             CP->getAlignment(),
7394                                             CP->getOffset(), OpFlag);
7395  DebugLoc DL = CP->getDebugLoc();
7396  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7397  // With PIC, the address is actually $g + Offset.
7398  if (OpFlag) {
7399    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7400                         DAG.getNode(X86ISD::GlobalBaseReg,
7401                                     DebugLoc(), getPointerTy()),
7402                         Result);
7403  }
7404
7405  return Result;
7406}
7407
7408SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7409  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7410
7411  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7412  // global base reg.
7413  unsigned char OpFlag = 0;
7414  unsigned WrapperKind = X86ISD::Wrapper;
7415  CodeModel::Model M = getTargetMachine().getCodeModel();
7416
7417  if (Subtarget->isPICStyleRIPRel() &&
7418      (M == CodeModel::Small || M == CodeModel::Kernel))
7419    WrapperKind = X86ISD::WrapperRIP;
7420  else if (Subtarget->isPICStyleGOT())
7421    OpFlag = X86II::MO_GOTOFF;
7422  else if (Subtarget->isPICStyleStubPIC())
7423    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7424
7425  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7426                                          OpFlag);
7427  DebugLoc DL = JT->getDebugLoc();
7428  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7429
7430  // With PIC, the address is actually $g + Offset.
7431  if (OpFlag)
7432    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7433                         DAG.getNode(X86ISD::GlobalBaseReg,
7434                                     DebugLoc(), getPointerTy()),
7435                         Result);
7436
7437  return Result;
7438}
7439
7440SDValue
7441X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7442  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7443
7444  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7445  // global base reg.
7446  unsigned char OpFlag = 0;
7447  unsigned WrapperKind = X86ISD::Wrapper;
7448  CodeModel::Model M = getTargetMachine().getCodeModel();
7449
7450  if (Subtarget->isPICStyleRIPRel() &&
7451      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7452    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7453      OpFlag = X86II::MO_GOTPCREL;
7454    WrapperKind = X86ISD::WrapperRIP;
7455  } else if (Subtarget->isPICStyleGOT()) {
7456    OpFlag = X86II::MO_GOT;
7457  } else if (Subtarget->isPICStyleStubPIC()) {
7458    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7459  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7460    OpFlag = X86II::MO_DARWIN_NONLAZY;
7461  }
7462
7463  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7464
7465  DebugLoc DL = Op.getDebugLoc();
7466  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7467
7468
7469  // With PIC, the address is actually $g + Offset.
7470  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7471      !Subtarget->is64Bit()) {
7472    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7473                         DAG.getNode(X86ISD::GlobalBaseReg,
7474                                     DebugLoc(), getPointerTy()),
7475                         Result);
7476  }
7477
7478  // For symbols that require a load from a stub to get the address, emit the
7479  // load.
7480  if (isGlobalStubReference(OpFlag))
7481    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7482                         MachinePointerInfo::getGOT(), false, false, false, 0);
7483
7484  return Result;
7485}
7486
7487SDValue
7488X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7489  // Create the TargetBlockAddressAddress node.
7490  unsigned char OpFlags =
7491    Subtarget->ClassifyBlockAddressReference();
7492  CodeModel::Model M = getTargetMachine().getCodeModel();
7493  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7494  DebugLoc dl = Op.getDebugLoc();
7495  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7496                                       /*isTarget=*/true, OpFlags);
7497
7498  if (Subtarget->isPICStyleRIPRel() &&
7499      (M == CodeModel::Small || M == CodeModel::Kernel))
7500    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7501  else
7502    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7503
7504  // With PIC, the address is actually $g + Offset.
7505  if (isGlobalRelativeToPICBase(OpFlags)) {
7506    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7507                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7508                         Result);
7509  }
7510
7511  return Result;
7512}
7513
7514SDValue
7515X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7516                                      int64_t Offset,
7517                                      SelectionDAG &DAG) const {
7518  // Create the TargetGlobalAddress node, folding in the constant
7519  // offset if it is legal.
7520  unsigned char OpFlags =
7521    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7522  CodeModel::Model M = getTargetMachine().getCodeModel();
7523  SDValue Result;
7524  if (OpFlags == X86II::MO_NO_FLAG &&
7525      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7526    // A direct static reference to a global.
7527    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7528    Offset = 0;
7529  } else {
7530    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7531  }
7532
7533  if (Subtarget->isPICStyleRIPRel() &&
7534      (M == CodeModel::Small || M == CodeModel::Kernel))
7535    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7536  else
7537    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7538
7539  // With PIC, the address is actually $g + Offset.
7540  if (isGlobalRelativeToPICBase(OpFlags)) {
7541    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7542                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7543                         Result);
7544  }
7545
7546  // For globals that require a load from a stub to get the address, emit the
7547  // load.
7548  if (isGlobalStubReference(OpFlags))
7549    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7550                         MachinePointerInfo::getGOT(), false, false, false, 0);
7551
7552  // If there was a non-zero offset that we didn't fold, create an explicit
7553  // addition for it.
7554  if (Offset != 0)
7555    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7556                         DAG.getConstant(Offset, getPointerTy()));
7557
7558  return Result;
7559}
7560
7561SDValue
7562X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7563  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7564  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7565  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7566}
7567
7568static SDValue
7569GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7570           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7571           unsigned char OperandFlags) {
7572  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7573  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7574  DebugLoc dl = GA->getDebugLoc();
7575  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7576                                           GA->getValueType(0),
7577                                           GA->getOffset(),
7578                                           OperandFlags);
7579  if (InFlag) {
7580    SDValue Ops[] = { Chain,  TGA, *InFlag };
7581    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7582  } else {
7583    SDValue Ops[]  = { Chain, TGA };
7584    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7585  }
7586
7587  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7588  MFI->setAdjustsStack(true);
7589
7590  SDValue Flag = Chain.getValue(1);
7591  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7592}
7593
7594// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7595static SDValue
7596LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7597                                const EVT PtrVT) {
7598  SDValue InFlag;
7599  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7600  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7601                                     DAG.getNode(X86ISD::GlobalBaseReg,
7602                                                 DebugLoc(), PtrVT), InFlag);
7603  InFlag = Chain.getValue(1);
7604
7605  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7606}
7607
7608// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7609static SDValue
7610LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7611                                const EVT PtrVT) {
7612  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7613                    X86::RAX, X86II::MO_TLSGD);
7614}
7615
7616// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7617// "local exec" model.
7618static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7619                                   const EVT PtrVT, TLSModel::Model model,
7620                                   bool is64Bit) {
7621  DebugLoc dl = GA->getDebugLoc();
7622
7623  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7624  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7625                                                         is64Bit ? 257 : 256));
7626
7627  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7628                                      DAG.getIntPtrConstant(0),
7629                                      MachinePointerInfo(Ptr),
7630                                      false, false, false, 0);
7631
7632  unsigned char OperandFlags = 0;
7633  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7634  // initialexec.
7635  unsigned WrapperKind = X86ISD::Wrapper;
7636  if (model == TLSModel::LocalExec) {
7637    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7638  } else if (is64Bit) {
7639    assert(model == TLSModel::InitialExec);
7640    OperandFlags = X86II::MO_GOTTPOFF;
7641    WrapperKind = X86ISD::WrapperRIP;
7642  } else {
7643    assert(model == TLSModel::InitialExec);
7644    OperandFlags = X86II::MO_INDNTPOFF;
7645  }
7646
7647  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7648  // exec)
7649  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7650                                           GA->getValueType(0),
7651                                           GA->getOffset(), OperandFlags);
7652  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7653
7654  if (model == TLSModel::InitialExec)
7655    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7656                         MachinePointerInfo::getGOT(), false, false, false, 0);
7657
7658  // The address of the thread local variable is the add of the thread
7659  // pointer with the offset of the variable.
7660  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7661}
7662
7663SDValue
7664X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7665
7666  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7667  const GlobalValue *GV = GA->getGlobal();
7668
7669  if (Subtarget->isTargetELF()) {
7670    // TODO: implement the "local dynamic" model
7671    // TODO: implement the "initial exec"model for pic executables
7672
7673    // If GV is an alias then use the aliasee for determining
7674    // thread-localness.
7675    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7676      GV = GA->resolveAliasedGlobal(false);
7677
7678    TLSModel::Model model
7679      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7680
7681    switch (model) {
7682      case TLSModel::GeneralDynamic:
7683      case TLSModel::LocalDynamic: // not implemented
7684        if (Subtarget->is64Bit())
7685          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7686        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7687
7688      case TLSModel::InitialExec:
7689      case TLSModel::LocalExec:
7690        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7691                                   Subtarget->is64Bit());
7692    }
7693  } else if (Subtarget->isTargetDarwin()) {
7694    // Darwin only has one model of TLS.  Lower to that.
7695    unsigned char OpFlag = 0;
7696    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7697                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7698
7699    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7700    // global base reg.
7701    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7702                  !Subtarget->is64Bit();
7703    if (PIC32)
7704      OpFlag = X86II::MO_TLVP_PIC_BASE;
7705    else
7706      OpFlag = X86II::MO_TLVP;
7707    DebugLoc DL = Op.getDebugLoc();
7708    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7709                                                GA->getValueType(0),
7710                                                GA->getOffset(), OpFlag);
7711    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7712
7713    // With PIC32, the address is actually $g + Offset.
7714    if (PIC32)
7715      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7716                           DAG.getNode(X86ISD::GlobalBaseReg,
7717                                       DebugLoc(), getPointerTy()),
7718                           Offset);
7719
7720    // Lowering the machine isd will make sure everything is in the right
7721    // location.
7722    SDValue Chain = DAG.getEntryNode();
7723    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7724    SDValue Args[] = { Chain, Offset };
7725    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7726
7727    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7728    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7729    MFI->setAdjustsStack(true);
7730
7731    // And our return value (tls address) is in the standard call return value
7732    // location.
7733    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7734    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7735                              Chain.getValue(1));
7736  }
7737
7738  assert(false &&
7739         "TLS not implemented for this target.");
7740
7741  llvm_unreachable("Unreachable");
7742  return SDValue();
7743}
7744
7745
7746/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7747/// take a 2 x i32 value to shift plus a shift amount.
7748SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7749  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7750  EVT VT = Op.getValueType();
7751  unsigned VTBits = VT.getSizeInBits();
7752  DebugLoc dl = Op.getDebugLoc();
7753  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7754  SDValue ShOpLo = Op.getOperand(0);
7755  SDValue ShOpHi = Op.getOperand(1);
7756  SDValue ShAmt  = Op.getOperand(2);
7757  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7758                                     DAG.getConstant(VTBits - 1, MVT::i8))
7759                       : DAG.getConstant(0, VT);
7760
7761  SDValue Tmp2, Tmp3;
7762  if (Op.getOpcode() == ISD::SHL_PARTS) {
7763    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7764    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7765  } else {
7766    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7767    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7768  }
7769
7770  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7771                                DAG.getConstant(VTBits, MVT::i8));
7772  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7773                             AndNode, DAG.getConstant(0, MVT::i8));
7774
7775  SDValue Hi, Lo;
7776  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7777  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7778  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7779
7780  if (Op.getOpcode() == ISD::SHL_PARTS) {
7781    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7782    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7783  } else {
7784    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7785    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7786  }
7787
7788  SDValue Ops[2] = { Lo, Hi };
7789  return DAG.getMergeValues(Ops, 2, dl);
7790}
7791
7792SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7793                                           SelectionDAG &DAG) const {
7794  EVT SrcVT = Op.getOperand(0).getValueType();
7795
7796  if (SrcVT.isVector())
7797    return SDValue();
7798
7799  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7800         "Unknown SINT_TO_FP to lower!");
7801
7802  // These are really Legal; return the operand so the caller accepts it as
7803  // Legal.
7804  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7805    return Op;
7806  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7807      Subtarget->is64Bit()) {
7808    return Op;
7809  }
7810
7811  DebugLoc dl = Op.getDebugLoc();
7812  unsigned Size = SrcVT.getSizeInBits()/8;
7813  MachineFunction &MF = DAG.getMachineFunction();
7814  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7815  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7816  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7817                               StackSlot,
7818                               MachinePointerInfo::getFixedStack(SSFI),
7819                               false, false, 0);
7820  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7821}
7822
7823SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7824                                     SDValue StackSlot,
7825                                     SelectionDAG &DAG) const {
7826  // Build the FILD
7827  DebugLoc DL = Op.getDebugLoc();
7828  SDVTList Tys;
7829  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7830  if (useSSE)
7831    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7832  else
7833    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7834
7835  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7836
7837  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7838  MachineMemOperand *MMO;
7839  if (FI) {
7840    int SSFI = FI->getIndex();
7841    MMO =
7842      DAG.getMachineFunction()
7843      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7844                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7845  } else {
7846    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7847    StackSlot = StackSlot.getOperand(1);
7848  }
7849  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7850  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7851                                           X86ISD::FILD, DL,
7852                                           Tys, Ops, array_lengthof(Ops),
7853                                           SrcVT, MMO);
7854
7855  if (useSSE) {
7856    Chain = Result.getValue(1);
7857    SDValue InFlag = Result.getValue(2);
7858
7859    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7860    // shouldn't be necessary except that RFP cannot be live across
7861    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7862    MachineFunction &MF = DAG.getMachineFunction();
7863    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7864    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7865    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7866    Tys = DAG.getVTList(MVT::Other);
7867    SDValue Ops[] = {
7868      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7869    };
7870    MachineMemOperand *MMO =
7871      DAG.getMachineFunction()
7872      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7873                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7874
7875    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7876                                    Ops, array_lengthof(Ops),
7877                                    Op.getValueType(), MMO);
7878    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7879                         MachinePointerInfo::getFixedStack(SSFI),
7880                         false, false, false, 0);
7881  }
7882
7883  return Result;
7884}
7885
7886// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7887SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7888                                               SelectionDAG &DAG) const {
7889  // This algorithm is not obvious. Here it is in C code, more or less:
7890  /*
7891    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7892      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7893      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7894
7895      // Copy ints to xmm registers.
7896      __m128i xh = _mm_cvtsi32_si128( hi );
7897      __m128i xl = _mm_cvtsi32_si128( lo );
7898
7899      // Combine into low half of a single xmm register.
7900      __m128i x = _mm_unpacklo_epi32( xh, xl );
7901      __m128d d;
7902      double sd;
7903
7904      // Merge in appropriate exponents to give the integer bits the right
7905      // magnitude.
7906      x = _mm_unpacklo_epi32( x, exp );
7907
7908      // Subtract away the biases to deal with the IEEE-754 double precision
7909      // implicit 1.
7910      d = _mm_sub_pd( (__m128d) x, bias );
7911
7912      // All conversions up to here are exact. The correctly rounded result is
7913      // calculated using the current rounding mode using the following
7914      // horizontal add.
7915      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7916      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7917                                // store doesn't really need to be here (except
7918                                // maybe to zero the other double)
7919      return sd;
7920    }
7921  */
7922
7923  DebugLoc dl = Op.getDebugLoc();
7924  LLVMContext *Context = DAG.getContext();
7925
7926  // Build some magic constants.
7927  std::vector<Constant*> CV0;
7928  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7929  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7930  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7931  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7932  Constant *C0 = ConstantVector::get(CV0);
7933  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7934
7935  std::vector<Constant*> CV1;
7936  CV1.push_back(
7937    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7938  CV1.push_back(
7939    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7940  Constant *C1 = ConstantVector::get(CV1);
7941  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7942
7943  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7944                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7945                                        Op.getOperand(0),
7946                                        DAG.getIntPtrConstant(1)));
7947  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7948                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7949                                        Op.getOperand(0),
7950                                        DAG.getIntPtrConstant(0)));
7951  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7952  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7953                              MachinePointerInfo::getConstantPool(),
7954                              false, false, false, 16);
7955  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7956  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7957  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7958                              MachinePointerInfo::getConstantPool(),
7959                              false, false, false, 16);
7960  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7961
7962  // Add the halves; easiest way is to swap them into another reg first.
7963  int ShufMask[2] = { 1, -1 };
7964  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7965                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7966  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7967  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7968                     DAG.getIntPtrConstant(0));
7969}
7970
7971// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7972SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7973                                               SelectionDAG &DAG) const {
7974  DebugLoc dl = Op.getDebugLoc();
7975  // FP constant to bias correct the final result.
7976  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7977                                   MVT::f64);
7978
7979  // Load the 32-bit value into an XMM register.
7980  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7981                             Op.getOperand(0));
7982
7983  // Zero out the upper parts of the register.
7984  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
7985                                     DAG);
7986
7987  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7988                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7989                     DAG.getIntPtrConstant(0));
7990
7991  // Or the load with the bias.
7992  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7993                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7994                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7995                                                   MVT::v2f64, Load)),
7996                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7997                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7998                                                   MVT::v2f64, Bias)));
7999  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8000                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8001                   DAG.getIntPtrConstant(0));
8002
8003  // Subtract the bias.
8004  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8005
8006  // Handle final rounding.
8007  EVT DestVT = Op.getValueType();
8008
8009  if (DestVT.bitsLT(MVT::f64)) {
8010    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8011                       DAG.getIntPtrConstant(0));
8012  } else if (DestVT.bitsGT(MVT::f64)) {
8013    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8014  }
8015
8016  // Handle final rounding.
8017  return Sub;
8018}
8019
8020SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8021                                           SelectionDAG &DAG) const {
8022  SDValue N0 = Op.getOperand(0);
8023  DebugLoc dl = Op.getDebugLoc();
8024
8025  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8026  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8027  // the optimization here.
8028  if (DAG.SignBitIsZero(N0))
8029    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8030
8031  EVT SrcVT = N0.getValueType();
8032  EVT DstVT = Op.getValueType();
8033  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8034    return LowerUINT_TO_FP_i64(Op, DAG);
8035  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8036    return LowerUINT_TO_FP_i32(Op, DAG);
8037
8038  // Make a 64-bit buffer, and use it to build an FILD.
8039  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8040  if (SrcVT == MVT::i32) {
8041    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8042    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8043                                     getPointerTy(), StackSlot, WordOff);
8044    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8045                                  StackSlot, MachinePointerInfo(),
8046                                  false, false, 0);
8047    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8048                                  OffsetSlot, MachinePointerInfo(),
8049                                  false, false, 0);
8050    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8051    return Fild;
8052  }
8053
8054  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8055  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8056                                StackSlot, MachinePointerInfo(),
8057                               false, false, 0);
8058  // For i64 source, we need to add the appropriate power of 2 if the input
8059  // was negative.  This is the same as the optimization in
8060  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8061  // we must be careful to do the computation in x87 extended precision, not
8062  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8063  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8064  MachineMemOperand *MMO =
8065    DAG.getMachineFunction()
8066    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8067                          MachineMemOperand::MOLoad, 8, 8);
8068
8069  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8070  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8071  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
8072                                         MVT::i64, MMO);
8073
8074  APInt FF(32, 0x5F800000ULL);
8075
8076  // Check whether the sign bit is set.
8077  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
8078                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8079                                 ISD::SETLT);
8080
8081  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8082  SDValue FudgePtr = DAG.getConstantPool(
8083                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8084                                         getPointerTy());
8085
8086  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8087  SDValue Zero = DAG.getIntPtrConstant(0);
8088  SDValue Four = DAG.getIntPtrConstant(4);
8089  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8090                               Zero, Four);
8091  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8092
8093  // Load the value out, extending it from f32 to f80.
8094  // FIXME: Avoid the extend by constructing the right constant pool?
8095  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8096                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8097                                 MVT::f32, false, false, 4);
8098  // Extend everything to 80 bits to force it to be done on x87.
8099  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8100  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8101}
8102
8103std::pair<SDValue,SDValue> X86TargetLowering::
8104FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
8105  DebugLoc DL = Op.getDebugLoc();
8106
8107  EVT DstTy = Op.getValueType();
8108
8109  if (!IsSigned) {
8110    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8111    DstTy = MVT::i64;
8112  }
8113
8114  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8115         DstTy.getSimpleVT() >= MVT::i16 &&
8116         "Unknown FP_TO_SINT to lower!");
8117
8118  // These are really Legal.
8119  if (DstTy == MVT::i32 &&
8120      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8121    return std::make_pair(SDValue(), SDValue());
8122  if (Subtarget->is64Bit() &&
8123      DstTy == MVT::i64 &&
8124      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8125    return std::make_pair(SDValue(), SDValue());
8126
8127  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
8128  // stack slot.
8129  MachineFunction &MF = DAG.getMachineFunction();
8130  unsigned MemSize = DstTy.getSizeInBits()/8;
8131  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8132  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8133
8134
8135
8136  unsigned Opc;
8137  switch (DstTy.getSimpleVT().SimpleTy) {
8138  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8139  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8140  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8141  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8142  }
8143
8144  SDValue Chain = DAG.getEntryNode();
8145  SDValue Value = Op.getOperand(0);
8146  EVT TheVT = Op.getOperand(0).getValueType();
8147  if (isScalarFPTypeInSSEReg(TheVT)) {
8148    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8149    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8150                         MachinePointerInfo::getFixedStack(SSFI),
8151                         false, false, 0);
8152    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8153    SDValue Ops[] = {
8154      Chain, StackSlot, DAG.getValueType(TheVT)
8155    };
8156
8157    MachineMemOperand *MMO =
8158      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8159                              MachineMemOperand::MOLoad, MemSize, MemSize);
8160    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8161                                    DstTy, MMO);
8162    Chain = Value.getValue(1);
8163    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8164    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8165  }
8166
8167  MachineMemOperand *MMO =
8168    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8169                            MachineMemOperand::MOStore, MemSize, MemSize);
8170
8171  // Build the FP_TO_INT*_IN_MEM
8172  SDValue Ops[] = { Chain, Value, StackSlot };
8173  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8174                                         Ops, 3, DstTy, MMO);
8175
8176  return std::make_pair(FIST, StackSlot);
8177}
8178
8179SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8180                                           SelectionDAG &DAG) const {
8181  if (Op.getValueType().isVector())
8182    return SDValue();
8183
8184  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
8185  SDValue FIST = Vals.first, StackSlot = Vals.second;
8186  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8187  if (FIST.getNode() == 0) return Op;
8188
8189  // Load the result.
8190  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8191                     FIST, StackSlot, MachinePointerInfo(),
8192                     false, false, false, 0);
8193}
8194
8195SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8196                                           SelectionDAG &DAG) const {
8197  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
8198  SDValue FIST = Vals.first, StackSlot = Vals.second;
8199  assert(FIST.getNode() && "Unexpected failure");
8200
8201  // Load the result.
8202  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8203                     FIST, StackSlot, MachinePointerInfo(),
8204                     false, false, false, 0);
8205}
8206
8207SDValue X86TargetLowering::LowerFABS(SDValue Op,
8208                                     SelectionDAG &DAG) const {
8209  LLVMContext *Context = DAG.getContext();
8210  DebugLoc dl = Op.getDebugLoc();
8211  EVT VT = Op.getValueType();
8212  EVT EltVT = VT;
8213  if (VT.isVector())
8214    EltVT = VT.getVectorElementType();
8215  std::vector<Constant*> CV;
8216  if (EltVT == MVT::f64) {
8217    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8218    CV.push_back(C);
8219    CV.push_back(C);
8220  } else {
8221    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8222    CV.push_back(C);
8223    CV.push_back(C);
8224    CV.push_back(C);
8225    CV.push_back(C);
8226  }
8227  Constant *C = ConstantVector::get(CV);
8228  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8229  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8230                             MachinePointerInfo::getConstantPool(),
8231                             false, false, false, 16);
8232  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8233}
8234
8235SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8236  LLVMContext *Context = DAG.getContext();
8237  DebugLoc dl = Op.getDebugLoc();
8238  EVT VT = Op.getValueType();
8239  EVT EltVT = VT;
8240  if (VT.isVector())
8241    EltVT = VT.getVectorElementType();
8242  std::vector<Constant*> CV;
8243  if (EltVT == MVT::f64) {
8244    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8245    CV.push_back(C);
8246    CV.push_back(C);
8247  } else {
8248    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8249    CV.push_back(C);
8250    CV.push_back(C);
8251    CV.push_back(C);
8252    CV.push_back(C);
8253  }
8254  Constant *C = ConstantVector::get(CV);
8255  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8256  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8257                             MachinePointerInfo::getConstantPool(),
8258                             false, false, false, 16);
8259  if (VT.isVector()) {
8260    return DAG.getNode(ISD::BITCAST, dl, VT,
8261                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
8262                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8263                                Op.getOperand(0)),
8264                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
8265  } else {
8266    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8267  }
8268}
8269
8270SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8271  LLVMContext *Context = DAG.getContext();
8272  SDValue Op0 = Op.getOperand(0);
8273  SDValue Op1 = Op.getOperand(1);
8274  DebugLoc dl = Op.getDebugLoc();
8275  EVT VT = Op.getValueType();
8276  EVT SrcVT = Op1.getValueType();
8277
8278  // If second operand is smaller, extend it first.
8279  if (SrcVT.bitsLT(VT)) {
8280    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8281    SrcVT = VT;
8282  }
8283  // And if it is bigger, shrink it first.
8284  if (SrcVT.bitsGT(VT)) {
8285    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8286    SrcVT = VT;
8287  }
8288
8289  // At this point the operands and the result should have the same
8290  // type, and that won't be f80 since that is not custom lowered.
8291
8292  // First get the sign bit of second operand.
8293  std::vector<Constant*> CV;
8294  if (SrcVT == MVT::f64) {
8295    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8296    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8297  } else {
8298    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8299    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8300    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8301    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8302  }
8303  Constant *C = ConstantVector::get(CV);
8304  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8305  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8306                              MachinePointerInfo::getConstantPool(),
8307                              false, false, false, 16);
8308  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8309
8310  // Shift sign bit right or left if the two operands have different types.
8311  if (SrcVT.bitsGT(VT)) {
8312    // Op0 is MVT::f32, Op1 is MVT::f64.
8313    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8314    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8315                          DAG.getConstant(32, MVT::i32));
8316    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8317    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8318                          DAG.getIntPtrConstant(0));
8319  }
8320
8321  // Clear first operand sign bit.
8322  CV.clear();
8323  if (VT == MVT::f64) {
8324    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8325    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8326  } else {
8327    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8328    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8329    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8330    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8331  }
8332  C = ConstantVector::get(CV);
8333  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8334  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8335                              MachinePointerInfo::getConstantPool(),
8336                              false, false, false, 16);
8337  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8338
8339  // Or the value with the sign bit.
8340  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8341}
8342
8343SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8344  SDValue N0 = Op.getOperand(0);
8345  DebugLoc dl = Op.getDebugLoc();
8346  EVT VT = Op.getValueType();
8347
8348  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8349  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8350                                  DAG.getConstant(1, VT));
8351  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8352}
8353
8354/// Emit nodes that will be selected as "test Op0,Op0", or something
8355/// equivalent.
8356SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8357                                    SelectionDAG &DAG) const {
8358  DebugLoc dl = Op.getDebugLoc();
8359
8360  // CF and OF aren't always set the way we want. Determine which
8361  // of these we need.
8362  bool NeedCF = false;
8363  bool NeedOF = false;
8364  switch (X86CC) {
8365  default: break;
8366  case X86::COND_A: case X86::COND_AE:
8367  case X86::COND_B: case X86::COND_BE:
8368    NeedCF = true;
8369    break;
8370  case X86::COND_G: case X86::COND_GE:
8371  case X86::COND_L: case X86::COND_LE:
8372  case X86::COND_O: case X86::COND_NO:
8373    NeedOF = true;
8374    break;
8375  }
8376
8377  // See if we can use the EFLAGS value from the operand instead of
8378  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8379  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8380  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8381    // Emit a CMP with 0, which is the TEST pattern.
8382    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8383                       DAG.getConstant(0, Op.getValueType()));
8384
8385  unsigned Opcode = 0;
8386  unsigned NumOperands = 0;
8387  switch (Op.getNode()->getOpcode()) {
8388  case ISD::ADD:
8389    // Due to an isel shortcoming, be conservative if this add is likely to be
8390    // selected as part of a load-modify-store instruction. When the root node
8391    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8392    // uses of other nodes in the match, such as the ADD in this case. This
8393    // leads to the ADD being left around and reselected, with the result being
8394    // two adds in the output.  Alas, even if none our users are stores, that
8395    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8396    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8397    // climbing the DAG back to the root, and it doesn't seem to be worth the
8398    // effort.
8399    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8400         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8401      if (UI->getOpcode() != ISD::CopyToReg &&
8402          UI->getOpcode() != ISD::SETCC &&
8403          UI->getOpcode() != ISD::STORE)
8404        goto default_case;
8405
8406    if (ConstantSDNode *C =
8407        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8408      // An add of one will be selected as an INC.
8409      if (C->getAPIntValue() == 1) {
8410        Opcode = X86ISD::INC;
8411        NumOperands = 1;
8412        break;
8413      }
8414
8415      // An add of negative one (subtract of one) will be selected as a DEC.
8416      if (C->getAPIntValue().isAllOnesValue()) {
8417        Opcode = X86ISD::DEC;
8418        NumOperands = 1;
8419        break;
8420      }
8421    }
8422
8423    // Otherwise use a regular EFLAGS-setting add.
8424    Opcode = X86ISD::ADD;
8425    NumOperands = 2;
8426    break;
8427  case ISD::AND: {
8428    // If the primary and result isn't used, don't bother using X86ISD::AND,
8429    // because a TEST instruction will be better.
8430    bool NonFlagUse = false;
8431    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8432           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8433      SDNode *User = *UI;
8434      unsigned UOpNo = UI.getOperandNo();
8435      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8436        // Look pass truncate.
8437        UOpNo = User->use_begin().getOperandNo();
8438        User = *User->use_begin();
8439      }
8440
8441      if (User->getOpcode() != ISD::BRCOND &&
8442          User->getOpcode() != ISD::SETCC &&
8443          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8444        NonFlagUse = true;
8445        break;
8446      }
8447    }
8448
8449    if (!NonFlagUse)
8450      break;
8451  }
8452    // FALL THROUGH
8453  case ISD::SUB:
8454  case ISD::OR:
8455  case ISD::XOR:
8456    // Due to the ISEL shortcoming noted above, be conservative if this op is
8457    // likely to be selected as part of a load-modify-store instruction.
8458    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8459           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8460      if (UI->getOpcode() == ISD::STORE)
8461        goto default_case;
8462
8463    // Otherwise use a regular EFLAGS-setting instruction.
8464    switch (Op.getNode()->getOpcode()) {
8465    default: llvm_unreachable("unexpected operator!");
8466    case ISD::SUB: Opcode = X86ISD::SUB; break;
8467    case ISD::OR:  Opcode = X86ISD::OR;  break;
8468    case ISD::XOR: Opcode = X86ISD::XOR; break;
8469    case ISD::AND: Opcode = X86ISD::AND; break;
8470    }
8471
8472    NumOperands = 2;
8473    break;
8474  case X86ISD::ADD:
8475  case X86ISD::SUB:
8476  case X86ISD::INC:
8477  case X86ISD::DEC:
8478  case X86ISD::OR:
8479  case X86ISD::XOR:
8480  case X86ISD::AND:
8481    return SDValue(Op.getNode(), 1);
8482  default:
8483  default_case:
8484    break;
8485  }
8486
8487  if (Opcode == 0)
8488    // Emit a CMP with 0, which is the TEST pattern.
8489    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8490                       DAG.getConstant(0, Op.getValueType()));
8491
8492  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8493  SmallVector<SDValue, 4> Ops;
8494  for (unsigned i = 0; i != NumOperands; ++i)
8495    Ops.push_back(Op.getOperand(i));
8496
8497  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8498  DAG.ReplaceAllUsesWith(Op, New);
8499  return SDValue(New.getNode(), 1);
8500}
8501
8502/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8503/// equivalent.
8504SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8505                                   SelectionDAG &DAG) const {
8506  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8507    if (C->getAPIntValue() == 0)
8508      return EmitTest(Op0, X86CC, DAG);
8509
8510  DebugLoc dl = Op0.getDebugLoc();
8511  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8512}
8513
8514/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8515/// if it's possible.
