X86ISelLowering.cpp revision f2db5b48d0a4f0800e83d8c3cd6dc5ad6a551bd6
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
65
66  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
67
68  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
69    if (is64Bit) return new X8664_MachoTargetObjectFile();
70    return new TargetLoweringObjectFileMachO();
71  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
72    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
73    return new X8632_ELFTargetObjectFile(TM);
74  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
75    return new TargetLoweringObjectFileCOFF();
76  }
77  llvm_unreachable("unknown subtarget type");
78}
79
80X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
81  : TargetLowering(TM, createTLOF(TM)) {
82  Subtarget = &TM.getSubtarget<X86Subtarget>();
83  X86ScalarSSEf64 = Subtarget->hasSSE2();
84  X86ScalarSSEf32 = Subtarget->hasSSE1();
85  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
86
87  RegInfo = TM.getRegisterInfo();
88  TD = getTargetData();
89
90  // Set up the TargetLowering object.
91
92  // X86 is weird, it always uses i8 for shift amounts and setcc results.
93  setShiftAmountType(MVT::i8);
94  setBooleanContents(ZeroOrOneBooleanContent);
95  setSchedulingPreference(Sched::RegPressure);
96  setStackPointerRegisterToSaveRestore(X86StackPtr);
97
98  if (Subtarget->isTargetDarwin()) {
99    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
100    setUseUnderscoreSetJmp(false);
101    setUseUnderscoreLongJmp(false);
102  } else if (Subtarget->isTargetMingw()) {
103    // MS runtime is weird: it exports _setjmp, but longjmp!
104    setUseUnderscoreSetJmp(true);
105    setUseUnderscoreLongJmp(false);
106  } else {
107    setUseUnderscoreSetJmp(true);
108    setUseUnderscoreLongJmp(true);
109  }
110
111  // Set up the register classes.
112  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
113  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115  if (Subtarget->is64Bit())
116    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117
118  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
119
120  // We don't accept any truncstore of integer registers.
121  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
123  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
124  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
125  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
126  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
127
128  // SETOEQ and SETUNE require checking two conditions.
129  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
130  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
131  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
132  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
133  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
135
136  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
137  // operation.
138  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
139  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
141
142  if (Subtarget->is64Bit()) {
143    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
144    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
145  } else if (!UseSoftFloat) {
146    // We have an algorithm for SSE2->double, and we turn this into a
147    // 64-bit FILD followed by conditional FADD for other targets.
148    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
149    // We have an algorithm for SSE2, and we turn this into a 64-bit
150    // FILD for other targets.
151    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
152  }
153
154  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
155  // this operation.
156  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
157  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
158
159  if (!UseSoftFloat) {
160    // SSE has no i16 to fp conversion, only i32
161    if (X86ScalarSSEf32) {
162      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
163      // f32 and f64 cases are Legal, f80 case is not
164      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
165    } else {
166      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168    }
169  } else {
170    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
171    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
172  }
173
174  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
175  // are Legal, f80 is custom lowered.
176  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
177  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
178
179  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
180  // this operation.
181  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
182  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
183
184  if (X86ScalarSSEf32) {
185    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
186    // f32 and f64 cases are Legal, f80 case is not
187    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
188  } else {
189    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191  }
192
193  // Handle FP_TO_UINT by promoting the destination to a larger signed
194  // conversion.
195  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
197  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
198
199  if (Subtarget->is64Bit()) {
200    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
201    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
202  } else if (!UseSoftFloat) {
203    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
204      // Expand FP_TO_UINT into a select.
205      // FIXME: We would like to use a Custom expander here eventually to do
206      // the optimal thing for SSE vs. the default expansion in the legalizer.
207      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
208    else
209      // With SSE3 we can use fisttpll to convert to a signed i64; without
210      // SSE, we're stuck with a fistpll.
211      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
212  }
213
214  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
215  if (!X86ScalarSSEf64) {
216    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
217    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
218    if (Subtarget->is64Bit()) {
219      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
220      // Without SSE, i64->f64 goes through memory; i64->MMX is Legal.
221      if (Subtarget->hasMMX() && !DisableMMX)
222        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Custom);
223      else
224        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
225    }
226  }
227
228  // Scalar integer divide and remainder are lowered to use operations that
229  // produce two results, to match the available instructions. This exposes
230  // the two-result form to trivial CSE, which is able to combine x/y and x%y
231  // into a single instruction.
232  //
233  // Scalar integer multiply-high is also lowered to use two-result
234  // operations, to match the available instructions. However, plain multiply
235  // (low) operations are left as Legal, as there are single-result
236  // instructions for this in x86. Using the two-result multiply instructions
237  // when both high and low results are needed must be arranged by dagcombine.
238  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
239  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
240  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
241  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
242  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
243  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
244  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
248  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
249  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
262
263  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
264  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
265  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
266  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
267  if (Subtarget->is64Bit())
268    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
269  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
270  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
271  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
272  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
273  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
274  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
275  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
276  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
277
278  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
279  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
280  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
281  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
282  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
283  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
284  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295
296  // These should be promoted to a larger select which is supported.
297  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
298  // X86 wants to expand cmov itself.
299  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
300  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
301  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
302  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
303  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
305  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
306  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
307  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
309  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
310  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
313    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
314  }
315  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
316
317  // Darwin ABI issue.
318  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
319  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
320  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
321  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
322  if (Subtarget->is64Bit())
323    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
324  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
325  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
326  if (Subtarget->is64Bit()) {
327    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
328    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
329    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
330    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
331    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
332  }
333  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
334  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
335  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
336  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
337  if (Subtarget->is64Bit()) {
338    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
339    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
340    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
341  }
342
343  if (Subtarget->hasSSE1())
344    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
345
346  // We may not have a libcall for MEMBARRIER so we should lower this.
347  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
348
349  // On X86 and X86-64, atomic operations are lowered to locked instructions.
350  // Locked instructions, in turn, have implicit fence semantics (all memory
351  // operations are flushed before issuing the locked instruction, and they
352  // are not buffered), so we can fold away the common pattern of
353  // fence-atomic-fence.
354  setShouldFoldAtomicFences(true);
355
356  // Expand certain atomics
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
358  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
359  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
360  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
361
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
363  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
364  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
365  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
366
367  if (!Subtarget->is64Bit()) {
368    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
374    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
375  }
376
377  // FIXME - use subtarget debug flags
378  if (!Subtarget->isTargetDarwin() &&
379      !Subtarget->isTargetELF() &&
380      !Subtarget->isTargetCygMing()) {
381    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
382  }
383
384  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
385  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
386  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
387  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
388  if (Subtarget->is64Bit()) {
389    setExceptionPointerRegister(X86::RAX);
390    setExceptionSelectorRegister(X86::RDX);
391  } else {
392    setExceptionPointerRegister(X86::EAX);
393    setExceptionSelectorRegister(X86::EDX);
394  }
395  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
396  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
397
398  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
399
400  setOperationAction(ISD::TRAP, MVT::Other, Legal);
401
402  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
403  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
404  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
405  if (Subtarget->is64Bit()) {
406    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
407    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
408  } else {
409    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
410    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
411  }
412
413  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
414  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
415  if (Subtarget->is64Bit())
416    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
417  if (Subtarget->isTargetCygMing())
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
419  else
420    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
421
422  if (!UseSoftFloat && X86ScalarSSEf64) {
423    // f32 and f64 use SSE.
424    // Set up the FP register classes.
425    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
426    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
427
428    // Use ANDPD to simulate FABS.
429    setOperationAction(ISD::FABS , MVT::f64, Custom);
430    setOperationAction(ISD::FABS , MVT::f32, Custom);
431
432    // Use XORP to simulate FNEG.
433    setOperationAction(ISD::FNEG , MVT::f64, Custom);
434    setOperationAction(ISD::FNEG , MVT::f32, Custom);
435
436    // Use ANDPD and ORPD to simulate FCOPYSIGN.
437    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
438    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
439
440    // We don't support sin/cos/fmod
441    setOperationAction(ISD::FSIN , MVT::f64, Expand);
442    setOperationAction(ISD::FCOS , MVT::f64, Expand);
443    setOperationAction(ISD::FSIN , MVT::f32, Expand);
444    setOperationAction(ISD::FCOS , MVT::f32, Expand);
445
446    // Expand FP immediates into loads from the stack, except for the special
447    // cases we handle.
448    addLegalFPImmediate(APFloat(+0.0)); // xorpd
449    addLegalFPImmediate(APFloat(+0.0f)); // xorps
450  } else if (!UseSoftFloat && X86ScalarSSEf32) {
451    // Use SSE for f32, x87 for f64.
452    // Set up the FP register classes.
453    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
454    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
455
456    // Use ANDPS to simulate FABS.
457    setOperationAction(ISD::FABS , MVT::f32, Custom);
458
459    // Use XORP to simulate FNEG.
460    setOperationAction(ISD::FNEG , MVT::f32, Custom);
461
462    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
463
464    // Use ANDPS and ORPS to simulate FCOPYSIGN.
465    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
467
468    // We don't support sin/cos/fmod
469    setOperationAction(ISD::FSIN , MVT::f32, Expand);
470    setOperationAction(ISD::FCOS , MVT::f32, Expand);
471
472    // Special cases we handle for FP constants.
473    addLegalFPImmediate(APFloat(+0.0f)); // xorps
474    addLegalFPImmediate(APFloat(+0.0)); // FLD0
475    addLegalFPImmediate(APFloat(+1.0)); // FLD1
476    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
477    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478
479    if (!UnsafeFPMath) {
480      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
481      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
482    }
483  } else if (!UseSoftFloat) {
484    // f32 and f64 in x87.
485    // Set up the FP register classes.
486    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
487    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
488
489    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
490    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
491    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
492    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
493
494    if (!UnsafeFPMath) {
495      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
496      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
497    }
498    addLegalFPImmediate(APFloat(+0.0)); // FLD0
499    addLegalFPImmediate(APFloat(+1.0)); // FLD1
500    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
501    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
502    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
503    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
504    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
505    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
506  }
507
508  // Long double always uses X87.
509  if (!UseSoftFloat) {
510    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
511    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
512    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
513    {
514      bool ignored;
515      APFloat TmpFlt(+0.0);
516      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
517                     &ignored);
518      addLegalFPImmediate(TmpFlt);  // FLD0
519      TmpFlt.changeSign();
520      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
521      APFloat TmpFlt2(+1.0);
522      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
523                      &ignored);
524      addLegalFPImmediate(TmpFlt2);  // FLD1
525      TmpFlt2.changeSign();
526      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
527    }
528
529    if (!UnsafeFPMath) {
530      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
531      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
532    }
533  }
534
535  // Always use a library call for pow.
536  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
537  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
538  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
539
540  setOperationAction(ISD::FLOG, MVT::f80, Expand);
541  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
542  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
543  setOperationAction(ISD::FEXP, MVT::f80, Expand);
544  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
545
546  // First set operation action for all vector types to either promote
547  // (for widening) or expand (for scalarization). Then we will selectively
548  // turn on ones that can be effectively codegen'd.
549  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
550       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
551    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
566    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
567    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
600    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
604    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
605         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
606      setTruncStoreAction((MVT::SimpleValueType)VT,
607                          (MVT::SimpleValueType)InnerVT, Expand);
608    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
609    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
610    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
611  }
612
613  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
614  // with -msoft-float, disable use of MMX as well.
615  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
616    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass, false);
617    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false);
618    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false);
619
620    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false);
621
622    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
623    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
624    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
625    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
626
627    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
628    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
629    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
630    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
631
632    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
633    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
634
635    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
636    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
637    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
638    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
639    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
640    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
641    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
642
643    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
644    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
645    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
646    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
647    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
648    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
649    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
650
651    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
652    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
653    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
654    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
655    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
656    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
657    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
658
659    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
660    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
661    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
662    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
663    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
664    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
665    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
666
667    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
668    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
669    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
670    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
671
672    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
674    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
675    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
676
677    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
678    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
679    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
680
681    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
682
683    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
684    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
685    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
686    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
687    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
688    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
689    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
690
691    if (!X86ScalarSSEf64 && Subtarget->is64Bit()) {
692      setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Custom);
693      setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Custom);
694      setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Custom);
695      setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Custom);
696    }
697  }
698
699  if (!UseSoftFloat && Subtarget->hasSSE1()) {
700    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
701
702    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
703    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
704    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
705    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
706    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
707    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
708    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
709    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
710    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
711    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
712    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
713    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
714  }
715
716  if (!UseSoftFloat && Subtarget->hasSSE2()) {
717    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
718
719    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
720    // registers cannot be used even for integer operations.
721    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
722    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
723    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
724    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
725
726    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
727    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
728    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
729    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
730    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
731    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
732    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
733    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
734    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
735    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
736    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
737    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
738    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
739    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
740    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
741    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
742
743    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
744    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
745    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
746    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
747
748    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
749    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
750    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
751    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
752    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
753
754    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
755    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
756    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
757    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
758    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
759
760    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
761    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
762      EVT VT = (MVT::SimpleValueType)i;
763      // Do not attempt to custom lower non-power-of-2 vectors
764      if (!isPowerOf2_32(VT.getVectorNumElements()))
765        continue;
766      // Do not attempt to custom lower non-128-bit vectors
767      if (!VT.is128BitVector())
768        continue;
769      setOperationAction(ISD::BUILD_VECTOR,
770                         VT.getSimpleVT().SimpleTy, Custom);
771      setOperationAction(ISD::VECTOR_SHUFFLE,
772                         VT.getSimpleVT().SimpleTy, Custom);
773      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
774                         VT.getSimpleVT().SimpleTy, Custom);
775    }
776
777    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
778    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
779    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
780    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
781    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
782    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
783
784    if (Subtarget->is64Bit()) {
785      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
786      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
787    }
788
789    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
790    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
791      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
792      EVT VT = SVT;
793
794      // Do not attempt to promote non-128-bit vectors
795      if (!VT.is128BitVector())
796        continue;
797
798      setOperationAction(ISD::AND,    SVT, Promote);
799      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
800      setOperationAction(ISD::OR,     SVT, Promote);
801      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
802      setOperationAction(ISD::XOR,    SVT, Promote);
803      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
804      setOperationAction(ISD::LOAD,   SVT, Promote);
805      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
806      setOperationAction(ISD::SELECT, SVT, Promote);
807      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
808    }
809
810    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
811
812    // Custom lower v2i64 and v2f64 selects.
813    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
814    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
815    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
816    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
817
818    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
819    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
820    if (!DisableMMX && Subtarget->hasMMX()) {
821      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
822      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
823    }
824  }
825
826  if (Subtarget->hasSSE41()) {
827    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
828    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
829    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
830    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
831    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
832    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
833    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
834    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
835    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
836    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
837
838    // FIXME: Do we need to handle scalar-to-vector here?
839    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
840
841    // Can turn SHL into an integer multiply.
842    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
843    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
844
845    // i8 and i16 vectors are custom , because the source register and source
846    // source memory operand types are not the same width.  f32 vectors are
847    // custom since the immediate controlling the insert encodes additional
848    // information.
849    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
850    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
851    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
852    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
853
854    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
855    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
856    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
857    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
858
859    if (Subtarget->is64Bit()) {
860      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
861      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
862    }
863  }
864
865  if (Subtarget->hasSSE42()) {
866    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
867  }
868
869  if (!UseSoftFloat && Subtarget->hasAVX()) {
870    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
871    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
872    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
873    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
874    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
875
876    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
877    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
879    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
880    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
881    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
882    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
883    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
884    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
885    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
886    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
887    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
888    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
889    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
890    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
891
892    // Operations to consider commented out -v16i16 v32i8
893    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
894    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
895    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
896    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
897    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
898    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
899    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
900    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
901    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
902    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
903    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
904    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
905    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
906    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
907
908    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
909    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
910    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
911    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
912
913    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
914    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
915    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
916    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
917    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
918
919    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
920    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
921    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
922    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
923    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
924    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
925
926#if 0
927    // Not sure we want to do this since there are no 256-bit integer
928    // operations in AVX
929
930    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
931    // This includes 256-bit vectors
932    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
933      EVT VT = (MVT::SimpleValueType)i;
934
935      // Do not attempt to custom lower non-power-of-2 vectors
936      if (!isPowerOf2_32(VT.getVectorNumElements()))
937        continue;
938
939      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
940      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
941      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
942    }
943
944    if (Subtarget->is64Bit()) {
945      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
946      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
947    }
948#endif
949
950#if 0
951    // Not sure we want to do this since there are no 256-bit integer
952    // operations in AVX
953
954    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
955    // Including 256-bit vectors
956    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
957      EVT VT = (MVT::SimpleValueType)i;
958
959      if (!VT.is256BitVector()) {
960        continue;
961      }
962      setOperationAction(ISD::AND,    VT, Promote);
963      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
964      setOperationAction(ISD::OR,     VT, Promote);
965      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
966      setOperationAction(ISD::XOR,    VT, Promote);
967      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
968      setOperationAction(ISD::LOAD,   VT, Promote);
969      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
970      setOperationAction(ISD::SELECT, VT, Promote);
971      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
972    }
973
974    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
975#endif
976  }
977
978  // We want to custom lower some of our intrinsics.
979  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
980
981  // Add/Sub/Mul with overflow operations are custom lowered.
982  setOperationAction(ISD::SADDO, MVT::i32, Custom);
983  setOperationAction(ISD::UADDO, MVT::i32, Custom);
984  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
985  setOperationAction(ISD::USUBO, MVT::i32, Custom);
986  setOperationAction(ISD::SMULO, MVT::i32, Custom);
987
988  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
989  // handle type legalization for these operations here.
990  //
991  // FIXME: We really should do custom legalization for addition and
992  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
993  // than generic legalization for 64-bit multiplication-with-overflow, though.
994  if (Subtarget->is64Bit()) {
995    setOperationAction(ISD::SADDO, MVT::i64, Custom);
996    setOperationAction(ISD::UADDO, MVT::i64, Custom);
997    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
998    setOperationAction(ISD::USUBO, MVT::i64, Custom);
999    setOperationAction(ISD::SMULO, MVT::i64, Custom);
1000  }
1001
1002  if (!Subtarget->is64Bit()) {
1003    // These libcalls are not available in 32-bit.
1004    setLibcallName(RTLIB::SHL_I128, 0);
1005    setLibcallName(RTLIB::SRL_I128, 0);
1006    setLibcallName(RTLIB::SRA_I128, 0);
1007  }
1008
1009  // We have target-specific dag combine patterns for the following nodes:
1010  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1011  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1012  setTargetDAGCombine(ISD::BUILD_VECTOR);
1013  setTargetDAGCombine(ISD::SELECT);
1014  setTargetDAGCombine(ISD::SHL);
1015  setTargetDAGCombine(ISD::SRA);
1016  setTargetDAGCombine(ISD::SRL);
1017  setTargetDAGCombine(ISD::OR);
1018  setTargetDAGCombine(ISD::STORE);
1019  setTargetDAGCombine(ISD::ZERO_EXTEND);
1020  if (Subtarget->is64Bit())
1021    setTargetDAGCombine(ISD::MUL);
1022
1023  computeRegisterProperties();
1024
1025  // FIXME: These should be based on subtarget info. Plus, the values should
1026  // be smaller when we are in optimizing for size mode.
1027  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1028  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1029  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1030  setPrefLoopAlignment(16);
1031  benefitFromCodePlacementOpt = true;
1032}
1033
1034
1035MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1036  return MVT::i8;
1037}
1038
1039
1040/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1041/// the desired ByVal argument alignment.
1042static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1043  if (MaxAlign == 16)
1044    return;
1045  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1046    if (VTy->getBitWidth() == 128)
1047      MaxAlign = 16;
1048  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1049    unsigned EltAlign = 0;
1050    getMaxByValAlign(ATy->getElementType(), EltAlign);
1051    if (EltAlign > MaxAlign)
1052      MaxAlign = EltAlign;
1053  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1054    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1055      unsigned EltAlign = 0;
1056      getMaxByValAlign(STy->getElementType(i), EltAlign);
1057      if (EltAlign > MaxAlign)
1058        MaxAlign = EltAlign;
1059      if (MaxAlign == 16)
1060        break;
1061    }
1062  }
1063  return;
1064}
1065
1066/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1067/// function arguments in the caller parameter area. For X86, aggregates
1068/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1069/// are at 4-byte boundaries.
1070unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1071  if (Subtarget->is64Bit()) {
1072    // Max of 8 and alignment of type.
1073    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1074    if (TyAlign > 8)
1075      return TyAlign;
1076    return 8;
1077  }
1078
1079  unsigned Align = 4;
1080  if (Subtarget->hasSSE1())
1081    getMaxByValAlign(Ty, Align);
1082  return Align;
1083}
1084
1085/// getOptimalMemOpType - Returns the target specific optimal type for load
1086/// and store operations as a result of memset, memcpy, and memmove
1087/// lowering. If DstAlign is zero that means it's safe to destination
1088/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1089/// means there isn't a need to check it against alignment requirement,
1090/// probably because the source does not need to be loaded. If
1091/// 'NonScalarIntSafe' is true, that means it's safe to return a
1092/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1093/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1094/// constant so it does not need to be loaded.
1095/// It returns EVT::Other if the type should be determined using generic
1096/// target-independent logic.
1097EVT
1098X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1099                                       unsigned DstAlign, unsigned SrcAlign,
1100                                       bool NonScalarIntSafe,
1101                                       bool MemcpyStrSrc,
1102                                       MachineFunction &MF) const {
1103  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1104  // linux.  This is because the stack realignment code can't handle certain
1105  // cases like PR2962.  This should be removed when PR2962 is fixed.
1106  const Function *F = MF.getFunction();
1107  if (NonScalarIntSafe &&
1108      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1109    if (Size >= 16 &&
1110        (Subtarget->isUnalignedMemAccessFast() ||
1111         ((DstAlign == 0 || DstAlign >= 16) &&
1112          (SrcAlign == 0 || SrcAlign >= 16))) &&
1113        Subtarget->getStackAlignment() >= 16) {
1114      if (Subtarget->hasSSE2())
1115        return MVT::v4i32;
1116      if (Subtarget->hasSSE1())
1117        return MVT::v4f32;
1118    } else if (!MemcpyStrSrc && Size >= 8 &&
1119               !Subtarget->is64Bit() &&
1120               Subtarget->getStackAlignment() >= 8 &&
1121               Subtarget->hasSSE2()) {
1122      // Do not use f64 to lower memcpy if source is string constant. It's
1123      // better to use i32 to avoid the loads.
1124      return MVT::f64;
1125    }
1126  }
1127  if (Subtarget->is64Bit() && Size >= 8)
1128    return MVT::i64;
1129  return MVT::i32;
1130}
1131
1132/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1133/// current function.  The returned value is a member of the
1134/// MachineJumpTableInfo::JTEntryKind enum.
1135unsigned X86TargetLowering::getJumpTableEncoding() const {
1136  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1137  // symbol.
1138  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1139      Subtarget->isPICStyleGOT())
1140    return MachineJumpTableInfo::EK_Custom32;
1141
1142  // Otherwise, use the normal jump table encoding heuristics.
1143  return TargetLowering::getJumpTableEncoding();
1144}
1145
1146/// getPICBaseSymbol - Return the X86-32 PIC base.
1147MCSymbol *
1148X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1149                                    MCContext &Ctx) const {
1150  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1151  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1152                               Twine(MF->getFunctionNumber())+"$pb");
1153}
1154
1155
1156const MCExpr *
1157X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1158                                             const MachineBasicBlock *MBB,
1159                                             unsigned uid,MCContext &Ctx) const{
1160  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1161         Subtarget->isPICStyleGOT());
1162  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1163  // entries.
1164  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1165                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1166}
1167
1168/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1169/// jumptable.
1170SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1171                                                    SelectionDAG &DAG) const {
1172  if (!Subtarget->is64Bit())
1173    // This doesn't have DebugLoc associated with it, but is not really the
1174    // same as a Register.
1175    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1176  return Table;
1177}
1178
1179/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1180/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1181/// MCExpr.
1182const MCExpr *X86TargetLowering::
1183getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1184                             MCContext &Ctx) const {
1185  // X86-64 uses RIP relative addressing based on the jump table label.
1186  if (Subtarget->isPICStyleRIPRel())
1187    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1188
1189  // Otherwise, the reference is relative to the PIC base.
1190  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1191}
1192
1193/// getFunctionAlignment - Return the Log2 alignment of this function.
1194unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1195  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1196}
1197
1198std::pair<const TargetRegisterClass*, uint8_t>
1199X86TargetLowering::findRepresentativeClass(EVT VT) const{
1200  const TargetRegisterClass *RRC = 0;
1201  uint8_t Cost = 1;
1202  switch (VT.getSimpleVT().SimpleTy) {
1203  default:
1204    return TargetLowering::findRepresentativeClass(VT);
1205  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1206    RRC = (Subtarget->is64Bit()
1207           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1208    break;
1209  case MVT::v8i8: case MVT::v4i16:
1210  case MVT::v2i32: case MVT::v1i64:
1211    RRC = X86::VR64RegisterClass;
1212    break;
1213  case MVT::f32: case MVT::f64:
1214  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1215  case MVT::v4f32: case MVT::v2f64:
1216  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1217  case MVT::v4f64:
1218    RRC = X86::VR128RegisterClass;
1219    break;
1220  }
1221  return std::make_pair(RRC, Cost);
1222}
1223
1224unsigned
1225X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1226                                       MachineFunction &MF) const {
1227  unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
1228  switch (RC->getID()) {
1229  default:
1230    return 0;
1231  case X86::GR32RegClassID:
1232    return 4 - FPDiff;
1233  case X86::GR64RegClassID:
1234    return 8 - FPDiff;
1235  case X86::VR128RegClassID:
1236    return Subtarget->is64Bit() ? 10 : 4;
1237  case X86::VR64RegClassID:
1238    return 4;
1239  }
1240}
1241
1242bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1243                                               unsigned &Offset) const {
1244  if (!Subtarget->isTargetLinux())
1245    return false;
1246
1247  if (Subtarget->is64Bit()) {
1248    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1249    Offset = 0x28;
1250    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1251      AddressSpace = 256;
1252    else
1253      AddressSpace = 257;
1254  } else {
1255    // %gs:0x14 on i386
1256    Offset = 0x14;
1257    AddressSpace = 256;
1258  }
1259  return true;
1260}
1261
1262
1263//===----------------------------------------------------------------------===//
1264//               Return Value Calling Convention Implementation
1265//===----------------------------------------------------------------------===//
1266
1267#include "X86GenCallingConv.inc"
1268
1269bool
1270X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1271                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1272                        LLVMContext &Context) const {
1273  SmallVector<CCValAssign, 16> RVLocs;
1274  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1275                 RVLocs, Context);
1276  return CCInfo.CheckReturn(Outs, RetCC_X86);
1277}
1278
1279SDValue
1280X86TargetLowering::LowerReturn(SDValue Chain,
1281                               CallingConv::ID CallConv, bool isVarArg,
1282                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1283                               const SmallVectorImpl<SDValue> &OutVals,
1284                               DebugLoc dl, SelectionDAG &DAG) const {
1285  MachineFunction &MF = DAG.getMachineFunction();
1286  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1287
1288  SmallVector<CCValAssign, 16> RVLocs;
1289  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1290                 RVLocs, *DAG.getContext());
1291  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1292
1293  // Add the regs to the liveout set for the function.
1294  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1295  for (unsigned i = 0; i != RVLocs.size(); ++i)
1296    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1297      MRI.addLiveOut(RVLocs[i].getLocReg());
1298
1299  SDValue Flag;
1300
1301  SmallVector<SDValue, 6> RetOps;
1302  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1303  // Operand #1 = Bytes To Pop
1304  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1305                   MVT::i16));
1306
1307  // Copy the result values into the output registers.
1308  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1309    CCValAssign &VA = RVLocs[i];
1310    assert(VA.isRegLoc() && "Can only return in registers!");
1311    SDValue ValToCopy = OutVals[i];
1312    EVT ValVT = ValToCopy.getValueType();
1313
1314    // If this is x86-64, and we disabled SSE, we can't return FP values
1315    if ((ValVT == MVT::f32 || ValVT == MVT::f64) &&
1316        (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1317      report_fatal_error("SSE register return with SSE disabled");
1318    }
1319    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1320    // llvm-gcc has never done it right and no one has noticed, so this
1321    // should be OK for now.
1322    if (ValVT == MVT::f64 &&
1323        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1324      report_fatal_error("SSE2 register return with SSE2 disabled");
1325
1326    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1327    // the RET instruction and handled by the FP Stackifier.
1328    if (VA.getLocReg() == X86::ST0 ||
1329        VA.getLocReg() == X86::ST1) {
1330      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1331      // change the value to the FP stack register class.
1332      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1333        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1334      RetOps.push_back(ValToCopy);
1335      // Don't emit a copytoreg.
1336      continue;
1337    }
1338
1339    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1340    // which is returned in RAX / RDX.
1341    if (Subtarget->is64Bit()) {
1342      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1343        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1344        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1345          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1346                                  ValToCopy);
1347
1348          // If we don't have SSE2 available, convert to v4f32 so the generated
1349          // register is legal.
1350          if (!Subtarget->hasSSE2())
1351            ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32,ValToCopy);
1352        }
1353      }
1354    }
1355
1356    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1357    Flag = Chain.getValue(1);
1358  }
1359
1360  // The x86-64 ABI for returning structs by value requires that we copy
1361  // the sret argument into %rax for the return. We saved the argument into
1362  // a virtual register in the entry block, so now we copy the value out
1363  // and into %rax.
1364  if (Subtarget->is64Bit() &&
1365      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1366    MachineFunction &MF = DAG.getMachineFunction();
1367    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1368    unsigned Reg = FuncInfo->getSRetReturnReg();
1369    assert(Reg &&
1370           "SRetReturnReg should have been set in LowerFormalArguments().");
1371    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1372
1373    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1374    Flag = Chain.getValue(1);
1375
1376    // RAX now acts like a return value.
1377    MRI.addLiveOut(X86::RAX);
1378  }
1379
1380  RetOps[0] = Chain;  // Update chain.
1381
1382  // Add the flag if we have it.
1383  if (Flag.getNode())
1384    RetOps.push_back(Flag);
1385
1386  return DAG.getNode(X86ISD::RET_FLAG, dl,
1387                     MVT::Other, &RetOps[0], RetOps.size());
1388}
1389
1390/// LowerCallResult - Lower the result values of a call into the
1391/// appropriate copies out of appropriate physical registers.
1392///
1393SDValue
1394X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1395                                   CallingConv::ID CallConv, bool isVarArg,
1396                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1397                                   DebugLoc dl, SelectionDAG &DAG,
1398                                   SmallVectorImpl<SDValue> &InVals) const {
1399
1400  // Assign locations to each value returned by this call.
1401  SmallVector<CCValAssign, 16> RVLocs;
1402  bool Is64Bit = Subtarget->is64Bit();
1403  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1404                 RVLocs, *DAG.getContext());
1405  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1406
1407  // Copy all of the result registers out of their specified physreg.
1408  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1409    CCValAssign &VA = RVLocs[i];
1410    EVT CopyVT = VA.getValVT();
1411
1412    // If this is x86-64, and we disabled SSE, we can't return FP values
1413    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1414        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1415      report_fatal_error("SSE register return with SSE disabled");
1416    }
1417
1418    SDValue Val;
1419
1420    // If this is a call to a function that returns an fp value on the floating
1421    // point stack, we must guarantee the the value is popped from the stack, so
1422    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1423    // if the return value is not used. We use the FpGET_ST0 instructions
1424    // instead.
1425    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1426      // If we prefer to use the value in xmm registers, copy it out as f80 and
1427      // use a truncate to move it from fp stack reg to xmm reg.
1428      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1429      bool isST0 = VA.getLocReg() == X86::ST0;
1430      unsigned Opc = 0;
1431      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1432      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1433      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1434      SDValue Ops[] = { Chain, InFlag };
1435      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1436                                         Ops, 2), 1);
1437      Val = Chain.getValue(0);
1438
1439      // Round the f80 to the right size, which also moves it to the appropriate
1440      // xmm register.
1441      if (CopyVT != VA.getValVT())
1442        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1443                          // This truncation won't change the value.
1444                          DAG.getIntPtrConstant(1));
1445    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1446      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1447      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1448        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1449                                   MVT::v2i64, InFlag).getValue(1);
1450        Val = Chain.getValue(0);
1451        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1452                          Val, DAG.getConstant(0, MVT::i64));
1453      } else {
1454        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1455                                   MVT::i64, InFlag).getValue(1);
1456        Val = Chain.getValue(0);
1457      }
1458      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1459    } else {
1460      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1461                                 CopyVT, InFlag).getValue(1);
1462      Val = Chain.getValue(0);
1463    }
1464    InFlag = Chain.getValue(2);
1465    InVals.push_back(Val);
1466  }
1467
1468  return Chain;
1469}
1470
1471
1472//===----------------------------------------------------------------------===//
1473//                C & StdCall & Fast Calling Convention implementation
1474//===----------------------------------------------------------------------===//
1475//  StdCall calling convention seems to be standard for many Windows' API
1476//  routines and around. It differs from C calling convention just a little:
1477//  callee should clean up the stack, not caller. Symbols should be also
1478//  decorated in some fancy way :) It doesn't support any vector arguments.
1479//  For info on fast calling convention see Fast Calling Convention (tail call)
1480//  implementation LowerX86_32FastCCCallTo.
1481
1482/// CallIsStructReturn - Determines whether a call uses struct return
1483/// semantics.
1484static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1485  if (Outs.empty())
1486    return false;
1487
1488  return Outs[0].Flags.isSRet();
1489}
1490
1491/// ArgsAreStructReturn - Determines whether a function uses struct
1492/// return semantics.
1493static bool
1494ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1495  if (Ins.empty())
1496    return false;
1497
1498  return Ins[0].Flags.isSRet();
1499}
1500
1501/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1502/// given CallingConvention value.
1503CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1504  if (Subtarget->is64Bit()) {
1505    if (CC == CallingConv::GHC)
1506      return CC_X86_64_GHC;
1507    else if (Subtarget->isTargetWin64())
1508      return CC_X86_Win64_C;
1509    else
1510      return CC_X86_64_C;
1511  }
1512
1513  if (CC == CallingConv::X86_FastCall)
1514    return CC_X86_32_FastCall;
1515  else if (CC == CallingConv::X86_ThisCall)
1516    return CC_X86_32_ThisCall;
1517  else if (CC == CallingConv::Fast)
1518    return CC_X86_32_FastCC;
1519  else if (CC == CallingConv::GHC)
1520    return CC_X86_32_GHC;
1521  else
1522    return CC_X86_32_C;
1523}
1524
1525/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1526/// by "Src" to address "Dst" with size and alignment information specified by
1527/// the specific parameter attribute. The copy will be passed as a byval
1528/// function parameter.
1529static SDValue
1530CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1531                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1532                          DebugLoc dl) {
1533  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1534  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1535                       /*isVolatile*/false, /*AlwaysInline=*/true,
1536                       NULL, 0, NULL, 0);
1537}
1538
1539/// IsTailCallConvention - Return true if the calling convention is one that
1540/// supports tail call optimization.
1541static bool IsTailCallConvention(CallingConv::ID CC) {
1542  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1543}
1544
1545/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1546/// a tailcall target by changing its ABI.
1547static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1548  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1549}
1550
1551SDValue
1552X86TargetLowering::LowerMemArgument(SDValue Chain,
1553                                    CallingConv::ID CallConv,
1554                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1555                                    DebugLoc dl, SelectionDAG &DAG,
1556                                    const CCValAssign &VA,
1557                                    MachineFrameInfo *MFI,
1558                                    unsigned i) const {
1559  // Create the nodes corresponding to a load from this parameter slot.
1560  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1561  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1562  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1563  EVT ValVT;
1564
1565  // If value is passed by pointer we have address passed instead of the value
1566  // itself.
1567  if (VA.getLocInfo() == CCValAssign::Indirect)
1568    ValVT = VA.getLocVT();
1569  else
1570    ValVT = VA.getValVT();
1571
1572  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1573  // changed with more analysis.
1574  // In case of tail call optimization mark all arguments mutable. Since they
1575  // could be overwritten by lowering of arguments in case of a tail call.
1576  if (Flags.isByVal()) {
1577    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1578                                    VA.getLocMemOffset(), isImmutable);
1579    return DAG.getFrameIndex(FI, getPointerTy());
1580  } else {
1581    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1582                                    VA.getLocMemOffset(), isImmutable);
1583    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1584    return DAG.getLoad(ValVT, dl, Chain, FIN,
1585                       PseudoSourceValue::getFixedStack(FI), 0,
1586                       false, false, 0);
1587  }
1588}
1589
1590SDValue
1591X86TargetLowering::LowerFormalArguments(SDValue Chain,
1592                                        CallingConv::ID CallConv,
1593                                        bool isVarArg,
1594                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1595                                        DebugLoc dl,
1596                                        SelectionDAG &DAG,
1597                                        SmallVectorImpl<SDValue> &InVals)
1598                                          const {
1599  MachineFunction &MF = DAG.getMachineFunction();
1600  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1601
1602  const Function* Fn = MF.getFunction();
1603  if (Fn->hasExternalLinkage() &&
1604      Subtarget->isTargetCygMing() &&
1605      Fn->getName() == "main")
1606    FuncInfo->setForceFramePointer(true);
1607
1608  MachineFrameInfo *MFI = MF.getFrameInfo();
1609  bool Is64Bit = Subtarget->is64Bit();
1610  bool IsWin64 = Subtarget->isTargetWin64();
1611
1612  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1613         "Var args not supported with calling convention fastcc or ghc");
1614
1615  // Assign locations to all of the incoming arguments.
1616  SmallVector<CCValAssign, 16> ArgLocs;
1617  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1618                 ArgLocs, *DAG.getContext());
1619  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1620
1621  unsigned LastVal = ~0U;
1622  SDValue ArgValue;
1623  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1624    CCValAssign &VA = ArgLocs[i];
1625    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1626    // places.
1627    assert(VA.getValNo() != LastVal &&
1628           "Don't support value assigned to multiple locs yet");
1629    LastVal = VA.getValNo();
1630
1631    if (VA.isRegLoc()) {
1632      EVT RegVT = VA.getLocVT();
1633      TargetRegisterClass *RC = NULL;
1634      if (RegVT == MVT::i32)
1635        RC = X86::GR32RegisterClass;
1636      else if (Is64Bit && RegVT == MVT::i64)
1637        RC = X86::GR64RegisterClass;
1638      else if (RegVT == MVT::f32)
1639        RC = X86::FR32RegisterClass;
1640      else if (RegVT == MVT::f64)
1641        RC = X86::FR64RegisterClass;
1642      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1643        RC = X86::VR256RegisterClass;
1644      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1645        RC = X86::VR128RegisterClass;
1646      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1647        RC = X86::VR64RegisterClass;
1648      else
1649        llvm_unreachable("Unknown argument type!");
1650
1651      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1652      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1653
1654      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1655      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1656      // right size.
1657      if (VA.getLocInfo() == CCValAssign::SExt)
1658        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1659                               DAG.getValueType(VA.getValVT()));
1660      else if (VA.getLocInfo() == CCValAssign::ZExt)
1661        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1662                               DAG.getValueType(VA.getValVT()));
1663      else if (VA.getLocInfo() == CCValAssign::BCvt)
1664        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1665
1666      if (VA.isExtInLoc()) {
1667        // Handle MMX values passed in XMM regs.
1668        if (RegVT.isVector()) {
1669          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1670                                 ArgValue, DAG.getConstant(0, MVT::i64));
1671          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1672        } else
1673          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1674      }
1675    } else {
1676      assert(VA.isMemLoc());
1677      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1678    }
1679
1680    // If value is passed via pointer - do a load.
1681    if (VA.getLocInfo() == CCValAssign::Indirect)
1682      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1683                             false, false, 0);
1684
1685    InVals.push_back(ArgValue);
1686  }
1687
1688  // The x86-64 ABI for returning structs by value requires that we copy
1689  // the sret argument into %rax for the return. Save the argument into
1690  // a virtual register so that we can access it from the return points.
1691  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1692    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1693    unsigned Reg = FuncInfo->getSRetReturnReg();
1694    if (!Reg) {
1695      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1696      FuncInfo->setSRetReturnReg(Reg);
1697    }
1698    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1699    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1700  }
1701
1702  unsigned StackSize = CCInfo.getNextStackOffset();
1703  // Align stack specially for tail calls.
1704  if (FuncIsMadeTailCallSafe(CallConv))
1705    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1706
1707  // If the function takes variable number of arguments, make a frame index for
1708  // the start of the first vararg value... for expansion of llvm.va_start.
1709  if (isVarArg) {
1710    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1711                    CallConv != CallingConv::X86_ThisCall)) {
1712      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1713    }
1714    if (Is64Bit) {
1715      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1716
1717      // FIXME: We should really autogenerate these arrays
1718      static const unsigned GPR64ArgRegsWin64[] = {
1719        X86::RCX, X86::RDX, X86::R8,  X86::R9
1720      };
1721      static const unsigned XMMArgRegsWin64[] = {
1722        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1723      };
1724      static const unsigned GPR64ArgRegs64Bit[] = {
1725        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1726      };
1727      static const unsigned XMMArgRegs64Bit[] = {
1728        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1729        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1730      };
1731      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1732
1733      if (IsWin64) {
1734        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1735        GPR64ArgRegs = GPR64ArgRegsWin64;
1736        XMMArgRegs = XMMArgRegsWin64;
1737      } else {
1738        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1739        GPR64ArgRegs = GPR64ArgRegs64Bit;
1740        XMMArgRegs = XMMArgRegs64Bit;
1741      }
1742      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1743                                                       TotalNumIntRegs);
1744      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1745                                                       TotalNumXMMRegs);
1746
1747      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1748      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1749             "SSE register cannot be used when SSE is disabled!");
1750      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1751             "SSE register cannot be used when SSE is disabled!");
1752      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1753        // Kernel mode asks for SSE to be disabled, so don't push them
1754        // on the stack.
