X86ISelLowering.cpp revision f3597a13ae66dbe682029f64fb1a7f2b65ff6536
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/ADT/VectorExtras.h"
26#include "llvm/Analysis/ScalarEvolutionExpressions.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/SelectionDAG.h"
31#include "llvm/CodeGen/SSARegMap.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/ADT/StringExtras.h"
36using namespace llvm;
37
38// FIXME: temporary.
39static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden,
40                                  cl::desc("Enable fastcc on X86"));
41X86TargetLowering::X86TargetLowering(TargetMachine &TM)
42  : TargetLowering(TM) {
43  Subtarget = &TM.getSubtarget<X86Subtarget>();
44  X86ScalarSSE = Subtarget->hasSSE2();
45  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
46
47  // Set up the TargetLowering object.
48
49  // X86 is weird, it always uses i8 for shift amounts and setcc results.
50  setShiftAmountType(MVT::i8);
51  setSetCCResultType(MVT::i8);
52  setSetCCResultContents(ZeroOrOneSetCCResult);
53  setSchedulingPreference(SchedulingForRegPressure);
54  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
55  setStackPointerRegisterToSaveRestore(X86StackPtr);
56
57  if (!Subtarget->isTargetDarwin())
58    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
59    setUseUnderscoreSetJmpLongJmp(true);
60
61  // Add legal addressing mode scale values.
62  addLegalAddressScale(8);
63  addLegalAddressScale(4);
64  addLegalAddressScale(2);
65  // Enter the ones which require both scale + index last. These are more
66  // expensive.
67  addLegalAddressScale(9);
68  addLegalAddressScale(5);
69  addLegalAddressScale(3);
70
71  // Set up the register classes.
72  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
73  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
74  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
75  if (Subtarget->is64Bit())
76    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
77
78  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
79
80  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
81  // operation.
82  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
83  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
84  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
85
86  if (Subtarget->is64Bit()) {
87    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
88    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
89  } else {
90    if (X86ScalarSSE)
91      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
92      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
93    else
94      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
95  }
96
97  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
98  // this operation.
99  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
100  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
101  // SSE has no i16 to fp conversion, only i32
102  if (X86ScalarSSE)
103    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
104  else {
105    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
106    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
107  }
108
109  if (!Subtarget->is64Bit()) {
110    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
111    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
112    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
113  }
114
115  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
116  // this operation.
117  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
118  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
119
120  if (X86ScalarSSE) {
121    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
122  } else {
123    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
124    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
125  }
126
127  // Handle FP_TO_UINT by promoting the destination to a larger signed
128  // conversion.
129  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
130  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
131  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
132
133  if (Subtarget->is64Bit()) {
134    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
135    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
136  } else {
137    if (X86ScalarSSE && !Subtarget->hasSSE3())
138      // Expand FP_TO_UINT into a select.
139      // FIXME: We would like to use a Custom expander here eventually to do
140      // the optimal thing for SSE vs. the default expansion in the legalizer.
141      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
142    else
143      // With SSE3 we can use fisttpll to convert to a signed i64.
144      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
145  }
146
147  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
148  if (!X86ScalarSSE) {
149    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
150    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
151  }
152  if (Subtarget->is64Bit()) {
153    setOperationAction(ISD::BIT_CONVERT      , MVT::f64  , Expand);
154    setOperationAction(ISD::BIT_CONVERT      , MVT::i64  , Expand);
155  }
156
157  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
158  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
159  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
160  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
161  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
162  if (Subtarget->is64Bit())
163    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
164  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
165  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
166  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
167  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
168  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
169
170  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
171  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
172  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
173  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
174  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
175  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
176  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
177  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
178  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
179  if (Subtarget->is64Bit()) {
180    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
181    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
182    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
183  }
184
185  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
186  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
187
188  // These should be promoted to a larger select which is supported.
189  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
190  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
191  // X86 wants to expand cmov itself.
192  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
193  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
194  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
195  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
196  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
197  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
198  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
199  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
200  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
201  if (Subtarget->is64Bit()) {
202    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
203    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
204  }
205  // X86 ret instruction may pop stack.
206  setOperationAction(ISD::RET             , MVT::Other, Custom);
207  // Darwin ABI issue.
208  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
209  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
210  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
211  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
212  if (Subtarget->is64Bit()) {
213    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
214    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
215    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
216    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
217  }
218  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
219  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
220  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
221  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
222  // X86 wants to expand memset / memcpy itself.
223  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
224  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
225
226  // We don't have line number support yet.
227  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
228  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
229  // FIXME - use subtarget debug flags
230  if (!Subtarget->isTargetDarwin() &&
231      !Subtarget->isTargetELF() &&
232      !Subtarget->isTargetCygwin())
233    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
234
235  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
236  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
237
238  // Use the default implementation.
239  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
240  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
241  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
242  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
243  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
244  if (Subtarget->is64Bit())
245    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
246  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
247
248  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
249  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
250
251  if (X86ScalarSSE) {
252    // Set up the FP register classes.
253    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
254    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
255
256    // Use ANDPD to simulate FABS.
257    setOperationAction(ISD::FABS , MVT::f64, Custom);
258    setOperationAction(ISD::FABS , MVT::f32, Custom);
259
260    // Use XORP to simulate FNEG.
261    setOperationAction(ISD::FNEG , MVT::f64, Custom);
262    setOperationAction(ISD::FNEG , MVT::f32, Custom);
263
264    // We don't support sin/cos/fmod
265    setOperationAction(ISD::FSIN , MVT::f64, Expand);
266    setOperationAction(ISD::FCOS , MVT::f64, Expand);
267    setOperationAction(ISD::FREM , MVT::f64, Expand);
268    setOperationAction(ISD::FSIN , MVT::f32, Expand);
269    setOperationAction(ISD::FCOS , MVT::f32, Expand);
270    setOperationAction(ISD::FREM , MVT::f32, Expand);
271
272    // Expand FP immediates into loads from the stack, except for the special
273    // cases we handle.
274    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
275    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
276    addLegalFPImmediate(+0.0); // xorps / xorpd
277  } else {
278    // Set up the FP register classes.
279    addRegisterClass(MVT::f64, X86::RFPRegisterClass);
280
281    setOperationAction(ISD::UNDEF, MVT::f64, Expand);
282
283    if (!UnsafeFPMath) {
284      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
285      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
286    }
287
288    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
289    addLegalFPImmediate(+0.0); // FLD0
290    addLegalFPImmediate(+1.0); // FLD1
291    addLegalFPImmediate(-0.0); // FLD0/FCHS
292    addLegalFPImmediate(-1.0); // FLD1/FCHS
293  }
294
295  // First set operation action for all vector types to expand. Then we
296  // will selectively turn on ones that can be effectively codegen'd.
297  for (unsigned VT = (unsigned)MVT::Vector + 1;
298       VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
299    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
300    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
301    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
302    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
303    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
304    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
305    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
306    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
307    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
308    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
309    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
310    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
311    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
312    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
313    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
314  }
315
316  if (Subtarget->hasMMX()) {
317    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
318    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
319    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
320
321    // FIXME: add MMX packed arithmetics
322    setOperationAction(ISD::BUILD_VECTOR,     MVT::v8i8,  Expand);
323    setOperationAction(ISD::BUILD_VECTOR,     MVT::v4i16, Expand);
324    setOperationAction(ISD::BUILD_VECTOR,     MVT::v2i32, Expand);
325  }
326
327  if (Subtarget->hasSSE1()) {
328    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
329
330    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
331    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
332    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
333    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
334    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
335    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
336    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
337    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
338    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
339  }
340
341  if (Subtarget->hasSSE2()) {
342    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
343    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
344    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
345    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
346    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
347
348    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
349    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
350    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
351    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
352    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
353    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
354    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
355    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
356    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
357    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
358    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
359
360    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
361    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
362    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
363    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
364    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
365    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
366
367    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
368    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
369      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
370      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
371      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
372    }
373    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
374    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
375    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
376    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
377    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
378    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
379
380    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
381    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
382      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
383      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
384      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
385      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
386      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
387      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
388      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
389      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
390      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
391      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
392    }
393
394    // Custom lower v2i64 and v2f64 selects.
395    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
396    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
397    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
398    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
399  }
400
401  // We want to custom lower some of our intrinsics.
402  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
403
404  // We have target-specific dag combine patterns for the following nodes:
405  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
406  setTargetDAGCombine(ISD::SELECT);
407
408  computeRegisterProperties();
409
410  // FIXME: These should be based on subtarget info. Plus, the values should
411  // be smaller when we are in optimizing for size mode.
412  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
413  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
414  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
415  allowUnalignedMemoryAccesses = true; // x86 supports it!
416}
417
418//===----------------------------------------------------------------------===//
419//                    C Calling Convention implementation
420//===----------------------------------------------------------------------===//
421
422/// AddLiveIn - This helper function adds the specified physical register to the
423/// MachineFunction as a live in value.  It also creates a corresponding virtual
424/// register for it.
425static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
426                          TargetRegisterClass *RC) {
427  assert(RC->contains(PReg) && "Not the correct regclass!");
428  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
429  MF.addLiveIn(PReg, VReg);
430  return VReg;
431}
432
433/// HowToPassCCCArgument - Returns how an formal argument of the specified type
434/// should be passed. If it is through stack, returns the size of the stack
435/// slot; if it is through XMM register, returns the number of XMM registers
436/// are needed.
437static void
438HowToPassCCCArgument(MVT::ValueType ObjectVT, unsigned NumXMMRegs,
439                     unsigned &ObjSize, unsigned &ObjXMMRegs) {
440  ObjXMMRegs = 0;
441
442  switch (ObjectVT) {
443  default: assert(0 && "Unhandled argument type!");
444  case MVT::i8:  ObjSize = 1; break;
445  case MVT::i16: ObjSize = 2; break;
446  case MVT::i32: ObjSize = 4; break;
447  case MVT::i64: ObjSize = 8; break;
448  case MVT::f32: ObjSize = 4; break;
449  case MVT::f64: ObjSize = 8; break;
450  case MVT::v16i8:
451  case MVT::v8i16:
452  case MVT::v4i32:
453  case MVT::v2i64:
454  case MVT::v4f32:
455  case MVT::v2f64:
456    if (NumXMMRegs < 4)
457      ObjXMMRegs = 1;
458    else
459      ObjSize = 16;
460    break;
461  }
462}
463
464SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG) {
465  unsigned NumArgs = Op.Val->getNumValues() - 1;
466  MachineFunction &MF = DAG.getMachineFunction();
467  MachineFrameInfo *MFI = MF.getFrameInfo();
468  SDOperand Root = Op.getOperand(0);
469  std::vector<SDOperand> ArgValues;
470
471  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
472  // the stack frame looks like this:
473  //
474  // [ESP] -- return address
475  // [ESP + 4] -- first argument (leftmost lexically)
476  // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size
477  //    ...
478  //
479  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
480  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
481  static const unsigned XMMArgRegs[] = {
482    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
483  };
484  for (unsigned i = 0; i < NumArgs; ++i) {
485    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
486    unsigned ArgIncrement = 4;
487    unsigned ObjSize = 0;
488    unsigned ObjXMMRegs = 0;
489    HowToPassCCCArgument(ObjectVT, NumXMMRegs, ObjSize, ObjXMMRegs);
490    if (ObjSize > 4)
491      ArgIncrement = ObjSize;
492
493    SDOperand ArgValue;
494    if (ObjXMMRegs) {
495      // Passed in a XMM register.
496      unsigned Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
497                               X86::VR128RegisterClass);
498      ArgValue= DAG.getCopyFromReg(Root, Reg, ObjectVT);
499      ArgValues.push_back(ArgValue);
500      NumXMMRegs += ObjXMMRegs;
501    } else {
502      // XMM arguments have to be aligned on 16-byte boundary.
503      if (ObjSize == 16)
504        ArgOffset = ((ArgOffset + 15) / 16) * 16;
505      // Create the frame index object for this incoming parameter...
506      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
507      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
508      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
509      ArgValues.push_back(ArgValue);
510      ArgOffset += ArgIncrement;   // Move on to the next argument...
511    }
512  }
513
514  ArgValues.push_back(Root);
515
516  // If the function takes variable number of arguments, make a frame index for
517  // the start of the first vararg value... for expansion of llvm.va_start.
518  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
519  if (isVarArg)
520    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
521  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
522  ReturnAddrIndex = 0;            // No return address slot generated yet.
523  BytesToPopOnReturn = 0;         // Callee pops nothing.
524  BytesCallerReserves = ArgOffset;
525
526  // If this is a struct return on, the callee pops the hidden struct
527  // pointer. This is common for Darwin/X86, Linux & Mingw32 targets.
528  if (MF.getFunction()->getCallingConv() == CallingConv::CSRet)
529    BytesToPopOnReturn = 4;
530
531  // Return the new list of results.
532  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
533                                     Op.Val->value_end());
534  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
535}
536
537
538SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG) {
539  SDOperand Chain     = Op.getOperand(0);
540  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
541  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
542  SDOperand Callee    = Op.getOperand(4);
543  MVT::ValueType RetVT= Op.Val->getValueType(0);
544  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
545
546  // Keep track of the number of XMM regs passed so far.
547  unsigned NumXMMRegs = 0;
548  static const unsigned XMMArgRegs[] = {
549    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
550  };
551
552  // Count how many bytes are to be pushed on the stack.