8516SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8517                                     DebugLoc dl, SelectionDAG &DAG) const {
8518  SDValue Op0 = And.getOperand(0);
8519  SDValue Op1 = And.getOperand(1);
8520  if (Op0.getOpcode() == ISD::TRUNCATE)
8521    Op0 = Op0.getOperand(0);
8522  if (Op1.getOpcode() == ISD::TRUNCATE)
8523    Op1 = Op1.getOperand(0);
8524
8525  SDValue LHS, RHS;
8526  if (Op1.getOpcode() == ISD::SHL)
8527    std::swap(Op0, Op1);
8528  if (Op0.getOpcode() == ISD::SHL) {
8529    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8530      if (And00C->getZExtValue() == 1) {
8531        // If we looked past a truncate, check that it's only truncating away
8532        // known zeros.
8533        unsigned BitWidth = Op0.getValueSizeInBits();
8534        unsigned AndBitWidth = And.getValueSizeInBits();
8535        if (BitWidth > AndBitWidth) {
8536          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8537          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8538          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8539            return SDValue();
8540        }
8541        LHS = Op1;
8542        RHS = Op0.getOperand(1);
8543      }
8544  } else if (Op1.getOpcode() == ISD::Constant) {
8545    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8546    uint64_t AndRHSVal = AndRHS->getZExtValue();
8547    SDValue AndLHS = Op0;
8548
8549    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8550      LHS = AndLHS.getOperand(0);
8551      RHS = AndLHS.getOperand(1);
8552    }
8553
8554    // Use BT if the immediate can't be encoded in a TEST instruction.
8555    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8556      LHS = AndLHS;
8557      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8558    }
8559  }
8560
8561  if (LHS.getNode()) {
8562    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8563    // instruction.  Since the shift amount is in-range-or-undefined, we know
8564    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8565    // the encoding for the i16 version is larger than the i32 version.
8566    // Also promote i16 to i32 for performance / code size reason.
8567    if (LHS.getValueType() == MVT::i8 ||
8568        LHS.getValueType() == MVT::i16)
8569      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8570
8571    // If the operand types disagree, extend the shift amount to match.  Since
8572    // BT ignores high bits (like shifts) we can use anyextend.
8573    if (LHS.getValueType() != RHS.getValueType())
8574      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8575
8576    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8577    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8578    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8579                       DAG.getConstant(Cond, MVT::i8), BT);
8580  }
8581
8582  return SDValue();
8583}
8584
8585SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8586
8587  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8588
8589  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8590  SDValue Op0 = Op.getOperand(0);
8591  SDValue Op1 = Op.getOperand(1);
8592  DebugLoc dl = Op.getDebugLoc();
8593  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8594
8595  // Optimize to BT if possible.
8596  // Lower (X & (1 << N)) == 0 to BT(X, N).
8597  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8598  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8599  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8600      Op1.getOpcode() == ISD::Constant &&
8601      cast<ConstantSDNode>(Op1)->isNullValue() &&
8602      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8603    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8604    if (NewSetCC.getNode())
8605      return NewSetCC;
8606  }
8607
8608  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8609  // these.
8610  if (Op1.getOpcode() == ISD::Constant &&
8611      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8612       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8613      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8614
8615    // If the input is a setcc, then reuse the input setcc or use a new one with
8616    // the inverted condition.
8617    if (Op0.getOpcode() == X86ISD::SETCC) {
8618      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8619      bool Invert = (CC == ISD::SETNE) ^
8620        cast<ConstantSDNode>(Op1)->isNullValue();
8621      if (!Invert) return Op0;
8622
8623      CCode = X86::GetOppositeBranchCondition(CCode);
8624      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8625                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8626    }
8627  }
8628
8629  bool isFP = Op1.getValueType().isFloatingPoint();
8630  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8631  if (X86CC == X86::COND_INVALID)
8632    return SDValue();
8633
8634  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8635  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8636                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8637}
8638
8639// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8640// ones, and then concatenate the result back.
8641static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8642  EVT VT = Op.getValueType();
8643
8644  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8645         "Unsupported value type for operation");
8646
8647  int NumElems = VT.getVectorNumElements();
8648  DebugLoc dl = Op.getDebugLoc();
8649  SDValue CC = Op.getOperand(2);
8650  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8651  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8652
8653  // Extract the LHS vectors
8654  SDValue LHS = Op.getOperand(0);
8655  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8656  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8657
8658  // Extract the RHS vectors
8659  SDValue RHS = Op.getOperand(1);
8660  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8661  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8662
8663  // Issue the operation on the smaller types and concatenate the result back
8664  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8665  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8666  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8667                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8668                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8669}
8670
8671
8672SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8673  SDValue Cond;
8674  SDValue Op0 = Op.getOperand(0);
8675  SDValue Op1 = Op.getOperand(1);
8676  SDValue CC = Op.getOperand(2);
8677  EVT VT = Op.getValueType();
8678  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8679  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8680  DebugLoc dl = Op.getDebugLoc();
8681
8682  if (isFP) {
8683    unsigned SSECC = 8;
8684    EVT EltVT = Op0.getValueType().getVectorElementType();
8685    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8686
8687    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8688    bool Swap = false;
8689
8690    // SSE Condition code mapping:
8691    //  0 - EQ
8692    //  1 - LT
8693    //  2 - LE
8694    //  3 - UNORD
8695    //  4 - NEQ
8696    //  5 - NLT
8697    //  6 - NLE
8698    //  7 - ORD
8699    switch (SetCCOpcode) {
8700    default: break;
8701    case ISD::SETOEQ:
8702    case ISD::SETEQ:  SSECC = 0; break;
8703    case ISD::SETOGT:
8704    case ISD::SETGT: Swap = true; // Fallthrough
8705    case ISD::SETLT:
8706    case ISD::SETOLT: SSECC = 1; break;
8707    case ISD::SETOGE:
8708    case ISD::SETGE: Swap = true; // Fallthrough
8709    case ISD::SETLE:
8710    case ISD::SETOLE: SSECC = 2; break;
8711    case ISD::SETUO:  SSECC = 3; break;
8712    case ISD::SETUNE:
8713    case ISD::SETNE:  SSECC = 4; break;
8714    case ISD::SETULE: Swap = true;
8715    case ISD::SETUGE: SSECC = 5; break;
8716    case ISD::SETULT: Swap = true;
8717    case ISD::SETUGT: SSECC = 6; break;
8718    case ISD::SETO:   SSECC = 7; break;
8719    }
8720    if (Swap)
8721      std::swap(Op0, Op1);
8722
8723    // In the two special cases we can't handle, emit two comparisons.
8724    if (SSECC == 8) {
8725      if (SetCCOpcode == ISD::SETUEQ) {
8726        SDValue UNORD, EQ;
8727        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8728        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8729        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8730      } else if (SetCCOpcode == ISD::SETONE) {
8731        SDValue ORD, NEQ;
8732        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8733        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8734        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8735      }
8736      llvm_unreachable("Illegal FP comparison");
8737    }
8738    // Handle all other FP comparisons here.
8739    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8740  }
8741
8742  // Break 256-bit integer vector compare into smaller ones.
8743  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8744    return Lower256IntVSETCC(Op, DAG);
8745
8746  // We are handling one of the integer comparisons here.  Since SSE only has
8747  // GT and EQ comparisons for integer, swapping operands and multiple
8748  // operations may be required for some comparisons.
8749  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8750  bool Swap = false, Invert = false, FlipSigns = false;
8751
8752  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
8753  default: break;
8754  case MVT::i8:   EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8755  case MVT::i16:  EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8756  case MVT::i32:  EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8757  case MVT::i64:  EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8758  }
8759
8760  switch (SetCCOpcode) {
8761  default: break;
8762  case ISD::SETNE:  Invert = true;
8763  case ISD::SETEQ:  Opc = EQOpc; break;
8764  case ISD::SETLT:  Swap = true;
8765  case ISD::SETGT:  Opc = GTOpc; break;
8766  case ISD::SETGE:  Swap = true;
8767  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8768  case ISD::SETULT: Swap = true;
8769  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8770  case ISD::SETUGE: Swap = true;
8771  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8772  }
8773  if (Swap)
8774    std::swap(Op0, Op1);
8775
8776  // Check that the operation in question is available (most are plain SSE2,
8777  // but PCMPGTQ and PCMPEQQ have different requirements).
8778  if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42orAVX())
8779    return SDValue();
8780  if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41orAVX())
8781    return SDValue();
8782
8783  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8784  // bits of the inputs before performing those operations.
8785  if (FlipSigns) {
8786    EVT EltVT = VT.getVectorElementType();
8787    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8788                                      EltVT);
8789    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8790    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8791                                    SignBits.size());
8792    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8793    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8794  }
8795
8796  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8797
8798  // If the logical-not of the result is required, perform that now.
8799  if (Invert)
8800    Result = DAG.getNOT(dl, Result, VT);
8801
8802  return Result;
8803}
8804
8805// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8806static bool isX86LogicalCmp(SDValue Op) {
8807  unsigned Opc = Op.getNode()->getOpcode();
8808  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8809    return true;
8810  if (Op.getResNo() == 1 &&
8811      (Opc == X86ISD::ADD ||
8812       Opc == X86ISD::SUB ||
8813       Opc == X86ISD::ADC ||
8814       Opc == X86ISD::SBB ||
8815       Opc == X86ISD::SMUL ||
8816       Opc == X86ISD::UMUL ||
8817       Opc == X86ISD::INC ||
8818       Opc == X86ISD::DEC ||
8819       Opc == X86ISD::OR ||
8820       Opc == X86ISD::XOR ||
8821       Opc == X86ISD::AND))
8822    return true;
8823
8824  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8825    return true;
8826
8827  return false;
8828}
8829
8830static bool isZero(SDValue V) {
8831  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8832  return C && C->isNullValue();
8833}
8834
8835static bool isAllOnes(SDValue V) {
8836  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8837  return C && C->isAllOnesValue();
8838}
8839
8840SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8841  bool addTest = true;
8842  SDValue Cond  = Op.getOperand(0);
8843  SDValue Op1 = Op.getOperand(1);
8844  SDValue Op2 = Op.getOperand(2);
8845  DebugLoc DL = Op.getDebugLoc();
8846  SDValue CC;
8847
8848  if (Cond.getOpcode() == ISD::SETCC) {
8849    SDValue NewCond = LowerSETCC(Cond, DAG);
8850    if (NewCond.getNode())
8851      Cond = NewCond;
8852  }
8853
8854  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8855  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8856  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8857  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8858  if (Cond.getOpcode() == X86ISD::SETCC &&
8859      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8860      isZero(Cond.getOperand(1).getOperand(1))) {
8861    SDValue Cmp = Cond.getOperand(1);
8862
8863    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8864
8865    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8866        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8867      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8868
8869      SDValue CmpOp0 = Cmp.getOperand(0);
8870      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8871                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8872
8873      SDValue Res =   // Res = 0 or -1.
8874        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8875                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8876
8877      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8878        Res = DAG.getNOT(DL, Res, Res.getValueType());
8879
8880      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8881      if (N2C == 0 || !N2C->isNullValue())
8882        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8883      return Res;
8884    }
8885  }
8886
8887  // Look past (and (setcc_carry (cmp ...)), 1).
8888  if (Cond.getOpcode() == ISD::AND &&
8889      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8890    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8891    if (C && C->getAPIntValue() == 1)
8892      Cond = Cond.getOperand(0);
8893  }
8894
8895  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8896  // setting operand in place of the X86ISD::SETCC.
8897  unsigned CondOpcode = Cond.getOpcode();
8898  if (CondOpcode == X86ISD::SETCC ||
8899      CondOpcode == X86ISD::SETCC_CARRY) {
8900    CC = Cond.getOperand(0);
8901
8902    SDValue Cmp = Cond.getOperand(1);
8903    unsigned Opc = Cmp.getOpcode();
8904    EVT VT = Op.getValueType();
8905
8906    bool IllegalFPCMov = false;
8907    if (VT.isFloatingPoint() && !VT.isVector() &&
8908        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8909      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8910
8911    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8912        Opc == X86ISD::BT) { // FIXME
8913      Cond = Cmp;
8914      addTest = false;
8915    }
8916  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8917             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8918             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8919              Cond.getOperand(0).getValueType() != MVT::i8)) {
8920    SDValue LHS = Cond.getOperand(0);
8921    SDValue RHS = Cond.getOperand(1);
8922    unsigned X86Opcode;
8923    unsigned X86Cond;
8924    SDVTList VTs;
8925    switch (CondOpcode) {
8926    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8927    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8928    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8929    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8930    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8931    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8932    default: llvm_unreachable("unexpected overflowing operator");
8933    }
8934    if (CondOpcode == ISD::UMULO)
8935      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8936                          MVT::i32);
8937    else
8938      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8939
8940    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8941
8942    if (CondOpcode == ISD::UMULO)
8943      Cond = X86Op.getValue(2);
8944    else
8945      Cond = X86Op.getValue(1);
8946
8947    CC = DAG.getConstant(X86Cond, MVT::i8);
8948    addTest = false;
8949  }
8950
8951  if (addTest) {
8952    // Look pass the truncate.
8953    if (Cond.getOpcode() == ISD::TRUNCATE)
8954      Cond = Cond.getOperand(0);
8955
8956    // We know the result of AND is compared against zero. Try to match
8957    // it to BT.
8958    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8959      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8960      if (NewSetCC.getNode()) {
8961        CC = NewSetCC.getOperand(0);
8962        Cond = NewSetCC.getOperand(1);
8963        addTest = false;
8964      }
8965    }
8966  }
8967
8968  if (addTest) {
8969    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8970    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8971  }
8972
8973  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8974  // a <  b ?  0 : -1 -> RES = setcc_carry
8975  // a >= b ? -1 :  0 -> RES = setcc_carry
8976  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8977  if (Cond.getOpcode() == X86ISD::CMP) {
8978    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8979
8980    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8981        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8982      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8983                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8984      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8985        return DAG.getNOT(DL, Res, Res.getValueType());
8986      return Res;
8987    }
8988  }
8989
8990  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8991  // condition is true.
8992  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8993  SDValue Ops[] = { Op2, Op1, CC, Cond };
8994  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8995}
8996
8997// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8998// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8999// from the AND / OR.
9000static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9001  Opc = Op.getOpcode();
9002  if (Opc != ISD::OR && Opc != ISD::AND)
9003    return false;
9004  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9005          Op.getOperand(0).hasOneUse() &&
9006          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9007          Op.getOperand(1).hasOneUse());
9008}
9009
9010// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9011// 1 and that the SETCC node has a single use.
9012static bool isXor1OfSetCC(SDValue Op) {
9013  if (Op.getOpcode() != ISD::XOR)
9014    return false;
9015  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9016  if (N1C && N1C->getAPIntValue() == 1) {
9017    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9018      Op.getOperand(0).hasOneUse();
9019  }
9020  return false;
9021}
9022
9023SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9024  bool addTest = true;
9025  SDValue Chain = Op.getOperand(0);
9026  SDValue Cond  = Op.getOperand(1);
9027  SDValue Dest  = Op.getOperand(2);
9028  DebugLoc dl = Op.getDebugLoc();
9029  SDValue CC;
9030  bool Inverted = false;
9031
9032  if (Cond.getOpcode() == ISD::SETCC) {
9033    // Check for setcc([su]{add,sub,mul}o == 0).
9034    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9035        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9036        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9037        Cond.getOperand(0).getResNo() == 1 &&
9038        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9039         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9040         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9041         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9042         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9043         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9044      Inverted = true;
9045      Cond = Cond.getOperand(0);
9046    } else {
9047      SDValue NewCond = LowerSETCC(Cond, DAG);
9048      if (NewCond.getNode())
9049        Cond = NewCond;
9050    }
9051  }
9052#if 0
9053  // FIXME: LowerXALUO doesn't handle these!!
9054  else if (Cond.getOpcode() == X86ISD::ADD  ||
9055           Cond.getOpcode() == X86ISD::SUB  ||
9056           Cond.getOpcode() == X86ISD::SMUL ||
9057           Cond.getOpcode() == X86ISD::UMUL)
9058    Cond = LowerXALUO(Cond, DAG);
9059#endif
9060
9061  // Look pass (and (setcc_carry (cmp ...)), 1).
9062  if (Cond.getOpcode() == ISD::AND &&
9063      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9064    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9065    if (C && C->getAPIntValue() == 1)
9066      Cond = Cond.getOperand(0);
9067  }
9068
9069  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9070  // setting operand in place of the X86ISD::SETCC.
9071  unsigned CondOpcode = Cond.getOpcode();
9072  if (CondOpcode == X86ISD::SETCC ||
9073      CondOpcode == X86ISD::SETCC_CARRY) {
9074    CC = Cond.getOperand(0);
9075
9076    SDValue Cmp = Cond.getOperand(1);
9077    unsigned Opc = Cmp.getOpcode();
9078    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9079    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9080      Cond = Cmp;
9081      addTest = false;
9082    } else {
9083      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9084      default: break;
9085      case X86::COND_O:
9086      case X86::COND_B:
9087        // These can only come from an arithmetic instruction with overflow,
9088        // e.g. SADDO, UADDO.
9089        Cond = Cond.getNode()->getOperand(1);
9090        addTest = false;
9091        break;
9092      }
9093    }
9094  }
9095  CondOpcode = Cond.getOpcode();
9096  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9097      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9098      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9099       Cond.getOperand(0).getValueType() != MVT::i8)) {
9100    SDValue LHS = Cond.getOperand(0);
9101    SDValue RHS = Cond.getOperand(1);
9102    unsigned X86Opcode;
9103    unsigned X86Cond;
9104    SDVTList VTs;
9105    switch (CondOpcode) {
9106    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9107    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9108    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9109    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9110    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9111    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9112    default: llvm_unreachable("unexpected overflowing operator");
9113    }
9114    if (Inverted)
9115      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9116    if (CondOpcode == ISD::UMULO)
9117      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9118                          MVT::i32);
9119    else
9120      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9121
9122    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9123
9124    if (CondOpcode == ISD::UMULO)
9125      Cond = X86Op.getValue(2);
9126    else
9127      Cond = X86Op.getValue(1);
9128
9129    CC = DAG.getConstant(X86Cond, MVT::i8);
9130    addTest = false;
9131  } else {
9132    unsigned CondOpc;
9133    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9134      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9135      if (CondOpc == ISD::OR) {
9136        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9137        // two branches instead of an explicit OR instruction with a
9138        // separate test.
9139        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9140            isX86LogicalCmp(Cmp)) {
9141          CC = Cond.getOperand(0).getOperand(0);
9142          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9143                              Chain, Dest, CC, Cmp);
9144          CC = Cond.getOperand(1).getOperand(0);
9145          Cond = Cmp;
9146          addTest = false;
9147        }
9148      } else { // ISD::AND
9149        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9150        // two branches instead of an explicit AND instruction with a
9151        // separate test. However, we only do this if this block doesn't
9152        // have a fall-through edge, because this requires an explicit
9153        // jmp when the condition is false.
9154        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9155            isX86LogicalCmp(Cmp) &&
9156            Op.getNode()->hasOneUse()) {
9157          X86::CondCode CCode =
9158            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9159          CCode = X86::GetOppositeBranchCondition(CCode);
9160          CC = DAG.getConstant(CCode, MVT::i8);
9161          SDNode *User = *Op.getNode()->use_begin();
9162          // Look for an unconditional branch following this conditional branch.
9163          // We need this because we need to reverse the successors in order
9164          // to implement FCMP_OEQ.
9165          if (User->getOpcode() == ISD::BR) {
9166            SDValue FalseBB = User->getOperand(1);
9167            SDNode *NewBR =
9168              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9169            assert(NewBR == User);
9170            (void)NewBR;
9171            Dest = FalseBB;
9172
9173            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9174                                Chain, Dest, CC, Cmp);
9175            X86::CondCode CCode =
9176              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9177            CCode = X86::GetOppositeBranchCondition(CCode);
9178            CC = DAG.getConstant(CCode, MVT::i8);
9179            Cond = Cmp;
9180            addTest = false;
9181          }
9182        }
9183      }
9184    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9185      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9186      // It should be transformed during dag combiner except when the condition
9187      // is set by a arithmetics with overflow node.
9188      X86::CondCode CCode =
9189        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9190      CCode = X86::GetOppositeBranchCondition(CCode);
9191      CC = DAG.getConstant(CCode, MVT::i8);
9192      Cond = Cond.getOperand(0).getOperand(1);
9193      addTest = false;
9194    } else if (Cond.getOpcode() == ISD::SETCC &&
9195               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9196      // For FCMP_OEQ, we can emit
9197      // two branches instead of an explicit AND instruction with a
9198      // separate test. However, we only do this if this block doesn't
9199      // have a fall-through edge, because this requires an explicit
9200      // jmp when the condition is false.
9201      if (Op.getNode()->hasOneUse()) {
9202        SDNode *User = *Op.getNode()->use_begin();
9203        // Look for an unconditional branch following this conditional branch.
9204        // We need this because we need to reverse the successors in order
9205        // to implement FCMP_OEQ.
9206        if (User->getOpcode() == ISD::BR) {
9207          SDValue FalseBB = User->getOperand(1);
9208          SDNode *NewBR =
9209            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9210          assert(NewBR == User);
9211          (void)NewBR;
9212          Dest = FalseBB;
9213
9214          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9215                                    Cond.getOperand(0), Cond.getOperand(1));
9216          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9217          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9218                              Chain, Dest, CC, Cmp);
9219          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9220          Cond = Cmp;
9221          addTest = false;
9222        }
9223      }
9224    } else if (Cond.getOpcode() == ISD::SETCC &&
9225               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9226      // For FCMP_UNE, we can emit
9227      // two branches instead of an explicit AND instruction with a
9228      // separate test. However, we only do this if this block doesn't
9229      // have a fall-through edge, because this requires an explicit
9230      // jmp when the condition is false.
9231      if (Op.getNode()->hasOneUse()) {
9232        SDNode *User = *Op.getNode()->use_begin();
9233        // Look for an unconditional branch following this conditional branch.
9234        // We need this because we need to reverse the successors in order
9235        // to implement FCMP_UNE.
9236        if (User->getOpcode() == ISD::BR) {
9237          SDValue FalseBB = User->getOperand(1);
9238          SDNode *NewBR =
9239            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9240          assert(NewBR == User);
9241          (void)NewBR;
9242
9243          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9244                                    Cond.getOperand(0), Cond.getOperand(1));
9245          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9246          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9247                              Chain, Dest, CC, Cmp);
9248          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9249          Cond = Cmp;
9250          addTest = false;
9251          Dest = FalseBB;
9252        }
9253      }
9254    }
9255  }
9256
9257  if (addTest) {
9258    // Look pass the truncate.
9259    if (Cond.getOpcode() == ISD::TRUNCATE)
9260      Cond = Cond.getOperand(0);
9261
9262    // We know the result of AND is compared against zero. Try to match
9263    // it to BT.
9264    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9265      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9266      if (NewSetCC.getNode()) {
9267        CC = NewSetCC.getOperand(0);
9268        Cond = NewSetCC.getOperand(1);
9269        addTest = false;
9270      }
9271    }
9272  }
9273
9274  if (addTest) {
9275    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9276    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9277  }
9278  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9279                     Chain, Dest, CC, Cond);
9280}
9281
9282
9283// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9284// Calls to _alloca is needed to probe the stack when allocating more than 4k
9285// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9286// that the guard pages used by the OS virtual memory manager are allocated in
9287// correct sequence.
9288SDValue
9289X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9290                                           SelectionDAG &DAG) const {
9291  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9292          EnableSegmentedStacks) &&
9293         "This should be used only on Windows targets or when segmented stacks "
9294         "are being used");
9295  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9296  DebugLoc dl = Op.getDebugLoc();
9297
9298  // Get the inputs.
9299  SDValue Chain = Op.getOperand(0);
9300  SDValue Size  = Op.getOperand(1);
9301  // FIXME: Ensure alignment here
9302
9303  bool Is64Bit = Subtarget->is64Bit();
9304  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9305
9306  if (EnableSegmentedStacks) {
9307    MachineFunction &MF = DAG.getMachineFunction();
9308    MachineRegisterInfo &MRI = MF.getRegInfo();
9309
9310    if (Is64Bit) {
9311      // The 64 bit implementation of segmented stacks needs to clobber both r10
9312      // r11. This makes it impossible to use it along with nested parameters.
9313      const Function *F = MF.getFunction();
9314
9315      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9316           I != E; I++)
9317        if (I->hasNestAttr())
9318          report_fatal_error("Cannot use segmented stacks with functions that "
9319                             "have nested arguments.");
9320    }
9321
9322    const TargetRegisterClass *AddrRegClass =
9323      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9324    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9325    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9326    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9327                                DAG.getRegister(Vreg, SPTy));
9328    SDValue Ops1[2] = { Value, Chain };
9329    return DAG.getMergeValues(Ops1, 2, dl);
9330  } else {
9331    SDValue Flag;
9332    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9333
9334    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9335    Flag = Chain.getValue(1);
9336    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9337
9338    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9339    Flag = Chain.getValue(1);
9340
9341    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9342
9343    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9344    return DAG.getMergeValues(Ops1, 2, dl);
9345  }
9346}
9347
9348SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9349  MachineFunction &MF = DAG.getMachineFunction();
9350  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9351
9352  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9353  DebugLoc DL = Op.getDebugLoc();
9354
9355  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9356    // vastart just stores the address of the VarArgsFrameIndex slot into the
9357    // memory location argument.
9358    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9359                                   getPointerTy());
9360    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9361                        MachinePointerInfo(SV), false, false, 0);
9362  }
9363
9364  // __va_list_tag:
9365  //   gp_offset         (0 - 6 * 8)
9366  //   fp_offset         (48 - 48 + 8 * 16)
9367  //   overflow_arg_area (point to parameters coming in memory).
9368  //   reg_save_area
9369  SmallVector<SDValue, 8> MemOps;
9370  SDValue FIN = Op.getOperand(1);
9371  // Store gp_offset
9372  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9373                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9374                                               MVT::i32),
9375                               FIN, MachinePointerInfo(SV), false, false, 0);
9376  MemOps.push_back(Store);
9377
9378  // Store fp_offset
9379  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9380                    FIN, DAG.getIntPtrConstant(4));
9381  Store = DAG.getStore(Op.getOperand(0), DL,
9382                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9383                                       MVT::i32),
9384                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9385  MemOps.push_back(Store);
9386
9387  // Store ptr to overflow_arg_area
9388  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9389                    FIN, DAG.getIntPtrConstant(4));
9390  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9391                                    getPointerTy());
9392  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9393                       MachinePointerInfo(SV, 8),
9394                       false, false, 0);
9395  MemOps.push_back(Store);
9396
9397  // Store ptr to reg_save_area.
9398  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9399                    FIN, DAG.getIntPtrConstant(8));
9400  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9401                                    getPointerTy());
9402  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9403                       MachinePointerInfo(SV, 16), false, false, 0);
9404  MemOps.push_back(Store);
9405  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9406                     &MemOps[0], MemOps.size());
9407}
9408
9409SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9410  assert(Subtarget->is64Bit() &&
9411         "LowerVAARG only handles 64-bit va_arg!");
9412  assert((Subtarget->isTargetLinux() ||
9413          Subtarget->isTargetDarwin()) &&
9414          "Unhandled target in LowerVAARG");
9415  assert(Op.getNode()->getNumOperands() == 4);
9416  SDValue Chain = Op.getOperand(0);
9417  SDValue SrcPtr = Op.getOperand(1);
9418  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9419  unsigned Align = Op.getConstantOperandVal(3);
9420  DebugLoc dl = Op.getDebugLoc();
9421
9422  EVT ArgVT = Op.getNode()->getValueType(0);
9423  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9424  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9425  uint8_t ArgMode;
9426
9427  // Decide which area this value should be read from.
9428  // TODO: Implement the AMD64 ABI in its entirety. This simple
9429  // selection mechanism works only for the basic types.
9430  if (ArgVT == MVT::f80) {
9431    llvm_unreachable("va_arg for f80 not yet implemented");
9432  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9433    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9434  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9435    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9436  } else {
9437    llvm_unreachable("Unhandled argument type in LowerVAARG");
9438  }
9439
9440  if (ArgMode == 2) {
9441    // Sanity Check: Make sure using fp_offset makes sense.
9442    assert(!UseSoftFloat &&
9443           !(DAG.getMachineFunction()
9444                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9445           Subtarget->hasXMM());
9446  }
9447
9448  // Insert VAARG_64 node into the DAG
9449  // VAARG_64 returns two values: Variable Argument Address, Chain
9450  SmallVector<SDValue, 11> InstOps;
9451  InstOps.push_back(Chain);
9452  InstOps.push_back(SrcPtr);
9453  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9454  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9455  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9456  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9457  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9458                                          VTs, &InstOps[0], InstOps.size(),
9459                                          MVT::i64,
9460                                          MachinePointerInfo(SV),
9461                                          /*Align=*/0,
9462                                          /*Volatile=*/false,
9463                                          /*ReadMem=*/true,
9464                                          /*WriteMem=*/true);
9465  Chain = VAARG.getValue(1);
9466
9467  // Load the next argument and return it
9468  return DAG.getLoad(ArgVT, dl,
9469                     Chain,
9470                     VAARG,
9471                     MachinePointerInfo(),
9472                     false, false, false, 0);
9473}
9474
9475SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9476  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9477  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9478  SDValue Chain = Op.getOperand(0);
9479  SDValue DstPtr = Op.getOperand(1);
9480  SDValue SrcPtr = Op.getOperand(2);
9481  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9482  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9483  DebugLoc DL = Op.getDebugLoc();
9484
9485  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9486                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9487                       false,
9488                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9489}
9490
9491SDValue
9492X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9493  DebugLoc dl = Op.getDebugLoc();
9494  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9495  switch (IntNo) {
9496  default: return SDValue();    // Don't custom lower most intrinsics.
9497  // Comparison intrinsics.