1755        TotalNumXMMRegs = 0;
1756
1757      // For X86-64, if there are vararg parameters that are passed via
1758      // registers, then we must store them to their spots on the stack so they
1759      // may be loaded by deferencing the result of va_next.
1760      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1761      FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1762      FuncInfo->setRegSaveFrameIndex(
1763        MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1764                               false));
1765
1766      // Store the integer parameter registers.
1767      SmallVector<SDValue, 8> MemOps;
1768      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1769                                        getPointerTy());
1770      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1771      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1772        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1773                                  DAG.getIntPtrConstant(Offset));
1774        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1775                                     X86::GR64RegisterClass);
1776        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1777        SDValue Store =
1778          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1779                       PseudoSourceValue::getFixedStack(
1780                         FuncInfo->getRegSaveFrameIndex()),
1781                       Offset, false, false, 0);
1782        MemOps.push_back(Store);
1783        Offset += 8;
1784      }
1785
1786      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1787        // Now store the XMM (fp + vector) parameter registers.
1788        SmallVector<SDValue, 11> SaveXMMOps;
1789        SaveXMMOps.push_back(Chain);
1790
1791        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1792        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1793        SaveXMMOps.push_back(ALVal);
1794
1795        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1796                               FuncInfo->getRegSaveFrameIndex()));
1797        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1798                               FuncInfo->getVarArgsFPOffset()));
1799
1800        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1801          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1802                                       X86::VR128RegisterClass);
1803          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1804          SaveXMMOps.push_back(Val);
1805        }
1806        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1807                                     MVT::Other,
1808                                     &SaveXMMOps[0], SaveXMMOps.size()));
1809      }
1810
1811      if (!MemOps.empty())
1812        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1813                            &MemOps[0], MemOps.size());
1814    }
1815  }
1816
1817  // Some CCs need callee pop.
1818  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1819    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1820  } else {
1821    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1822    // If this is an sret function, the return should pop the hidden pointer.
1823    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1824      FuncInfo->setBytesToPopOnReturn(4);
1825  }
1826
1827  if (!Is64Bit) {
1828    // RegSaveFrameIndex is X86-64 only.
1829    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1830    if (CallConv == CallingConv::X86_FastCall ||
1831        CallConv == CallingConv::X86_ThisCall)
1832      // fastcc functions can't have varargs.
1833      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1834  }
1835
1836  return Chain;
1837}
1838
1839SDValue
1840X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1841                                    SDValue StackPtr, SDValue Arg,
1842                                    DebugLoc dl, SelectionDAG &DAG,
1843                                    const CCValAssign &VA,
1844                                    ISD::ArgFlagsTy Flags) const {
1845  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1846  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1847  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1848  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1849  if (Flags.isByVal()) {
1850    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1851  }
1852  return DAG.getStore(Chain, dl, Arg, PtrOff,
1853                      PseudoSourceValue::getStack(), LocMemOffset,
1854                      false, false, 0);
1855}
1856
1857/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1858/// optimization is performed and it is required.
1859SDValue
1860X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1861                                           SDValue &OutRetAddr, SDValue Chain,
1862                                           bool IsTailCall, bool Is64Bit,
1863                                           int FPDiff, DebugLoc dl) const {
1864  // Adjust the Return address stack slot.
1865  EVT VT = getPointerTy();
1866  OutRetAddr = getReturnAddressFrameIndex(DAG);
1867
1868  // Load the "old" Return address.
1869  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1870  return SDValue(OutRetAddr.getNode(), 1);
1871}
1872
1873/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1874/// optimization is performed and it is required (FPDiff!=0).
1875static SDValue
1876EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1877                         SDValue Chain, SDValue RetAddrFrIdx,
1878                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1879  // Store the return address to the appropriate stack slot.
1880  if (!FPDiff) return Chain;
1881  // Calculate the new stack slot for the return address.
1882  int SlotSize = Is64Bit ? 8 : 4;
1883  int NewReturnAddrFI =
1884    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1885  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1886  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1887  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1888                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1889                       false, false, 0);
1890  return Chain;
1891}
1892
1893SDValue
1894X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1895                             CallingConv::ID CallConv, bool isVarArg,
1896                             bool &isTailCall,
1897                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1898                             const SmallVectorImpl<SDValue> &OutVals,
1899                             const SmallVectorImpl<ISD::InputArg> &Ins,
1900                             DebugLoc dl, SelectionDAG &DAG,
1901                             SmallVectorImpl<SDValue> &InVals) const {
1902  MachineFunction &MF = DAG.getMachineFunction();
1903  bool Is64Bit        = Subtarget->is64Bit();
1904  bool IsStructRet    = CallIsStructReturn(Outs);
1905  bool IsSibcall      = false;
1906
1907  if (isTailCall) {
1908    // Check if it's really possible to do a tail call.
1909    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1910                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1911                                                   Outs, OutVals, Ins, DAG);
1912
1913    // Sibcalls are automatically detected tailcalls which do not require
1914    // ABI changes.
1915    if (!GuaranteedTailCallOpt && isTailCall)
1916      IsSibcall = true;
1917
1918    if (isTailCall)
1919      ++NumTailCalls;
1920  }
1921
1922  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1923         "Var args not supported with calling convention fastcc or ghc");
1924
1925  // Analyze operands of the call, assigning locations to each operand.
1926  SmallVector<CCValAssign, 16> ArgLocs;
1927  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1928                 ArgLocs, *DAG.getContext());
1929  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1930
1931  // Get a count of how many bytes are to be pushed on the stack.
1932  unsigned NumBytes = CCInfo.getNextStackOffset();
1933  if (IsSibcall)
1934    // This is a sibcall. The memory operands are available in caller's
1935    // own caller's stack.
1936    NumBytes = 0;
1937  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1938    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1939
1940  int FPDiff = 0;
1941  if (isTailCall && !IsSibcall) {
1942    // Lower arguments at fp - stackoffset + fpdiff.
1943    unsigned NumBytesCallerPushed =
1944      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1945    FPDiff = NumBytesCallerPushed - NumBytes;
1946
1947    // Set the delta of movement of the returnaddr stackslot.
1948    // But only set if delta is greater than previous delta.
1949    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1950      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1951  }
1952
1953  if (!IsSibcall)
1954    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1955
1956  SDValue RetAddrFrIdx;
1957  // Load return adress for tail calls.
1958  if (isTailCall && FPDiff)
1959    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1960                                    Is64Bit, FPDiff, dl);
1961
1962  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1963  SmallVector<SDValue, 8> MemOpChains;
1964  SDValue StackPtr;
1965
1966  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1967  // of tail call optimization arguments are handle later.
1968  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1969    CCValAssign &VA = ArgLocs[i];
1970    EVT RegVT = VA.getLocVT();
1971    SDValue Arg = OutVals[i];
1972    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1973    bool isByVal = Flags.isByVal();
1974
1975    // Promote the value if needed.
1976    switch (VA.getLocInfo()) {
1977    default: llvm_unreachable("Unknown loc info!");
1978    case CCValAssign::Full: break;
1979    case CCValAssign::SExt:
1980      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1981      break;
1982    case CCValAssign::ZExt:
1983      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1984      break;
1985    case CCValAssign::AExt:
1986      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1987        // Special case: passing MMX values in XMM registers.
1988        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1989        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1990        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1991      } else
1992        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1993      break;
1994    case CCValAssign::BCvt:
1995      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1996      break;
1997    case CCValAssign::Indirect: {
1998      // Store the argument.
1999      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2000      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2001      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2002                           PseudoSourceValue::getFixedStack(FI), 0,
2003                           false, false, 0);
2004      Arg = SpillSlot;
2005      break;
2006    }
2007    }
2008
2009    if (VA.isRegLoc()) {
2010      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2011      if (isVarArg && Subtarget->isTargetWin64()) {
2012        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2013        // shadow reg if callee is a varargs function.
2014        unsigned ShadowReg = 0;
2015        switch (VA.getLocReg()) {
2016        case X86::XMM0: ShadowReg = X86::RCX; break;
2017        case X86::XMM1: ShadowReg = X86::RDX; break;
2018        case X86::XMM2: ShadowReg = X86::R8; break;
2019        case X86::XMM3: ShadowReg = X86::R9; break;
2020        }
2021        if (ShadowReg)
2022          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2023      }
2024    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2025      assert(VA.isMemLoc());
2026      if (StackPtr.getNode() == 0)
2027        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2028      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2029                                             dl, DAG, VA, Flags));
2030    }
2031  }
2032
2033  if (!MemOpChains.empty())
2034    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2035                        &MemOpChains[0], MemOpChains.size());
2036
2037  // Build a sequence of copy-to-reg nodes chained together with token chain
2038  // and flag operands which copy the outgoing args into registers.
2039  SDValue InFlag;
2040  // Tail call byval lowering might overwrite argument registers so in case of
2041  // tail call optimization the copies to registers are lowered later.
2042  if (!isTailCall)
2043    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2044      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2045                               RegsToPass[i].second, InFlag);
2046      InFlag = Chain.getValue(1);
2047    }
2048
2049  if (Subtarget->isPICStyleGOT()) {
2050    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2051    // GOT pointer.
2052    if (!isTailCall) {
2053      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2054                               DAG.getNode(X86ISD::GlobalBaseReg,
2055                                           DebugLoc(), getPointerTy()),
2056                               InFlag);
2057      InFlag = Chain.getValue(1);
2058    } else {
2059      // If we are tail calling and generating PIC/GOT style code load the
2060      // address of the callee into ECX. The value in ecx is used as target of
2061      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2062      // for tail calls on PIC/GOT architectures. Normally we would just put the
2063      // address of GOT into ebx and then call target@PLT. But for tail calls
2064      // ebx would be restored (since ebx is callee saved) before jumping to the
2065      // target@PLT.
2066
2067      // Note: The actual moving to ECX is done further down.
2068      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2069      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2070          !G->getGlobal()->hasProtectedVisibility())
2071        Callee = LowerGlobalAddress(Callee, DAG);
2072      else if (isa<ExternalSymbolSDNode>(Callee))
2073        Callee = LowerExternalSymbol(Callee, DAG);
2074    }
2075  }
2076
2077  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2078    // From AMD64 ABI document:
2079    // For calls that may call functions that use varargs or stdargs
2080    // (prototype-less calls or calls to functions containing ellipsis (...) in
2081    // the declaration) %al is used as hidden argument to specify the number
2082    // of SSE registers used. The contents of %al do not need to match exactly
2083    // the number of registers, but must be an ubound on the number of SSE
2084    // registers used and is in the range 0 - 8 inclusive.
2085
2086    // Count the number of XMM registers allocated.
2087    static const unsigned XMMArgRegs[] = {
2088      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2089      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2090    };
2091    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2092    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2093           && "SSE registers cannot be used when SSE is disabled");
2094
2095    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2096                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2097    InFlag = Chain.getValue(1);
2098  }
2099
2100
2101  // For tail calls lower the arguments to the 'real' stack slot.
2102  if (isTailCall) {
2103    // Force all the incoming stack arguments to be loaded from the stack
2104    // before any new outgoing arguments are stored to the stack, because the
2105    // outgoing stack slots may alias the incoming argument stack slots, and
2106    // the alias isn't otherwise explicit. This is slightly more conservative
2107    // than necessary, because it means that each store effectively depends
2108    // on every argument instead of just those arguments it would clobber.
2109    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2110
2111    SmallVector<SDValue, 8> MemOpChains2;
2112    SDValue FIN;
2113    int FI = 0;
2114    // Do not flag preceeding copytoreg stuff together with the following stuff.
2115    InFlag = SDValue();
2116    if (GuaranteedTailCallOpt) {
2117      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2118        CCValAssign &VA = ArgLocs[i];
2119        if (VA.isRegLoc())
2120          continue;
2121        assert(VA.isMemLoc());
2122        SDValue Arg = OutVals[i];
2123        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2124        // Create frame index.
2125        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2126        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2127        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2128        FIN = DAG.getFrameIndex(FI, getPointerTy());
2129
2130        if (Flags.isByVal()) {
2131          // Copy relative to framepointer.
2132          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2133          if (StackPtr.getNode() == 0)
2134            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2135                                          getPointerTy());
2136          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2137
2138          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2139                                                           ArgChain,
2140                                                           Flags, DAG, dl));
2141        } else {
2142          // Store relative to framepointer.
2143          MemOpChains2.push_back(
2144            DAG.getStore(ArgChain, dl, Arg, FIN,
2145                         PseudoSourceValue::getFixedStack(FI), 0,
2146                         false, false, 0));
2147        }
2148      }
2149    }
2150
2151    if (!MemOpChains2.empty())
2152      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2153                          &MemOpChains2[0], MemOpChains2.size());
2154
2155    // Copy arguments to their registers.
2156    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2157      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2158                               RegsToPass[i].second, InFlag);
2159      InFlag = Chain.getValue(1);
2160    }
2161    InFlag =SDValue();
2162
2163    // Store the return address to the appropriate stack slot.
2164    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2165                                     FPDiff, dl);
2166  }
2167
2168  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2169    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2170    // In the 64-bit large code model, we have to make all calls
2171    // through a register, since the call instruction's 32-bit
2172    // pc-relative offset may not be large enough to hold the whole
2173    // address.
2174  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2175    // If the callee is a GlobalAddress node (quite common, every direct call
2176    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2177    // it.
2178
2179    // We should use extra load for direct calls to dllimported functions in
2180    // non-JIT mode.
2181    const GlobalValue *GV = G->getGlobal();
2182    if (!GV->hasDLLImportLinkage()) {
2183      unsigned char OpFlags = 0;
2184
2185      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2186      // external symbols most go through the PLT in PIC mode.  If the symbol
2187      // has hidden or protected visibility, or if it is static or local, then
2188      // we don't need to use the PLT - we can directly call it.
2189      if (Subtarget->isTargetELF() &&
2190          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2191          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2192        OpFlags = X86II::MO_PLT;
2193      } else if (Subtarget->isPICStyleStubAny() &&
2194               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2195               Subtarget->getDarwinVers() < 9) {
2196        // PC-relative references to external symbols should go through $stub,
2197        // unless we're building with the leopard linker or later, which
2198        // automatically synthesizes these stubs.
2199        OpFlags = X86II::MO_DARWIN_STUB;
2200      }
2201
2202      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2203                                          G->getOffset(), OpFlags);
2204    }
2205  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2206    unsigned char OpFlags = 0;
2207
2208    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2209    // symbols should go through the PLT.
2210    if (Subtarget->isTargetELF() &&
2211        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2212      OpFlags = X86II::MO_PLT;
2213    } else if (Subtarget->isPICStyleStubAny() &&
2214             Subtarget->getDarwinVers() < 9) {
2215      // PC-relative references to external symbols should go through $stub,
2216      // unless we're building with the leopard linker or later, which
2217      // automatically synthesizes these stubs.
2218      OpFlags = X86II::MO_DARWIN_STUB;
2219    }
2220
2221    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2222                                         OpFlags);
2223  }
2224
2225  // Returns a chain & a flag for retval copy to use.
2226  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2227  SmallVector<SDValue, 8> Ops;
2228
2229  if (!IsSibcall && isTailCall) {
2230    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2231                           DAG.getIntPtrConstant(0, true), InFlag);
2232    InFlag = Chain.getValue(1);
2233  }
2234
2235  Ops.push_back(Chain);
2236  Ops.push_back(Callee);
2237
2238  if (isTailCall)
2239    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2240
2241  // Add argument registers to the end of the list so that they are known live
2242  // into the call.
2243  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2244    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2245                                  RegsToPass[i].second.getValueType()));
2246
2247  // Add an implicit use GOT pointer in EBX.
2248  if (!isTailCall && Subtarget->isPICStyleGOT())
2249    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2250
2251  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2252  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2253    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2254
2255  if (InFlag.getNode())
2256    Ops.push_back(InFlag);
2257
2258  if (isTailCall) {
2259    // We used to do:
2260    //// If this is the first return lowered for this function, add the regs
2261    //// to the liveout set for the function.
2262    // This isn't right, although it's probably harmless on x86; liveouts
2263    // should be computed from returns not tail calls.  Consider a void
2264    // function making a tail call to a function returning int.
2265    return DAG.getNode(X86ISD::TC_RETURN, dl,
2266                       NodeTys, &Ops[0], Ops.size());
2267  }
2268
2269  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2270  InFlag = Chain.getValue(1);
2271
2272  // Create the CALLSEQ_END node.
2273  unsigned NumBytesForCalleeToPush;
2274  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2275    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2276  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2277    // If this is a call to a struct-return function, the callee
2278    // pops the hidden struct pointer, so we have to push it back.
2279    // This is common for Darwin/X86, Linux & Mingw32 targets.
2280    NumBytesForCalleeToPush = 4;
2281  else
2282    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2283
2284  // Returns a flag for retval copy to use.
2285  if (!IsSibcall) {
2286    Chain = DAG.getCALLSEQ_END(Chain,
2287                               DAG.getIntPtrConstant(NumBytes, true),
2288                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2289                                                     true),
2290                               InFlag);
2291    InFlag = Chain.getValue(1);
2292  }
2293
2294  // Handle result values, copying them out of physregs into vregs that we
2295  // return.
2296  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2297                         Ins, dl, DAG, InVals);
2298}
2299
2300
2301//===----------------------------------------------------------------------===//
2302//                Fast Calling Convention (tail call) implementation
2303//===----------------------------------------------------------------------===//
2304
2305//  Like std call, callee cleans arguments, convention except that ECX is
2306//  reserved for storing the tail called function address. Only 2 registers are
2307//  free for argument passing (inreg). Tail call optimization is performed
2308//  provided:
2309//                * tailcallopt is enabled
2310//                * caller/callee are fastcc
2311//  On X86_64 architecture with GOT-style position independent code only local
2312//  (within module) calls are supported at the moment.
2313//  To keep the stack aligned according to platform abi the function
2314//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2315//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2316//  If a tail called function callee has more arguments than the caller the
2317//  caller needs to make sure that there is room to move the RETADDR to. This is
2318//  achieved by reserving an area the size of the argument delta right after the
2319//  original REtADDR, but before the saved framepointer or the spilled registers
2320//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2321//  stack layout:
2322//    arg1
2323//    arg2
2324//    RETADDR
2325//    [ new RETADDR
2326//      move area ]
2327//    (possible EBP)
2328//    ESI
2329//    EDI
2330//    local1 ..
2331
2332/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2333/// for a 16 byte align requirement.
2334unsigned
2335X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2336                                               SelectionDAG& DAG) const {
2337  MachineFunction &MF = DAG.getMachineFunction();
2338  const TargetMachine &TM = MF.getTarget();
2339  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2340  unsigned StackAlignment = TFI.getStackAlignment();
2341  uint64_t AlignMask = StackAlignment - 1;
2342  int64_t Offset = StackSize;
2343  uint64_t SlotSize = TD->getPointerSize();
2344  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2345    // Number smaller than 12 so just add the difference.
2346    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2347  } else {
2348    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2349    Offset = ((~AlignMask) & Offset) + StackAlignment +
2350      (StackAlignment-SlotSize);
2351  }
2352  return Offset;
2353}
2354
2355/// MatchingStackOffset - Return true if the given stack call argument is
2356/// already available in the same position (relatively) of the caller's
2357/// incoming argument stack.
2358static
2359bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2360                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2361                         const X86InstrInfo *TII) {
2362  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2363  int FI = INT_MAX;
2364  if (Arg.getOpcode() == ISD::CopyFromReg) {
2365    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2366    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2367      return false;
2368    MachineInstr *Def = MRI->getVRegDef(VR);
2369    if (!Def)
2370      return false;
2371    if (!Flags.isByVal()) {
2372      if (!TII->isLoadFromStackSlot(Def, FI))
2373        return false;
2374    } else {
2375      unsigned Opcode = Def->getOpcode();
2376      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2377          Def->getOperand(1).isFI()) {
2378        FI = Def->getOperand(1).getIndex();
2379        Bytes = Flags.getByValSize();
2380      } else
2381        return false;
2382    }
2383  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2384    if (Flags.isByVal())
2385      // ByVal argument is passed in as a pointer but it's now being
2386      // dereferenced. e.g.
2387      // define @foo(%struct.X* %A) {
2388      //   tail call @bar(%struct.X* byval %A)
2389      // }
2390      return false;
2391    SDValue Ptr = Ld->getBasePtr();
2392    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2393    if (!FINode)
2394      return false;
2395    FI = FINode->getIndex();
2396  } else
2397    return false;
2398
2399  assert(FI != INT_MAX);
2400  if (!MFI->isFixedObjectIndex(FI))
2401    return false;
2402  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2403}
2404
2405/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2406/// for tail call optimization. Targets which want to do tail call
2407/// optimization should implement this function.
2408bool
2409X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2410                                                     CallingConv::ID CalleeCC,
2411                                                     bool isVarArg,
2412                                                     bool isCalleeStructRet,
2413                                                     bool isCallerStructRet,
2414                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2415                                    const SmallVectorImpl<SDValue> &OutVals,
2416                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2417                                                     SelectionDAG& DAG) const {
2418  if (!IsTailCallConvention(CalleeCC) &&
2419      CalleeCC != CallingConv::C)
2420    return false;
2421
2422  // If -tailcallopt is specified, make fastcc functions tail-callable.
2423  const MachineFunction &MF = DAG.getMachineFunction();
2424  const Function *CallerF = DAG.getMachineFunction().getFunction();
2425  CallingConv::ID CallerCC = CallerF->getCallingConv();
2426  bool CCMatch = CallerCC == CalleeCC;
2427
2428  if (GuaranteedTailCallOpt) {
2429    if (IsTailCallConvention(CalleeCC) && CCMatch)
2430      return true;
2431    return false;
2432  }
2433
2434  // Look for obvious safe cases to perform tail call optimization that do not
2435  // require ABI changes. This is what gcc calls sibcall.
2436
2437  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2438  // emit a special epilogue.
2439  if (RegInfo->needsStackRealignment(MF))
2440    return false;
2441
2442  // Do not sibcall optimize vararg calls unless the call site is not passing
2443  // any arguments.
2444  if (isVarArg && !Outs.empty())
2445    return false;
2446
2447  // Also avoid sibcall optimization if either caller or callee uses struct
2448  // return semantics.
2449  if (isCalleeStructRet || isCallerStructRet)
2450    return false;
2451
2452  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2453  // Therefore if it's not used by the call it is not safe to optimize this into
2454  // a sibcall.
2455  bool Unused = false;
2456  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2457    if (!Ins[i].Used) {
2458      Unused = true;
2459      break;
2460    }
2461  }
2462  if (Unused) {
2463    SmallVector<CCValAssign, 16> RVLocs;
2464    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2465                   RVLocs, *DAG.getContext());
2466    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2467    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2468      CCValAssign &VA = RVLocs[i];
2469      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2470        return false;
2471    }
2472  }
2473
2474  // If the calling conventions do not match, then we'd better make sure the
2475  // results are returned in the same way as what the caller expects.
2476  if (!CCMatch) {
2477    SmallVector<CCValAssign, 16> RVLocs1;
2478    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2479                    RVLocs1, *DAG.getContext());
2480    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2481
2482    SmallVector<CCValAssign, 16> RVLocs2;
2483    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2484                    RVLocs2, *DAG.getContext());
2485    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2486
2487    if (RVLocs1.size() != RVLocs2.size())
2488      return false;
2489    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2490      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2491        return false;
2492      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2493        return false;
2494      if (RVLocs1[i].isRegLoc()) {
2495        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2496          return false;
2497      } else {
2498        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2499          return false;
2500      }
2501    }
2502  }
2503
2504  // If the callee takes no arguments then go on to check the results of the
2505  // call.
2506  if (!Outs.empty()) {
2507    // Check if stack adjustment is needed. For now, do not do this if any
2508    // argument is passed on the stack.
2509    SmallVector<CCValAssign, 16> ArgLocs;
2510    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2511                   ArgLocs, *DAG.getContext());
2512    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2513    if (CCInfo.getNextStackOffset()) {
2514      MachineFunction &MF = DAG.getMachineFunction();
2515      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2516        return false;
2517      if (Subtarget->isTargetWin64())
2518        // Win64 ABI has additional complications.
2519        return false;
2520
2521      // Check if the arguments are already laid out in the right way as
2522      // the caller's fixed stack objects.
2523      MachineFrameInfo *MFI = MF.getFrameInfo();
2524      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2525      const X86InstrInfo *TII =
2526        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2527      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2528        CCValAssign &VA = ArgLocs[i];
2529        SDValue Arg = OutVals[i];
2530        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2531        if (VA.getLocInfo() == CCValAssign::Indirect)
2532          return false;
2533        if (!VA.isRegLoc()) {
2534          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2535                                   MFI, MRI, TII))
2536            return false;
2537        }
2538      }
2539    }
2540
2541    // If the tailcall address may be in a register, then make sure it's
2542    // possible to register allocate for it. In 32-bit, the call address can
2543    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2544    // callee-saved registers are restored. These happen to be the same
2545    // registers used to pass 'inreg' arguments so watch out for those.
2546    if (!Subtarget->is64Bit() &&
2547        !isa<GlobalAddressSDNode>(Callee) &&
2548        !isa<ExternalSymbolSDNode>(Callee)) {
2549      unsigned NumInRegs = 0;
2550      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2551        CCValAssign &VA = ArgLocs[i];
2552        if (!VA.isRegLoc())
2553          continue;
2554        unsigned Reg = VA.getLocReg();
2555        switch (Reg) {
2556        default: break;
2557        case X86::EAX: case X86::EDX: case X86::ECX:
2558          if (++NumInRegs == 3)
2559            return false;
2560          break;
2561        }
2562      }
2563    }
2564  }
2565
2566  return true;
2567}
2568
2569FastISel *
2570X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2571  return X86::createFastISel(funcInfo);
2572}
2573
2574
2575//===----------------------------------------------------------------------===//
2576//                           Other Lowering Hooks
2577//===----------------------------------------------------------------------===//
2578
2579static bool isTargetShuffle(unsigned Opcode) {
2580  switch(Opcode) {
2581  default: return false;
2582  case X86ISD::PSHUFD:
2583  case X86ISD::PSHUFHW:
2584  case X86ISD::PSHUFLW:
2585  case X86ISD::SHUFPD:
2586  case X86ISD::SHUFPS:
2587  case X86ISD::MOVLHPS:
2588  case X86ISD::MOVSS:
2589  case X86ISD::MOVSD:
2590  case X86ISD::PUNPCKLDQ:
2591    return true;
2592  }
2593  return false;
2594}
2595
2596static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2597                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2598  switch(Opc) {
2599  default: llvm_unreachable("Unknown x86 shuffle node");
2600  case X86ISD::PSHUFD:
2601  case X86ISD::PSHUFHW:
2602  case X86ISD::PSHUFLW:
2603    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2604  }
2605
2606  return SDValue();
2607}
2608
2609static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2610               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2611  switch(Opc) {
2612  default: llvm_unreachable("Unknown x86 shuffle node");
2613  case X86ISD::SHUFPD:
2614  case X86ISD::SHUFPS:
2615    return DAG.getNode(Opc, dl, VT, V1, V2,
2616                       DAG.getConstant(TargetMask, MVT::i8));
2617  }
2618  return SDValue();
2619}
2620
2621static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2622                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2623  switch(Opc) {
2624  default: llvm_unreachable("Unknown x86 shuffle node");
2625  case X86ISD::MOVLHPS:
2626  case X86ISD::MOVLHPD:
2627  case X86ISD::MOVSS:
2628  case X86ISD::MOVSD:
2629  case X86ISD::PUNPCKLDQ:
2630    return DAG.getNode(Opc, dl, VT, V1, V2);
2631  }
2632  return SDValue();
2633}
2634
2635SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2636  MachineFunction &MF = DAG.getMachineFunction();
2637  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2638  int ReturnAddrIndex = FuncInfo->getRAIndex();
2639
2640  if (ReturnAddrIndex == 0) {
2641    // Set up a frame object for the return address.
2642    uint64_t SlotSize = TD->getPointerSize();
2643    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2644                                                           false);
2645    FuncInfo->setRAIndex(ReturnAddrIndex);
2646  }
2647
2648  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2649}
2650
2651
2652bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2653                                       bool hasSymbolicDisplacement) {
2654  // Offset should fit into 32 bit immediate field.
2655  if (!isInt<32>(Offset))
2656    return false;
2657
2658  // If we don't have a symbolic displacement - we don't have any extra
2659  // restrictions.
2660  if (!hasSymbolicDisplacement)
2661    return true;
2662
2663  // FIXME: Some tweaks might be needed for medium code model.
2664  if (M != CodeModel::Small && M != CodeModel::Kernel)
2665    return false;
2666
2667  // For small code model we assume that latest object is 16MB before end of 31
2668  // bits boundary. We may also accept pretty large negative constants knowing
2669  // that all objects are in the positive half of address space.
2670  if (M == CodeModel::Small && Offset < 16*1024*1024)
2671    return true;
2672
2673  // For kernel code model we know that all object resist in the negative half
2674  // of 32bits address space. We may not accept negative offsets, since they may
2675  // be just off and we may accept pretty large positive ones.
2676  if (M == CodeModel::Kernel && Offset > 0)
2677    return true;
2678
2679  return false;
2680}
2681
2682/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2683/// specific condition code, returning the condition code and the LHS/RHS of the
2684/// comparison to make.
2685static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2686                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2687  if (!isFP) {
2688    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2689      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2690        // X > -1   -> X == 0, jump !sign.
2691        RHS = DAG.getConstant(0, RHS.getValueType());
2692        return X86::COND_NS;
2693      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2694        // X < 0   -> X == 0, jump on sign.
2695        return X86::COND_S;
2696      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2697        // X < 1   -> X <= 0
2698        RHS = DAG.getConstant(0, RHS.getValueType());
2699        return X86::COND_LE;
2700      }
2701    }
2702
2703    switch (SetCCOpcode) {
2704    default: llvm_unreachable("Invalid integer condition!");
2705    case ISD::SETEQ:  return X86::COND_E;
2706    case ISD::SETGT:  return X86::COND_G;
2707    case ISD::SETGE:  return X86::COND_GE;
2708    case ISD::SETLT:  return X86::COND_L;
2709    case ISD::SETLE:  return X86::COND_LE;
2710    case ISD::SETNE:  return X86::COND_NE;
2711    case ISD::SETULT: return X86::COND_B;
2712    case ISD::SETUGT: return X86::COND_A;
2713    case ISD::SETULE: return X86::COND_BE;
2714    case ISD::SETUGE: return X86::COND_AE;
2715    }
2716  }
2717
2718  // First determine if it is required or is profitable to flip the operands.
2719
2720  // If LHS is a foldable load, but RHS is not, flip the condition.
2721  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2722      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2723    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2724    std::swap(LHS, RHS);
2725  }
2726
2727  switch (SetCCOpcode) {
2728  default: break;
2729  case ISD::SETOLT:
2730  case ISD::SETOLE:
2731  case ISD::SETUGT:
2732  case ISD::SETUGE:
2733    std::swap(LHS, RHS);
2734    break;
2735  }
2736
2737  // On a floating point condition, the flags are set as follows:
2738  // ZF  PF  CF   op
2739  //  0 | 0 | 0 | X > Y
2740  //  0 | 0 | 1 | X < Y
2741  //  1 | 0 | 0 | X == Y
2742  //  1 | 1 | 1 | unordered
2743  switch (SetCCOpcode) {
2744  default: llvm_unreachable("Condcode should be pre-legalized away");
2745  case ISD::SETUEQ:
2746  case ISD::SETEQ:   return X86::COND_E;
2747  case ISD::SETOLT:              // flipped
2748  case ISD::SETOGT:
2749  case ISD::SETGT:   return X86::COND_A;
2750  case ISD::SETOLE:              // flipped
2751  case ISD::SETOGE:
2752  case ISD::SETGE:   return X86::COND_AE;
2753  case ISD::SETUGT:              // flipped
2754  case ISD::SETULT:
2755  case ISD::SETLT:   return X86::COND_B;
2756  case ISD::SETUGE:              // flipped
2757  case ISD::SETULE:
2758  case ISD::SETLE:   return X86::COND_BE;
2759  case ISD::SETONE:
2760  case ISD::SETNE:   return X86::COND_NE;
2761  case ISD::SETUO:   return X86::COND_P;
2762  case ISD::SETO:    return X86::COND_NP;
2763  case ISD::SETOEQ:
2764  case ISD::SETUNE:  return X86::COND_INVALID;
2765  }
2766}
2767
2768/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2769/// code. Current x86 isa includes the following FP cmov instructions:
2770/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2771static bool hasFPCMov(unsigned X86CC) {
2772  switch (X86CC) {
2773  default:
2774    return false;
2775  case X86::COND_B:
2776  case X86::COND_BE:
2777  case X86::COND_E:
2778  case X86::COND_P:
2779  case X86::COND_A:
2780  case X86::COND_AE:
2781  case X86::COND_NE:
2782  case X86::COND_NP:
2783    return true;
2784  }
2785}
2786
2787/// isFPImmLegal - Returns true if the target can instruction select the
2788/// specified FP immediate natively. If false, the legalizer will
2789/// materialize the FP immediate as a load from a constant pool.
2790bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2791  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2792    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2793      return true;
2794  }
2795  return false;
2796}
2797
2798/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2799/// the specified range (L, H].
2800static bool isUndefOrInRange(int Val, int Low, int Hi) {
2801  return (Val < 0) || (Val >= Low && Val < Hi);
2802}
2803
2804/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2805/// specified value.
2806static bool isUndefOrEqual(int Val, int CmpVal) {
2807  if (Val < 0 || Val == CmpVal)
2808    return true;
2809  return false;
2810}
2811
2812/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2813/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2814/// the second operand.
2815static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2816  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2817    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2818  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2819    return (Mask[0] < 2 && Mask[1] < 2);
2820  return false;
2821}
2822
2823bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2824  SmallVector<int, 8> M;
2825  N->getMask(M);
2826  return ::isPSHUFDMask(M, N->getValueType(0));
2827}
2828
2829/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2830/// is suitable for input to PSHUFHW.
2831static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2832  if (VT != MVT::v8i16)
2833    return false;
2834
2835  // Lower quadword copied in order or undef.
2836  for (int i = 0; i != 4; ++i)
2837    if (Mask[i] >= 0 && Mask[i] != i)
2838      return false;
2839
2840  // Upper quadword shuffled.
2841  for (int i = 4; i != 8; ++i)
2842    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2843      return false;
2844
2845  return true;
2846}
2847
2848bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2849  SmallVector<int, 8> M;
2850  N->getMask(M);
2851  return ::isPSHUFHWMask(M, N->getValueType(0));
2852}
2853
2854/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2855/// is suitable for input to PSHUFLW.
2856static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2857  if (VT != MVT::v8i16)
2858    return false;
2859
2860  // Upper quadword copied in order.
2861  for (int i = 4; i != 8; ++i)
2862    if (Mask[i] >= 0 && Mask[i] != i)
2863      return false;
2864
2865  // Lower quadword shuffled.
2866  for (int i = 0; i != 4; ++i)
2867    if (Mask[i] >= 4)
2868      return false;
2869
2870  return true;
2871}
2872
2873bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2874  SmallVector<int, 8> M;
2875  N->getMask(M);
2876  return ::isPSHUFLWMask(M, N->getValueType(0));
2877}
2878
2879/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2880/// is suitable for input to PALIGNR.
2881static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2882                          bool hasSSSE3) {
2883  int i, e = VT.getVectorNumElements();
2884
2885  // Do not handle v2i64 / v2f64 shuffles with palignr.
2886  if (e < 4 || !hasSSSE3)
2887    return false;
2888
2889  for (i = 0; i != e; ++i)
2890    if (Mask[i] >= 0)
2891      break;
2892
2893  // All undef, not a palignr.
2894  if (i == e)
2895    return false;
2896
2897  // Determine if it's ok to perform a palignr with only the LHS, since we
2898  // don't have access to the actual shuffle elements to see if RHS is undef.
2899  bool Unary = Mask[i] < (int)e;
2900  bool NeedsUnary = false;
2901
2902  int s = Mask[i] - i;
2903
2904  // Check the rest of the elements to see if they are consecutive.
2905  for (++i; i != e; ++i) {
2906    int m = Mask[i];
2907    if (m < 0)
2908      continue;
2909
2910    Unary = Unary && (m < (int)e);
2911    NeedsUnary = NeedsUnary || (m < s);
2912
2913    if (NeedsUnary && !Unary)
2914      return false;
2915    if (Unary && m != ((s+i) & (e-1)))
2916      return false;
2917    if (!Unary && m != (s+i))
2918      return false;
2919  }
2920  return true;
2921}
2922
2923bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2924  SmallVector<int, 8> M;
2925  N->getMask(M);
2926  return ::isPALIGNRMask(M, N->getValueType(0), true);
2927}
2928
2929/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2930/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2931static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2932  int NumElems = VT.getVectorNumElements();
2933  if (NumElems != 2 && NumElems != 4)
2934    return false;
2935
2936  int Half = NumElems / 2;
2937  for (int i = 0; i < Half; ++i)
2938    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2939      return false;
2940  for (int i = Half; i < NumElems; ++i)
2941    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2942      return false;
2943
2944  return true;
2945}
2946
2947bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2948  SmallVector<int, 8> M;
2949  N->getMask(M);
2950  return ::isSHUFPMask(M, N->getValueType(0));
2951}
2952
2953/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2954/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2955/// half elements to come from vector 1 (which would equal the dest.) and
2956/// the upper half to come from vector 2.
2957static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2958  int NumElems = VT.getVectorNumElements();
2959
2960  if (NumElems != 2 && NumElems != 4)
2961    return false;
2962
2963  int Half = NumElems / 2;
2964  for (int i = 0; i < Half; ++i)
2965    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2966      return false;
2967  for (int i = Half; i < NumElems; ++i)
2968    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2969      return false;
2970  return true;
2971}
2972
2973static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2974  SmallVector<int, 8> M;
2975  N->getMask(M);
2976  return isCommutedSHUFPMask(M, N->getValueType(0));
2977}
2978
2979/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2980/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2981bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2982  if (N->getValueType(0).getVectorNumElements() != 4)
2983    return false;
2984
2985  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2986  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2987         isUndefOrEqual(N->getMaskElt(1), 7) &&
2988         isUndefOrEqual(N->getMaskElt(2), 2) &&
2989         isUndefOrEqual(N->getMaskElt(3), 3);
2990}
2991
2992/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2993/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2994/// <2, 3, 2, 3>
2995bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2996  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2997
2998  if (NumElems != 4)
2999    return false;
3000
3001  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3002  isUndefOrEqual(N->getMaskElt(1), 3) &&
3003  isUndefOrEqual(N->getMaskElt(2), 2) &&
3004  isUndefOrEqual(N->getMaskElt(3), 3);
3005}
3006
3007/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3008/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3009bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3010  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3011
3012  if (NumElems != 2 && NumElems != 4)
3013    return false;
3014
3015  for (unsigned i = 0; i < NumElems/2; ++i)
3016    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3017      return false;
3018
3019  for (unsigned i = NumElems/2; i < NumElems; ++i)
3020    if (!isUndefOrEqual(N->getMaskElt(i), i))
3021      return false;
3022
3023  return true;
3024}
3025
3026/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3027/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3028bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3029  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3030
3031  if (NumElems != 2 && NumElems != 4)
3032    return false;
3033
3034  for (unsigned i = 0; i < NumElems/2; ++i)
3035    if (!isUndefOrEqual(N->getMaskElt(i), i))
3036      return false;
3037
3038  for (unsigned i = 0; i < NumElems/2; ++i)
3039    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3040      return false;
3041
3042  return true;
3043}
3044
3045/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3046/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3047static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3048                         bool V2IsSplat = false) {
3049  int NumElts = VT.getVectorNumElements();
3050  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3051    return false;
3052
3053  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3054    int BitI  = Mask[i];
3055    int BitI1 = Mask[i+1];
3056    if (!isUndefOrEqual(BitI, j))
3057      return false;
3058    if (V2IsSplat) {
3059      if (!isUndefOrEqual(BitI1, NumElts))
3060        return false;
3061    } else {
3062      if (!isUndefOrEqual(BitI1, j + NumElts))
3063        return false;
3064    }
3065  }
3066  return true;
3067}
3068
3069bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3070  SmallVector<int, 8> M;
3071  N->getMask(M);
3072  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3073}
3074
3075/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3076/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3077static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3078                         bool V2IsSplat = false) {
3079  int NumElts = VT.getVectorNumElements();
3080  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3081    return false;
3082
3083  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3084    int BitI  = Mask[i];
3085    int BitI1 = Mask[i+1];
3086    if (!isUndefOrEqual(BitI, j + NumElts/2))
3087      return false;
3088    if (V2IsSplat) {
3089      if (isUndefOrEqual(BitI1, NumElts))
3090        return false;
3091    } else {
3092      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3093        return false;
3094    }
3095  }
3096  return true;
3097}
3098
3099bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3100  SmallVector<int, 8> M;
3101  N->getMask(M);
3102  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3103}
3104
3105/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3106/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3107/// <0, 0, 1, 1>
3108static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3109  int NumElems = VT.getVectorNumElements();
3110  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3111    return false;
3112
3113  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3114    int BitI  = Mask[i];
3115    int BitI1 = Mask[i+1];
3116    if (!isUndefOrEqual(BitI, j))
3117      return false;
3118    if (!isUndefOrEqual(BitI1, j))
3119      return false;
3120  }
3121  return true;
3122}
3123
3124bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3125  SmallVector<int, 8> M;
3126  N->getMask(M);
3127  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3128}
3129
3130/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3131/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3132/// <2, 2, 3, 3>
3133static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3134  int NumElems = VT.getVectorNumElements();
3135  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3136    return false;
3137
3138  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3139    int BitI  = Mask[i];
3140    int BitI1 = Mask[i+1];
3141    if (!isUndefOrEqual(BitI, j))
3142      return false;
3143    if (!isUndefOrEqual(BitI1, j))
3144      return false;
3145  }
3146  return true;
3147}
3148
3149bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3150  SmallVector<int, 8> M;
3151  N->getMask(M);
3152  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3153}
3154
3155/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3156/// specifies a shuffle of elements that is suitable for input to MOVSS,
3157/// MOVSD, and MOVD, i.e. setting the lowest element.