553  unsigned NumBytes = 0;
554  for (unsigned i = 0; i != NumOps; ++i) {
555    SDOperand Arg = Op.getOperand(5+2*i);
556
557    switch (Arg.getValueType()) {
558    default: assert(0 && "Unexpected ValueType for argument!");
559    case MVT::i8:
560    case MVT::i16:
561    case MVT::i32:
562    case MVT::f32:
563      NumBytes += 4;
564      break;
565    case MVT::i64:
566    case MVT::f64:
567      NumBytes += 8;
568      break;
569    case MVT::v16i8:
570    case MVT::v8i16:
571    case MVT::v4i32:
572    case MVT::v2i64:
573    case MVT::v4f32:
574    case MVT::v2f64:
575      if (NumXMMRegs < 4)
576        ++NumXMMRegs;
577      else {
578        // XMM arguments have to be aligned on 16-byte boundary.
579        NumBytes = ((NumBytes + 15) / 16) * 16;
580        NumBytes += 16;
581      }
582      break;
583    }
584  }
585
586  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
587
588  // Arguments go on the stack in reverse order, as specified by the ABI.
589  unsigned ArgOffset = 0;
590  NumXMMRegs = 0;
591  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
592  std::vector<SDOperand> MemOpChains;
593  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
594  for (unsigned i = 0; i != NumOps; ++i) {
595    SDOperand Arg = Op.getOperand(5+2*i);
596
597    switch (Arg.getValueType()) {
598    default: assert(0 && "Unexpected ValueType for argument!");
599    case MVT::i8:
600    case MVT::i16: {
601      // Promote the integer to 32 bits.  If the input type is signed use a
602      // sign extend, otherwise use a zero extend.
603      unsigned ExtOp =
604        dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue() ?
605        ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
606      Arg = DAG.getNode(ExtOp, MVT::i32, Arg);
607    }
608    // Fallthrough
609
610    case MVT::i32:
611    case MVT::f32: {
612      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
613      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
614      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
615      ArgOffset += 4;
616      break;
617    }
618    case MVT::i64:
619    case MVT::f64: {
620      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
621      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
622      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
623      ArgOffset += 8;
624      break;
625    }
626    case MVT::v16i8:
627    case MVT::v8i16:
628    case MVT::v4i32:
629    case MVT::v2i64:
630    case MVT::v4f32:
631    case MVT::v2f64:
632      if (NumXMMRegs < 4) {
633        RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
634        NumXMMRegs++;
635      } else {
636        // XMM arguments have to be aligned on 16-byte boundary.
637        ArgOffset = ((ArgOffset + 15) / 16) * 16;
638        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
639        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
640        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
641        ArgOffset += 16;
642      }
643    }
644  }
645
646  if (!MemOpChains.empty())
647    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
648                        &MemOpChains[0], MemOpChains.size());
649
650  // Build a sequence of copy-to-reg nodes chained together with token chain
651  // and flag operands which copy the outgoing args into registers.
652  SDOperand InFlag;
653  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
654    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
655                             InFlag);
656    InFlag = Chain.getValue(1);
657  }
658
659  // If the callee is a GlobalAddress node (quite common, every direct call is)
660  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
661  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
662    // We should use extra load for direct calls to dllimported functions
663    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), true))
664      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
665  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
666    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
667
668  std::vector<MVT::ValueType> NodeTys;
669  NodeTys.push_back(MVT::Other);   // Returns a chain
670  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
671  std::vector<SDOperand> Ops;
672  Ops.push_back(Chain);
673  Ops.push_back(Callee);
674
675  // Add argument registers to the end of the list so that they are known live
676  // into the call.
677  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
678    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
679                                  RegsToPass[i].second.getValueType()));
680
681  if (InFlag.Val)
682    Ops.push_back(InFlag);
683
684  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
685                      NodeTys, &Ops[0], Ops.size());
686  InFlag = Chain.getValue(1);
687
688  // Create the CALLSEQ_END node.
689  unsigned NumBytesForCalleeToPush = 0;
690
691  // If this is is a call to a struct-return function, the callee
692  // pops the hidden struct pointer, so we have to push it back.
693  // This is common for Darwin/X86, Linux & Mingw32 targets.
694  if (CallingConv == CallingConv::CSRet)
695    NumBytesForCalleeToPush = 4;
696
697  NodeTys.clear();
698  NodeTys.push_back(MVT::Other);   // Returns a chain
699  if (RetVT != MVT::Other)
700    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
701  Ops.clear();
702  Ops.push_back(Chain);
703  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
704  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
705  Ops.push_back(InFlag);
706  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
707  if (RetVT != MVT::Other)
708    InFlag = Chain.getValue(1);
709
710  std::vector<SDOperand> ResultVals;
711  NodeTys.clear();
712  switch (RetVT) {
713  default: assert(0 && "Unknown value type to return!");
714  case MVT::Other: break;
715  case MVT::i8:
716    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
717    ResultVals.push_back(Chain.getValue(0));
718    NodeTys.push_back(MVT::i8);
719    break;
720  case MVT::i16:
721    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
722    ResultVals.push_back(Chain.getValue(0));
723    NodeTys.push_back(MVT::i16);
724    break;
725  case MVT::i32:
726    if (Op.Val->getValueType(1) == MVT::i32) {
727      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
728      ResultVals.push_back(Chain.getValue(0));
729      Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
730                                 Chain.getValue(2)).getValue(1);
731      ResultVals.push_back(Chain.getValue(0));
732      NodeTys.push_back(MVT::i32);
733    } else {
734      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
735      ResultVals.push_back(Chain.getValue(0));
736    }
737    NodeTys.push_back(MVT::i32);
738    break;
739  case MVT::v16i8:
740  case MVT::v8i16:
741  case MVT::v4i32:
742  case MVT::v2i64:
743  case MVT::v4f32:
744  case MVT::v2f64:
745    Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
746    ResultVals.push_back(Chain.getValue(0));
747    NodeTys.push_back(RetVT);
748    break;
749  case MVT::f32:
750  case MVT::f64: {
751    std::vector<MVT::ValueType> Tys;
752    Tys.push_back(MVT::f64);
753    Tys.push_back(MVT::Other);
754    Tys.push_back(MVT::Flag);
755    std::vector<SDOperand> Ops;
756    Ops.push_back(Chain);
757    Ops.push_back(InFlag);
758    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
759                                   &Ops[0], Ops.size());
760    Chain  = RetVal.getValue(1);
761    InFlag = RetVal.getValue(2);
762    if (X86ScalarSSE) {
763      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
764      // shouldn't be necessary except that RFP cannot be live across
765      // multiple blocks. When stackifier is fixed, they can be uncoupled.
766      MachineFunction &MF = DAG.getMachineFunction();
767      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
768      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
769      Tys.clear();
770      Tys.push_back(MVT::Other);
771      Ops.clear();
772      Ops.push_back(Chain);
773      Ops.push_back(RetVal);
774      Ops.push_back(StackSlot);
775      Ops.push_back(DAG.getValueType(RetVT));
776      Ops.push_back(InFlag);
777      Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
778      RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0);
779      Chain = RetVal.getValue(1);
780    }
781
782    if (RetVT == MVT::f32 && !X86ScalarSSE)
783      // FIXME: we would really like to remember that this FP_ROUND
784      // operation is okay to eliminate if we allow excess FP precision.
785      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
786    ResultVals.push_back(RetVal);
787    NodeTys.push_back(RetVT);
788    break;
789  }
790  }
791
792  // If the function returns void, just return the chain.
793  if (ResultVals.empty())
794    return Chain;
795
796  // Otherwise, merge everything together with a MERGE_VALUES node.
797  NodeTys.push_back(MVT::Other);
798  ResultVals.push_back(Chain);
799  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
800                              &ResultVals[0], ResultVals.size());
801  return Res.getValue(Op.ResNo);
802}
803
804
805//===----------------------------------------------------------------------===//
806//                 X86-64 C Calling Convention implementation
807//===----------------------------------------------------------------------===//
808
809/// HowToPassX86_64CCCArgument - Returns how an formal argument of the specified
810/// type should be passed. If it is through stack, returns the size of the stack
811/// slot; if it is through integer or XMM register, returns the number of
812/// integer or XMM registers are needed.
813static void
814HowToPassX86_64CCCArgument(MVT::ValueType ObjectVT,
815                           unsigned NumIntRegs, unsigned NumXMMRegs,
816                           unsigned &ObjSize, unsigned &ObjIntRegs,
817                           unsigned &ObjXMMRegs) {
818  ObjSize = 0;
819  ObjIntRegs = 0;
820  ObjXMMRegs = 0;
821
822  switch (ObjectVT) {
823  default: assert(0 && "Unhandled argument type!");
824  case MVT::i8:
825  case MVT::i16:
826  case MVT::i32:
827  case MVT::i64:
828    if (NumIntRegs < 6)
829      ObjIntRegs = 1;
830    else {
831      switch (ObjectVT) {
832      default: break;
833      case MVT::i8:  ObjSize = 1; break;
834      case MVT::i16: ObjSize = 2; break;
835      case MVT::i32: ObjSize = 4; break;
836      case MVT::i64: ObjSize = 8; break;
837      }
838    }
839    break;
840  case MVT::f32:
841  case MVT::f64:
842  case MVT::v16i8:
843  case MVT::v8i16:
844  case MVT::v4i32:
845  case MVT::v2i64:
846  case MVT::v4f32:
847  case MVT::v2f64:
848    if (NumXMMRegs < 8)
849      ObjXMMRegs = 1;
850    else {
851      switch (ObjectVT) {
852      default: break;
853      case MVT::f32:  ObjSize = 4; break;
854      case MVT::f64:  ObjSize = 8; break;
855      case MVT::v16i8:
856      case MVT::v8i16:
857      case MVT::v4i32:
858      case MVT::v2i64:
859      case MVT::v4f32:
860      case MVT::v2f64: ObjSize = 16; break;
861    }
862    break;
863  }
864  }
865}
866
867SDOperand
868X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
869  unsigned NumArgs = Op.Val->getNumValues() - 1;
870  MachineFunction &MF = DAG.getMachineFunction();
871  MachineFrameInfo *MFI = MF.getFrameInfo();
872  SDOperand Root = Op.getOperand(0);
873  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
874  std::vector<SDOperand> ArgValues;
875
876  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
877  // the stack frame looks like this:
878  //
879  // [RSP] -- return address
880  // [RSP + 8] -- first nonreg argument (leftmost lexically)
881  // [RSP +16] -- second nonreg argument, if 1st argument is <= 8 bytes in size
882  //    ...
883  //
884  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
885  unsigned NumIntRegs = 0;  // Int regs used for parameter passing.
886  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
887
888  static const unsigned GPR8ArgRegs[] = {
889    X86::DIL, X86::SIL, X86::DL,  X86::CL,  X86::R8B, X86::R9B
890  };
891  static const unsigned GPR16ArgRegs[] = {
892    X86::DI,  X86::SI,  X86::DX,  X86::CX,  X86::R8W, X86::R9W
893  };
894  static const unsigned GPR32ArgRegs[] = {
895    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
896  };
897  static const unsigned GPR64ArgRegs[] = {
898    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
899  };
900  static const unsigned XMMArgRegs[] = {
901    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
902    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
903  };
904
905  for (unsigned i = 0; i < NumArgs; ++i) {
906    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
907    unsigned ArgIncrement = 8;
908    unsigned ObjSize = 0;
909    unsigned ObjIntRegs = 0;
910    unsigned ObjXMMRegs = 0;
911
912    // FIXME: __int128 and long double support?
913    HowToPassX86_64CCCArgument(ObjectVT, NumIntRegs, NumXMMRegs,
914                               ObjSize, ObjIntRegs, ObjXMMRegs);
915    if (ObjSize > 8)
916      ArgIncrement = ObjSize;
917
918    unsigned Reg = 0;
919    SDOperand ArgValue;
920    if (ObjIntRegs || ObjXMMRegs) {
921      switch (ObjectVT) {
922      default: assert(0 && "Unhandled argument type!");
923      case MVT::i8:
924      case MVT::i16:
925      case MVT::i32:
926      case MVT::i64: {
927        TargetRegisterClass *RC = NULL;
928        switch (ObjectVT) {
929        default: break;
930        case MVT::i8:
931          RC = X86::GR8RegisterClass;
932          Reg = GPR8ArgRegs[NumIntRegs];
933          break;
934        case MVT::i16:
935          RC = X86::GR16RegisterClass;
936          Reg = GPR16ArgRegs[NumIntRegs];
937          break;
938        case MVT::i32:
939          RC = X86::GR32RegisterClass;
940          Reg = GPR32ArgRegs[NumIntRegs];
941          break;
942        case MVT::i64:
943          RC = X86::GR64RegisterClass;
944          Reg = GPR64ArgRegs[NumIntRegs];
945          break;
946        }
947        Reg = AddLiveIn(MF, Reg, RC);
948        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
949        break;
950      }
951      case MVT::f32:
952      case MVT::f64:
953      case MVT::v16i8:
954      case MVT::v8i16:
955      case MVT::v4i32:
956      case MVT::v2i64:
957      case MVT::v4f32:
958      case MVT::v2f64: {
959        TargetRegisterClass *RC= (ObjectVT == MVT::f32) ?
960          X86::FR32RegisterClass : ((ObjectVT == MVT::f64) ?
961                              X86::FR64RegisterClass : X86::VR128RegisterClass);
962        Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], RC);
963        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
964        break;
965      }
966      }
967      NumIntRegs += ObjIntRegs;
968      NumXMMRegs += ObjXMMRegs;
969    } else if (ObjSize) {
970      // XMM arguments have to be aligned on 16-byte boundary.
971      if (ObjSize == 16)
972        ArgOffset = ((ArgOffset + 15) / 16) * 16;
973      // Create the SelectionDAG nodes corresponding to a load from this
974      // parameter.