9498  case Intrinsic::x86_sse_comieq_ss:
9499  case Intrinsic::x86_sse_comilt_ss:
9500  case Intrinsic::x86_sse_comile_ss:
9501  case Intrinsic::x86_sse_comigt_ss:
9502  case Intrinsic::x86_sse_comige_ss:
9503  case Intrinsic::x86_sse_comineq_ss:
9504  case Intrinsic::x86_sse_ucomieq_ss:
9505  case Intrinsic::x86_sse_ucomilt_ss:
9506  case Intrinsic::x86_sse_ucomile_ss:
9507  case Intrinsic::x86_sse_ucomigt_ss:
9508  case Intrinsic::x86_sse_ucomige_ss:
9509  case Intrinsic::x86_sse_ucomineq_ss:
9510  case Intrinsic::x86_sse2_comieq_sd:
9511  case Intrinsic::x86_sse2_comilt_sd:
9512  case Intrinsic::x86_sse2_comile_sd:
9513  case Intrinsic::x86_sse2_comigt_sd:
9514  case Intrinsic::x86_sse2_comige_sd:
9515  case Intrinsic::x86_sse2_comineq_sd:
9516  case Intrinsic::x86_sse2_ucomieq_sd:
9517  case Intrinsic::x86_sse2_ucomilt_sd:
9518  case Intrinsic::x86_sse2_ucomile_sd:
9519  case Intrinsic::x86_sse2_ucomigt_sd:
9520  case Intrinsic::x86_sse2_ucomige_sd:
9521  case Intrinsic::x86_sse2_ucomineq_sd: {
9522    unsigned Opc = 0;
9523    ISD::CondCode CC = ISD::SETCC_INVALID;
9524    switch (IntNo) {
9525    default: break;
9526    case Intrinsic::x86_sse_comieq_ss:
9527    case Intrinsic::x86_sse2_comieq_sd:
9528      Opc = X86ISD::COMI;
9529      CC = ISD::SETEQ;
9530      break;
9531    case Intrinsic::x86_sse_comilt_ss:
9532    case Intrinsic::x86_sse2_comilt_sd:
9533      Opc = X86ISD::COMI;
9534      CC = ISD::SETLT;
9535      break;
9536    case Intrinsic::x86_sse_comile_ss:
9537    case Intrinsic::x86_sse2_comile_sd:
9538      Opc = X86ISD::COMI;
9539      CC = ISD::SETLE;
9540      break;
9541    case Intrinsic::x86_sse_comigt_ss:
9542    case Intrinsic::x86_sse2_comigt_sd:
9543      Opc = X86ISD::COMI;
9544      CC = ISD::SETGT;
9545      break;
9546    case Intrinsic::x86_sse_comige_ss:
9547    case Intrinsic::x86_sse2_comige_sd:
9548      Opc = X86ISD::COMI;
9549      CC = ISD::SETGE;
9550      break;
9551    case Intrinsic::x86_sse_comineq_ss:
9552    case Intrinsic::x86_sse2_comineq_sd:
9553      Opc = X86ISD::COMI;
9554      CC = ISD::SETNE;
9555      break;
9556    case Intrinsic::x86_sse_ucomieq_ss:
9557    case Intrinsic::x86_sse2_ucomieq_sd:
9558      Opc = X86ISD::UCOMI;
9559      CC = ISD::SETEQ;
9560      break;
9561    case Intrinsic::x86_sse_ucomilt_ss:
9562    case Intrinsic::x86_sse2_ucomilt_sd:
9563      Opc = X86ISD::UCOMI;
9564      CC = ISD::SETLT;
9565      break;
9566    case Intrinsic::x86_sse_ucomile_ss:
9567    case Intrinsic::x86_sse2_ucomile_sd:
9568      Opc = X86ISD::UCOMI;
9569      CC = ISD::SETLE;
9570      break;
9571    case Intrinsic::x86_sse_ucomigt_ss:
9572    case Intrinsic::x86_sse2_ucomigt_sd:
9573      Opc = X86ISD::UCOMI;
9574      CC = ISD::SETGT;
9575      break;
9576    case Intrinsic::x86_sse_ucomige_ss:
9577    case Intrinsic::x86_sse2_ucomige_sd:
9578      Opc = X86ISD::UCOMI;
9579      CC = ISD::SETGE;
9580      break;
9581    case Intrinsic::x86_sse_ucomineq_ss:
9582    case Intrinsic::x86_sse2_ucomineq_sd:
9583      Opc = X86ISD::UCOMI;
9584      CC = ISD::SETNE;
9585      break;
9586    }
9587
9588    SDValue LHS = Op.getOperand(1);
9589    SDValue RHS = Op.getOperand(2);
9590    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9591    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9592    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9593    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9594                                DAG.getConstant(X86CC, MVT::i8), Cond);
9595    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9596  }
9597  // Arithmetic intrinsics.
9598  case Intrinsic::x86_sse3_hadd_ps:
9599  case Intrinsic::x86_sse3_hadd_pd:
9600  case Intrinsic::x86_avx_hadd_ps_256:
9601  case Intrinsic::x86_avx_hadd_pd_256:
9602    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9603                       Op.getOperand(1), Op.getOperand(2));
9604  case Intrinsic::x86_sse3_hsub_ps:
9605  case Intrinsic::x86_sse3_hsub_pd:
9606  case Intrinsic::x86_avx_hsub_ps_256:
9607  case Intrinsic::x86_avx_hsub_pd_256:
9608    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9609                       Op.getOperand(1), Op.getOperand(2));
9610  case Intrinsic::x86_avx2_psllv_d:
9611  case Intrinsic::x86_avx2_psllv_q:
9612  case Intrinsic::x86_avx2_psllv_d_256:
9613  case Intrinsic::x86_avx2_psllv_q_256:
9614    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9615                      Op.getOperand(1), Op.getOperand(2));
9616  case Intrinsic::x86_avx2_psrlv_d:
9617  case Intrinsic::x86_avx2_psrlv_q:
9618  case Intrinsic::x86_avx2_psrlv_d_256:
9619  case Intrinsic::x86_avx2_psrlv_q_256:
9620    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9621                      Op.getOperand(1), Op.getOperand(2));
9622  case Intrinsic::x86_avx2_psrav_d:
9623  case Intrinsic::x86_avx2_psrav_d_256:
9624    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9625                      Op.getOperand(1), Op.getOperand(2));
9626
9627  // ptest and testp intrinsics. The intrinsic these come from are designed to
9628  // return an integer value, not just an instruction so lower it to the ptest
9629  // or testp pattern and a setcc for the result.
9630  case Intrinsic::x86_sse41_ptestz:
9631  case Intrinsic::x86_sse41_ptestc:
9632  case Intrinsic::x86_sse41_ptestnzc:
9633  case Intrinsic::x86_avx_ptestz_256:
9634  case Intrinsic::x86_avx_ptestc_256:
9635  case Intrinsic::x86_avx_ptestnzc_256:
9636  case Intrinsic::x86_avx_vtestz_ps:
9637  case Intrinsic::x86_avx_vtestc_ps:
9638  case Intrinsic::x86_avx_vtestnzc_ps:
9639  case Intrinsic::x86_avx_vtestz_pd:
9640  case Intrinsic::x86_avx_vtestc_pd:
9641  case Intrinsic::x86_avx_vtestnzc_pd:
9642  case Intrinsic::x86_avx_vtestz_ps_256:
9643  case Intrinsic::x86_avx_vtestc_ps_256:
9644  case Intrinsic::x86_avx_vtestnzc_ps_256:
9645  case Intrinsic::x86_avx_vtestz_pd_256:
9646  case Intrinsic::x86_avx_vtestc_pd_256:
9647  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9648    bool IsTestPacked = false;
9649    unsigned X86CC = 0;
9650    switch (IntNo) {
9651    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9652    case Intrinsic::x86_avx_vtestz_ps:
9653    case Intrinsic::x86_avx_vtestz_pd:
9654    case Intrinsic::x86_avx_vtestz_ps_256:
9655    case Intrinsic::x86_avx_vtestz_pd_256:
9656      IsTestPacked = true; // Fallthrough
9657    case Intrinsic::x86_sse41_ptestz:
9658    case Intrinsic::x86_avx_ptestz_256:
9659      // ZF = 1
9660      X86CC = X86::COND_E;
9661      break;
9662    case Intrinsic::x86_avx_vtestc_ps:
9663    case Intrinsic::x86_avx_vtestc_pd:
9664    case Intrinsic::x86_avx_vtestc_ps_256:
9665    case Intrinsic::x86_avx_vtestc_pd_256:
9666      IsTestPacked = true; // Fallthrough
9667    case Intrinsic::x86_sse41_ptestc:
9668    case Intrinsic::x86_avx_ptestc_256:
9669      // CF = 1
9670      X86CC = X86::COND_B;
9671      break;
9672    case Intrinsic::x86_avx_vtestnzc_ps:
9673    case Intrinsic::x86_avx_vtestnzc_pd:
9674    case Intrinsic::x86_avx_vtestnzc_ps_256:
9675    case Intrinsic::x86_avx_vtestnzc_pd_256:
9676      IsTestPacked = true; // Fallthrough
9677    case Intrinsic::x86_sse41_ptestnzc:
9678    case Intrinsic::x86_avx_ptestnzc_256:
9679      // ZF and CF = 0
9680      X86CC = X86::COND_A;
9681      break;
9682    }
9683
9684    SDValue LHS = Op.getOperand(1);
9685    SDValue RHS = Op.getOperand(2);
9686    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9687    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9688    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9689    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9690    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9691  }
9692
9693  // Fix vector shift instructions where the last operand is a non-immediate
9694  // i32 value.
9695  case Intrinsic::x86_avx2_pslli_w:
9696  case Intrinsic::x86_avx2_pslli_d:
9697  case Intrinsic::x86_avx2_pslli_q:
9698  case Intrinsic::x86_avx2_psrli_w:
9699  case Intrinsic::x86_avx2_psrli_d:
9700  case Intrinsic::x86_avx2_psrli_q:
9701  case Intrinsic::x86_avx2_psrai_w:
9702  case Intrinsic::x86_avx2_psrai_d:
9703  case Intrinsic::x86_sse2_pslli_w:
9704  case Intrinsic::x86_sse2_pslli_d:
9705  case Intrinsic::x86_sse2_pslli_q:
9706  case Intrinsic::x86_sse2_psrli_w:
9707  case Intrinsic::x86_sse2_psrli_d:
9708  case Intrinsic::x86_sse2_psrli_q:
9709  case Intrinsic::x86_sse2_psrai_w:
9710  case Intrinsic::x86_sse2_psrai_d:
9711  case Intrinsic::x86_mmx_pslli_w:
9712  case Intrinsic::x86_mmx_pslli_d:
9713  case Intrinsic::x86_mmx_pslli_q:
9714  case Intrinsic::x86_mmx_psrli_w:
9715  case Intrinsic::x86_mmx_psrli_d:
9716  case Intrinsic::x86_mmx_psrli_q:
9717  case Intrinsic::x86_mmx_psrai_w:
9718  case Intrinsic::x86_mmx_psrai_d: {
9719    SDValue ShAmt = Op.getOperand(2);
9720    if (isa<ConstantSDNode>(ShAmt))
9721      return SDValue();
9722
9723    unsigned NewIntNo = 0;
9724    EVT ShAmtVT = MVT::v4i32;
9725    switch (IntNo) {
9726    case Intrinsic::x86_sse2_pslli_w:
9727      NewIntNo = Intrinsic::x86_sse2_psll_w;
9728      break;
9729    case Intrinsic::x86_sse2_pslli_d:
9730      NewIntNo = Intrinsic::x86_sse2_psll_d;
9731      break;
9732    case Intrinsic::x86_sse2_pslli_q:
9733      NewIntNo = Intrinsic::x86_sse2_psll_q;
9734      break;
9735    case Intrinsic::x86_sse2_psrli_w:
9736      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9737      break;
9738    case Intrinsic::x86_sse2_psrli_d:
9739      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9740      break;
9741    case Intrinsic::x86_sse2_psrli_q:
9742      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9743      break;
9744    case Intrinsic::x86_sse2_psrai_w:
9745      NewIntNo = Intrinsic::x86_sse2_psra_w;
9746      break;
9747    case Intrinsic::x86_sse2_psrai_d:
9748      NewIntNo = Intrinsic::x86_sse2_psra_d;
9749      break;
9750    case Intrinsic::x86_avx2_pslli_w:
9751      NewIntNo = Intrinsic::x86_avx2_psll_w;
9752      break;
9753    case Intrinsic::x86_avx2_pslli_d:
9754      NewIntNo = Intrinsic::x86_avx2_psll_d;
9755      break;
9756    case Intrinsic::x86_avx2_pslli_q:
9757      NewIntNo = Intrinsic::x86_avx2_psll_q;
9758      break;
9759    case Intrinsic::x86_avx2_psrli_w:
9760      NewIntNo = Intrinsic::x86_avx2_psrl_w;
9761      break;
9762    case Intrinsic::x86_avx2_psrli_d:
9763      NewIntNo = Intrinsic::x86_avx2_psrl_d;
9764      break;
9765    case Intrinsic::x86_avx2_psrli_q:
9766      NewIntNo = Intrinsic::x86_avx2_psrl_q;
9767      break;
9768    case Intrinsic::x86_avx2_psrai_w:
9769      NewIntNo = Intrinsic::x86_avx2_psra_w;
9770      break;
9771    case Intrinsic::x86_avx2_psrai_d:
9772      NewIntNo = Intrinsic::x86_avx2_psra_d;
9773      break;
9774    default: {
9775      ShAmtVT = MVT::v2i32;
9776      switch (IntNo) {
9777      case Intrinsic::x86_mmx_pslli_w:
9778        NewIntNo = Intrinsic::x86_mmx_psll_w;
9779        break;
9780      case Intrinsic::x86_mmx_pslli_d:
9781        NewIntNo = Intrinsic::x86_mmx_psll_d;
9782        break;
9783      case Intrinsic::x86_mmx_pslli_q:
9784        NewIntNo = Intrinsic::x86_mmx_psll_q;
9785        break;
9786      case Intrinsic::x86_mmx_psrli_w:
9787        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9788        break;
9789      case Intrinsic::x86_mmx_psrli_d:
9790        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9791        break;
9792      case Intrinsic::x86_mmx_psrli_q:
9793        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9794        break;
9795      case Intrinsic::x86_mmx_psrai_w:
9796        NewIntNo = Intrinsic::x86_mmx_psra_w;
9797        break;
9798      case Intrinsic::x86_mmx_psrai_d:
9799        NewIntNo = Intrinsic::x86_mmx_psra_d;
9800        break;
9801      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9802      }
9803      break;
9804    }
9805    }
9806
9807    // The vector shift intrinsics with scalars uses 32b shift amounts but
9808    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9809    // to be zero.
9810    SDValue ShOps[4];
9811    ShOps[0] = ShAmt;
9812    ShOps[1] = DAG.getConstant(0, MVT::i32);
9813    if (ShAmtVT == MVT::v4i32) {
9814      ShOps[2] = DAG.getUNDEF(MVT::i32);
9815      ShOps[3] = DAG.getUNDEF(MVT::i32);
9816      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9817    } else {
9818      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9819// FIXME this must be lowered to get rid of the invalid type.
9820    }
9821
9822    EVT VT = Op.getValueType();
9823    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9824    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9825                       DAG.getConstant(NewIntNo, MVT::i32),
9826                       Op.getOperand(1), ShAmt);
9827  }
9828  }
9829}
9830
9831SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9832                                           SelectionDAG &DAG) const {
9833  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9834  MFI->setReturnAddressIsTaken(true);
9835
9836  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9837  DebugLoc dl = Op.getDebugLoc();
9838
9839  if (Depth > 0) {
9840    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9841    SDValue Offset =
9842      DAG.getConstant(TD->getPointerSize(),
9843                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9844    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9845                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9846                                   FrameAddr, Offset),
9847                       MachinePointerInfo(), false, false, false, 0);
9848  }
9849
9850  // Just load the return address.
9851  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9852  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9853                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9854}
9855
9856SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9857  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9858  MFI->setFrameAddressIsTaken(true);
9859
9860  EVT VT = Op.getValueType();
9861  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9862  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9863  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9864  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9865  while (Depth--)
9866    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9867                            MachinePointerInfo(),
9868                            false, false, false, 0);
9869  return FrameAddr;
9870}
9871
9872SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9873                                                     SelectionDAG &DAG) const {
9874  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9875}
9876
9877SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9878  MachineFunction &MF = DAG.getMachineFunction();
9879  SDValue Chain     = Op.getOperand(0);
9880  SDValue Offset    = Op.getOperand(1);
9881  SDValue Handler   = Op.getOperand(2);
9882  DebugLoc dl       = Op.getDebugLoc();
9883
9884  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9885                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9886                                     getPointerTy());
9887  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9888
9889  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9890                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9891  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9892  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9893                       false, false, 0);
9894  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9895  MF.getRegInfo().addLiveOut(StoreAddrReg);
9896
9897  return DAG.getNode(X86ISD::EH_RETURN, dl,
9898                     MVT::Other,
9899                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9900}
9901
9902SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9903                                                  SelectionDAG &DAG) const {
9904  return Op.getOperand(0);
9905}
9906
9907SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9908                                                SelectionDAG &DAG) const {
9909  SDValue Root = Op.getOperand(0);
9910  SDValue Trmp = Op.getOperand(1); // trampoline
9911  SDValue FPtr = Op.getOperand(2); // nested function
9912  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9913  DebugLoc dl  = Op.getDebugLoc();
9914
9915  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9916
9917  if (Subtarget->is64Bit()) {
9918    SDValue OutChains[6];
9919
9920    // Large code-model.
9921    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9922    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9923
9924    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9925    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9926
9927    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9928
9929    // Load the pointer to the nested function into R11.
9930    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9931    SDValue Addr = Trmp;
9932    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9933                                Addr, MachinePointerInfo(TrmpAddr),
9934                                false, false, 0);
9935
9936    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9937                       DAG.getConstant(2, MVT::i64));
9938    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9939                                MachinePointerInfo(TrmpAddr, 2),
9940                                false, false, 2);
9941
9942    // Load the 'nest' parameter value into R10.
9943    // R10 is specified in X86CallingConv.td
9944    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9945    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9946                       DAG.getConstant(10, MVT::i64));
9947    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9948                                Addr, MachinePointerInfo(TrmpAddr, 10),
9949                                false, false, 0);
9950
9951    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9952                       DAG.getConstant(12, MVT::i64));
9953    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9954                                MachinePointerInfo(TrmpAddr, 12),
9955                                false, false, 2);
9956
9957    // Jump to the nested function.
9958    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9959    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9960                       DAG.getConstant(20, MVT::i64));
9961    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9962                                Addr, MachinePointerInfo(TrmpAddr, 20),
9963                                false, false, 0);
9964
9965    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9966    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9967                       DAG.getConstant(22, MVT::i64));
9968    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9969                                MachinePointerInfo(TrmpAddr, 22),
9970                                false, false, 0);
9971
9972    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9973  } else {
9974    const Function *Func =
9975      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9976    CallingConv::ID CC = Func->getCallingConv();
9977    unsigned NestReg;
9978
9979    switch (CC) {
9980    default:
9981      llvm_unreachable("Unsupported calling convention");
9982    case CallingConv::C:
9983    case CallingConv::X86_StdCall: {
9984      // Pass 'nest' parameter in ECX.
9985      // Must be kept in sync with X86CallingConv.td
9986      NestReg = X86::ECX;
9987
9988      // Check that ECX wasn't needed by an 'inreg' parameter.
9989      FunctionType *FTy = Func->getFunctionType();
9990      const AttrListPtr &Attrs = Func->getAttributes();
9991
9992      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9993        unsigned InRegCount = 0;
9994        unsigned Idx = 1;
9995
9996        for (FunctionType::param_iterator I = FTy->param_begin(),
9997             E = FTy->param_end(); I != E; ++I, ++Idx)
9998          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9999            // FIXME: should only count parameters that are lowered to integers.
10000            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10001
10002        if (InRegCount > 2) {
10003          report_fatal_error("Nest register in use - reduce number of inreg"
10004                             " parameters!");
10005        }
10006      }
10007      break;
10008    }
10009    case CallingConv::X86_FastCall:
10010    case CallingConv::X86_ThisCall:
10011    case CallingConv::Fast:
10012      // Pass 'nest' parameter in EAX.
10013      // Must be kept in sync with X86CallingConv.td
10014      NestReg = X86::EAX;
10015      break;
10016    }
10017
10018    SDValue OutChains[4];
10019    SDValue Addr, Disp;
10020
10021    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10022                       DAG.getConstant(10, MVT::i32));
10023    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10024
10025    // This is storing the opcode for MOV32ri.
10026    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10027    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
10028    OutChains[0] = DAG.getStore(Root, dl,
10029                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10030                                Trmp, MachinePointerInfo(TrmpAddr),
10031                                false, false, 0);
10032
10033    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10034                       DAG.getConstant(1, MVT::i32));
10035    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10036                                MachinePointerInfo(TrmpAddr, 1),
10037                                false, false, 1);
10038
10039    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10040    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10041                       DAG.getConstant(5, MVT::i32));
10042    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10043                                MachinePointerInfo(TrmpAddr, 5),
10044                                false, false, 1);
10045
10046    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10047                       DAG.getConstant(6, MVT::i32));
10048    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10049                                MachinePointerInfo(TrmpAddr, 6),
10050                                false, false, 1);
10051
10052    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10053  }
10054}
10055
10056SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10057                                            SelectionDAG &DAG) const {
10058  /*
10059   The rounding mode is in bits 11:10 of FPSR, and has the following
10060   settings:
10061     00 Round to nearest
10062     01 Round to -inf
10063     10 Round to +inf
10064     11 Round to 0
10065
10066  FLT_ROUNDS, on the other hand, expects the following:
10067    -1 Undefined
10068     0 Round to 0
10069     1 Round to nearest
10070     2 Round to +inf
10071     3 Round to -inf
10072
10073  To perform the conversion, we do:
10074    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10075  */
10076
10077  MachineFunction &MF = DAG.getMachineFunction();
10078  const TargetMachine &TM = MF.getTarget();
10079  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10080  unsigned StackAlignment = TFI.getStackAlignment();
10081  EVT VT = Op.getValueType();
10082  DebugLoc DL = Op.getDebugLoc();
10083
10084  // Save FP Control Word to stack slot
10085  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10086  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10087
10088
10089  MachineMemOperand *MMO =
10090   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10091                           MachineMemOperand::MOStore, 2, 2);
10092
10093  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10094  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10095                                          DAG.getVTList(MVT::Other),
10096                                          Ops, 2, MVT::i16, MMO);
10097
10098  // Load FP Control Word from stack slot
10099  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10100                            MachinePointerInfo(), false, false, false, 0);
10101
10102  // Transform as necessary
10103  SDValue CWD1 =
10104    DAG.getNode(ISD::SRL, DL, MVT::i16,
10105                DAG.getNode(ISD::AND, DL, MVT::i16,
10106                            CWD, DAG.getConstant(0x800, MVT::i16)),
10107                DAG.getConstant(11, MVT::i8));
10108  SDValue CWD2 =
10109    DAG.getNode(ISD::SRL, DL, MVT::i16,
10110                DAG.getNode(ISD::AND, DL, MVT::i16,
10111                            CWD, DAG.getConstant(0x400, MVT::i16)),
10112                DAG.getConstant(9, MVT::i8));
10113
10114  SDValue RetVal =
10115    DAG.getNode(ISD::AND, DL, MVT::i16,
10116                DAG.getNode(ISD::ADD, DL, MVT::i16,
10117                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10118                            DAG.getConstant(1, MVT::i16)),
10119                DAG.getConstant(3, MVT::i16));
10120
10121
10122  return DAG.getNode((VT.getSizeInBits() < 16 ?
10123                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10124}
10125
10126SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10127  EVT VT = Op.getValueType();
10128  EVT OpVT = VT;
10129  unsigned NumBits = VT.getSizeInBits();
10130  DebugLoc dl = Op.getDebugLoc();
10131
10132  Op = Op.getOperand(0);
10133  if (VT == MVT::i8) {
10134    // Zero extend to i32 since there is not an i8 bsr.
10135    OpVT = MVT::i32;
10136    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10137  }
10138
10139  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10140  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10141  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10142
10143  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10144  SDValue Ops[] = {
10145    Op,
10146    DAG.getConstant(NumBits+NumBits-1, OpVT),
10147    DAG.getConstant(X86::COND_E, MVT::i8),
10148    Op.getValue(1)
10149  };
10150  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10151
10152  // Finally xor with NumBits-1.
10153  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10154
10155  if (VT == MVT::i8)
10156    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10157  return Op;
10158}
10159
10160SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10161  EVT VT = Op.getValueType();
10162  EVT OpVT = VT;
10163  unsigned NumBits = VT.getSizeInBits();
10164  DebugLoc dl = Op.getDebugLoc();
10165
10166  Op = Op.getOperand(0);
10167  if (VT == MVT::i8) {
10168    OpVT = MVT::i32;
10169    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10170  }
10171
10172  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10173  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10174  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10175
10176  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10177  SDValue Ops[] = {
10178    Op,
10179    DAG.getConstant(NumBits, OpVT),
10180    DAG.getConstant(X86::COND_E, MVT::i8),
10181    Op.getValue(1)
10182  };
10183  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10184
10185  if (VT == MVT::i8)
10186    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10187  return Op;
10188}
10189
10190// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10191// ones, and then concatenate the result back.
10192static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10193  EVT VT = Op.getValueType();
10194
10195  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10196         "Unsupported value type for operation");
10197
10198  int NumElems = VT.getVectorNumElements();
10199  DebugLoc dl = Op.getDebugLoc();
10200  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10201  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10202
10203  // Extract the LHS vectors
10204  SDValue LHS = Op.getOperand(0);
10205  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10206  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10207
10208  // Extract the RHS vectors
10209  SDValue RHS = Op.getOperand(1);
10210  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10211  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10212
10213  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10214  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10215
10216  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10217                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10218                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10219}
10220
10221SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10222  assert(Op.getValueType().getSizeInBits() == 256 &&
10223         Op.getValueType().isInteger() &&
10224         "Only handle AVX 256-bit vector integer operation");
10225  return Lower256IntArith(Op, DAG);
10226}
10227
10228SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10229  assert(Op.getValueType().getSizeInBits() == 256 &&
10230         Op.getValueType().isInteger() &&
10231         "Only handle AVX 256-bit vector integer operation");
10232  return Lower256IntArith(Op, DAG);
10233}
10234
10235SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10236  EVT VT = Op.getValueType();
10237
10238  // Decompose 256-bit ops into smaller 128-bit ops.
10239  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10240    return Lower256IntArith(Op, DAG);
10241
10242  DebugLoc dl = Op.getDebugLoc();
10243
10244  SDValue A = Op.getOperand(0);
10245  SDValue B = Op.getOperand(1);
10246
10247  if (VT == MVT::v4i64) {
10248    assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
10249
10250    //  ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
10251    //  ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
10252    //  ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
10253    //  ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
10254    //  ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
10255    //
10256    //  AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
10257    //  AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
10258    //  return AloBlo + AloBhi + AhiBlo;
10259
10260    SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10261                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
10262                         A, DAG.getConstant(32, MVT::i32));
10263    SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10264                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
10265                         B, DAG.getConstant(32, MVT::i32));
10266    SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10267                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10268                         A, B);
10269    SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10270                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10271                         A, Bhi);
10272    SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10273                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10274                         Ahi, B);
10275    AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10276                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
10277                         AloBhi, DAG.getConstant(32, MVT::i32));
10278    AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10279                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
10280                         AhiBlo, DAG.getConstant(32, MVT::i32));
10281    SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10282    Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10283    return Res;
10284  }
10285
10286  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
10287
10288  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
10289  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
10290  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
10291  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
10292  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
10293  //
10294  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
10295  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
10296  //  return AloBlo + AloBhi + AhiBlo;
10297
10298  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10299                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10300                       A, DAG.getConstant(32, MVT::i32));
10301  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10302                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10303                       B, DAG.getConstant(32, MVT::i32));
10304  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10305                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10306                       A, B);
10307  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10308                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10309                       A, Bhi);
10310  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10311                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10312                       Ahi, B);
10313  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10314                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10315                       AloBhi, DAG.getConstant(32, MVT::i32));
10316  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10317                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10318                       AhiBlo, DAG.getConstant(32, MVT::i32));
10319  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10320  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10321  return Res;
10322}
10323
10324SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10325
10326  EVT VT = Op.getValueType();
10327  DebugLoc dl = Op.getDebugLoc();
10328  SDValue R = Op.getOperand(0);
10329  SDValue Amt = Op.getOperand(1);
10330  LLVMContext *Context = DAG.getContext();
10331
10332  if (!Subtarget->hasXMMInt())
10333    return SDValue();
10334
10335  // Optimize shl/srl/sra with constant shift amount.
10336  if (isSplatVector(Amt.getNode())) {
10337    SDValue SclrAmt = Amt->getOperand(0);
10338    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10339      uint64_t ShiftAmt = C->getZExtValue();
10340
10341      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SHL) {
10342        // Make a large shift.
10343        SDValue SHL =
10344          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10345                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10346                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10347        // Zero out the rightmost bits.
10348        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10349                                                       MVT::i8));
10350        return DAG.getNode(ISD::AND, dl, VT, SHL,
10351                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10352      }
10353
10354      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
10355       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10356                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10357                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10358
10359      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
10360       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10361                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10362                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10363
10364      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
10365       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10366                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10367                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10368
10369      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRL) {
10370        // Make a large shift.
10371        SDValue SRL =
10372          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10373                      DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10374                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10375        // Zero out the leftmost bits.
10376        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10377                                                       MVT::i8));
10378        return DAG.getNode(ISD::AND, dl, VT, SRL,
10379                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10380      }
10381
10382      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
10383       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10384                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10385                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10386
10387      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
10388       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10389                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10390                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10391
10392      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
10393       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10394                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10395                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10396
10397      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
10398       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10399                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10400                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10401
10402      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
10403       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10404                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10405                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10406
10407      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRA) {
10408        if (ShiftAmt == 7) {
10409          // R s>> 7  ===  R s< 0
10410          SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
10411          return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10412        }
10413
10414        // R s>> a === ((R u>> a) ^ m) - m
10415        SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10416        SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10417                                                       MVT::i8));
10418        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10419        Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10420        Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10421        return Res;
10422      }
10423
10424      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10425        if (Op.getOpcode() == ISD::SHL) {
10426          // Make a large shift.
10427          SDValue SHL =
10428            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10429                        DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
10430                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10431          // Zero out the rightmost bits.
10432          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10433                                                         MVT::i8));
10434          return DAG.getNode(ISD::AND, dl, VT, SHL,
10435                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10436        }
10437        if (Op.getOpcode() == ISD::SRL) {
10438          // Make a large shift.
10439          SDValue SRL =
10440            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10441                        DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
10442                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10443          // Zero out the leftmost bits.
10444          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10445                                                         MVT::i8));
10446          return DAG.getNode(ISD::AND, dl, VT, SRL,
10447                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10448        }
10449        if (Op.getOpcode() == ISD::SRA) {
10450          if (ShiftAmt == 7) {
10451            // R s>> 7  ===  R s< 0
10452            SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
10453            return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10454          }
10455
10456          // R s>> a === ((R u>> a) ^ m) - m
10457          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10458          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10459                                                         MVT::i8));
10460          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10461          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10462          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10463          return Res;
10464        }
10465      }
10466    }
10467  }
10468
10469  // Lower SHL with variable shift amount.
10470  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10471    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10472                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10473                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
10474
10475    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10476
10477    std::vector<Constant*> CV(4, CI);
10478    Constant *C = ConstantVector::get(CV);
10479    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10480    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10481                                 MachinePointerInfo::getConstantPool(),
10482                                 false, false, false, 16);
10483
10484    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10485    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10486    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10487    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10488  }
10489  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10490    // a = a << 5;
10491    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10492                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10493                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
10494
10495    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
10496    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
10497
10498    std::vector<Constant*> CVM1(16, CM1);
10499    std::vector<Constant*> CVM2(16, CM2);
10500    Constant *C = ConstantVector::get(CVM1);
10501    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10502    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10503                            MachinePointerInfo::getConstantPool(),
10504                            false, false, false, 16);
10505
10506    // r = pblendv(r, psllw(r & (char16)15, 4), a);
10507    M = DAG.getNode(ISD::AND, dl, VT, R, M);
10508    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10509                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10510                    DAG.getConstant(4, MVT::i32));
10511    R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10512    // a += a
10513    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10514
10515    C = ConstantVector::get(CVM2);
10516    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10517    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10518                    MachinePointerInfo::getConstantPool(),
10519                    false, false, false, 16);
10520
10521    // r = pblendv(r, psllw(r & (char16)63, 2), a);
10522    M = DAG.getNode(ISD::AND, dl, VT, R, M);
10523    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10524                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10525                    DAG.getConstant(2, MVT::i32));
10526    R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10527    // a += a
10528    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10529
10530    // return pblendv(r, r+r, a);
10531    R = DAG.getNode(ISD::VSELECT, dl, VT, Op,
10532                    R, DAG.getNode(ISD::ADD, dl, VT, R, R));
10533    return R;
10534  }
10535
10536  // Decompose 256-bit shifts into smaller 128-bit shifts.
10537  if (VT.getSizeInBits() == 256) {
10538    int NumElems = VT.getVectorNumElements();
10539    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10540    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10541
10542    // Extract the two vectors
10543    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10544    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10545                                     DAG, dl);
10546
10547    // Recreate the shift amount vectors
10548    SDValue Amt1, Amt2;
10549    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10550      // Constant shift amount
10551      SmallVector<SDValue, 4> Amt1Csts;
10552      SmallVector<SDValue, 4> Amt2Csts;
10553      for (int i = 0; i < NumElems/2; ++i)
10554        Amt1Csts.push_back(Amt->getOperand(i));
10555      for (int i = NumElems/2; i < NumElems; ++i)
10556        Amt2Csts.push_back(Amt->getOperand(i));
10557
10558      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10559                                 &Amt1Csts[0], NumElems/2);
10560      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10561                                 &Amt2Csts[0], NumElems/2);
10562    } else {
10563      // Variable shift amount
10564      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10565      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10566                                 DAG, dl);
10567    }
10568
10569    // Issue new vector shifts for the smaller types
10570    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10571    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10572
10573    // Concatenate the result back
10574    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10575  }
10576
10577  return SDValue();
10578}
10579
10580SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10581  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10582  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10583  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10584  // has only one use.