3158static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3159  if (VT.getVectorElementType().getSizeInBits() < 32)
3160    return false;
3161
3162  int NumElts = VT.getVectorNumElements();
3163
3164  if (!isUndefOrEqual(Mask[0], NumElts))
3165    return false;
3166
3167  for (int i = 1; i < NumElts; ++i)
3168    if (!isUndefOrEqual(Mask[i], i))
3169      return false;
3170
3171  return true;
3172}
3173
3174bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3175  SmallVector<int, 8> M;
3176  N->getMask(M);
3177  return ::isMOVLMask(M, N->getValueType(0));
3178}
3179
3180/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3181/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3182/// element of vector 2 and the other elements to come from vector 1 in order.
3183static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3184                               bool V2IsSplat = false, bool V2IsUndef = false) {
3185  int NumOps = VT.getVectorNumElements();
3186  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3187    return false;
3188
3189  if (!isUndefOrEqual(Mask[0], 0))
3190    return false;
3191
3192  for (int i = 1; i < NumOps; ++i)
3193    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3194          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3195          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3196      return false;
3197
3198  return true;
3199}
3200
3201static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3202                           bool V2IsUndef = false) {
3203  SmallVector<int, 8> M;
3204  N->getMask(M);
3205  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3206}
3207
3208/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3209/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3210bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3211  if (N->getValueType(0).getVectorNumElements() != 4)
3212    return false;
3213
3214  // Expect 1, 1, 3, 3
3215  for (unsigned i = 0; i < 2; ++i) {
3216    int Elt = N->getMaskElt(i);
3217    if (Elt >= 0 && Elt != 1)
3218      return false;
3219  }
3220
3221  bool HasHi = false;
3222  for (unsigned i = 2; i < 4; ++i) {
3223    int Elt = N->getMaskElt(i);
3224    if (Elt >= 0 && Elt != 3)
3225      return false;
3226    if (Elt == 3)
3227      HasHi = true;
3228  }
3229  // Don't use movshdup if it can be done with a shufps.
3230  // FIXME: verify that matching u, u, 3, 3 is what we want.
3231  return HasHi;
3232}
3233
3234/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3235/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3236bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3237  if (N->getValueType(0).getVectorNumElements() != 4)
3238    return false;
3239
3240  // Expect 0, 0, 2, 2
3241  for (unsigned i = 0; i < 2; ++i)
3242    if (N->getMaskElt(i) > 0)
3243      return false;
3244
3245  bool HasHi = false;
3246  for (unsigned i = 2; i < 4; ++i) {
3247    int Elt = N->getMaskElt(i);
3248    if (Elt >= 0 && Elt != 2)
3249      return false;
3250    if (Elt == 2)
3251      HasHi = true;
3252  }
3253  // Don't use movsldup if it can be done with a shufps.
3254  return HasHi;
3255}
3256
3257/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3258/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3259bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3260  int e = N->getValueType(0).getVectorNumElements() / 2;
3261
3262  for (int i = 0; i < e; ++i)
3263    if (!isUndefOrEqual(N->getMaskElt(i), i))
3264      return false;
3265  for (int i = 0; i < e; ++i)
3266    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3267      return false;
3268  return true;
3269}
3270
3271/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3272/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3273unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3274  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3275  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3276
3277  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3278  unsigned Mask = 0;
3279  for (int i = 0; i < NumOperands; ++i) {
3280    int Val = SVOp->getMaskElt(NumOperands-i-1);
3281    if (Val < 0) Val = 0;
3282    if (Val >= NumOperands) Val -= NumOperands;
3283    Mask |= Val;
3284    if (i != NumOperands - 1)
3285      Mask <<= Shift;
3286  }
3287  return Mask;
3288}
3289
3290/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3291/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3292unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3293  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3294  unsigned Mask = 0;
3295  // 8 nodes, but we only care about the last 4.
3296  for (unsigned i = 7; i >= 4; --i) {
3297    int Val = SVOp->getMaskElt(i);
3298    if (Val >= 0)
3299      Mask |= (Val - 4);
3300    if (i != 4)
3301      Mask <<= 2;
3302  }
3303  return Mask;
3304}
3305
3306/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3307/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3308unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3309  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3310  unsigned Mask = 0;
3311  // 8 nodes, but we only care about the first 4.
3312  for (int i = 3; i >= 0; --i) {
3313    int Val = SVOp->getMaskElt(i);
3314    if (Val >= 0)
3315      Mask |= Val;
3316    if (i != 0)
3317      Mask <<= 2;
3318  }
3319  return Mask;
3320}
3321
3322/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3323/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3324unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3325  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3326  EVT VVT = N->getValueType(0);
3327  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3328  int Val = 0;
3329
3330  unsigned i, e;
3331  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3332    Val = SVOp->getMaskElt(i);
3333    if (Val >= 0)
3334      break;
3335  }
3336  return (Val - i) * EltSize;
3337}
3338
3339/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3340/// constant +0.0.
3341bool X86::isZeroNode(SDValue Elt) {
3342  return ((isa<ConstantSDNode>(Elt) &&
3343           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3344          (isa<ConstantFPSDNode>(Elt) &&
3345           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3346}
3347
3348/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3349/// their permute mask.
3350static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3351                                    SelectionDAG &DAG) {
3352  EVT VT = SVOp->getValueType(0);
3353  unsigned NumElems = VT.getVectorNumElements();
3354  SmallVector<int, 8> MaskVec;
3355
3356  for (unsigned i = 0; i != NumElems; ++i) {
3357    int idx = SVOp->getMaskElt(i);
3358    if (idx < 0)
3359      MaskVec.push_back(idx);
3360    else if (idx < (int)NumElems)
3361      MaskVec.push_back(idx + NumElems);
3362    else
3363      MaskVec.push_back(idx - NumElems);
3364  }
3365  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3366                              SVOp->getOperand(0), &MaskVec[0]);
3367}
3368
3369/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3370/// the two vector operands have swapped position.
3371static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3372  unsigned NumElems = VT.getVectorNumElements();
3373  for (unsigned i = 0; i != NumElems; ++i) {
3374    int idx = Mask[i];
3375    if (idx < 0)
3376      continue;
3377    else if (idx < (int)NumElems)
3378      Mask[i] = idx + NumElems;
3379    else
3380      Mask[i] = idx - NumElems;
3381  }
3382}
3383
3384/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3385/// match movhlps. The lower half elements should come from upper half of
3386/// V1 (and in order), and the upper half elements should come from the upper
3387/// half of V2 (and in order).
3388static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3389  if (Op->getValueType(0).getVectorNumElements() != 4)
3390    return false;
3391  for (unsigned i = 0, e = 2; i != e; ++i)
3392    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3393      return false;
3394  for (unsigned i = 2; i != 4; ++i)
3395    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3396      return false;
3397  return true;
3398}
3399
3400/// isScalarLoadToVector - Returns true if the node is a scalar load that
3401/// is promoted to a vector. It also returns the LoadSDNode by reference if
3402/// required.
3403static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3404  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3405    return false;
3406  N = N->getOperand(0).getNode();
3407  if (!ISD::isNON_EXTLoad(N))
3408    return false;
3409  if (LD)
3410    *LD = cast<LoadSDNode>(N);
3411  return true;
3412}
3413
3414/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3415/// match movlp{s|d}. The lower half elements should come from lower half of
3416/// V1 (and in order), and the upper half elements should come from the upper
3417/// half of V2 (and in order). And since V1 will become the source of the
3418/// MOVLP, it must be either a vector load or a scalar load to vector.
3419static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3420                               ShuffleVectorSDNode *Op) {
3421  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3422    return false;
3423  // Is V2 is a vector load, don't do this transformation. We will try to use
3424  // load folding shufps op.
3425  if (ISD::isNON_EXTLoad(V2))
3426    return false;
3427
3428  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3429
3430  if (NumElems != 2 && NumElems != 4)
3431    return false;
3432  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3433    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3434      return false;
3435  for (unsigned i = NumElems/2; i != NumElems; ++i)
3436    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3437      return false;
3438  return true;
3439}
3440
3441/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3442/// all the same.
3443static bool isSplatVector(SDNode *N) {
3444  if (N->getOpcode() != ISD::BUILD_VECTOR)
3445    return false;
3446
3447  SDValue SplatValue = N->getOperand(0);
3448  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3449    if (N->getOperand(i) != SplatValue)
3450      return false;
3451  return true;
3452}
3453
3454/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3455/// to an zero vector.
3456/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3457static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3458  SDValue V1 = N->getOperand(0);
3459  SDValue V2 = N->getOperand(1);
3460  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3461  for (unsigned i = 0; i != NumElems; ++i) {
3462    int Idx = N->getMaskElt(i);
3463    if (Idx >= (int)NumElems) {
3464      unsigned Opc = V2.getOpcode();
3465      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3466        continue;
3467      if (Opc != ISD::BUILD_VECTOR ||
3468          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3469        return false;
3470    } else if (Idx >= 0) {
3471      unsigned Opc = V1.getOpcode();
3472      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3473        continue;
3474      if (Opc != ISD::BUILD_VECTOR ||
3475          !X86::isZeroNode(V1.getOperand(Idx)))
3476        return false;
3477    }
3478  }
3479  return true;
3480}
3481
3482/// getZeroVector - Returns a vector of specified type with all zero elements.
3483///
3484static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3485                             DebugLoc dl) {
3486  assert(VT.isVector() && "Expected a vector type");
3487
3488  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted
3489  // to their dest type. This ensures they get CSE'd.
3490  SDValue Vec;
3491  if (VT.getSizeInBits() == 64) { // MMX
3492    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3493    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3494  } else if (VT.getSizeInBits() == 128) {
3495    if (HasSSE2) {  // SSE2
3496      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3497      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3498    } else { // SSE1
3499      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3500      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3501    }
3502  } else if (VT.getSizeInBits() == 256) { // AVX
3503    // 256-bit logic and arithmetic instructions in AVX are
3504    // all floating-point, no support for integer ops. Default
3505    // to emitting fp zeroed vectors then.
3506    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3507    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3508    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3509  }
3510  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3511}
3512
3513/// getOnesVector - Returns a vector of specified type with all bits set.
3514///
3515static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3516  assert(VT.isVector() && "Expected a vector type");
3517
3518  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3519  // type.  This ensures they get CSE'd.
3520  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3521  SDValue Vec;
3522  if (VT.getSizeInBits() == 64) // MMX
3523    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3524  else // SSE
3525    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3526  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3527}
3528
3529
3530/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3531/// that point to V2 points to its first element.
3532static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3533  EVT VT = SVOp->getValueType(0);
3534  unsigned NumElems = VT.getVectorNumElements();
3535
3536  bool Changed = false;
3537  SmallVector<int, 8> MaskVec;
3538  SVOp->getMask(MaskVec);
3539
3540  for (unsigned i = 0; i != NumElems; ++i) {
3541    if (MaskVec[i] > (int)NumElems) {
3542      MaskVec[i] = NumElems;
3543      Changed = true;
3544    }
3545  }
3546  if (Changed)
3547    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3548                                SVOp->getOperand(1), &MaskVec[0]);
3549  return SDValue(SVOp, 0);
3550}
3551
3552/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3553/// operation of specified width.
3554static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3555                       SDValue V2) {
3556  unsigned NumElems = VT.getVectorNumElements();
3557  SmallVector<int, 8> Mask;
3558  Mask.push_back(NumElems);
3559  for (unsigned i = 1; i != NumElems; ++i)
3560    Mask.push_back(i);
3561  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3562}
3563
3564/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3565static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3566                          SDValue V2) {
3567  unsigned NumElems = VT.getVectorNumElements();
3568  SmallVector<int, 8> Mask;
3569  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3570    Mask.push_back(i);
3571    Mask.push_back(i + NumElems);
3572  }
3573  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3574}
3575
3576/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3577static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3578                          SDValue V2) {
3579  unsigned NumElems = VT.getVectorNumElements();
3580  unsigned Half = NumElems/2;
3581  SmallVector<int, 8> Mask;
3582  for (unsigned i = 0; i != Half; ++i) {
3583    Mask.push_back(i + Half);
3584    Mask.push_back(i + NumElems + Half);
3585  }
3586  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3587}
3588
3589/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3590static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3591  if (SV->getValueType(0).getVectorNumElements() <= 4)
3592    return SDValue(SV, 0);
3593
3594  EVT PVT = MVT::v4f32;
3595  EVT VT = SV->getValueType(0);
3596  DebugLoc dl = SV->getDebugLoc();
3597  SDValue V1 = SV->getOperand(0);
3598  int NumElems = VT.getVectorNumElements();
3599  int EltNo = SV->getSplatIndex();
3600
3601  // unpack elements to the correct location
3602  while (NumElems > 4) {
3603    if (EltNo < NumElems/2) {
3604      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3605    } else {
3606      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3607      EltNo -= NumElems/2;
3608    }
3609    NumElems >>= 1;
3610  }
3611
3612  // Perform the splat.
3613  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3614  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3615  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3616  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3617}
3618
3619/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3620/// vector of zero or undef vector.  This produces a shuffle where the low
3621/// element of V2 is swizzled into the zero/undef vector, landing at element
3622/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3623static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3624                                             bool isZero, bool HasSSE2,
3625                                             SelectionDAG &DAG) {
3626  EVT VT = V2.getValueType();
3627  SDValue V1 = isZero
3628    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3629  unsigned NumElems = VT.getVectorNumElements();
3630  SmallVector<int, 16> MaskVec;
3631  for (unsigned i = 0; i != NumElems; ++i)
3632    // If this is the insertion idx, put the low elt of V2 here.
3633    MaskVec.push_back(i == Idx ? NumElems : i);
3634  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3635}
3636
3637/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3638/// element of the result of the vector shuffle.
3639SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG) {
3640  SDValue V = SDValue(N, 0);
3641  EVT VT = V.getValueType();
3642  unsigned Opcode = V.getOpcode();
3643  int NumElems = VT.getVectorNumElements();
3644
3645  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3646  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3647    Index = SV->getMaskElt(Index);
3648
3649    if (Index < 0)
3650      return DAG.getUNDEF(VT.getVectorElementType());
3651
3652    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3653    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG);
3654  }
3655
3656  // Recurse into target specific vector shuffles to find scalars.
3657  if (isTargetShuffle(Opcode)) {
3658    switch(Opcode) {
3659    case X86ISD::MOVSS:
3660    case X86ISD::MOVSD: {
3661      // The index 0 always comes from the first element of the second source,
3662      // this is why MOVSS and MOVSD are used in the first place. The other
3663      // elements come from the other positions of the first source vector.
3664      unsigned OpNum = (Index == 0) ? 1 : 0;
3665      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG);
3666    }
3667    default:
3668      assert("not implemented for target shuffle node");
3669      return SDValue();
3670    }
3671  }
3672
3673  // Actual nodes that may contain scalar elements
3674  if (Opcode == ISD::BIT_CONVERT) {
3675    V = V.getOperand(0);
3676    EVT SrcVT = V.getValueType();
3677
3678    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != (unsigned)NumElems)
3679      return SDValue();
3680  }
3681
3682  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3683    return (Index == 0) ? V.getOperand(0)
3684                          : DAG.getUNDEF(VT.getVectorElementType());
3685
3686  if (V.getOpcode() == ISD::BUILD_VECTOR)
3687    return V.getOperand(Index);
3688
3689  return SDValue();
3690}
3691
3692/// getNumOfConsecutiveZeros - Return the number of elements of a vector
3693/// shuffle operation which come from a consecutively from a zero. The
3694/// search can start in two diferent directions, from left or right.
3695static
3696unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
3697                                  bool ZerosFromLeft, SelectionDAG &DAG) {
3698  int i = 0;
3699
3700  while (i < NumElems) {
3701    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
3702    SDValue Elt = getShuffleScalarElt(N, Index, DAG);
3703    if (!(Elt.getNode() &&
3704         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
3705      break;
3706    ++i;
3707  }
3708
3709  return i;
3710}
3711
3712/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3713/// MaskE correspond consecutively to elements from one of the vector operands,
3714/// starting from its index OpIdx. Also tell OpNum which source vector operand.
3715static
3716bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
3717                              int OpIdx, int NumElems, unsigned &OpNum) {
3718  bool SeenV1 = false;
3719  bool SeenV2 = false;
3720
3721  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
3722    int Idx = SVOp->getMaskElt(i);
3723    // Ignore undef indicies
3724    if (Idx < 0)
3725      continue;
3726
3727    if (Idx < NumElems)
3728      SeenV1 = true;
3729    else
3730      SeenV2 = true;
3731
3732    // Only accept consecutive elements from the same vector
3733    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
3734      return false;
3735  }
3736
3737  OpNum = SeenV1 ? 0 : 1;
3738  return true;
3739}
3740
3741/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
3742/// logical left shift of a vector.
3743static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3744                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3745  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3746  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3747              false /* check zeros from right */, DAG);
3748  unsigned OpSrc;
3749
3750  if (!NumZeros)
3751    return false;
3752
3753  // Considering the elements in the mask that are not consecutive zeros,
3754  // check if they consecutively come from only one of the source vectors.
3755  //
3756  //               V1 = {X, A, B, C}     0
3757  //                         \  \  \    /
3758  //   vector_shuffle V1, V2 <1, 2, 3, X>
3759  //
3760  if (!isShuffleMaskConsecutive(SVOp,
3761            0,                   // Mask Start Index
3762            NumElems-NumZeros-1, // Mask End Index
3763            NumZeros,            // Where to start looking in the src vector
3764            NumElems,            // Number of elements in vector
3765            OpSrc))              // Which source operand ?
3766    return false;
3767
3768  isLeft = false;
3769  ShAmt = NumZeros;
3770  ShVal = SVOp->getOperand(OpSrc);
3771  return true;
3772}
3773
3774/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
3775/// logical left shift of a vector.
3776static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3777                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3778  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3779  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3780              true /* check zeros from left */, DAG);
3781  unsigned OpSrc;
3782
3783  if (!NumZeros)
3784    return false;
3785
3786  // Considering the elements in the mask that are not consecutive zeros,
3787  // check if they consecutively come from only one of the source vectors.
3788  //
3789  //                           0    { A, B, X, X } = V2
3790  //                          / \    /  /
3791  //   vector_shuffle V1, V2 <X, X, 4, 5>
3792  //
3793  if (!isShuffleMaskConsecutive(SVOp,
3794            NumZeros,     // Mask Start Index
3795            NumElems-1,   // Mask End Index
3796            0,            // Where to start looking in the src vector
3797            NumElems,     // Number of elements in vector
3798            OpSrc))       // Which source operand ?
3799    return false;
3800
3801  isLeft = true;
3802  ShAmt = NumZeros;
3803  ShVal = SVOp->getOperand(OpSrc);
3804  return true;
3805}
3806
3807/// isVectorShift - Returns true if the shuffle can be implemented as a
3808/// logical left or right shift of a vector.
3809static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3810                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3811  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
3812      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
3813    return true;
3814
3815  return false;
3816}
3817
3818/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3819///
3820static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3821                                       unsigned NumNonZero, unsigned NumZero,
3822                                       SelectionDAG &DAG,
3823                                       const TargetLowering &TLI) {
3824  if (NumNonZero > 8)
3825    return SDValue();
3826
3827  DebugLoc dl = Op.getDebugLoc();
3828  SDValue V(0, 0);
3829  bool First = true;
3830  for (unsigned i = 0; i < 16; ++i) {
3831    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3832    if (ThisIsNonZero && First) {
3833      if (NumZero)
3834        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3835      else
3836        V = DAG.getUNDEF(MVT::v8i16);
3837      First = false;
3838    }
3839
3840    if ((i & 1) != 0) {
3841      SDValue ThisElt(0, 0), LastElt(0, 0);
3842      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3843      if (LastIsNonZero) {
3844        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3845                              MVT::i16, Op.getOperand(i-1));
3846      }
3847      if (ThisIsNonZero) {
3848        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3849        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3850                              ThisElt, DAG.getConstant(8, MVT::i8));
3851        if (LastIsNonZero)
3852          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3853      } else
3854        ThisElt = LastElt;
3855
3856      if (ThisElt.getNode())
3857        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3858                        DAG.getIntPtrConstant(i/2));
3859    }
3860  }
3861
3862  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3863}
3864
3865/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3866///
3867static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3868                                     unsigned NumNonZero, unsigned NumZero,
3869                                     SelectionDAG &DAG,
3870                                     const TargetLowering &TLI) {
3871  if (NumNonZero > 4)
3872    return SDValue();
3873
3874  DebugLoc dl = Op.getDebugLoc();
3875  SDValue V(0, 0);
3876  bool First = true;
3877  for (unsigned i = 0; i < 8; ++i) {
3878    bool isNonZero = (NonZeros & (1 << i)) != 0;
3879    if (isNonZero) {
3880      if (First) {
3881        if (NumZero)
3882          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3883        else
3884          V = DAG.getUNDEF(MVT::v8i16);
3885        First = false;
3886      }
3887      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3888                      MVT::v8i16, V, Op.getOperand(i),
3889                      DAG.getIntPtrConstant(i));
3890    }
3891  }
3892
3893  return V;
3894}
3895
3896/// getVShift - Return a vector logical shift node.
3897///
3898static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3899                         unsigned NumBits, SelectionDAG &DAG,
3900                         const TargetLowering &TLI, DebugLoc dl) {
3901  bool isMMX = VT.getSizeInBits() == 64;
3902  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3903  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3904  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3905  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3906                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3907                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3908}
3909
3910SDValue
3911X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3912                                          SelectionDAG &DAG) const {
3913
3914  // Check if the scalar load can be widened into a vector load. And if
3915  // the address is "base + cst" see if the cst can be "absorbed" into
3916  // the shuffle mask.
3917  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3918    SDValue Ptr = LD->getBasePtr();
3919    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3920      return SDValue();
3921    EVT PVT = LD->getValueType(0);
3922    if (PVT != MVT::i32 && PVT != MVT::f32)
3923      return SDValue();
3924
3925    int FI = -1;
3926    int64_t Offset = 0;
3927    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3928      FI = FINode->getIndex();
3929      Offset = 0;
3930    } else if (Ptr.getOpcode() == ISD::ADD &&
3931               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3932               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3933      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3934      Offset = Ptr.getConstantOperandVal(1);
3935      Ptr = Ptr.getOperand(0);
3936    } else {
3937      return SDValue();
3938    }
3939
3940    SDValue Chain = LD->getChain();
3941    // Make sure the stack object alignment is at least 16.
3942    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3943    if (DAG.InferPtrAlignment(Ptr) < 16) {
3944      if (MFI->isFixedObjectIndex(FI)) {
3945        // Can't change the alignment. FIXME: It's possible to compute
3946        // the exact stack offset and reference FI + adjust offset instead.
3947        // If someone *really* cares about this. That's the way to implement it.
3948        return SDValue();
3949      } else {
3950        MFI->setObjectAlignment(FI, 16);
3951      }
3952    }
3953
3954    // (Offset % 16) must be multiple of 4. Then address is then
3955    // Ptr + (Offset & ~15).
3956    if (Offset < 0)
3957      return SDValue();
3958    if ((Offset % 16) & 3)
3959      return SDValue();
3960    int64_t StartOffset = Offset & ~15;
3961    if (StartOffset)
3962      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3963                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3964
3965    int EltNo = (Offset - StartOffset) >> 2;
3966    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3967    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3968    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3969                             false, false, 0);
3970    // Canonicalize it to a v4i32 shuffle.
3971    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3972    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3973                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3974                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3975  }
3976
3977  return SDValue();
3978}
3979
3980/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
3981/// vector of type 'VT', see if the elements can be replaced by a single large
3982/// load which has the same value as a build_vector whose operands are 'elts'.
3983///
3984/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
3985///
3986/// FIXME: we'd also like to handle the case where the last elements are zero
3987/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
3988/// There's even a handy isZeroNode for that purpose.
3989static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
3990                                        DebugLoc &dl, SelectionDAG &DAG) {
3991  EVT EltVT = VT.getVectorElementType();
3992  unsigned NumElems = Elts.size();
3993
3994  LoadSDNode *LDBase = NULL;
3995  unsigned LastLoadedElt = -1U;
3996
3997  // For each element in the initializer, see if we've found a load or an undef.
3998  // If we don't find an initial load element, or later load elements are
3999  // non-consecutive, bail out.
4000  for (unsigned i = 0; i < NumElems; ++i) {
4001    SDValue Elt = Elts[i];
4002
4003    if (!Elt.getNode() ||
4004        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4005      return SDValue();
4006    if (!LDBase) {
4007      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4008        return SDValue();
4009      LDBase = cast<LoadSDNode>(Elt.getNode());
4010      LastLoadedElt = i;
4011      continue;
4012    }
4013    if (Elt.getOpcode() == ISD::UNDEF)
4014      continue;
4015
4016    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4017    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4018      return SDValue();
4019    LastLoadedElt = i;
4020  }
4021
4022  // If we have found an entire vector of loads and undefs, then return a large
4023  // load of the entire vector width starting at the base pointer.  If we found
4024  // consecutive loads for the low half, generate a vzext_load node.
4025  if (LastLoadedElt == NumElems - 1) {
4026    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4027      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
4028                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
4029                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4030    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
4031                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
4032                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4033                       LDBase->getAlignment());
4034  } else if (NumElems == 4 && LastLoadedElt == 1) {
4035    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4036    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4037    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
4038    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
4039  }
4040  return SDValue();
4041}
4042
4043SDValue
4044X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4045  DebugLoc dl = Op.getDebugLoc();
4046  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4047  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4048  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4049  // is present, so AllOnes is ignored.
4050  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4051      (Op.getValueType().getSizeInBits() != 256 &&
4052       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4053    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
4054    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4055    // eliminated on x86-32 hosts.
4056    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
4057      return Op;
4058
4059    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4060      return getOnesVector(Op.getValueType(), DAG, dl);
4061    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4062  }
4063
4064  EVT VT = Op.getValueType();
4065  EVT ExtVT = VT.getVectorElementType();
4066  unsigned EVTBits = ExtVT.getSizeInBits();
4067
4068  unsigned NumElems = Op.getNumOperands();
4069  unsigned NumZero  = 0;
4070  unsigned NumNonZero = 0;
4071  unsigned NonZeros = 0;
4072  bool IsAllConstants = true;
4073  SmallSet<SDValue, 8> Values;
4074  for (unsigned i = 0; i < NumElems; ++i) {
4075    SDValue Elt = Op.getOperand(i);
4076    if (Elt.getOpcode() == ISD::UNDEF)
4077      continue;
4078    Values.insert(Elt);
4079    if (Elt.getOpcode() != ISD::Constant &&
4080        Elt.getOpcode() != ISD::ConstantFP)
4081      IsAllConstants = false;
4082    if (X86::isZeroNode(Elt))
4083      NumZero++;
4084    else {
4085      NonZeros |= (1 << i);
4086      NumNonZero++;
4087    }
4088  }
4089
4090  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4091  if (NumNonZero == 0)
4092    return DAG.getUNDEF(VT);
4093
4094  // Special case for single non-zero, non-undef, element.
4095  if (NumNonZero == 1) {
4096    unsigned Idx = CountTrailingZeros_32(NonZeros);
4097    SDValue Item = Op.getOperand(Idx);
4098
4099    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4100    // the value are obviously zero, truncate the value to i32 and do the
4101    // insertion that way.  Only do this if the value is non-constant or if the
4102    // value is a constant being inserted into element 0.  It is cheaper to do
4103    // a constant pool load than it is to do a movd + shuffle.
4104    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4105        (!IsAllConstants || Idx == 0)) {
4106      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4107        // Handle MMX and SSE both.
4108        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
4109        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
4110
4111        // Truncate the value (which may itself be a constant) to i32, and
4112        // convert it to a vector with movd (S2V+shuffle to zero extend).
4113        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4114        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4115        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4116                                           Subtarget->hasSSE2(), DAG);
4117
4118        // Now we have our 32-bit value zero extended in the low element of
4119        // a vector.  If Idx != 0, swizzle it into place.
4120        if (Idx != 0) {
4121          SmallVector<int, 4> Mask;
4122          Mask.push_back(Idx);
4123          for (unsigned i = 1; i != VecElts; ++i)
4124            Mask.push_back(i);
4125          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4126                                      DAG.getUNDEF(Item.getValueType()),
4127                                      &Mask[0]);
4128        }
4129        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
4130      }
4131    }
4132
4133    // If we have a constant or non-constant insertion into the low element of
4134    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4135    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4136    // depending on what the source datatype is.
4137    if (Idx == 0) {
4138      if (NumZero == 0) {
4139        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4140      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4141          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4142        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4143        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4144        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4145                                           DAG);
4146      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4147        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4148        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
4149        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4150        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4151                                           Subtarget->hasSSE2(), DAG);
4152        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
4153      }
4154    }
4155
4156    // Is it a vector logical left shift?
4157    if (NumElems == 2 && Idx == 1 &&
4158        X86::isZeroNode(Op.getOperand(0)) &&
4159        !X86::isZeroNode(Op.getOperand(1))) {
4160      unsigned NumBits = VT.getSizeInBits();
4161      return getVShift(true, VT,
4162                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4163                                   VT, Op.getOperand(1)),
4164                       NumBits/2, DAG, *this, dl);
4165    }
4166
4167    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4168      return SDValue();
4169
4170    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4171    // is a non-constant being inserted into an element other than the low one,
4172    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4173    // movd/movss) to move this into the low element, then shuffle it into
4174    // place.
4175    if (EVTBits == 32) {
4176      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4177
4178      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4179      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4180                                         Subtarget->hasSSE2(), DAG);
4181      SmallVector<int, 8> MaskVec;
4182      for (unsigned i = 0; i < NumElems; i++)
4183        MaskVec.push_back(i == Idx ? 0 : 1);
4184      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4185    }
4186  }
4187
4188  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4189  if (Values.size() == 1) {
4190    if (EVTBits == 32) {
4191      // Instead of a shuffle like this:
4192      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4193      // Check if it's possible to issue this instead.
4194      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4195      unsigned Idx = CountTrailingZeros_32(NonZeros);
4196      SDValue Item = Op.getOperand(Idx);
4197      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4198        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4199    }
4200    return SDValue();
4201  }
4202
4203  // A vector full of immediates; various special cases are already
4204  // handled, so this is best done with a single constant-pool load.
4205  if (IsAllConstants)
4206    return SDValue();
4207
4208  // Let legalizer expand 2-wide build_vectors.
4209  if (EVTBits == 64) {
4210    if (NumNonZero == 1) {
4211      // One half is zero or undef.
4212      unsigned Idx = CountTrailingZeros_32(NonZeros);
4213      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4214                                 Op.getOperand(Idx));
4215      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4216                                         Subtarget->hasSSE2(), DAG);
4217    }
4218    return SDValue();
4219  }
4220
4221  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4222  if (EVTBits == 8 && NumElems == 16) {
4223    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4224                                        *this);
4225    if (V.getNode()) return V;
4226  }
4227
4228  if (EVTBits == 16 && NumElems == 8) {
4229    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4230                                      *this);
4231    if (V.getNode()) return V;
4232  }
4233
4234  // If element VT is == 32 bits, turn it into a number of shuffles.
4235  SmallVector<SDValue, 8> V;
4236  V.resize(NumElems);
4237  if (NumElems == 4 && NumZero > 0) {
4238    for (unsigned i = 0; i < 4; ++i) {
4239      bool isZero = !(NonZeros & (1 << i));
4240      if (isZero)
4241        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4242      else
4243        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4244    }
4245
4246    for (unsigned i = 0; i < 2; ++i) {
4247      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4248        default: break;
4249        case 0:
4250          V[i] = V[i*2];  // Must be a zero vector.
4251          break;
4252        case 1:
4253          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4254          break;
4255        case 2:
4256          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4257          break;
4258        case 3:
4259          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4260          break;
4261      }
4262    }
4263
4264    SmallVector<int, 8> MaskVec;
4265    bool Reverse = (NonZeros & 0x3) == 2;
4266    for (unsigned i = 0; i < 2; ++i)
4267      MaskVec.push_back(Reverse ? 1-i : i);
4268    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4269    for (unsigned i = 0; i < 2; ++i)
4270      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4271    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4272  }
4273
4274  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4275    // Check for a build vector of consecutive loads.
4276    for (unsigned i = 0; i < NumElems; ++i)
4277      V[i] = Op.getOperand(i);
4278
4279    // Check for elements which are consecutive loads.
4280    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4281    if (LD.getNode())
4282      return LD;
4283
4284    // For SSE 4.1, use insertps to put the high elements into the low element.
4285    if (getSubtarget()->hasSSE41()) {
4286      SDValue Result;
4287      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4288        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4289      else
4290        Result = DAG.getUNDEF(VT);
4291
4292      for (unsigned i = 1; i < NumElems; ++i) {
4293        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4294        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4295                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4296      }
4297      return Result;
4298    }
4299
4300    // Otherwise, expand into a number of unpckl*, start by extending each of
4301    // our (non-undef) elements to the full vector width with the element in the
4302    // bottom slot of the vector (which generates no code for SSE).
4303    for (unsigned i = 0; i < NumElems; ++i) {
4304      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4305        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4306      else
4307        V[i] = DAG.getUNDEF(VT);
4308    }
4309
4310    // Next, we iteratively mix elements, e.g. for v4f32:
4311    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4312    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4313    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4314    unsigned EltStride = NumElems >> 1;
4315    while (EltStride != 0) {
4316      for (unsigned i = 0; i < EltStride; ++i) {
4317        // If V[i+EltStride] is undef and this is the first round of mixing,
4318        // then it is safe to just drop this shuffle: V[i] is already in the
4319        // right place, the one element (since it's the first round) being
4320        // inserted as undef can be dropped.  This isn't safe for successive
4321        // rounds because they will permute elements within both vectors.
4322        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4323            EltStride == NumElems/2)
4324          continue;
4325
4326        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4327      }
4328      EltStride >>= 1;
4329    }
4330    return V[0];
4331  }
4332  return SDValue();
4333}
4334
4335SDValue
4336X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4337  // We support concatenate two MMX registers and place them in a MMX
4338  // register.  This is better than doing a stack convert.
4339  DebugLoc dl = Op.getDebugLoc();
4340  EVT ResVT = Op.getValueType();
4341  assert(Op.getNumOperands() == 2);
4342  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4343         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4344  int Mask[2];
4345  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4346  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4347  InVec = Op.getOperand(1);
4348  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4349    unsigned NumElts = ResVT.getVectorNumElements();
4350    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4351    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4352                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4353  } else {
4354    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4355    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4356    Mask[0] = 0; Mask[1] = 2;
4357    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4358  }
4359  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4360}
4361
4362// v8i16 shuffles - Prefer shuffles in the following order:
4363// 1. [all]   pshuflw, pshufhw, optional move
4364// 2. [ssse3] 1 x pshufb
4365// 3. [ssse3] 2 x pshufb + 1 x por
4366// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4367SDValue
4368X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4369                                            SelectionDAG &DAG) const {
4370  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4371  SDValue V1 = SVOp->getOperand(0);
4372  SDValue V2 = SVOp->getOperand(1);
4373  DebugLoc dl = SVOp->getDebugLoc();
4374  SmallVector<int, 8> MaskVals;
4375
4376  // Determine if more than 1 of the words in each of the low and high quadwords
4377  // of the result come from the same quadword of one of the two inputs.  Undef
4378  // mask values count as coming from any quadword, for better codegen.
4379  SmallVector<unsigned, 4> LoQuad(4);
4380  SmallVector<unsigned, 4> HiQuad(4);
4381  BitVector InputQuads(4);
4382  for (unsigned i = 0; i < 8; ++i) {
4383    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4384    int EltIdx = SVOp->getMaskElt(i);
4385    MaskVals.push_back(EltIdx);
4386    if (EltIdx < 0) {
4387      ++Quad[0];
4388      ++Quad[1];
4389      ++Quad[2];
4390      ++Quad[3];
4391      continue;
4392    }
4393    ++Quad[EltIdx / 4];
4394    InputQuads.set(EltIdx / 4);
4395  }
4396
4397  int BestLoQuad = -1;
4398  unsigned MaxQuad = 1;
4399  for (unsigned i = 0; i < 4; ++i) {
4400    if (LoQuad[i] > MaxQuad) {
4401      BestLoQuad = i;
4402      MaxQuad = LoQuad[i];
4403    }
4404  }
4405
4406  int BestHiQuad = -1;
4407  MaxQuad = 1;
4408  for (unsigned i = 0; i < 4; ++i) {
4409    if (HiQuad[i] > MaxQuad) {
4410      BestHiQuad = i;
4411      MaxQuad = HiQuad[i];
4412    }
4413  }
4414
4415  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4416  // of the two input vectors, shuffle them into one input vector so only a
4417  // single pshufb instruction is necessary. If There are more than 2 input
4418  // quads, disable the next transformation since it does not help SSSE3.
4419  bool V1Used = InputQuads[0] || InputQuads[1];
4420  bool V2Used = InputQuads[2] || InputQuads[3];
4421  if (Subtarget->hasSSSE3()) {
4422    if (InputQuads.count() == 2 && V1Used && V2Used) {
4423      BestLoQuad = InputQuads.find_first();
4424      BestHiQuad = InputQuads.find_next(BestLoQuad);
4425    }
4426    if (InputQuads.count() > 2) {
4427      BestLoQuad = -1;
4428      BestHiQuad = -1;
4429    }
4430  }
4431
4432  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4433  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4434  // words from all 4 input quadwords.
4435  SDValue NewV;
4436  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4437    SmallVector<int, 8> MaskV;
4438    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4439    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4440    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4441                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4442                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4443    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4444
4445    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4446    // source words for the shuffle, to aid later transformations.
4447    bool AllWordsInNewV = true;
4448    bool InOrder[2] = { true, true };
4449    for (unsigned i = 0; i != 8; ++i) {
4450      int idx = MaskVals[i];
4451      if (idx != (int)i)
4452        InOrder[i/4] = false;
4453      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4454        continue;
4455      AllWordsInNewV = false;
4456      break;
4457    }
4458
4459    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4460    if (AllWordsInNewV) {
4461      for (int i = 0; i != 8; ++i) {
4462        int idx = MaskVals[i];
4463        if (idx < 0)
4464          continue;
4465        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4466        if ((idx != i) && idx < 4)
4467          pshufhw = false;
4468        if ((idx != i) && idx > 3)
4469          pshuflw = false;
4470      }
4471      V1 = NewV;
4472      V2Used = false;
4473      BestLoQuad = 0;
4474      BestHiQuad = 1;
4475    }
4476
4477    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4478    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4479    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4480      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4481      unsigned TargetMask = 0;
4482      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4483                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4484      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4485                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4486      V1 = NewV.getOperand(0);
4487      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4488    }
4489  }
4490
4491  // If we have SSSE3, and all words of the result are from 1 input vector,
4492  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4493  // is present, fall back to case 4.
4494  if (Subtarget->hasSSSE3()) {
4495    SmallVector<SDValue,16> pshufbMask;
4496
4497    // If we have elements from both input vectors, set the high bit of the
4498    // shuffle mask element to zero out elements that come from V2 in the V1
4499    // mask, and elements that come from V1 in the V2 mask, so that the two
4500    // results can be OR'd together.
4501    bool TwoInputs = V1Used && V2Used;
4502    for (unsigned i = 0; i != 8; ++i) {
4503      int EltIdx = MaskVals[i] * 2;
4504      if (TwoInputs && (EltIdx >= 16)) {
4505        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4506        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4507        continue;
4508      }
4509      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4510      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4511    }
4512    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4513    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4514                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4515                                 MVT::v16i8, &pshufbMask[0], 16));
4516    if (!TwoInputs)
4517      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4518
4519    // Calculate the shuffle mask for the second input, shuffle it, and
4520    // OR it with the first shuffled input.