975      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
976      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
977      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
978      ArgOffset += ArgIncrement;   // Move on to the next argument.
979    }
980
981    ArgValues.push_back(ArgValue);
982  }
983
984  // If the function takes variable number of arguments, make a frame index for
985  // the start of the first vararg value... for expansion of llvm.va_start.
986  if (isVarArg) {
987    // For X86-64, if there are vararg parameters that are passed via
988    // registers, then we must store them to their spots on the stack so they
989    // may be loaded by deferencing the result of va_next.
990    VarArgsGPOffset = NumIntRegs * 8;
991    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
992    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
993    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
994
995    // Store the integer parameter registers.
996    std::vector<SDOperand> MemOps;
997    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
998    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
999                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1000    for (; NumIntRegs != 6; ++NumIntRegs) {
1001      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1002                                X86::GR64RegisterClass);
1003      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1004      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1005      MemOps.push_back(Store);
1006      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1007                        DAG.getConstant(8, getPointerTy()));
1008    }
1009
1010    // Now store the XMM (fp + vector) parameter registers.
1011    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1012                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1013    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1014      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1015                                X86::VR128RegisterClass);
1016      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1017      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1018      MemOps.push_back(Store);
1019      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1020                        DAG.getConstant(16, getPointerTy()));
1021    }
1022    if (!MemOps.empty())
1023        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1024                           &MemOps[0], MemOps.size());
1025  }
1026
1027  ArgValues.push_back(Root);
1028
1029  ReturnAddrIndex = 0;     // No return address slot generated yet.
1030  BytesToPopOnReturn = 0;  // Callee pops nothing.
1031  BytesCallerReserves = ArgOffset;
1032
1033  // Return the new list of results.
1034  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
1035                                     Op.Val->value_end());
1036  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
1037}
1038
1039SDOperand
1040X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG) {
1041  SDOperand Chain     = Op.getOperand(0);
1042  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1043  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1044  SDOperand Callee    = Op.getOperand(4);
1045  MVT::ValueType RetVT= Op.Val->getValueType(0);
1046  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1047
1048  // Count how many bytes are to be pushed on the stack.
1049  unsigned NumBytes = 0;
1050  unsigned NumIntRegs = 0;  // Int regs used for parameter passing.
1051  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1052
1053  static const unsigned GPR8ArgRegs[] = {
1054    X86::DIL, X86::SIL, X86::DL,  X86::CL,  X86::R8B, X86::R9B
1055  };
1056  static const unsigned GPR16ArgRegs[] = {
1057    X86::DI,  X86::SI,  X86::DX,  X86::CX,  X86::R8W, X86::R9W
1058  };
1059  static const unsigned GPR32ArgRegs[] = {
1060    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
1061  };
1062  static const unsigned GPR64ArgRegs[] = {
1063    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1064  };
1065  static const unsigned XMMArgRegs[] = {
1066    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1067    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1068  };
1069
1070  for (unsigned i = 0; i != NumOps; ++i) {
1071    SDOperand Arg = Op.getOperand(5+2*i);
1072    MVT::ValueType ArgVT = Arg.getValueType();
1073
1074    switch (ArgVT) {
1075    default: assert(0 && "Unknown value type!");
1076    case MVT::i8:
1077    case MVT::i16:
1078    case MVT::i32:
1079    case MVT::i64:
1080      if (NumIntRegs < 6)
1081        ++NumIntRegs;
1082      else
1083        NumBytes += 8;
1084      break;
1085    case MVT::f32:
1086    case MVT::f64:
1087    case MVT::v16i8:
1088    case MVT::v8i16:
1089    case MVT::v4i32:
1090    case MVT::v2i64:
1091    case MVT::v4f32:
1092    case MVT::v2f64:
1093      if (NumXMMRegs < 8)
1094        NumXMMRegs++;
1095      else if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
1096        NumBytes += 8;
1097      else {
1098        // XMM arguments have to be aligned on 16-byte boundary.
1099        NumBytes = ((NumBytes + 15) / 16) * 16;
1100        NumBytes += 16;
1101      }
1102      break;
1103    }
1104  }
1105
1106  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1107
1108  // Arguments go on the stack in reverse order, as specified by the ABI.
1109  unsigned ArgOffset = 0;
1110  NumIntRegs = 0;
1111  NumXMMRegs = 0;
1112  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1113  std::vector<SDOperand> MemOpChains;
1114  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1115  for (unsigned i = 0; i != NumOps; ++i) {
1116    SDOperand Arg = Op.getOperand(5+2*i);
1117    MVT::ValueType ArgVT = Arg.getValueType();
1118
1119    switch (ArgVT) {
1120    default: assert(0 && "Unexpected ValueType for argument!");
1121    case MVT::i8:
1122    case MVT::i16:
1123    case MVT::i32:
1124    case MVT::i64:
1125      if (NumIntRegs < 6) {
1126        unsigned Reg = 0;
1127        switch (ArgVT) {
1128        default: break;
1129        case MVT::i8:  Reg = GPR8ArgRegs[NumIntRegs];  break;
1130        case MVT::i16: Reg = GPR16ArgRegs[NumIntRegs]; break;
1131        case MVT::i32: Reg = GPR32ArgRegs[NumIntRegs]; break;
1132        case MVT::i64: Reg = GPR64ArgRegs[NumIntRegs]; break;
1133        }
1134        RegsToPass.push_back(std::make_pair(Reg, Arg));
1135        ++NumIntRegs;
1136      } else {
1137        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1138        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1139        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1140        ArgOffset += 8;
1141      }
1142      break;
1143    case MVT::f32:
1144    case MVT::f64:
1145    case MVT::v16i8:
1146    case MVT::v8i16:
1147    case MVT::v4i32:
1148    case MVT::v2i64:
1149    case MVT::v4f32:
1150    case MVT::v2f64:
1151      if (NumXMMRegs < 8) {
1152        RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
1153        NumXMMRegs++;
1154      } else {
1155        if (ArgVT != MVT::f32 && ArgVT != MVT::f64) {
1156          // XMM arguments have to be aligned on 16-byte boundary.
1157          ArgOffset = ((ArgOffset + 15) / 16) * 16;
1158        }
1159        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1160        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1161        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1162        if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
1163          ArgOffset += 8;
1164        else
1165          ArgOffset += 16;
1166      }
1167    }
1168  }
1169
1170  if (!MemOpChains.empty())
1171    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1172                        &MemOpChains[0], MemOpChains.size());
1173
1174  // Build a sequence of copy-to-reg nodes chained together with token chain
1175  // and flag operands which copy the outgoing args into registers.
1176  SDOperand InFlag;
1177  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1178    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1179                             InFlag);
1180    InFlag = Chain.getValue(1);
1181  }
1182
1183  if (isVarArg) {
1184    // From AMD64 ABI document:
1185    // For calls that may call functions that use varargs or stdargs
1186    // (prototype-less calls or calls to functions containing ellipsis (...) in
1187    // the declaration) %al is used as hidden argument to specify the number
1188    // of SSE registers used. The contents of %al do not need to match exactly
1189    // the number of registers, but must be an ubound on the number of SSE
1190    // registers used and is in the range 0 - 8 inclusive.
1191    Chain = DAG.getCopyToReg(Chain, X86::AL,
1192                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1193    InFlag = Chain.getValue(1);
1194  }
1195
1196  // If the callee is a GlobalAddress node (quite common, every direct call is)
1197  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1198  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1199    // We should use extra load for direct calls to dllimported functions
1200    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), true))
1201      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1202  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1203    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1204
1205  std::vector<MVT::ValueType> NodeTys;
1206  NodeTys.push_back(MVT::Other);   // Returns a chain
1207  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1208  std::vector<SDOperand> Ops;
1209  Ops.push_back(Chain);
1210  Ops.push_back(Callee);
1211
1212  // Add argument registers to the end of the list so that they are known live
1213  // into the call.
1214  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1215    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1216                                  RegsToPass[i].second.getValueType()));
1217
1218  if (InFlag.Val)
1219    Ops.push_back(InFlag);
1220
1221  // FIXME: Do not generate X86ISD::TAILCALL for now.
1222  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1223                      NodeTys, &Ops[0], Ops.size());
1224  InFlag = Chain.getValue(1);
1225
1226  NodeTys.clear();
1227  NodeTys.push_back(MVT::Other);   // Returns a chain
1228  if (RetVT != MVT::Other)
1229    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
1230  Ops.clear();
1231  Ops.push_back(Chain);
1232  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1233  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1234  Ops.push_back(InFlag);
1235  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1236  if (RetVT != MVT::Other)
1237    InFlag = Chain.getValue(1);
1238
1239  std::vector<SDOperand> ResultVals;
1240  NodeTys.clear();
1241  switch (RetVT) {
1242  default: assert(0 && "Unknown value type to return!");
1243  case MVT::Other: break;
1244  case MVT::i8:
1245    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
1246    ResultVals.push_back(Chain.getValue(0));
1247    NodeTys.push_back(MVT::i8);
1248    break;
1249  case MVT::i16:
1250    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
1251    ResultVals.push_back(Chain.getValue(0));
1252    NodeTys.push_back(MVT::i16);
1253    break;
1254  case MVT::i32:
1255    Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
1256    ResultVals.push_back(Chain.getValue(0));
1257    NodeTys.push_back(MVT::i32);
1258    break;
1259  case MVT::i64:
1260    if (Op.Val->getValueType(1) == MVT::i64) {
1261      // FIXME: __int128 support?
1262      Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1);
1263      ResultVals.push_back(Chain.getValue(0));
1264      Chain = DAG.getCopyFromReg(Chain, X86::RDX, MVT::i64,
1265                                 Chain.getValue(2)).getValue(1);
1266      ResultVals.push_back(Chain.getValue(0));
1267      NodeTys.push_back(MVT::i64);
1268    } else {
1269      Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1);
1270      ResultVals.push_back(Chain.getValue(0));
1271    }
1272    NodeTys.push_back(MVT::i64);
1273    break;
1274  case MVT::f32:
1275  case MVT::f64:
1276  case MVT::v16i8:
1277  case MVT::v8i16:
1278  case MVT::v4i32:
1279  case MVT::v2i64:
1280  case MVT::v4f32:
1281  case MVT::v2f64:
1282    // FIXME: long double support?
1283    Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
1284    ResultVals.push_back(Chain.getValue(0));
1285    NodeTys.push_back(RetVT);
1286    break;
1287  }
1288
1289  // If the function returns void, just return the chain.
1290  if (ResultVals.empty())
1291    return Chain;
1292
1293  // Otherwise, merge everything together with a MERGE_VALUES node.
1294  NodeTys.push_back(MVT::Other);
1295  ResultVals.push_back(Chain);
1296  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1297                              &ResultVals[0], ResultVals.size());
1298  return Res.getValue(Op.ResNo);
1299}
1300
1301//===----------------------------------------------------------------------===//
1302//                    Fast Calling Convention implementation
1303//===----------------------------------------------------------------------===//
1304//
1305// The X86 'fast' calling convention passes up to two integer arguments in
1306// registers (an appropriate portion of EAX/EDX), passes arguments in C order,
1307// and requires that the callee pop its arguments off the stack (allowing proper
1308// tail calls), and has the same return value conventions as C calling convs.
1309//
1310// This calling convention always arranges for the callee pop value to be 8n+4
1311// bytes, which is needed for tail recursion elimination and stack alignment
1312// reasons.
1313//
1314// Note that this can be enhanced in the future to pass fp vals in registers
1315// (when we have a global fp allocator) and do other tricks.
1316//
1317
1318/// HowToPassFastCCArgument - Returns how an formal argument of the specified
1319/// type should be passed. If it is through stack, returns the size of the stack
1320/// slot; if it is through integer or XMM register, returns the number of
1321/// integer or XMM registers are needed.
1322static void
1323HowToPassFastCCArgument(MVT::ValueType ObjectVT,
1324                        unsigned NumIntRegs, unsigned NumXMMRegs,
1325                        unsigned &ObjSize, unsigned &ObjIntRegs,
1326                        unsigned &ObjXMMRegs) {
1327  ObjSize = 0;
1328  ObjIntRegs = 0;
1329  ObjXMMRegs = 0;
1330
1331  switch (ObjectVT) {
1332  default: assert(0 && "Unhandled argument type!");
1333  case MVT::i8:
1334#if FASTCC_NUM_INT_ARGS_INREGS > 0
1335    if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
1336      ObjIntRegs = 1;
1337    else
1338#endif
1339      ObjSize = 1;
1340    break;
1341  case MVT::i16:
1342#if FASTCC_NUM_INT_ARGS_INREGS > 0
1343    if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
1344      ObjIntRegs = 1;
1345    else
1346#endif
1347      ObjSize = 2;
1348    break;
1349  case MVT::i32:
1350#if FASTCC_NUM_INT_ARGS_INREGS > 0
1351    if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
1352      ObjIntRegs = 1;
1353    else
1354#endif
1355      ObjSize = 4;
1356    break;
1357  case MVT::i64:
1358#if FASTCC_NUM_INT_ARGS_INREGS > 0
1359    if (NumIntRegs+2 <= FASTCC_NUM_INT_ARGS_INREGS) {
1360      ObjIntRegs = 2;
1361    } else if (NumIntRegs+1 <= FASTCC_NUM_INT_ARGS_INREGS) {
1362      ObjIntRegs = 1;
1363      ObjSize = 4;
1364    } else
1365#endif
1366      ObjSize = 8;
1367  case MVT::f32:
1368    ObjSize = 4;
1369    break;
1370  case MVT::f64:
1371    ObjSize = 8;
1372    break;
1373  case MVT::v16i8:
1374  case MVT::v8i16:
1375  case MVT::v4i32:
1376  case MVT::v2i64:
1377  case MVT::v4f32:
1378  case MVT::v2f64:
1379    if (NumXMMRegs < 4)
1380      ObjXMMRegs = 1;
1381    else
1382      ObjSize = 16;
1383    break;
1384  }
1385}
1386
1387SDOperand
1388X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1389  unsigned NumArgs = Op.Val->getNumValues()-1;
1390  MachineFunction &MF = DAG.getMachineFunction();
1391  MachineFrameInfo *MFI = MF.getFrameInfo();
1392  SDOperand Root = Op.getOperand(0);
1393  std::vector<SDOperand> ArgValues;
1394
1395  // Add DAG nodes to load the arguments...  On entry to a function the stack
1396  // frame looks like this:
1397  //
1398  // [ESP] -- return address
1399  // [ESP + 4] -- first nonreg argument (leftmost lexically)
1400  // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size
1401  //    ...