10585  SDNode *N = Op.getNode();
10586  SDValue LHS = N->getOperand(0);
10587  SDValue RHS = N->getOperand(1);
10588  unsigned BaseOp = 0;
10589  unsigned Cond = 0;
10590  DebugLoc DL = Op.getDebugLoc();
10591  switch (Op.getOpcode()) {
10592  default: llvm_unreachable("Unknown ovf instruction!");
10593  case ISD::SADDO:
10594    // A subtract of one will be selected as a INC. Note that INC doesn't
10595    // set CF, so we can't do this for UADDO.
10596    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10597      if (C->isOne()) {
10598        BaseOp = X86ISD::INC;
10599        Cond = X86::COND_O;
10600        break;
10601      }
10602    BaseOp = X86ISD::ADD;
10603    Cond = X86::COND_O;
10604    break;
10605  case ISD::UADDO:
10606    BaseOp = X86ISD::ADD;
10607    Cond = X86::COND_B;
10608    break;
10609  case ISD::SSUBO:
10610    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10611    // set CF, so we can't do this for USUBO.
10612    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10613      if (C->isOne()) {
10614        BaseOp = X86ISD::DEC;
10615        Cond = X86::COND_O;
10616        break;
10617      }
10618    BaseOp = X86ISD::SUB;
10619    Cond = X86::COND_O;
10620    break;
10621  case ISD::USUBO:
10622    BaseOp = X86ISD::SUB;
10623    Cond = X86::COND_B;
10624    break;
10625  case ISD::SMULO:
10626    BaseOp = X86ISD::SMUL;
10627    Cond = X86::COND_O;
10628    break;
10629  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10630    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10631                                 MVT::i32);
10632    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10633
10634    SDValue SetCC =
10635      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10636                  DAG.getConstant(X86::COND_O, MVT::i32),
10637                  SDValue(Sum.getNode(), 2));
10638
10639    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10640  }
10641  }
10642
10643  // Also sets EFLAGS.
10644  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10645  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10646
10647  SDValue SetCC =
10648    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10649                DAG.getConstant(Cond, MVT::i32),
10650                SDValue(Sum.getNode(), 1));
10651
10652  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10653}
10654
10655SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
10656  DebugLoc dl = Op.getDebugLoc();
10657  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10658  EVT VT = Op.getValueType();
10659
10660  if (Subtarget->hasXMMInt() && VT.isVector()) {
10661    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10662                        ExtraVT.getScalarType().getSizeInBits();
10663    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10664
10665    unsigned SHLIntrinsicsID = 0;
10666    unsigned SRAIntrinsicsID = 0;
10667    switch (VT.getSimpleVT().SimpleTy) {
10668      default:
10669        return SDValue();
10670      case MVT::v4i32:
10671        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10672        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10673        break;
10674      case MVT::v8i16:
10675        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10676        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10677        break;
10678      case MVT::v8i32:
10679      case MVT::v16i16:
10680        if (!Subtarget->hasAVX())
10681          return SDValue();
10682        if (!Subtarget->hasAVX2()) {
10683          // needs to be split
10684          int NumElems = VT.getVectorNumElements();
10685          SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10686          SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10687
10688          // Extract the LHS vectors
10689          SDValue LHS = Op.getOperand(0);
10690          SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10691          SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10692
10693          MVT EltVT = VT.getVectorElementType().getSimpleVT();
10694          EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10695
10696          EVT ExtraEltVT = ExtraVT.getVectorElementType();
10697          int ExtraNumElems = ExtraVT.getVectorNumElements();
10698          ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10699                                     ExtraNumElems/2);
10700          SDValue Extra = DAG.getValueType(ExtraVT);
10701
10702          LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10703          LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10704
10705          return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10706        }
10707        if (VT == MVT::v8i32) {
10708          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_d;
10709          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_d;
10710        } else {
10711          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_w;
10712          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_w;
10713        }
10714    }
10715
10716    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10717                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10718                         Op.getOperand(0), ShAmt);
10719
10720    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10721                       DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10722                       Tmp1, ShAmt);
10723  }
10724
10725  return SDValue();
10726}
10727
10728
10729SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10730  DebugLoc dl = Op.getDebugLoc();
10731
10732  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10733  // There isn't any reason to disable it if the target processor supports it.
10734  if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
10735    SDValue Chain = Op.getOperand(0);
10736    SDValue Zero = DAG.getConstant(0, MVT::i32);
10737    SDValue Ops[] = {
10738      DAG.getRegister(X86::ESP, MVT::i32), // Base
10739      DAG.getTargetConstant(1, MVT::i8),   // Scale
10740      DAG.getRegister(0, MVT::i32),        // Index
10741      DAG.getTargetConstant(0, MVT::i32),  // Disp
10742      DAG.getRegister(0, MVT::i32),        // Segment.
10743      Zero,
10744      Chain
10745    };
10746    SDNode *Res =
10747      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10748                          array_lengthof(Ops));
10749    return SDValue(Res, 0);
10750  }
10751
10752  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10753  if (!isDev)
10754    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10755
10756  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10757  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10758  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10759  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10760
10761  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10762  if (!Op1 && !Op2 && !Op3 && Op4)
10763    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10764
10765  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10766  if (Op1 && !Op2 && !Op3 && !Op4)
10767    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10768
10769  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10770  //           (MFENCE)>;
10771  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10772}
10773
10774SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10775                                             SelectionDAG &DAG) const {
10776  DebugLoc dl = Op.getDebugLoc();
10777  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10778    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10779  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10780    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10781
10782  // The only fence that needs an instruction is a sequentially-consistent
10783  // cross-thread fence.
10784  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10785    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10786    // no-sse2). There isn't any reason to disable it if the target processor
10787    // supports it.
10788    if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
10789      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10790
10791    SDValue Chain = Op.getOperand(0);
10792    SDValue Zero = DAG.getConstant(0, MVT::i32);
10793    SDValue Ops[] = {
10794      DAG.getRegister(X86::ESP, MVT::i32), // Base
10795      DAG.getTargetConstant(1, MVT::i8),   // Scale
10796      DAG.getRegister(0, MVT::i32),        // Index
10797      DAG.getTargetConstant(0, MVT::i32),  // Disp
10798      DAG.getRegister(0, MVT::i32),        // Segment.
10799      Zero,
10800      Chain
10801    };
10802    SDNode *Res =
10803      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10804                         array_lengthof(Ops));
10805    return SDValue(Res, 0);
10806  }
10807
10808  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10809  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10810}
10811
10812
10813SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10814  EVT T = Op.getValueType();
10815  DebugLoc DL = Op.getDebugLoc();
10816  unsigned Reg = 0;
10817  unsigned size = 0;
10818  switch(T.getSimpleVT().SimpleTy) {
10819  default:
10820    assert(false && "Invalid value type!");
10821  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10822  case MVT::i16: Reg = X86::AX;  size = 2; break;
10823  case MVT::i32: Reg = X86::EAX; size = 4; break;
10824  case MVT::i64:
10825    assert(Subtarget->is64Bit() && "Node not type legal!");
10826    Reg = X86::RAX; size = 8;
10827    break;
10828  }
10829  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10830                                    Op.getOperand(2), SDValue());
10831  SDValue Ops[] = { cpIn.getValue(0),
10832                    Op.getOperand(1),
10833                    Op.getOperand(3),
10834                    DAG.getTargetConstant(size, MVT::i8),
10835                    cpIn.getValue(1) };
10836  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10837  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10838  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10839                                           Ops, 5, T, MMO);
10840  SDValue cpOut =
10841    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10842  return cpOut;
10843}
10844
10845SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10846                                                 SelectionDAG &DAG) const {
10847  assert(Subtarget->is64Bit() && "Result not type legalized?");
10848  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10849  SDValue TheChain = Op.getOperand(0);
10850  DebugLoc dl = Op.getDebugLoc();
10851  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10852  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10853  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10854                                   rax.getValue(2));
10855  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10856                            DAG.getConstant(32, MVT::i8));
10857  SDValue Ops[] = {
10858    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10859    rdx.getValue(1)
10860  };
10861  return DAG.getMergeValues(Ops, 2, dl);
10862}
10863
10864SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10865                                            SelectionDAG &DAG) const {
10866  EVT SrcVT = Op.getOperand(0).getValueType();
10867  EVT DstVT = Op.getValueType();
10868  assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
10869         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10870  assert((DstVT == MVT::i64 ||
10871          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10872         "Unexpected custom BITCAST");
10873  // i64 <=> MMX conversions are Legal.
10874  if (SrcVT==MVT::i64 && DstVT.isVector())
10875    return Op;
10876  if (DstVT==MVT::i64 && SrcVT.isVector())
10877    return Op;
10878  // MMX <=> MMX conversions are Legal.
10879  if (SrcVT.isVector() && DstVT.isVector())
10880    return Op;
10881  // All other conversions need to be expanded.
10882  return SDValue();
10883}
10884
10885SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10886  SDNode *Node = Op.getNode();
10887  DebugLoc dl = Node->getDebugLoc();
10888  EVT T = Node->getValueType(0);
10889  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10890                              DAG.getConstant(0, T), Node->getOperand(2));
10891  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10892                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10893                       Node->getOperand(0),
10894                       Node->getOperand(1), negOp,
10895                       cast<AtomicSDNode>(Node)->getSrcValue(),
10896                       cast<AtomicSDNode>(Node)->getAlignment(),
10897                       cast<AtomicSDNode>(Node)->getOrdering(),
10898                       cast<AtomicSDNode>(Node)->getSynchScope());
10899}
10900
10901static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10902  SDNode *Node = Op.getNode();
10903  DebugLoc dl = Node->getDebugLoc();
10904  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10905
10906  // Convert seq_cst store -> xchg
10907  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10908  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10909  //        (The only way to get a 16-byte store is cmpxchg16b)
10910  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10911  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10912      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10913    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10914                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10915                                 Node->getOperand(0),
10916                                 Node->getOperand(1), Node->getOperand(2),
10917                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10918                                 cast<AtomicSDNode>(Node)->getOrdering(),
10919                                 cast<AtomicSDNode>(Node)->getSynchScope());
10920    return Swap.getValue(1);
10921  }
10922  // Other atomic stores have a simple pattern.
10923  return Op;
10924}
10925
10926static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10927  EVT VT = Op.getNode()->getValueType(0);
10928
10929  // Let legalize expand this if it isn't a legal type yet.
10930  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10931    return SDValue();
10932
10933  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10934
10935  unsigned Opc;
10936  bool ExtraOp = false;
10937  switch (Op.getOpcode()) {
10938  default: assert(0 && "Invalid code");
10939  case ISD::ADDC: Opc = X86ISD::ADD; break;
10940  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10941  case ISD::SUBC: Opc = X86ISD::SUB; break;
10942  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10943  }
10944
10945  if (!ExtraOp)
10946    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10947                       Op.getOperand(1));
10948  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10949                     Op.getOperand(1), Op.getOperand(2));
10950}
10951
10952/// LowerOperation - Provide custom lowering hooks for some operations.
10953///
10954SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10955  switch (Op.getOpcode()) {
10956  default: llvm_unreachable("Should not custom lower this!");
10957  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10958  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10959  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10960  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10961  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10962  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10963  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10964  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10965  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10966  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10967  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10968  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10969  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10970  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10971  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10972  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10973  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10974  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10975  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10976  case ISD::SHL_PARTS:
10977  case ISD::SRA_PARTS:
10978  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10979  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10980  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10981  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10982  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10983  case ISD::FABS:               return LowerFABS(Op, DAG);
10984  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10985  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10986  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10987  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10988  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10989  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10990  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10991  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10992  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10993  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10994  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10995  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10996  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10997  case ISD::FRAME_TO_ARGS_OFFSET:
10998                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10999  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11000  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
11001  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11002  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11003  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11004  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
11005  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
11006  case ISD::MUL:                return LowerMUL(Op, DAG);
11007  case ISD::SRA:
11008  case ISD::SRL:
11009  case ISD::SHL:                return LowerShift(Op, DAG);
11010  case ISD::SADDO:
11011  case ISD::UADDO:
11012  case ISD::SSUBO:
11013  case ISD::USUBO:
11014  case ISD::SMULO:
11015  case ISD::UMULO:              return LowerXALUO(Op, DAG);
11016  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
11017  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11018  case ISD::ADDC:
11019  case ISD::ADDE:
11020  case ISD::SUBC:
11021  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
11022  case ISD::ADD:                return LowerADD(Op, DAG);
11023  case ISD::SUB:                return LowerSUB(Op, DAG);
11024  }
11025}
11026
11027static void ReplaceATOMIC_LOAD(SDNode *Node,
11028                                  SmallVectorImpl<SDValue> &Results,
11029                                  SelectionDAG &DAG) {
11030  DebugLoc dl = Node->getDebugLoc();
11031  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11032
11033  // Convert wide load -> cmpxchg8b/cmpxchg16b
11034  // FIXME: On 32-bit, load -> fild or movq would be more efficient
11035  //        (The only way to get a 16-byte load is cmpxchg16b)
11036  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
11037  SDValue Zero = DAG.getConstant(0, VT);
11038  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11039                               Node->getOperand(0),
11040                               Node->getOperand(1), Zero, Zero,
11041                               cast<AtomicSDNode>(Node)->getMemOperand(),
11042                               cast<AtomicSDNode>(Node)->getOrdering(),
11043                               cast<AtomicSDNode>(Node)->getSynchScope());
11044  Results.push_back(Swap.getValue(0));
11045  Results.push_back(Swap.getValue(1));
11046}
11047
11048void X86TargetLowering::
11049ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11050                        SelectionDAG &DAG, unsigned NewOp) const {
11051  DebugLoc dl = Node->getDebugLoc();
11052  assert (Node->getValueType(0) == MVT::i64 &&
11053          "Only know how to expand i64 atomics");
11054
11055  SDValue Chain = Node->getOperand(0);
11056  SDValue In1 = Node->getOperand(1);
11057  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11058                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11059  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11060                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11061  SDValue Ops[] = { Chain, In1, In2L, In2H };
11062  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11063  SDValue Result =
11064    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11065                            cast<MemSDNode>(Node)->getMemOperand());
11066  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11067  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11068  Results.push_back(Result.getValue(2));
11069}
11070
11071/// ReplaceNodeResults - Replace a node with an illegal result type
11072/// with a new node built out of custom code.
11073void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11074                                           SmallVectorImpl<SDValue>&Results,
11075                                           SelectionDAG &DAG) const {
11076  DebugLoc dl = N->getDebugLoc();
11077  switch (N->getOpcode()) {
11078  default:
11079    assert(false && "Do not know how to custom type legalize this operation!");
11080    return;
11081  case ISD::SIGN_EXTEND_INREG:
11082  case ISD::ADDC:
11083  case ISD::ADDE:
11084  case ISD::SUBC:
11085  case ISD::SUBE:
11086    // We don't want to expand or promote these.
11087    return;
11088  case ISD::FP_TO_SINT: {
11089    std::pair<SDValue,SDValue> Vals =
11090        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
11091    SDValue FIST = Vals.first, StackSlot = Vals.second;
11092    if (FIST.getNode() != 0) {
11093      EVT VT = N->getValueType(0);
11094      // Return a load from the stack slot.
11095      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11096                                    MachinePointerInfo(),
11097                                    false, false, false, 0));
11098    }
11099    return;
11100  }
11101  case ISD::READCYCLECOUNTER: {
11102    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11103    SDValue TheChain = N->getOperand(0);
11104    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11105    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11106                                     rd.getValue(1));
11107    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11108                                     eax.getValue(2));
11109    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11110    SDValue Ops[] = { eax, edx };
11111    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11112    Results.push_back(edx.getValue(1));
11113    return;
11114  }
11115  case ISD::ATOMIC_CMP_SWAP: {
11116    EVT T = N->getValueType(0);
11117    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11118    bool Regs64bit = T == MVT::i128;
11119    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11120    SDValue cpInL, cpInH;
11121    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11122                        DAG.getConstant(0, HalfT));
11123    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11124                        DAG.getConstant(1, HalfT));
11125    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11126                             Regs64bit ? X86::RAX : X86::EAX,
11127                             cpInL, SDValue());
11128    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11129                             Regs64bit ? X86::RDX : X86::EDX,
11130                             cpInH, cpInL.getValue(1));
11131    SDValue swapInL, swapInH;
11132    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11133                          DAG.getConstant(0, HalfT));
11134    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11135                          DAG.getConstant(1, HalfT));
11136    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11137                               Regs64bit ? X86::RBX : X86::EBX,
11138                               swapInL, cpInH.getValue(1));
11139    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11140                               Regs64bit ? X86::RCX : X86::ECX,
11141                               swapInH, swapInL.getValue(1));
11142    SDValue Ops[] = { swapInH.getValue(0),
11143                      N->getOperand(1),
11144                      swapInH.getValue(1) };
11145    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11146    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11147    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11148                                  X86ISD::LCMPXCHG8_DAG;
11149    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11150                                             Ops, 3, T, MMO);
11151    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11152                                        Regs64bit ? X86::RAX : X86::EAX,
11153                                        HalfT, Result.getValue(1));
11154    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11155                                        Regs64bit ? X86::RDX : X86::EDX,
11156                                        HalfT, cpOutL.getValue(2));
11157    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11158    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11159    Results.push_back(cpOutH.getValue(1));
11160    return;
11161  }
11162  case ISD::ATOMIC_LOAD_ADD:
11163    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
11164    return;
11165  case ISD::ATOMIC_LOAD_AND:
11166    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
11167    return;
11168  case ISD::ATOMIC_LOAD_NAND:
11169    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
11170    return;
11171  case ISD::ATOMIC_LOAD_OR:
11172    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
11173    return;
11174  case ISD::ATOMIC_LOAD_SUB:
11175    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
11176    return;
11177  case ISD::ATOMIC_LOAD_XOR:
11178    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11179    return;
11180  case ISD::ATOMIC_SWAP:
11181    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11182    return;
11183  case ISD::ATOMIC_LOAD:
11184    ReplaceATOMIC_LOAD(N, Results, DAG);
11185  }
11186}
11187
11188const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11189  switch (Opcode) {
11190  default: return NULL;
11191  case X86ISD::BSF:                return "X86ISD::BSF";
11192  case X86ISD::BSR:                return "X86ISD::BSR";
11193  case X86ISD::SHLD:               return "X86ISD::SHLD";
11194  case X86ISD::SHRD:               return "X86ISD::SHRD";
11195  case X86ISD::FAND:               return "X86ISD::FAND";
11196  case X86ISD::FOR:                return "X86ISD::FOR";
11197  case X86ISD::FXOR:               return "X86ISD::FXOR";
11198  case X86ISD::FSRL:               return "X86ISD::FSRL";
11199  case X86ISD::FILD:               return "X86ISD::FILD";
11200  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11201  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11202  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11203  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11204  case X86ISD::FLD:                return "X86ISD::FLD";
11205  case X86ISD::FST:                return "X86ISD::FST";
11206  case X86ISD::CALL:               return "X86ISD::CALL";
11207  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11208  case X86ISD::BT:                 return "X86ISD::BT";
11209  case X86ISD::CMP:                return "X86ISD::CMP";
11210  case X86ISD::COMI:               return "X86ISD::COMI";
11211  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11212  case X86ISD::SETCC:              return "X86ISD::SETCC";
11213  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11214  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11215  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11216  case X86ISD::CMOV:               return "X86ISD::CMOV";
11217  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11218  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11219  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11220  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11221  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11222  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11223  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11224  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11225  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11226  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11227  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11228  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11229  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11230  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11231  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11232  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11233  case X86ISD::FHADD:              return "X86ISD::FHADD";
11234  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11235  case X86ISD::FMAX:               return "X86ISD::FMAX";
11236  case X86ISD::FMIN:               return "X86ISD::FMIN";
11237  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11238  case X86ISD::FRCP:               return "X86ISD::FRCP";
11239  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11240  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11241  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11242  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11243  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11244  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11245  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11246  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11247  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11248  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11249  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11250  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11251  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11252  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11253  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11254  case X86ISD::VSHL:               return "X86ISD::VSHL";
11255  case X86ISD::VSRL:               return "X86ISD::VSRL";
11256  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
11257  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
11258  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
11259  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
11260  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
11261  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
11262  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
11263  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
11264  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
11265  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
11266  case X86ISD::ADD:                return "X86ISD::ADD";
11267  case X86ISD::SUB:                return "X86ISD::SUB";
11268  case X86ISD::ADC:                return "X86ISD::ADC";
11269  case X86ISD::SBB:                return "X86ISD::SBB";
11270  case X86ISD::SMUL:               return "X86ISD::SMUL";
11271  case X86ISD::UMUL:               return "X86ISD::UMUL";
11272  case X86ISD::INC:                return "X86ISD::INC";
11273  case X86ISD::DEC:                return "X86ISD::DEC";
11274  case X86ISD::OR:                 return "X86ISD::OR";
11275  case X86ISD::XOR:                return "X86ISD::XOR";
11276  case X86ISD::AND:                return "X86ISD::AND";
11277  case X86ISD::ANDN:               return "X86ISD::ANDN";
11278  case X86ISD::BLSI:               return "X86ISD::BLSI";
11279  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11280  case X86ISD::BLSR:               return "X86ISD::BLSR";
11281  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11282  case X86ISD::PTEST:              return "X86ISD::PTEST";
11283  case X86ISD::TESTP:              return "X86ISD::TESTP";
11284  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11285  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11286  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11287  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
11288  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11289  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
11290  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
11291  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
11292  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11293  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11294  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11295  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
11296  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11297  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11298  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11299  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11300  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11301  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
11302  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
11303  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11304  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11305  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
11306  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
11307  case X86ISD::VUNPCKLPSY:         return "X86ISD::VUNPCKLPSY";
11308  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
11309  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
11310  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
11311  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
11312  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
11313  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
11314  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
11315  case X86ISD::VPUNPCKLBWY:        return "X86ISD::VPUNPCKLBWY";
11316  case X86ISD::VPUNPCKLWDY:        return "X86ISD::VPUNPCKLWDY";
11317  case X86ISD::VPUNPCKLDQY:        return "X86ISD::VPUNPCKLDQY";
11318  case X86ISD::VPUNPCKLQDQY:       return "X86ISD::VPUNPCKLQDQY";
11319  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
11320  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
11321  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
11322  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
11323  case X86ISD::VPUNPCKHBWY:        return "X86ISD::VPUNPCKHBWY";
11324  case X86ISD::VPUNPCKHWDY:        return "X86ISD::VPUNPCKHWDY";
11325  case X86ISD::VPUNPCKHDQY:        return "X86ISD::VPUNPCKHDQY";
11326  case X86ISD::VPUNPCKHQDQY:       return "X86ISD::VPUNPCKHQDQY";
11327  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11328  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
11329  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
11330  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
11331  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
11332  case X86ISD::VPERM2F128:         return "X86ISD::VPERM2F128";
11333  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11334  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11335  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11336  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11337  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11338  }
11339}
11340
11341// isLegalAddressingMode - Return true if the addressing mode represented
11342// by AM is legal for this target, for a load/store of the specified type.
11343bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11344                                              Type *Ty) const {
11345  // X86 supports extremely general addressing modes.
11346  CodeModel::Model M = getTargetMachine().getCodeModel();
11347  Reloc::Model R = getTargetMachine().getRelocationModel();
11348
11349  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11350  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11351    return false;
11352
11353  if (AM.BaseGV) {
11354    unsigned GVFlags =
11355      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11356
11357    // If a reference to this global requires an extra load, we can't fold it.
11358    if (isGlobalStubReference(GVFlags))
11359      return false;
11360
11361    // If BaseGV requires a register for the PIC base, we cannot also have a
11362    // BaseReg specified.
11363    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11364      return false;
11365
11366    // If lower 4G is not available, then we must use rip-relative addressing.
11367    if ((M != CodeModel::Small || R != Reloc::Static) &&
11368        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11369      return false;
11370  }
11371
11372  switch (AM.Scale) {
11373  case 0:
11374  case 1:
11375  case 2:
11376  case 4:
11377  case 8:
11378    // These scales always work.
11379    break;
11380  case 3:
11381  case 5:
11382  case 9:
11383    // These scales are formed with basereg+scalereg.  Only accept if there is
11384    // no basereg yet.
11385    if (AM.HasBaseReg)
11386      return false;
11387    break;
11388  default:  // Other stuff never works.
11389    return false;
11390  }
11391
11392  return true;
11393}
11394
11395
11396bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11397  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11398    return false;
11399  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11400  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11401  if (NumBits1 <= NumBits2)
11402    return false;
11403  return true;
11404}
11405
11406bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11407  if (!VT1.isInteger() || !VT2.isInteger())
11408    return false;
11409  unsigned NumBits1 = VT1.getSizeInBits();
11410  unsigned NumBits2 = VT2.getSizeInBits();
11411  if (NumBits1 <= NumBits2)
11412    return false;
11413  return true;
11414}
11415
11416bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11417  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11418  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11419}
11420
11421bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11422  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11423  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11424}
11425
11426bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11427  // i16 instructions are longer (0x66 prefix) and potentially slower.
11428  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11429}
11430
11431/// isShuffleMaskLegal - Targets can use this to indicate that they only
11432/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11433/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11434/// are assumed to be legal.
11435bool
11436X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11437                                      EVT VT) const {
11438  // Very little shuffling can be done for 64-bit vectors right now.
11439  if (VT.getSizeInBits() == 64)
11440    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX());
11441
11442  // FIXME: pshufb, blends, shifts.
11443  return (VT.getVectorNumElements() == 2 ||
11444          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11445          isMOVLMask(M, VT) ||
11446          isSHUFPMask(M, VT) ||
11447          isPSHUFDMask(M, VT) ||
11448          isPSHUFHWMask(M, VT) ||
11449          isPSHUFLWMask(M, VT) ||
11450          isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX()) ||
11451          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11452          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11453          isUNPCKL_v_undef_Mask(M, VT) ||
11454          isUNPCKH_v_undef_Mask(M, VT));
11455}
11456
11457bool
11458X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11459                                          EVT VT) const {
11460  unsigned NumElts = VT.getVectorNumElements();
11461  // FIXME: This collection of masks seems suspect.
11462  if (NumElts == 2)
11463    return true;
11464  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11465    return (isMOVLMask(Mask, VT)  ||
11466            isCommutedMOVLMask(Mask, VT, true) ||
11467            isSHUFPMask(Mask, VT) ||
11468            isCommutedSHUFPMask(Mask, VT));
11469  }
11470  return false;
11471}
11472
11473//===----------------------------------------------------------------------===//
11474//                           X86 Scheduler Hooks
11475//===----------------------------------------------------------------------===//
11476
11477// private utility function
11478MachineBasicBlock *
11479X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11480                                                       MachineBasicBlock *MBB,
11481                                                       unsigned regOpc,
11482                                                       unsigned immOpc,
11483                                                       unsigned LoadOpc,
11484                                                       unsigned CXchgOpc,
11485                                                       unsigned notOpc,
11486                                                       unsigned EAXreg,
11487                                                       TargetRegisterClass *RC,
11488                                                       bool invSrc) const {
11489  // For the atomic bitwise operator, we generate
11490  //   thisMBB:
11491  //   newMBB:
11492  //     ld  t1 = [bitinstr.addr]
11493  //     op  t2 = t1, [bitinstr.val]
11494  //     mov EAX = t1
11495  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11496  //     bz  newMBB
11497  //     fallthrough -->nextMBB
11498  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11499  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11500  MachineFunction::iterator MBBIter = MBB;
11501  ++MBBIter;
11502
11503  /// First build the CFG
11504  MachineFunction *F = MBB->getParent();
11505  MachineBasicBlock *thisMBB = MBB;
11506  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11507  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11508  F->insert(MBBIter, newMBB);
11509  F->insert(MBBIter, nextMBB);
11510
11511  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11512  nextMBB->splice(nextMBB->begin(), thisMBB,
11513                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11514                  thisMBB->end());
11515  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11516
11517  // Update thisMBB to fall through to newMBB
11518  thisMBB->addSuccessor(newMBB);
11519
11520  // newMBB jumps to itself and fall through to nextMBB
11521  newMBB->addSuccessor(nextMBB);
11522  newMBB->addSuccessor(newMBB);
11523
11524  // Insert instructions into newMBB based on incoming instruction
11525  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11526         "unexpected number of operands");
11527  DebugLoc dl = bInstr->getDebugLoc();
11528  MachineOperand& destOper = bInstr->getOperand(0);
11529  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11530  int numArgs = bInstr->getNumOperands() - 1;
11531  for (int i=0; i < numArgs; ++i)
11532    argOpers[i] = &bInstr->getOperand(i+1);
11533
11534  // x86 address has 4 operands: base, index, scale, and displacement
11535  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11536  int valArgIndx = lastAddrIndx + 1;
11537
11538  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11539  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11540  for (int i=0; i <= lastAddrIndx; ++i)
11541    (*MIB).addOperand(*argOpers[i]);
11542
11543  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11544  if (invSrc) {
11545    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11546  }
11547  else
11548    tt = t1;
11549
11550  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11551  assert((argOpers[valArgIndx]->isReg() ||
11552          argOpers[valArgIndx]->isImm()) &&
11553         "invalid operand");
11554  if (argOpers[valArgIndx]->isReg())
11555    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11556  else
11557    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11558  MIB.addReg(tt);
11559  (*MIB).addOperand(*argOpers[valArgIndx]);
11560
11561  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11562  MIB.addReg(t1);
11563
11564  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11565  for (int i=0; i <= lastAddrIndx; ++i)
11566    (*MIB).addOperand(*argOpers[i]);
11567  MIB.addReg(t2);
11568  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11569  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11570                    bInstr->memoperands_end());
11571
11572  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11573  MIB.addReg(EAXreg);
11574
11575  // insert branch
11576  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11577
11578  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11579  return nextMBB;
11580}
11581
11582// private utility function:  64 bit atomics on 32 bit host.
11583MachineBasicBlock *
11584X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11585                                                       MachineBasicBlock *MBB,
11586                                                       unsigned regOpcL,
11587                                                       unsigned regOpcH,
11588                                                       unsigned immOpcL,
11589                                                       unsigned immOpcH,
11590                                                       bool invSrc) const {
11591  // For the atomic bitwise operator, we generate
11592  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11593  //     ld t1,t2 = [bitinstr.addr]
11594  //   newMBB:
11595  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11596  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11597  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11598  //     mov ECX, EBX <- t5, t6
11599  //     mov EAX, EDX <- t1, t2
11600  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11601  //     mov t3, t4 <- EAX, EDX
11602  //     bz  newMBB
11603  //     result in out1, out2
11604  //     fallthrough -->nextMBB
11605
11606  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11607  const unsigned LoadOpc = X86::MOV32rm;
11608  const unsigned NotOpc = X86::NOT32r;
11609  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11610  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11611  MachineFunction::iterator MBBIter = MBB;
11612  ++MBBIter;
11613
11614  /// First build the CFG
11615  MachineFunction *F = MBB->getParent();
11616  MachineBasicBlock *thisMBB = MBB;
11617  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11618  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11619  F->insert(MBBIter, newMBB);
11620  F->insert(MBBIter, nextMBB);
11621
11622  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11623  nextMBB->splice(nextMBB->begin(), thisMBB,
11624                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11625                  thisMBB->end());
11626  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11627
11628  // Update thisMBB to fall through to newMBB
11629  thisMBB->addSuccessor(newMBB);
11630
11631  // newMBB jumps to itself and fall through to nextMBB
11632  newMBB->addSuccessor(nextMBB);
11633  newMBB->addSuccessor(newMBB);
11634
11635  DebugLoc dl = bInstr->getDebugLoc();
11636  // Insert instructions into newMBB based on incoming instruction
11637  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11638  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11639         "unexpected number of operands");
11640  MachineOperand& dest1Oper = bInstr->getOperand(0);
11641  MachineOperand& dest2Oper = bInstr->getOperand(1);
11642  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11643  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11644    argOpers[i] = &bInstr->getOperand(i+2);
11645
11646    // We use some of the operands multiple times, so conservatively just
11647    // clear any kill flags that might be present.