4521    pshufbMask.clear();
4522    for (unsigned i = 0; i != 8; ++i) {
4523      int EltIdx = MaskVals[i] * 2;
4524      if (EltIdx < 16) {
4525        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4526        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4527        continue;
4528      }
4529      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4530      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4531    }
4532    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4533    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4534                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4535                                 MVT::v16i8, &pshufbMask[0], 16));
4536    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4537    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4538  }
4539
4540  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4541  // and update MaskVals with new element order.
4542  BitVector InOrder(8);
4543  if (BestLoQuad >= 0) {
4544    SmallVector<int, 8> MaskV;
4545    for (int i = 0; i != 4; ++i) {
4546      int idx = MaskVals[i];
4547      if (idx < 0) {
4548        MaskV.push_back(-1);
4549        InOrder.set(i);
4550      } else if ((idx / 4) == BestLoQuad) {
4551        MaskV.push_back(idx & 3);
4552        InOrder.set(i);
4553      } else {
4554        MaskV.push_back(-1);
4555      }
4556    }
4557    for (unsigned i = 4; i != 8; ++i)
4558      MaskV.push_back(i);
4559    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4560                                &MaskV[0]);
4561
4562    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4563      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4564                               NewV.getOperand(0),
4565                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4566                               DAG);
4567  }
4568
4569  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4570  // and update MaskVals with the new element order.
4571  if (BestHiQuad >= 0) {
4572    SmallVector<int, 8> MaskV;
4573    for (unsigned i = 0; i != 4; ++i)
4574      MaskV.push_back(i);
4575    for (unsigned i = 4; i != 8; ++i) {
4576      int idx = MaskVals[i];
4577      if (idx < 0) {
4578        MaskV.push_back(-1);
4579        InOrder.set(i);
4580      } else if ((idx / 4) == BestHiQuad) {
4581        MaskV.push_back((idx & 3) + 4);
4582        InOrder.set(i);
4583      } else {
4584        MaskV.push_back(-1);
4585      }
4586    }
4587    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4588                                &MaskV[0]);
4589
4590    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4591      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4592                              NewV.getOperand(0),
4593                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4594                              DAG);
4595  }
4596
4597  // In case BestHi & BestLo were both -1, which means each quadword has a word
4598  // from each of the four input quadwords, calculate the InOrder bitvector now
4599  // before falling through to the insert/extract cleanup.
4600  if (BestLoQuad == -1 && BestHiQuad == -1) {
4601    NewV = V1;
4602    for (int i = 0; i != 8; ++i)
4603      if (MaskVals[i] < 0 || MaskVals[i] == i)
4604        InOrder.set(i);
4605  }
4606
4607  // The other elements are put in the right place using pextrw and pinsrw.
4608  for (unsigned i = 0; i != 8; ++i) {
4609    if (InOrder[i])
4610      continue;
4611    int EltIdx = MaskVals[i];
4612    if (EltIdx < 0)
4613      continue;
4614    SDValue ExtOp = (EltIdx < 8)
4615    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4616                  DAG.getIntPtrConstant(EltIdx))
4617    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4618                  DAG.getIntPtrConstant(EltIdx - 8));
4619    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4620                       DAG.getIntPtrConstant(i));
4621  }
4622  return NewV;
4623}
4624
4625// v16i8 shuffles - Prefer shuffles in the following order:
4626// 1. [ssse3] 1 x pshufb
4627// 2. [ssse3] 2 x pshufb + 1 x por
4628// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4629static
4630SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4631                                 SelectionDAG &DAG,
4632                                 const X86TargetLowering &TLI) {
4633  SDValue V1 = SVOp->getOperand(0);
4634  SDValue V2 = SVOp->getOperand(1);
4635  DebugLoc dl = SVOp->getDebugLoc();
4636  SmallVector<int, 16> MaskVals;
4637  SVOp->getMask(MaskVals);
4638
4639  // If we have SSSE3, case 1 is generated when all result bytes come from
4640  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4641  // present, fall back to case 3.
4642  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4643  bool V1Only = true;
4644  bool V2Only = true;
4645  for (unsigned i = 0; i < 16; ++i) {
4646    int EltIdx = MaskVals[i];
4647    if (EltIdx < 0)
4648      continue;
4649    if (EltIdx < 16)
4650      V2Only = false;
4651    else
4652      V1Only = false;
4653  }
4654
4655  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4656  if (TLI.getSubtarget()->hasSSSE3()) {
4657    SmallVector<SDValue,16> pshufbMask;
4658
4659    // If all result elements are from one input vector, then only translate
4660    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4661    //
4662    // Otherwise, we have elements from both input vectors, and must zero out
4663    // elements that come from V2 in the first mask, and V1 in the second mask
4664    // so that we can OR them together.
4665    bool TwoInputs = !(V1Only || V2Only);
4666    for (unsigned i = 0; i != 16; ++i) {
4667      int EltIdx = MaskVals[i];
4668      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4669        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4670        continue;
4671      }
4672      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4673    }
4674    // If all the elements are from V2, assign it to V1 and return after
4675    // building the first pshufb.
4676    if (V2Only)
4677      V1 = V2;
4678    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4679                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4680                                 MVT::v16i8, &pshufbMask[0], 16));
4681    if (!TwoInputs)
4682      return V1;
4683
4684    // Calculate the shuffle mask for the second input, shuffle it, and
4685    // OR it with the first shuffled input.
4686    pshufbMask.clear();
4687    for (unsigned i = 0; i != 16; ++i) {
4688      int EltIdx = MaskVals[i];
4689      if (EltIdx < 16) {
4690        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4691        continue;
4692      }
4693      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4694    }
4695    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4696                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4697                                 MVT::v16i8, &pshufbMask[0], 16));
4698    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4699  }
4700
4701  // No SSSE3 - Calculate in place words and then fix all out of place words
4702  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4703  // the 16 different words that comprise the two doublequadword input vectors.
4704  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4705  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4706  SDValue NewV = V2Only ? V2 : V1;
4707  for (int i = 0; i != 8; ++i) {
4708    int Elt0 = MaskVals[i*2];
4709    int Elt1 = MaskVals[i*2+1];
4710
4711    // This word of the result is all undef, skip it.
4712    if (Elt0 < 0 && Elt1 < 0)
4713      continue;
4714
4715    // This word of the result is already in the correct place, skip it.
4716    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4717      continue;
4718    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4719      continue;
4720
4721    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4722    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4723    SDValue InsElt;
4724
4725    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4726    // using a single extract together, load it and store it.
4727    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4728      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4729                           DAG.getIntPtrConstant(Elt1 / 2));
4730      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4731                        DAG.getIntPtrConstant(i));
4732      continue;
4733    }
4734
4735    // If Elt1 is defined, extract it from the appropriate source.  If the
4736    // source byte is not also odd, shift the extracted word left 8 bits
4737    // otherwise clear the bottom 8 bits if we need to do an or.
4738    if (Elt1 >= 0) {
4739      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4740                           DAG.getIntPtrConstant(Elt1 / 2));
4741      if ((Elt1 & 1) == 0)
4742        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4743                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4744      else if (Elt0 >= 0)
4745        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4746                             DAG.getConstant(0xFF00, MVT::i16));
4747    }
4748    // If Elt0 is defined, extract it from the appropriate source.  If the
4749    // source byte is not also even, shift the extracted word right 8 bits. If
4750    // Elt1 was also defined, OR the extracted values together before
4751    // inserting them in the result.
4752    if (Elt0 >= 0) {
4753      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4754                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4755      if ((Elt0 & 1) != 0)
4756        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4757                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4758      else if (Elt1 >= 0)
4759        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4760                             DAG.getConstant(0x00FF, MVT::i16));
4761      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4762                         : InsElt0;
4763    }
4764    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4765                       DAG.getIntPtrConstant(i));
4766  }
4767  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4768}
4769
4770/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4771/// ones, or rewriting v4i32 / v2i32 as 2 wide ones if possible. This can be
4772/// done when every pair / quad of shuffle mask elements point to elements in
4773/// the right sequence. e.g.
4774/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4775static
4776SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4777                                 SelectionDAG &DAG,
4778                                 const TargetLowering &TLI, DebugLoc dl) {
4779  EVT VT = SVOp->getValueType(0);
4780  SDValue V1 = SVOp->getOperand(0);
4781  SDValue V2 = SVOp->getOperand(1);
4782  unsigned NumElems = VT.getVectorNumElements();
4783  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4784  EVT MaskVT = (NewWidth == 4) ? MVT::v4i16 : MVT::v2i32;
4785  EVT NewVT = MaskVT;
4786  switch (VT.getSimpleVT().SimpleTy) {
4787  default: assert(false && "Unexpected!");
4788  case MVT::v4f32: NewVT = MVT::v2f64; break;
4789  case MVT::v4i32: NewVT = MVT::v2i64; break;
4790  case MVT::v8i16: NewVT = MVT::v4i32; break;
4791  case MVT::v16i8: NewVT = MVT::v4i32; break;
4792  }
4793
4794  if (NewWidth == 2) {
4795    if (VT.isInteger())
4796      NewVT = MVT::v2i64;
4797    else
4798      NewVT = MVT::v2f64;
4799  }
4800  int Scale = NumElems / NewWidth;
4801  SmallVector<int, 8> MaskVec;
4802  for (unsigned i = 0; i < NumElems; i += Scale) {
4803    int StartIdx = -1;
4804    for (int j = 0; j < Scale; ++j) {
4805      int EltIdx = SVOp->getMaskElt(i+j);
4806      if (EltIdx < 0)
4807        continue;
4808      if (StartIdx == -1)
4809        StartIdx = EltIdx - (EltIdx % Scale);
4810      if (EltIdx != StartIdx + j)
4811        return SDValue();
4812    }
4813    if (StartIdx == -1)
4814      MaskVec.push_back(-1);
4815    else
4816      MaskVec.push_back(StartIdx / Scale);
4817  }
4818
4819  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4820  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4821  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4822}
4823
4824/// getVZextMovL - Return a zero-extending vector move low node.
4825///
4826static SDValue getVZextMovL(EVT VT, EVT OpVT,
4827                            SDValue SrcOp, SelectionDAG &DAG,
4828                            const X86Subtarget *Subtarget, DebugLoc dl) {
4829  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4830    LoadSDNode *LD = NULL;
4831    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4832      LD = dyn_cast<LoadSDNode>(SrcOp);
4833    if (!LD) {
4834      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4835      // instead.
4836      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4837      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4838          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4839          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4840          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4841        // PR2108
4842        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4843        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4844                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4845                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4846                                                   OpVT,
4847                                                   SrcOp.getOperand(0)
4848                                                          .getOperand(0))));
4849      }
4850    }
4851  }
4852
4853  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4854                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4855                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4856                                             OpVT, SrcOp)));
4857}
4858
4859/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4860/// shuffles.
4861static SDValue
4862LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4863  SDValue V1 = SVOp->getOperand(0);
4864  SDValue V2 = SVOp->getOperand(1);
4865  DebugLoc dl = SVOp->getDebugLoc();
4866  EVT VT = SVOp->getValueType(0);
4867
4868  SmallVector<std::pair<int, int>, 8> Locs;
4869  Locs.resize(4);
4870  SmallVector<int, 8> Mask1(4U, -1);
4871  SmallVector<int, 8> PermMask;
4872  SVOp->getMask(PermMask);
4873
4874  unsigned NumHi = 0;
4875  unsigned NumLo = 0;
4876  for (unsigned i = 0; i != 4; ++i) {
4877    int Idx = PermMask[i];
4878    if (Idx < 0) {
4879      Locs[i] = std::make_pair(-1, -1);
4880    } else {
4881      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4882      if (Idx < 4) {
4883        Locs[i] = std::make_pair(0, NumLo);
4884        Mask1[NumLo] = Idx;
4885        NumLo++;
4886      } else {
4887        Locs[i] = std::make_pair(1, NumHi);
4888        if (2+NumHi < 4)
4889          Mask1[2+NumHi] = Idx;
4890        NumHi++;
4891      }
4892    }
4893  }
4894
4895  if (NumLo <= 2 && NumHi <= 2) {
4896    // If no more than two elements come from either vector. This can be
4897    // implemented with two shuffles. First shuffle gather the elements.
4898    // The second shuffle, which takes the first shuffle as both of its
4899    // vector operands, put the elements into the right order.
4900    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4901
4902    SmallVector<int, 8> Mask2(4U, -1);
4903
4904    for (unsigned i = 0; i != 4; ++i) {
4905      if (Locs[i].first == -1)
4906        continue;
4907      else {
4908        unsigned Idx = (i < 2) ? 0 : 4;
4909        Idx += Locs[i].first * 2 + Locs[i].second;
4910        Mask2[i] = Idx;
4911      }
4912    }
4913
4914    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4915  } else if (NumLo == 3 || NumHi == 3) {
4916    // Otherwise, we must have three elements from one vector, call it X, and
4917    // one element from the other, call it Y.  First, use a shufps to build an
4918    // intermediate vector with the one element from Y and the element from X
4919    // that will be in the same half in the final destination (the indexes don't
4920    // matter). Then, use a shufps to build the final vector, taking the half
4921    // containing the element from Y from the intermediate, and the other half
4922    // from X.
4923    if (NumHi == 3) {
4924      // Normalize it so the 3 elements come from V1.
4925      CommuteVectorShuffleMask(PermMask, VT);
4926      std::swap(V1, V2);
4927    }
4928
4929    // Find the element from V2.
4930    unsigned HiIndex;
4931    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4932      int Val = PermMask[HiIndex];
4933      if (Val < 0)
4934        continue;
4935      if (Val >= 4)
4936        break;
4937    }
4938
4939    Mask1[0] = PermMask[HiIndex];
4940    Mask1[1] = -1;
4941    Mask1[2] = PermMask[HiIndex^1];
4942    Mask1[3] = -1;
4943    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4944
4945    if (HiIndex >= 2) {
4946      Mask1[0] = PermMask[0];
4947      Mask1[1] = PermMask[1];
4948      Mask1[2] = HiIndex & 1 ? 6 : 4;
4949      Mask1[3] = HiIndex & 1 ? 4 : 6;
4950      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4951    } else {
4952      Mask1[0] = HiIndex & 1 ? 2 : 0;
4953      Mask1[1] = HiIndex & 1 ? 0 : 2;
4954      Mask1[2] = PermMask[2];
4955      Mask1[3] = PermMask[3];
4956      if (Mask1[2] >= 0)
4957        Mask1[2] += 4;
4958      if (Mask1[3] >= 0)
4959        Mask1[3] += 4;
4960      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4961    }
4962  }
4963
4964  // Break it into (shuffle shuffle_hi, shuffle_lo).
4965  Locs.clear();
4966  SmallVector<int,8> LoMask(4U, -1);
4967  SmallVector<int,8> HiMask(4U, -1);
4968
4969  SmallVector<int,8> *MaskPtr = &LoMask;
4970  unsigned MaskIdx = 0;
4971  unsigned LoIdx = 0;
4972  unsigned HiIdx = 2;
4973  for (unsigned i = 0; i != 4; ++i) {
4974    if (i == 2) {
4975      MaskPtr = &HiMask;
4976      MaskIdx = 1;
4977      LoIdx = 0;
4978      HiIdx = 2;
4979    }
4980    int Idx = PermMask[i];
4981    if (Idx < 0) {
4982      Locs[i] = std::make_pair(-1, -1);
4983    } else if (Idx < 4) {
4984      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4985      (*MaskPtr)[LoIdx] = Idx;
4986      LoIdx++;
4987    } else {
4988      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4989      (*MaskPtr)[HiIdx] = Idx;
4990      HiIdx++;
4991    }
4992  }
4993
4994  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4995  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4996  SmallVector<int, 8> MaskOps;
4997  for (unsigned i = 0; i != 4; ++i) {
4998    if (Locs[i].first == -1) {
4999      MaskOps.push_back(-1);
5000    } else {
5001      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5002      MaskOps.push_back(Idx);
5003    }
5004  }
5005  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5006}
5007
5008static
5009SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5010                        bool HasSSE2) {
5011  SDValue V1 = Op.getOperand(0);
5012  SDValue V2 = Op.getOperand(1);
5013  EVT VT = Op.getValueType();
5014
5015  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5016
5017  if (HasSSE2 && VT == MVT::v2f64)
5018    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5019
5020  // v4f32 or v4i32
5021  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5022}
5023
5024SDValue
5025X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5026  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5027  SDValue V1 = Op.getOperand(0);
5028  SDValue V2 = Op.getOperand(1);
5029  EVT VT = Op.getValueType();
5030  DebugLoc dl = Op.getDebugLoc();
5031  unsigned NumElems = VT.getVectorNumElements();
5032  bool isMMX = VT.getSizeInBits() == 64;
5033  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5034  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5035  bool V1IsSplat = false;
5036  bool V2IsSplat = false;
5037  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5038  MachineFunction &MF = DAG.getMachineFunction();
5039  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5040
5041  if (isZeroShuffle(SVOp))
5042    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5043
5044  // Promote splats to v4f32.
5045  if (SVOp->isSplat()) {
5046    if (isMMX || NumElems < 4)
5047      return Op;
5048    return PromoteSplat(SVOp, DAG);
5049  }
5050
5051  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5052  // do it!
5053  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5054    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
5055    if (NewOp.getNode())
5056      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5057                         LowerVECTOR_SHUFFLE(NewOp, DAG));
5058  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5059    // FIXME: Figure out a cleaner way to do this.
5060    // Try to make use of movq to zero out the top part.
5061    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5062      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
5063      if (NewOp.getNode()) {
5064        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5065          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5066                              DAG, Subtarget, dl);
5067      }
5068    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5069      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
5070      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5071        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5072                            DAG, Subtarget, dl);
5073    }
5074  }
5075
5076  if (X86::isPSHUFDMask(SVOp)) {
5077    // The actual implementation will match the mask in the if above and then
5078    // during isel it can match several different instructions, not only pshufd
5079    // as its name says, sad but true, emulate the behavior for now...
5080    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5081        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5082
5083    if (OptForSize && HasSSE2 && X86::isUNPCKL_v_undef_Mask(SVOp) &&
5084        VT == MVT::v4i32)
5085      return getTargetShuffleNode(X86ISD::PUNPCKLDQ, dl, VT, V1, V1, DAG);
5086
5087    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5088
5089    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5090      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5091
5092    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5093      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5094                                  TargetMask, DAG);
5095
5096    if (VT == MVT::v4f32)
5097      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5098                                  TargetMask, DAG);
5099  }
5100
5101  // Check if this can be converted into a logical shift.
5102  bool isLeft = false;
5103  unsigned ShAmt = 0;
5104  SDValue ShVal;
5105  bool isShift = getSubtarget()->hasSSE2() &&
5106    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5107  if (isShift && ShVal.hasOneUse()) {
5108    // If the shifted value has multiple uses, it may be cheaper to use
5109    // v_set0 + movlhps or movhlps, etc.
5110    EVT EltVT = VT.getVectorElementType();
5111    ShAmt *= EltVT.getSizeInBits();
5112    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5113  }
5114
5115  if (X86::isMOVLMask(SVOp)) {
5116    if (V1IsUndef)
5117      return V2;
5118    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5119      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5120    if (!isMMX && !X86::isMOVLPMask(SVOp)) {
5121      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5122        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5123
5124      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5125        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5126    }
5127  }
5128
5129  // FIXME: fold these into legal mask.
5130  if (!isMMX) {
5131    if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5132      return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5133
5134    if (X86::isMOVSHDUPMask(SVOp) ||
5135        X86::isMOVSLDUPMask(SVOp) ||
5136        X86::isMOVHLPSMask(SVOp) ||
5137        X86::isMOVLPMask(SVOp))
5138      return Op;
5139  }
5140
5141  if (ShouldXformToMOVHLPS(SVOp) ||
5142      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5143    return CommuteVectorShuffle(SVOp, DAG);
5144
5145  if (isShift) {
5146    // No better options. Use a vshl / vsrl.
5147    EVT EltVT = VT.getVectorElementType();
5148    ShAmt *= EltVT.getSizeInBits();
5149    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5150  }
5151
5152  bool Commuted = false;
5153  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5154  // 1,1,1,1 -> v8i16 though.
5155  V1IsSplat = isSplatVector(V1.getNode());
5156  V2IsSplat = isSplatVector(V2.getNode());
5157
5158  // Canonicalize the splat or undef, if present, to be on the RHS.
5159  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5160    Op = CommuteVectorShuffle(SVOp, DAG);
5161    SVOp = cast<ShuffleVectorSDNode>(Op);
5162    V1 = SVOp->getOperand(0);
5163    V2 = SVOp->getOperand(1);
5164    std::swap(V1IsSplat, V2IsSplat);
5165    std::swap(V1IsUndef, V2IsUndef);
5166    Commuted = true;
5167  }
5168
5169  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5170    // Shuffling low element of v1 into undef, just return v1.
5171    if (V2IsUndef)
5172      return V1;
5173    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5174    // the instruction selector will not match, so get a canonical MOVL with
5175    // swapped operands to undo the commute.
5176    return getMOVL(DAG, dl, VT, V2, V1);
5177  }
5178
5179  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
5180      X86::isUNPCKH_v_undef_Mask(SVOp) ||
5181      X86::isUNPCKLMask(SVOp) ||
5182      X86::isUNPCKHMask(SVOp))
5183    return Op;
5184
5185  if (V2IsSplat) {
5186    // Normalize mask so all entries that point to V2 points to its first
5187    // element then try to match unpck{h|l} again. If match, return a
5188    // new vector_shuffle with the corrected mask.
5189    SDValue NewMask = NormalizeMask(SVOp, DAG);
5190    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5191    if (NSVOp != SVOp) {
5192      if (X86::isUNPCKLMask(NSVOp, true)) {
5193        return NewMask;
5194      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5195        return NewMask;
5196      }
5197    }
5198  }
5199
5200  if (Commuted) {
5201    // Commute is back and try unpck* again.
5202    // FIXME: this seems wrong.
5203    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5204    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5205    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
5206        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
5207        X86::isUNPCKLMask(NewSVOp) ||
5208        X86::isUNPCKHMask(NewSVOp))
5209      return NewOp;
5210  }
5211
5212  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
5213
5214  // Normalize the node to match x86 shuffle ops if needed
5215  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5216    return CommuteVectorShuffle(SVOp, DAG);
5217
5218  // Check for legal shuffle and return?
5219  SmallVector<int, 16> PermMask;
5220  SVOp->getMask(PermMask);
5221  if (isShuffleMaskLegal(PermMask, VT))
5222    return Op;
5223
5224  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5225  if (VT == MVT::v8i16) {
5226    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5227    if (NewOp.getNode())
5228      return NewOp;
5229  }
5230
5231  if (VT == MVT::v16i8) {
5232    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5233    if (NewOp.getNode())
5234      return NewOp;
5235  }
5236
5237  // Handle all 4 wide cases with a number of shuffles except for MMX.
5238  if (NumElems == 4 && !isMMX)
5239    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5240
5241  return SDValue();
5242}
5243
5244SDValue
5245X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5246                                                SelectionDAG &DAG) const {
5247  EVT VT = Op.getValueType();
5248  DebugLoc dl = Op.getDebugLoc();
5249  if (VT.getSizeInBits() == 8) {
5250    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5251                                    Op.getOperand(0), Op.getOperand(1));
5252    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5253                                    DAG.getValueType(VT));
5254    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5255  } else if (VT.getSizeInBits() == 16) {
5256    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5257    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5258    if (Idx == 0)
5259      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5260                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5261                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5262                                                 MVT::v4i32,
5263                                                 Op.getOperand(0)),
5264                                     Op.getOperand(1)));
5265    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5266                                    Op.getOperand(0), Op.getOperand(1));
5267    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5268                                    DAG.getValueType(VT));
5269    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5270  } else if (VT == MVT::f32) {
5271    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5272    // the result back to FR32 register. It's only worth matching if the
5273    // result has a single use which is a store or a bitcast to i32.  And in
5274    // the case of a store, it's not worth it if the index is a constant 0,
5275    // because a MOVSSmr can be used instead, which is smaller and faster.
5276    if (!Op.hasOneUse())
5277      return SDValue();
5278    SDNode *User = *Op.getNode()->use_begin();
5279    if ((User->getOpcode() != ISD::STORE ||
5280         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5281          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5282        (User->getOpcode() != ISD::BIT_CONVERT ||
5283         User->getValueType(0) != MVT::i32))
5284      return SDValue();
5285    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5286                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
5287                                              Op.getOperand(0)),
5288                                              Op.getOperand(1));
5289    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
5290  } else if (VT == MVT::i32) {
5291    // ExtractPS works with constant index.
5292    if (isa<ConstantSDNode>(Op.getOperand(1)))
5293      return Op;
5294  }
5295  return SDValue();
5296}
5297
5298
5299SDValue
5300X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5301                                           SelectionDAG &DAG) const {
5302  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5303    return SDValue();
5304
5305  if (Subtarget->hasSSE41()) {
5306    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5307    if (Res.getNode())
5308      return Res;
5309  }
5310
5311  EVT VT = Op.getValueType();
5312  DebugLoc dl = Op.getDebugLoc();
5313  // TODO: handle v16i8.
5314  if (VT.getSizeInBits() == 16) {
5315    SDValue Vec = Op.getOperand(0);
5316    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5317    if (Idx == 0)
5318      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5319                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5320                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5321                                                 MVT::v4i32, Vec),
5322                                     Op.getOperand(1)));
5323    // Transform it so it match pextrw which produces a 32-bit result.
5324    EVT EltVT = MVT::i32;
5325    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5326                                    Op.getOperand(0), Op.getOperand(1));
5327    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5328                                    DAG.getValueType(VT));
5329    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5330  } else if (VT.getSizeInBits() == 32) {
5331    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5332    if (Idx == 0)
5333      return Op;
5334
5335    // SHUFPS the element to the lowest double word, then movss.
5336    int Mask[4] = { Idx, -1, -1, -1 };
5337    EVT VVT = Op.getOperand(0).getValueType();
5338    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5339                                       DAG.getUNDEF(VVT), Mask);
5340    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5341                       DAG.getIntPtrConstant(0));
5342  } else if (VT.getSizeInBits() == 64) {
5343    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5344    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5345    //        to match extract_elt for f64.
5346    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5347    if (Idx == 0)
5348      return Op;
5349
5350    // UNPCKHPD the element to the lowest double word, then movsd.
5351    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5352    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5353    int Mask[2] = { 1, -1 };
5354    EVT VVT = Op.getOperand(0).getValueType();
5355    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5356                                       DAG.getUNDEF(VVT), Mask);
5357    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5358                       DAG.getIntPtrConstant(0));
5359  }
5360
5361  return SDValue();
5362}
5363
5364SDValue
5365X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5366                                               SelectionDAG &DAG) const {
5367  EVT VT = Op.getValueType();
5368  EVT EltVT = VT.getVectorElementType();
5369  DebugLoc dl = Op.getDebugLoc();
5370
5371  SDValue N0 = Op.getOperand(0);
5372  SDValue N1 = Op.getOperand(1);
5373  SDValue N2 = Op.getOperand(2);
5374
5375  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5376      isa<ConstantSDNode>(N2)) {
5377    unsigned Opc;
5378    if (VT == MVT::v8i16)
5379      Opc = X86ISD::PINSRW;
5380    else if (VT == MVT::v4i16)
5381      Opc = X86ISD::MMX_PINSRW;
5382    else if (VT == MVT::v16i8)
5383      Opc = X86ISD::PINSRB;
5384    else
5385      Opc = X86ISD::PINSRB;
5386
5387    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5388    // argument.
5389    if (N1.getValueType() != MVT::i32)
5390      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5391    if (N2.getValueType() != MVT::i32)
5392      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5393    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5394  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5395    // Bits [7:6] of the constant are the source select.  This will always be
5396    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5397    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5398    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5399    // Bits [5:4] of the constant are the destination select.  This is the
5400    //  value of the incoming immediate.
5401    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5402    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5403    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5404    // Create this as a scalar to vector..
5405    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5406    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5407  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5408    // PINSR* works with constant index.
5409    return Op;
5410  }
5411  return SDValue();
5412}
5413
5414SDValue
5415X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5416  EVT VT = Op.getValueType();
5417  EVT EltVT = VT.getVectorElementType();
5418
5419  if (Subtarget->hasSSE41())
5420    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5421
5422  if (EltVT == MVT::i8)
5423    return SDValue();
5424
5425  DebugLoc dl = Op.getDebugLoc();
5426  SDValue N0 = Op.getOperand(0);
5427  SDValue N1 = Op.getOperand(1);
5428  SDValue N2 = Op.getOperand(2);
5429
5430  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5431    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5432    // as its second argument.
5433    if (N1.getValueType() != MVT::i32)
5434      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5435    if (N2.getValueType() != MVT::i32)
5436      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5437    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5438                       dl, VT, N0, N1, N2);
5439  }
5440  return SDValue();
5441}
5442
5443SDValue
5444X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5445  DebugLoc dl = Op.getDebugLoc();
5446
5447  if (Op.getValueType() == MVT::v1i64 &&
5448      Op.getOperand(0).getValueType() == MVT::i64)
5449    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5450
5451  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5452  EVT VT = MVT::v2i32;
5453  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5454  default: break;
5455  case MVT::v16i8:
5456  case MVT::v8i16:
5457    VT = MVT::v4i32;
5458    break;
5459  }
5460  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5461                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5462}
5463
5464// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5465// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5466// one of the above mentioned nodes. It has to be wrapped because otherwise
5467// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5468// be used to form addressing mode. These wrapped nodes will be selected
5469// into MOV32ri.
5470SDValue
5471X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5472  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5473
5474  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5475  // global base reg.
5476  unsigned char OpFlag = 0;
5477  unsigned WrapperKind = X86ISD::Wrapper;
5478  CodeModel::Model M = getTargetMachine().getCodeModel();
5479
5480  if (Subtarget->isPICStyleRIPRel() &&
5481      (M == CodeModel::Small || M == CodeModel::Kernel))
5482    WrapperKind = X86ISD::WrapperRIP;
5483  else if (Subtarget->isPICStyleGOT())
5484    OpFlag = X86II::MO_GOTOFF;
5485  else if (Subtarget->isPICStyleStubPIC())
5486    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5487
5488  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5489                                             CP->getAlignment(),
5490                                             CP->getOffset(), OpFlag);
5491  DebugLoc DL = CP->getDebugLoc();
5492  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5493  // With PIC, the address is actually $g + Offset.
5494  if (OpFlag) {
5495    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5496                         DAG.getNode(X86ISD::GlobalBaseReg,
5497                                     DebugLoc(), getPointerTy()),
5498                         Result);
5499  }
5500
5501  return Result;
5502}
5503
5504SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5505  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5506
5507  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5508  // global base reg.
5509  unsigned char OpFlag = 0;
5510  unsigned WrapperKind = X86ISD::Wrapper;
5511  CodeModel::Model M = getTargetMachine().getCodeModel();
5512
5513  if (Subtarget->isPICStyleRIPRel() &&
5514      (M == CodeModel::Small || M == CodeModel::Kernel))
5515    WrapperKind = X86ISD::WrapperRIP;
5516  else if (Subtarget->isPICStyleGOT())
5517    OpFlag = X86II::MO_GOTOFF;
5518  else if (Subtarget->isPICStyleStubPIC())
5519    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5520
5521  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5522                                          OpFlag);
5523  DebugLoc DL = JT->getDebugLoc();
5524  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5525
5526  // With PIC, the address is actually $g + Offset.
5527  if (OpFlag) {
5528    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5529                         DAG.getNode(X86ISD::GlobalBaseReg,
5530                                     DebugLoc(), getPointerTy()),
5531                         Result);
5532  }
5533
5534  return Result;
5535}
5536
5537SDValue
5538X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5539  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5540
5541  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5542  // global base reg.
5543  unsigned char OpFlag = 0;
5544  unsigned WrapperKind = X86ISD::Wrapper;
5545  CodeModel::Model M = getTargetMachine().getCodeModel();
5546
5547  if (Subtarget->isPICStyleRIPRel() &&
5548      (M == CodeModel::Small || M == CodeModel::Kernel))
5549    WrapperKind = X86ISD::WrapperRIP;
5550  else if (Subtarget->isPICStyleGOT())
5551    OpFlag = X86II::MO_GOTOFF;
5552  else if (Subtarget->isPICStyleStubPIC())
5553    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5554
5555  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5556
5557  DebugLoc DL = Op.getDebugLoc();
5558  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5559
5560
5561  // With PIC, the address is actually $g + Offset.
5562  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5563      !Subtarget->is64Bit()) {
5564    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5565                         DAG.getNode(X86ISD::GlobalBaseReg,
5566                                     DebugLoc(), getPointerTy()),
5567                         Result);
5568  }
5569
5570  return Result;
5571}
5572
5573SDValue
5574X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5575  // Create the TargetBlockAddressAddress node.
5576  unsigned char OpFlags =
5577    Subtarget->ClassifyBlockAddressReference();
5578  CodeModel::Model M = getTargetMachine().getCodeModel();
5579  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5580  DebugLoc dl = Op.getDebugLoc();
5581  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5582                                       /*isTarget=*/true, OpFlags);
5583
5584  if (Subtarget->isPICStyleRIPRel() &&
5585      (M == CodeModel::Small || M == CodeModel::Kernel))
5586    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5587  else
5588    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5589
5590  // With PIC, the address is actually $g + Offset.
5591  if (isGlobalRelativeToPICBase(OpFlags)) {
5592    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5593                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5594                         Result);
5595  }
5596
5597  return Result;
5598}
5599
5600SDValue
5601X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5602                                      int64_t Offset,
5603                                      SelectionDAG &DAG) const {
5604  // Create the TargetGlobalAddress node, folding in the constant
5605  // offset if it is legal.
5606  unsigned char OpFlags =
5607    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5608  CodeModel::Model M = getTargetMachine().getCodeModel();
5609  SDValue Result;
5610  if (OpFlags == X86II::MO_NO_FLAG &&
5611      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5612    // A direct static reference to a global.
5613    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5614    Offset = 0;
5615  } else {
5616    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5617  }
5618
5619  if (Subtarget->isPICStyleRIPRel() &&
5620      (M == CodeModel::Small || M == CodeModel::Kernel))
5621    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5622  else
5623    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5624
5625  // With PIC, the address is actually $g + Offset.
5626  if (isGlobalRelativeToPICBase(OpFlags)) {
5627    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5628                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5629                         Result);
5630  }
5631
5632  // For globals that require a load from a stub to get the address, emit the
5633  // load.
5634  if (isGlobalStubReference(OpFlags))
5635    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5636                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5637
5638  // If there was a non-zero offset that we didn't fold, create an explicit
5639  // addition for it.
5640  if (Offset != 0)
5641    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5642                         DAG.getConstant(Offset, getPointerTy()));
5643
5644  return Result;
5645}
5646
5647SDValue
5648X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
5649  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5650  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5651  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5652}
5653
5654static SDValue
5655GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5656           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5657           unsigned char OperandFlags) {
5658  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5659  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5660  DebugLoc dl = GA->getDebugLoc();
5661  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5662                                           GA->getValueType(0),
5663                                           GA->getOffset(),
5664                                           OperandFlags);
5665  if (InFlag) {
5666    SDValue Ops[] = { Chain,  TGA, *InFlag };
5667    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5668  } else {
5669    SDValue Ops[]  = { Chain, TGA };
5670    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5671  }
5672
5673  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5674  MFI->setAdjustsStack(true);
5675
5676  SDValue Flag = Chain.getValue(1);
5677  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5678}
5679
5680// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5681static SDValue
5682LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5683                                const EVT PtrVT) {
5684  SDValue InFlag;
5685  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5686  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5687                                     DAG.getNode(X86ISD::GlobalBaseReg,
5688                                                 DebugLoc(), PtrVT), InFlag);
5689  InFlag = Chain.getValue(1);
5690
5691  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5692}
5693
5694// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5695static SDValue
5696LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5697                                const EVT PtrVT) {
5698  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5699                    X86::RAX, X86II::MO_TLSGD);
5700}
5701
5702// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5703// "local exec" model.
5704static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5705                                   const EVT PtrVT, TLSModel::Model model,
5706                                   bool is64Bit) {
5707  DebugLoc dl = GA->getDebugLoc();
5708  // Get the Thread Pointer
5709  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5710                             DebugLoc(), PtrVT,
5711                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5712                                             MVT::i32));
5713
5714  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5715                                      NULL, 0, false, false, 0);
5716
5717  unsigned char OperandFlags = 0;
5718  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5719  // initialexec.
5720  unsigned WrapperKind = X86ISD::Wrapper;
5721  if (model == TLSModel::LocalExec) {
5722    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5723  } else if (is64Bit) {
5724    assert(model == TLSModel::InitialExec);
5725    OperandFlags = X86II::MO_GOTTPOFF;
5726    WrapperKind = X86ISD::WrapperRIP;
5727  } else {
5728    assert(model == TLSModel::InitialExec);
5729    OperandFlags = X86II::MO_INDNTPOFF;
5730  }
5731
5732  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5733  // exec)
5734  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5735                                           GA->getValueType(0),
5736                                           GA->getOffset(), OperandFlags);
5737  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5738
5739  if (model == TLSModel::InitialExec)
5740    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5741                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5742
5743  // The address of the thread local variable is the add of the thread
5744  // pointer with the offset of the variable.
5745  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5746}
5747
5748SDValue
5749X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
5750
5751  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5752  const GlobalValue *GV = GA->getGlobal();
5753
5754  if (Subtarget->isTargetELF()) {
5755    // TODO: implement the "local dynamic" model
5756    // TODO: implement the "initial exec"model for pic executables
5757
5758    // If GV is an alias then use the aliasee for determining
5759    // thread-localness.
5760    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5761      GV = GA->resolveAliasedGlobal(false);
5762
5763    TLSModel::Model model
5764      = getTLSModel(GV, getTargetMachine().getRelocationModel());
5765
5766    switch (model) {
5767      case TLSModel::GeneralDynamic:
5768      case TLSModel::LocalDynamic: // not implemented
5769        if (Subtarget->is64Bit())
5770          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5771        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5772
5773      case TLSModel::InitialExec:
5774      case TLSModel::LocalExec:
5775        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5776                                   Subtarget->is64Bit());
5777    }
5778  } else if (Subtarget->isTargetDarwin()) {
5779    // Darwin only has one model of TLS.  Lower to that.
5780    unsigned char OpFlag = 0;
5781    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
5782                           X86ISD::WrapperRIP : X86ISD::Wrapper;
5783
5784    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5785    // global base reg.
5786    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
5787                  !Subtarget->is64Bit();
5788    if (PIC32)
5789      OpFlag = X86II::MO_TLVP_PIC_BASE;
5790    else
5791      OpFlag = X86II::MO_TLVP;
5792    DebugLoc DL = Op.getDebugLoc();
5793    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
5794                                                getPointerTy(),
5795                                                GA->getOffset(), OpFlag);
5796    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5797
5798    // With PIC32, the address is actually $g + Offset.
5799    if (PIC32)
5800      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5801                           DAG.getNode(X86ISD::GlobalBaseReg,
5802                                       DebugLoc(), getPointerTy()),
5803                           Offset);
5804
5805    // Lowering the machine isd will make sure everything is in the right
5806    // location.
5807    SDValue Args[] = { Offset };
5808    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
5809
5810    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
5811    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5812    MFI->setAdjustsStack(true);
5813
5814    // And our return value (tls address) is in the standard call return value
5815    // location.
5816    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
5817    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
5818  }
5819
5820  assert(false &&
5821         "TLS not implemented for this target.");
5822
5823  llvm_unreachable("Unreachable");
5824  return SDValue();
5825}
5826
5827
5828/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5829/// take a 2 x i32 value to shift plus a shift amount.
5830SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
5831  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5832  EVT VT = Op.getValueType();
5833  unsigned VTBits = VT.getSizeInBits();
5834  DebugLoc dl = Op.getDebugLoc();
5835  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5836  SDValue ShOpLo = Op.getOperand(0);
5837  SDValue ShOpHi = Op.getOperand(1);
5838  SDValue ShAmt  = Op.getOperand(2);
5839  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5840                                     DAG.getConstant(VTBits - 1, MVT::i8))
5841                       : DAG.getConstant(0, VT);
5842
5843  SDValue Tmp2, Tmp3;
5844  if (Op.getOpcode() == ISD::SHL_PARTS) {
5845    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5846    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5847  } else {
5848    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5849    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5850  }
5851
5852  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5853                                DAG.getConstant(VTBits, MVT::i8));
5854  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5855                             AndNode, DAG.getConstant(0, MVT::i8));
5856
5857  SDValue Hi, Lo;
5858  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5859  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5860  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5861
5862  if (Op.getOpcode() == ISD::SHL_PARTS) {
5863    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5864    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5865  } else {
5866    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5867    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5868  }
5869
5870  SDValue Ops[2] = { Lo, Hi };
5871  return DAG.getMergeValues(Ops, 2, dl);
5872}
5873
5874SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
5875                                           SelectionDAG &DAG) const {
5876  EVT SrcVT = Op.getOperand(0).getValueType();
5877
5878  if (SrcVT.isVector()) {
5879    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5880      return Op;
5881    }
5882    return SDValue();
5883  }
5884
5885  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5886         "Unknown SINT_TO_FP to lower!");
5887
5888  // These are really Legal; return the operand so the caller accepts it as
5889  // Legal.