1402  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
1403
1404  // Keep track of the number of integer regs passed so far.  This can be either
1405  // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
1406  // used).
1407  unsigned NumIntRegs = 0;
1408  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1409
1410  static const unsigned XMMArgRegs[] = {
1411    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1412  };
1413
1414  for (unsigned i = 0; i < NumArgs; ++i) {
1415    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
1416    unsigned ArgIncrement = 4;
1417    unsigned ObjSize = 0;
1418    unsigned ObjIntRegs = 0;
1419    unsigned ObjXMMRegs = 0;
1420
1421    HowToPassFastCCArgument(ObjectVT, NumIntRegs, NumXMMRegs,
1422                            ObjSize, ObjIntRegs, ObjXMMRegs);
1423    if (ObjSize > 4)
1424      ArgIncrement = ObjSize;
1425
1426    unsigned Reg = 0;
1427    SDOperand ArgValue;
1428    if (ObjIntRegs || ObjXMMRegs) {
1429      switch (ObjectVT) {
1430      default: assert(0 && "Unhandled argument type!");
1431      case MVT::i8:
1432        Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL,
1433                        X86::GR8RegisterClass);
1434        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i8);
1435        break;
1436      case MVT::i16:
1437        Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX,
1438                        X86::GR16RegisterClass);
1439        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i16);
1440        break;
1441      case MVT::i32:
1442        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX,
1443                        X86::GR32RegisterClass);
1444        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
1445        break;
1446      case MVT::i64:
1447        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX,
1448                        X86::GR32RegisterClass);
1449        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
1450        if (ObjIntRegs == 2) {
1451          Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass);
1452          SDOperand ArgValue2 = DAG.getCopyFromReg(Root, Reg, MVT::i32);
1453          ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
1454        }
1455        break;
1456      case MVT::v16i8:
1457      case MVT::v8i16:
1458      case MVT::v4i32:
1459      case MVT::v2i64:
1460      case MVT::v4f32:
1461      case MVT::v2f64:
1462        Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass);
1463        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
1464        break;
1465      }
1466      NumIntRegs += ObjIntRegs;
1467      NumXMMRegs += ObjXMMRegs;
1468    }
1469
1470    if (ObjSize) {
1471      // XMM arguments have to be aligned on 16-byte boundary.
1472      if (ObjSize == 16)
1473        ArgOffset = ((ArgOffset + 15) / 16) * 16;
1474      // Create the SelectionDAG nodes corresponding to a load from this
1475      // parameter.
1476      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1477      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1478      if (ObjectVT == MVT::i64 && ObjIntRegs) {
1479        SDOperand ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
1480                                          NULL, 0);
1481        ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
1482      } else
1483        ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
1484      ArgOffset += ArgIncrement;   // Move on to the next argument.
1485    }
1486
1487    ArgValues.push_back(ArgValue);
1488  }
1489
1490  ArgValues.push_back(Root);
1491
1492  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1493  // arguments and the arguments after the retaddr has been pushed are aligned.
1494  if ((ArgOffset & 7) == 0)
1495    ArgOffset += 4;
1496
1497  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1498  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1499  ReturnAddrIndex = 0;             // No return address slot generated yet.
1500  BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments.
1501  BytesCallerReserves = 0;
1502
1503  // Finally, inform the code generator which regs we return values in.
1504  switch (getValueType(MF.getFunction()->getReturnType())) {
1505  default: assert(0 && "Unknown type!");
1506  case MVT::isVoid: break;
1507  case MVT::i1:
1508  case MVT::i8:
1509  case MVT::i16:
1510  case MVT::i32:
1511    MF.addLiveOut(X86::EAX);
1512    break;
1513  case MVT::i64:
1514    MF.addLiveOut(X86::EAX);
1515    MF.addLiveOut(X86::EDX);
1516    break;
1517  case MVT::f32:
1518  case MVT::f64:
1519    MF.addLiveOut(X86::ST0);
1520    break;
1521  case MVT::v16i8:
1522  case MVT::v8i16:
1523  case MVT::v4i32:
1524  case MVT::v2i64:
1525  case MVT::v4f32:
1526  case MVT::v2f64:
1527    MF.addLiveOut(X86::XMM0);
1528    break;
1529  }
1530
1531  // Return the new list of results.
1532  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
1533                                     Op.Val->value_end());
1534  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
1535}
1536
1537SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1538                                               bool isFastCall) {
1539  SDOperand Chain     = Op.getOperand(0);
1540  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1541  SDOperand Callee    = Op.getOperand(4);
1542  MVT::ValueType RetVT= Op.Val->getValueType(0);
1543  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1544
1545  // Count how many bytes are to be pushed on the stack.
1546  unsigned NumBytes = 0;
1547
1548  // Keep track of the number of integer regs passed so far.  This can be either
1549  // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
1550  // used).
1551  unsigned NumIntRegs = 0;
1552  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1553
1554  static const unsigned GPRArgRegs[][2] = {
1555    { X86::AL,  X86::DL },
1556    { X86::AX,  X86::DX },
1557    { X86::EAX, X86::EDX }
1558  };
1559#if 0
1560  static const unsigned FastCallGPRArgRegs[][2] = {
1561    { X86::CL,  X86::DL },
1562    { X86::CX,  X86::DX },
1563    { X86::ECX, X86::EDX }
1564  };
1565#endif
1566  static const unsigned XMMArgRegs[] = {
1567    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1568  };
1569
1570  for (unsigned i = 0; i != NumOps; ++i) {
1571    SDOperand Arg = Op.getOperand(5+2*i);
1572
1573    switch (Arg.getValueType()) {
1574    default: assert(0 && "Unknown value type!");
1575    case MVT::i8:
1576    case MVT::i16:
1577    case MVT::i32: {
1578     unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
1579     if (NumIntRegs < MaxNumIntRegs) {
1580       ++NumIntRegs;
1581       break;
1582     }
1583     } // Fall through
1584    case MVT::f32:
1585      NumBytes += 4;
1586      break;
1587    case MVT::f64:
1588      NumBytes += 8;
1589      break;
1590    case MVT::v16i8:
1591    case MVT::v8i16:
1592    case MVT::v4i32:
1593    case MVT::v2i64:
1594    case MVT::v4f32:
1595    case MVT::v2f64:
1596     if (isFastCall) {
1597      assert(0 && "Unknown value type!");
1598     } else {
1599       if (NumXMMRegs < 4)
1600         NumXMMRegs++;
1601       else {
1602         // XMM arguments have to be aligned on 16-byte boundary.
1603         NumBytes = ((NumBytes + 15) / 16) * 16;
1604         NumBytes += 16;
1605       }
1606     }
1607     break;
1608    }
1609  }
1610
1611  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1612  // arguments and the arguments after the retaddr has been pushed are aligned.
1613  if ((NumBytes & 7) == 0)
1614    NumBytes += 4;
1615
1616  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1617
1618  // Arguments go on the stack in reverse order, as specified by the ABI.
1619  unsigned ArgOffset = 0;
1620  NumIntRegs = 0;
1621  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1622  std::vector<SDOperand> MemOpChains;
1623  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1624  for (unsigned i = 0; i != NumOps; ++i) {
1625    SDOperand Arg = Op.getOperand(5+2*i);
1626
1627    switch (Arg.getValueType()) {
1628    default: assert(0 && "Unexpected ValueType for argument!");
1629    case MVT::i8:
1630    case MVT::i16:
1631    case MVT::i32: {
1632     unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
1633     if (NumIntRegs < MaxNumIntRegs) {
1634       RegsToPass.push_back(
1635         std::make_pair(GPRArgRegs[Arg.getValueType()-MVT::i8][NumIntRegs],
1636                        Arg));
1637       ++NumIntRegs;
1638       break;
1639     }
1640     } // Fall through
1641    case MVT::f32: {
1642      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1643      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1644      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1645      ArgOffset += 4;
1646      break;
1647    }
1648    case MVT::f64: {
1649      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1650      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1651      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1652      ArgOffset += 8;
1653      break;
1654    }
1655    case MVT::v16i8:
1656    case MVT::v8i16:
1657    case MVT::v4i32:
1658    case MVT::v2i64:
1659    case MVT::v4f32:
1660    case MVT::v2f64:
1661     if (isFastCall) {
1662       assert(0 && "Unexpected ValueType for argument!");
1663     } else {
1664       if (NumXMMRegs < 4) {
1665         RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
1666         NumXMMRegs++;
1667       } else {
1668         // XMM arguments have to be aligned on 16-byte boundary.
1669         ArgOffset = ((ArgOffset + 15) / 16) * 16;
1670         SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1671         PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1672         MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1673         ArgOffset += 16;
1674       }
1675     }
1676     break;
1677    }
1678  }
1679
1680  if (!MemOpChains.empty())
1681    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1682                        &MemOpChains[0], MemOpChains.size());
1683
1684  // Build a sequence of copy-to-reg nodes chained together with token chain
1685  // and flag operands which copy the outgoing args into registers.
1686  SDOperand InFlag;
1687  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1688    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1689                             InFlag);
1690    InFlag = Chain.getValue(1);
1691  }
1692
1693  // If the callee is a GlobalAddress node (quite common, every direct call is)
1694  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1695  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1696    // We should use extra load for direct calls to dllimported functions
1697    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), true))
1698      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1699  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1700    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1701
1702  std::vector<MVT::ValueType> NodeTys;
1703  NodeTys.push_back(MVT::Other);   // Returns a chain
1704  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1705  std::vector<SDOperand> Ops;
1706  Ops.push_back(Chain);
1707  Ops.push_back(Callee);
1708
1709  // Add argument registers to the end of the list so that they are known live
1710  // into the call.
1711  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1712    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1713                                  RegsToPass[i].second.getValueType()));
1714
1715  if (InFlag.Val)
1716    Ops.push_back(InFlag);
1717
1718  // FIXME: Do not generate X86ISD::TAILCALL for now.
1719  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1720                      NodeTys, &Ops[0], Ops.size());
1721  InFlag = Chain.getValue(1);
1722
1723  NodeTys.clear();
1724  NodeTys.push_back(MVT::Other);   // Returns a chain
1725  if (RetVT != MVT::Other)
1726    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
1727  Ops.clear();
1728  Ops.push_back(Chain);
1729  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1730  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1731  Ops.push_back(InFlag);
1732  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1733  if (RetVT != MVT::Other)
1734    InFlag = Chain.getValue(1);
1735
1736  std::vector<SDOperand> ResultVals;
1737  NodeTys.clear();
1738  switch (RetVT) {
1739  default: assert(0 && "Unknown value type to return!");
1740  case MVT::Other: break;
1741  case MVT::i8:
1742    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
1743    ResultVals.push_back(Chain.getValue(0));
1744    NodeTys.push_back(MVT::i8);
1745    break;
1746  case MVT::i16:
1747    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
1748    ResultVals.push_back(Chain.getValue(0));
1749    NodeTys.push_back(MVT::i16);
1750    break;
1751  case MVT::i32:
1752    if (Op.Val->getValueType(1) == MVT::i32) {
1753      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
1754      ResultVals.push_back(Chain.getValue(0));
1755      Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
1756                                 Chain.getValue(2)).getValue(1);
1757      ResultVals.push_back(Chain.getValue(0));
1758      NodeTys.push_back(MVT::i32);
1759    } else {
1760      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
1761      ResultVals.push_back(Chain.getValue(0));
1762    }
1763    NodeTys.push_back(MVT::i32);
1764    break;
1765  case MVT::v16i8:
1766  case MVT::v8i16:
1767  case MVT::v4i32:
1768  case MVT::v2i64:
1769  case MVT::v4f32:
1770  case MVT::v2f64:
1771   if (isFastCall) {
1772     assert(0 && "Unknown value type to return!");
1773   } else {
1774     Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
1775     ResultVals.push_back(Chain.getValue(0));
1776     NodeTys.push_back(RetVT);
1777   }
1778   break;
1779  case MVT::f32:
1780  case MVT::f64: {
1781    std::vector<MVT::ValueType> Tys;
1782    Tys.push_back(MVT::f64);
1783    Tys.push_back(MVT::Other);
1784    Tys.push_back(MVT::Flag);
1785    std::vector<SDOperand> Ops;
1786    Ops.push_back(Chain);
1787    Ops.push_back(InFlag);
1788    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
1789                                   &Ops[0], Ops.size());
1790    Chain  = RetVal.getValue(1);
1791    InFlag = RetVal.getValue(2);
1792    if (X86ScalarSSE) {
1793      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
1794      // shouldn't be necessary except that RFP cannot be live across
1795      // multiple blocks. When stackifier is fixed, they can be uncoupled.