11648    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11649      argOpers[i]->setIsKill(false);
11650  }
11651
11652  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11653  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11654
11655  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11656  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11657  for (int i=0; i <= lastAddrIndx; ++i)
11658    (*MIB).addOperand(*argOpers[i]);
11659  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11660  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11661  // add 4 to displacement.
11662  for (int i=0; i <= lastAddrIndx-2; ++i)
11663    (*MIB).addOperand(*argOpers[i]);
11664  MachineOperand newOp3 = *(argOpers[3]);
11665  if (newOp3.isImm())
11666    newOp3.setImm(newOp3.getImm()+4);
11667  else
11668    newOp3.setOffset(newOp3.getOffset()+4);
11669  (*MIB).addOperand(newOp3);
11670  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11671
11672  // t3/4 are defined later, at the bottom of the loop
11673  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11674  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11675  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11676    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11677  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11678    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11679
11680  // The subsequent operations should be using the destination registers of
11681  //the PHI instructions.
11682  if (invSrc) {
11683    t1 = F->getRegInfo().createVirtualRegister(RC);
11684    t2 = F->getRegInfo().createVirtualRegister(RC);
11685    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11686    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11687  } else {
11688    t1 = dest1Oper.getReg();
11689    t2 = dest2Oper.getReg();
11690  }
11691
11692  int valArgIndx = lastAddrIndx + 1;
11693  assert((argOpers[valArgIndx]->isReg() ||
11694          argOpers[valArgIndx]->isImm()) &&
11695         "invalid operand");
11696  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11697  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11698  if (argOpers[valArgIndx]->isReg())
11699    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11700  else
11701    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11702  if (regOpcL != X86::MOV32rr)
11703    MIB.addReg(t1);
11704  (*MIB).addOperand(*argOpers[valArgIndx]);
11705  assert(argOpers[valArgIndx + 1]->isReg() ==
11706         argOpers[valArgIndx]->isReg());
11707  assert(argOpers[valArgIndx + 1]->isImm() ==
11708         argOpers[valArgIndx]->isImm());
11709  if (argOpers[valArgIndx + 1]->isReg())
11710    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11711  else
11712    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11713  if (regOpcH != X86::MOV32rr)
11714    MIB.addReg(t2);
11715  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11716
11717  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11718  MIB.addReg(t1);
11719  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11720  MIB.addReg(t2);
11721
11722  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11723  MIB.addReg(t5);
11724  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11725  MIB.addReg(t6);
11726
11727  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11728  for (int i=0; i <= lastAddrIndx; ++i)
11729    (*MIB).addOperand(*argOpers[i]);
11730
11731  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11732  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11733                    bInstr->memoperands_end());
11734
11735  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11736  MIB.addReg(X86::EAX);
11737  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11738  MIB.addReg(X86::EDX);
11739
11740  // insert branch
11741  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11742
11743  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11744  return nextMBB;
11745}
11746
11747// private utility function
11748MachineBasicBlock *
11749X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11750                                                      MachineBasicBlock *MBB,
11751                                                      unsigned cmovOpc) const {
11752  // For the atomic min/max operator, we generate
11753  //   thisMBB:
11754  //   newMBB:
11755  //     ld t1 = [min/max.addr]
11756  //     mov t2 = [min/max.val]
11757  //     cmp  t1, t2
11758  //     cmov[cond] t2 = t1
11759  //     mov EAX = t1
11760  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11761  //     bz   newMBB
11762  //     fallthrough -->nextMBB
11763  //
11764  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11765  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11766  MachineFunction::iterator MBBIter = MBB;
11767  ++MBBIter;
11768
11769  /// First build the CFG
11770  MachineFunction *F = MBB->getParent();
11771  MachineBasicBlock *thisMBB = MBB;
11772  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11773  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11774  F->insert(MBBIter, newMBB);
11775  F->insert(MBBIter, nextMBB);
11776
11777  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11778  nextMBB->splice(nextMBB->begin(), thisMBB,
11779                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11780                  thisMBB->end());
11781  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11782
11783  // Update thisMBB to fall through to newMBB
11784  thisMBB->addSuccessor(newMBB);
11785
11786  // newMBB jumps to newMBB and fall through to nextMBB
11787  newMBB->addSuccessor(nextMBB);
11788  newMBB->addSuccessor(newMBB);
11789
11790  DebugLoc dl = mInstr->getDebugLoc();
11791  // Insert instructions into newMBB based on incoming instruction
11792  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11793         "unexpected number of operands");
11794  MachineOperand& destOper = mInstr->getOperand(0);
11795  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11796  int numArgs = mInstr->getNumOperands() - 1;
11797  for (int i=0; i < numArgs; ++i)
11798    argOpers[i] = &mInstr->getOperand(i+1);
11799
11800  // x86 address has 4 operands: base, index, scale, and displacement
11801  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11802  int valArgIndx = lastAddrIndx + 1;
11803
11804  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11805  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11806  for (int i=0; i <= lastAddrIndx; ++i)
11807    (*MIB).addOperand(*argOpers[i]);
11808
11809  // We only support register and immediate values
11810  assert((argOpers[valArgIndx]->isReg() ||
11811          argOpers[valArgIndx]->isImm()) &&
11812         "invalid operand");
11813
11814  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11815  if (argOpers[valArgIndx]->isReg())
11816    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11817  else
11818    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11819  (*MIB).addOperand(*argOpers[valArgIndx]);
11820
11821  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11822  MIB.addReg(t1);
11823
11824  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11825  MIB.addReg(t1);
11826  MIB.addReg(t2);
11827
11828  // Generate movc
11829  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11830  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11831  MIB.addReg(t2);
11832  MIB.addReg(t1);
11833
11834  // Cmp and exchange if none has modified the memory location
11835  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11836  for (int i=0; i <= lastAddrIndx; ++i)
11837    (*MIB).addOperand(*argOpers[i]);
11838  MIB.addReg(t3);
11839  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11840  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11841                    mInstr->memoperands_end());
11842
11843  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11844  MIB.addReg(X86::EAX);
11845
11846  // insert branch
11847  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11848
11849  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11850  return nextMBB;
11851}
11852
11853// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11854// or XMM0_V32I8 in AVX all of this code can be replaced with that
11855// in the .td file.
11856MachineBasicBlock *
11857X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11858                            unsigned numArgs, bool memArg) const {
11859  assert(Subtarget->hasSSE42orAVX() &&
11860         "Target must have SSE4.2 or AVX features enabled");
11861
11862  DebugLoc dl = MI->getDebugLoc();
11863  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11864  unsigned Opc;
11865  if (!Subtarget->hasAVX()) {
11866    if (memArg)
11867      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11868    else
11869      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11870  } else {
11871    if (memArg)
11872      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11873    else
11874      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11875  }
11876
11877  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11878  for (unsigned i = 0; i < numArgs; ++i) {
11879    MachineOperand &Op = MI->getOperand(i+1);
11880    if (!(Op.isReg() && Op.isImplicit()))
11881      MIB.addOperand(Op);
11882  }
11883  BuildMI(*BB, MI, dl,
11884    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11885             MI->getOperand(0).getReg())
11886    .addReg(X86::XMM0);
11887
11888  MI->eraseFromParent();
11889  return BB;
11890}
11891
11892MachineBasicBlock *
11893X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11894  DebugLoc dl = MI->getDebugLoc();
11895  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11896
11897  // Address into RAX/EAX, other two args into ECX, EDX.
11898  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11899  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11900  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11901  for (int i = 0; i < X86::AddrNumOperands; ++i)
11902    MIB.addOperand(MI->getOperand(i));
11903
11904  unsigned ValOps = X86::AddrNumOperands;
11905  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11906    .addReg(MI->getOperand(ValOps).getReg());
11907  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11908    .addReg(MI->getOperand(ValOps+1).getReg());
11909
11910  // The instruction doesn't actually take any operands though.
11911  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11912
11913  MI->eraseFromParent(); // The pseudo is gone now.
11914  return BB;
11915}
11916
11917MachineBasicBlock *
11918X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11919  DebugLoc dl = MI->getDebugLoc();
11920  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11921
11922  // First arg in ECX, the second in EAX.
11923  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11924    .addReg(MI->getOperand(0).getReg());
11925  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11926    .addReg(MI->getOperand(1).getReg());
11927
11928  // The instruction doesn't actually take any operands though.
11929  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11930
11931  MI->eraseFromParent(); // The pseudo is gone now.
11932  return BB;
11933}
11934
11935MachineBasicBlock *
11936X86TargetLowering::EmitVAARG64WithCustomInserter(
11937                   MachineInstr *MI,
11938                   MachineBasicBlock *MBB) const {
11939  // Emit va_arg instruction on X86-64.
11940
11941  // Operands to this pseudo-instruction:
11942  // 0  ) Output        : destination address (reg)
11943  // 1-5) Input         : va_list address (addr, i64mem)
11944  // 6  ) ArgSize       : Size (in bytes) of vararg type
11945  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11946  // 8  ) Align         : Alignment of type
11947  // 9  ) EFLAGS (implicit-def)
11948
11949  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11950  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11951
11952  unsigned DestReg = MI->getOperand(0).getReg();
11953  MachineOperand &Base = MI->getOperand(1);
11954  MachineOperand &Scale = MI->getOperand(2);
11955  MachineOperand &Index = MI->getOperand(3);
11956  MachineOperand &Disp = MI->getOperand(4);
11957  MachineOperand &Segment = MI->getOperand(5);
11958  unsigned ArgSize = MI->getOperand(6).getImm();
11959  unsigned ArgMode = MI->getOperand(7).getImm();
11960  unsigned Align = MI->getOperand(8).getImm();
11961
11962  // Memory Reference
11963  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11964  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11965  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11966
11967  // Machine Information
11968  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11969  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11970  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11971  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11972  DebugLoc DL = MI->getDebugLoc();
11973
11974  // struct va_list {
11975  //   i32   gp_offset
11976  //   i32   fp_offset
11977  //   i64   overflow_area (address)
11978  //   i64   reg_save_area (address)
11979  // }
11980  // sizeof(va_list) = 24
11981  // alignment(va_list) = 8
11982
11983  unsigned TotalNumIntRegs = 6;
11984  unsigned TotalNumXMMRegs = 8;
11985  bool UseGPOffset = (ArgMode == 1);
11986  bool UseFPOffset = (ArgMode == 2);
11987  unsigned MaxOffset = TotalNumIntRegs * 8 +
11988                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11989
11990  /* Align ArgSize to a multiple of 8 */
11991  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11992  bool NeedsAlign = (Align > 8);
11993
11994  MachineBasicBlock *thisMBB = MBB;
11995  MachineBasicBlock *overflowMBB;
11996  MachineBasicBlock *offsetMBB;
11997  MachineBasicBlock *endMBB;
11998
11999  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
12000  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
12001  unsigned OffsetReg = 0;
12002
12003  if (!UseGPOffset && !UseFPOffset) {
12004    // If we only pull from the overflow region, we don't create a branch.
12005    // We don't need to alter control flow.
12006    OffsetDestReg = 0; // unused
12007    OverflowDestReg = DestReg;
12008
12009    offsetMBB = NULL;
12010    overflowMBB = thisMBB;
12011    endMBB = thisMBB;
12012  } else {
12013    // First emit code to check if gp_offset (or fp_offset) is below the bound.
12014    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
12015    // If not, pull from overflow_area. (branch to overflowMBB)
12016    //
12017    //       thisMBB
12018    //         |     .
12019    //         |        .
12020    //     offsetMBB   overflowMBB
12021    //         |        .
12022    //         |     .
12023    //        endMBB
12024
12025    // Registers for the PHI in endMBB
12026    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
12027    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
12028
12029    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12030    MachineFunction *MF = MBB->getParent();
12031    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12032    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12033    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12034
12035    MachineFunction::iterator MBBIter = MBB;
12036    ++MBBIter;
12037
12038    // Insert the new basic blocks
12039    MF->insert(MBBIter, offsetMBB);
12040    MF->insert(MBBIter, overflowMBB);
12041    MF->insert(MBBIter, endMBB);
12042
12043    // Transfer the remainder of MBB and its successor edges to endMBB.
12044    endMBB->splice(endMBB->begin(), thisMBB,
12045                    llvm::next(MachineBasicBlock::iterator(MI)),
12046                    thisMBB->end());
12047    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12048
12049    // Make offsetMBB and overflowMBB successors of thisMBB
12050    thisMBB->addSuccessor(offsetMBB);
12051    thisMBB->addSuccessor(overflowMBB);
12052
12053    // endMBB is a successor of both offsetMBB and overflowMBB
12054    offsetMBB->addSuccessor(endMBB);
12055    overflowMBB->addSuccessor(endMBB);
12056
12057    // Load the offset value into a register
12058    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12059    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
12060      .addOperand(Base)
12061      .addOperand(Scale)
12062      .addOperand(Index)
12063      .addDisp(Disp, UseFPOffset ? 4 : 0)
12064      .addOperand(Segment)
12065      .setMemRefs(MMOBegin, MMOEnd);
12066
12067    // Check if there is enough room left to pull this argument.
12068    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
12069      .addReg(OffsetReg)
12070      .addImm(MaxOffset + 8 - ArgSizeA8);
12071
12072    // Branch to "overflowMBB" if offset >= max
12073    // Fall through to "offsetMBB" otherwise
12074    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
12075      .addMBB(overflowMBB);
12076  }
12077
12078  // In offsetMBB, emit code to use the reg_save_area.
12079  if (offsetMBB) {
12080    assert(OffsetReg != 0);
12081
12082    // Read the reg_save_area address.
12083    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12084    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12085      .addOperand(Base)
12086      .addOperand(Scale)
12087      .addOperand(Index)
12088      .addDisp(Disp, 16)
12089      .addOperand(Segment)
12090      .setMemRefs(MMOBegin, MMOEnd);
12091
12092    // Zero-extend the offset
12093    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
12094      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
12095        .addImm(0)
12096        .addReg(OffsetReg)
12097        .addImm(X86::sub_32bit);
12098
12099    // Add the offset to the reg_save_area to get the final address.
12100    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
12101      .addReg(OffsetReg64)
12102      .addReg(RegSaveReg);
12103
12104    // Compute the offset for the next argument
12105    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12106    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
12107      .addReg(OffsetReg)
12108      .addImm(UseFPOffset ? 16 : 8);
12109
12110    // Store it back into the va_list.
12111    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
12112      .addOperand(Base)
12113      .addOperand(Scale)
12114      .addOperand(Index)
12115      .addDisp(Disp, UseFPOffset ? 4 : 0)
12116      .addOperand(Segment)
12117      .addReg(NextOffsetReg)
12118      .setMemRefs(MMOBegin, MMOEnd);
12119
12120    // Jump to endMBB
12121    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
12122      .addMBB(endMBB);
12123  }
12124
12125  //
12126  // Emit code to use overflow area
12127  //
12128
12129  // Load the overflow_area address into a register.
12130  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
12131  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
12132    .addOperand(Base)
12133    .addOperand(Scale)
12134    .addOperand(Index)
12135    .addDisp(Disp, 8)
12136    .addOperand(Segment)
12137    .setMemRefs(MMOBegin, MMOEnd);
12138
12139  // If we need to align it, do so. Otherwise, just copy the address
12140  // to OverflowDestReg.
12141  if (NeedsAlign) {
12142    // Align the overflow address
12143    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12144    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12145
12146    // aligned_addr = (addr + (align-1)) & ~(align-1)
12147    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12148      .addReg(OverflowAddrReg)
12149      .addImm(Align-1);
12150
12151    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12152      .addReg(TmpReg)
12153      .addImm(~(uint64_t)(Align-1));
12154  } else {
12155    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12156      .addReg(OverflowAddrReg);
12157  }
12158
12159  // Compute the next overflow address after this argument.
12160  // (the overflow address should be kept 8-byte aligned)
12161  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12162  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12163    .addReg(OverflowDestReg)
12164    .addImm(ArgSizeA8);
12165
12166  // Store the new overflow address.
12167  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12168    .addOperand(Base)
12169    .addOperand(Scale)
12170    .addOperand(Index)
12171    .addDisp(Disp, 8)
12172    .addOperand(Segment)
12173    .addReg(NextAddrReg)
12174    .setMemRefs(MMOBegin, MMOEnd);
12175
12176  // If we branched, emit the PHI to the front of endMBB.
12177  if (offsetMBB) {
12178    BuildMI(*endMBB, endMBB->begin(), DL,
12179            TII->get(X86::PHI), DestReg)
12180      .addReg(OffsetDestReg).addMBB(offsetMBB)
12181      .addReg(OverflowDestReg).addMBB(overflowMBB);
12182  }
12183
12184  // Erase the pseudo instruction
12185  MI->eraseFromParent();
12186
12187  return endMBB;
12188}
12189
12190MachineBasicBlock *
12191X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12192                                                 MachineInstr *MI,
12193                                                 MachineBasicBlock *MBB) const {
12194  // Emit code to save XMM registers to the stack. The ABI says that the
12195  // number of registers to save is given in %al, so it's theoretically
12196  // possible to do an indirect jump trick to avoid saving all of them,
12197  // however this code takes a simpler approach and just executes all
12198  // of the stores if %al is non-zero. It's less code, and it's probably
12199  // easier on the hardware branch predictor, and stores aren't all that
12200  // expensive anyway.
12201
12202  // Create the new basic blocks. One block contains all the XMM stores,
12203  // and one block is the final destination regardless of whether any
12204  // stores were performed.
12205  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12206  MachineFunction *F = MBB->getParent();
12207  MachineFunction::iterator MBBIter = MBB;
12208  ++MBBIter;
12209  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12210  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12211  F->insert(MBBIter, XMMSaveMBB);
12212  F->insert(MBBIter, EndMBB);
12213
12214  // Transfer the remainder of MBB and its successor edges to EndMBB.
12215  EndMBB->splice(EndMBB->begin(), MBB,
12216                 llvm::next(MachineBasicBlock::iterator(MI)),
12217                 MBB->end());
12218  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12219
12220  // The original block will now fall through to the XMM save block.
12221  MBB->addSuccessor(XMMSaveMBB);
12222  // The XMMSaveMBB will fall through to the end block.
12223  XMMSaveMBB->addSuccessor(EndMBB);
12224
12225  // Now add the instructions.
12226  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12227  DebugLoc DL = MI->getDebugLoc();
12228
12229  unsigned CountReg = MI->getOperand(0).getReg();
12230  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12231  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12232
12233  if (!Subtarget->isTargetWin64()) {
12234    // If %al is 0, branch around the XMM save block.
12235    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12236    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12237    MBB->addSuccessor(EndMBB);
12238  }
12239
12240  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12241  // In the XMM save block, save all the XMM argument registers.
12242  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12243    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12244    MachineMemOperand *MMO =
12245      F->getMachineMemOperand(
12246          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12247        MachineMemOperand::MOStore,
12248        /*Size=*/16, /*Align=*/16);
12249    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12250      .addFrameIndex(RegSaveFrameIndex)
12251      .addImm(/*Scale=*/1)
12252      .addReg(/*IndexReg=*/0)
12253      .addImm(/*Disp=*/Offset)
12254      .addReg(/*Segment=*/0)
12255      .addReg(MI->getOperand(i).getReg())
12256      .addMemOperand(MMO);
12257  }
12258
12259  MI->eraseFromParent();   // The pseudo instruction is gone now.
12260
12261  return EndMBB;
12262}
12263
12264MachineBasicBlock *
12265X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12266                                     MachineBasicBlock *BB) const {
12267  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12268  DebugLoc DL = MI->getDebugLoc();
12269
12270  // To "insert" a SELECT_CC instruction, we actually have to insert the
12271  // diamond control-flow pattern.  The incoming instruction knows the
12272  // destination vreg to set, the condition code register to branch on, the
12273  // true/false values to select between, and a branch opcode to use.
12274  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12275  MachineFunction::iterator It = BB;
12276  ++It;
12277
12278  //  thisMBB:
12279  //  ...
12280  //   TrueVal = ...
12281  //   cmpTY ccX, r1, r2
12282  //   bCC copy1MBB
12283  //   fallthrough --> copy0MBB
12284  MachineBasicBlock *thisMBB = BB;
12285  MachineFunction *F = BB->getParent();
12286  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12287  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12288  F->insert(It, copy0MBB);
12289  F->insert(It, sinkMBB);
12290
12291  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12292  // live into the sink and copy blocks.
12293  if (!MI->killsRegister(X86::EFLAGS)) {
12294    copy0MBB->addLiveIn(X86::EFLAGS);
12295    sinkMBB->addLiveIn(X86::EFLAGS);
12296  }
12297
12298  // Transfer the remainder of BB and its successor edges to sinkMBB.
12299  sinkMBB->splice(sinkMBB->begin(), BB,
12300                  llvm::next(MachineBasicBlock::iterator(MI)),
12301                  BB->end());
12302  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12303
12304  // Add the true and fallthrough blocks as its successors.
12305  BB->addSuccessor(copy0MBB);
12306  BB->addSuccessor(sinkMBB);
12307
12308  // Create the conditional branch instruction.
12309  unsigned Opc =
12310    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12311  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12312
12313  //  copy0MBB:
12314  //   %FalseValue = ...
12315  //   # fallthrough to sinkMBB
12316  copy0MBB->addSuccessor(sinkMBB);
12317
12318  //  sinkMBB:
12319  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12320  //  ...
12321  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12322          TII->get(X86::PHI), MI->getOperand(0).getReg())
12323    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12324    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12325
12326  MI->eraseFromParent();   // The pseudo instruction is gone now.
12327  return sinkMBB;
12328}
12329
12330MachineBasicBlock *
12331X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12332                                        bool Is64Bit) const {
12333  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12334  DebugLoc DL = MI->getDebugLoc();
12335  MachineFunction *MF = BB->getParent();
12336  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12337
12338  assert(EnableSegmentedStacks);
12339
12340  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12341  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12342
12343  // BB:
12344  //  ... [Till the alloca]
12345  // If stacklet is not large enough, jump to mallocMBB
12346  //
12347  // bumpMBB:
12348  //  Allocate by subtracting from RSP
12349  //  Jump to continueMBB
12350  //
12351  // mallocMBB:
12352  //  Allocate by call to runtime
12353  //
12354  // continueMBB:
12355  //  ...
12356  //  [rest of original BB]
12357  //
12358
12359  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12360  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12361  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12362
12363  MachineRegisterInfo &MRI = MF->getRegInfo();
12364  const TargetRegisterClass *AddrRegClass =
12365    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12366
12367  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12368    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12369    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12370    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12371    sizeVReg = MI->getOperand(1).getReg(),
12372    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12373
12374  MachineFunction::iterator MBBIter = BB;
12375  ++MBBIter;
12376
12377  MF->insert(MBBIter, bumpMBB);
12378  MF->insert(MBBIter, mallocMBB);
12379  MF->insert(MBBIter, continueMBB);
12380
12381  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12382                      (MachineBasicBlock::iterator(MI)), BB->end());
12383  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12384
12385  // Add code to the main basic block to check if the stack limit has been hit,
12386  // and if so, jump to mallocMBB otherwise to bumpMBB.
12387  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12388  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12389    .addReg(tmpSPVReg).addReg(sizeVReg);
12390  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12391    .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12392    .addReg(SPLimitVReg);
12393  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12394
12395  // bumpMBB simply decreases the stack pointer, since we know the current
12396  // stacklet has enough space.
12397  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12398    .addReg(SPLimitVReg);
12399  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12400    .addReg(SPLimitVReg);
12401  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12402
12403  // Calls into a routine in libgcc to allocate more space from the heap.
12404  if (Is64Bit) {
12405    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12406      .addReg(sizeVReg);
12407    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12408    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12409  } else {
12410    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12411      .addImm(12);
12412    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12413    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12414      .addExternalSymbol("__morestack_allocate_stack_space");
12415  }
12416
12417  if (!Is64Bit)
12418    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12419      .addImm(16);
12420
12421  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12422    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12423  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12424
12425  // Set up the CFG correctly.
12426  BB->addSuccessor(bumpMBB);
12427  BB->addSuccessor(mallocMBB);
12428  mallocMBB->addSuccessor(continueMBB);
12429  bumpMBB->addSuccessor(continueMBB);
12430
12431  // Take care of the PHI nodes.
12432  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12433          MI->getOperand(0).getReg())
12434    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12435    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12436
12437  // Delete the original pseudo instruction.
12438  MI->eraseFromParent();
12439
12440  // And we're done.
12441  return continueMBB;
12442}
12443
12444MachineBasicBlock *
12445X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12446                                          MachineBasicBlock *BB) const {
12447  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12448  DebugLoc DL = MI->getDebugLoc();
12449
12450  assert(!Subtarget->isTargetEnvMacho());
12451
12452  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12453  // non-trivial part is impdef of ESP.
12454
12455  if (Subtarget->isTargetWin64()) {
12456    if (Subtarget->isTargetCygMing()) {
12457      // ___chkstk(Mingw64):
12458      // Clobbers R10, R11, RAX and EFLAGS.
12459      // Updates RSP.
12460      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12461        .addExternalSymbol("___chkstk")
12462        .addReg(X86::RAX, RegState::Implicit)
12463        .addReg(X86::RSP, RegState::Implicit)
12464        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12465        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12466        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12467    } else {
12468      // __chkstk(MSVCRT): does not update stack pointer.
12469      // Clobbers R10, R11 and EFLAGS.
12470      // FIXME: RAX(allocated size) might be reused and not killed.
12471      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12472        .addExternalSymbol("__chkstk")
12473        .addReg(X86::RAX, RegState::Implicit)
12474        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12475      // RAX has the offset to subtracted from RSP.
12476      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12477        .addReg(X86::RSP)
12478        .addReg(X86::RAX);
12479    }
12480  } else {
12481    const char *StackProbeSymbol =
12482      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12483
12484    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12485      .addExternalSymbol(StackProbeSymbol)
12486      .addReg(X86::EAX, RegState::Implicit)
12487      .addReg(X86::ESP, RegState::Implicit)
12488      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12489      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12490      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12491  }
12492
12493  MI->eraseFromParent();   // The pseudo instruction is gone now.
12494  return BB;
12495}
12496
12497MachineBasicBlock *
12498X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12499                                      MachineBasicBlock *BB) const {
12500  // This is pretty easy.  We're taking the value that we received from
12501  // our load from the relocation, sticking it in either RDI (x86-64)
12502  // or EAX and doing an indirect call.  The return value will then
12503  // be in the normal return register.
12504  const X86InstrInfo *TII
12505    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12506  DebugLoc DL = MI->getDebugLoc();
12507  MachineFunction *F = BB->getParent();
12508
12509  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12510  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12511
12512  if (Subtarget->is64Bit()) {
12513    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12514                                      TII->get(X86::MOV64rm), X86::RDI)
12515    .addReg(X86::RIP)
12516    .addImm(0).addReg(0)
12517    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12518                      MI->getOperand(3).getTargetFlags())
12519    .addReg(0);
12520    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12521    addDirectMem(MIB, X86::RDI);
12522  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12523    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12524                                      TII->get(X86::MOV32rm), X86::EAX)
12525    .addReg(0)
12526    .addImm(0).addReg(0)
12527    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12528                      MI->getOperand(3).getTargetFlags())
12529    .addReg(0);
12530    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12531    addDirectMem(MIB, X86::EAX);
12532  } else {
12533    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12534                                      TII->get(X86::MOV32rm), X86::EAX)
12535    .addReg(TII->getGlobalBaseReg(F))
12536    .addImm(0).addReg(0)
12537    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12538                      MI->getOperand(3).getTargetFlags())
12539    .addReg(0);
12540    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12541    addDirectMem(MIB, X86::EAX);
12542  }
12543
12544  MI->eraseFromParent(); // The pseudo instruction is gone now.
12545  return BB;
12546}
12547
12548MachineBasicBlock *
12549X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12550                                               MachineBasicBlock *BB) const {
12551  switch (MI->getOpcode()) {
12552  default: assert(0 && "Unexpected instr type to insert");
12553  case X86::TAILJMPd64:
12554  case X86::TAILJMPr64:
12555  case X86::TAILJMPm64:
12556    assert(0 && "TAILJMP64 would not be touched here.");
12557  case X86::TCRETURNdi64:
12558  case X86::TCRETURNri64:
12559  case X86::TCRETURNmi64:
12560    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12561    // On AMD64, additional defs should be added before register allocation.
12562    if (!Subtarget->isTargetWin64()) {
12563      MI->addRegisterDefined(X86::RSI);
12564      MI->addRegisterDefined(X86::RDI);
12565      MI->addRegisterDefined(X86::XMM6);
12566      MI->addRegisterDefined(X86::XMM7);
12567      MI->addRegisterDefined(X86::XMM8);
12568      MI->addRegisterDefined(X86::XMM9);
12569      MI->addRegisterDefined(X86::XMM10);
12570      MI->addRegisterDefined(X86::XMM11);
12571      MI->addRegisterDefined(X86::XMM12);
12572      MI->addRegisterDefined(X86::XMM13);
12573      MI->addRegisterDefined(X86::XMM14);
12574      MI->addRegisterDefined(X86::XMM15);
12575    }
12576    return BB;
12577  case X86::WIN_ALLOCA:
12578    return EmitLoweredWinAlloca(MI, BB);
12579  case X86::SEG_ALLOCA_32:
12580    return EmitLoweredSegAlloca(MI, BB, false);
12581  case X86::SEG_ALLOCA_64:
12582    return EmitLoweredSegAlloca(MI, BB, true);
12583  case X86::TLSCall_32:
12584  case X86::TLSCall_64:
12585    return EmitLoweredTLSCall(MI, BB);
12586  case X86::CMOV_GR8:
12587  case X86::CMOV_FR32:
12588  case X86::CMOV_FR64:
12589  case X86::CMOV_V4F32:
12590  case X86::CMOV_V2F64:
12591  case X86::CMOV_V2I64:
12592  case X86::CMOV_V8F32:
12593  case X86::CMOV_V4F64:
12594  case X86::CMOV_V4I64:
12595  case X86::CMOV_GR16:
12596  case X86::CMOV_GR32:
12597  case X86::CMOV_RFP32:
12598  case X86::CMOV_RFP64:
12599  case X86::CMOV_RFP80:
12600    return EmitLoweredSelect(MI, BB);
12601
12602  case X86::FP32_TO_INT16_IN_MEM:
12603  case X86::FP32_TO_INT32_IN_MEM:
12604  case X86::FP32_TO_INT64_IN_MEM:
12605  case X86::FP64_TO_INT16_IN_MEM:
12606  case X86::FP64_TO_INT32_IN_MEM:
12607  case X86::FP64_TO_INT64_IN_MEM:
12608  case X86::FP80_TO_INT16_IN_MEM:
12609  case X86::FP80_TO_INT32_IN_MEM:
12610  case X86::FP80_TO_INT64_IN_MEM: {
12611    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12612    DebugLoc DL = MI->getDebugLoc();
12613
12614    // Change the floating point control register to use "round towards zero"
12615    // mode when truncating to an integer value.
12616    MachineFunction *F = BB->getParent();
12617    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12618    addFrameReference(BuildMI(*BB, MI, DL,
12619                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12620
12621    // Load the old value of the high byte of the control word...
12622    unsigned OldCW =
12623      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12624    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12625                      CWFrameIdx);
12626
12627    // Set the high part to be round to zero...
12628    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12629      .addImm(0xC7F);
12630
12631    // Reload the modified control word now...
12632    addFrameReference(BuildMI(*BB, MI, DL,
12633                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12634
12635    // Restore the memory image of control word to original value
12636    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12637      .addReg(OldCW);
12638
12639    // Get the X86 opcode to use.