5890  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5891    return Op;
5892  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5893      Subtarget->is64Bit()) {
5894    return Op;
5895  }
5896
5897  DebugLoc dl = Op.getDebugLoc();
5898  unsigned Size = SrcVT.getSizeInBits()/8;
5899  MachineFunction &MF = DAG.getMachineFunction();
5900  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5901  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5902  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5903                               StackSlot,
5904                               PseudoSourceValue::getFixedStack(SSFI), 0,
5905                               false, false, 0);
5906  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5907}
5908
5909SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5910                                     SDValue StackSlot,
5911                                     SelectionDAG &DAG) const {
5912  // Build the FILD
5913  DebugLoc dl = Op.getDebugLoc();
5914  SDVTList Tys;
5915  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5916  if (useSSE)
5917    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5918  else
5919    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5920  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5921  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5922                               Tys, Ops, array_lengthof(Ops));
5923
5924  if (useSSE) {
5925    Chain = Result.getValue(1);
5926    SDValue InFlag = Result.getValue(2);
5927
5928    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5929    // shouldn't be necessary except that RFP cannot be live across
5930    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5931    MachineFunction &MF = DAG.getMachineFunction();
5932    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5933    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5934    Tys = DAG.getVTList(MVT::Other);
5935    SDValue Ops[] = {
5936      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5937    };
5938    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5939    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5940                         PseudoSourceValue::getFixedStack(SSFI), 0,
5941                         false, false, 0);
5942  }
5943
5944  return Result;
5945}
5946
5947// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5948SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
5949                                               SelectionDAG &DAG) const {
5950  // This algorithm is not obvious. Here it is in C code, more or less:
5951  /*
5952    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5953      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5954      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5955
5956      // Copy ints to xmm registers.
5957      __m128i xh = _mm_cvtsi32_si128( hi );
5958      __m128i xl = _mm_cvtsi32_si128( lo );
5959
5960      // Combine into low half of a single xmm register.
5961      __m128i x = _mm_unpacklo_epi32( xh, xl );
5962      __m128d d;
5963      double sd;
5964
5965      // Merge in appropriate exponents to give the integer bits the right
5966      // magnitude.
5967      x = _mm_unpacklo_epi32( x, exp );
5968
5969      // Subtract away the biases to deal with the IEEE-754 double precision
5970      // implicit 1.
5971      d = _mm_sub_pd( (__m128d) x, bias );
5972
5973      // All conversions up to here are exact. The correctly rounded result is
5974      // calculated using the current rounding mode using the following
5975      // horizontal add.
5976      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5977      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5978                                // store doesn't really need to be here (except
5979                                // maybe to zero the other double)
5980      return sd;
5981    }
5982  */
5983
5984  DebugLoc dl = Op.getDebugLoc();
5985  LLVMContext *Context = DAG.getContext();
5986
5987  // Build some magic constants.
5988  std::vector<Constant*> CV0;
5989  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5990  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5991  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5992  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5993  Constant *C0 = ConstantVector::get(CV0);
5994  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5995
5996  std::vector<Constant*> CV1;
5997  CV1.push_back(
5998    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5999  CV1.push_back(
6000    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6001  Constant *C1 = ConstantVector::get(CV1);
6002  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6003
6004  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6005                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6006                                        Op.getOperand(0),
6007                                        DAG.getIntPtrConstant(1)));
6008  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6009                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6010                                        Op.getOperand(0),
6011                                        DAG.getIntPtrConstant(0)));
6012  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6013  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6014                              PseudoSourceValue::getConstantPool(), 0,
6015                              false, false, 16);
6016  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6017  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
6018  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6019                              PseudoSourceValue::getConstantPool(), 0,
6020                              false, false, 16);
6021  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6022
6023  // Add the halves; easiest way is to swap them into another reg first.
6024  int ShufMask[2] = { 1, -1 };
6025  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6026                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6027  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6028  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6029                     DAG.getIntPtrConstant(0));
6030}
6031
6032// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6033SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6034                                               SelectionDAG &DAG) const {
6035  DebugLoc dl = Op.getDebugLoc();
6036  // FP constant to bias correct the final result.
6037  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6038                                   MVT::f64);
6039
6040  // Load the 32-bit value into an XMM register.
6041  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6042                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6043                                         Op.getOperand(0),
6044                                         DAG.getIntPtrConstant(0)));
6045
6046  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6047                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
6048                     DAG.getIntPtrConstant(0));
6049
6050  // Or the load with the bias.
6051  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6052                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6053                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6054                                                   MVT::v2f64, Load)),
6055                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6056                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6057                                                   MVT::v2f64, Bias)));
6058  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6059                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
6060                   DAG.getIntPtrConstant(0));
6061
6062  // Subtract the bias.
6063  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6064
6065  // Handle final rounding.
6066  EVT DestVT = Op.getValueType();
6067
6068  if (DestVT.bitsLT(MVT::f64)) {
6069    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6070                       DAG.getIntPtrConstant(0));
6071  } else if (DestVT.bitsGT(MVT::f64)) {
6072    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6073  }
6074
6075  // Handle final rounding.
6076  return Sub;
6077}
6078
6079SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6080                                           SelectionDAG &DAG) const {
6081  SDValue N0 = Op.getOperand(0);
6082  DebugLoc dl = Op.getDebugLoc();
6083
6084  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6085  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6086  // the optimization here.
6087  if (DAG.SignBitIsZero(N0))
6088    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6089
6090  EVT SrcVT = N0.getValueType();
6091  EVT DstVT = Op.getValueType();
6092  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6093    return LowerUINT_TO_FP_i64(Op, DAG);
6094  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6095    return LowerUINT_TO_FP_i32(Op, DAG);
6096
6097  // Make a 64-bit buffer, and use it to build an FILD.
6098  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6099  if (SrcVT == MVT::i32) {
6100    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6101    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6102                                     getPointerTy(), StackSlot, WordOff);
6103    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6104                                  StackSlot, NULL, 0, false, false, 0);
6105    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6106                                  OffsetSlot, NULL, 0, false, false, 0);
6107    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6108    return Fild;
6109  }
6110
6111  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6112  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6113                                StackSlot, NULL, 0, false, false, 0);
6114  // For i64 source, we need to add the appropriate power of 2 if the input
6115  // was negative.  This is the same as the optimization in
6116  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6117  // we must be careful to do the computation in x87 extended precision, not
6118  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6119  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6120  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6121  SDValue Fild = DAG.getNode(X86ISD::FILD, dl, Tys, Ops, 3);
6122
6123  APInt FF(32, 0x5F800000ULL);
6124
6125  // Check whether the sign bit is set.
6126  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6127                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6128                                 ISD::SETLT);
6129
6130  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6131  SDValue FudgePtr = DAG.getConstantPool(
6132                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6133                                         getPointerTy());
6134
6135  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6136  SDValue Zero = DAG.getIntPtrConstant(0);
6137  SDValue Four = DAG.getIntPtrConstant(4);
6138  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6139                               Zero, Four);
6140  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6141
6142  // Load the value out, extending it from f32 to f80.
6143  // FIXME: Avoid the extend by constructing the right constant pool?
6144  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
6145                                 FudgePtr, PseudoSourceValue::getConstantPool(),
6146                                 0, MVT::f32, false, false, 4);
6147  // Extend everything to 80 bits to force it to be done on x87.
6148  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6149  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6150}
6151
6152std::pair<SDValue,SDValue> X86TargetLowering::
6153FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6154  DebugLoc dl = Op.getDebugLoc();
6155
6156  EVT DstTy = Op.getValueType();
6157
6158  if (!IsSigned) {
6159    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6160    DstTy = MVT::i64;
6161  }
6162
6163  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6164         DstTy.getSimpleVT() >= MVT::i16 &&
6165         "Unknown FP_TO_SINT to lower!");
6166
6167  // These are really Legal.
6168  if (DstTy == MVT::i32 &&
6169      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6170    return std::make_pair(SDValue(), SDValue());
6171  if (Subtarget->is64Bit() &&
6172      DstTy == MVT::i64 &&
6173      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6174    return std::make_pair(SDValue(), SDValue());
6175
6176  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6177  // stack slot.
6178  MachineFunction &MF = DAG.getMachineFunction();
6179  unsigned MemSize = DstTy.getSizeInBits()/8;
6180  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6181  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6182
6183  unsigned Opc;
6184  switch (DstTy.getSimpleVT().SimpleTy) {
6185  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6186  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6187  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6188  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6189  }
6190
6191  SDValue Chain = DAG.getEntryNode();
6192  SDValue Value = Op.getOperand(0);
6193  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
6194    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
6195    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
6196                         PseudoSourceValue::getFixedStack(SSFI), 0,
6197                         false, false, 0);
6198    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6199    SDValue Ops[] = {
6200      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
6201    };
6202    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
6203    Chain = Value.getValue(1);
6204    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6205    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6206  }
6207
6208  // Build the FP_TO_INT*_IN_MEM
6209  SDValue Ops[] = { Chain, Value, StackSlot };
6210  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
6211
6212  return std::make_pair(FIST, StackSlot);
6213}
6214
6215SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6216                                           SelectionDAG &DAG) const {
6217  if (Op.getValueType().isVector()) {
6218    if (Op.getValueType() == MVT::v2i32 &&
6219        Op.getOperand(0).getValueType() == MVT::v2f64) {
6220      return Op;
6221    }
6222    return SDValue();
6223  }
6224
6225  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6226  SDValue FIST = Vals.first, StackSlot = Vals.second;
6227  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6228  if (FIST.getNode() == 0) return Op;
6229
6230  // Load the result.
6231  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6232                     FIST, StackSlot, NULL, 0, false, false, 0);
6233}
6234
6235SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6236                                           SelectionDAG &DAG) const {
6237  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6238  SDValue FIST = Vals.first, StackSlot = Vals.second;
6239  assert(FIST.getNode() && "Unexpected failure");
6240
6241  // Load the result.
6242  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6243                     FIST, StackSlot, NULL, 0, false, false, 0);
6244}
6245
6246SDValue X86TargetLowering::LowerFABS(SDValue Op,
6247                                     SelectionDAG &DAG) const {
6248  LLVMContext *Context = DAG.getContext();
6249  DebugLoc dl = Op.getDebugLoc();
6250  EVT VT = Op.getValueType();
6251  EVT EltVT = VT;
6252  if (VT.isVector())
6253    EltVT = VT.getVectorElementType();
6254  std::vector<Constant*> CV;
6255  if (EltVT == MVT::f64) {
6256    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6257    CV.push_back(C);
6258    CV.push_back(C);
6259  } else {
6260    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6261    CV.push_back(C);
6262    CV.push_back(C);
6263    CV.push_back(C);
6264    CV.push_back(C);
6265  }
6266  Constant *C = ConstantVector::get(CV);
6267  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6268  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6269                             PseudoSourceValue::getConstantPool(), 0,
6270                             false, false, 16);
6271  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6272}
6273
6274SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6275  LLVMContext *Context = DAG.getContext();
6276  DebugLoc dl = Op.getDebugLoc();
6277  EVT VT = Op.getValueType();
6278  EVT EltVT = VT;
6279  if (VT.isVector())
6280    EltVT = VT.getVectorElementType();
6281  std::vector<Constant*> CV;
6282  if (EltVT == MVT::f64) {
6283    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6284    CV.push_back(C);
6285    CV.push_back(C);
6286  } else {
6287    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6288    CV.push_back(C);
6289    CV.push_back(C);
6290    CV.push_back(C);
6291    CV.push_back(C);
6292  }
6293  Constant *C = ConstantVector::get(CV);
6294  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6295  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6296                             PseudoSourceValue::getConstantPool(), 0,
6297                             false, false, 16);
6298  if (VT.isVector()) {
6299    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6300                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6301                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6302                                Op.getOperand(0)),
6303                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
6304  } else {
6305    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6306  }
6307}
6308
6309SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6310  LLVMContext *Context = DAG.getContext();
6311  SDValue Op0 = Op.getOperand(0);
6312  SDValue Op1 = Op.getOperand(1);
6313  DebugLoc dl = Op.getDebugLoc();
6314  EVT VT = Op.getValueType();
6315  EVT SrcVT = Op1.getValueType();
6316
6317  // If second operand is smaller, extend it first.
6318  if (SrcVT.bitsLT(VT)) {
6319    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6320    SrcVT = VT;
6321  }
6322  // And if it is bigger, shrink it first.
6323  if (SrcVT.bitsGT(VT)) {
6324    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6325    SrcVT = VT;
6326  }
6327
6328  // At this point the operands and the result should have the same
6329  // type, and that won't be f80 since that is not custom lowered.
6330
6331  // First get the sign bit of second operand.
6332  std::vector<Constant*> CV;
6333  if (SrcVT == MVT::f64) {
6334    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6335    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6336  } else {
6337    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6338    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6339    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6340    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6341  }
6342  Constant *C = ConstantVector::get(CV);
6343  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6344  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6345                              PseudoSourceValue::getConstantPool(), 0,
6346                              false, false, 16);
6347  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6348
6349  // Shift sign bit right or left if the two operands have different types.
6350  if (SrcVT.bitsGT(VT)) {
6351    // Op0 is MVT::f32, Op1 is MVT::f64.
6352    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6353    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6354                          DAG.getConstant(32, MVT::i32));
6355    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6356    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6357                          DAG.getIntPtrConstant(0));
6358  }
6359
6360  // Clear first operand sign bit.
6361  CV.clear();
6362  if (VT == MVT::f64) {
6363    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6364    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6365  } else {
6366    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6367    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6368    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6369    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6370  }
6371  C = ConstantVector::get(CV);
6372  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6373  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6374                              PseudoSourceValue::getConstantPool(), 0,
6375                              false, false, 16);
6376  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6377
6378  // Or the value with the sign bit.
6379  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6380}
6381
6382/// Emit nodes that will be selected as "test Op0,Op0", or something
6383/// equivalent.
6384SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6385                                    SelectionDAG &DAG) const {
6386  DebugLoc dl = Op.getDebugLoc();
6387
6388  // CF and OF aren't always set the way we want. Determine which
6389  // of these we need.
6390  bool NeedCF = false;
6391  bool NeedOF = false;
6392  switch (X86CC) {
6393  default: break;
6394  case X86::COND_A: case X86::COND_AE:
6395  case X86::COND_B: case X86::COND_BE:
6396    NeedCF = true;
6397    break;
6398  case X86::COND_G: case X86::COND_GE:
6399  case X86::COND_L: case X86::COND_LE:
6400  case X86::COND_O: case X86::COND_NO:
6401    NeedOF = true;
6402    break;
6403  }
6404
6405  // See if we can use the EFLAGS value from the operand instead of
6406  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6407  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6408  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6409    // Emit a CMP with 0, which is the TEST pattern.
6410    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6411                       DAG.getConstant(0, Op.getValueType()));
6412
6413  unsigned Opcode = 0;
6414  unsigned NumOperands = 0;
6415  switch (Op.getNode()->getOpcode()) {
6416  case ISD::ADD:
6417    // Due to an isel shortcoming, be conservative if this add is likely to be
6418    // selected as part of a load-modify-store instruction. When the root node
6419    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6420    // uses of other nodes in the match, such as the ADD in this case. This
6421    // leads to the ADD being left around and reselected, with the result being
6422    // two adds in the output.  Alas, even if none our users are stores, that
6423    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6424    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6425    // climbing the DAG back to the root, and it doesn't seem to be worth the
6426    // effort.
6427    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6428           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6429      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6430        goto default_case;
6431
6432    if (ConstantSDNode *C =
6433        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6434      // An add of one will be selected as an INC.
6435      if (C->getAPIntValue() == 1) {
6436        Opcode = X86ISD::INC;
6437        NumOperands = 1;
6438        break;
6439      }
6440
6441      // An add of negative one (subtract of one) will be selected as a DEC.
6442      if (C->getAPIntValue().isAllOnesValue()) {
6443        Opcode = X86ISD::DEC;
6444        NumOperands = 1;
6445        break;
6446      }
6447    }
6448
6449    // Otherwise use a regular EFLAGS-setting add.
6450    Opcode = X86ISD::ADD;
6451    NumOperands = 2;
6452    break;
6453  case ISD::AND: {
6454    // If the primary and result isn't used, don't bother using X86ISD::AND,
6455    // because a TEST instruction will be better.
6456    bool NonFlagUse = false;
6457    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6458           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6459      SDNode *User = *UI;
6460      unsigned UOpNo = UI.getOperandNo();
6461      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6462        // Look pass truncate.
6463        UOpNo = User->use_begin().getOperandNo();
6464        User = *User->use_begin();
6465      }
6466
6467      if (User->getOpcode() != ISD::BRCOND &&
6468          User->getOpcode() != ISD::SETCC &&
6469          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6470        NonFlagUse = true;
6471        break;
6472      }
6473    }
6474
6475    if (!NonFlagUse)
6476      break;
6477  }
6478    // FALL THROUGH
6479  case ISD::SUB:
6480  case ISD::OR:
6481  case ISD::XOR:
6482    // Due to the ISEL shortcoming noted above, be conservative if this op is
6483    // likely to be selected as part of a load-modify-store instruction.
6484    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6485           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6486      if (UI->getOpcode() == ISD::STORE)
6487        goto default_case;
6488
6489    // Otherwise use a regular EFLAGS-setting instruction.
6490    switch (Op.getNode()->getOpcode()) {
6491    default: llvm_unreachable("unexpected operator!");
6492    case ISD::SUB: Opcode = X86ISD::SUB; break;
6493    case ISD::OR:  Opcode = X86ISD::OR;  break;
6494    case ISD::XOR: Opcode = X86ISD::XOR; break;
6495    case ISD::AND: Opcode = X86ISD::AND; break;
6496    }
6497
6498    NumOperands = 2;
6499    break;
6500  case X86ISD::ADD:
6501  case X86ISD::SUB:
6502  case X86ISD::INC:
6503  case X86ISD::DEC:
6504  case X86ISD::OR:
6505  case X86ISD::XOR:
6506  case X86ISD::AND:
6507    return SDValue(Op.getNode(), 1);
6508  default:
6509  default_case:
6510    break;
6511  }
6512
6513  if (Opcode == 0)
6514    // Emit a CMP with 0, which is the TEST pattern.
6515    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6516                       DAG.getConstant(0, Op.getValueType()));
6517
6518  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6519  SmallVector<SDValue, 4> Ops;
6520  for (unsigned i = 0; i != NumOperands; ++i)
6521    Ops.push_back(Op.getOperand(i));
6522
6523  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6524  DAG.ReplaceAllUsesWith(Op, New);
6525  return SDValue(New.getNode(), 1);
6526}
6527
6528/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6529/// equivalent.
6530SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6531                                   SelectionDAG &DAG) const {
6532  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6533    if (C->getAPIntValue() == 0)
6534      return EmitTest(Op0, X86CC, DAG);
6535
6536  DebugLoc dl = Op0.getDebugLoc();
6537  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6538}
6539
6540/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6541/// if it's possible.
6542SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6543                                     DebugLoc dl, SelectionDAG &DAG) const {
6544  SDValue Op0 = And.getOperand(0);
6545  SDValue Op1 = And.getOperand(1);
6546  if (Op0.getOpcode() == ISD::TRUNCATE)
6547    Op0 = Op0.getOperand(0);
6548  if (Op1.getOpcode() == ISD::TRUNCATE)
6549    Op1 = Op1.getOperand(0);
6550
6551  SDValue LHS, RHS;
6552  if (Op1.getOpcode() == ISD::SHL)
6553    std::swap(Op0, Op1);
6554  if (Op0.getOpcode() == ISD::SHL) {
6555    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6556      if (And00C->getZExtValue() == 1) {
6557        // If we looked past a truncate, check that it's only truncating away
6558        // known zeros.
6559        unsigned BitWidth = Op0.getValueSizeInBits();
6560        unsigned AndBitWidth = And.getValueSizeInBits();
6561        if (BitWidth > AndBitWidth) {
6562          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6563          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6564          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6565            return SDValue();
6566        }
6567        LHS = Op1;
6568        RHS = Op0.getOperand(1);
6569      }
6570  } else if (Op1.getOpcode() == ISD::Constant) {
6571    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6572    SDValue AndLHS = Op0;
6573    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6574      LHS = AndLHS.getOperand(0);
6575      RHS = AndLHS.getOperand(1);
6576    }
6577  }
6578
6579  if (LHS.getNode()) {
6580    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6581    // instruction.  Since the shift amount is in-range-or-undefined, we know
6582    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6583    // the encoding for the i16 version is larger than the i32 version.
6584    // Also promote i16 to i32 for performance / code size reason.
6585    if (LHS.getValueType() == MVT::i8 ||
6586        LHS.getValueType() == MVT::i16)
6587      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6588
6589    // If the operand types disagree, extend the shift amount to match.  Since
6590    // BT ignores high bits (like shifts) we can use anyextend.
6591    if (LHS.getValueType() != RHS.getValueType())
6592      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6593
6594    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6595    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6596    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6597                       DAG.getConstant(Cond, MVT::i8), BT);
6598  }
6599
6600  return SDValue();
6601}
6602
6603SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6604  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6605  SDValue Op0 = Op.getOperand(0);
6606  SDValue Op1 = Op.getOperand(1);
6607  DebugLoc dl = Op.getDebugLoc();
6608  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6609
6610  // Optimize to BT if possible.
6611  // Lower (X & (1 << N)) == 0 to BT(X, N).
6612  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6613  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6614  if (Op0.getOpcode() == ISD::AND &&
6615      Op0.hasOneUse() &&
6616      Op1.getOpcode() == ISD::Constant &&
6617      cast<ConstantSDNode>(Op1)->isNullValue() &&
6618      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6619    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6620    if (NewSetCC.getNode())
6621      return NewSetCC;
6622  }
6623
6624  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6625  if (Op0.getOpcode() == X86ISD::SETCC &&
6626      Op1.getOpcode() == ISD::Constant &&
6627      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6628       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6629      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6630    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6631    bool Invert = (CC == ISD::SETNE) ^
6632      cast<ConstantSDNode>(Op1)->isNullValue();
6633    if (Invert)
6634      CCode = X86::GetOppositeBranchCondition(CCode);
6635    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6636                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6637  }
6638
6639  bool isFP = Op1.getValueType().isFloatingPoint();
6640  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6641  if (X86CC == X86::COND_INVALID)
6642    return SDValue();
6643
6644  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6645
6646  // Use sbb x, x to materialize carry bit into a GPR.
6647  if (X86CC == X86::COND_B)
6648    return DAG.getNode(ISD::AND, dl, MVT::i8,
6649                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6650                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6651                       DAG.getConstant(1, MVT::i8));
6652
6653  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6654                     DAG.getConstant(X86CC, MVT::i8), Cond);
6655}
6656
6657SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
6658  SDValue Cond;
6659  SDValue Op0 = Op.getOperand(0);
6660  SDValue Op1 = Op.getOperand(1);
6661  SDValue CC = Op.getOperand(2);
6662  EVT VT = Op.getValueType();
6663  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6664  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6665  DebugLoc dl = Op.getDebugLoc();
6666
6667  if (isFP) {
6668    unsigned SSECC = 8;
6669    EVT VT0 = Op0.getValueType();
6670    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6671    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6672    bool Swap = false;
6673
6674    switch (SetCCOpcode) {
6675    default: break;
6676    case ISD::SETOEQ:
6677    case ISD::SETEQ:  SSECC = 0; break;
6678    case ISD::SETOGT:
6679    case ISD::SETGT: Swap = true; // Fallthrough
6680    case ISD::SETLT:
6681    case ISD::SETOLT: SSECC = 1; break;
6682    case ISD::SETOGE:
6683    case ISD::SETGE: Swap = true; // Fallthrough
6684    case ISD::SETLE:
6685    case ISD::SETOLE: SSECC = 2; break;
6686    case ISD::SETUO:  SSECC = 3; break;
6687    case ISD::SETUNE:
6688    case ISD::SETNE:  SSECC = 4; break;
6689    case ISD::SETULE: Swap = true;
6690    case ISD::SETUGE: SSECC = 5; break;
6691    case ISD::SETULT: Swap = true;
6692    case ISD::SETUGT: SSECC = 6; break;
6693    case ISD::SETO:   SSECC = 7; break;
6694    }
6695    if (Swap)
6696      std::swap(Op0, Op1);
6697
6698    // In the two special cases we can't handle, emit two comparisons.
6699    if (SSECC == 8) {
6700      if (SetCCOpcode == ISD::SETUEQ) {
6701        SDValue UNORD, EQ;
6702        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6703        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6704        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6705      }
6706      else if (SetCCOpcode == ISD::SETONE) {
6707        SDValue ORD, NEQ;
6708        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6709        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6710        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6711      }
6712      llvm_unreachable("Illegal FP comparison");
6713    }
6714    // Handle all other FP comparisons here.
6715    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6716  }
6717
6718  // We are handling one of the integer comparisons here.  Since SSE only has
6719  // GT and EQ comparisons for integer, swapping operands and multiple
6720  // operations may be required for some comparisons.
6721  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6722  bool Swap = false, Invert = false, FlipSigns = false;
6723
6724  switch (VT.getSimpleVT().SimpleTy) {
6725  default: break;
6726  case MVT::v8i8:
6727  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6728  case MVT::v4i16:
6729  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6730  case MVT::v2i32:
6731  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6732  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6733  }
6734
6735  switch (SetCCOpcode) {
6736  default: break;
6737  case ISD::SETNE:  Invert = true;
6738  case ISD::SETEQ:  Opc = EQOpc; break;
6739  case ISD::SETLT:  Swap = true;
6740  case ISD::SETGT:  Opc = GTOpc; break;
6741  case ISD::SETGE:  Swap = true;
6742  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6743  case ISD::SETULT: Swap = true;
6744  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6745  case ISD::SETUGE: Swap = true;
6746  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6747  }
6748  if (Swap)
6749    std::swap(Op0, Op1);
6750
6751  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6752  // bits of the inputs before performing those operations.
6753  if (FlipSigns) {
6754    EVT EltVT = VT.getVectorElementType();
6755    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6756                                      EltVT);
6757    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6758    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6759                                    SignBits.size());
6760    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6761    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6762  }
6763
6764  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6765
6766  // If the logical-not of the result is required, perform that now.
6767  if (Invert)
6768    Result = DAG.getNOT(dl, Result, VT);
6769
6770  return Result;
6771}
6772
6773// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6774static bool isX86LogicalCmp(SDValue Op) {
6775  unsigned Opc = Op.getNode()->getOpcode();
6776  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6777    return true;
6778  if (Op.getResNo() == 1 &&
6779      (Opc == X86ISD::ADD ||
6780       Opc == X86ISD::SUB ||
6781       Opc == X86ISD::SMUL ||
6782       Opc == X86ISD::UMUL ||
6783       Opc == X86ISD::INC ||
6784       Opc == X86ISD::DEC ||
6785       Opc == X86ISD::OR ||
6786       Opc == X86ISD::XOR ||
6787       Opc == X86ISD::AND))
6788    return true;
6789
6790  return false;
6791}
6792
6793SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
6794  bool addTest = true;
6795  SDValue Cond  = Op.getOperand(0);
6796  DebugLoc dl = Op.getDebugLoc();
6797  SDValue CC;
6798
6799  if (Cond.getOpcode() == ISD::SETCC) {
6800    SDValue NewCond = LowerSETCC(Cond, DAG);
6801    if (NewCond.getNode())
6802      Cond = NewCond;
6803  }
6804
6805  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6806  SDValue Op1 = Op.getOperand(1);
6807  SDValue Op2 = Op.getOperand(2);
6808  if (Cond.getOpcode() == X86ISD::SETCC &&
6809      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6810    SDValue Cmp = Cond.getOperand(1);
6811    if (Cmp.getOpcode() == X86ISD::CMP) {
6812      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6813      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6814      ConstantSDNode *RHSC =
6815        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6816      if (N1C && N1C->isAllOnesValue() &&
6817          N2C && N2C->isNullValue() &&
6818          RHSC && RHSC->isNullValue()) {
6819        SDValue CmpOp0 = Cmp.getOperand(0);
6820        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6821                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6822        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6823                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6824      }
6825    }
6826  }
6827
6828  // Look pass (and (setcc_carry (cmp ...)), 1).
6829  if (Cond.getOpcode() == ISD::AND &&
6830      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6831    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6832    if (C && C->getAPIntValue() == 1)
6833      Cond = Cond.getOperand(0);
6834  }
6835
6836  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6837  // setting operand in place of the X86ISD::SETCC.
6838  if (Cond.getOpcode() == X86ISD::SETCC ||
6839      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6840    CC = Cond.getOperand(0);
6841
6842    SDValue Cmp = Cond.getOperand(1);
6843    unsigned Opc = Cmp.getOpcode();
6844    EVT VT = Op.getValueType();
6845
6846    bool IllegalFPCMov = false;
6847    if (VT.isFloatingPoint() && !VT.isVector() &&
6848        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6849      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6850
6851    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6852        Opc == X86ISD::BT) { // FIXME
6853      Cond = Cmp;
6854      addTest = false;
6855    }
6856  }
6857
6858  if (addTest) {
6859    // Look pass the truncate.
6860    if (Cond.getOpcode() == ISD::TRUNCATE)
6861      Cond = Cond.getOperand(0);
6862
6863    // We know the result of AND is compared against zero. Try to match
6864    // it to BT.
6865    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6866      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6867      if (NewSetCC.getNode()) {
6868        CC = NewSetCC.getOperand(0);
6869        Cond = NewSetCC.getOperand(1);
6870        addTest = false;
6871      }
6872    }
6873  }
6874
6875  if (addTest) {
6876    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6877    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6878  }
6879
6880  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6881  // condition is true.
6882  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6883  SDValue Ops[] = { Op2, Op1, CC, Cond };
6884  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6885}
6886
6887// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6888// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6889// from the AND / OR.
6890static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6891  Opc = Op.getOpcode();
6892  if (Opc != ISD::OR && Opc != ISD::AND)
6893    return false;
6894  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6895          Op.getOperand(0).hasOneUse() &&
6896          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6897          Op.getOperand(1).hasOneUse());
6898}
6899
6900// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6901// 1 and that the SETCC node has a single use.
6902static bool isXor1OfSetCC(SDValue Op) {
6903  if (Op.getOpcode() != ISD::XOR)
6904    return false;
6905  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6906  if (N1C && N1C->getAPIntValue() == 1) {
6907    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6908      Op.getOperand(0).hasOneUse();
6909  }
6910  return false;
6911}
6912
6913SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
6914  bool addTest = true;
6915  SDValue Chain = Op.getOperand(0);
6916  SDValue Cond  = Op.getOperand(1);
6917  SDValue Dest  = Op.getOperand(2);
6918  DebugLoc dl = Op.getDebugLoc();
6919  SDValue CC;
6920
6921  if (Cond.getOpcode() == ISD::SETCC) {
6922    SDValue NewCond = LowerSETCC(Cond, DAG);
6923    if (NewCond.getNode())
6924      Cond = NewCond;
6925  }
6926#if 0
6927  // FIXME: LowerXALUO doesn't handle these!!
6928  else if (Cond.getOpcode() == X86ISD::ADD  ||
6929           Cond.getOpcode() == X86ISD::SUB  ||
6930           Cond.getOpcode() == X86ISD::SMUL ||
6931           Cond.getOpcode() == X86ISD::UMUL)
6932    Cond = LowerXALUO(Cond, DAG);
6933#endif
6934
6935  // Look pass (and (setcc_carry (cmp ...)), 1).
6936  if (Cond.getOpcode() == ISD::AND &&
6937      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6938    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6939    if (C && C->getAPIntValue() == 1)
6940      Cond = Cond.getOperand(0);
6941  }
6942
6943  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6944  // setting operand in place of the X86ISD::SETCC.
6945  if (Cond.getOpcode() == X86ISD::SETCC ||
6946      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6947    CC = Cond.getOperand(0);
6948
6949    SDValue Cmp = Cond.getOperand(1);
6950    unsigned Opc = Cmp.getOpcode();
6951    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6952    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6953      Cond = Cmp;
6954      addTest = false;
6955    } else {
6956      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6957      default: break;
6958      case X86::COND_O:
6959      case X86::COND_B:
6960        // These can only come from an arithmetic instruction with overflow,
6961        // e.g. SADDO, UADDO.
6962        Cond = Cond.getNode()->getOperand(1);
6963        addTest = false;
6964        break;
6965      }
6966    }
6967  } else {
6968    unsigned CondOpc;
6969    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6970      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6971      if (CondOpc == ISD::OR) {
6972        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6973        // two branches instead of an explicit OR instruction with a
6974        // separate test.
6975        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6976            isX86LogicalCmp(Cmp)) {
6977          CC = Cond.getOperand(0).getOperand(0);
6978          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6979                              Chain, Dest, CC, Cmp);
6980          CC = Cond.getOperand(1).getOperand(0);
6981          Cond = Cmp;
6982          addTest = false;
6983        }
6984      } else { // ISD::AND
6985        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6986        // two branches instead of an explicit AND instruction with a
6987        // separate test. However, we only do this if this block doesn't
6988        // have a fall-through edge, because this requires an explicit
6989        // jmp when the condition is false.
6990        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6991            isX86LogicalCmp(Cmp) &&
6992            Op.getNode()->hasOneUse()) {
6993          X86::CondCode CCode =
6994            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6995          CCode = X86::GetOppositeBranchCondition(CCode);
6996          CC = DAG.getConstant(CCode, MVT::i8);
6997          SDNode *User = *Op.getNode()->use_begin();
6998          // Look for an unconditional branch following this conditional branch.
6999          // We need this because we need to reverse the successors in order
7000          // to implement FCMP_OEQ.
7001          if (User->getOpcode() == ISD::BR) {
7002            SDValue FalseBB = User->getOperand(1);
7003            SDNode *NewBR =
7004              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7005            assert(NewBR == User);
7006            (void)NewBR;
7007            Dest = FalseBB;
7008
7009            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7010                                Chain, Dest, CC, Cmp);
7011            X86::CondCode CCode =
7012              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7013            CCode = X86::GetOppositeBranchCondition(CCode);
7014            CC = DAG.getConstant(CCode, MVT::i8);
7015            Cond = Cmp;
7016            addTest = false;
7017          }
7018        }
7019      }
7020    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7021      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7022      // It should be transformed during dag combiner except when the condition
7023      // is set by a arithmetics with overflow node.
7024      X86::CondCode CCode =
7025        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7026      CCode = X86::GetOppositeBranchCondition(CCode);
7027      CC = DAG.getConstant(CCode, MVT::i8);
7028      Cond = Cond.getOperand(0).getOperand(1);
7029      addTest = false;
7030    }
7031  }
7032
7033  if (addTest) {
7034    // Look pass the truncate.
7035    if (Cond.getOpcode() == ISD::TRUNCATE)
7036      Cond = Cond.getOperand(0);
7037
7038    // We know the result of AND is compared against zero. Try to match
7039    // it to BT.
7040    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7041      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7042      if (NewSetCC.getNode()) {
7043        CC = NewSetCC.getOperand(0);
7044        Cond = NewSetCC.getOperand(1);
7045        addTest = false;
7046      }
7047    }
7048  }
7049
7050  if (addTest) {
7051    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7052    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7053  }
7054  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7055                     Chain, Dest, CC, Cond);
7056}
7057
7058
7059// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7060// Calls to _alloca is needed to probe the stack when allocating more than 4k
7061// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7062// that the guard pages used by the OS virtual memory manager are allocated in
7063// correct sequence.
7064SDValue
7065X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7066                                           SelectionDAG &DAG) const {
7067  assert(Subtarget->isTargetCygMing() &&
7068         "This should be used only on Cygwin/Mingw targets");
7069  DebugLoc dl = Op.getDebugLoc();
7070
7071  // Get the inputs.
7072  SDValue Chain = Op.getOperand(0);
7073  SDValue Size  = Op.getOperand(1);
7074  // FIXME: Ensure alignment here
7075
7076  SDValue Flag;
7077
7078  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7079
7080  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7081  Flag = Chain.getValue(1);
7082
7083  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
7084
7085  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
7086  Flag = Chain.getValue(1);
7087
7088  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7089
7090  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7091  return DAG.getMergeValues(Ops1, 2, dl);
7092}
7093
7094SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7095  MachineFunction &MF = DAG.getMachineFunction();
7096  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7097
7098  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7099  DebugLoc dl = Op.getDebugLoc();
7100
7101  if (!Subtarget->is64Bit()) {
7102    // vastart just stores the address of the VarArgsFrameIndex slot into the
7103    // memory location argument.
7104    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7105                                   getPointerTy());
7106    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
7107                        false, false, 0);
7108  }
7109
7110  // __va_list_tag:
7111  //   gp_offset         (0 - 6 * 8)
7112  //   fp_offset         (48 - 48 + 8 * 16)
7113  //   overflow_arg_area (point to parameters coming in memory).
7114  //   reg_save_area
7115  SmallVector<SDValue, 8> MemOps;
7116  SDValue FIN = Op.getOperand(1);
7117  // Store gp_offset
7118  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
7119                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7120                                               MVT::i32),
7121                               FIN, SV, 0, false, false, 0);
7122  MemOps.push_back(Store);
7123
7124  // Store fp_offset
7125  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7126                    FIN, DAG.getIntPtrConstant(4));
7127  Store = DAG.getStore(Op.getOperand(0), dl,
7128                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7129                                       MVT::i32),
7130                       FIN, SV, 4, false, false, 0);
7131  MemOps.push_back(Store);
7132
7133  // Store ptr to overflow_arg_area
7134  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7135                    FIN, DAG.getIntPtrConstant(4));
7136  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7137                                    getPointerTy());
7138  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 8,
7139                       false, false, 0);
7140  MemOps.push_back(Store);
7141
7142  // Store ptr to reg_save_area.
7143  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7144                    FIN, DAG.getIntPtrConstant(8));
7145  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7146                                    getPointerTy());
7147  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 16,
7148                       false, false, 0);
7149  MemOps.push_back(Store);
7150  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7151                     &MemOps[0], MemOps.size());
7152}
7153
7154SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7155  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7156  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
7157
7158  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
7159  return SDValue();
7160}
7161
7162SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
7163  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7164  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
7165  SDValue Chain = Op.getOperand(0);
7166  SDValue DstPtr = Op.getOperand(1);
7167  SDValue SrcPtr = Op.getOperand(2);
7168  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
7169  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7170  DebugLoc dl = Op.getDebugLoc();
7171
7172  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
7173                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
7174                       false, DstSV, 0, SrcSV, 0);
7175}
7176
7177SDValue
7178X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
7179  DebugLoc dl = Op.getDebugLoc();
7180  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7181  switch (IntNo) {
7182  default: return SDValue();    // Don't custom lower most intrinsics.
7183  // Comparison intrinsics.
7184  case Intrinsic::x86_sse_comieq_ss:
7185  case Intrinsic::x86_sse_comilt_ss:
7186  case Intrinsic::x86_sse_comile_ss:
7187  case Intrinsic::x86_sse_comigt_ss:
7188  case Intrinsic::x86_sse_comige_ss:
7189  case Intrinsic::x86_sse_comineq_ss:
7190  case Intrinsic::x86_sse_ucomieq_ss:
7191  case Intrinsic::x86_sse_ucomilt_ss:
7192  case Intrinsic::x86_sse_ucomile_ss:
7193  case Intrinsic::x86_sse_ucomigt_ss:
7194  case Intrinsic::x86_sse_ucomige_ss:
7195  case Intrinsic::x86_sse_ucomineq_ss:
7196  case Intrinsic::x86_sse2_comieq_sd:
7197  case Intrinsic::x86_sse2_comilt_sd:
7198  case Intrinsic::x86_sse2_comile_sd:
7199  case Intrinsic::x86_sse2_comigt_sd:
7200  case Intrinsic::x86_sse2_comige_sd:
7201  case Intrinsic::x86_sse2_comineq_sd:
7202  case Intrinsic::x86_sse2_ucomieq_sd:
7203  case Intrinsic::x86_sse2_ucomilt_sd:
7204  case Intrinsic::x86_sse2_ucomile_sd:
7205  case Intrinsic::x86_sse2_ucomigt_sd:
7206  case Intrinsic::x86_sse2_ucomige_sd:
7207  case Intrinsic::x86_sse2_ucomineq_sd: {
7208    unsigned Opc = 0;
7209    ISD::CondCode CC = ISD::SETCC_INVALID;
7210    switch (IntNo) {
7211    default: break;
7212    case Intrinsic::x86_sse_comieq_ss:
7213    case Intrinsic::x86_sse2_comieq_sd:
7214      Opc = X86ISD::COMI;
7215      CC = ISD::SETEQ;
7216      break;
7217    case Intrinsic::x86_sse_comilt_ss:
7218    case Intrinsic::x86_sse2_comilt_sd:
7219      Opc = X86ISD::COMI;
7220      CC = ISD::SETLT;
7221      break;
7222    case Intrinsic::x86_sse_comile_ss:
7223    case Intrinsic::x86_sse2_comile_sd:
7224      Opc = X86ISD::COMI;
7225      CC = ISD::SETLE;
7226      break;
7227    case Intrinsic::x86_sse_comigt_ss:
7228    case Intrinsic::x86_sse2_comigt_sd:
7229      Opc = X86ISD::COMI;
7230      CC = ISD::SETGT;
7231      break;
7232    case Intrinsic::x86_sse_comige_ss:
7233    case Intrinsic::x86_sse2_comige_sd:
7234      Opc = X86ISD::COMI;
7235      CC = ISD::SETGE;
7236      break;
7237    case Intrinsic::x86_sse_comineq_ss:
7238    case Intrinsic::x86_sse2_comineq_sd:
7239      Opc = X86ISD::COMI;
7240      CC = ISD::SETNE;
7241      break;
7242    case Intrinsic::x86_sse_ucomieq_ss:
7243    case Intrinsic::x86_sse2_ucomieq_sd:
7244      Opc = X86ISD::UCOMI;
7245      CC = ISD::SETEQ;
7246      break;
7247    case Intrinsic::x86_sse_ucomilt_ss:
7248    case Intrinsic::x86_sse2_ucomilt_sd:
7249      Opc = X86ISD::UCOMI;
7250      CC = ISD::SETLT;
7251      break;
7252    case Intrinsic::x86_sse_ucomile_ss:
7253    case Intrinsic::x86_sse2_ucomile_sd:
7254      Opc = X86ISD::UCOMI;
7255      CC = ISD::SETLE;
7256      break;
7257    case Intrinsic::x86_sse_ucomigt_ss:
7258    case Intrinsic::x86_sse2_ucomigt_sd:
7259      Opc = X86ISD::UCOMI;
7260      CC = ISD::SETGT;
7261      break;
7262    case Intrinsic::x86_sse_ucomige_ss:
7263    case Intrinsic::x86_sse2_ucomige_sd:
7264      Opc = X86ISD::UCOMI;
7265      CC = ISD::SETGE;
7266      break;
7267    case Intrinsic::x86_sse_ucomineq_ss:
7268    case Intrinsic::x86_sse2_ucomineq_sd:
7269      Opc = X86ISD::UCOMI;
7270      CC = ISD::SETNE;
7271      break;
7272    }
7273
7274    SDValue LHS = Op.getOperand(1);
7275    SDValue RHS = Op.getOperand(2);
7276    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7277    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7278    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7279    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7280                                DAG.getConstant(X86CC, MVT::i8), Cond);
7281    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7282  }
7283  // ptest and testp intrinsics. The intrinsic these come from are designed to
7284  // return an integer value, not just an instruction so lower it to the ptest
7285  // or testp pattern and a setcc for the result.