1796      MachineFunction &MF = DAG.getMachineFunction();
1797      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
1798      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
1799      Tys.clear();
1800      Tys.push_back(MVT::Other);
1801      Ops.clear();
1802      Ops.push_back(Chain);
1803      Ops.push_back(RetVal);
1804      Ops.push_back(StackSlot);
1805      Ops.push_back(DAG.getValueType(RetVT));
1806      Ops.push_back(InFlag);
1807      Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
1808      RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0);
1809      Chain = RetVal.getValue(1);
1810    }
1811
1812    if (RetVT == MVT::f32 && !X86ScalarSSE)
1813      // FIXME: we would really like to remember that this FP_ROUND
1814      // operation is okay to eliminate if we allow excess FP precision.
1815      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
1816    ResultVals.push_back(RetVal);
1817    NodeTys.push_back(RetVT);
1818    break;
1819  }
1820  }
1821
1822
1823  // If the function returns void, just return the chain.
1824  if (ResultVals.empty())
1825    return Chain;
1826
1827  // Otherwise, merge everything together with a MERGE_VALUES node.
1828  NodeTys.push_back(MVT::Other);
1829  ResultVals.push_back(Chain);
1830  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1831                              &ResultVals[0], ResultVals.size());
1832  return Res.getValue(Op.ResNo);
1833}
1834
1835//===----------------------------------------------------------------------===//
1836//                  StdCall Calling Convention implementation
1837//===----------------------------------------------------------------------===//
1838//  StdCall calling convention seems to be standard for many Windows' API
1839//  routines and around. It differs from C calling convention just a little:
1840//  callee should clean up the stack, not caller. Symbols should be also
1841//  decorated in some fancy way :) It doesn't support any vector arguments.
1842
1843/// HowToPassStdCallCCArgument - Returns how an formal argument of the specified
1844/// type should be passed. Returns the size of the stack slot
1845static void
1846HowToPassStdCallCCArgument(MVT::ValueType ObjectVT, unsigned &ObjSize) {
1847  switch (ObjectVT) {
1848  default: assert(0 && "Unhandled argument type!");
1849  case MVT::i8:  ObjSize = 1; break;
1850  case MVT::i16: ObjSize = 2; break;
1851  case MVT::i32: ObjSize = 4; break;
1852  case MVT::i64: ObjSize = 8; break;
1853  case MVT::f32: ObjSize = 4; break;
1854  case MVT::f64: ObjSize = 8; break;
1855  }
1856}
1857
1858SDOperand X86TargetLowering::LowerStdCallCCArguments(SDOperand Op,
1859                                                     SelectionDAG &DAG) {
1860  unsigned NumArgs = Op.Val->getNumValues() - 1;
1861  MachineFunction &MF = DAG.getMachineFunction();
1862  MachineFrameInfo *MFI = MF.getFrameInfo();
1863  SDOperand Root = Op.getOperand(0);
1864  std::vector<SDOperand> ArgValues;
1865
1866  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
1867  // the stack frame looks like this:
1868  //
1869  // [ESP] -- return address
1870  // [ESP + 4] -- first argument (leftmost lexically)
1871  // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size
1872  //    ...
1873  //
1874  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
1875  for (unsigned i = 0; i < NumArgs; ++i) {
1876    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
1877    unsigned ArgIncrement = 4;
1878    unsigned ObjSize = 0;
1879    HowToPassStdCallCCArgument(ObjectVT, ObjSize);
1880    if (ObjSize > 4)
1881      ArgIncrement = ObjSize;
1882
1883    SDOperand ArgValue;
1884    // Create the frame index object for this incoming parameter...
1885    int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1886    SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1887    ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
1888    ArgValues.push_back(ArgValue);
1889    ArgOffset += ArgIncrement;   // Move on to the next argument...
1890  }
1891
1892  ArgValues.push_back(Root);
1893
1894  // If the function takes variable number of arguments, make a frame index for
1895  // the start of the first vararg value... for expansion of llvm.va_start.
1896  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1897  if (isVarArg) {
1898    BytesToPopOnReturn = 0;         // Callee pops nothing.
1899    BytesCallerReserves = ArgOffset;
1900    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
1901  } else {
1902    BytesToPopOnReturn = ArgOffset; // Callee pops everything..
1903    BytesCallerReserves = 0;
1904  }
1905  RegSaveFrameIndex = 0xAAAAAAA;    // X86-64 only.
1906  ReturnAddrIndex = 0;              // No return address slot generated yet.
1907
1908  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
1909
1910  // Return the new list of results.
1911  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
1912                                     Op.Val->value_end());
1913  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
1914}
1915
1916
1917SDOperand X86TargetLowering::LowerStdCallCCCallTo(SDOperand Op,
1918                                                  SelectionDAG &DAG) {
1919  SDOperand Chain     = Op.getOperand(0);
1920  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1921  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1922  SDOperand Callee    = Op.getOperand(4);
1923  MVT::ValueType RetVT= Op.Val->getValueType(0);
1924  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1925
1926  // Count how many bytes are to be pushed on the stack.
1927  unsigned NumBytes = 0;
1928  for (unsigned i = 0; i != NumOps; ++i) {
1929    SDOperand Arg = Op.getOperand(5+2*i);
1930
1931    switch (Arg.getValueType()) {
1932    default: assert(0 && "Unexpected ValueType for argument!");
1933    case MVT::i8:
1934    case MVT::i16:
1935    case MVT::i32:
1936    case MVT::f32:
1937      NumBytes += 4;
1938      break;
1939    case MVT::i64:
1940    case MVT::f64:
1941      NumBytes += 8;
1942      break;
1943    }
1944  }
1945
1946  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1947
1948  // Arguments go on the stack in reverse order, as specified by the ABI.
1949  unsigned ArgOffset = 0;
1950  std::vector<SDOperand> MemOpChains;
1951  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1952  for (unsigned i = 0; i != NumOps; ++i) {
1953    SDOperand Arg = Op.getOperand(5+2*i);
1954
1955    switch (Arg.getValueType()) {
1956    default: assert(0 && "Unexpected ValueType for argument!");
1957    case MVT::i8:
1958    case MVT::i16: {
1959      // Promote the integer to 32 bits.  If the input type is signed use a
1960      // sign extend, otherwise use a zero extend.
1961      unsigned ExtOp =
1962        dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue() ?
1963        ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1964      Arg = DAG.getNode(ExtOp, MVT::i32, Arg);
1965    }
1966    // Fallthrough
1967
1968    case MVT::i32:
1969    case MVT::f32: {
1970      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1971      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1972      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1973      ArgOffset += 4;
1974      break;
1975    }
1976    case MVT::i64:
1977    case MVT::f64: {
1978      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1979      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1980      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1981      ArgOffset += 8;
1982      break;
1983    }
1984    }
1985  }
1986
1987  if (!MemOpChains.empty())
1988    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1989                        &MemOpChains[0], MemOpChains.size());
1990
1991  // If the callee is a GlobalAddress node (quite common, every direct call is)
1992  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1993  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1994    // We should use extra load for direct calls to dllimported functions
1995    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), true))
1996      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1997  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1998    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1999
2000  std::vector<MVT::ValueType> NodeTys;
2001  NodeTys.push_back(MVT::Other);   // Returns a chain
2002  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2003  std::vector<SDOperand> Ops;
2004  Ops.push_back(Chain);
2005  Ops.push_back(Callee);
2006
2007  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
2008                      NodeTys, &Ops[0], Ops.size());
2009  SDOperand InFlag = Chain.getValue(1);
2010
2011  // Create the CALLSEQ_END node.
2012  unsigned NumBytesForCalleeToPush;
2013
2014  if (isVarArg) {
2015    NumBytesForCalleeToPush = 0;
2016  } else {
2017    NumBytesForCalleeToPush = NumBytes;
2018  }
2019
2020  NodeTys.clear();
2021  NodeTys.push_back(MVT::Other);   // Returns a chain
2022  if (RetVT != MVT::Other)
2023    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
2024  Ops.clear();
2025  Ops.push_back(Chain);
2026  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
2027  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
2028  Ops.push_back(InFlag);
2029  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
2030  if (RetVT != MVT::Other)
2031    InFlag = Chain.getValue(1);
2032
2033  std::vector<SDOperand> ResultVals;
2034  NodeTys.clear();
2035  switch (RetVT) {
2036  default: assert(0 && "Unknown value type to return!");
2037  case MVT::Other: break;
2038  case MVT::i8:
2039    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
2040    ResultVals.push_back(Chain.getValue(0));
2041    NodeTys.push_back(MVT::i8);
2042    break;
2043  case MVT::i16:
2044    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
2045    ResultVals.push_back(Chain.getValue(0));
2046    NodeTys.push_back(MVT::i16);
2047    break;
2048  case MVT::i32:
2049    if (Op.Val->getValueType(1) == MVT::i32) {
2050      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
2051      ResultVals.push_back(Chain.getValue(0));
2052      Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
2053                                 Chain.getValue(2)).getValue(1);
2054      ResultVals.push_back(Chain.getValue(0));
2055      NodeTys.push_back(MVT::i32);
2056    } else {
2057      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
2058      ResultVals.push_back(Chain.getValue(0));
2059    }
2060    NodeTys.push_back(MVT::i32);
2061    break;
2062  case MVT::f32:
2063  case MVT::f64: {
2064    std::vector<MVT::ValueType> Tys;
2065    Tys.push_back(MVT::f64);
2066    Tys.push_back(MVT::Other);
2067    Tys.push_back(MVT::Flag);
2068    std::vector<SDOperand> Ops;
2069    Ops.push_back(Chain);
2070    Ops.push_back(InFlag);
2071    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
2072                                   &Ops[0], Ops.size());
2073    Chain  = RetVal.getValue(1);
2074    InFlag = RetVal.getValue(2);
2075    if (X86ScalarSSE) {
2076      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
2077      // shouldn't be necessary except that RFP cannot be live across
2078      // multiple blocks. When stackifier is fixed, they can be uncoupled.
2079      MachineFunction &MF = DAG.getMachineFunction();
2080      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2081      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
2082      Tys.clear();
2083      Tys.push_back(MVT::Other);
2084      Ops.clear();
2085      Ops.push_back(Chain);
2086      Ops.push_back(RetVal);
2087      Ops.push_back(StackSlot);
2088      Ops.push_back(DAG.getValueType(RetVT));
2089      Ops.push_back(InFlag);
2090      Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
2091      RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0);
2092      Chain = RetVal.getValue(1);
2093    }
2094
2095    if (RetVT == MVT::f32 && !X86ScalarSSE)
2096      // FIXME: we would really like to remember that this FP_ROUND
2097      // operation is okay to eliminate if we allow excess FP precision.
2098      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
2099    ResultVals.push_back(RetVal);
2100    NodeTys.push_back(RetVT);
2101    break;
2102  }
2103  }
2104
2105  // If the function returns void, just return the chain.
2106  if (ResultVals.empty())
2107    return Chain;
2108
2109  // Otherwise, merge everything together with a MERGE_VALUES node.
2110  NodeTys.push_back(MVT::Other);
2111  ResultVals.push_back(Chain);
2112  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
2113                              &ResultVals[0], ResultVals.size());
2114  return Res.getValue(Op.ResNo);
2115}
2116
2117//===----------------------------------------------------------------------===//
2118//                  FastCall Calling Convention implementation
2119//===----------------------------------------------------------------------===//
2120//
2121// The X86 'fastcall' calling convention passes up to two integer arguments in
2122// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
2123// and requires that the callee pop its arguments off the stack (allowing proper
2124// tail calls), and has the same return value conventions as C calling convs.
2125//
2126// This calling convention always arranges for the callee pop value to be 8n+4
2127// bytes, which is needed for tail recursion elimination and stack alignment
2128// reasons.
2129//
2130
2131/// HowToPassFastCallCCArgument - Returns how an formal argument of the
2132/// specified type should be passed. If it is through stack, returns the size of
2133/// the stack slot; if it is through integer register, returns the number of
2134/// integer registers are needed.
2135static void
2136HowToPassFastCallCCArgument(MVT::ValueType ObjectVT,
2137                            unsigned NumIntRegs,
2138                            unsigned &ObjSize,
2139                            unsigned &ObjIntRegs)
2140{
2141  ObjSize = 0;
2142  ObjIntRegs = 0;
2143
2144  switch (ObjectVT) {
2145  default: assert(0 && "Unhandled argument type!");
2146  case MVT::i8:
2147   if (NumIntRegs < 2)
2148     ObjIntRegs = 1;
2149   else
2150     ObjSize = 1;
2151   break;
2152  case MVT::i16:
2153   if (NumIntRegs < 2)
2154     ObjIntRegs = 1;
2155   else
2156     ObjSize = 2;
2157   break;
2158  case MVT::i32:
2159   if (NumIntRegs < 2)
2160     ObjIntRegs = 1;
2161   else
2162     ObjSize = 4;
2163    break;
2164  case MVT::i64:
2165   if (NumIntRegs+2 <= 2) {
2166     ObjIntRegs = 2;
2167   } else if (NumIntRegs+1 <= 2) {
2168     ObjIntRegs = 1;
2169     ObjSize = 4;
2170   } else
2171     ObjSize = 8;
2172   case MVT::f32:
2173    ObjSize = 4;
2174    break;
2175   case MVT::f64:
2176    ObjSize = 8;
2177    break;
2178  }
2179}
2180
2181SDOperand
2182X86TargetLowering::LowerFastCallCCArguments(SDOperand Op, SelectionDAG &DAG) {
2183  unsigned NumArgs = Op.Val->getNumValues()-1;
2184  MachineFunction &MF = DAG.getMachineFunction();
2185  MachineFrameInfo *MFI = MF.getFrameInfo();
2186  SDOperand Root = Op.getOperand(0);
2187  std::vector<SDOperand> ArgValues;
2188
2189  // Add DAG nodes to load the arguments...  On entry to a function the stack
2190  // frame looks like this:
2191  //
2192  // [ESP] -- return address
2193  // [ESP + 4] -- first nonreg argument (leftmost lexically)
2194  // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size
2195  //    ...