12640    unsigned Opc;
12641    switch (MI->getOpcode()) {
12642    default: llvm_unreachable("illegal opcode!");
12643    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12644    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12645    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12646    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12647    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12648    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12649    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12650    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12651    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12652    }
12653
12654    X86AddressMode AM;
12655    MachineOperand &Op = MI->getOperand(0);
12656    if (Op.isReg()) {
12657      AM.BaseType = X86AddressMode::RegBase;
12658      AM.Base.Reg = Op.getReg();
12659    } else {
12660      AM.BaseType = X86AddressMode::FrameIndexBase;
12661      AM.Base.FrameIndex = Op.getIndex();
12662    }
12663    Op = MI->getOperand(1);
12664    if (Op.isImm())
12665      AM.Scale = Op.getImm();
12666    Op = MI->getOperand(2);
12667    if (Op.isImm())
12668      AM.IndexReg = Op.getImm();
12669    Op = MI->getOperand(3);
12670    if (Op.isGlobal()) {
12671      AM.GV = Op.getGlobal();
12672    } else {
12673      AM.Disp = Op.getImm();
12674    }
12675    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12676                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12677
12678    // Reload the original control word now.
12679    addFrameReference(BuildMI(*BB, MI, DL,
12680                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12681
12682    MI->eraseFromParent();   // The pseudo instruction is gone now.
12683    return BB;
12684  }
12685    // String/text processing lowering.
12686  case X86::PCMPISTRM128REG:
12687  case X86::VPCMPISTRM128REG:
12688    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12689  case X86::PCMPISTRM128MEM:
12690  case X86::VPCMPISTRM128MEM:
12691    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12692  case X86::PCMPESTRM128REG:
12693  case X86::VPCMPESTRM128REG:
12694    return EmitPCMP(MI, BB, 5, false /* in mem */);
12695  case X86::PCMPESTRM128MEM:
12696  case X86::VPCMPESTRM128MEM:
12697    return EmitPCMP(MI, BB, 5, true /* in mem */);
12698
12699    // Thread synchronization.
12700  case X86::MONITOR:
12701    return EmitMonitor(MI, BB);
12702  case X86::MWAIT:
12703    return EmitMwait(MI, BB);
12704
12705    // Atomic Lowering.
12706  case X86::ATOMAND32:
12707    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12708                                               X86::AND32ri, X86::MOV32rm,
12709                                               X86::LCMPXCHG32,
12710                                               X86::NOT32r, X86::EAX,
12711                                               X86::GR32RegisterClass);
12712  case X86::ATOMOR32:
12713    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12714                                               X86::OR32ri, X86::MOV32rm,
12715                                               X86::LCMPXCHG32,
12716                                               X86::NOT32r, X86::EAX,
12717                                               X86::GR32RegisterClass);
12718  case X86::ATOMXOR32:
12719    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12720                                               X86::XOR32ri, X86::MOV32rm,
12721                                               X86::LCMPXCHG32,
12722                                               X86::NOT32r, X86::EAX,
12723                                               X86::GR32RegisterClass);
12724  case X86::ATOMNAND32:
12725    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12726                                               X86::AND32ri, X86::MOV32rm,
12727                                               X86::LCMPXCHG32,
12728                                               X86::NOT32r, X86::EAX,
12729                                               X86::GR32RegisterClass, true);
12730  case X86::ATOMMIN32:
12731    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12732  case X86::ATOMMAX32:
12733    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12734  case X86::ATOMUMIN32:
12735    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12736  case X86::ATOMUMAX32:
12737    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12738
12739  case X86::ATOMAND16:
12740    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12741                                               X86::AND16ri, X86::MOV16rm,
12742                                               X86::LCMPXCHG16,
12743                                               X86::NOT16r, X86::AX,
12744                                               X86::GR16RegisterClass);
12745  case X86::ATOMOR16:
12746    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12747                                               X86::OR16ri, X86::MOV16rm,
12748                                               X86::LCMPXCHG16,
12749                                               X86::NOT16r, X86::AX,
12750                                               X86::GR16RegisterClass);
12751  case X86::ATOMXOR16:
12752    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12753                                               X86::XOR16ri, X86::MOV16rm,
12754                                               X86::LCMPXCHG16,
12755                                               X86::NOT16r, X86::AX,
12756                                               X86::GR16RegisterClass);
12757  case X86::ATOMNAND16:
12758    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12759                                               X86::AND16ri, X86::MOV16rm,
12760                                               X86::LCMPXCHG16,
12761                                               X86::NOT16r, X86::AX,
12762                                               X86::GR16RegisterClass, true);
12763  case X86::ATOMMIN16:
12764    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12765  case X86::ATOMMAX16:
12766    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12767  case X86::ATOMUMIN16:
12768    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12769  case X86::ATOMUMAX16:
12770    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12771
12772  case X86::ATOMAND8:
12773    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12774                                               X86::AND8ri, X86::MOV8rm,
12775                                               X86::LCMPXCHG8,
12776                                               X86::NOT8r, X86::AL,
12777                                               X86::GR8RegisterClass);
12778  case X86::ATOMOR8:
12779    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12780                                               X86::OR8ri, X86::MOV8rm,
12781                                               X86::LCMPXCHG8,
12782                                               X86::NOT8r, X86::AL,
12783                                               X86::GR8RegisterClass);
12784  case X86::ATOMXOR8:
12785    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12786                                               X86::XOR8ri, X86::MOV8rm,
12787                                               X86::LCMPXCHG8,
12788                                               X86::NOT8r, X86::AL,
12789                                               X86::GR8RegisterClass);
12790  case X86::ATOMNAND8:
12791    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12792                                               X86::AND8ri, X86::MOV8rm,
12793                                               X86::LCMPXCHG8,
12794                                               X86::NOT8r, X86::AL,
12795                                               X86::GR8RegisterClass, true);
12796  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12797  // This group is for 64-bit host.
12798  case X86::ATOMAND64:
12799    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12800                                               X86::AND64ri32, X86::MOV64rm,
12801                                               X86::LCMPXCHG64,
12802                                               X86::NOT64r, X86::RAX,
12803                                               X86::GR64RegisterClass);
12804  case X86::ATOMOR64:
12805    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12806                                               X86::OR64ri32, X86::MOV64rm,
12807                                               X86::LCMPXCHG64,
12808                                               X86::NOT64r, X86::RAX,
12809                                               X86::GR64RegisterClass);
12810  case X86::ATOMXOR64:
12811    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12812                                               X86::XOR64ri32, X86::MOV64rm,
12813                                               X86::LCMPXCHG64,
12814                                               X86::NOT64r, X86::RAX,
12815                                               X86::GR64RegisterClass);
12816  case X86::ATOMNAND64:
12817    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12818                                               X86::AND64ri32, X86::MOV64rm,
12819                                               X86::LCMPXCHG64,
12820                                               X86::NOT64r, X86::RAX,
12821                                               X86::GR64RegisterClass, true);
12822  case X86::ATOMMIN64:
12823    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12824  case X86::ATOMMAX64:
12825    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12826  case X86::ATOMUMIN64:
12827    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12828  case X86::ATOMUMAX64:
12829    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12830
12831  // This group does 64-bit operations on a 32-bit host.
12832  case X86::ATOMAND6432:
12833    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12834                                               X86::AND32rr, X86::AND32rr,
12835                                               X86::AND32ri, X86::AND32ri,
12836                                               false);
12837  case X86::ATOMOR6432:
12838    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12839                                               X86::OR32rr, X86::OR32rr,
12840                                               X86::OR32ri, X86::OR32ri,
12841                                               false);
12842  case X86::ATOMXOR6432:
12843    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12844                                               X86::XOR32rr, X86::XOR32rr,
12845                                               X86::XOR32ri, X86::XOR32ri,
12846                                               false);
12847  case X86::ATOMNAND6432:
12848    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12849                                               X86::AND32rr, X86::AND32rr,
12850                                               X86::AND32ri, X86::AND32ri,
12851                                               true);
12852  case X86::ATOMADD6432:
12853    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12854                                               X86::ADD32rr, X86::ADC32rr,
12855                                               X86::ADD32ri, X86::ADC32ri,
12856                                               false);
12857  case X86::ATOMSUB6432:
12858    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12859                                               X86::SUB32rr, X86::SBB32rr,
12860                                               X86::SUB32ri, X86::SBB32ri,
12861                                               false);
12862  case X86::ATOMSWAP6432:
12863    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12864                                               X86::MOV32rr, X86::MOV32rr,
12865                                               X86::MOV32ri, X86::MOV32ri,
12866                                               false);
12867  case X86::VASTART_SAVE_XMM_REGS:
12868    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12869
12870  case X86::VAARG_64:
12871    return EmitVAARG64WithCustomInserter(MI, BB);
12872  }
12873}
12874
12875//===----------------------------------------------------------------------===//
12876//                           X86 Optimization Hooks
12877//===----------------------------------------------------------------------===//
12878
12879void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12880                                                       const APInt &Mask,
12881                                                       APInt &KnownZero,
12882                                                       APInt &KnownOne,
12883                                                       const SelectionDAG &DAG,
12884                                                       unsigned Depth) const {
12885  unsigned Opc = Op.getOpcode();
12886  assert((Opc >= ISD::BUILTIN_OP_END ||
12887          Opc == ISD::INTRINSIC_WO_CHAIN ||
12888          Opc == ISD::INTRINSIC_W_CHAIN ||
12889          Opc == ISD::INTRINSIC_VOID) &&
12890         "Should use MaskedValueIsZero if you don't know whether Op"
12891         " is a target node!");
12892
12893  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12894  switch (Opc) {
12895  default: break;
12896  case X86ISD::ADD:
12897  case X86ISD::SUB:
12898  case X86ISD::ADC:
12899  case X86ISD::SBB:
12900  case X86ISD::SMUL:
12901  case X86ISD::UMUL:
12902  case X86ISD::INC:
12903  case X86ISD::DEC:
12904  case X86ISD::OR:
12905  case X86ISD::XOR:
12906  case X86ISD::AND:
12907    // These nodes' second result is a boolean.
12908    if (Op.getResNo() == 0)
12909      break;
12910    // Fallthrough
12911  case X86ISD::SETCC:
12912    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12913                                       Mask.getBitWidth() - 1);
12914    break;
12915  case ISD::INTRINSIC_WO_CHAIN: {
12916    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12917    unsigned NumLoBits = 0;
12918    switch (IntId) {
12919    default: break;
12920    case Intrinsic::x86_sse_movmsk_ps:
12921    case Intrinsic::x86_avx_movmsk_ps_256:
12922    case Intrinsic::x86_sse2_movmsk_pd:
12923    case Intrinsic::x86_avx_movmsk_pd_256:
12924    case Intrinsic::x86_mmx_pmovmskb:
12925    case Intrinsic::x86_sse2_pmovmskb_128: {
12926      // High bits of movmskp{s|d}, pmovmskb are known zero.
12927      switch (IntId) {
12928        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12929        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12930        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12931        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12932        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12933        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12934      }
12935      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12936                                        Mask.getBitWidth() - NumLoBits);
12937      break;
12938    }
12939    }
12940    break;
12941  }
12942  }
12943}
12944
12945unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12946                                                         unsigned Depth) const {
12947  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12948  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12949    return Op.getValueType().getScalarType().getSizeInBits();
12950
12951  // Fallback case.
12952  return 1;
12953}
12954
12955/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12956/// node is a GlobalAddress + offset.
12957bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12958                                       const GlobalValue* &GA,
12959                                       int64_t &Offset) const {
12960  if (N->getOpcode() == X86ISD::Wrapper) {
12961    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12962      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12963      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12964      return true;
12965    }
12966  }
12967  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12968}
12969
12970/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12971/// same as extracting the high 128-bit part of 256-bit vector and then
12972/// inserting the result into the low part of a new 256-bit vector
12973static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12974  EVT VT = SVOp->getValueType(0);
12975  int NumElems = VT.getVectorNumElements();
12976
12977  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12978  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12979    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12980        SVOp->getMaskElt(j) >= 0)
12981      return false;
12982
12983  return true;
12984}
12985
12986/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12987/// same as extracting the low 128-bit part of 256-bit vector and then
12988/// inserting the result into the high part of a new 256-bit vector
12989static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12990  EVT VT = SVOp->getValueType(0);
12991  int NumElems = VT.getVectorNumElements();
12992
12993  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12994  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12995    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12996        SVOp->getMaskElt(j) >= 0)
12997      return false;
12998
12999  return true;
13000}
13001
13002/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
13003static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
13004                                        TargetLowering::DAGCombinerInfo &DCI) {
13005  DebugLoc dl = N->getDebugLoc();
13006  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
13007  SDValue V1 = SVOp->getOperand(0);
13008  SDValue V2 = SVOp->getOperand(1);
13009  EVT VT = SVOp->getValueType(0);
13010  int NumElems = VT.getVectorNumElements();
13011
13012  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
13013      V2.getOpcode() == ISD::CONCAT_VECTORS) {
13014    //
13015    //                   0,0,0,...
13016    //                      |
13017    //    V      UNDEF    BUILD_VECTOR    UNDEF
13018    //     \      /           \           /
13019    //  CONCAT_VECTOR         CONCAT_VECTOR
13020    //         \                  /
13021    //          \                /
13022    //          RESULT: V + zero extended
13023    //
13024    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
13025        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
13026        V1.getOperand(1).getOpcode() != ISD::UNDEF)
13027      return SDValue();
13028
13029    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
13030      return SDValue();
13031
13032    // To match the shuffle mask, the first half of the mask should
13033    // be exactly the first vector, and all the rest a splat with the
13034    // first element of the second one.
13035    for (int i = 0; i < NumElems/2; ++i)
13036      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
13037          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
13038        return SDValue();
13039
13040    // Emit a zeroed vector and insert the desired subvector on its
13041    // first half.
13042    SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
13043    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
13044                         DAG.getConstant(0, MVT::i32), DAG, dl);
13045    return DCI.CombineTo(N, InsV);
13046  }
13047
13048  //===--------------------------------------------------------------------===//
13049  // Combine some shuffles into subvector extracts and inserts:
13050  //
13051
13052  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13053  if (isShuffleHigh128VectorInsertLow(SVOp)) {
13054    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
13055                                    DAG, dl);
13056    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
13057                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
13058    return DCI.CombineTo(N, InsV);
13059  }
13060
13061  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13062  if (isShuffleLow128VectorInsertHigh(SVOp)) {
13063    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
13064    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
13065                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
13066    return DCI.CombineTo(N, InsV);
13067  }
13068
13069  return SDValue();
13070}
13071
13072/// PerformShuffleCombine - Performs several different shuffle combines.
13073static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
13074                                     TargetLowering::DAGCombinerInfo &DCI,
13075                                     const X86Subtarget *Subtarget) {
13076  DebugLoc dl = N->getDebugLoc();
13077  EVT VT = N->getValueType(0);
13078
13079  // Don't create instructions with illegal types after legalize types has run.
13080  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13081  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13082    return SDValue();
13083
13084  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13085  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
13086      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13087    return PerformShuffleCombine256(N, DAG, DCI);
13088
13089  // Only handle 128 wide vector from here on.
13090  if (VT.getSizeInBits() != 128)
13091    return SDValue();
13092
13093  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13094  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13095  // consecutive, non-overlapping, and in the right order.
13096  SmallVector<SDValue, 16> Elts;
13097  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13098    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13099
13100  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13101}
13102
13103/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13104/// generation and convert it from being a bunch of shuffles and extracts
13105/// to a simple store and scalar loads to extract the elements.
13106static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13107                                                const TargetLowering &TLI) {
13108  SDValue InputVector = N->getOperand(0);
13109
13110  // Only operate on vectors of 4 elements, where the alternative shuffling
13111  // gets to be more expensive.
13112  if (InputVector.getValueType() != MVT::v4i32)
13113    return SDValue();
13114
13115  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13116  // single use which is a sign-extend or zero-extend, and all elements are
13117  // used.
13118  SmallVector<SDNode *, 4> Uses;
13119  unsigned ExtractedElements = 0;
13120  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13121       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13122    if (UI.getUse().getResNo() != InputVector.getResNo())
13123      return SDValue();
13124
13125    SDNode *Extract = *UI;
13126    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13127      return SDValue();
13128
13129    if (Extract->getValueType(0) != MVT::i32)
13130      return SDValue();
13131    if (!Extract->hasOneUse())
13132      return SDValue();
13133    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13134        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13135      return SDValue();
13136    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13137      return SDValue();
13138
13139    // Record which element was extracted.
13140    ExtractedElements |=
13141      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13142
13143    Uses.push_back(Extract);
13144  }
13145
13146  // If not all the elements were used, this may not be worthwhile.
13147  if (ExtractedElements != 15)
13148    return SDValue();
13149
13150  // Ok, we've now decided to do the transformation.
13151  DebugLoc dl = InputVector.getDebugLoc();
13152
13153  // Store the value to a temporary stack slot.
13154  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13155  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13156                            MachinePointerInfo(), false, false, 0);
13157
13158  // Replace each use (extract) with a load of the appropriate element.
13159  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13160       UE = Uses.end(); UI != UE; ++UI) {
13161    SDNode *Extract = *UI;
13162
13163    // cOMpute the element's address.
13164    SDValue Idx = Extract->getOperand(1);
13165    unsigned EltSize =
13166        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13167    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13168    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13169
13170    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13171                                     StackPtr, OffsetVal);
13172
13173    // Load the scalar.
13174    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13175                                     ScalarAddr, MachinePointerInfo(),
13176                                     false, false, false, 0);
13177
13178    // Replace the exact with the load.
13179    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13180  }
13181
13182  // The replacement was made in place; don't return anything.
13183  return SDValue();
13184}
13185
13186/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13187/// nodes.
13188static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13189                                    const X86Subtarget *Subtarget) {
13190  DebugLoc DL = N->getDebugLoc();
13191  SDValue Cond = N->getOperand(0);
13192  // Get the LHS/RHS of the select.
13193  SDValue LHS = N->getOperand(1);
13194  SDValue RHS = N->getOperand(2);
13195  EVT VT = LHS.getValueType();
13196
13197  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13198  // instructions match the semantics of the common C idiom x<y?x:y but not
13199  // x<=y?x:y, because of how they handle negative zero (which can be
13200  // ignored in unsafe-math mode).
13201  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13202      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13203      (Subtarget->hasXMMInt() ||
13204       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13205    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13206
13207    unsigned Opcode = 0;
13208    // Check for x CC y ? x : y.
13209    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13210        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13211      switch (CC) {
13212      default: break;
13213      case ISD::SETULT:
13214        // Converting this to a min would handle NaNs incorrectly, and swapping
13215        // the operands would cause it to handle comparisons between positive
13216        // and negative zero incorrectly.
13217        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13218          if (!UnsafeFPMath &&
13219              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13220            break;
13221          std::swap(LHS, RHS);
13222        }
13223        Opcode = X86ISD::FMIN;
13224        break;
13225      case ISD::SETOLE:
13226        // Converting this to a min would handle comparisons between positive
13227        // and negative zero incorrectly.
13228        if (!UnsafeFPMath &&
13229            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13230          break;
13231        Opcode = X86ISD::FMIN;
13232        break;
13233      case ISD::SETULE:
13234        // Converting this to a min would handle both negative zeros and NaNs
13235        // incorrectly, but we can swap the operands to fix both.
13236        std::swap(LHS, RHS);
13237      case ISD::SETOLT:
13238      case ISD::SETLT:
13239      case ISD::SETLE:
13240        Opcode = X86ISD::FMIN;
13241        break;
13242
13243      case ISD::SETOGE:
13244        // Converting this to a max would handle comparisons between positive
13245        // and negative zero incorrectly.
13246        if (!UnsafeFPMath &&
13247            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13248          break;
13249        Opcode = X86ISD::FMAX;
13250        break;
13251      case ISD::SETUGT:
13252        // Converting this to a max would handle NaNs incorrectly, and swapping
13253        // the operands would cause it to handle comparisons between positive
13254        // and negative zero incorrectly.
13255        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13256          if (!UnsafeFPMath &&
13257              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13258            break;
13259          std::swap(LHS, RHS);
13260        }
13261        Opcode = X86ISD::FMAX;
13262        break;
13263      case ISD::SETUGE:
13264        // Converting this to a max would handle both negative zeros and NaNs
13265        // incorrectly, but we can swap the operands to fix both.
13266        std::swap(LHS, RHS);
13267      case ISD::SETOGT:
13268      case ISD::SETGT:
13269      case ISD::SETGE:
13270        Opcode = X86ISD::FMAX;
13271        break;
13272      }
13273    // Check for x CC y ? y : x -- a min/max with reversed arms.
13274    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13275               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13276      switch (CC) {
13277      default: break;
13278      case ISD::SETOGE:
13279        // Converting this to a min would handle comparisons between positive
13280        // and negative zero incorrectly, and swapping the operands would
13281        // cause it to handle NaNs incorrectly.
13282        if (!UnsafeFPMath &&
13283            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13284          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13285            break;
13286          std::swap(LHS, RHS);
13287        }
13288        Opcode = X86ISD::FMIN;
13289        break;
13290      case ISD::SETUGT:
13291        // Converting this to a min would handle NaNs incorrectly.
13292        if (!UnsafeFPMath &&
13293            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13294          break;
13295        Opcode = X86ISD::FMIN;
13296        break;
13297      case ISD::SETUGE:
13298        // Converting this to a min would handle both negative zeros and NaNs
13299        // incorrectly, but we can swap the operands to fix both.
13300        std::swap(LHS, RHS);
13301      case ISD::SETOGT:
13302      case ISD::SETGT:
13303      case ISD::SETGE:
13304        Opcode = X86ISD::FMIN;
13305        break;
13306
13307      case ISD::SETULT:
13308        // Converting this to a max would handle NaNs incorrectly.
13309        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13310          break;
13311        Opcode = X86ISD::FMAX;
13312        break;
13313      case ISD::SETOLE:
13314        // Converting this to a max would handle comparisons between positive
13315        // and negative zero incorrectly, and swapping the operands would
13316        // cause it to handle NaNs incorrectly.
13317        if (!UnsafeFPMath &&
13318            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13319          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13320            break;
13321          std::swap(LHS, RHS);
13322        }
13323        Opcode = X86ISD::FMAX;
13324        break;
13325      case ISD::SETULE:
13326        // Converting this to a max would handle both negative zeros and NaNs
13327        // incorrectly, but we can swap the operands to fix both.
13328        std::swap(LHS, RHS);
13329      case ISD::SETOLT:
13330      case ISD::SETLT:
13331      case ISD::SETLE:
13332        Opcode = X86ISD::FMAX;
13333        break;
13334      }
13335    }
13336
13337    if (Opcode)
13338      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13339  }
13340
13341  // If this is a select between two integer constants, try to do some
13342  // optimizations.
13343  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13344    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13345      // Don't do this for crazy integer types.
13346      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13347        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13348        // so that TrueC (the true value) is larger than FalseC.
13349        bool NeedsCondInvert = false;
13350
13351        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13352            // Efficiently invertible.
13353            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13354             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13355              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13356          NeedsCondInvert = true;
13357          std::swap(TrueC, FalseC);
13358        }
13359
13360        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13361        if (FalseC->getAPIntValue() == 0 &&
13362            TrueC->getAPIntValue().isPowerOf2()) {
13363          if (NeedsCondInvert) // Invert the condition if needed.
13364            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13365                               DAG.getConstant(1, Cond.getValueType()));
13366
13367          // Zero extend the condition if needed.
13368          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13369
13370          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13371          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13372                             DAG.getConstant(ShAmt, MVT::i8));
13373        }
13374
13375        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13376        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13377          if (NeedsCondInvert) // Invert the condition if needed.
13378            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13379                               DAG.getConstant(1, Cond.getValueType()));
13380
13381          // Zero extend the condition if needed.
13382          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13383                             FalseC->getValueType(0), Cond);
13384          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13385                             SDValue(FalseC, 0));
13386        }
13387
13388        // Optimize cases that will turn into an LEA instruction.  This requires
13389        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13390        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13391          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13392          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13393
13394          bool isFastMultiplier = false;
13395          if (Diff < 10) {
13396            switch ((unsigned char)Diff) {
13397              default: break;
13398              case 1:  // result = add base, cond
13399              case 2:  // result = lea base(    , cond*2)
13400              case 3:  // result = lea base(cond, cond*2)
13401              case 4:  // result = lea base(    , cond*4)
13402              case 5:  // result = lea base(cond, cond*4)
13403              case 8:  // result = lea base(    , cond*8)
13404              case 9:  // result = lea base(cond, cond*8)
13405                isFastMultiplier = true;
13406                break;
13407            }
13408          }
13409
13410          if (isFastMultiplier) {
13411            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13412            if (NeedsCondInvert) // Invert the condition if needed.
13413              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13414                                 DAG.getConstant(1, Cond.getValueType()));
13415
13416            // Zero extend the condition if needed.
13417            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13418                               Cond);
13419            // Scale the condition by the difference.
13420            if (Diff != 1)
13421              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13422                                 DAG.getConstant(Diff, Cond.getValueType()));
13423
13424            // Add the base if non-zero.
13425            if (FalseC->getAPIntValue() != 0)
13426              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13427                                 SDValue(FalseC, 0));
13428            return Cond;
13429          }
13430        }
13431      }
13432  }
13433
13434  return SDValue();
13435}
13436
13437/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13438static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13439                                  TargetLowering::DAGCombinerInfo &DCI) {
13440  DebugLoc DL = N->getDebugLoc();
13441
13442  // If the flag operand isn't dead, don't touch this CMOV.
13443  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13444    return SDValue();
13445
13446  SDValue FalseOp = N->getOperand(0);
13447  SDValue TrueOp = N->getOperand(1);
13448  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13449  SDValue Cond = N->getOperand(3);
13450  if (CC == X86::COND_E || CC == X86::COND_NE) {
13451    switch (Cond.getOpcode()) {
13452    default: break;
13453    case X86ISD::BSR:
13454    case X86ISD::BSF:
13455      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13456      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13457        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13458    }
13459  }
13460
13461  // If this is a select between two integer constants, try to do some
13462  // optimizations.  Note that the operands are ordered the opposite of SELECT
13463  // operands.
13464  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13465    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13466      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13467      // larger than FalseC (the false value).
13468      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13469        CC = X86::GetOppositeBranchCondition(CC);
13470        std::swap(TrueC, FalseC);
13471      }
13472
13473      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13474      // This is efficient for any integer data type (including i8/i16) and
13475      // shift amount.
13476      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13477        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13478                           DAG.getConstant(CC, MVT::i8), Cond);
13479
13480        // Zero extend the condition if needed.
13481        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13482
13483        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13484        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13485                           DAG.getConstant(ShAmt, MVT::i8));
13486        if (N->getNumValues() == 2)  // Dead flag value?
13487          return DCI.CombineTo(N, Cond, SDValue());
13488        return Cond;
13489      }
13490
13491      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13492      // for any integer data type, including i8/i16.
13493      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13494        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13495                           DAG.getConstant(CC, MVT::i8), Cond);
13496
13497        // Zero extend the condition if needed.
13498        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13499                           FalseC->getValueType(0), Cond);
13500        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13501                           SDValue(FalseC, 0));
13502
13503        if (N->getNumValues() == 2)  // Dead flag value?
13504          return DCI.CombineTo(N, Cond, SDValue());
13505        return Cond;
13506      }
13507
13508      // Optimize cases that will turn into an LEA instruction.  This requires
13509      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13510      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13511        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13512        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13513
13514        bool isFastMultiplier = false;
13515        if (Diff < 10) {
13516          switch ((unsigned char)Diff) {
13517          default: break;
13518          case 1:  // result = add base, cond
13519          case 2:  // result = lea base(    , cond*2)
13520          case 3:  // result = lea base(cond, cond*2)
13521          case 4:  // result = lea base(    , cond*4)
13522          case 5:  // result = lea base(cond, cond*4)
13523          case 8:  // result = lea base(    , cond*8)
13524          case 9:  // result = lea base(cond, cond*8)
13525            isFastMultiplier = true;
13526            break;
13527          }
13528        }
13529
13530        if (isFastMultiplier) {
13531          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13532          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13533                             DAG.getConstant(CC, MVT::i8), Cond);
13534          // Zero extend the condition if needed.
13535          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13536                             Cond);
13537          // Scale the condition by the difference.
13538          if (Diff != 1)
13539            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13540                               DAG.getConstant(Diff, Cond.getValueType()));
13541
13542          // Add the base if non-zero.
13543          if (FalseC->getAPIntValue() != 0)
13544            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13545                               SDValue(FalseC, 0));
13546          if (N->getNumValues() == 2)  // Dead flag value?
13547            return DCI.CombineTo(N, Cond, SDValue());
13548          return Cond;
13549        }
13550      }
13551    }
13552  }
13553  return SDValue();
13554}
13555
13556
13557/// PerformMulCombine - Optimize a single multiply with constant into two
13558/// in order to implement it with two cheaper instructions, e.g.
13559/// LEA + SHL, LEA + LEA.
13560static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13561                                 TargetLowering::DAGCombinerInfo &DCI) {
13562  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13563    return SDValue();
13564
13565  EVT VT = N->getValueType(0);
13566  if (VT != MVT::i64)
13567    return SDValue();
13568
13569  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13570  if (!C)
13571    return SDValue();
13572  uint64_t MulAmt = C->getZExtValue();
13573  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13574    return SDValue();
13575
13576  uint64_t MulAmt1 = 0;
13577  uint64_t MulAmt2 = 0;
13578  if ((MulAmt % 9) == 0) {
13579    MulAmt1 = 9;
13580    MulAmt2 = MulAmt / 9;
13581  } else if ((MulAmt % 5) == 0) {
13582    MulAmt1 = 5;
13583    MulAmt2 = MulAmt / 5;
13584  } else if ((MulAmt % 3) == 0) {
13585    MulAmt1 = 3;
13586    MulAmt2 = MulAmt / 3;
13587  }
13588  if (MulAmt2 &&
13589      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13590    DebugLoc DL = N->getDebugLoc();
13591
13592    if (isPowerOf2_64(MulAmt2) &&
13593        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13594      // If second multiplifer is pow2, issue it first. We want the multiply by
13595      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13596      // is an add.
13597      std::swap(MulAmt1, MulAmt2);
13598
13599    SDValue NewMul;
13600    if (isPowerOf2_64(MulAmt1))
13601      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13602                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13603    else
13604      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13605                           DAG.getConstant(MulAmt1, VT));
13606
13607    if (isPowerOf2_64(MulAmt2))
13608      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13609                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13610    else
13611      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13612                           DAG.getConstant(MulAmt2, VT));
13613
13614    // Do not add new nodes to DAG combiner worklist.
13615    DCI.CombineTo(N, NewMul, false);
13616  }
13617  return SDValue();
13618}
13619
13620static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13621  SDValue N0 = N->getOperand(0);
13622  SDValue N1 = N->getOperand(1);
13623  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13624  EVT VT = N0.getValueType();
13625
13626  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13627  // since the result of setcc_c is all zero's or all ones.
13628  if (VT.isInteger() && !VT.isVector() &&
13629      N1C && N0.getOpcode() == ISD::AND &&
13630      N0.getOperand(1).getOpcode() == ISD::Constant) {
13631    SDValue N00 = N0.getOperand(0);
13632    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13633        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13634          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13635         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13636      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13637      APInt ShAmt = N1C->getAPIntValue();
13638      Mask = Mask.shl(ShAmt);
13639      if (Mask != 0)
13640        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13641                           N00, DAG.getConstant(Mask, VT));
13642    }
13643  }
13644
13645
13646  // Hardware support for vector shifts is sparse which makes us scalarize the
13647  // vector operations in many cases. Also, on sandybridge ADD is faster than
13648  // shl.
13649  // (shl V, 1) -> add V,V
13650  if (isSplatVector(N1.getNode())) {
13651    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13652    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13653    // We shift all of the values by one. In many cases we do not have
13654    // hardware support for this operation. This is better expressed as an ADD
13655    // of two values.
13656    if (N1C && (1 == N1C->getZExtValue())) {
13657      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13658    }
13659  }
13660
13661  return SDValue();
13662}
13663
13664/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13665///                       when possible.
13666static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13667                                   const X86Subtarget *Subtarget) {
13668  EVT VT = N->getValueType(0);
13669  if (N->getOpcode() == ISD::SHL) {
13670    SDValue V = PerformSHLCombine(N, DAG);
13671    if (V.getNode()) return V;
13672  }
13673
13674  // On X86 with SSE2 support, we can transform this to a vector shift if
13675  // all elements are shifted by the same amount.  We can't do this in legalize
13676  // because the a constant vector is typically transformed to a constant pool
13677  // so we have no knowledge of the shift amount.