7286  case Intrinsic::x86_sse41_ptestz:
7287  case Intrinsic::x86_sse41_ptestc:
7288  case Intrinsic::x86_sse41_ptestnzc:
7289  case Intrinsic::x86_avx_ptestz_256:
7290  case Intrinsic::x86_avx_ptestc_256:
7291  case Intrinsic::x86_avx_ptestnzc_256:
7292  case Intrinsic::x86_avx_vtestz_ps:
7293  case Intrinsic::x86_avx_vtestc_ps:
7294  case Intrinsic::x86_avx_vtestnzc_ps:
7295  case Intrinsic::x86_avx_vtestz_pd:
7296  case Intrinsic::x86_avx_vtestc_pd:
7297  case Intrinsic::x86_avx_vtestnzc_pd:
7298  case Intrinsic::x86_avx_vtestz_ps_256:
7299  case Intrinsic::x86_avx_vtestc_ps_256:
7300  case Intrinsic::x86_avx_vtestnzc_ps_256:
7301  case Intrinsic::x86_avx_vtestz_pd_256:
7302  case Intrinsic::x86_avx_vtestc_pd_256:
7303  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7304    bool IsTestPacked = false;
7305    unsigned X86CC = 0;
7306    switch (IntNo) {
7307    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7308    case Intrinsic::x86_avx_vtestz_ps:
7309    case Intrinsic::x86_avx_vtestz_pd:
7310    case Intrinsic::x86_avx_vtestz_ps_256:
7311    case Intrinsic::x86_avx_vtestz_pd_256:
7312      IsTestPacked = true; // Fallthrough
7313    case Intrinsic::x86_sse41_ptestz:
7314    case Intrinsic::x86_avx_ptestz_256:
7315      // ZF = 1
7316      X86CC = X86::COND_E;
7317      break;
7318    case Intrinsic::x86_avx_vtestc_ps:
7319    case Intrinsic::x86_avx_vtestc_pd:
7320    case Intrinsic::x86_avx_vtestc_ps_256:
7321    case Intrinsic::x86_avx_vtestc_pd_256:
7322      IsTestPacked = true; // Fallthrough
7323    case Intrinsic::x86_sse41_ptestc:
7324    case Intrinsic::x86_avx_ptestc_256:
7325      // CF = 1
7326      X86CC = X86::COND_B;
7327      break;
7328    case Intrinsic::x86_avx_vtestnzc_ps:
7329    case Intrinsic::x86_avx_vtestnzc_pd:
7330    case Intrinsic::x86_avx_vtestnzc_ps_256:
7331    case Intrinsic::x86_avx_vtestnzc_pd_256:
7332      IsTestPacked = true; // Fallthrough
7333    case Intrinsic::x86_sse41_ptestnzc:
7334    case Intrinsic::x86_avx_ptestnzc_256:
7335      // ZF and CF = 0
7336      X86CC = X86::COND_A;
7337      break;
7338    }
7339
7340    SDValue LHS = Op.getOperand(1);
7341    SDValue RHS = Op.getOperand(2);
7342    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7343    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7344    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7345    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7346    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7347  }
7348
7349  // Fix vector shift instructions where the last operand is a non-immediate
7350  // i32 value.
7351  case Intrinsic::x86_sse2_pslli_w:
7352  case Intrinsic::x86_sse2_pslli_d:
7353  case Intrinsic::x86_sse2_pslli_q:
7354  case Intrinsic::x86_sse2_psrli_w:
7355  case Intrinsic::x86_sse2_psrli_d:
7356  case Intrinsic::x86_sse2_psrli_q:
7357  case Intrinsic::x86_sse2_psrai_w:
7358  case Intrinsic::x86_sse2_psrai_d:
7359  case Intrinsic::x86_mmx_pslli_w:
7360  case Intrinsic::x86_mmx_pslli_d:
7361  case Intrinsic::x86_mmx_pslli_q:
7362  case Intrinsic::x86_mmx_psrli_w:
7363  case Intrinsic::x86_mmx_psrli_d:
7364  case Intrinsic::x86_mmx_psrli_q:
7365  case Intrinsic::x86_mmx_psrai_w:
7366  case Intrinsic::x86_mmx_psrai_d: {
7367    SDValue ShAmt = Op.getOperand(2);
7368    if (isa<ConstantSDNode>(ShAmt))
7369      return SDValue();
7370
7371    unsigned NewIntNo = 0;
7372    EVT ShAmtVT = MVT::v4i32;
7373    switch (IntNo) {
7374    case Intrinsic::x86_sse2_pslli_w:
7375      NewIntNo = Intrinsic::x86_sse2_psll_w;
7376      break;
7377    case Intrinsic::x86_sse2_pslli_d:
7378      NewIntNo = Intrinsic::x86_sse2_psll_d;
7379      break;
7380    case Intrinsic::x86_sse2_pslli_q:
7381      NewIntNo = Intrinsic::x86_sse2_psll_q;
7382      break;
7383    case Intrinsic::x86_sse2_psrli_w:
7384      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7385      break;
7386    case Intrinsic::x86_sse2_psrli_d:
7387      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7388      break;
7389    case Intrinsic::x86_sse2_psrli_q:
7390      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7391      break;
7392    case Intrinsic::x86_sse2_psrai_w:
7393      NewIntNo = Intrinsic::x86_sse2_psra_w;
7394      break;
7395    case Intrinsic::x86_sse2_psrai_d:
7396      NewIntNo = Intrinsic::x86_sse2_psra_d;
7397      break;
7398    default: {
7399      ShAmtVT = MVT::v2i32;
7400      switch (IntNo) {
7401      case Intrinsic::x86_mmx_pslli_w:
7402        NewIntNo = Intrinsic::x86_mmx_psll_w;
7403        break;
7404      case Intrinsic::x86_mmx_pslli_d:
7405        NewIntNo = Intrinsic::x86_mmx_psll_d;
7406        break;
7407      case Intrinsic::x86_mmx_pslli_q:
7408        NewIntNo = Intrinsic::x86_mmx_psll_q;
7409        break;
7410      case Intrinsic::x86_mmx_psrli_w:
7411        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7412        break;
7413      case Intrinsic::x86_mmx_psrli_d:
7414        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7415        break;
7416      case Intrinsic::x86_mmx_psrli_q:
7417        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7418        break;
7419      case Intrinsic::x86_mmx_psrai_w:
7420        NewIntNo = Intrinsic::x86_mmx_psra_w;
7421        break;
7422      case Intrinsic::x86_mmx_psrai_d:
7423        NewIntNo = Intrinsic::x86_mmx_psra_d;
7424        break;
7425      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7426      }
7427      break;
7428    }
7429    }
7430
7431    // The vector shift intrinsics with scalars uses 32b shift amounts but
7432    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7433    // to be zero.
7434    SDValue ShOps[4];
7435    ShOps[0] = ShAmt;
7436    ShOps[1] = DAG.getConstant(0, MVT::i32);
7437    if (ShAmtVT == MVT::v4i32) {
7438      ShOps[2] = DAG.getUNDEF(MVT::i32);
7439      ShOps[3] = DAG.getUNDEF(MVT::i32);
7440      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7441    } else {
7442      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7443    }
7444
7445    EVT VT = Op.getValueType();
7446    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7447    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7448                       DAG.getConstant(NewIntNo, MVT::i32),
7449                       Op.getOperand(1), ShAmt);
7450  }
7451  }
7452}
7453
7454SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7455                                           SelectionDAG &DAG) const {
7456  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7457  MFI->setReturnAddressIsTaken(true);
7458
7459  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7460  DebugLoc dl = Op.getDebugLoc();
7461
7462  if (Depth > 0) {
7463    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7464    SDValue Offset =
7465      DAG.getConstant(TD->getPointerSize(),
7466                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7467    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7468                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7469                                   FrameAddr, Offset),
7470                       NULL, 0, false, false, 0);
7471  }
7472
7473  // Just load the return address.
7474  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7475  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7476                     RetAddrFI, NULL, 0, false, false, 0);
7477}
7478
7479SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7480  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7481  MFI->setFrameAddressIsTaken(true);
7482
7483  EVT VT = Op.getValueType();
7484  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7485  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7486  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7487  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7488  while (Depth--)
7489    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7490                            false, false, 0);
7491  return FrameAddr;
7492}
7493
7494SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7495                                                     SelectionDAG &DAG) const {
7496  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7497}
7498
7499SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7500  MachineFunction &MF = DAG.getMachineFunction();
7501  SDValue Chain     = Op.getOperand(0);
7502  SDValue Offset    = Op.getOperand(1);
7503  SDValue Handler   = Op.getOperand(2);
7504  DebugLoc dl       = Op.getDebugLoc();
7505
7506  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7507                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7508                                     getPointerTy());
7509  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7510
7511  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7512                                  DAG.getIntPtrConstant(TD->getPointerSize()));
7513  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7514  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7515  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7516  MF.getRegInfo().addLiveOut(StoreAddrReg);
7517
7518  return DAG.getNode(X86ISD::EH_RETURN, dl,
7519                     MVT::Other,
7520                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7521}
7522
7523SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7524                                             SelectionDAG &DAG) const {
7525  SDValue Root = Op.getOperand(0);
7526  SDValue Trmp = Op.getOperand(1); // trampoline
7527  SDValue FPtr = Op.getOperand(2); // nested function
7528  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7529  DebugLoc dl  = Op.getDebugLoc();
7530
7531  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7532
7533  if (Subtarget->is64Bit()) {
7534    SDValue OutChains[6];
7535
7536    // Large code-model.
7537    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7538    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7539
7540    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7541    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7542
7543    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7544
7545    // Load the pointer to the nested function into R11.
7546    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7547    SDValue Addr = Trmp;
7548    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7549                                Addr, TrmpAddr, 0, false, false, 0);
7550
7551    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7552                       DAG.getConstant(2, MVT::i64));
7553    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7554                                false, false, 2);
7555
7556    // Load the 'nest' parameter value into R10.
7557    // R10 is specified in X86CallingConv.td
7558    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7559    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7560                       DAG.getConstant(10, MVT::i64));
7561    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7562                                Addr, TrmpAddr, 10, false, false, 0);
7563
7564    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7565                       DAG.getConstant(12, MVT::i64));
7566    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7567                                false, false, 2);
7568
7569    // Jump to the nested function.
7570    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7571    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7572                       DAG.getConstant(20, MVT::i64));
7573    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7574                                Addr, TrmpAddr, 20, false, false, 0);
7575
7576    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7577    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7578                       DAG.getConstant(22, MVT::i64));
7579    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7580                                TrmpAddr, 22, false, false, 0);
7581
7582    SDValue Ops[] =
7583      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7584    return DAG.getMergeValues(Ops, 2, dl);
7585  } else {
7586    const Function *Func =
7587      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7588    CallingConv::ID CC = Func->getCallingConv();
7589    unsigned NestReg;
7590
7591    switch (CC) {
7592    default:
7593      llvm_unreachable("Unsupported calling convention");
7594    case CallingConv::C:
7595    case CallingConv::X86_StdCall: {
7596      // Pass 'nest' parameter in ECX.
7597      // Must be kept in sync with X86CallingConv.td
7598      NestReg = X86::ECX;
7599
7600      // Check that ECX wasn't needed by an 'inreg' parameter.
7601      const FunctionType *FTy = Func->getFunctionType();
7602      const AttrListPtr &Attrs = Func->getAttributes();
7603
7604      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7605        unsigned InRegCount = 0;
7606        unsigned Idx = 1;
7607
7608        for (FunctionType::param_iterator I = FTy->param_begin(),
7609             E = FTy->param_end(); I != E; ++I, ++Idx)
7610          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7611            // FIXME: should only count parameters that are lowered to integers.
7612            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7613
7614        if (InRegCount > 2) {
7615          report_fatal_error("Nest register in use - reduce number of inreg"
7616                             " parameters!");
7617        }
7618      }
7619      break;
7620    }
7621    case CallingConv::X86_FastCall:
7622    case CallingConv::X86_ThisCall:
7623    case CallingConv::Fast:
7624      // Pass 'nest' parameter in EAX.
7625      // Must be kept in sync with X86CallingConv.td
7626      NestReg = X86::EAX;
7627      break;
7628    }
7629
7630    SDValue OutChains[4];
7631    SDValue Addr, Disp;
7632
7633    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7634                       DAG.getConstant(10, MVT::i32));
7635    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7636
7637    // This is storing the opcode for MOV32ri.
7638    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7639    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7640    OutChains[0] = DAG.getStore(Root, dl,
7641                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7642                                Trmp, TrmpAddr, 0, false, false, 0);
7643
7644    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7645                       DAG.getConstant(1, MVT::i32));
7646    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7647                                false, false, 1);
7648
7649    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7650    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7651                       DAG.getConstant(5, MVT::i32));
7652    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7653                                TrmpAddr, 5, false, false, 1);
7654
7655    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7656                       DAG.getConstant(6, MVT::i32));
7657    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7658                                false, false, 1);
7659
7660    SDValue Ops[] =
7661      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7662    return DAG.getMergeValues(Ops, 2, dl);
7663  }
7664}
7665
7666SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7667                                            SelectionDAG &DAG) const {
7668  /*
7669   The rounding mode is in bits 11:10 of FPSR, and has the following
7670   settings:
7671     00 Round to nearest
7672     01 Round to -inf
7673     10 Round to +inf
7674     11 Round to 0
7675
7676  FLT_ROUNDS, on the other hand, expects the following:
7677    -1 Undefined
7678     0 Round to 0
7679     1 Round to nearest
7680     2 Round to +inf
7681     3 Round to -inf
7682
7683  To perform the conversion, we do:
7684    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7685  */
7686
7687  MachineFunction &MF = DAG.getMachineFunction();
7688  const TargetMachine &TM = MF.getTarget();
7689  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7690  unsigned StackAlignment = TFI.getStackAlignment();
7691  EVT VT = Op.getValueType();
7692  DebugLoc dl = Op.getDebugLoc();
7693
7694  // Save FP Control Word to stack slot
7695  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7696  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7697
7698  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7699                              DAG.getEntryNode(), StackSlot);
7700
7701  // Load FP Control Word from stack slot
7702  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7703                            false, false, 0);
7704
7705  // Transform as necessary
7706  SDValue CWD1 =
7707    DAG.getNode(ISD::SRL, dl, MVT::i16,
7708                DAG.getNode(ISD::AND, dl, MVT::i16,
7709                            CWD, DAG.getConstant(0x800, MVT::i16)),
7710                DAG.getConstant(11, MVT::i8));
7711  SDValue CWD2 =
7712    DAG.getNode(ISD::SRL, dl, MVT::i16,
7713                DAG.getNode(ISD::AND, dl, MVT::i16,
7714                            CWD, DAG.getConstant(0x400, MVT::i16)),
7715                DAG.getConstant(9, MVT::i8));
7716
7717  SDValue RetVal =
7718    DAG.getNode(ISD::AND, dl, MVT::i16,
7719                DAG.getNode(ISD::ADD, dl, MVT::i16,
7720                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7721                            DAG.getConstant(1, MVT::i16)),
7722                DAG.getConstant(3, MVT::i16));
7723
7724
7725  return DAG.getNode((VT.getSizeInBits() < 16 ?
7726                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7727}
7728
7729SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
7730  EVT VT = Op.getValueType();
7731  EVT OpVT = VT;
7732  unsigned NumBits = VT.getSizeInBits();
7733  DebugLoc dl = Op.getDebugLoc();
7734
7735  Op = Op.getOperand(0);
7736  if (VT == MVT::i8) {
7737    // Zero extend to i32 since there is not an i8 bsr.
7738    OpVT = MVT::i32;
7739    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7740  }
7741
7742  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7743  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7744  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7745
7746  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7747  SDValue Ops[] = {
7748    Op,
7749    DAG.getConstant(NumBits+NumBits-1, OpVT),
7750    DAG.getConstant(X86::COND_E, MVT::i8),
7751    Op.getValue(1)
7752  };
7753  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7754
7755  // Finally xor with NumBits-1.
7756  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7757
7758  if (VT == MVT::i8)
7759    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7760  return Op;
7761}
7762
7763SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
7764  EVT VT = Op.getValueType();
7765  EVT OpVT = VT;
7766  unsigned NumBits = VT.getSizeInBits();
7767  DebugLoc dl = Op.getDebugLoc();
7768
7769  Op = Op.getOperand(0);
7770  if (VT == MVT::i8) {
7771    OpVT = MVT::i32;
7772    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7773  }
7774
7775  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7776  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7777  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7778
7779  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7780  SDValue Ops[] = {
7781    Op,
7782    DAG.getConstant(NumBits, OpVT),
7783    DAG.getConstant(X86::COND_E, MVT::i8),
7784    Op.getValue(1)
7785  };
7786  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7787
7788  if (VT == MVT::i8)
7789    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7790  return Op;
7791}
7792
7793SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
7794  EVT VT = Op.getValueType();
7795  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7796  DebugLoc dl = Op.getDebugLoc();
7797
7798  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7799  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7800  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7801  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7802  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7803  //
7804  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7805  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7806  //  return AloBlo + AloBhi + AhiBlo;
7807
7808  SDValue A = Op.getOperand(0);
7809  SDValue B = Op.getOperand(1);
7810
7811  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7812                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7813                       A, DAG.getConstant(32, MVT::i32));
7814  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7815                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7816                       B, DAG.getConstant(32, MVT::i32));
7817  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7818                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7819                       A, B);
7820  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7821                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7822                       A, Bhi);
7823  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7824                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7825                       Ahi, B);
7826  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7827                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7828                       AloBhi, DAG.getConstant(32, MVT::i32));
7829  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7830                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7831                       AhiBlo, DAG.getConstant(32, MVT::i32));
7832  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7833  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7834  return Res;
7835}
7836
7837SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
7838  EVT VT = Op.getValueType();
7839  DebugLoc dl = Op.getDebugLoc();
7840  SDValue R = Op.getOperand(0);
7841
7842  LLVMContext *Context = DAG.getContext();
7843
7844  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
7845
7846  if (VT == MVT::v4i32) {
7847    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7848                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
7849                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
7850
7851    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
7852
7853    std::vector<Constant*> CV(4, CI);
7854    Constant *C = ConstantVector::get(CV);
7855    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7856    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7857                                 PseudoSourceValue::getConstantPool(), 0,
7858                                 false, false, 16);
7859
7860    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
7861    Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
7862    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
7863    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
7864  }
7865  if (VT == MVT::v16i8) {
7866    // a = a << 5;
7867    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7868                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
7869                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
7870
7871    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
7872    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
7873
7874    std::vector<Constant*> CVM1(16, CM1);
7875    std::vector<Constant*> CVM2(16, CM2);
7876    Constant *C = ConstantVector::get(CVM1);
7877    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7878    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7879                            PseudoSourceValue::getConstantPool(), 0,
7880                            false, false, 16);
7881
7882    // r = pblendv(r, psllw(r & (char16)15, 4), a);
7883    M = DAG.getNode(ISD::AND, dl, VT, R, M);
7884    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7885                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
7886                    DAG.getConstant(4, MVT::i32));
7887    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7888                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7889                    R, M, Op);
7890    // a += a
7891    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
7892
7893    C = ConstantVector::get(CVM2);
7894    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7895    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7896                    PseudoSourceValue::getConstantPool(), 0, false, false, 16);
7897
7898    // r = pblendv(r, psllw(r & (char16)63, 2), a);
7899    M = DAG.getNode(ISD::AND, dl, VT, R, M);
7900    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7901                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
7902                    DAG.getConstant(2, MVT::i32));
7903    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7904                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7905                    R, M, Op);
7906    // a += a
7907    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
7908
7909    // return pblendv(r, r+r, a);
7910    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7911                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7912                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
7913    return R;
7914  }
7915  return SDValue();
7916}
7917
7918SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
7919  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7920  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7921  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7922  // has only one use.
7923  SDNode *N = Op.getNode();
7924  SDValue LHS = N->getOperand(0);
7925  SDValue RHS = N->getOperand(1);
7926  unsigned BaseOp = 0;
7927  unsigned Cond = 0;
7928  DebugLoc dl = Op.getDebugLoc();
7929
7930  switch (Op.getOpcode()) {
7931  default: llvm_unreachable("Unknown ovf instruction!");
7932  case ISD::SADDO:
7933    // A subtract of one will be selected as a INC. Note that INC doesn't
7934    // set CF, so we can't do this for UADDO.
7935    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7936      if (C->getAPIntValue() == 1) {
7937        BaseOp = X86ISD::INC;
7938        Cond = X86::COND_O;
7939        break;
7940      }
7941    BaseOp = X86ISD::ADD;
7942    Cond = X86::COND_O;
7943    break;
7944  case ISD::UADDO:
7945    BaseOp = X86ISD::ADD;
7946    Cond = X86::COND_B;
7947    break;
7948  case ISD::SSUBO:
7949    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7950    // set CF, so we can't do this for USUBO.
7951    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7952      if (C->getAPIntValue() == 1) {
7953        BaseOp = X86ISD::DEC;
7954        Cond = X86::COND_O;
7955        break;
7956      }
7957    BaseOp = X86ISD::SUB;
7958    Cond = X86::COND_O;
7959    break;
7960  case ISD::USUBO:
7961    BaseOp = X86ISD::SUB;
7962    Cond = X86::COND_B;
7963    break;
7964  case ISD::SMULO:
7965    BaseOp = X86ISD::SMUL;
7966    Cond = X86::COND_O;
7967    break;
7968  case ISD::UMULO:
7969    BaseOp = X86ISD::UMUL;
7970    Cond = X86::COND_B;
7971    break;
7972  }
7973
7974  // Also sets EFLAGS.
7975  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7976  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7977
7978  SDValue SetCC =
7979    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7980                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7981
7982  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7983  return Sum;
7984}
7985
7986SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
7987  DebugLoc dl = Op.getDebugLoc();
7988
7989  if (!Subtarget->hasSSE2()) {
7990    SDValue Chain = Op.getOperand(0);
7991    SDValue Zero = DAG.getConstant(0,
7992                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7993    SDValue Ops[] = {
7994      DAG.getRegister(X86::ESP, MVT::i32), // Base
7995      DAG.getTargetConstant(1, MVT::i8),   // Scale
7996      DAG.getRegister(0, MVT::i32),        // Index
7997      DAG.getTargetConstant(0, MVT::i32),  // Disp
7998      DAG.getRegister(0, MVT::i32),        // Segment.
7999      Zero,
8000      Chain
8001    };
8002    SDNode *Res =
8003      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8004                          array_lengthof(Ops));
8005    return SDValue(Res, 0);
8006  }
8007
8008  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8009  if (!isDev)
8010    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8011
8012  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8013  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8014  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8015  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8016
8017  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8018  if (!Op1 && !Op2 && !Op3 && Op4)
8019    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8020
8021  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8022  if (Op1 && !Op2 && !Op3 && !Op4)
8023    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8024
8025  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8026  //           (MFENCE)>;
8027  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8028}
8029
8030SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8031  EVT T = Op.getValueType();
8032  DebugLoc dl = Op.getDebugLoc();
8033  unsigned Reg = 0;
8034  unsigned size = 0;
8035  switch(T.getSimpleVT().SimpleTy) {
8036  default:
8037    assert(false && "Invalid value type!");
8038  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8039  case MVT::i16: Reg = X86::AX;  size = 2; break;
8040  case MVT::i32: Reg = X86::EAX; size = 4; break;
8041  case MVT::i64:
8042    assert(Subtarget->is64Bit() && "Node not type legal!");
8043    Reg = X86::RAX; size = 8;
8044    break;
8045  }
8046  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
8047                                    Op.getOperand(2), SDValue());
8048  SDValue Ops[] = { cpIn.getValue(0),
8049                    Op.getOperand(1),
8050                    Op.getOperand(3),
8051                    DAG.getTargetConstant(size, MVT::i8),
8052                    cpIn.getValue(1) };
8053  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8054  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
8055  SDValue cpOut =
8056    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
8057  return cpOut;
8058}
8059
8060SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8061                                                 SelectionDAG &DAG) const {
8062  assert(Subtarget->is64Bit() && "Result not type legalized?");
8063  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8064  SDValue TheChain = Op.getOperand(0);
8065  DebugLoc dl = Op.getDebugLoc();
8066  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8067  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
8068  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
8069                                   rax.getValue(2));
8070  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
8071                            DAG.getConstant(32, MVT::i8));
8072  SDValue Ops[] = {
8073    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
8074    rdx.getValue(1)
8075  };
8076  return DAG.getMergeValues(Ops, 2, dl);
8077}
8078
8079SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
8080                                            SelectionDAG &DAG) const {
8081  EVT SrcVT = Op.getOperand(0).getValueType();
8082  EVT DstVT = Op.getValueType();
8083  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
8084          Subtarget->hasMMX() && !DisableMMX) &&
8085         "Unexpected custom BIT_CONVERT");
8086  assert((DstVT == MVT::i64 ||
8087          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
8088         "Unexpected custom BIT_CONVERT");
8089  // i64 <=> MMX conversions are Legal.
8090  if (SrcVT==MVT::i64 && DstVT.isVector())
8091    return Op;
8092  if (DstVT==MVT::i64 && SrcVT.isVector())
8093    return Op;
8094  // MMX <=> MMX conversions are Legal.
8095  if (SrcVT.isVector() && DstVT.isVector())
8096    return Op;
8097  // All other conversions need to be expanded.
8098  return SDValue();
8099}
8100SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
8101  SDNode *Node = Op.getNode();
8102  DebugLoc dl = Node->getDebugLoc();
8103  EVT T = Node->getValueType(0);
8104  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
8105                              DAG.getConstant(0, T), Node->getOperand(2));
8106  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
8107                       cast<AtomicSDNode>(Node)->getMemoryVT(),
8108                       Node->getOperand(0),
8109                       Node->getOperand(1), negOp,
8110                       cast<AtomicSDNode>(Node)->getSrcValue(),
8111                       cast<AtomicSDNode>(Node)->getAlignment());
8112}
8113
8114/// LowerOperation - Provide custom lowering hooks for some operations.
8115///
8116SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8117  switch (Op.getOpcode()) {
8118  default: llvm_unreachable("Should not custom lower this!");
8119  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
8120  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
8121  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
8122  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8123  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
8124  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8125  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8126  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
8127  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8128  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8129  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8130  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8131  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
8132  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8133  case ISD::SHL_PARTS:
8134  case ISD::SRA_PARTS:
8135  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
8136  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
8137  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
8138  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
8139  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
8140  case ISD::FABS:               return LowerFABS(Op, DAG);
8141  case ISD::FNEG:               return LowerFNEG(Op, DAG);
8142  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
8143  case ISD::SETCC:              return LowerSETCC(Op, DAG);
8144  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
8145  case ISD::SELECT:             return LowerSELECT(Op, DAG);
8146  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
8147  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8148  case ISD::VASTART:            return LowerVASTART(Op, DAG);
8149  case ISD::VAARG:              return LowerVAARG(Op, DAG);
8150  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
8151  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8152  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8153  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8154  case ISD::FRAME_TO_ARGS_OFFSET:
8155                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
8156  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
8157  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
8158  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
8159  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8160  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
8161  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
8162  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
8163  case ISD::SHL:                return LowerSHL(Op, DAG);
8164  case ISD::SADDO:
8165  case ISD::UADDO:
8166  case ISD::SSUBO:
8167  case ISD::USUBO:
8168  case ISD::SMULO:
8169  case ISD::UMULO:              return LowerXALUO(Op, DAG);
8170  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
8171  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
8172  }
8173}
8174
8175void X86TargetLowering::
8176ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
8177                        SelectionDAG &DAG, unsigned NewOp) const {
8178  EVT T = Node->getValueType(0);
8179  DebugLoc dl = Node->getDebugLoc();
8180  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
8181
8182  SDValue Chain = Node->getOperand(0);
8183  SDValue In1 = Node->getOperand(1);
8184  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8185                             Node->getOperand(2), DAG.getIntPtrConstant(0));
8186  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8187                             Node->getOperand(2), DAG.getIntPtrConstant(1));
8188  SDValue Ops[] = { Chain, In1, In2L, In2H };
8189  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8190  SDValue Result =
8191    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
8192                            cast<MemSDNode>(Node)->getMemOperand());
8193  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
8194  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8195  Results.push_back(Result.getValue(2));
8196}
8197
8198/// ReplaceNodeResults - Replace a node with an illegal result type
8199/// with a new node built out of custom code.
8200void X86TargetLowering::ReplaceNodeResults(SDNode *N,
8201                                           SmallVectorImpl<SDValue>&Results,
8202                                           SelectionDAG &DAG) const {
8203  DebugLoc dl = N->getDebugLoc();
8204  switch (N->getOpcode()) {
8205  default:
8206    assert(false && "Do not know how to custom type legalize this operation!");
8207    return;
8208  case ISD::FP_TO_SINT: {
8209    std::pair<SDValue,SDValue> Vals =
8210        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8211    SDValue FIST = Vals.first, StackSlot = Vals.second;
8212    if (FIST.getNode() != 0) {
8213      EVT VT = N->getValueType(0);
8214      // Return a load from the stack slot.
8215      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
8216                                    false, false, 0));
8217    }
8218    return;
8219  }
8220  case ISD::READCYCLECOUNTER: {
8221    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8222    SDValue TheChain = N->getOperand(0);
8223    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8224    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8225                                     rd.getValue(1));
8226    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8227                                     eax.getValue(2));
8228    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8229    SDValue Ops[] = { eax, edx };
8230    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8231    Results.push_back(edx.getValue(1));
8232    return;
8233  }
8234  case ISD::ATOMIC_CMP_SWAP: {
8235    EVT T = N->getValueType(0);
8236    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8237    SDValue cpInL, cpInH;
8238    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8239                        DAG.getConstant(0, MVT::i32));
8240    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8241                        DAG.getConstant(1, MVT::i32));
8242    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8243    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8244                             cpInL.getValue(1));
8245    SDValue swapInL, swapInH;
8246    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8247                          DAG.getConstant(0, MVT::i32));
8248    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8249                          DAG.getConstant(1, MVT::i32));
8250    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8251                               cpInH.getValue(1));
8252    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8253                               swapInL.getValue(1));
8254    SDValue Ops[] = { swapInH.getValue(0),
8255                      N->getOperand(1),
8256                      swapInH.getValue(1) };
8257    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8258    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
8259    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8260                                        MVT::i32, Result.getValue(1));
8261    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8262                                        MVT::i32, cpOutL.getValue(2));
8263    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8264    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8265    Results.push_back(cpOutH.getValue(1));
8266    return;
8267  }
8268  case ISD::ATOMIC_LOAD_ADD:
8269    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8270    return;
8271  case ISD::ATOMIC_LOAD_AND:
8272    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8273    return;
8274  case ISD::ATOMIC_LOAD_NAND:
8275    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8276    return;
8277  case ISD::ATOMIC_LOAD_OR:
8278    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8279    return;
8280  case ISD::ATOMIC_LOAD_SUB:
8281    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8282    return;
8283  case ISD::ATOMIC_LOAD_XOR:
8284    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8285    return;
8286  case ISD::ATOMIC_SWAP:
8287    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8288    return;
8289  }
8290}
8291
8292const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8293  switch (Opcode) {
8294  default: return NULL;
8295  case X86ISD::BSF:                return "X86ISD::BSF";
8296  case X86ISD::BSR:                return "X86ISD::BSR";
8297  case X86ISD::SHLD:               return "X86ISD::SHLD";
8298  case X86ISD::SHRD:               return "X86ISD::SHRD";
8299  case X86ISD::FAND:               return "X86ISD::FAND";
8300  case X86ISD::FOR:                return "X86ISD::FOR";
8301  case X86ISD::FXOR:               return "X86ISD::FXOR";
8302  case X86ISD::FSRL:               return "X86ISD::FSRL";
8303  case X86ISD::FILD:               return "X86ISD::FILD";
8304  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8305  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8306  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8307  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8308  case X86ISD::FLD:                return "X86ISD::FLD";
8309  case X86ISD::FST:                return "X86ISD::FST";
8310  case X86ISD::CALL:               return "X86ISD::CALL";
8311  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8312  case X86ISD::BT:                 return "X86ISD::BT";
8313  case X86ISD::CMP:                return "X86ISD::CMP";
8314  case X86ISD::COMI:               return "X86ISD::COMI";
8315  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8316  case X86ISD::SETCC:              return "X86ISD::SETCC";
8317  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8318  case X86ISD::CMOV:               return "X86ISD::CMOV";
8319  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8320  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8321  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8322  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8323  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8324  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8325  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8326  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8327  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8328  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8329  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8330  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8331  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
8332  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8333  case X86ISD::FMAX:               return "X86ISD::FMAX";
8334  case X86ISD::FMIN:               return "X86ISD::FMIN";
8335  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8336  case X86ISD::FRCP:               return "X86ISD::FRCP";
8337  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8338  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8339  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
8340  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8341  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8342  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8343  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8344  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8345  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8346  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8347  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8348  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8349  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8350  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8351  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8352  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8353  case X86ISD::VSHL:               return "X86ISD::VSHL";
8354  case X86ISD::VSRL:               return "X86ISD::VSRL";
8355  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8356  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8357  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8358  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8359  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8360  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8361  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8362  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8363  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8364  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8365  case X86ISD::ADD:                return "X86ISD::ADD";
8366  case X86ISD::SUB:                return "X86ISD::SUB";
8367  case X86ISD::SMUL:               return "X86ISD::SMUL";
8368  case X86ISD::UMUL:               return "X86ISD::UMUL";
8369  case X86ISD::INC:                return "X86ISD::INC";
8370  case X86ISD::DEC:                return "X86ISD::DEC";
8371  case X86ISD::OR:                 return "X86ISD::OR";
8372  case X86ISD::XOR:                return "X86ISD::XOR";
8373  case X86ISD::AND:                return "X86ISD::AND";
8374  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8375  case X86ISD::PTEST:              return "X86ISD::PTEST";
8376  case X86ISD::TESTP:              return "X86ISD::TESTP";
8377  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
8378  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
8379  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
8380  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
8381  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
8382  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
8383  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
8384  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
8385  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
8386  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
8387  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
8388  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
8389  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
8390  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
8391  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
8392  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
8393  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
8394  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
8395  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
8396  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
8397  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
8398  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
8399  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
8400  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
8401  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
8402  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
8403  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
8404  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
8405  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
8406  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
8407  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
8408  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8409  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
8410  }
8411}
8412
8413// isLegalAddressingMode - Return true if the addressing mode represented
8414// by AM is legal for this target, for a load/store of the specified type.
8415bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8416                                              const Type *Ty) const {
8417  // X86 supports extremely general addressing modes.
8418  CodeModel::Model M = getTargetMachine().getCodeModel();
8419  Reloc::Model R = getTargetMachine().getRelocationModel();
8420
8421  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8422  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8423    return false;
8424
8425  if (AM.BaseGV) {
8426    unsigned GVFlags =
8427      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8428
8429    // If a reference to this global requires an extra load, we can't fold it.
8430    if (isGlobalStubReference(GVFlags))
8431      return false;
8432
8433    // If BaseGV requires a register for the PIC base, we cannot also have a
8434    // BaseReg specified.
8435    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8436      return false;
8437
8438    // If lower 4G is not available, then we must use rip-relative addressing.
8439    if ((M != CodeModel::Small || R != Reloc::Static) &&
8440        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8441      return false;
8442  }
8443
8444  switch (AM.Scale) {
8445  case 0:
8446  case 1:
8447  case 2:
8448  case 4:
8449  case 8:
8450    // These scales always work.
8451    break;
8452  case 3:
8453  case 5:
8454  case 9:
8455    // These scales are formed with basereg+scalereg.  Only accept if there is
8456    // no basereg yet.
8457    if (AM.HasBaseReg)
8458      return false;
8459    break;
8460  default:  // Other stuff never works.
8461    return false;
8462  }
8463
8464  return true;
8465}
8466
8467
8468bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8469  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8470    return false;
8471  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8472  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8473  if (NumBits1 <= NumBits2)
8474    return false;
8475  return true;
8476}
8477
8478bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8479  if (!VT1.isInteger() || !VT2.isInteger())
8480    return false;
8481  unsigned NumBits1 = VT1.getSizeInBits();
8482  unsigned NumBits2 = VT2.getSizeInBits();
8483  if (NumBits1 <= NumBits2)
8484    return false;
8485  return true;
8486}
8487
8488bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8489  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8490  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8491}
8492
8493bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8494  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8495  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8496}
8497
8498bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8499  // i16 instructions are longer (0x66 prefix) and potentially slower.
8500  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8501}
8502
8503/// isShuffleMaskLegal - Targets can use this to indicate that they only
8504/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8505/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8506/// are assumed to be legal.
8507bool
8508X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8509                                      EVT VT) const {
8510  // Very little shuffling can be done for 64-bit vectors right now.
8511  if (VT.getSizeInBits() == 64)
8512    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8513
8514  // FIXME: pshufb, blends, shifts.
8515  return (VT.getVectorNumElements() == 2 ||
8516          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8517          isMOVLMask(M, VT) ||
8518          isSHUFPMask(M, VT) ||
8519          isPSHUFDMask(M, VT) ||
8520          isPSHUFHWMask(M, VT) ||
8521          isPSHUFLWMask(M, VT) ||
8522          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
8523          isUNPCKLMask(M, VT) ||
8524          isUNPCKHMask(M, VT) ||
8525          isUNPCKL_v_undef_Mask(M, VT) ||
8526          isUNPCKH_v_undef_Mask(M, VT));
8527}
8528
8529bool
8530X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
8531                                          EVT VT) const {
8532  unsigned NumElts = VT.getVectorNumElements();
8533  // FIXME: This collection of masks seems suspect.