2196  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
2197
2198  // Keep track of the number of integer regs passed so far.  This can be either
2199  // 0 (neither ECX or EDX used), 1 (ECX is used) or 2 (ECX and EDX are both
2200  // used).
2201  unsigned NumIntRegs = 0;
2202
2203  for (unsigned i = 0; i < NumArgs; ++i) {
2204    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
2205    unsigned ArgIncrement = 4;
2206    unsigned ObjSize = 0;
2207    unsigned ObjIntRegs = 0;
2208
2209    HowToPassFastCallCCArgument(ObjectVT, NumIntRegs, ObjSize, ObjIntRegs);
2210    if (ObjSize > 4)
2211      ArgIncrement = ObjSize;
2212
2213    unsigned Reg = 0;
2214    SDOperand ArgValue;
2215    if (ObjIntRegs) {
2216      switch (ObjectVT) {
2217      default: assert(0 && "Unhandled argument type!");
2218      case MVT::i8:
2219        Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::CL,
2220                        X86::GR8RegisterClass);
2221        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i8);
2222        break;
2223      case MVT::i16:
2224        Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::CX,
2225                        X86::GR16RegisterClass);
2226        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i16);
2227        break;
2228      case MVT::i32:
2229        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::ECX,
2230                        X86::GR32RegisterClass);
2231        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
2232        break;
2233      case MVT::i64:
2234        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::ECX,
2235                        X86::GR32RegisterClass);
2236        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
2237        if (ObjIntRegs == 2) {
2238          Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass);
2239          SDOperand ArgValue2 = DAG.getCopyFromReg(Root, Reg, MVT::i32);
2240          ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
2241        }
2242        break;
2243      }
2244
2245      NumIntRegs += ObjIntRegs;
2246    }
2247
2248    if (ObjSize) {
2249      // Create the SelectionDAG nodes corresponding to a load from this
2250      // parameter.
2251      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
2252      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
2253      if (ObjectVT == MVT::i64 && ObjIntRegs) {
2254        SDOperand ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
2255                                          NULL, 0);
2256        ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
2257      } else
2258        ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
2259      ArgOffset += ArgIncrement;   // Move on to the next argument.
2260    }
2261
2262    ArgValues.push_back(ArgValue);
2263  }
2264
2265  ArgValues.push_back(Root);
2266
2267  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
2268  // arguments and the arguments after the retaddr has been pushed are aligned.
2269  if ((ArgOffset & 7) == 0)
2270    ArgOffset += 4;
2271
2272  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
2273  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
2274  ReturnAddrIndex = 0;             // No return address slot generated yet.
2275  BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments.
2276  BytesCallerReserves = 0;
2277
2278  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
2279
2280  // Finally, inform the code generator which regs we return values in.
2281  switch (getValueType(MF.getFunction()->getReturnType())) {
2282  default: assert(0 && "Unknown type!");
2283  case MVT::isVoid: break;
2284  case MVT::i1:
2285  case MVT::i8:
2286  case MVT::i16:
2287  case MVT::i32:
2288    MF.addLiveOut(X86::ECX);
2289    break;
2290  case MVT::i64:
2291    MF.addLiveOut(X86::ECX);
2292    MF.addLiveOut(X86::EDX);
2293    break;
2294  case MVT::f32:
2295  case MVT::f64:
2296    MF.addLiveOut(X86::ST0);
2297    break;
2298  }
2299
2300  // Return the new list of results.
2301  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
2302                                     Op.Val->value_end());
2303  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
2304}
2305
2306SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2307  if (ReturnAddrIndex == 0) {
2308    // Set up a frame object for the return address.
2309    MachineFunction &MF = DAG.getMachineFunction();
2310    if (Subtarget->is64Bit())
2311      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
2312    else
2313      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
2314  }
2315
2316  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2317}
2318
2319
2320
2321std::pair<SDOperand, SDOperand> X86TargetLowering::
2322LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
2323                        SelectionDAG &DAG) {
2324  SDOperand Result;
2325  if (Depth)        // Depths > 0 not supported yet!
2326    Result = DAG.getConstant(0, getPointerTy());
2327  else {
2328    SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
2329    if (!isFrameAddress)
2330      // Just load the return address
2331      Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI,
2332                           NULL, 0);
2333    else
2334      Result = DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
2335                           DAG.getConstant(4, getPointerTy()));
2336  }
2337  return std::make_pair(Result, Chain);
2338}
2339
2340/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
2341/// specific condition code. It returns a false if it cannot do a direct
2342/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
2343/// needed.
2344static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2345                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
2346                           SelectionDAG &DAG) {
2347  X86CC = X86::COND_INVALID;
2348  if (!isFP) {
2349    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2350      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2351        // X > -1   -> X == 0, jump !sign.
2352        RHS = DAG.getConstant(0, RHS.getValueType());
2353        X86CC = X86::COND_NS;
2354        return true;
2355      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2356        // X < 0   -> X == 0, jump on sign.
2357        X86CC = X86::COND_S;
2358        return true;
2359      }
2360    }
2361
2362    switch (SetCCOpcode) {
2363    default: break;
2364    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
2365    case ISD::SETGT:  X86CC = X86::COND_G;  break;
2366    case ISD::SETGE:  X86CC = X86::COND_GE; break;
2367    case ISD::SETLT:  X86CC = X86::COND_L;  break;
2368    case ISD::SETLE:  X86CC = X86::COND_LE; break;
2369    case ISD::SETNE:  X86CC = X86::COND_NE; break;
2370    case ISD::SETULT: X86CC = X86::COND_B;  break;
2371    case ISD::SETUGT: X86CC = X86::COND_A;  break;
2372    case ISD::SETULE: X86CC = X86::COND_BE; break;
2373    case ISD::SETUGE: X86CC = X86::COND_AE; break;
2374    }
2375  } else {
2376    // On a floating point condition, the flags are set as follows:
2377    // ZF  PF  CF   op
2378    //  0 | 0 | 0 | X > Y
2379    //  0 | 0 | 1 | X < Y
2380    //  1 | 0 | 0 | X == Y
2381    //  1 | 1 | 1 | unordered
2382    bool Flip = false;
2383    switch (SetCCOpcode) {
2384    default: break;
2385    case ISD::SETUEQ:
2386    case ISD::SETEQ: X86CC = X86::COND_E;  break;
2387    case ISD::SETOLT: Flip = true; // Fallthrough
2388    case ISD::SETOGT:
2389    case ISD::SETGT: X86CC = X86::COND_A;  break;
2390    case ISD::SETOLE: Flip = true; // Fallthrough
2391    case ISD::SETOGE:
2392    case ISD::SETGE: X86CC = X86::COND_AE; break;
2393    case ISD::SETUGT: Flip = true; // Fallthrough
2394    case ISD::SETULT:
2395    case ISD::SETLT: X86CC = X86::COND_B;  break;
2396    case ISD::SETUGE: Flip = true; // Fallthrough
2397    case ISD::SETULE:
2398    case ISD::SETLE: X86CC = X86::COND_BE; break;
2399    case ISD::SETONE:
2400    case ISD::SETNE: X86CC = X86::COND_NE; break;
2401    case ISD::SETUO: X86CC = X86::COND_P;  break;
2402    case ISD::SETO:  X86CC = X86::COND_NP; break;
2403    }
2404    if (Flip)
2405      std::swap(LHS, RHS);
2406  }
2407
2408  return X86CC != X86::COND_INVALID;
2409}
2410
2411/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2412/// code. Current x86 isa includes the following FP cmov instructions:
2413/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2414static bool hasFPCMov(unsigned X86CC) {
2415  switch (X86CC) {
2416  default:
2417    return false;
2418  case X86::COND_B:
2419  case X86::COND_BE:
2420  case X86::COND_E:
2421  case X86::COND_P:
2422  case X86::COND_A:
2423  case X86::COND_AE:
2424  case X86::COND_NE:
2425  case X86::COND_NP:
2426    return true;
2427  }
2428}
2429
2430/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2431/// true if Op is undef or if its value falls within the specified range (L, H].
2432static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2433  if (Op.getOpcode() == ISD::UNDEF)
2434    return true;
2435
2436  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2437  return (Val >= Low && Val < Hi);
2438}
2439
2440/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2441/// true if Op is undef or if its value equal to the specified value.
2442static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2443  if (Op.getOpcode() == ISD::UNDEF)
2444    return true;
2445  return cast<ConstantSDNode>(Op)->getValue() == Val;
2446}
2447
2448/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2449/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2450bool X86::isPSHUFDMask(SDNode *N) {
2451  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2452
2453  if (N->getNumOperands() != 4)
2454    return false;
2455
2456  // Check if the value doesn't reference the second vector.
2457  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2458    SDOperand Arg = N->getOperand(i);
2459    if (Arg.getOpcode() == ISD::UNDEF) continue;
2460    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2461    if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
2462      return false;
2463  }
2464
2465  return true;
2466}
2467
2468/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2469/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2470bool X86::isPSHUFHWMask(SDNode *N) {
2471  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2472
2473  if (N->getNumOperands() != 8)
2474    return false;
2475
2476  // Lower quadword copied in order.
2477  for (unsigned i = 0; i != 4; ++i) {
2478    SDOperand Arg = N->getOperand(i);
2479    if (Arg.getOpcode() == ISD::UNDEF) continue;
2480    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2481    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2482      return false;
2483  }
2484
2485  // Upper quadword shuffled.
2486  for (unsigned i = 4; i != 8; ++i) {
2487    SDOperand Arg = N->getOperand(i);
2488    if (Arg.getOpcode() == ISD::UNDEF) continue;
2489    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2490    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2491    if (Val < 4 || Val > 7)
2492      return false;
2493  }
2494
2495  return true;
2496}
2497
2498/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2499/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2500bool X86::isPSHUFLWMask(SDNode *N) {
2501  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2502
2503  if (N->getNumOperands() != 8)
2504    return false;
2505
2506  // Upper quadword copied in order.
2507  for (unsigned i = 4; i != 8; ++i)
2508    if (!isUndefOrEqual(N->getOperand(i), i))
2509      return false;
2510
2511  // Lower quadword shuffled.
2512  for (unsigned i = 0; i != 4; ++i)
2513    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2514      return false;
2515
2516  return true;
2517}
2518
2519/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2520/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2521static bool isSHUFPMask(std::vector<SDOperand> &N) {
2522  unsigned NumElems = N.size();
2523  if (NumElems != 2 && NumElems != 4) return false;
2524
2525  unsigned Half = NumElems / 2;
2526  for (unsigned i = 0; i < Half; ++i)
2527    if (!isUndefOrInRange(N[i], 0, NumElems))
2528      return false;
2529  for (unsigned i = Half; i < NumElems; ++i)
2530    if (!isUndefOrInRange(N[i], NumElems, NumElems*2))
2531      return false;
2532
2533  return true;
2534}
2535
2536bool X86::isSHUFPMask(SDNode *N) {
2537  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2538  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2539  return ::isSHUFPMask(Ops);
2540}
2541
2542/// isCommutedSHUFP - Returns true if the shuffle mask is except
2543/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2544/// half elements to come from vector 1 (which would equal the dest.) and
2545/// the upper half to come from vector 2.
2546static bool isCommutedSHUFP(std::vector<SDOperand> &Ops) {
2547  unsigned NumElems = Ops.size();
2548  if (NumElems != 2 && NumElems != 4) return false;
2549
2550  unsigned Half = NumElems / 2;
2551  for (unsigned i = 0; i < Half; ++i)
2552    if (!isUndefOrInRange(Ops[i], NumElems, NumElems*2))
2553      return false;
2554  for (unsigned i = Half; i < NumElems; ++i)
2555    if (!isUndefOrInRange(Ops[i], 0, NumElems))
2556      return false;
2557  return true;
2558}
2559
2560static bool isCommutedSHUFP(SDNode *N) {
2561  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2562  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2563  return isCommutedSHUFP(Ops);
2564}
2565
2566/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2567/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2568bool X86::isMOVHLPSMask(SDNode *N) {
2569  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2570
2571  if (N->getNumOperands() != 4)
2572    return false;
2573
2574  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2575  return isUndefOrEqual(N->getOperand(0), 6) &&
2576         isUndefOrEqual(N->getOperand(1), 7) &&
2577         isUndefOrEqual(N->getOperand(2), 2) &&
2578         isUndefOrEqual(N->getOperand(3), 3);
2579}
2580
2581/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2582/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2583/// <2, 3, 2, 3>
2584bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2585  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2586
2587  if (N->getNumOperands() != 4)
2588    return false;
2589
2590  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2591  return isUndefOrEqual(N->getOperand(0), 2) &&
2592         isUndefOrEqual(N->getOperand(1), 3) &&
2593         isUndefOrEqual(N->getOperand(2), 2) &&
2594         isUndefOrEqual(N->getOperand(3), 3);
2595}
2596
2597/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2598/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2599bool X86::isMOVLPMask(SDNode *N) {
2600  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2601
2602  unsigned NumElems = N->getNumOperands();
2603  if (NumElems != 2 && NumElems != 4)
2604    return false;
2605
2606  for (unsigned i = 0; i < NumElems/2; ++i)
2607    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2608      return false;
2609
2610  for (unsigned i = NumElems/2; i < NumElems; ++i)
2611    if (!isUndefOrEqual(N->getOperand(i), i))
2612      return false;
2613
2614  return true;
2615}
2616
2617/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2618/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2619/// and MOVLHPS.