13678  if (!Subtarget->hasXMMInt())
13679    return SDValue();
13680
13681  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13682      (!Subtarget->hasAVX2() ||
13683       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13684    return SDValue();
13685
13686  SDValue ShAmtOp = N->getOperand(1);
13687  EVT EltVT = VT.getVectorElementType();
13688  DebugLoc DL = N->getDebugLoc();
13689  SDValue BaseShAmt = SDValue();
13690  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13691    unsigned NumElts = VT.getVectorNumElements();
13692    unsigned i = 0;
13693    for (; i != NumElts; ++i) {
13694      SDValue Arg = ShAmtOp.getOperand(i);
13695      if (Arg.getOpcode() == ISD::UNDEF) continue;
13696      BaseShAmt = Arg;
13697      break;
13698    }
13699    for (; i != NumElts; ++i) {
13700      SDValue Arg = ShAmtOp.getOperand(i);
13701      if (Arg.getOpcode() == ISD::UNDEF) continue;
13702      if (Arg != BaseShAmt) {
13703        return SDValue();
13704      }
13705    }
13706  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13707             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13708    SDValue InVec = ShAmtOp.getOperand(0);
13709    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13710      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13711      unsigned i = 0;
13712      for (; i != NumElts; ++i) {
13713        SDValue Arg = InVec.getOperand(i);
13714        if (Arg.getOpcode() == ISD::UNDEF) continue;
13715        BaseShAmt = Arg;
13716        break;
13717      }
13718    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13719       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13720         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13721         if (C->getZExtValue() == SplatIdx)
13722           BaseShAmt = InVec.getOperand(1);
13723       }
13724    }
13725    if (BaseShAmt.getNode() == 0)
13726      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13727                              DAG.getIntPtrConstant(0));
13728  } else
13729    return SDValue();
13730
13731  // The shift amount is an i32.
13732  if (EltVT.bitsGT(MVT::i32))
13733    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13734  else if (EltVT.bitsLT(MVT::i32))
13735    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13736
13737  // The shift amount is identical so we can do a vector shift.
13738  SDValue  ValOp = N->getOperand(0);
13739  switch (N->getOpcode()) {
13740  default:
13741    llvm_unreachable("Unknown shift opcode!");
13742    break;
13743  case ISD::SHL:
13744    if (VT == MVT::v2i64)
13745      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13746                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13747                         ValOp, BaseShAmt);
13748    if (VT == MVT::v4i32)
13749      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13750                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13751                         ValOp, BaseShAmt);
13752    if (VT == MVT::v8i16)
13753      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13754                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13755                         ValOp, BaseShAmt);
13756    if (VT == MVT::v4i64)
13757      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13758                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
13759                         ValOp, BaseShAmt);
13760    if (VT == MVT::v8i32)
13761      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13762                         DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
13763                         ValOp, BaseShAmt);
13764    if (VT == MVT::v16i16)
13765      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13766                         DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
13767                         ValOp, BaseShAmt);
13768    break;
13769  case ISD::SRA:
13770    if (VT == MVT::v4i32)
13771      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13772                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13773                         ValOp, BaseShAmt);
13774    if (VT == MVT::v8i16)
13775      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13776                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13777                         ValOp, BaseShAmt);
13778    if (VT == MVT::v8i32)
13779      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13780                         DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
13781                         ValOp, BaseShAmt);
13782    if (VT == MVT::v16i16)
13783      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13784                         DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
13785                         ValOp, BaseShAmt);
13786    break;
13787  case ISD::SRL:
13788    if (VT == MVT::v2i64)
13789      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13790                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13791                         ValOp, BaseShAmt);
13792    if (VT == MVT::v4i32)
13793      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13794                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13795                         ValOp, BaseShAmt);
13796    if (VT ==  MVT::v8i16)
13797      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13798                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13799                         ValOp, BaseShAmt);
13800    if (VT == MVT::v4i64)
13801      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13802                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
13803                         ValOp, BaseShAmt);
13804    if (VT == MVT::v8i32)
13805      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13806                         DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
13807                         ValOp, BaseShAmt);
13808    if (VT ==  MVT::v16i16)
13809      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13810                         DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
13811                         ValOp, BaseShAmt);
13812    break;
13813  }
13814  return SDValue();
13815}
13816
13817
13818// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13819// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13820// and friends.  Likewise for OR -> CMPNEQSS.
13821static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13822                            TargetLowering::DAGCombinerInfo &DCI,
13823                            const X86Subtarget *Subtarget) {
13824  unsigned opcode;
13825
13826  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13827  // we're requiring SSE2 for both.
13828  if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13829    SDValue N0 = N->getOperand(0);
13830    SDValue N1 = N->getOperand(1);
13831    SDValue CMP0 = N0->getOperand(1);
13832    SDValue CMP1 = N1->getOperand(1);
13833    DebugLoc DL = N->getDebugLoc();
13834
13835    // The SETCCs should both refer to the same CMP.
13836    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13837      return SDValue();
13838
13839    SDValue CMP00 = CMP0->getOperand(0);
13840    SDValue CMP01 = CMP0->getOperand(1);
13841    EVT     VT    = CMP00.getValueType();
13842
13843    if (VT == MVT::f32 || VT == MVT::f64) {
13844      bool ExpectingFlags = false;
13845      // Check for any users that want flags:
13846      for (SDNode::use_iterator UI = N->use_begin(),
13847             UE = N->use_end();
13848           !ExpectingFlags && UI != UE; ++UI)
13849        switch (UI->getOpcode()) {
13850        default:
13851        case ISD::BR_CC:
13852        case ISD::BRCOND:
13853        case ISD::SELECT:
13854          ExpectingFlags = true;
13855          break;
13856        case ISD::CopyToReg:
13857        case ISD::SIGN_EXTEND:
13858        case ISD::ZERO_EXTEND:
13859        case ISD::ANY_EXTEND:
13860          break;
13861        }
13862
13863      if (!ExpectingFlags) {
13864        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13865        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13866
13867        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13868          X86::CondCode tmp = cc0;
13869          cc0 = cc1;
13870          cc1 = tmp;
13871        }
13872
13873        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13874            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13875          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13876          X86ISD::NodeType NTOperator = is64BitFP ?
13877            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13878          // FIXME: need symbolic constants for these magic numbers.
13879          // See X86ATTInstPrinter.cpp:printSSECC().
13880          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13881          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13882                                              DAG.getConstant(x86cc, MVT::i8));
13883          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13884                                              OnesOrZeroesF);
13885          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13886                                      DAG.getConstant(1, MVT::i32));
13887          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13888          return OneBitOfTruth;
13889        }
13890      }
13891    }
13892  }
13893  return SDValue();
13894}
13895
13896/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13897/// so it can be folded inside ANDNP.
13898static bool CanFoldXORWithAllOnes(const SDNode *N) {
13899  EVT VT = N->getValueType(0);
13900
13901  // Match direct AllOnes for 128 and 256-bit vectors
13902  if (ISD::isBuildVectorAllOnes(N))
13903    return true;
13904
13905  // Look through a bit convert.
13906  if (N->getOpcode() == ISD::BITCAST)
13907    N = N->getOperand(0).getNode();
13908
13909  // Sometimes the operand may come from a insert_subvector building a 256-bit
13910  // allones vector
13911  if (VT.getSizeInBits() == 256 &&
13912      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13913    SDValue V1 = N->getOperand(0);
13914    SDValue V2 = N->getOperand(1);
13915
13916    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13917        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13918        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13919        ISD::isBuildVectorAllOnes(V2.getNode()))
13920      return true;
13921  }
13922
13923  return false;
13924}
13925
13926static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13927                                 TargetLowering::DAGCombinerInfo &DCI,
13928                                 const X86Subtarget *Subtarget) {
13929  if (DCI.isBeforeLegalizeOps())
13930    return SDValue();
13931
13932  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13933  if (R.getNode())
13934    return R;
13935
13936  EVT VT = N->getValueType(0);
13937
13938  // Create ANDN, BLSI, and BLSR instructions
13939  // BLSI is X & (-X)
13940  // BLSR is X & (X-1)
13941  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13942    SDValue N0 = N->getOperand(0);
13943    SDValue N1 = N->getOperand(1);
13944    DebugLoc DL = N->getDebugLoc();
13945
13946    // Check LHS for not
13947    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13948      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13949    // Check RHS for not
13950    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13951      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13952
13953    // Check LHS for neg
13954    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13955        isZero(N0.getOperand(0)))
13956      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13957
13958    // Check RHS for neg
13959    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13960        isZero(N1.getOperand(0)))
13961      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13962
13963    // Check LHS for X-1
13964    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13965        isAllOnes(N0.getOperand(1)))
13966      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13967
13968    // Check RHS for X-1
13969    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13970        isAllOnes(N1.getOperand(1)))
13971      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13972
13973    return SDValue();
13974  }
13975
13976  // Want to form ANDNP nodes:
13977  // 1) In the hopes of then easily combining them with OR and AND nodes
13978  //    to form PBLEND/PSIGN.
13979  // 2) To match ANDN packed intrinsics
13980  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13981    return SDValue();
13982
13983  SDValue N0 = N->getOperand(0);
13984  SDValue N1 = N->getOperand(1);
13985  DebugLoc DL = N->getDebugLoc();
13986
13987  // Check LHS for vnot
13988  if (N0.getOpcode() == ISD::XOR &&
13989      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13990      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13991    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13992
13993  // Check RHS for vnot
13994  if (N1.getOpcode() == ISD::XOR &&
13995      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13996      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13997    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13998
13999  return SDValue();
14000}
14001
14002static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14003                                TargetLowering::DAGCombinerInfo &DCI,
14004                                const X86Subtarget *Subtarget) {
14005  if (DCI.isBeforeLegalizeOps())
14006    return SDValue();
14007
14008  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14009  if (R.getNode())
14010    return R;
14011
14012  EVT VT = N->getValueType(0);
14013
14014  SDValue N0 = N->getOperand(0);
14015  SDValue N1 = N->getOperand(1);
14016
14017  // look for psign/blend
14018  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14019    if (!Subtarget->hasSSSE3orAVX() ||
14020        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14021      return SDValue();
14022
14023    // Canonicalize pandn to RHS
14024    if (N0.getOpcode() == X86ISD::ANDNP)
14025      std::swap(N0, N1);
14026    // or (and (m, x), (pandn m, y))
14027    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14028      SDValue Mask = N1.getOperand(0);
14029      SDValue X    = N1.getOperand(1);
14030      SDValue Y;
14031      if (N0.getOperand(0) == Mask)
14032        Y = N0.getOperand(1);
14033      if (N0.getOperand(1) == Mask)
14034        Y = N0.getOperand(0);
14035
14036      // Check to see if the mask appeared in both the AND and ANDNP and
14037      if (!Y.getNode())
14038        return SDValue();
14039
14040      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14041      if (Mask.getOpcode() != ISD::BITCAST ||
14042          X.getOpcode() != ISD::BITCAST ||
14043          Y.getOpcode() != ISD::BITCAST)
14044        return SDValue();
14045
14046      // Look through mask bitcast.
14047      Mask = Mask.getOperand(0);
14048      EVT MaskVT = Mask.getValueType();
14049
14050      // Validate that the Mask operand is a vector sra node.  The sra node
14051      // will be an intrinsic.
14052      if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
14053        return SDValue();
14054
14055      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14056      // there is no psrai.b
14057      switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
14058      case Intrinsic::x86_sse2_psrai_w:
14059      case Intrinsic::x86_sse2_psrai_d:
14060      case Intrinsic::x86_avx2_psrai_w:
14061      case Intrinsic::x86_avx2_psrai_d:
14062        break;
14063      default: return SDValue();
14064      }
14065
14066      // Check that the SRA is all signbits.
14067      SDValue SraC = Mask.getOperand(2);
14068      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14069      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14070      if ((SraAmt + 1) != EltBits)
14071        return SDValue();
14072
14073      DebugLoc DL = N->getDebugLoc();
14074
14075      // Now we know we at least have a plendvb with the mask val.  See if
14076      // we can form a psignb/w/d.
14077      // psign = x.type == y.type == mask.type && y = sub(0, x);
14078      X = X.getOperand(0);
14079      Y = Y.getOperand(0);
14080      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14081          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14082          X.getValueType() == MaskVT && X.getValueType() == Y.getValueType() &&
14083          (EltBits == 8 || EltBits == 16 || EltBits == 32)) {
14084        SDValue Sign = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X,
14085                                   Mask.getOperand(1));
14086        return DAG.getNode(ISD::BITCAST, DL, VT, Sign);
14087      }
14088      // PBLENDVB only available on SSE 4.1
14089      if (!Subtarget->hasSSE41orAVX())
14090        return SDValue();
14091
14092      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14093
14094      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14095      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14096      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14097      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, X, Y);
14098      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14099    }
14100  }
14101
14102  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14103    return SDValue();
14104
14105  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14106  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14107    std::swap(N0, N1);
14108  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14109    return SDValue();
14110  if (!N0.hasOneUse() || !N1.hasOneUse())
14111    return SDValue();
14112
14113  SDValue ShAmt0 = N0.getOperand(1);
14114  if (ShAmt0.getValueType() != MVT::i8)
14115    return SDValue();
14116  SDValue ShAmt1 = N1.getOperand(1);
14117  if (ShAmt1.getValueType() != MVT::i8)
14118    return SDValue();
14119  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14120    ShAmt0 = ShAmt0.getOperand(0);
14121  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14122    ShAmt1 = ShAmt1.getOperand(0);
14123
14124  DebugLoc DL = N->getDebugLoc();
14125  unsigned Opc = X86ISD::SHLD;
14126  SDValue Op0 = N0.getOperand(0);
14127  SDValue Op1 = N1.getOperand(0);
14128  if (ShAmt0.getOpcode() == ISD::SUB) {
14129    Opc = X86ISD::SHRD;
14130    std::swap(Op0, Op1);
14131    std::swap(ShAmt0, ShAmt1);
14132  }
14133
14134  unsigned Bits = VT.getSizeInBits();
14135  if (ShAmt1.getOpcode() == ISD::SUB) {
14136    SDValue Sum = ShAmt1.getOperand(0);
14137    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14138      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14139      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14140        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14141      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14142        return DAG.getNode(Opc, DL, VT,
14143                           Op0, Op1,
14144                           DAG.getNode(ISD::TRUNCATE, DL,
14145                                       MVT::i8, ShAmt0));
14146    }
14147  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14148    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14149    if (ShAmt0C &&
14150        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14151      return DAG.getNode(Opc, DL, VT,
14152                         N0.getOperand(0), N1.getOperand(0),
14153                         DAG.getNode(ISD::TRUNCATE, DL,
14154                                       MVT::i8, ShAmt0));
14155  }
14156
14157  return SDValue();
14158}
14159
14160static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14161                                 TargetLowering::DAGCombinerInfo &DCI,
14162                                 const X86Subtarget *Subtarget) {
14163  if (DCI.isBeforeLegalizeOps())
14164    return SDValue();
14165
14166  EVT VT = N->getValueType(0);
14167
14168  if (VT != MVT::i32 && VT != MVT::i64)
14169    return SDValue();
14170
14171  // Create BLSMSK instructions by finding X ^ (X-1)
14172  SDValue N0 = N->getOperand(0);
14173  SDValue N1 = N->getOperand(1);
14174  DebugLoc DL = N->getDebugLoc();
14175
14176  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14177      isAllOnes(N0.getOperand(1)))
14178    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14179
14180  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14181      isAllOnes(N1.getOperand(1)))
14182    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14183
14184  return SDValue();
14185}
14186
14187/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14188static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14189                                   const X86Subtarget *Subtarget) {
14190  LoadSDNode *Ld = cast<LoadSDNode>(N);
14191  EVT RegVT = Ld->getValueType(0);
14192  EVT MemVT = Ld->getMemoryVT();
14193  DebugLoc dl = Ld->getDebugLoc();
14194  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14195
14196  ISD::LoadExtType Ext = Ld->getExtensionType();
14197
14198  // If this is a vector EXT Load then attempt to optimize it using a
14199  // shuffle. We need SSE4 for the shuffles.
14200  // TODO: It is possible to support ZExt by zeroing the undef values
14201  // during the shuffle phase or after the shuffle.
14202  if (RegVT.isVector() && Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14203    assert(MemVT != RegVT && "Cannot extend to the same type");
14204    assert(MemVT.isVector() && "Must load a vector from memory");
14205
14206    unsigned NumElems = RegVT.getVectorNumElements();
14207    unsigned RegSz = RegVT.getSizeInBits();
14208    unsigned MemSz = MemVT.getSizeInBits();
14209    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14210    // All sizes must be a power of two
14211    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14212
14213    // Attempt to load the original value using a single load op.
14214    // Find a scalar type which is equal to the loaded word size.
14215    MVT SclrLoadTy = MVT::i8;
14216    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14217         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14218      MVT Tp = (MVT::SimpleValueType)tp;
14219      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14220        SclrLoadTy = Tp;
14221        break;
14222      }
14223    }
14224
14225    // Proceed if a load word is found.
14226    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14227
14228    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14229      RegSz/SclrLoadTy.getSizeInBits());
14230
14231    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14232                                  RegSz/MemVT.getScalarType().getSizeInBits());
14233    // Can't shuffle using an illegal type.
14234    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14235
14236    // Perform a single load.
14237    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14238                                  Ld->getBasePtr(),
14239                                  Ld->getPointerInfo(), Ld->isVolatile(),
14240                                  Ld->isNonTemporal(), Ld->isInvariant(),
14241                                  Ld->getAlignment());
14242
14243    // Insert the word loaded into a vector.
14244    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14245      LoadUnitVecVT, ScalarLoad);
14246
14247    // Bitcast the loaded value to a vector of the original element type, in
14248    // the size of the target vector type.
14249    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
14250    unsigned SizeRatio = RegSz/MemSz;
14251
14252    // Redistribute the loaded elements into the different locations.
14253    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14254    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14255
14256    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14257                                DAG.getUNDEF(SlicedVec.getValueType()),
14258                                ShuffleVec.data());
14259
14260    // Bitcast to the requested type.
14261    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14262    // Replace the original load with the new sequence
14263    // and return the new chain.
14264    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14265    return SDValue(ScalarLoad.getNode(), 1);
14266  }
14267
14268  return SDValue();
14269}
14270
14271/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14272static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14273                                   const X86Subtarget *Subtarget) {
14274  StoreSDNode *St = cast<StoreSDNode>(N);
14275  EVT VT = St->getValue().getValueType();
14276  EVT StVT = St->getMemoryVT();
14277  DebugLoc dl = St->getDebugLoc();
14278  SDValue StoredVal = St->getOperand(1);
14279  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14280
14281  // If we are saving a concatination of two XMM registers, perform two stores.
14282  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14283  // 128-bit ones. If in the future the cost becomes only one memory access the
14284  // first version would be better.
14285  if (VT.getSizeInBits() == 256 &&
14286    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14287    StoredVal.getNumOperands() == 2) {
14288
14289    SDValue Value0 = StoredVal.getOperand(0);
14290    SDValue Value1 = StoredVal.getOperand(1);
14291
14292    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14293    SDValue Ptr0 = St->getBasePtr();
14294    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14295
14296    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14297                                St->getPointerInfo(), St->isVolatile(),
14298                                St->isNonTemporal(), St->getAlignment());
14299    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14300                                St->getPointerInfo(), St->isVolatile(),
14301                                St->isNonTemporal(), St->getAlignment());
14302    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14303  }
14304
14305  // Optimize trunc store (of multiple scalars) to shuffle and store.
14306  // First, pack all of the elements in one place. Next, store to memory
14307  // in fewer chunks.
14308  if (St->isTruncatingStore() && VT.isVector()) {
14309    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14310    unsigned NumElems = VT.getVectorNumElements();
14311    assert(StVT != VT && "Cannot truncate to the same type");
14312    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14313    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14314
14315    // From, To sizes and ElemCount must be pow of two
14316    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14317    // We are going to use the original vector elt for storing.
14318    // Accumulated smaller vector elements must be a multiple of the store size.
14319    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14320
14321    unsigned SizeRatio  = FromSz / ToSz;
14322
14323    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14324
14325    // Create a type on which we perform the shuffle
14326    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14327            StVT.getScalarType(), NumElems*SizeRatio);
14328
14329    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14330
14331    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14332    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14333    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14334
14335    // Can't shuffle using an illegal type
14336    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14337
14338    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14339                                DAG.getUNDEF(WideVec.getValueType()),
14340                                ShuffleVec.data());
14341    // At this point all of the data is stored at the bottom of the
14342    // register. We now need to save it to mem.
14343
14344    // Find the largest store unit
14345    MVT StoreType = MVT::i8;
14346    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14347         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14348      MVT Tp = (MVT::SimpleValueType)tp;
14349      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14350        StoreType = Tp;
14351    }
14352
14353    // Bitcast the original vector into a vector of store-size units
14354    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14355            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14356    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14357    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14358    SmallVector<SDValue, 8> Chains;
14359    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14360                                        TLI.getPointerTy());
14361    SDValue Ptr = St->getBasePtr();
14362
14363    // Perform one or more big stores into memory.
14364    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14365      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14366                                   StoreType, ShuffWide,
14367                                   DAG.getIntPtrConstant(i));
14368      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14369                                St->getPointerInfo(), St->isVolatile(),
14370                                St->isNonTemporal(), St->getAlignment());
14371      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14372      Chains.push_back(Ch);
14373    }
14374
14375    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14376                               Chains.size());
14377  }
14378
14379
14380  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14381  // the FP state in cases where an emms may be missing.
14382  // A preferable solution to the general problem is to figure out the right
14383  // places to insert EMMS.  This qualifies as a quick hack.
14384
14385  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14386  if (VT.getSizeInBits() != 64)
14387    return SDValue();
14388
14389  const Function *F = DAG.getMachineFunction().getFunction();
14390  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14391  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
14392                     && Subtarget->hasXMMInt();
14393  if ((VT.isVector() ||
14394       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14395      isa<LoadSDNode>(St->getValue()) &&
14396      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14397      St->getChain().hasOneUse() && !St->isVolatile()) {
14398    SDNode* LdVal = St->getValue().getNode();
14399    LoadSDNode *Ld = 0;
14400    int TokenFactorIndex = -1;
14401    SmallVector<SDValue, 8> Ops;
14402    SDNode* ChainVal = St->getChain().getNode();
14403    // Must be a store of a load.  We currently handle two cases:  the load
14404    // is a direct child, and it's under an intervening TokenFactor.  It is
14405    // possible to dig deeper under nested TokenFactors.
14406    if (ChainVal == LdVal)
14407      Ld = cast<LoadSDNode>(St->getChain());
14408    else if (St->getValue().hasOneUse() &&
14409             ChainVal->getOpcode() == ISD::TokenFactor) {
14410      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14411        if (ChainVal->getOperand(i).getNode() == LdVal) {
14412          TokenFactorIndex = i;
14413          Ld = cast<LoadSDNode>(St->getValue());
14414        } else
14415          Ops.push_back(ChainVal->getOperand(i));
14416      }
14417    }
14418
14419    if (!Ld || !ISD::isNormalLoad(Ld))
14420      return SDValue();
14421
14422    // If this is not the MMX case, i.e. we are just turning i64 load/store
14423    // into f64 load/store, avoid the transformation if there are multiple
14424    // uses of the loaded value.
14425    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14426      return SDValue();
14427
14428    DebugLoc LdDL = Ld->getDebugLoc();
14429    DebugLoc StDL = N->getDebugLoc();
14430    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14431    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14432    // pair instead.
14433    if (Subtarget->is64Bit() || F64IsLegal) {
14434      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14435      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14436                                  Ld->getPointerInfo(), Ld->isVolatile(),
14437                                  Ld->isNonTemporal(), Ld->isInvariant(),
14438                                  Ld->getAlignment());
14439      SDValue NewChain = NewLd.getValue(1);
14440      if (TokenFactorIndex != -1) {
14441        Ops.push_back(NewChain);
14442        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14443                               Ops.size());
14444      }
14445      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14446                          St->getPointerInfo(),
14447                          St->isVolatile(), St->isNonTemporal(),
14448                          St->getAlignment());
14449    }
14450
14451    // Otherwise, lower to two pairs of 32-bit loads / stores.
14452    SDValue LoAddr = Ld->getBasePtr();
14453    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14454                                 DAG.getConstant(4, MVT::i32));
14455
14456    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14457                               Ld->getPointerInfo(),
14458                               Ld->isVolatile(), Ld->isNonTemporal(),
14459                               Ld->isInvariant(), Ld->getAlignment());
14460    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14461                               Ld->getPointerInfo().getWithOffset(4),
14462                               Ld->isVolatile(), Ld->isNonTemporal(),
14463                               Ld->isInvariant(),
14464                               MinAlign(Ld->getAlignment(), 4));
14465
14466    SDValue NewChain = LoLd.getValue(1);
14467    if (TokenFactorIndex != -1) {
14468      Ops.push_back(LoLd);
14469      Ops.push_back(HiLd);
14470      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14471                             Ops.size());
14472    }
14473
14474    LoAddr = St->getBasePtr();
14475    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14476                         DAG.getConstant(4, MVT::i32));
14477
14478    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14479                                St->getPointerInfo(),
14480                                St->isVolatile(), St->isNonTemporal(),
14481                                St->getAlignment());
14482    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14483                                St->getPointerInfo().getWithOffset(4),
14484                                St->isVolatile(),
14485                                St->isNonTemporal(),
14486                                MinAlign(St->getAlignment(), 4));
14487    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14488  }
14489  return SDValue();
14490}
14491
14492/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14493/// and return the operands for the horizontal operation in LHS and RHS.  A
14494/// horizontal operation performs the binary operation on successive elements
14495/// of its first operand, then on successive elements of its second operand,
14496/// returning the resulting values in a vector.  For example, if
14497///   A = < float a0, float a1, float a2, float a3 >
14498/// and
14499///   B = < float b0, float b1, float b2, float b3 >
14500/// then the result of doing a horizontal operation on A and B is
14501///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14502/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14503/// A horizontal-op B, for some already available A and B, and if so then LHS is
14504/// set to A, RHS to B, and the routine returns 'true'.
14505/// Note that the binary operation should have the property that if one of the
14506/// operands is UNDEF then the result is UNDEF.
14507static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
14508  // Look for the following pattern: if
14509  //   A = < float a0, float a1, float a2, float a3 >
14510  //   B = < float b0, float b1, float b2, float b3 >
14511  // and
14512  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14513  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14514  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14515  // which is A horizontal-op B.
14516
14517  // At least one of the operands should be a vector shuffle.
14518  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14519      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14520    return false;
14521
14522  EVT VT = LHS.getValueType();
14523  unsigned N = VT.getVectorNumElements();
14524
14525  // View LHS in the form
14526  //   LHS = VECTOR_SHUFFLE A, B, LMask
14527  // If LHS is not a shuffle then pretend it is the shuffle
14528  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14529  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14530  // type VT.
14531  SDValue A, B;
14532  SmallVector<int, 8> LMask(N);
14533  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14534    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14535      A = LHS.getOperand(0);
14536    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14537      B = LHS.getOperand(1);
14538    cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
14539  } else {
14540    if (LHS.getOpcode() != ISD::UNDEF)
14541      A = LHS;
14542    for (unsigned i = 0; i != N; ++i)
14543      LMask[i] = i;
14544  }
14545
14546  // Likewise, view RHS in the form
14547  //   RHS = VECTOR_SHUFFLE C, D, RMask
14548  SDValue C, D;
14549  SmallVector<int, 8> RMask(N);
14550  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14551    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14552      C = RHS.getOperand(0);
14553    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14554      D = RHS.getOperand(1);
14555    cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
14556  } else {
14557    if (RHS.getOpcode() != ISD::UNDEF)
14558      C = RHS;
14559    for (unsigned i = 0; i != N; ++i)
14560      RMask[i] = i;
14561  }
14562
14563  // Check that the shuffles are both shuffling the same vectors.
14564  if (!(A == C && B == D) && !(A == D && B == C))
14565    return false;
14566
14567  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14568  if (!A.getNode() && !B.getNode())
14569    return false;
14570
14571  // If A and B occur in reverse order in RHS, then "swap" them (which means
14572  // rewriting the mask).
14573  if (A != C)
14574    for (unsigned i = 0; i != N; ++i) {
14575      unsigned Idx = RMask[i];
14576      if (Idx < N)
14577        RMask[i] += N;
14578      else if (Idx < 2*N)
14579        RMask[i] -= N;
14580    }
14581
14582  // At this point LHS and RHS are equivalent to
14583  //   LHS = VECTOR_SHUFFLE A, B, LMask
14584  //   RHS = VECTOR_SHUFFLE A, B, RMask
14585  // Check that the masks correspond to performing a horizontal operation.
14586  for (unsigned i = 0; i != N; ++i) {
14587    unsigned LIdx = LMask[i], RIdx = RMask[i];
14588
14589    // Ignore any UNDEF components.
14590    if (LIdx >= 2*N || RIdx >= 2*N || (!A.getNode() && (LIdx < N || RIdx < N))
14591        || (!B.getNode() && (LIdx >= N || RIdx >= N)))
14592      continue;
14593
14594    // Check that successive elements are being operated on.  If not, this is
14595    // not a horizontal operation.
14596    if (!(LIdx == 2*i && RIdx == 2*i + 1) &&
14597        !(isCommutative && LIdx == 2*i + 1 && RIdx == 2*i))
14598      return false;
14599  }
14600
14601  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14602  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14603  return true;
14604}
14605
14606/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14607static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14608                                  const X86Subtarget *Subtarget) {
14609  EVT VT = N->getValueType(0);
14610  SDValue LHS = N->getOperand(0);
14611  SDValue RHS = N->getOperand(1);
14612
14613  // Try to synthesize horizontal adds from adds of shuffles.
14614  if (Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64) &&
14615      isHorizontalBinOp(LHS, RHS, true))
14616    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14617  return SDValue();
14618}
14619
14620/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14621static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14622                                  const X86Subtarget *Subtarget) {
14623  EVT VT = N->getValueType(0);
14624  SDValue LHS = N->getOperand(0);
14625  SDValue RHS = N->getOperand(1);
14626
14627  // Try to synthesize horizontal subs from subs of shuffles.
14628  if (Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64) &&
14629      isHorizontalBinOp(LHS, RHS, false))
14630    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14631  return SDValue();
14632}
14633
14634/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14635/// X86ISD::FXOR nodes.
14636static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14637  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14638  // F[X]OR(0.0, x) -> x
14639  // F[X]OR(x, 0.0) -> x
14640  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14641    if (C->getValueAPF().isPosZero())
14642      return N->getOperand(1);
14643  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14644    if (C->getValueAPF().isPosZero())
14645      return N->getOperand(0);
14646  return SDValue();
14647}
14648
14649/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14650static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14651  // FAND(0.0, x) -> 0.0
14652  // FAND(x, 0.0) -> 0.0
14653  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14654    if (C->getValueAPF().isPosZero())
14655      return N->getOperand(0);
14656  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14657    if (C->getValueAPF().isPosZero())
14658      return N->getOperand(1);
14659  return SDValue();
14660}
14661
14662static SDValue PerformBTCombine(SDNode *N,
14663                                SelectionDAG &DAG,
14664                                TargetLowering::DAGCombinerInfo &DCI) {
14665  // BT ignores high bits in the bit index operand.
14666  SDValue Op1 = N->getOperand(1);
14667  if (Op1.hasOneUse()) {
14668    unsigned BitWidth = Op1.getValueSizeInBits();
14669    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14670    APInt KnownZero, KnownOne;
14671    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14672                                          !DCI.isBeforeLegalizeOps());
14673    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14674    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14675        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14676      DCI.CommitTargetLoweringOpt(TLO);
14677  }
14678  return SDValue();
14679}
14680
14681static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14682  SDValue Op = N->getOperand(0);
14683  if (Op.getOpcode() == ISD::BITCAST)
14684    Op = Op.getOperand(0);
14685  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14686  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14687      VT.getVectorElementType().getSizeInBits() ==
14688      OpVT.getVectorElementType().getSizeInBits()) {
14689    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14690  }
14691  return SDValue();
14692}
14693
14694static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14695  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14696  //           (and (i32 x86isd::setcc_carry), 1)
14697  // This eliminates the zext. This transformation is necessary because
14698  // ISD::SETCC is always legalized to i8.