8534  if (NumElts == 2)
8535    return true;
8536  if (NumElts == 4 && VT.getSizeInBits() == 128) {
8537    return (isMOVLMask(Mask, VT)  ||
8538            isCommutedMOVLMask(Mask, VT, true) ||
8539            isSHUFPMask(Mask, VT) ||
8540            isCommutedSHUFPMask(Mask, VT));
8541  }
8542  return false;
8543}
8544
8545//===----------------------------------------------------------------------===//
8546//                           X86 Scheduler Hooks
8547//===----------------------------------------------------------------------===//
8548
8549// private utility function
8550MachineBasicBlock *
8551X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
8552                                                       MachineBasicBlock *MBB,
8553                                                       unsigned regOpc,
8554                                                       unsigned immOpc,
8555                                                       unsigned LoadOpc,
8556                                                       unsigned CXchgOpc,
8557                                                       unsigned notOpc,
8558                                                       unsigned EAXreg,
8559                                                       TargetRegisterClass *RC,
8560                                                       bool invSrc) const {
8561  // For the atomic bitwise operator, we generate
8562  //   thisMBB:
8563  //   newMBB:
8564  //     ld  t1 = [bitinstr.addr]
8565  //     op  t2 = t1, [bitinstr.val]
8566  //     mov EAX = t1
8567  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8568  //     bz  newMBB
8569  //     fallthrough -->nextMBB
8570  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8571  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8572  MachineFunction::iterator MBBIter = MBB;
8573  ++MBBIter;
8574
8575  /// First build the CFG
8576  MachineFunction *F = MBB->getParent();
8577  MachineBasicBlock *thisMBB = MBB;
8578  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8579  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8580  F->insert(MBBIter, newMBB);
8581  F->insert(MBBIter, nextMBB);
8582
8583  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8584  nextMBB->splice(nextMBB->begin(), thisMBB,
8585                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8586                  thisMBB->end());
8587  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8588
8589  // Update thisMBB to fall through to newMBB
8590  thisMBB->addSuccessor(newMBB);
8591
8592  // newMBB jumps to itself and fall through to nextMBB
8593  newMBB->addSuccessor(nextMBB);
8594  newMBB->addSuccessor(newMBB);
8595
8596  // Insert instructions into newMBB based on incoming instruction
8597  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8598         "unexpected number of operands");
8599  DebugLoc dl = bInstr->getDebugLoc();
8600  MachineOperand& destOper = bInstr->getOperand(0);
8601  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8602  int numArgs = bInstr->getNumOperands() - 1;
8603  for (int i=0; i < numArgs; ++i)
8604    argOpers[i] = &bInstr->getOperand(i+1);
8605
8606  // x86 address has 4 operands: base, index, scale, and displacement
8607  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8608  int valArgIndx = lastAddrIndx + 1;
8609
8610  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8611  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8612  for (int i=0; i <= lastAddrIndx; ++i)
8613    (*MIB).addOperand(*argOpers[i]);
8614
8615  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8616  if (invSrc) {
8617    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8618  }
8619  else
8620    tt = t1;
8621
8622  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8623  assert((argOpers[valArgIndx]->isReg() ||
8624          argOpers[valArgIndx]->isImm()) &&
8625         "invalid operand");
8626  if (argOpers[valArgIndx]->isReg())
8627    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8628  else
8629    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8630  MIB.addReg(tt);
8631  (*MIB).addOperand(*argOpers[valArgIndx]);
8632
8633  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
8634  MIB.addReg(t1);
8635
8636  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8637  for (int i=0; i <= lastAddrIndx; ++i)
8638    (*MIB).addOperand(*argOpers[i]);
8639  MIB.addReg(t2);
8640  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8641  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8642                    bInstr->memoperands_end());
8643
8644  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8645  MIB.addReg(EAXreg);
8646
8647  // insert branch
8648  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8649
8650  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8651  return nextMBB;
8652}
8653
8654// private utility function:  64 bit atomics on 32 bit host.
8655MachineBasicBlock *
8656X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8657                                                       MachineBasicBlock *MBB,
8658                                                       unsigned regOpcL,
8659                                                       unsigned regOpcH,
8660                                                       unsigned immOpcL,
8661                                                       unsigned immOpcH,
8662                                                       bool invSrc) const {
8663  // For the atomic bitwise operator, we generate
8664  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8665  //     ld t1,t2 = [bitinstr.addr]
8666  //   newMBB:
8667  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8668  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8669  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8670  //     mov ECX, EBX <- t5, t6
8671  //     mov EAX, EDX <- t1, t2
8672  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8673  //     mov t3, t4 <- EAX, EDX
8674  //     bz  newMBB
8675  //     result in out1, out2
8676  //     fallthrough -->nextMBB
8677
8678  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8679  const unsigned LoadOpc = X86::MOV32rm;
8680  const unsigned NotOpc = X86::NOT32r;
8681  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8682  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8683  MachineFunction::iterator MBBIter = MBB;
8684  ++MBBIter;
8685
8686  /// First build the CFG
8687  MachineFunction *F = MBB->getParent();
8688  MachineBasicBlock *thisMBB = MBB;
8689  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8690  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8691  F->insert(MBBIter, newMBB);
8692  F->insert(MBBIter, nextMBB);
8693
8694  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8695  nextMBB->splice(nextMBB->begin(), thisMBB,
8696                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8697                  thisMBB->end());
8698  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8699
8700  // Update thisMBB to fall through to newMBB
8701  thisMBB->addSuccessor(newMBB);
8702
8703  // newMBB jumps to itself and fall through to nextMBB
8704  newMBB->addSuccessor(nextMBB);
8705  newMBB->addSuccessor(newMBB);
8706
8707  DebugLoc dl = bInstr->getDebugLoc();
8708  // Insert instructions into newMBB based on incoming instruction
8709  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8710  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
8711         "unexpected number of operands");
8712  MachineOperand& dest1Oper = bInstr->getOperand(0);
8713  MachineOperand& dest2Oper = bInstr->getOperand(1);
8714  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8715  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
8716    argOpers[i] = &bInstr->getOperand(i+2);
8717
8718    // We use some of the operands multiple times, so conservatively just
8719    // clear any kill flags that might be present.
8720    if (argOpers[i]->isReg() && argOpers[i]->isUse())
8721      argOpers[i]->setIsKill(false);
8722  }
8723
8724  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8725  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8726
8727  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8728  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8729  for (int i=0; i <= lastAddrIndx; ++i)
8730    (*MIB).addOperand(*argOpers[i]);
8731  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8732  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8733  // add 4 to displacement.
8734  for (int i=0; i <= lastAddrIndx-2; ++i)
8735    (*MIB).addOperand(*argOpers[i]);
8736  MachineOperand newOp3 = *(argOpers[3]);
8737  if (newOp3.isImm())
8738    newOp3.setImm(newOp3.getImm()+4);
8739  else
8740    newOp3.setOffset(newOp3.getOffset()+4);
8741  (*MIB).addOperand(newOp3);
8742  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8743
8744  // t3/4 are defined later, at the bottom of the loop
8745  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8746  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8747  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8748    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8749  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8750    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8751
8752  // The subsequent operations should be using the destination registers of
8753  //the PHI instructions.
8754  if (invSrc) {
8755    t1 = F->getRegInfo().createVirtualRegister(RC);
8756    t2 = F->getRegInfo().createVirtualRegister(RC);
8757    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8758    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8759  } else {
8760    t1 = dest1Oper.getReg();
8761    t2 = dest2Oper.getReg();
8762  }
8763
8764  int valArgIndx = lastAddrIndx + 1;
8765  assert((argOpers[valArgIndx]->isReg() ||
8766          argOpers[valArgIndx]->isImm()) &&
8767         "invalid operand");
8768  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8769  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8770  if (argOpers[valArgIndx]->isReg())
8771    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8772  else
8773    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8774  if (regOpcL != X86::MOV32rr)
8775    MIB.addReg(t1);
8776  (*MIB).addOperand(*argOpers[valArgIndx]);
8777  assert(argOpers[valArgIndx + 1]->isReg() ==
8778         argOpers[valArgIndx]->isReg());
8779  assert(argOpers[valArgIndx + 1]->isImm() ==
8780         argOpers[valArgIndx]->isImm());
8781  if (argOpers[valArgIndx + 1]->isReg())
8782    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8783  else
8784    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8785  if (regOpcH != X86::MOV32rr)
8786    MIB.addReg(t2);
8787  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8788
8789  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8790  MIB.addReg(t1);
8791  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
8792  MIB.addReg(t2);
8793
8794  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
8795  MIB.addReg(t5);
8796  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
8797  MIB.addReg(t6);
8798
8799  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8800  for (int i=0; i <= lastAddrIndx; ++i)
8801    (*MIB).addOperand(*argOpers[i]);
8802
8803  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8804  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8805                    bInstr->memoperands_end());
8806
8807  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
8808  MIB.addReg(X86::EAX);
8809  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
8810  MIB.addReg(X86::EDX);
8811
8812  // insert branch
8813  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8814
8815  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8816  return nextMBB;
8817}
8818
8819// private utility function
8820MachineBasicBlock *
8821X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8822                                                      MachineBasicBlock *MBB,
8823                                                      unsigned cmovOpc) const {
8824  // For the atomic min/max operator, we generate
8825  //   thisMBB:
8826  //   newMBB:
8827  //     ld t1 = [min/max.addr]
8828  //     mov t2 = [min/max.val]
8829  //     cmp  t1, t2
8830  //     cmov[cond] t2 = t1
8831  //     mov EAX = t1
8832  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8833  //     bz   newMBB
8834  //     fallthrough -->nextMBB
8835  //
8836  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8837  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8838  MachineFunction::iterator MBBIter = MBB;
8839  ++MBBIter;
8840
8841  /// First build the CFG
8842  MachineFunction *F = MBB->getParent();
8843  MachineBasicBlock *thisMBB = MBB;
8844  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8845  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8846  F->insert(MBBIter, newMBB);
8847  F->insert(MBBIter, nextMBB);
8848
8849  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8850  nextMBB->splice(nextMBB->begin(), thisMBB,
8851                  llvm::next(MachineBasicBlock::iterator(mInstr)),
8852                  thisMBB->end());
8853  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8854
8855  // Update thisMBB to fall through to newMBB
8856  thisMBB->addSuccessor(newMBB);
8857
8858  // newMBB jumps to newMBB and fall through to nextMBB
8859  newMBB->addSuccessor(nextMBB);
8860  newMBB->addSuccessor(newMBB);
8861
8862  DebugLoc dl = mInstr->getDebugLoc();
8863  // Insert instructions into newMBB based on incoming instruction
8864  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8865         "unexpected number of operands");
8866  MachineOperand& destOper = mInstr->getOperand(0);
8867  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8868  int numArgs = mInstr->getNumOperands() - 1;
8869  for (int i=0; i < numArgs; ++i)
8870    argOpers[i] = &mInstr->getOperand(i+1);
8871
8872  // x86 address has 4 operands: base, index, scale, and displacement
8873  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8874  int valArgIndx = lastAddrIndx + 1;
8875
8876  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8877  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8878  for (int i=0; i <= lastAddrIndx; ++i)
8879    (*MIB).addOperand(*argOpers[i]);
8880
8881  // We only support register and immediate values
8882  assert((argOpers[valArgIndx]->isReg() ||
8883          argOpers[valArgIndx]->isImm()) &&
8884         "invalid operand");
8885
8886  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8887  if (argOpers[valArgIndx]->isReg())
8888    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
8889  else
8890    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8891  (*MIB).addOperand(*argOpers[valArgIndx]);
8892
8893  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8894  MIB.addReg(t1);
8895
8896  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8897  MIB.addReg(t1);
8898  MIB.addReg(t2);
8899
8900  // Generate movc
8901  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8902  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8903  MIB.addReg(t2);
8904  MIB.addReg(t1);
8905
8906  // Cmp and exchange if none has modified the memory location
8907  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8908  for (int i=0; i <= lastAddrIndx; ++i)
8909    (*MIB).addOperand(*argOpers[i]);
8910  MIB.addReg(t3);
8911  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8912  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8913                    mInstr->memoperands_end());
8914
8915  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8916  MIB.addReg(X86::EAX);
8917
8918  // insert branch
8919  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8920
8921  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
8922  return nextMBB;
8923}
8924
8925// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8926// or XMM0_V32I8 in AVX all of this code can be replaced with that
8927// in the .td file.
8928MachineBasicBlock *
8929X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8930                            unsigned numArgs, bool memArg) const {
8931
8932  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
8933         "Target must have SSE4.2 or AVX features enabled");
8934
8935  DebugLoc dl = MI->getDebugLoc();
8936  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8937
8938  unsigned Opc;
8939
8940  if (!Subtarget->hasAVX()) {
8941    if (memArg)
8942      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8943    else
8944      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8945  } else {
8946    if (memArg)
8947      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
8948    else
8949      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
8950  }
8951
8952  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8953
8954  for (unsigned i = 0; i < numArgs; ++i) {
8955    MachineOperand &Op = MI->getOperand(i+1);
8956
8957    if (!(Op.isReg() && Op.isImplicit()))
8958      MIB.addOperand(Op);
8959  }
8960
8961  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8962    .addReg(X86::XMM0);
8963
8964  MI->eraseFromParent();
8965
8966  return BB;
8967}
8968
8969MachineBasicBlock *
8970X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8971                                                 MachineInstr *MI,
8972                                                 MachineBasicBlock *MBB) const {
8973  // Emit code to save XMM registers to the stack. The ABI says that the
8974  // number of registers to save is given in %al, so it's theoretically
8975  // possible to do an indirect jump trick to avoid saving all of them,
8976  // however this code takes a simpler approach and just executes all
8977  // of the stores if %al is non-zero. It's less code, and it's probably
8978  // easier on the hardware branch predictor, and stores aren't all that
8979  // expensive anyway.
8980
8981  // Create the new basic blocks. One block contains all the XMM stores,
8982  // and one block is the final destination regardless of whether any
8983  // stores were performed.
8984  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8985  MachineFunction *F = MBB->getParent();
8986  MachineFunction::iterator MBBIter = MBB;
8987  ++MBBIter;
8988  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8989  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8990  F->insert(MBBIter, XMMSaveMBB);
8991  F->insert(MBBIter, EndMBB);
8992
8993  // Transfer the remainder of MBB and its successor edges to EndMBB.
8994  EndMBB->splice(EndMBB->begin(), MBB,
8995                 llvm::next(MachineBasicBlock::iterator(MI)),
8996                 MBB->end());
8997  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
8998
8999  // The original block will now fall through to the XMM save block.
9000  MBB->addSuccessor(XMMSaveMBB);
9001  // The XMMSaveMBB will fall through to the end block.
9002  XMMSaveMBB->addSuccessor(EndMBB);
9003
9004  // Now add the instructions.
9005  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9006  DebugLoc DL = MI->getDebugLoc();
9007
9008  unsigned CountReg = MI->getOperand(0).getReg();
9009  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
9010  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
9011
9012  if (!Subtarget->isTargetWin64()) {
9013    // If %al is 0, branch around the XMM save block.
9014    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
9015    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
9016    MBB->addSuccessor(EndMBB);
9017  }
9018
9019  // In the XMM save block, save all the XMM argument registers.
9020  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
9021    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
9022    MachineMemOperand *MMO =
9023      F->getMachineMemOperand(
9024        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
9025        MachineMemOperand::MOStore, Offset,
9026        /*Size=*/16, /*Align=*/16);
9027    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
9028      .addFrameIndex(RegSaveFrameIndex)
9029      .addImm(/*Scale=*/1)
9030      .addReg(/*IndexReg=*/0)
9031      .addImm(/*Disp=*/Offset)
9032      .addReg(/*Segment=*/0)
9033      .addReg(MI->getOperand(i).getReg())
9034      .addMemOperand(MMO);
9035  }
9036
9037  MI->eraseFromParent();   // The pseudo instruction is gone now.
9038
9039  return EndMBB;
9040}
9041
9042MachineBasicBlock *
9043X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
9044                                     MachineBasicBlock *BB) const {
9045  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9046  DebugLoc DL = MI->getDebugLoc();
9047
9048  // To "insert" a SELECT_CC instruction, we actually have to insert the
9049  // diamond control-flow pattern.  The incoming instruction knows the
9050  // destination vreg to set, the condition code register to branch on, the
9051  // true/false values to select between, and a branch opcode to use.
9052  const BasicBlock *LLVM_BB = BB->getBasicBlock();
9053  MachineFunction::iterator It = BB;
9054  ++It;
9055
9056  //  thisMBB:
9057  //  ...
9058  //   TrueVal = ...
9059  //   cmpTY ccX, r1, r2
9060  //   bCC copy1MBB
9061  //   fallthrough --> copy0MBB
9062  MachineBasicBlock *thisMBB = BB;
9063  MachineFunction *F = BB->getParent();
9064  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9065  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9066  F->insert(It, copy0MBB);
9067  F->insert(It, sinkMBB);
9068
9069  // If the EFLAGS register isn't dead in the terminator, then claim that it's
9070  // live into the sink and copy blocks.
9071  const MachineFunction *MF = BB->getParent();
9072  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
9073  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
9074
9075  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
9076    const MachineOperand &MO = MI->getOperand(I);
9077    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
9078    unsigned Reg = MO.getReg();
9079    if (Reg != X86::EFLAGS) continue;
9080    copy0MBB->addLiveIn(Reg);
9081    sinkMBB->addLiveIn(Reg);
9082  }
9083
9084  // Transfer the remainder of BB and its successor edges to sinkMBB.
9085  sinkMBB->splice(sinkMBB->begin(), BB,
9086                  llvm::next(MachineBasicBlock::iterator(MI)),
9087                  BB->end());
9088  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9089
9090  // Add the true and fallthrough blocks as its successors.
9091  BB->addSuccessor(copy0MBB);
9092  BB->addSuccessor(sinkMBB);
9093
9094  // Create the conditional branch instruction.
9095  unsigned Opc =
9096    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
9097  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
9098
9099  //  copy0MBB:
9100  //   %FalseValue = ...
9101  //   # fallthrough to sinkMBB
9102  copy0MBB->addSuccessor(sinkMBB);
9103
9104  //  sinkMBB:
9105  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9106  //  ...
9107  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9108          TII->get(X86::PHI), MI->getOperand(0).getReg())
9109    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
9110    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
9111
9112  MI->eraseFromParent();   // The pseudo instruction is gone now.
9113  return sinkMBB;
9114}
9115
9116MachineBasicBlock *
9117X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
9118                                          MachineBasicBlock *BB) const {
9119  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9120  DebugLoc DL = MI->getDebugLoc();
9121
9122  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
9123  // non-trivial part is impdef of ESP.
9124  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
9125  // mingw-w64.
9126
9127  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
9128    .addExternalSymbol("_alloca")
9129    .addReg(X86::EAX, RegState::Implicit)
9130    .addReg(X86::ESP, RegState::Implicit)
9131    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
9132    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
9133    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
9134
9135  MI->eraseFromParent();   // The pseudo instruction is gone now.
9136  return BB;
9137}
9138
9139MachineBasicBlock *
9140X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
9141                                      MachineBasicBlock *BB) const {
9142  // This is pretty easy.  We're taking the value that we received from
9143  // our load from the relocation, sticking it in either RDI (x86-64)
9144  // or EAX and doing an indirect call.  The return value will then
9145  // be in the normal return register.
9146  const X86InstrInfo *TII
9147    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
9148  DebugLoc DL = MI->getDebugLoc();
9149  MachineFunction *F = BB->getParent();
9150  bool IsWin64 = Subtarget->isTargetWin64();
9151
9152  assert(MI->getOperand(3).isGlobal() && "This should be a global");
9153
9154  if (Subtarget->is64Bit()) {
9155    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9156                                      TII->get(X86::MOV64rm), X86::RDI)
9157    .addReg(X86::RIP)
9158    .addImm(0).addReg(0)
9159    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9160                      MI->getOperand(3).getTargetFlags())
9161    .addReg(0);
9162    MIB = BuildMI(*BB, MI, DL, TII->get(IsWin64 ? X86::WINCALL64m : X86::CALL64m));
9163    addDirectMem(MIB, X86::RDI);
9164  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
9165    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9166                                      TII->get(X86::MOV32rm), X86::EAX)
9167    .addReg(0)
9168    .addImm(0).addReg(0)
9169    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9170                      MI->getOperand(3).getTargetFlags())
9171    .addReg(0);
9172    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9173    addDirectMem(MIB, X86::EAX);
9174  } else {
9175    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9176                                      TII->get(X86::MOV32rm), X86::EAX)
9177    .addReg(TII->getGlobalBaseReg(F))
9178    .addImm(0).addReg(0)
9179    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9180                      MI->getOperand(3).getTargetFlags())
9181    .addReg(0);
9182    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9183    addDirectMem(MIB, X86::EAX);
9184  }
9185
9186  MI->eraseFromParent(); // The pseudo instruction is gone now.
9187  return BB;
9188}
9189
9190MachineBasicBlock *
9191X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
9192                                               MachineBasicBlock *BB) const {
9193  switch (MI->getOpcode()) {
9194  default: assert(false && "Unexpected instr type to insert");
9195  case X86::MINGW_ALLOCA:
9196    return EmitLoweredMingwAlloca(MI, BB);
9197  case X86::TLSCall_32:
9198  case X86::TLSCall_64:
9199    return EmitLoweredTLSCall(MI, BB);
9200  case X86::CMOV_GR8:
9201  case X86::CMOV_V1I64:
9202  case X86::CMOV_FR32:
9203  case X86::CMOV_FR64:
9204  case X86::CMOV_V4F32:
9205  case X86::CMOV_V2F64:
9206  case X86::CMOV_V2I64:
9207  case X86::CMOV_GR16:
9208  case X86::CMOV_GR32:
9209  case X86::CMOV_RFP32:
9210  case X86::CMOV_RFP64:
9211  case X86::CMOV_RFP80:
9212    return EmitLoweredSelect(MI, BB);
9213
9214  case X86::FP32_TO_INT16_IN_MEM:
9215  case X86::FP32_TO_INT32_IN_MEM:
9216  case X86::FP32_TO_INT64_IN_MEM:
9217  case X86::FP64_TO_INT16_IN_MEM:
9218  case X86::FP64_TO_INT32_IN_MEM:
9219  case X86::FP64_TO_INT64_IN_MEM:
9220  case X86::FP80_TO_INT16_IN_MEM:
9221  case X86::FP80_TO_INT32_IN_MEM:
9222  case X86::FP80_TO_INT64_IN_MEM: {
9223    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9224    DebugLoc DL = MI->getDebugLoc();
9225
9226    // Change the floating point control register to use "round towards zero"
9227    // mode when truncating to an integer value.
9228    MachineFunction *F = BB->getParent();
9229    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
9230    addFrameReference(BuildMI(*BB, MI, DL,
9231                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
9232
9233    // Load the old value of the high byte of the control word...
9234    unsigned OldCW =
9235      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
9236    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
9237                      CWFrameIdx);
9238
9239    // Set the high part to be round to zero...
9240    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
9241      .addImm(0xC7F);
9242
9243    // Reload the modified control word now...
9244    addFrameReference(BuildMI(*BB, MI, DL,
9245                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9246
9247    // Restore the memory image of control word to original value
9248    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
9249      .addReg(OldCW);
9250
9251    // Get the X86 opcode to use.
9252    unsigned Opc;
9253    switch (MI->getOpcode()) {
9254    default: llvm_unreachable("illegal opcode!");
9255    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
9256    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
9257    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
9258    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
9259    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
9260    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
9261    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
9262    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
9263    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
9264    }
9265
9266    X86AddressMode AM;
9267    MachineOperand &Op = MI->getOperand(0);
9268    if (Op.isReg()) {
9269      AM.BaseType = X86AddressMode::RegBase;
9270      AM.Base.Reg = Op.getReg();
9271    } else {
9272      AM.BaseType = X86AddressMode::FrameIndexBase;
9273      AM.Base.FrameIndex = Op.getIndex();
9274    }
9275    Op = MI->getOperand(1);
9276    if (Op.isImm())
9277      AM.Scale = Op.getImm();
9278    Op = MI->getOperand(2);
9279    if (Op.isImm())
9280      AM.IndexReg = Op.getImm();
9281    Op = MI->getOperand(3);
9282    if (Op.isGlobal()) {
9283      AM.GV = Op.getGlobal();
9284    } else {
9285      AM.Disp = Op.getImm();
9286    }
9287    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
9288                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
9289
9290    // Reload the original control word now.
9291    addFrameReference(BuildMI(*BB, MI, DL,
9292                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9293
9294    MI->eraseFromParent();   // The pseudo instruction is gone now.
9295    return BB;
9296  }
9297    // String/text processing lowering.
9298  case X86::PCMPISTRM128REG:
9299  case X86::VPCMPISTRM128REG:
9300    return EmitPCMP(MI, BB, 3, false /* in-mem */);
9301  case X86::PCMPISTRM128MEM:
9302  case X86::VPCMPISTRM128MEM:
9303    return EmitPCMP(MI, BB, 3, true /* in-mem */);
9304  case X86::PCMPESTRM128REG:
9305  case X86::VPCMPESTRM128REG:
9306    return EmitPCMP(MI, BB, 5, false /* in mem */);
9307  case X86::PCMPESTRM128MEM:
9308  case X86::VPCMPESTRM128MEM:
9309    return EmitPCMP(MI, BB, 5, true /* in mem */);
9310
9311    // Atomic Lowering.
9312  case X86::ATOMAND32:
9313    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9314                                               X86::AND32ri, X86::MOV32rm,
9315                                               X86::LCMPXCHG32,
9316                                               X86::NOT32r, X86::EAX,
9317                                               X86::GR32RegisterClass);
9318  case X86::ATOMOR32:
9319    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
9320                                               X86::OR32ri, X86::MOV32rm,
9321                                               X86::LCMPXCHG32,
9322                                               X86::NOT32r, X86::EAX,
9323                                               X86::GR32RegisterClass);
9324  case X86::ATOMXOR32:
9325    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
9326                                               X86::XOR32ri, X86::MOV32rm,
9327                                               X86::LCMPXCHG32,
9328                                               X86::NOT32r, X86::EAX,
9329                                               X86::GR32RegisterClass);
9330  case X86::ATOMNAND32:
9331    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9332                                               X86::AND32ri, X86::MOV32rm,
9333                                               X86::LCMPXCHG32,
9334                                               X86::NOT32r, X86::EAX,
9335                                               X86::GR32RegisterClass, true);
9336  case X86::ATOMMIN32:
9337    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
9338  case X86::ATOMMAX32:
9339    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
9340  case X86::ATOMUMIN32:
9341    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
9342  case X86::ATOMUMAX32:
9343    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
9344
9345  case X86::ATOMAND16:
9346    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9347                                               X86::AND16ri, X86::MOV16rm,
9348                                               X86::LCMPXCHG16,
9349                                               X86::NOT16r, X86::AX,
9350                                               X86::GR16RegisterClass);
9351  case X86::ATOMOR16:
9352    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
9353                                               X86::OR16ri, X86::MOV16rm,
9354                                               X86::LCMPXCHG16,
9355                                               X86::NOT16r, X86::AX,
9356                                               X86::GR16RegisterClass);
9357  case X86::ATOMXOR16:
9358    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
9359                                               X86::XOR16ri, X86::MOV16rm,
9360                                               X86::LCMPXCHG16,
9361                                               X86::NOT16r, X86::AX,
9362                                               X86::GR16RegisterClass);
9363  case X86::ATOMNAND16:
9364    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9365                                               X86::AND16ri, X86::MOV16rm,
9366                                               X86::LCMPXCHG16,
9367                                               X86::NOT16r, X86::AX,
9368                                               X86::GR16RegisterClass, true);
9369  case X86::ATOMMIN16:
9370    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
9371  case X86::ATOMMAX16:
9372    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
9373  case X86::ATOMUMIN16:
9374    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
9375  case X86::ATOMUMAX16:
9376    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
9377
9378  case X86::ATOMAND8:
9379    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9380                                               X86::AND8ri, X86::MOV8rm,
9381                                               X86::LCMPXCHG8,
9382                                               X86::NOT8r, X86::AL,
9383                                               X86::GR8RegisterClass);
9384  case X86::ATOMOR8:
9385    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
9386                                               X86::OR8ri, X86::MOV8rm,
9387                                               X86::LCMPXCHG8,
9388                                               X86::NOT8r, X86::AL,
9389                                               X86::GR8RegisterClass);
9390  case X86::ATOMXOR8:
9391    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
9392                                               X86::XOR8ri, X86::MOV8rm,
9393                                               X86::LCMPXCHG8,
9394                                               X86::NOT8r, X86::AL,
9395                                               X86::GR8RegisterClass);
9396  case X86::ATOMNAND8:
9397    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9398                                               X86::AND8ri, X86::MOV8rm,
9399                                               X86::LCMPXCHG8,
9400                                               X86::NOT8r, X86::AL,
9401                                               X86::GR8RegisterClass, true);
9402  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
9403  // This group is for 64-bit host.
9404  case X86::ATOMAND64:
9405    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9406                                               X86::AND64ri32, X86::MOV64rm,
9407                                               X86::LCMPXCHG64,
9408                                               X86::NOT64r, X86::RAX,
9409                                               X86::GR64RegisterClass);
9410  case X86::ATOMOR64:
9411    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
9412                                               X86::OR64ri32, X86::MOV64rm,
9413                                               X86::LCMPXCHG64,
9414                                               X86::NOT64r, X86::RAX,
9415                                               X86::GR64RegisterClass);
9416  case X86::ATOMXOR64:
9417    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
9418                                               X86::XOR64ri32, X86::MOV64rm,
9419                                               X86::LCMPXCHG64,
9420                                               X86::NOT64r, X86::RAX,
9421                                               X86::GR64RegisterClass);
9422  case X86::ATOMNAND64:
9423    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9424                                               X86::AND64ri32, X86::MOV64rm,
9425                                               X86::LCMPXCHG64,
9426                                               X86::NOT64r, X86::RAX,
9427                                               X86::GR64RegisterClass, true);
9428  case X86::ATOMMIN64:
9429    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
9430  case X86::ATOMMAX64:
9431    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
9432  case X86::ATOMUMIN64:
9433    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
9434  case X86::ATOMUMAX64:
9435    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
9436
9437  // This group does 64-bit operations on a 32-bit host.
9438  case X86::ATOMAND6432:
9439    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9440                                               X86::AND32rr, X86::AND32rr,
9441                                               X86::AND32ri, X86::AND32ri,
9442                                               false);
9443  case X86::ATOMOR6432:
9444    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9445                                               X86::OR32rr, X86::OR32rr,
9446                                               X86::OR32ri, X86::OR32ri,
9447                                               false);
9448  case X86::ATOMXOR6432:
9449    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9450                                               X86::XOR32rr, X86::XOR32rr,
9451                                               X86::XOR32ri, X86::XOR32ri,
9452                                               false);
9453  case X86::ATOMNAND6432:
9454    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9455                                               X86::AND32rr, X86::AND32rr,
9456                                               X86::AND32ri, X86::AND32ri,
9457                                               true);
9458  case X86::ATOMADD6432:
9459    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9460                                               X86::ADD32rr, X86::ADC32rr,
9461                                               X86::ADD32ri, X86::ADC32ri,
9462                                               false);
9463  case X86::ATOMSUB6432:
9464    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9465                                               X86::SUB32rr, X86::SBB32rr,
9466                                               X86::SUB32ri, X86::SBB32ri,
9467                                               false);
9468  case X86::ATOMSWAP6432:
9469    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9470                                               X86::MOV32rr, X86::MOV32rr,
9471                                               X86::MOV32ri, X86::MOV32ri,
9472                                               false);
9473  case X86::VASTART_SAVE_XMM_REGS:
9474    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
9475  }
9476}
9477
9478//===----------------------------------------------------------------------===//
9479//                           X86 Optimization Hooks
9480//===----------------------------------------------------------------------===//
9481
9482void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9483                                                       const APInt &Mask,
9484                                                       APInt &KnownZero,
9485                                                       APInt &KnownOne,
9486                                                       const SelectionDAG &DAG,
9487                                                       unsigned Depth) const {
9488  unsigned Opc = Op.getOpcode();
9489  assert((Opc >= ISD::BUILTIN_OP_END ||
9490          Opc == ISD::INTRINSIC_WO_CHAIN ||
9491          Opc == ISD::INTRINSIC_W_CHAIN ||
9492          Opc == ISD::INTRINSIC_VOID) &&
9493         "Should use MaskedValueIsZero if you don't know whether Op"
9494         " is a target node!");
9495
9496  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
9497  switch (Opc) {
9498  default: break;
9499  case X86ISD::ADD:
9500  case X86ISD::SUB:
9501  case X86ISD::SMUL:
9502  case X86ISD::UMUL:
9503  case X86ISD::INC:
9504  case X86ISD::DEC:
9505  case X86ISD::OR:
9506  case X86ISD::XOR:
9507  case X86ISD::AND:
9508    // These nodes' second result is a boolean.
9509    if (Op.getResNo() == 0)
9510      break;
9511    // Fallthrough
9512  case X86ISD::SETCC:
9513    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
9514                                       Mask.getBitWidth() - 1);
9515    break;
9516  }
9517}
9518
9519/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
9520/// node is a GlobalAddress + offset.
9521bool X86TargetLowering::isGAPlusOffset(SDNode *N,
9522                                       const GlobalValue* &GA,
9523                                       int64_t &Offset) const {
9524  if (N->getOpcode() == X86ISD::Wrapper) {
9525    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
9526      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
9527      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
9528      return true;
9529    }
9530  }
9531  return TargetLowering::isGAPlusOffset(N, GA, Offset);
9532}
9533
9534/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
9535/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
9536/// if the load addresses are consecutive, non-overlapping, and in the right
9537/// order.
9538static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
9539                                     const TargetLowering &TLI) {
9540  DebugLoc dl = N->getDebugLoc();
9541  EVT VT = N->getValueType(0);
9542
9543  if (VT.getSizeInBits() != 128)
9544    return SDValue();
9545
9546  SmallVector<SDValue, 16> Elts;
9547  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
9548    Elts.push_back(getShuffleScalarElt(N, i, DAG));
9549
9550  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
9551}
9552
9553/// PerformShuffleCombine - Detect vector gather/scatter index generation
9554/// and convert it from being a bunch of shuffles and extracts to a simple
9555/// store and scalar loads to extract the elements.
9556static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
9557                                                const TargetLowering &TLI) {
9558  SDValue InputVector = N->getOperand(0);
9559
9560  // Only operate on vectors of 4 elements, where the alternative shuffling
9561  // gets to be more expensive.
9562  if (InputVector.getValueType() != MVT::v4i32)
9563    return SDValue();
9564
9565  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
9566  // single use which is a sign-extend or zero-extend, and all elements are
9567  // used.
9568  SmallVector<SDNode *, 4> Uses;
9569  unsigned ExtractedElements = 0;
9570  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
9571       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
9572    if (UI.getUse().getResNo() != InputVector.getResNo())
9573      return SDValue();
9574
9575    SDNode *Extract = *UI;
9576    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9577      return SDValue();
9578
9579    if (Extract->getValueType(0) != MVT::i32)
9580      return SDValue();
9581    if (!Extract->hasOneUse())
9582      return SDValue();
9583    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
9584        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
9585      return SDValue();
9586    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
9587      return SDValue();
9588
9589    // Record which element was extracted.
9590    ExtractedElements |=
9591      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
9592
9593    Uses.push_back(Extract);
9594  }
9595
9596  // If not all the elements were used, this may not be worthwhile.
9597  if (ExtractedElements != 15)
9598    return SDValue();
9599
9600  // Ok, we've now decided to do the transformation.
9601  DebugLoc dl = InputVector.getDebugLoc();
9602
9603  // Store the value to a temporary stack slot.
9604  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
9605  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL,
9606                            0, false, false, 0);
9607
9608  // Replace each use (extract) with a load of the appropriate element.
9609  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
9610       UE = Uses.end(); UI != UE; ++UI) {
9611    SDNode *Extract = *UI;
9612
9613    // Compute the element's address.
9614    SDValue Idx = Extract->getOperand(1);
9615    unsigned EltSize =
9616        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
9617    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
9618    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
9619
9620    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
9621                                     OffsetVal, StackPtr);
9622
9623    // Load the scalar.
9624    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
9625                                     ScalarAddr, NULL, 0, false, false, 0);
9626
9627    // Replace the exact with the load.
9628    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
9629  }
9630
9631  // The replacement was made in place; don't return anything.
9632  return SDValue();
9633}
9634
9635/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
9636static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
9637                                    const X86Subtarget *Subtarget) {
9638  DebugLoc DL = N->getDebugLoc();
9639  SDValue Cond = N->getOperand(0);
9640  // Get the LHS/RHS of the select.
9641  SDValue LHS = N->getOperand(1);
9642  SDValue RHS = N->getOperand(2);
9643
9644  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9645  // instructions match the semantics of the common C idiom x<y?x:y but not
9646  // x<=y?x:y, because of how they handle negative zero (which can be
9647  // ignored in unsafe-math mode).
9648  if (Subtarget->hasSSE2() &&
9649      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9650      Cond.getOpcode() == ISD::SETCC) {
9651    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9652
9653    unsigned Opcode = 0;
9654    // Check for x CC y ? x : y.
9655    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9656        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9657      switch (CC) {
9658      default: break;
9659      case ISD::SETULT:
9660        // Converting this to a min would handle NaNs incorrectly, and swapping
9661        // the operands would cause it to handle comparisons between positive
9662        // and negative zero incorrectly.
9663        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9664          if (!UnsafeFPMath &&
9665              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9666            break;
9667          std::swap(LHS, RHS);
9668        }
9669        Opcode = X86ISD::FMIN;
9670        break;
9671      case ISD::SETOLE:
9672        // Converting this to a min would handle comparisons between positive
9673        // and negative zero incorrectly.
9674        if (!UnsafeFPMath &&
9675            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9676          break;
9677        Opcode = X86ISD::FMIN;
9678        break;
9679      case ISD::SETULE:
9680        // Converting this to a min would handle both negative zeros and NaNs
9681        // incorrectly, but we can swap the operands to fix both.
9682        std::swap(LHS, RHS);
9683      case ISD::SETOLT:
9684      case ISD::SETLT:
9685      case ISD::SETLE:
9686        Opcode = X86ISD::FMIN;
9687        break;
9688
9689      case ISD::SETOGE:
9690        // Converting this to a max would handle comparisons between positive
9691        // and negative zero incorrectly.
9692        if (!UnsafeFPMath &&
9693            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9694          break;
9695        Opcode = X86ISD::FMAX;
9696        break;
9697      case ISD::SETUGT:
9698        // Converting this to a max would handle NaNs incorrectly, and swapping
9699        // the operands would cause it to handle comparisons between positive
9700        // and negative zero incorrectly.
9701        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9702          if (!UnsafeFPMath &&
9703              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9704            break;
9705          std::swap(LHS, RHS);
9706        }
9707        Opcode = X86ISD::FMAX;
9708        break;
9709      case ISD::SETUGE:
9710        // Converting this to a max would handle both negative zeros and NaNs
9711        // incorrectly, but we can swap the operands to fix both.
9712        std::swap(LHS, RHS);
9713      case ISD::SETOGT:
9714      case ISD::SETGT:
9715      case ISD::SETGE:
9716        Opcode = X86ISD::FMAX;
9717        break;
9718      }
9719    // Check for x CC y ? y : x -- a min/max with reversed arms.
9720    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9721               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9722      switch (CC) {
9723      default: break;
9724      case ISD::SETOGE:
9725        // Converting this to a min would handle comparisons between positive
9726        // and negative zero incorrectly, and swapping the operands would
9727        // cause it to handle NaNs incorrectly.
9728        if (!UnsafeFPMath &&
9729            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9730          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9731            break;
9732          std::swap(LHS, RHS);
9733        }
9734        Opcode = X86ISD::FMIN;
9735        break;
9736      case ISD::SETUGT:
9737        // Converting this to a min would handle NaNs incorrectly.
9738        if (!UnsafeFPMath &&
9739            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9740          break;
9741        Opcode = X86ISD::FMIN;
9742        break;
9743      case ISD::SETUGE:
9744        // Converting this to a min would handle both negative zeros and NaNs
9745        // incorrectly, but we can swap the operands to fix both.
9746        std::swap(LHS, RHS);
9747      case ISD::SETOGT:
9748      case ISD::SETGT:
9749      case ISD::SETGE:
9750        Opcode = X86ISD::FMIN;
9751        break;
9752
9753      case ISD::SETULT:
9754        // Converting this to a max would handle NaNs incorrectly.
9755        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9756          break;
9757        Opcode = X86ISD::FMAX;
9758        break;
9759      case ISD::SETOLE:
9760        // Converting this to a max would handle comparisons between positive
9761        // and negative zero incorrectly, and swapping the operands would
9762        // cause it to handle NaNs incorrectly.
9763        if (!UnsafeFPMath &&
9764            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9765          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9766            break;
9767          std::swap(LHS, RHS);
9768        }
9769        Opcode = X86ISD::FMAX;
9770        break;
9771      case ISD::SETULE:
9772        // Converting this to a max would handle both negative zeros and NaNs
9773        // incorrectly, but we can swap the operands to fix both.
9774        std::swap(LHS, RHS);
9775      case ISD::SETOLT:
9776      case ISD::SETLT:
9777      case ISD::SETLE:
9778        Opcode = X86ISD::FMAX;
9779        break;
9780      }
9781    }
9782
9783    if (Opcode)
9784      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9785  }
9786
9787  // If this is a select between two integer constants, try to do some
9788  // optimizations.
9789  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9790    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9791      // Don't do this for crazy integer types.
9792      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9793        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9794        // so that TrueC (the true value) is larger than FalseC.
9795        bool NeedsCondInvert = false;
9796
9797        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9798            // Efficiently invertible.
9799            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9800             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9801              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9802          NeedsCondInvert = true;
9803          std::swap(TrueC, FalseC);
9804        }
9805
9806        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9807        if (FalseC->getAPIntValue() == 0 &&
9808            TrueC->getAPIntValue().isPowerOf2()) {
9809          if (NeedsCondInvert) // Invert the condition if needed.
9810            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9811                               DAG.getConstant(1, Cond.getValueType()));
9812
9813          // Zero extend the condition if needed.
9814          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9815
9816          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9817          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9818                             DAG.getConstant(ShAmt, MVT::i8));
9819        }
9820
9821        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9822        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9823          if (NeedsCondInvert) // Invert the condition if needed.
9824            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9825                               DAG.getConstant(1, Cond.getValueType()));
9826
9827          // Zero extend the condition if needed.