2620bool X86::isMOVHPMask(SDNode *N) {
2621  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2622
2623  unsigned NumElems = N->getNumOperands();
2624  if (NumElems != 2 && NumElems != 4)
2625    return false;
2626
2627  for (unsigned i = 0; i < NumElems/2; ++i)
2628    if (!isUndefOrEqual(N->getOperand(i), i))
2629      return false;
2630
2631  for (unsigned i = 0; i < NumElems/2; ++i) {
2632    SDOperand Arg = N->getOperand(i + NumElems/2);
2633    if (!isUndefOrEqual(Arg, i + NumElems))
2634      return false;
2635  }
2636
2637  return true;
2638}
2639
2640/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2641/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2642bool static isUNPCKLMask(std::vector<SDOperand> &N, bool V2IsSplat = false) {
2643  unsigned NumElems = N.size();
2644  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2645    return false;
2646
2647  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2648    SDOperand BitI  = N[i];
2649    SDOperand BitI1 = N[i+1];
2650    if (!isUndefOrEqual(BitI, j))
2651      return false;
2652    if (V2IsSplat) {
2653      if (isUndefOrEqual(BitI1, NumElems))
2654        return false;
2655    } else {
2656      if (!isUndefOrEqual(BitI1, j + NumElems))
2657        return false;
2658    }
2659  }
2660
2661  return true;
2662}
2663
2664bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2665  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2666  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2667  return ::isUNPCKLMask(Ops, V2IsSplat);
2668}
2669
2670/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2671/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2672bool static isUNPCKHMask(std::vector<SDOperand> &N, bool V2IsSplat = false) {
2673  unsigned NumElems = N.size();
2674  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2675    return false;
2676
2677  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2678    SDOperand BitI  = N[i];
2679    SDOperand BitI1 = N[i+1];
2680    if (!isUndefOrEqual(BitI, j + NumElems/2))
2681      return false;
2682    if (V2IsSplat) {
2683      if (isUndefOrEqual(BitI1, NumElems))
2684        return false;
2685    } else {
2686      if (!isUndefOrEqual(BitI1, j + NumElems/2 + NumElems))
2687        return false;
2688    }
2689  }
2690
2691  return true;
2692}
2693
2694bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2695  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2696  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2697  return ::isUNPCKHMask(Ops, V2IsSplat);
2698}
2699
2700/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2701/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2702/// <0, 0, 1, 1>
2703bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2704  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2705
2706  unsigned NumElems = N->getNumOperands();
2707  if (NumElems != 4 && NumElems != 8 && NumElems != 16)
2708    return false;
2709
2710  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2711    SDOperand BitI  = N->getOperand(i);
2712    SDOperand BitI1 = N->getOperand(i+1);
2713
2714    if (!isUndefOrEqual(BitI, j))
2715      return false;
2716    if (!isUndefOrEqual(BitI1, j))
2717      return false;
2718  }
2719
2720  return true;
2721}
2722
2723/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2724/// specifies a shuffle of elements that is suitable for input to MOVSS,
2725/// MOVSD, and MOVD, i.e. setting the lowest element.
2726static bool isMOVLMask(std::vector<SDOperand> &N) {
2727  unsigned NumElems = N.size();
2728  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2729    return false;
2730
2731  if (!isUndefOrEqual(N[0], NumElems))
2732    return false;
2733
2734  for (unsigned i = 1; i < NumElems; ++i) {
2735    SDOperand Arg = N[i];
2736    if (!isUndefOrEqual(Arg, i))
2737      return false;
2738  }
2739
2740  return true;
2741}
2742
2743bool X86::isMOVLMask(SDNode *N) {
2744  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2745  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2746  return ::isMOVLMask(Ops);
2747}
2748
2749/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2750/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2751/// element of vector 2 and the other elements to come from vector 1 in order.
2752static bool isCommutedMOVL(std::vector<SDOperand> &Ops, bool V2IsSplat = false,
2753                           bool V2IsUndef = false) {
2754  unsigned NumElems = Ops.size();
2755  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2756    return false;
2757
2758  if (!isUndefOrEqual(Ops[0], 0))
2759    return false;
2760
2761  for (unsigned i = 1; i < NumElems; ++i) {
2762    SDOperand Arg = Ops[i];
2763    if (!(isUndefOrEqual(Arg, i+NumElems) ||
2764          (V2IsUndef && isUndefOrInRange(Arg, NumElems, NumElems*2)) ||
2765          (V2IsSplat && isUndefOrEqual(Arg, NumElems))))
2766      return false;
2767  }
2768
2769  return true;
2770}
2771
2772static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2773                           bool V2IsUndef = false) {
2774  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2775  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2776  return isCommutedMOVL(Ops, V2IsSplat, V2IsUndef);
2777}
2778
2779/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2780/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2781bool X86::isMOVSHDUPMask(SDNode *N) {
2782  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2783
2784  if (N->getNumOperands() != 4)
2785    return false;
2786
2787  // Expect 1, 1, 3, 3
2788  for (unsigned i = 0; i < 2; ++i) {
2789    SDOperand Arg = N->getOperand(i);
2790    if (Arg.getOpcode() == ISD::UNDEF) continue;
2791    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2792    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2793    if (Val != 1) return false;
2794  }
2795
2796  bool HasHi = false;
2797  for (unsigned i = 2; i < 4; ++i) {
2798    SDOperand Arg = N->getOperand(i);
2799    if (Arg.getOpcode() == ISD::UNDEF) continue;
2800    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2801    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2802    if (Val != 3) return false;
2803    HasHi = true;
2804  }
2805
2806  // Don't use movshdup if it can be done with a shufps.
2807  return HasHi;
2808}
2809
2810/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2811/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2812bool X86::isMOVSLDUPMask(SDNode *N) {
2813  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2814
2815  if (N->getNumOperands() != 4)
2816    return false;
2817
2818  // Expect 0, 0, 2, 2
2819  for (unsigned i = 0; i < 2; ++i) {
2820    SDOperand Arg = N->getOperand(i);
2821    if (Arg.getOpcode() == ISD::UNDEF) continue;
2822    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2823    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2824    if (Val != 0) return false;
2825  }
2826
2827  bool HasHi = false;
2828  for (unsigned i = 2; i < 4; ++i) {
2829    SDOperand Arg = N->getOperand(i);
2830    if (Arg.getOpcode() == ISD::UNDEF) continue;
2831    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2832    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2833    if (Val != 2) return false;
2834    HasHi = true;
2835  }
2836
2837  // Don't use movshdup if it can be done with a shufps.
2838  return HasHi;
2839}
2840
2841/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2842/// a splat of a single element.
2843static bool isSplatMask(SDNode *N) {
2844  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2845
2846  // This is a splat operation if each element of the permute is the same, and
2847  // if the value doesn't reference the second vector.
2848  unsigned NumElems = N->getNumOperands();
2849  SDOperand ElementBase;
2850  unsigned i = 0;
2851  for (; i != NumElems; ++i) {
2852    SDOperand Elt = N->getOperand(i);
2853    if (isa<ConstantSDNode>(Elt)) {
2854      ElementBase = Elt;
2855      break;
2856    }
2857  }
2858
2859  if (!ElementBase.Val)
2860    return false;
2861
2862  for (; i != NumElems; ++i) {
2863    SDOperand Arg = N->getOperand(i);
2864    if (Arg.getOpcode() == ISD::UNDEF) continue;
2865    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2866    if (Arg != ElementBase) return false;
2867  }
2868
2869  // Make sure it is a splat of the first vector operand.
2870  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2871}
2872
2873/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2874/// a splat of a single element and it's a 2 or 4 element mask.
2875bool X86::isSplatMask(SDNode *N) {
2876  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2877
2878  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2879  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2880    return false;
2881  return ::isSplatMask(N);
2882}
2883
2884/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2885/// specifies a splat of zero element.
2886bool X86::isSplatLoMask(SDNode *N) {
2887  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2888
2889  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2890    if (!isUndefOrEqual(N->getOperand(i), 0))
2891      return false;
2892  return true;
2893}
2894
2895/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2896/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2897/// instructions.
2898unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2899  unsigned NumOperands = N->getNumOperands();
2900  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2901  unsigned Mask = 0;
2902  for (unsigned i = 0; i < NumOperands; ++i) {
2903    unsigned Val = 0;
2904    SDOperand Arg = N->getOperand(NumOperands-i-1);
2905    if (Arg.getOpcode() != ISD::UNDEF)
2906      Val = cast<ConstantSDNode>(Arg)->getValue();
2907    if (Val >= NumOperands) Val -= NumOperands;
2908    Mask |= Val;
2909    if (i != NumOperands - 1)
2910      Mask <<= Shift;
2911  }
2912
2913  return Mask;
2914}
2915
2916/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2917/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2918/// instructions.
2919unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2920  unsigned Mask = 0;
2921  // 8 nodes, but we only care about the last 4.
2922  for (unsigned i = 7; i >= 4; --i) {
2923    unsigned Val = 0;
2924    SDOperand Arg = N->getOperand(i);
2925    if (Arg.getOpcode() != ISD::UNDEF)
2926      Val = cast<ConstantSDNode>(Arg)->getValue();
2927    Mask |= (Val - 4);
2928    if (i != 4)
2929      Mask <<= 2;
2930  }
2931
2932  return Mask;
2933}
2934
2935/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2936/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2937/// instructions.
2938unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2939  unsigned Mask = 0;
2940  // 8 nodes, but we only care about the first 4.
2941  for (int i = 3; i >= 0; --i) {
2942    unsigned Val = 0;
2943    SDOperand Arg = N->getOperand(i);
2944    if (Arg.getOpcode() != ISD::UNDEF)
2945      Val = cast<ConstantSDNode>(Arg)->getValue();
2946    Mask |= Val;
2947    if (i != 0)
2948      Mask <<= 2;
2949  }
2950
2951  return Mask;
2952}
2953
2954/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2955/// specifies a 8 element shuffle that can be broken into a pair of
2956/// PSHUFHW and PSHUFLW.
2957static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2958  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2959
2960  if (N->getNumOperands() != 8)
2961    return false;
2962
2963  // Lower quadword shuffled.
2964  for (unsigned i = 0; i != 4; ++i) {
2965    SDOperand Arg = N->getOperand(i);
2966    if (Arg.getOpcode() == ISD::UNDEF) continue;
2967    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2968    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2969    if (Val > 4)
2970      return false;
2971  }
2972
2973  // Upper quadword shuffled.
2974  for (unsigned i = 4; i != 8; ++i) {
2975    SDOperand Arg = N->getOperand(i);
2976    if (Arg.getOpcode() == ISD::UNDEF) continue;
2977    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2978    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2979    if (Val < 4 || Val > 7)
2980      return false;
2981  }
2982
2983  return true;
2984}
2985
2986/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2987/// values in ther permute mask.
2988static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2989                                      SDOperand &V2, SDOperand &Mask,
2990                                      SelectionDAG &DAG) {
2991  MVT::ValueType VT = Op.getValueType();
2992  MVT::ValueType MaskVT = Mask.getValueType();
2993  MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT);
2994  unsigned NumElems = Mask.getNumOperands();
2995  std::vector<SDOperand> MaskVec;
2996
2997  for (unsigned i = 0; i != NumElems; ++i) {
2998    SDOperand Arg = Mask.getOperand(i);
2999    if (Arg.getOpcode() == ISD::UNDEF) {
3000      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
3001      continue;
3002    }
3003    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
3004    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
3005    if (Val < NumElems)
3006      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
3007    else
3008      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
3009  }
3010
3011  std::swap(V1, V2);
3012  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3013  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3014}
3015
3016/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3017/// match movhlps. The lower half elements should come from upper half of
3018/// V1 (and in order), and the upper half elements should come from the upper
3019/// half of V2 (and in order).
3020static bool ShouldXformToMOVHLPS(SDNode *Mask) {
3021  unsigned NumElems = Mask->getNumOperands();
3022  if (NumElems != 4)
3023    return false;
3024  for (unsigned i = 0, e = 2; i != e; ++i)
3025    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
3026      return false;
3027  for (unsigned i = 2; i != 4; ++i)
3028    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
3029      return false;
3030  return true;
3031}
3032
3033/// isScalarLoadToVector - Returns true if the node is a scalar load that
3034/// is promoted to a vector.
3035static inline bool isScalarLoadToVector(SDNode *N) {
3036  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
3037    N = N->getOperand(0).Val;
3038    return ISD::isNON_EXTLoad(N);
3039  }
3040  return false;
3041}
3042
3043/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3044/// match movlp{s|d}. The lower half elements should come from lower half of
3045/// V1 (and in order), and the upper half elements should come from the upper
3046/// half of V2 (and in order). And since V1 will become the source of the
3047/// MOVLP, it must be either a vector load or a scalar load to vector.
3048static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
3049  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3050    return false;
3051  // Is V2 is a vector load, don't do this transformation. We will try to use
3052  // load folding shufps op.
3053  if (ISD::isNON_EXTLoad(V2))
3054    return false;
3055
3056  unsigned NumElems = Mask->getNumOperands();
3057  if (NumElems != 2 && NumElems != 4)
3058    return false;
3059  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3060    if (!isUndefOrEqual(Mask->getOperand(i), i))
3061      return false;
3062  for (unsigned i = NumElems/2; i != NumElems; ++i)
3063    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
3064      return false;
3065  return true;
3066}
3067
3068/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3069/// all the same.