14699  DebugLoc dl = N->getDebugLoc();
14700  SDValue N0 = N->getOperand(0);
14701  EVT VT = N->getValueType(0);
14702  if (N0.getOpcode() == ISD::AND &&
14703      N0.hasOneUse() &&
14704      N0.getOperand(0).hasOneUse()) {
14705    SDValue N00 = N0.getOperand(0);
14706    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14707      return SDValue();
14708    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14709    if (!C || C->getZExtValue() != 1)
14710      return SDValue();
14711    return DAG.getNode(ISD::AND, dl, VT,
14712                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14713                                   N00.getOperand(0), N00.getOperand(1)),
14714                       DAG.getConstant(1, VT));
14715  }
14716
14717  return SDValue();
14718}
14719
14720// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14721static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14722  unsigned X86CC = N->getConstantOperandVal(0);
14723  SDValue EFLAG = N->getOperand(1);
14724  DebugLoc DL = N->getDebugLoc();
14725
14726  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14727  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14728  // cases.
14729  if (X86CC == X86::COND_B)
14730    return DAG.getNode(ISD::AND, DL, MVT::i8,
14731                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14732                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14733                       DAG.getConstant(1, MVT::i8));
14734
14735  return SDValue();
14736}
14737
14738static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14739                                        const X86TargetLowering *XTLI) {
14740  SDValue Op0 = N->getOperand(0);
14741  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14742  // a 32-bit target where SSE doesn't support i64->FP operations.
14743  if (Op0.getOpcode() == ISD::LOAD) {
14744    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14745    EVT VT = Ld->getValueType(0);
14746    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14747        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14748        !XTLI->getSubtarget()->is64Bit() &&
14749        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14750      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14751                                          Ld->getChain(), Op0, DAG);
14752      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14753      return FILDChain;
14754    }
14755  }
14756  return SDValue();
14757}
14758
14759// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14760static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14761                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14762  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14763  // the result is either zero or one (depending on the input carry bit).
14764  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14765  if (X86::isZeroNode(N->getOperand(0)) &&
14766      X86::isZeroNode(N->getOperand(1)) &&
14767      // We don't have a good way to replace an EFLAGS use, so only do this when
14768      // dead right now.
14769      SDValue(N, 1).use_empty()) {
14770    DebugLoc DL = N->getDebugLoc();
14771    EVT VT = N->getValueType(0);
14772    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14773    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14774                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14775                                           DAG.getConstant(X86::COND_B,MVT::i8),
14776                                           N->getOperand(2)),
14777                               DAG.getConstant(1, VT));
14778    return DCI.CombineTo(N, Res1, CarryOut);
14779  }
14780
14781  return SDValue();
14782}
14783
14784// fold (add Y, (sete  X, 0)) -> adc  0, Y
14785//      (add Y, (setne X, 0)) -> sbb -1, Y
14786//      (sub (sete  X, 0), Y) -> sbb  0, Y
14787//      (sub (setne X, 0), Y) -> adc -1, Y
14788static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14789  DebugLoc DL = N->getDebugLoc();
14790
14791  // Look through ZExts.
14792  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14793  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14794    return SDValue();
14795
14796  SDValue SetCC = Ext.getOperand(0);
14797  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14798    return SDValue();
14799
14800  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14801  if (CC != X86::COND_E && CC != X86::COND_NE)
14802    return SDValue();
14803
14804  SDValue Cmp = SetCC.getOperand(1);
14805  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14806      !X86::isZeroNode(Cmp.getOperand(1)) ||
14807      !Cmp.getOperand(0).getValueType().isInteger())
14808    return SDValue();
14809
14810  SDValue CmpOp0 = Cmp.getOperand(0);
14811  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14812                               DAG.getConstant(1, CmpOp0.getValueType()));
14813
14814  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14815  if (CC == X86::COND_NE)
14816    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14817                       DL, OtherVal.getValueType(), OtherVal,
14818                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14819  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14820                     DL, OtherVal.getValueType(), OtherVal,
14821                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14822}
14823
14824/// PerformADDCombine - Do target-specific dag combines on integer adds.
14825static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14826                                 const X86Subtarget *Subtarget) {
14827  EVT VT = N->getValueType(0);
14828  SDValue Op0 = N->getOperand(0);
14829  SDValue Op1 = N->getOperand(1);
14830
14831  // Try to synthesize horizontal adds from adds of shuffles.
14832  if ((Subtarget->hasSSSE3orAVX()) && (VT == MVT::v8i16 || VT == MVT::v4i32) &&
14833      isHorizontalBinOp(Op0, Op1, true))
14834    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14835
14836  return OptimizeConditionalInDecrement(N, DAG);
14837}
14838
14839static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14840                                 const X86Subtarget *Subtarget) {
14841  SDValue Op0 = N->getOperand(0);
14842  SDValue Op1 = N->getOperand(1);
14843
14844  // X86 can't encode an immediate LHS of a sub. See if we can push the
14845  // negation into a preceding instruction.
14846  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14847    // If the RHS of the sub is a XOR with one use and a constant, invert the
14848    // immediate. Then add one to the LHS of the sub so we can turn
14849    // X-Y -> X+~Y+1, saving one register.
14850    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14851        isa<ConstantSDNode>(Op1.getOperand(1))) {
14852      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14853      EVT VT = Op0.getValueType();
14854      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14855                                   Op1.getOperand(0),
14856                                   DAG.getConstant(~XorC, VT));
14857      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14858                         DAG.getConstant(C->getAPIntValue()+1, VT));
14859    }
14860  }
14861
14862  // Try to synthesize horizontal adds from adds of shuffles.
14863  EVT VT = N->getValueType(0);
14864  if ((Subtarget->hasSSSE3orAVX()) && (VT == MVT::v8i16 || VT == MVT::v4i32) &&
14865      isHorizontalBinOp(Op0, Op1, false))
14866    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14867
14868  return OptimizeConditionalInDecrement(N, DAG);
14869}
14870
14871SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14872                                             DAGCombinerInfo &DCI) const {
14873  SelectionDAG &DAG = DCI.DAG;
14874  switch (N->getOpcode()) {
14875  default: break;
14876  case ISD::EXTRACT_VECTOR_ELT:
14877    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14878  case ISD::VSELECT:
14879  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
14880  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14881  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14882  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14883  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14884  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14885  case ISD::SHL:
14886  case ISD::SRA:
14887  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14888  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14889  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14890  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14891  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14892  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14893  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14894  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14895  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14896  case X86ISD::FXOR:
14897  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14898  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14899  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14900  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14901  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
14902  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14903  case X86ISD::SHUFPS:      // Handle all target specific shuffles
14904  case X86ISD::SHUFPD:
14905  case X86ISD::PALIGN:
14906  case X86ISD::PUNPCKHBW:
14907  case X86ISD::PUNPCKHWD:
14908  case X86ISD::PUNPCKHDQ:
14909  case X86ISD::PUNPCKHQDQ:
14910  case X86ISD::VPUNPCKHBWY:
14911  case X86ISD::VPUNPCKHWDY:
14912  case X86ISD::VPUNPCKHDQY:
14913  case X86ISD::VPUNPCKHQDQY:
14914  case X86ISD::UNPCKHPS:
14915  case X86ISD::UNPCKHPD:
14916  case X86ISD::VUNPCKHPSY:
14917  case X86ISD::VUNPCKHPDY:
14918  case X86ISD::PUNPCKLBW:
14919  case X86ISD::PUNPCKLWD:
14920  case X86ISD::PUNPCKLDQ:
14921  case X86ISD::PUNPCKLQDQ:
14922  case X86ISD::VPUNPCKLBWY:
14923  case X86ISD::VPUNPCKLWDY:
14924  case X86ISD::VPUNPCKLDQY:
14925  case X86ISD::VPUNPCKLQDQY:
14926  case X86ISD::UNPCKLPS:
14927  case X86ISD::UNPCKLPD:
14928  case X86ISD::VUNPCKLPSY:
14929  case X86ISD::VUNPCKLPDY:
14930  case X86ISD::MOVHLPS:
14931  case X86ISD::MOVLHPS:
14932  case X86ISD::PSHUFD:
14933  case X86ISD::PSHUFHW:
14934  case X86ISD::PSHUFLW:
14935  case X86ISD::MOVSS:
14936  case X86ISD::MOVSD:
14937  case X86ISD::VPERMILPS:
14938  case X86ISD::VPERMILPSY:
14939  case X86ISD::VPERMILPD:
14940  case X86ISD::VPERMILPDY:
14941  case X86ISD::VPERM2F128:
14942  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14943  }
14944
14945  return SDValue();
14946}
14947
14948/// isTypeDesirableForOp - Return true if the target has native support for
14949/// the specified value type and it is 'desirable' to use the type for the
14950/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14951/// instruction encodings are longer and some i16 instructions are slow.
14952bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14953  if (!isTypeLegal(VT))
14954    return false;
14955  if (VT != MVT::i16)
14956    return true;
14957
14958  switch (Opc) {
14959  default:
14960    return true;
14961  case ISD::LOAD:
14962  case ISD::SIGN_EXTEND:
14963  case ISD::ZERO_EXTEND:
14964  case ISD::ANY_EXTEND:
14965  case ISD::SHL:
14966  case ISD::SRL:
14967  case ISD::SUB:
14968  case ISD::ADD:
14969  case ISD::MUL:
14970  case ISD::AND:
14971  case ISD::OR:
14972  case ISD::XOR:
14973    return false;
14974  }
14975}
14976
14977/// IsDesirableToPromoteOp - This method query the target whether it is
14978/// beneficial for dag combiner to promote the specified node. If true, it
14979/// should return the desired promotion type by reference.
14980bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14981  EVT VT = Op.getValueType();
14982  if (VT != MVT::i16)
14983    return false;
14984
14985  bool Promote = false;
14986  bool Commute = false;
14987  switch (Op.getOpcode()) {
14988  default: break;
14989  case ISD::LOAD: {
14990    LoadSDNode *LD = cast<LoadSDNode>(Op);
14991    // If the non-extending load has a single use and it's not live out, then it
14992    // might be folded.
14993    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14994                                                     Op.hasOneUse()*/) {
14995      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14996             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14997        // The only case where we'd want to promote LOAD (rather then it being
14998        // promoted as an operand is when it's only use is liveout.
14999        if (UI->getOpcode() != ISD::CopyToReg)
15000          return false;
15001      }
15002    }
15003    Promote = true;
15004    break;
15005  }
15006  case ISD::SIGN_EXTEND:
15007  case ISD::ZERO_EXTEND:
15008  case ISD::ANY_EXTEND:
15009    Promote = true;
15010    break;
15011  case ISD::SHL:
15012  case ISD::SRL: {
15013    SDValue N0 = Op.getOperand(0);
15014    // Look out for (store (shl (load), x)).
15015    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15016      return false;
15017    Promote = true;
15018    break;
15019  }
15020  case ISD::ADD:
15021  case ISD::MUL:
15022  case ISD::AND:
15023  case ISD::OR:
15024  case ISD::XOR:
15025    Commute = true;
15026    // fallthrough
15027  case ISD::SUB: {
15028    SDValue N0 = Op.getOperand(0);
15029    SDValue N1 = Op.getOperand(1);
15030    if (!Commute && MayFoldLoad(N1))
15031      return false;
15032    // Avoid disabling potential load folding opportunities.
15033    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15034      return false;
15035    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15036      return false;
15037    Promote = true;
15038  }
15039  }
15040
15041  PVT = MVT::i32;
15042  return Promote;
15043}
15044
15045//===----------------------------------------------------------------------===//
15046//                           X86 Inline Assembly Support
15047//===----------------------------------------------------------------------===//
15048
15049bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15050  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15051
15052  std::string AsmStr = IA->getAsmString();
15053
15054  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15055  SmallVector<StringRef, 4> AsmPieces;
15056  SplitString(AsmStr, AsmPieces, ";\n");
15057
15058  switch (AsmPieces.size()) {
15059  default: return false;
15060  case 1:
15061    AsmStr = AsmPieces[0];
15062    AsmPieces.clear();
15063    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
15064
15065    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15066    // we will turn this bswap into something that will be lowered to logical ops
15067    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
15068    // so don't worry about this.
15069    // bswap $0
15070    if (AsmPieces.size() == 2 &&
15071        (AsmPieces[0] == "bswap" ||
15072         AsmPieces[0] == "bswapq" ||
15073         AsmPieces[0] == "bswapl") &&
15074        (AsmPieces[1] == "$0" ||
15075         AsmPieces[1] == "${0:q}")) {
15076      // No need to check constraints, nothing other than the equivalent of
15077      // "=r,0" would be valid here.
15078      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15079      if (!Ty || Ty->getBitWidth() % 16 != 0)
15080        return false;
15081      return IntrinsicLowering::LowerToByteSwap(CI);
15082    }
15083    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15084    if (CI->getType()->isIntegerTy(16) &&
15085        AsmPieces.size() == 3 &&
15086        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
15087        AsmPieces[1] == "$$8," &&
15088        AsmPieces[2] == "${0:w}" &&
15089        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
15090      AsmPieces.clear();
15091      const std::string &ConstraintsStr = IA->getConstraintString();
15092      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15093      std::sort(AsmPieces.begin(), AsmPieces.end());
15094      if (AsmPieces.size() == 4 &&
15095          AsmPieces[0] == "~{cc}" &&
15096          AsmPieces[1] == "~{dirflag}" &&
15097          AsmPieces[2] == "~{flags}" &&
15098          AsmPieces[3] == "~{fpsr}") {
15099        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15100        if (!Ty || Ty->getBitWidth() % 16 != 0)
15101          return false;
15102        return IntrinsicLowering::LowerToByteSwap(CI);
15103      }
15104    }
15105    break;
15106  case 3:
15107    if (CI->getType()->isIntegerTy(32) &&
15108        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
15109      SmallVector<StringRef, 4> Words;
15110      SplitString(AsmPieces[0], Words, " \t,");
15111      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
15112          Words[2] == "${0:w}") {
15113        Words.clear();
15114        SplitString(AsmPieces[1], Words, " \t,");
15115        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
15116            Words[2] == "$0") {
15117          Words.clear();
15118          SplitString(AsmPieces[2], Words, " \t,");
15119          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
15120              Words[2] == "${0:w}") {
15121            AsmPieces.clear();
15122            const std::string &ConstraintsStr = IA->getConstraintString();
15123            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15124            std::sort(AsmPieces.begin(), AsmPieces.end());
15125            if (AsmPieces.size() == 4 &&
15126                AsmPieces[0] == "~{cc}" &&
15127                AsmPieces[1] == "~{dirflag}" &&
15128                AsmPieces[2] == "~{flags}" &&
15129                AsmPieces[3] == "~{fpsr}") {
15130              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15131              if (!Ty || Ty->getBitWidth() % 16 != 0)
15132                return false;
15133              return IntrinsicLowering::LowerToByteSwap(CI);
15134            }
15135          }
15136        }
15137      }
15138    }
15139
15140    if (CI->getType()->isIntegerTy(64)) {
15141      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15142      if (Constraints.size() >= 2 &&
15143          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15144          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15145        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15146        SmallVector<StringRef, 4> Words;
15147        SplitString(AsmPieces[0], Words, " \t");
15148        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
15149          Words.clear();
15150          SplitString(AsmPieces[1], Words, " \t");
15151          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
15152            Words.clear();
15153            SplitString(AsmPieces[2], Words, " \t,");
15154            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
15155                Words[2] == "%edx") {
15156              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15157              if (!Ty || Ty->getBitWidth() % 16 != 0)
15158                return false;
15159              return IntrinsicLowering::LowerToByteSwap(CI);
15160            }
15161          }
15162        }
15163      }
15164    }
15165    break;
15166  }
15167  return false;
15168}
15169
15170
15171
15172/// getConstraintType - Given a constraint letter, return the type of
15173/// constraint it is for this target.
15174X86TargetLowering::ConstraintType
15175X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15176  if (Constraint.size() == 1) {
15177    switch (Constraint[0]) {
15178    case 'R':
15179    case 'q':
15180    case 'Q':
15181    case 'f':
15182    case 't':
15183    case 'u':
15184    case 'y':
15185    case 'x':
15186    case 'Y':
15187    case 'l':
15188      return C_RegisterClass;
15189    case 'a':
15190    case 'b':
15191    case 'c':
15192    case 'd':
15193    case 'S':
15194    case 'D':
15195    case 'A':
15196      return C_Register;
15197    case 'I':
15198    case 'J':
15199    case 'K':
15200    case 'L':
15201    case 'M':
15202    case 'N':
15203    case 'G':
15204    case 'C':
15205    case 'e':
15206    case 'Z':
15207      return C_Other;
15208    default:
15209      break;
15210    }
15211  }
15212  return TargetLowering::getConstraintType(Constraint);
15213}
15214
15215/// Examine constraint type and operand type and determine a weight value.
15216/// This object must already have been set up with the operand type
15217/// and the current alternative constraint selected.
15218TargetLowering::ConstraintWeight
15219  X86TargetLowering::getSingleConstraintMatchWeight(
15220    AsmOperandInfo &info, const char *constraint) const {
15221  ConstraintWeight weight = CW_Invalid;
15222  Value *CallOperandVal = info.CallOperandVal;
15223    // If we don't have a value, we can't do a match,
15224    // but allow it at the lowest weight.
15225  if (CallOperandVal == NULL)
15226    return CW_Default;
15227  Type *type = CallOperandVal->getType();
15228  // Look at the constraint type.
15229  switch (*constraint) {
15230  default:
15231    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15232  case 'R':
15233  case 'q':
15234  case 'Q':
15235  case 'a':
15236  case 'b':
15237  case 'c':
15238  case 'd':
15239  case 'S':
15240  case 'D':
15241  case 'A':
15242    if (CallOperandVal->getType()->isIntegerTy())
15243      weight = CW_SpecificReg;
15244    break;
15245  case 'f':
15246  case 't':
15247  case 'u':
15248      if (type->isFloatingPointTy())
15249        weight = CW_SpecificReg;
15250      break;
15251  case 'y':
15252      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15253        weight = CW_SpecificReg;
15254      break;
15255  case 'x':
15256  case 'Y':
15257    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
15258      weight = CW_Register;
15259    break;
15260  case 'I':
15261    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15262      if (C->getZExtValue() <= 31)
15263        weight = CW_Constant;
15264    }
15265    break;
15266  case 'J':
15267    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15268      if (C->getZExtValue() <= 63)
15269        weight = CW_Constant;
15270    }
15271    break;
15272  case 'K':
15273    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15274      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15275        weight = CW_Constant;
15276    }
15277    break;
15278  case 'L':
15279    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15280      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15281        weight = CW_Constant;
15282    }
15283    break;
15284  case 'M':
15285    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15286      if (C->getZExtValue() <= 3)
15287        weight = CW_Constant;
15288    }
15289    break;
15290  case 'N':
15291    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15292      if (C->getZExtValue() <= 0xff)
15293        weight = CW_Constant;
15294    }
15295    break;
15296  case 'G':
15297  case 'C':
15298    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15299      weight = CW_Constant;
15300    }
15301    break;
15302  case 'e':
15303    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15304      if ((C->getSExtValue() >= -0x80000000LL) &&
15305          (C->getSExtValue() <= 0x7fffffffLL))
15306        weight = CW_Constant;
15307    }
15308    break;
15309  case 'Z':
15310    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15311      if (C->getZExtValue() <= 0xffffffff)
15312        weight = CW_Constant;
15313    }
15314    break;
15315  }
15316  return weight;
15317}
15318
15319/// LowerXConstraint - try to replace an X constraint, which matches anything,
15320/// with another that has more specific requirements based on the type of the
15321/// corresponding operand.
15322const char *X86TargetLowering::
15323LowerXConstraint(EVT ConstraintVT) const {
15324  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15325  // 'f' like normal targets.
15326  if (ConstraintVT.isFloatingPoint()) {
15327    if (Subtarget->hasXMMInt())
15328      return "Y";
15329    if (Subtarget->hasXMM())
15330      return "x";
15331  }
15332
15333  return TargetLowering::LowerXConstraint(ConstraintVT);
15334}
15335
15336/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15337/// vector.  If it is invalid, don't add anything to Ops.
15338void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15339                                                     std::string &Constraint,
15340                                                     std::vector<SDValue>&Ops,
15341                                                     SelectionDAG &DAG) const {
15342  SDValue Result(0, 0);
15343
15344  // Only support length 1 constraints for now.
15345  if (Constraint.length() > 1) return;
15346
15347  char ConstraintLetter = Constraint[0];
15348  switch (ConstraintLetter) {
15349  default: break;
15350  case 'I':
15351    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15352      if (C->getZExtValue() <= 31) {
15353        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15354        break;
15355      }
15356    }
15357    return;
15358  case 'J':
15359    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15360      if (C->getZExtValue() <= 63) {
15361        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15362        break;
15363      }
15364    }
15365    return;
15366  case 'K':
15367    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15368      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15369        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15370        break;
15371      }
15372    }
15373    return;
15374  case 'N':
15375    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15376      if (C->getZExtValue() <= 255) {
15377        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15378        break;
15379      }
15380    }
15381    return;
15382  case 'e': {
15383    // 32-bit signed value
15384    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15385      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15386                                           C->getSExtValue())) {
15387        // Widen to 64 bits here to get it sign extended.
15388        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15389        break;
15390      }
15391    // FIXME gcc accepts some relocatable values here too, but only in certain
15392    // memory models; it's complicated.
15393    }
15394    return;
15395  }
15396  case 'Z': {
15397    // 32-bit unsigned value
15398    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15399      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15400                                           C->getZExtValue())) {
15401        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15402        break;
15403      }
15404    }
15405    // FIXME gcc accepts some relocatable values here too, but only in certain
15406    // memory models; it's complicated.
15407    return;
15408  }
15409  case 'i': {
15410    // Literal immediates are always ok.
15411    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15412      // Widen to 64 bits here to get it sign extended.
15413      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15414      break;
15415    }
15416
15417    // In any sort of PIC mode addresses need to be computed at runtime by
15418    // adding in a register or some sort of table lookup.  These can't
15419    // be used as immediates.
15420    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15421      return;
15422
15423    // If we are in non-pic codegen mode, we allow the address of a global (with
15424    // an optional displacement) to be used with 'i'.
15425    GlobalAddressSDNode *GA = 0;
15426    int64_t Offset = 0;
15427
15428    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15429    while (1) {
15430      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15431        Offset += GA->getOffset();
15432        break;
15433      } else if (Op.getOpcode() == ISD::ADD) {
15434        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15435          Offset += C->getZExtValue();
15436          Op = Op.getOperand(0);
15437          continue;
15438        }
15439      } else if (Op.getOpcode() == ISD::SUB) {
15440        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15441          Offset += -C->getZExtValue();
15442          Op = Op.getOperand(0);
15443          continue;
15444        }
15445      }
15446
15447      // Otherwise, this isn't something we can handle, reject it.
15448      return;
15449    }
15450
15451    const GlobalValue *GV = GA->getGlobal();
15452    // If we require an extra load to get this address, as in PIC mode, we
15453    // can't accept it.
15454    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15455                                                        getTargetMachine())))
15456      return;
15457
15458    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15459                                        GA->getValueType(0), Offset);
15460    break;
15461  }
15462  }
15463
15464  if (Result.getNode()) {
15465    Ops.push_back(Result);
15466    return;
15467  }
15468  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15469}
15470
15471std::pair<unsigned, const TargetRegisterClass*>
15472X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15473                                                EVT VT) const {
15474  // First, see if this is a constraint that directly corresponds to an LLVM
15475  // register class.
15476  if (Constraint.size() == 1) {
15477    // GCC Constraint Letters
15478    switch (Constraint[0]) {
15479    default: break;
15480      // TODO: Slight differences here in allocation order and leaving
15481      // RIP in the class. Do they matter any more here than they do
15482      // in the normal allocation?
15483    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15484      if (Subtarget->is64Bit()) {
15485	if (VT == MVT::i32 || VT == MVT::f32)
15486	  return std::make_pair(0U, X86::GR32RegisterClass);
15487	else if (VT == MVT::i16)
15488	  return std::make_pair(0U, X86::GR16RegisterClass);
15489	else if (VT == MVT::i8 || VT == MVT::i1)
15490	  return std::make_pair(0U, X86::GR8RegisterClass);
15491	else if (VT == MVT::i64 || VT == MVT::f64)
15492	  return std::make_pair(0U, X86::GR64RegisterClass);
15493	break;
15494      }
15495      // 32-bit fallthrough
15496    case 'Q':   // Q_REGS
15497      if (VT == MVT::i32 || VT == MVT::f32)
15498	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15499      else if (VT == MVT::i16)
15500	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15501      else if (VT == MVT::i8 || VT == MVT::i1)
15502	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15503      else if (VT == MVT::i64)
15504	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15505      break;
15506    case 'r':   // GENERAL_REGS
15507    case 'l':   // INDEX_REGS
15508      if (VT == MVT::i8 || VT == MVT::i1)
15509        return std::make_pair(0U, X86::GR8RegisterClass);
15510      if (VT == MVT::i16)
15511        return std::make_pair(0U, X86::GR16RegisterClass);
15512      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15513        return std::make_pair(0U, X86::GR32RegisterClass);
15514      return std::make_pair(0U, X86::GR64RegisterClass);
15515    case 'R':   // LEGACY_REGS
15516      if (VT == MVT::i8 || VT == MVT::i1)
15517        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15518      if (VT == MVT::i16)
15519        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15520      if (VT == MVT::i32 || !Subtarget->is64Bit())
15521        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15522      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15523    case 'f':  // FP Stack registers.
15524      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15525      // value to the correct fpstack register class.
15526      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15527        return std::make_pair(0U, X86::RFP32RegisterClass);
15528      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15529        return std::make_pair(0U, X86::RFP64RegisterClass);
15530      return std::make_pair(0U, X86::RFP80RegisterClass);
15531    case 'y':   // MMX_REGS if MMX allowed.
15532      if (!Subtarget->hasMMX()) break;
15533      return std::make_pair(0U, X86::VR64RegisterClass);
15534    case 'Y':   // SSE_REGS if SSE2 allowed
15535      if (!Subtarget->hasXMMInt()) break;
15536      // FALL THROUGH.
15537    case 'x':   // SSE_REGS if SSE1 allowed
15538      if (!Subtarget->hasXMM()) break;
15539
15540      switch (VT.getSimpleVT().SimpleTy) {
15541      default: break;
15542      // Scalar SSE types.
15543      case MVT::f32:
15544      case MVT::i32:
15545        return std::make_pair(0U, X86::FR32RegisterClass);
15546      case MVT::f64:
15547      case MVT::i64:
15548        return std::make_pair(0U, X86::FR64RegisterClass);
15549      // Vector types.
15550      case MVT::v16i8:
15551      case MVT::v8i16:
15552      case MVT::v4i32:
15553      case MVT::v2i64:
15554      case MVT::v4f32:
15555      case MVT::v2f64:
15556        return std::make_pair(0U, X86::VR128RegisterClass);
15557      }
15558      break;
15559    }
15560  }
15561
15562  // Use the default implementation in TargetLowering to convert the register
15563  // constraint into a member of a register class.
15564  std::pair<unsigned, const TargetRegisterClass*> Res;
15565  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15566
15567  // Not found as a standard register?
15568  if (Res.second == 0) {
15569    // Map st(0) -> st(7) -> ST0
15570    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15571        tolower(Constraint[1]) == 's' &&
15572        tolower(Constraint[2]) == 't' &&
15573        Constraint[3] == '(' &&
15574        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15575        Constraint[5] == ')' &&
15576        Constraint[6] == '}') {
15577
15578      Res.first = X86::ST0+Constraint[4]-'0';
15579      Res.second = X86::RFP80RegisterClass;
15580      return Res;
15581    }
15582
15583    // GCC allows "st(0)" to be called just plain "st".
15584    if (StringRef("{st}").equals_lower(Constraint)) {
15585      Res.first = X86::ST0;
15586      Res.second = X86::RFP80RegisterClass;
15587      return Res;
15588    }
15589
15590    // flags -> EFLAGS
15591    if (StringRef("{flags}").equals_lower(Constraint)) {
15592      Res.first = X86::EFLAGS;
15593      Res.second = X86::CCRRegisterClass;
15594      return Res;
15595    }
15596
15597    // 'A' means EAX + EDX.
15598    if (Constraint == "A") {
15599      Res.first = X86::EAX;
15600      Res.second = X86::GR32_ADRegisterClass;
15601      return Res;
15602    }
15603    return Res;
15604  }
15605
15606  // Otherwise, check to see if this is a register class of the wrong value
15607  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15608  // turn into {ax},{dx}.
15609  if (Res.second->hasType(VT))
15610    return Res;   // Correct type already, nothing to do.
15611
15612  // All of the single-register GCC register classes map their values onto
15613  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15614  // really want an 8-bit or 32-bit register, map to the appropriate register
15615  // class and return the appropriate register.
15616  if (Res.second == X86::GR16RegisterClass) {
15617    if (VT == MVT::i8) {
15618      unsigned DestReg = 0;
15619      switch (Res.first) {
15620      default: break;
15621      case X86::AX: DestReg = X86::AL; break;
15622      case X86::DX: DestReg = X86::DL; break;
15623      case X86::CX: DestReg = X86::CL; break;
15624      case X86::BX: DestReg = X86::BL; break;
15625      }
15626      if (DestReg) {
15627        Res.first = DestReg;
15628        Res.second = X86::GR8RegisterClass;
15629      }
15630    } else if (VT == MVT::i32) {
15631      unsigned DestReg = 0;
15632      switch (Res.first) {
15633      default: break;
15634      case X86::AX: DestReg = X86::EAX; break;
15635      case X86::DX: DestReg = X86::EDX; break;
15636      case X86::CX: DestReg = X86::ECX; break;
15637      case X86::BX: DestReg = X86::EBX; break;
15638      case X86::SI: DestReg = X86::ESI; break;
15639      case X86::DI: DestReg = X86::EDI; break;
15640      case X86::BP: DestReg = X86::EBP; break;
15641      case X86::SP: DestReg = X86::ESP; break;
15642      }
15643      if (DestReg) {
15644        Res.first = DestReg;
15645        Res.second = X86::GR32RegisterClass;
15646      }
15647    } else if (VT == MVT::i64) {
15648      unsigned DestReg = 0;
15649      switch (Res.first) {
15650      default: break;
15651      case X86::AX: DestReg = X86::RAX; break;
15652      case X86::DX: DestReg = X86::RDX; break;
15653      case X86::CX: DestReg = X86::RCX; break;
15654      case X86::BX: DestReg = X86::RBX; break;
15655      case X86::SI: DestReg = X86::RSI; break;
15656      case X86::DI: DestReg = X86::RDI; break;
15657      case X86::BP: DestReg = X86::RBP; break;
15658      case X86::SP: DestReg = X86::RSP; break;
15659      }
15660      if (DestReg) {
15661        Res.first = DestReg;
15662        Res.second = X86::GR64RegisterClass;
15663      }
15664    }
15665  } else if (Res.second == X86::FR32RegisterClass ||
15666             Res.second == X86::FR64RegisterClass ||
15667             Res.second == X86::VR128RegisterClass) {
15668    // Handle references to XMM physical registers that got mapped into the
15669    // wrong class.  This can happen with constraints like {xmm0} where the
15670    // target independent register mapper will just pick the first match it can
15671    // find, ignoring the required type.
15672    if (VT == MVT::f32)
15673      Res.second = X86::FR32RegisterClass;
15674    else if (VT == MVT::f64)
15675      Res.second = X86::FR64RegisterClass;
15676    else if (X86::VR128RegisterClass->hasType(VT))
15677      Res.second = X86::VR128RegisterClass;
15678  }
15679
15680  return Res;
15681}
15682