9828          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9829                             FalseC->getValueType(0), Cond);
9830          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9831                             SDValue(FalseC, 0));
9832        }
9833
9834        // Optimize cases that will turn into an LEA instruction.  This requires
9835        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9836        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9837          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9838          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9839
9840          bool isFastMultiplier = false;
9841          if (Diff < 10) {
9842            switch ((unsigned char)Diff) {
9843              default: break;
9844              case 1:  // result = add base, cond
9845              case 2:  // result = lea base(    , cond*2)
9846              case 3:  // result = lea base(cond, cond*2)
9847              case 4:  // result = lea base(    , cond*4)
9848              case 5:  // result = lea base(cond, cond*4)
9849              case 8:  // result = lea base(    , cond*8)
9850              case 9:  // result = lea base(cond, cond*8)
9851                isFastMultiplier = true;
9852                break;
9853            }
9854          }
9855
9856          if (isFastMultiplier) {
9857            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9858            if (NeedsCondInvert) // Invert the condition if needed.
9859              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9860                                 DAG.getConstant(1, Cond.getValueType()));
9861
9862            // Zero extend the condition if needed.
9863            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9864                               Cond);
9865            // Scale the condition by the difference.
9866            if (Diff != 1)
9867              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9868                                 DAG.getConstant(Diff, Cond.getValueType()));
9869
9870            // Add the base if non-zero.
9871            if (FalseC->getAPIntValue() != 0)
9872              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9873                                 SDValue(FalseC, 0));
9874            return Cond;
9875          }
9876        }
9877      }
9878  }
9879
9880  return SDValue();
9881}
9882
9883/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9884static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9885                                  TargetLowering::DAGCombinerInfo &DCI) {
9886  DebugLoc DL = N->getDebugLoc();
9887
9888  // If the flag operand isn't dead, don't touch this CMOV.
9889  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9890    return SDValue();
9891
9892  // If this is a select between two integer constants, try to do some
9893  // optimizations.  Note that the operands are ordered the opposite of SELECT
9894  // operands.
9895  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9896    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9897      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9898      // larger than FalseC (the false value).
9899      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9900
9901      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9902        CC = X86::GetOppositeBranchCondition(CC);
9903        std::swap(TrueC, FalseC);
9904      }
9905
9906      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9907      // This is efficient for any integer data type (including i8/i16) and
9908      // shift amount.
9909      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9910        SDValue Cond = N->getOperand(3);
9911        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9912                           DAG.getConstant(CC, MVT::i8), Cond);
9913
9914        // Zero extend the condition if needed.
9915        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9916
9917        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9918        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9919                           DAG.getConstant(ShAmt, MVT::i8));
9920        if (N->getNumValues() == 2)  // Dead flag value?
9921          return DCI.CombineTo(N, Cond, SDValue());
9922        return Cond;
9923      }
9924
9925      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9926      // for any integer data type, including i8/i16.
9927      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9928        SDValue Cond = N->getOperand(3);
9929        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9930                           DAG.getConstant(CC, MVT::i8), Cond);
9931
9932        // Zero extend the condition if needed.
9933        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9934                           FalseC->getValueType(0), Cond);
9935        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9936                           SDValue(FalseC, 0));
9937
9938        if (N->getNumValues() == 2)  // Dead flag value?
9939          return DCI.CombineTo(N, Cond, SDValue());
9940        return Cond;
9941      }
9942
9943      // Optimize cases that will turn into an LEA instruction.  This requires
9944      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9945      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9946        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9947        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9948
9949        bool isFastMultiplier = false;
9950        if (Diff < 10) {
9951          switch ((unsigned char)Diff) {
9952          default: break;
9953          case 1:  // result = add base, cond
9954          case 2:  // result = lea base(    , cond*2)
9955          case 3:  // result = lea base(cond, cond*2)
9956          case 4:  // result = lea base(    , cond*4)
9957          case 5:  // result = lea base(cond, cond*4)
9958          case 8:  // result = lea base(    , cond*8)
9959          case 9:  // result = lea base(cond, cond*8)
9960            isFastMultiplier = true;
9961            break;
9962          }
9963        }
9964
9965        if (isFastMultiplier) {
9966          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9967          SDValue Cond = N->getOperand(3);
9968          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9969                             DAG.getConstant(CC, MVT::i8), Cond);
9970          // Zero extend the condition if needed.
9971          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9972                             Cond);
9973          // Scale the condition by the difference.
9974          if (Diff != 1)
9975            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9976                               DAG.getConstant(Diff, Cond.getValueType()));
9977
9978          // Add the base if non-zero.
9979          if (FalseC->getAPIntValue() != 0)
9980            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9981                               SDValue(FalseC, 0));
9982          if (N->getNumValues() == 2)  // Dead flag value?
9983            return DCI.CombineTo(N, Cond, SDValue());
9984          return Cond;
9985        }
9986      }
9987    }
9988  }
9989  return SDValue();
9990}
9991
9992
9993/// PerformMulCombine - Optimize a single multiply with constant into two
9994/// in order to implement it with two cheaper instructions, e.g.
9995/// LEA + SHL, LEA + LEA.
9996static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9997                                 TargetLowering::DAGCombinerInfo &DCI) {
9998  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9999    return SDValue();
10000
10001  EVT VT = N->getValueType(0);
10002  if (VT != MVT::i64)
10003    return SDValue();
10004
10005  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10006  if (!C)
10007    return SDValue();
10008  uint64_t MulAmt = C->getZExtValue();
10009  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
10010    return SDValue();
10011
10012  uint64_t MulAmt1 = 0;
10013  uint64_t MulAmt2 = 0;
10014  if ((MulAmt % 9) == 0) {
10015    MulAmt1 = 9;
10016    MulAmt2 = MulAmt / 9;
10017  } else if ((MulAmt % 5) == 0) {
10018    MulAmt1 = 5;
10019    MulAmt2 = MulAmt / 5;
10020  } else if ((MulAmt % 3) == 0) {
10021    MulAmt1 = 3;
10022    MulAmt2 = MulAmt / 3;
10023  }
10024  if (MulAmt2 &&
10025      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
10026    DebugLoc DL = N->getDebugLoc();
10027
10028    if (isPowerOf2_64(MulAmt2) &&
10029        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
10030      // If second multiplifer is pow2, issue it first. We want the multiply by
10031      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
10032      // is an add.
10033      std::swap(MulAmt1, MulAmt2);
10034
10035    SDValue NewMul;
10036    if (isPowerOf2_64(MulAmt1))
10037      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
10038                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
10039    else
10040      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
10041                           DAG.getConstant(MulAmt1, VT));
10042
10043    if (isPowerOf2_64(MulAmt2))
10044      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
10045                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
10046    else
10047      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
10048                           DAG.getConstant(MulAmt2, VT));
10049
10050    // Do not add new nodes to DAG combiner worklist.
10051    DCI.CombineTo(N, NewMul, false);
10052  }
10053  return SDValue();
10054}
10055
10056static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
10057  SDValue N0 = N->getOperand(0);
10058  SDValue N1 = N->getOperand(1);
10059  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10060  EVT VT = N0.getValueType();
10061
10062  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
10063  // since the result of setcc_c is all zero's or all ones.
10064  if (N1C && N0.getOpcode() == ISD::AND &&
10065      N0.getOperand(1).getOpcode() == ISD::Constant) {
10066    SDValue N00 = N0.getOperand(0);
10067    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
10068        ((N00.getOpcode() == ISD::ANY_EXTEND ||
10069          N00.getOpcode() == ISD::ZERO_EXTEND) &&
10070         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
10071      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
10072      APInt ShAmt = N1C->getAPIntValue();
10073      Mask = Mask.shl(ShAmt);
10074      if (Mask != 0)
10075        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
10076                           N00, DAG.getConstant(Mask, VT));
10077    }
10078  }
10079
10080  return SDValue();
10081}
10082
10083/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
10084///                       when possible.
10085static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
10086                                   const X86Subtarget *Subtarget) {
10087  EVT VT = N->getValueType(0);
10088  if (!VT.isVector() && VT.isInteger() &&
10089      N->getOpcode() == ISD::SHL)
10090    return PerformSHLCombine(N, DAG);
10091
10092  // On X86 with SSE2 support, we can transform this to a vector shift if
10093  // all elements are shifted by the same amount.  We can't do this in legalize
10094  // because the a constant vector is typically transformed to a constant pool
10095  // so we have no knowledge of the shift amount.
10096  if (!Subtarget->hasSSE2())
10097    return SDValue();
10098
10099  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
10100    return SDValue();
10101
10102  SDValue ShAmtOp = N->getOperand(1);
10103  EVT EltVT = VT.getVectorElementType();
10104  DebugLoc DL = N->getDebugLoc();
10105  SDValue BaseShAmt = SDValue();
10106  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
10107    unsigned NumElts = VT.getVectorNumElements();
10108    unsigned i = 0;
10109    for (; i != NumElts; ++i) {
10110      SDValue Arg = ShAmtOp.getOperand(i);
10111      if (Arg.getOpcode() == ISD::UNDEF) continue;
10112      BaseShAmt = Arg;
10113      break;
10114    }
10115    for (; i != NumElts; ++i) {
10116      SDValue Arg = ShAmtOp.getOperand(i);
10117      if (Arg.getOpcode() == ISD::UNDEF) continue;
10118      if (Arg != BaseShAmt) {
10119        return SDValue();
10120      }
10121    }
10122  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
10123             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
10124    SDValue InVec = ShAmtOp.getOperand(0);
10125    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
10126      unsigned NumElts = InVec.getValueType().getVectorNumElements();
10127      unsigned i = 0;
10128      for (; i != NumElts; ++i) {
10129        SDValue Arg = InVec.getOperand(i);
10130        if (Arg.getOpcode() == ISD::UNDEF) continue;
10131        BaseShAmt = Arg;
10132        break;
10133      }
10134    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
10135       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
10136         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
10137         if (C->getZExtValue() == SplatIdx)
10138           BaseShAmt = InVec.getOperand(1);
10139       }
10140    }
10141    if (BaseShAmt.getNode() == 0)
10142      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
10143                              DAG.getIntPtrConstant(0));
10144  } else
10145    return SDValue();
10146
10147  // The shift amount is an i32.
10148  if (EltVT.bitsGT(MVT::i32))
10149    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
10150  else if (EltVT.bitsLT(MVT::i32))
10151    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
10152
10153  // The shift amount is identical so we can do a vector shift.
10154  SDValue  ValOp = N->getOperand(0);
10155  switch (N->getOpcode()) {
10156  default:
10157    llvm_unreachable("Unknown shift opcode!");
10158    break;
10159  case ISD::SHL:
10160    if (VT == MVT::v2i64)
10161      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10162                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10163                         ValOp, BaseShAmt);
10164    if (VT == MVT::v4i32)
10165      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10166                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10167                         ValOp, BaseShAmt);
10168    if (VT == MVT::v8i16)
10169      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10170                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10171                         ValOp, BaseShAmt);
10172    break;
10173  case ISD::SRA:
10174    if (VT == MVT::v4i32)
10175      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10176                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10177                         ValOp, BaseShAmt);
10178    if (VT == MVT::v8i16)
10179      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10180                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10181                         ValOp, BaseShAmt);
10182    break;
10183  case ISD::SRL:
10184    if (VT == MVT::v2i64)
10185      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10186                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10187                         ValOp, BaseShAmt);
10188    if (VT == MVT::v4i32)
10189      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10190                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10191                         ValOp, BaseShAmt);
10192    if (VT ==  MVT::v8i16)
10193      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10194                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10195                         ValOp, BaseShAmt);
10196    break;
10197  }
10198  return SDValue();
10199}
10200
10201static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
10202                                TargetLowering::DAGCombinerInfo &DCI,
10203                                const X86Subtarget *Subtarget) {
10204  if (DCI.isBeforeLegalizeOps())
10205    return SDValue();
10206
10207  EVT VT = N->getValueType(0);
10208  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
10209    return SDValue();
10210
10211  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
10212  SDValue N0 = N->getOperand(0);
10213  SDValue N1 = N->getOperand(1);
10214  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
10215    std::swap(N0, N1);
10216  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
10217    return SDValue();
10218  if (!N0.hasOneUse() || !N1.hasOneUse())
10219    return SDValue();
10220
10221  SDValue ShAmt0 = N0.getOperand(1);
10222  if (ShAmt0.getValueType() != MVT::i8)
10223    return SDValue();
10224  SDValue ShAmt1 = N1.getOperand(1);
10225  if (ShAmt1.getValueType() != MVT::i8)
10226    return SDValue();
10227  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
10228    ShAmt0 = ShAmt0.getOperand(0);
10229  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
10230    ShAmt1 = ShAmt1.getOperand(0);
10231
10232  DebugLoc DL = N->getDebugLoc();
10233  unsigned Opc = X86ISD::SHLD;
10234  SDValue Op0 = N0.getOperand(0);
10235  SDValue Op1 = N1.getOperand(0);
10236  if (ShAmt0.getOpcode() == ISD::SUB) {
10237    Opc = X86ISD::SHRD;
10238    std::swap(Op0, Op1);
10239    std::swap(ShAmt0, ShAmt1);
10240  }
10241
10242  unsigned Bits = VT.getSizeInBits();
10243  if (ShAmt1.getOpcode() == ISD::SUB) {
10244    SDValue Sum = ShAmt1.getOperand(0);
10245    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
10246      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
10247      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
10248        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
10249      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
10250        return DAG.getNode(Opc, DL, VT,
10251                           Op0, Op1,
10252                           DAG.getNode(ISD::TRUNCATE, DL,
10253                                       MVT::i8, ShAmt0));
10254    }
10255  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
10256    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
10257    if (ShAmt0C &&
10258        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
10259      return DAG.getNode(Opc, DL, VT,
10260                         N0.getOperand(0), N1.getOperand(0),
10261                         DAG.getNode(ISD::TRUNCATE, DL,
10262                                       MVT::i8, ShAmt0));
10263  }
10264
10265  return SDValue();
10266}
10267
10268/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
10269static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
10270                                   const X86Subtarget *Subtarget) {
10271  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
10272  // the FP state in cases where an emms may be missing.
10273  // A preferable solution to the general problem is to figure out the right
10274  // places to insert EMMS.  This qualifies as a quick hack.
10275
10276  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
10277  StoreSDNode *St = cast<StoreSDNode>(N);
10278  EVT VT = St->getValue().getValueType();
10279  if (VT.getSizeInBits() != 64)
10280    return SDValue();
10281
10282  const Function *F = DAG.getMachineFunction().getFunction();
10283  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
10284  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
10285    && Subtarget->hasSSE2();
10286  if ((VT.isVector() ||
10287       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
10288      isa<LoadSDNode>(St->getValue()) &&
10289      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
10290      St->getChain().hasOneUse() && !St->isVolatile()) {
10291    SDNode* LdVal = St->getValue().getNode();
10292    LoadSDNode *Ld = 0;
10293    int TokenFactorIndex = -1;
10294    SmallVector<SDValue, 8> Ops;
10295    SDNode* ChainVal = St->getChain().getNode();
10296    // Must be a store of a load.  We currently handle two cases:  the load
10297    // is a direct child, and it's under an intervening TokenFactor.  It is
10298    // possible to dig deeper under nested TokenFactors.
10299    if (ChainVal == LdVal)
10300      Ld = cast<LoadSDNode>(St->getChain());
10301    else if (St->getValue().hasOneUse() &&
10302             ChainVal->getOpcode() == ISD::TokenFactor) {
10303      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
10304        if (ChainVal->getOperand(i).getNode() == LdVal) {
10305          TokenFactorIndex = i;
10306          Ld = cast<LoadSDNode>(St->getValue());
10307        } else
10308          Ops.push_back(ChainVal->getOperand(i));
10309      }
10310    }
10311
10312    if (!Ld || !ISD::isNormalLoad(Ld))
10313      return SDValue();
10314
10315    // If this is not the MMX case, i.e. we are just turning i64 load/store
10316    // into f64 load/store, avoid the transformation if there are multiple
10317    // uses of the loaded value.
10318    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
10319      return SDValue();
10320
10321    DebugLoc LdDL = Ld->getDebugLoc();
10322    DebugLoc StDL = N->getDebugLoc();
10323    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
10324    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
10325    // pair instead.
10326    if (Subtarget->is64Bit() || F64IsLegal) {
10327      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
10328      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
10329                                  Ld->getBasePtr(), Ld->getSrcValue(),
10330                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
10331                                  Ld->isNonTemporal(), Ld->getAlignment());
10332      SDValue NewChain = NewLd.getValue(1);
10333      if (TokenFactorIndex != -1) {
10334        Ops.push_back(NewChain);
10335        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10336                               Ops.size());
10337      }
10338      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
10339                          St->getSrcValue(), St->getSrcValueOffset(),
10340                          St->isVolatile(), St->isNonTemporal(),
10341                          St->getAlignment());
10342    }
10343
10344    // Otherwise, lower to two pairs of 32-bit loads / stores.
10345    SDValue LoAddr = Ld->getBasePtr();
10346    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
10347                                 DAG.getConstant(4, MVT::i32));
10348
10349    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
10350                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
10351                               Ld->isVolatile(), Ld->isNonTemporal(),
10352                               Ld->getAlignment());
10353    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
10354                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
10355                               Ld->isVolatile(), Ld->isNonTemporal(),
10356                               MinAlign(Ld->getAlignment(), 4));
10357
10358    SDValue NewChain = LoLd.getValue(1);
10359    if (TokenFactorIndex != -1) {
10360      Ops.push_back(LoLd);
10361      Ops.push_back(HiLd);
10362      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10363                             Ops.size());
10364    }
10365
10366    LoAddr = St->getBasePtr();
10367    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
10368                         DAG.getConstant(4, MVT::i32));
10369
10370    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
10371                                St->getSrcValue(), St->getSrcValueOffset(),
10372                                St->isVolatile(), St->isNonTemporal(),
10373                                St->getAlignment());
10374    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
10375                                St->getSrcValue(),
10376                                St->getSrcValueOffset() + 4,
10377                                St->isVolatile(),
10378                                St->isNonTemporal(),
10379                                MinAlign(St->getAlignment(), 4));
10380    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
10381  }
10382  return SDValue();
10383}
10384
10385/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
10386/// X86ISD::FXOR nodes.
10387static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
10388  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
10389  // F[X]OR(0.0, x) -> x
10390  // F[X]OR(x, 0.0) -> x
10391  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10392    if (C->getValueAPF().isPosZero())
10393      return N->getOperand(1);
10394  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10395    if (C->getValueAPF().isPosZero())
10396      return N->getOperand(0);
10397  return SDValue();
10398}
10399
10400/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
10401static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
10402  // FAND(0.0, x) -> 0.0
10403  // FAND(x, 0.0) -> 0.0
10404  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10405    if (C->getValueAPF().isPosZero())
10406      return N->getOperand(0);
10407  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10408    if (C->getValueAPF().isPosZero())
10409      return N->getOperand(1);
10410  return SDValue();
10411}
10412
10413static SDValue PerformBTCombine(SDNode *N,
10414                                SelectionDAG &DAG,
10415                                TargetLowering::DAGCombinerInfo &DCI) {
10416  // BT ignores high bits in the bit index operand.
10417  SDValue Op1 = N->getOperand(1);
10418  if (Op1.hasOneUse()) {
10419    unsigned BitWidth = Op1.getValueSizeInBits();
10420    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
10421    APInt KnownZero, KnownOne;
10422    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10423                                          !DCI.isBeforeLegalizeOps());
10424    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10425    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
10426        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
10427      DCI.CommitTargetLoweringOpt(TLO);
10428  }
10429  return SDValue();
10430}
10431
10432static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
10433  SDValue Op = N->getOperand(0);
10434  if (Op.getOpcode() == ISD::BIT_CONVERT)
10435    Op = Op.getOperand(0);
10436  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
10437  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
10438      VT.getVectorElementType().getSizeInBits() ==
10439      OpVT.getVectorElementType().getSizeInBits()) {
10440    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
10441  }
10442  return SDValue();
10443}
10444
10445static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
10446  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
10447  //           (and (i32 x86isd::setcc_carry), 1)
10448  // This eliminates the zext. This transformation is necessary because
10449  // ISD::SETCC is always legalized to i8.
10450  DebugLoc dl = N->getDebugLoc();
10451  SDValue N0 = N->getOperand(0);
10452  EVT VT = N->getValueType(0);
10453  if (N0.getOpcode() == ISD::AND &&
10454      N0.hasOneUse() &&
10455      N0.getOperand(0).hasOneUse()) {
10456    SDValue N00 = N0.getOperand(0);
10457    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
10458      return SDValue();
10459    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
10460    if (!C || C->getZExtValue() != 1)
10461      return SDValue();
10462    return DAG.getNode(ISD::AND, dl, VT,
10463                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
10464                                   N00.getOperand(0), N00.getOperand(1)),
10465                       DAG.getConstant(1, VT));
10466  }
10467
10468  return SDValue();
10469}
10470
10471SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
10472                                             DAGCombinerInfo &DCI) const {
10473  SelectionDAG &DAG = DCI.DAG;
10474  switch (N->getOpcode()) {
10475  default: break;
10476  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
10477  case ISD::EXTRACT_VECTOR_ELT:
10478                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
10479  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
10480  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
10481  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
10482  case ISD::SHL:
10483  case ISD::SRA:
10484  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
10485  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
10486  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
10487  case X86ISD::FXOR:
10488  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
10489  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
10490  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
10491  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
10492  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
10493  }
10494
10495  return SDValue();
10496}
10497
10498/// isTypeDesirableForOp - Return true if the target has native support for
10499/// the specified value type and it is 'desirable' to use the type for the
10500/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
10501/// instruction encodings are longer and some i16 instructions are slow.
10502bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
10503  if (!isTypeLegal(VT))
10504    return false;
10505  if (VT != MVT::i16)
10506    return true;
10507
10508  switch (Opc) {
10509  default:
10510    return true;
10511  case ISD::LOAD:
10512  case ISD::SIGN_EXTEND:
10513  case ISD::ZERO_EXTEND:
10514  case ISD::ANY_EXTEND:
10515  case ISD::SHL:
10516  case ISD::SRL:
10517  case ISD::SUB:
10518  case ISD::ADD:
10519  case ISD::MUL:
10520  case ISD::AND:
10521  case ISD::OR:
10522  case ISD::XOR:
10523    return false;
10524  }
10525}
10526
10527static bool MayFoldLoad(SDValue Op) {
10528  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
10529}
10530
10531static bool MayFoldIntoStore(SDValue Op) {
10532  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
10533}
10534
10535/// IsDesirableToPromoteOp - This method query the target whether it is
10536/// beneficial for dag combiner to promote the specified node. If true, it
10537/// should return the desired promotion type by reference.
10538bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
10539  EVT VT = Op.getValueType();
10540  if (VT != MVT::i16)
10541    return false;
10542
10543  bool Promote = false;
10544  bool Commute = false;
10545  switch (Op.getOpcode()) {
10546  default: break;
10547  case ISD::LOAD: {
10548    LoadSDNode *LD = cast<LoadSDNode>(Op);
10549    // If the non-extending load has a single use and it's not live out, then it
10550    // might be folded.
10551    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
10552                                                     Op.hasOneUse()*/) {
10553      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
10554             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
10555        // The only case where we'd want to promote LOAD (rather then it being
10556        // promoted as an operand is when it's only use is liveout.
10557        if (UI->getOpcode() != ISD::CopyToReg)
10558          return false;
10559      }
10560    }
10561    Promote = true;
10562    break;
10563  }
10564  case ISD::SIGN_EXTEND:
10565  case ISD::ZERO_EXTEND:
10566  case ISD::ANY_EXTEND:
10567    Promote = true;
10568    break;
10569  case ISD::SHL:
10570  case ISD::SRL: {
10571    SDValue N0 = Op.getOperand(0);
10572    // Look out for (store (shl (load), x)).
10573    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
10574      return false;
10575    Promote = true;
10576    break;
10577  }
10578  case ISD::ADD:
10579  case ISD::MUL:
10580  case ISD::AND:
10581  case ISD::OR:
10582  case ISD::XOR:
10583    Commute = true;
10584    // fallthrough
10585  case ISD::SUB: {
10586    SDValue N0 = Op.getOperand(0);
10587    SDValue N1 = Op.getOperand(1);
10588    if (!Commute && MayFoldLoad(N1))
10589      return false;
10590    // Avoid disabling potential load folding opportunities.
10591    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
10592      return false;
10593    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
10594      return false;
10595    Promote = true;
10596  }
10597  }
10598
10599  PVT = MVT::i32;
10600  return Promote;
10601}
10602
10603//===----------------------------------------------------------------------===//
10604//                           X86 Inline Assembly Support
10605//===----------------------------------------------------------------------===//
10606
10607static bool LowerToBSwap(CallInst *CI) {
10608  // FIXME: this should verify that we are targetting a 486 or better.  If not,
10609  // we will turn this bswap into something that will be lowered to logical ops
10610  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
10611  // so don't worry about this.
10612
10613  // Verify this is a simple bswap.
10614  if (CI->getNumArgOperands() != 1 ||
10615      CI->getType() != CI->getArgOperand(0)->getType() ||
10616      !CI->getType()->isIntegerTy())
10617    return false;
10618
10619  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10620  if (!Ty || Ty->getBitWidth() % 16 != 0)
10621    return false;
10622
10623  // Okay, we can do this xform, do so now.
10624  const Type *Tys[] = { Ty };
10625  Module *M = CI->getParent()->getParent()->getParent();
10626  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
10627
10628  Value *Op = CI->getArgOperand(0);
10629  Op = CallInst::Create(Int, Op, CI->getName(), CI);
10630
10631  CI->replaceAllUsesWith(Op);
10632  CI->eraseFromParent();
10633  return true;
10634}
10635
10636bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
10637  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10638  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
10639
10640  std::string AsmStr = IA->getAsmString();
10641
10642  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
10643  SmallVector<StringRef, 4> AsmPieces;
10644  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
10645
10646  switch (AsmPieces.size()) {
10647  default: return false;
10648  case 1:
10649    AsmStr = AsmPieces[0];
10650    AsmPieces.clear();
10651    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
10652
10653    // bswap $0
10654    if (AsmPieces.size() == 2 &&
10655        (AsmPieces[0] == "bswap" ||
10656         AsmPieces[0] == "bswapq" ||
10657         AsmPieces[0] == "bswapl") &&
10658        (AsmPieces[1] == "$0" ||
10659         AsmPieces[1] == "${0:q}")) {
10660      // No need to check constraints, nothing other than the equivalent of
10661      // "=r,0" would be valid here.
10662      return LowerToBSwap(CI);
10663    }
10664    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
10665    if (CI->getType()->isIntegerTy(16) &&
10666        AsmPieces.size() == 3 &&
10667        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
10668        AsmPieces[1] == "$$8," &&
10669        AsmPieces[2] == "${0:w}" &&
10670        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
10671      AsmPieces.clear();
10672      const std::string &Constraints = IA->getConstraintString();
10673      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
10674      std::sort(AsmPieces.begin(), AsmPieces.end());
10675      if (AsmPieces.size() == 4 &&
10676          AsmPieces[0] == "~{cc}" &&
10677          AsmPieces[1] == "~{dirflag}" &&
10678          AsmPieces[2] == "~{flags}" &&
10679          AsmPieces[3] == "~{fpsr}") {
10680        return LowerToBSwap(CI);
10681      }
10682    }
10683    break;
10684  case 3:
10685    if (CI->getType()->isIntegerTy(64) &&
10686        Constraints.size() >= 2 &&
10687        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
10688        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
10689      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
10690      SmallVector<StringRef, 4> Words;
10691      SplitString(AsmPieces[0], Words, " \t");
10692      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
10693        Words.clear();
10694        SplitString(AsmPieces[1], Words, " \t");
10695        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
10696          Words.clear();
10697          SplitString(AsmPieces[2], Words, " \t,");
10698          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
10699              Words[2] == "%edx") {
10700            return LowerToBSwap(CI);
10701          }
10702        }
10703      }
10704    }
10705    break;
10706  }
10707  return false;
10708}
10709
10710
10711
10712/// getConstraintType - Given a constraint letter, return the type of
10713/// constraint it is for this target.
10714X86TargetLowering::ConstraintType
10715X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10716  if (Constraint.size() == 1) {
10717    switch (Constraint[0]) {
10718    case 'A':
10719      return C_Register;
10720    case 'f':
10721    case 'r':
10722    case 'R':
10723    case 'l':
10724    case 'q':
10725    case 'Q':
10726    case 'x':
10727    case 'y':
10728    case 'Y':
10729      return C_RegisterClass;
10730    case 'e':
10731    case 'Z':
10732      return C_Other;
10733    default:
10734      break;
10735    }
10736  }
10737  return TargetLowering::getConstraintType(Constraint);
10738}
10739
10740/// LowerXConstraint - try to replace an X constraint, which matches anything,
10741/// with another that has more specific requirements based on the type of the
10742/// corresponding operand.
10743const char *X86TargetLowering::
10744LowerXConstraint(EVT ConstraintVT) const {
10745  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10746  // 'f' like normal targets.
10747  if (ConstraintVT.isFloatingPoint()) {
10748    if (Subtarget->hasSSE2())
10749      return "Y";
10750    if (Subtarget->hasSSE1())
10751      return "x";
10752  }
10753
10754  return TargetLowering::LowerXConstraint(ConstraintVT);
10755}
10756
10757/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10758/// vector.  If it is invalid, don't add anything to Ops.
10759void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10760                                                     char Constraint,
10761                                                     std::vector<SDValue>&Ops,
10762                                                     SelectionDAG &DAG) const {
10763  SDValue Result(0, 0);
10764
10765  switch (Constraint) {
10766  default: break;
10767  case 'I':
10768    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10769      if (C->getZExtValue() <= 31) {
10770        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10771        break;
10772      }
10773    }
10774    return;
10775  case 'J':
10776    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10777      if (C->getZExtValue() <= 63) {
10778        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10779        break;
10780      }
10781    }
10782    return;
10783  case 'K':
10784    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10785      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10786        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10787        break;
10788      }
10789    }
10790    return;
10791  case 'N':
10792    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10793      if (C->getZExtValue() <= 255) {
10794        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10795        break;
10796      }
10797    }
10798    return;
10799  case 'e': {
10800    // 32-bit signed value
10801    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10802      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10803                                           C->getSExtValue())) {
10804        // Widen to 64 bits here to get it sign extended.
10805        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10806        break;
10807      }
10808    // FIXME gcc accepts some relocatable values here too, but only in certain
10809    // memory models; it's complicated.
10810    }
10811    return;
10812  }
10813  case 'Z': {
10814    // 32-bit unsigned value
10815    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10816      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10817                                           C->getZExtValue())) {
10818        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10819        break;
10820      }
10821    }
10822    // FIXME gcc accepts some relocatable values here too, but only in certain
10823    // memory models; it's complicated.
10824    return;
10825  }
10826  case 'i': {
10827    // Literal immediates are always ok.
10828    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10829      // Widen to 64 bits here to get it sign extended.
10830      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10831      break;
10832    }
10833
10834    // In any sort of PIC mode addresses need to be computed at runtime by
10835    // adding in a register or some sort of table lookup.  These can't
10836    // be used as immediates.
10837    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
10838      return;
10839
10840    // If we are in non-pic codegen mode, we allow the address of a global (with
10841    // an optional displacement) to be used with 'i'.
10842    GlobalAddressSDNode *GA = 0;
10843    int64_t Offset = 0;
10844
10845    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10846    while (1) {
10847      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10848        Offset += GA->getOffset();
10849        break;
10850      } else if (Op.getOpcode() == ISD::ADD) {
10851        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10852          Offset += C->getZExtValue();
10853          Op = Op.getOperand(0);
10854          continue;
10855        }
10856      } else if (Op.getOpcode() == ISD::SUB) {
10857        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10858          Offset += -C->getZExtValue();
10859          Op = Op.getOperand(0);
10860          continue;
10861        }
10862      }
10863
10864      // Otherwise, this isn't something we can handle, reject it.
10865      return;
10866    }
10867
10868    const GlobalValue *GV = GA->getGlobal();
10869    // If we require an extra load to get this address, as in PIC mode, we
10870    // can't accept it.
10871    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10872                                                        getTargetMachine())))
10873      return;
10874
10875    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
10876                                        GA->getValueType(0), Offset);
10877    break;
10878  }
10879  }
10880
10881  if (Result.getNode()) {
10882    Ops.push_back(Result);
10883    return;
10884  }
10885  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10886}
10887
10888std::vector<unsigned> X86TargetLowering::
10889getRegClassForInlineAsmConstraint(const std::string &Constraint,
10890                                  EVT VT) const {
10891  if (Constraint.size() == 1) {
10892    // FIXME: not handling fp-stack yet!
10893    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10894    default: break;  // Unknown constraint letter
10895    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10896      if (Subtarget->is64Bit()) {
10897        if (VT == MVT::i32)
10898          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10899                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10900                                       X86::R10D,X86::R11D,X86::R12D,
10901                                       X86::R13D,X86::R14D,X86::R15D,
10902                                       X86::EBP, X86::ESP, 0);
10903        else if (VT == MVT::i16)
10904          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10905                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10906                                       X86::R10W,X86::R11W,X86::R12W,
10907                                       X86::R13W,X86::R14W,X86::R15W,
10908                                       X86::BP,  X86::SP, 0);
10909        else if (VT == MVT::i8)
10910          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10911                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10912                                       X86::R10B,X86::R11B,X86::R12B,
10913                                       X86::R13B,X86::R14B,X86::R15B,
10914                                       X86::BPL, X86::SPL, 0);
10915
10916        else if (VT == MVT::i64)
10917          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10918                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10919                                       X86::R10, X86::R11, X86::R12,
10920                                       X86::R13, X86::R14, X86::R15,
10921                                       X86::RBP, X86::RSP, 0);
10922
10923        break;
10924      }
10925      // 32-bit fallthrough
10926    case 'Q':   // Q_REGS
10927      if (VT == MVT::i32)
10928        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10929      else if (VT == MVT::i16)
10930        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10931      else if (VT == MVT::i8)
10932        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10933      else if (VT == MVT::i64)
10934        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10935      break;
10936    }
10937  }
10938
10939  return std::vector<unsigned>();
10940}
10941
10942std::pair<unsigned, const TargetRegisterClass*>
10943X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10944                                                EVT VT) const {
10945  // First, see if this is a constraint that directly corresponds to an LLVM
10946  // register class.
10947  if (Constraint.size() == 1) {
10948    // GCC Constraint Letters
10949    switch (Constraint[0]) {
10950    default: break;
10951    case 'r':   // GENERAL_REGS
10952    case 'l':   // INDEX_REGS
10953      if (VT == MVT::i8)
10954        return std::make_pair(0U, X86::GR8RegisterClass);
10955      if (VT == MVT::i16)
10956        return std::make_pair(0U, X86::GR16RegisterClass);
10957      if (VT == MVT::i32 || !Subtarget->is64Bit())
10958        return std::make_pair(0U, X86::GR32RegisterClass);
10959      return std::make_pair(0U, X86::GR64RegisterClass);
10960    case 'R':   // LEGACY_REGS
10961      if (VT == MVT::i8)
10962        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10963      if (VT == MVT::i16)
10964        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10965      if (VT == MVT::i32 || !Subtarget->is64Bit())
10966        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10967      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10968    case 'f':  // FP Stack registers.
10969      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10970      // value to the correct fpstack register class.
10971      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10972        return std::make_pair(0U, X86::RFP32RegisterClass);
10973      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10974        return std::make_pair(0U, X86::RFP64RegisterClass);
10975      return std::make_pair(0U, X86::RFP80RegisterClass);
10976    case 'y':   // MMX_REGS if MMX allowed.
10977      if (!Subtarget->hasMMX()) break;
10978      return std::make_pair(0U, X86::VR64RegisterClass);
10979    case 'Y':   // SSE_REGS if SSE2 allowed
10980      if (!Subtarget->hasSSE2()) break;
10981      // FALL THROUGH.
10982    case 'x':   // SSE_REGS if SSE1 allowed
10983      if (!Subtarget->hasSSE1()) break;
10984
10985      switch (VT.getSimpleVT().SimpleTy) {
10986      default: break;
10987      // Scalar SSE types.
10988      case MVT::f32:
10989      case MVT::i32:
10990        return std::make_pair(0U, X86::FR32RegisterClass);
10991      case MVT::f64:
10992      case MVT::i64:
10993        return std::make_pair(0U, X86::FR64RegisterClass);
10994      // Vector types.
10995      case MVT::v16i8:
10996      case MVT::v8i16:
10997      case MVT::v4i32:
10998      case MVT::v2i64:
10999      case MVT::v4f32:
11000      case MVT::v2f64:
11001        return std::make_pair(0U, X86::VR128RegisterClass);
11002      }
11003      break;
11004    }
11005  }
11006
11007  // Use the default implementation in TargetLowering to convert the register
11008  // constraint into a member of a register class.
11009  std::pair<unsigned, const TargetRegisterClass*> Res;
11010  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
11011
11012  // Not found as a standard register?
11013  if (Res.second == 0) {
11014    // Map st(0) -> st(7) -> ST0
11015    if (Constraint.size() == 7 && Constraint[0] == '{' &&
11016        tolower(Constraint[1]) == 's' &&
11017        tolower(Constraint[2]) == 't' &&
11018        Constraint[3] == '(' &&
11019        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
11020        Constraint[5] == ')' &&
11021        Constraint[6] == '}') {
11022
11023      Res.first = X86::ST0+Constraint[4]-'0';
11024      Res.second = X86::RFP80RegisterClass;
11025      return Res;
11026    }
11027
11028    // GCC allows "st(0)" to be called just plain "st".
11029    if (StringRef("{st}").equals_lower(Constraint)) {
11030      Res.first = X86::ST0;
11031      Res.second = X86::RFP80RegisterClass;
11032      return Res;
11033    }
11034
11035    // flags -> EFLAGS
11036    if (StringRef("{flags}").equals_lower(Constraint)) {
11037      Res.first = X86::EFLAGS;
11038      Res.second = X86::CCRRegisterClass;
11039      return Res;
11040    }
11041
11042    // 'A' means EAX + EDX.
11043    if (Constraint == "A") {
11044      Res.first = X86::EAX;
11045      Res.second = X86::GR32_ADRegisterClass;
11046      return Res;
11047    }
11048    return Res;
11049  }
11050
11051  // Otherwise, check to see if this is a register class of the wrong value
11052  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
11053  // turn into {ax},{dx}.
11054  if (Res.second->hasType(VT))
11055    return Res;   // Correct type already, nothing to do.
11056
11057  // All of the single-register GCC register classes map their values onto
11058  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
11059  // really want an 8-bit or 32-bit register, map to the appropriate register
11060  // class and return the appropriate register.
11061  if (Res.second == X86::GR16RegisterClass) {
11062    if (VT == MVT::i8) {
11063      unsigned DestReg = 0;
11064      switch (Res.first) {
11065      default: break;
11066      case X86::AX: DestReg = X86::AL; break;
11067      case X86::DX: DestReg = X86::DL; break;
11068      case X86::CX: DestReg = X86::CL; break;
11069      case X86::BX: DestReg = X86::BL; break;
11070      }
11071      if (DestReg) {
11072        Res.first = DestReg;
11073        Res.second = X86::GR8RegisterClass;
11074      }
11075    } else if (VT == MVT::i32) {
11076      unsigned DestReg = 0;
11077      switch (Res.first) {
11078      default: break;
11079      case X86::AX: DestReg = X86::EAX; break;
11080      case X86::DX: DestReg = X86::EDX; break;
11081      case X86::CX: DestReg = X86::ECX; break;
11082      case X86::BX: DestReg = X86::EBX; break;
11083      case X86::SI: DestReg = X86::ESI; break;
11084      case X86::DI: DestReg = X86::EDI; break;
11085      case X86::BP: DestReg = X86::EBP; break;
11086      case X86::SP: DestReg = X86::ESP; break;
11087      }
11088      if (DestReg) {
11089        Res.first = DestReg;
11090        Res.second = X86::GR32RegisterClass;
11091      }
11092    } else if (VT == MVT::i64) {
11093      unsigned DestReg = 0;
11094      switch (Res.first) {
11095      default: break;
11096      case X86::AX: DestReg = X86::RAX; break;
11097      case X86::DX: DestReg = X86::RDX; break;
11098      case X86::CX: DestReg = X86::RCX; break;
11099      case X86::BX: DestReg = X86::RBX; break;
11100      case X86::SI: DestReg = X86::RSI; break;
11101      case X86::DI: DestReg = X86::RDI; break;
11102      case X86::BP: DestReg = X86::RBP; break;
11103      case X86::SP: DestReg = X86::RSP; break;
11104      }
11105      if (DestReg) {
11106        Res.first = DestReg;
11107        Res.second = X86::GR64RegisterClass;
11108      }
11109    }
11110  } else if (Res.second == X86::FR32RegisterClass ||
11111             Res.second == X86::FR64RegisterClass ||
11112             Res.second == X86::VR128RegisterClass) {
11113    // Handle references to XMM physical registers that got mapped into the
11114    // wrong class.  This can happen with constraints like {xmm0} where the
11115    // target independent register mapper will just pick the first match it can
11116    // find, ignoring the required type.
11117    if (VT == MVT::f32)
11118      Res.second = X86::FR32RegisterClass;
11119    else if (VT == MVT::f64)
11120      Res.second = X86::FR64RegisterClass;
11121    else if (X86::VR128RegisterClass->hasType(VT))
11122      Res.second = X86::VR128RegisterClass;
11123  }
11124
11125  return Res;
11126}
11127