3070static bool isSplatVector(SDNode *N) {
3071  if (N->getOpcode() != ISD::BUILD_VECTOR)
3072    return false;
3073
3074  SDOperand SplatValue = N->getOperand(0);
3075  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3076    if (N->getOperand(i) != SplatValue)
3077      return false;
3078  return true;
3079}
3080
3081/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3082/// to an undef.
3083static bool isUndefShuffle(SDNode *N) {
3084  if (N->getOpcode() != ISD::BUILD_VECTOR)
3085    return false;
3086
3087  SDOperand V1 = N->getOperand(0);
3088  SDOperand V2 = N->getOperand(1);
3089  SDOperand Mask = N->getOperand(2);
3090  unsigned NumElems = Mask.getNumOperands();
3091  for (unsigned i = 0; i != NumElems; ++i) {
3092    SDOperand Arg = Mask.getOperand(i);
3093    if (Arg.getOpcode() != ISD::UNDEF) {
3094      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
3095      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
3096        return false;
3097      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
3098        return false;
3099    }
3100  }
3101  return true;
3102}
3103
3104/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3105/// that point to V2 points to its first element.
3106static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
3107  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
3108
3109  bool Changed = false;
3110  std::vector<SDOperand> MaskVec;
3111  unsigned NumElems = Mask.getNumOperands();
3112  for (unsigned i = 0; i != NumElems; ++i) {
3113    SDOperand Arg = Mask.getOperand(i);
3114    if (Arg.getOpcode() != ISD::UNDEF) {
3115      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
3116      if (Val > NumElems) {
3117        Arg = DAG.getConstant(NumElems, Arg.getValueType());
3118        Changed = true;
3119      }
3120    }
3121    MaskVec.push_back(Arg);
3122  }
3123
3124  if (Changed)
3125    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
3126                       &MaskVec[0], MaskVec.size());
3127  return Mask;
3128}
3129
3130/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3131/// operation of specified width.
3132static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
3133  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3134  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3135
3136  std::vector<SDOperand> MaskVec;
3137  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
3138  for (unsigned i = 1; i != NumElems; ++i)
3139    MaskVec.push_back(DAG.getConstant(i, BaseVT));
3140  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3141}
3142
3143/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
3144/// of specified width.
3145static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
3146  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3147  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3148  std::vector<SDOperand> MaskVec;
3149  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3150    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
3151    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
3152  }
3153  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3154}
3155
3156/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
3157/// of specified width.
3158static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
3159  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3160  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3161  unsigned Half = NumElems/2;
3162  std::vector<SDOperand> MaskVec;
3163  for (unsigned i = 0; i != Half; ++i) {
3164    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
3165    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
3166  }
3167  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3168}
3169
3170/// getZeroVector - Returns a vector of specified type with all zero elements.
3171///
3172static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
3173  assert(MVT::isVector(VT) && "Expected a vector type");
3174  unsigned NumElems = getVectorNumElements(VT);
3175  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
3176  bool isFP = MVT::isFloatingPoint(EVT);
3177  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
3178  std::vector<SDOperand> ZeroVec(NumElems, Zero);
3179  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
3180}
3181
3182/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
3183///
3184static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
3185  SDOperand V1 = Op.getOperand(0);
3186  SDOperand Mask = Op.getOperand(2);
3187  MVT::ValueType VT = Op.getValueType();
3188  unsigned NumElems = Mask.getNumOperands();
3189  Mask = getUnpacklMask(NumElems, DAG);
3190  while (NumElems != 4) {
3191    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
3192    NumElems >>= 1;
3193  }
3194  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
3195
3196  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3197  Mask = getZeroVector(MaskVT, DAG);
3198  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
3199                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
3200  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3201}
3202
3203/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3204/// constant +0.0.
3205static inline bool isZeroNode(SDOperand Elt) {
3206  return ((isa<ConstantSDNode>(Elt) &&
3207           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
3208          (isa<ConstantFPSDNode>(Elt) &&
3209           cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
3210}
3211
3212/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3213/// vector and zero or undef vector.
3214static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
3215                                             unsigned NumElems, unsigned Idx,
3216                                             bool isZero, SelectionDAG &DAG) {
3217  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
3218  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3219  MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
3220  SDOperand Zero = DAG.getConstant(0, EVT);
3221  std::vector<SDOperand> MaskVec(NumElems, Zero);
3222  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
3223  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3224                               &MaskVec[0], MaskVec.size());
3225  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3226}
3227
3228/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3229///
3230static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
3231                                       unsigned NumNonZero, unsigned NumZero,
3232                                       SelectionDAG &DAG, TargetLowering &TLI) {
3233  if (NumNonZero > 8)
3234    return SDOperand();
3235
3236  SDOperand V(0, 0);
3237  bool First = true;
3238  for (unsigned i = 0; i < 16; ++i) {
3239    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3240    if (ThisIsNonZero && First) {
3241      if (NumZero)
3242        V = getZeroVector(MVT::v8i16, DAG);
3243      else
3244        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3245      First = false;
3246    }
3247
3248    if ((i & 1) != 0) {
3249      SDOperand ThisElt(0, 0), LastElt(0, 0);
3250      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3251      if (LastIsNonZero) {
3252        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3253      }
3254      if (ThisIsNonZero) {
3255        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3256        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3257                              ThisElt, DAG.getConstant(8, MVT::i8));
3258        if (LastIsNonZero)
3259          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3260      } else
3261        ThisElt = LastElt;
3262
3263      if (ThisElt.Val)
3264        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3265                        DAG.getConstant(i/2, TLI.getPointerTy()));
3266    }
3267  }
3268
3269  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3270}
3271
3272/// LowerBuildVectorv16i8 - Custom lower build_vector of v8i16.
3273///
3274static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3275                                       unsigned NumNonZero, unsigned NumZero,
3276                                       SelectionDAG &DAG, TargetLowering &TLI) {
3277  if (NumNonZero > 4)
3278    return SDOperand();
3279
3280  SDOperand V(0, 0);
3281  bool First = true;
3282  for (unsigned i = 0; i < 8; ++i) {
3283    bool isNonZero = (NonZeros & (1 << i)) != 0;
3284    if (isNonZero) {
3285      if (First) {
3286        if (NumZero)
3287          V = getZeroVector(MVT::v8i16, DAG);
3288        else
3289          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3290        First = false;
3291      }
3292      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3293                      DAG.getConstant(i, TLI.getPointerTy()));
3294    }
3295  }
3296
3297  return V;
3298}
3299
3300SDOperand
3301X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3302  // All zero's are handled with pxor.
3303  if (ISD::isBuildVectorAllZeros(Op.Val))
3304    return Op;
3305
3306  // All one's are handled with pcmpeqd.
3307  if (ISD::isBuildVectorAllOnes(Op.Val))
3308    return Op;
3309
3310  MVT::ValueType VT = Op.getValueType();
3311  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
3312  unsigned EVTBits = MVT::getSizeInBits(EVT);
3313
3314  unsigned NumElems = Op.getNumOperands();
3315  unsigned NumZero  = 0;
3316  unsigned NumNonZero = 0;
3317  unsigned NonZeros = 0;
3318  std::set<SDOperand> Values;
3319  for (unsigned i = 0; i < NumElems; ++i) {
3320    SDOperand Elt = Op.getOperand(i);
3321    if (Elt.getOpcode() != ISD::UNDEF) {
3322      Values.insert(Elt);
3323      if (isZeroNode(Elt))
3324        NumZero++;
3325      else {
3326        NonZeros |= (1 << i);
3327        NumNonZero++;
3328      }
3329    }
3330  }
3331
3332  if (NumNonZero == 0)
3333    // Must be a mix of zero and undef. Return a zero vector.
3334    return getZeroVector(VT, DAG);
3335
3336  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3337  if (Values.size() == 1)
3338    return SDOperand();
3339
3340  // Special case for single non-zero element.
3341  if (NumNonZero == 1) {
3342    unsigned Idx = CountTrailingZeros_32(NonZeros);
3343    SDOperand Item = Op.getOperand(Idx);
3344    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3345    if (Idx == 0)
3346      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3347      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
3348                                         NumZero > 0, DAG);
3349
3350    if (EVTBits == 32) {
3351      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3352      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
3353                                         DAG);
3354      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3355      MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
3356      std::vector<SDOperand> MaskVec;
3357      for (unsigned i = 0; i < NumElems; i++)
3358        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3359      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3360                                   &MaskVec[0], MaskVec.size());
3361      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3362                         DAG.getNode(ISD::UNDEF, VT), Mask);
3363    }
3364  }
3365
3366  // Let legalizer expand 2-wide build_vector's.
3367  if (EVTBits == 64)
3368    return SDOperand();
3369
3370  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3371  if (EVTBits == 8) {
3372    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3373                                        *this);
3374    if (V.Val) return V;
3375  }
3376
3377  if (EVTBits == 16) {
3378    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3379                                        *this);
3380    if (V.Val) return V;
3381  }
3382
3383  // If element VT is == 32 bits, turn it into a number of shuffles.
3384  std::vector<SDOperand> V(NumElems);
3385  if (NumElems == 4 && NumZero > 0) {
3386    for (unsigned i = 0; i < 4; ++i) {
3387      bool isZero = !(NonZeros & (1 << i));
3388      if (isZero)
3389        V[i] = getZeroVector(VT, DAG);
3390      else
3391        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3392    }
3393
3394    for (unsigned i = 0; i < 2; ++i) {
3395      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3396        default: break;
3397        case 0:
3398          V[i] = V[i*2];  // Must be a zero vector.
3399          break;
3400        case 1:
3401          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3402                             getMOVLMask(NumElems, DAG));
3403          break;
3404        case 2:
3405          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3406                             getMOVLMask(NumElems, DAG));
3407          break;
3408        case 3:
3409          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3410                             getUnpacklMask(NumElems, DAG));
3411          break;
3412      }
3413    }
3414
3415    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3416    // clears the upper bits.
3417    // FIXME: we can do the same for v4f32 case when we know both parts of
3418    // the lower half come from scalar_to_vector (loadf32). We should do
3419    // that in post legalizer dag combiner with target specific hooks.
3420    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3421      return V[0];
3422    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3423    MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
3424    std::vector<SDOperand> MaskVec;
3425    bool Reverse = (NonZeros & 0x3) == 2;
3426    for (unsigned i = 0; i < 2; ++i)
3427      if (Reverse)
3428        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3429      else
3430        MaskVec.push_back(DAG.getConstant(i, EVT));
3431    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3432    for (unsigned i = 0; i < 2; ++i)
3433      if (Reverse)
3434        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3435      else
3436        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3437    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3438                                     &MaskVec[0], MaskVec.size());
3439    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3440  }
3441
3442  if (Values.size() > 2) {
3443    // Expand into a number of unpckl*.
3444    // e.g. for v4f32
3445    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3446    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3447    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3448    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3449    for (unsigned i = 0; i < NumElems; ++i)
3450      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3451    NumElems >>= 1;
3452    while (NumElems != 0) {
3453      for (unsigned i = 0; i < NumElems; ++i)
3454        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3455                           UnpckMask);
3456      NumElems >>= 1;
3457    }
3458    return V[0];
3459  }
3460
3461  return SDOperand();
3462}
3463
3464SDOperand
3465X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3466  SDOperand V1 = Op.getOperand(0);
3467  SDOperand V2 = Op.getOperand(1);
3468  SDOperand PermMask = Op.getOperand(2);
3469  MVT::ValueType VT = Op.getValueType();
3470  unsigned NumElems = PermMask.getNumOperands();
3471  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3472  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3473  bool V1IsSplat = false;
3474  bool V2IsSplat = false;
3475
3476  if (isUndefShuffle(Op.Val))
3477    return DAG.getNode(ISD::UNDEF, VT);
3478
3479  if (isSplatMask(PermMask.Val)) {
3480    if (NumElems <= 4) return Op;
3481    // Promote it to a v4i32 splat.
3482    return PromoteSplat(Op, DAG);
3483  }
3484
3485  if (X86::isMOVLMask(PermMask.Val))
3486    return (V1IsUndef) ? V2 : Op;
3487
3488  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3489      X86::isMOVSLDUPMask(PermMask.Val) ||
3490      X86::isMOVHLPSMask(PermMask.Val) ||
3491      X86::isMOVHPMask(PermMask.Val) ||
3492      X86::isMOVLPMask(PermMask.Val))
3493    return Op;
3494
3495  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3496      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3497    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3498
3499  bool Commuted = false;
3500  V1IsSplat = isSplatVector(V1.Val);
3501  V2IsSplat = isSplatVector(V2.Val);
3502  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3503    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3504    std::swap(V1IsSplat, V2IsSplat);
3505    std::swap(V1IsUndef, V2IsUndef);
3506    Commuted = true;
3507  }
3508
3509  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3510    if (V2IsUndef) return V1;
3511    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3512    if (V2IsSplat) {
3513      // V2 is a splat, so the mask may be malformed. That is, it may point
3514      // to any V2 element. The instruction selectior won't like this. Get
3515      // a corrected mask and commute to form a proper MOVS{S|D}.
3516      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3517      if (NewMask.Val != PermMask.Val)
3518        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3519    }
3520    return Op;
3521  }
3522
3523  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3524      X86::isUNPCKLMask(PermMask.Val) ||
3525      X86::isUNPCKHMask(PermMask.Val))
3526    return Op;
3527
3528  if (V2IsSplat) {
3529    // Normalize mask so all entries that point to V2 points to its first
3530    // element then try to match unpck{h|l} again. If match, return a
3531    // new vector_shuffle with the corrected mask.
3532    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3533    if (NewMask.Val != PermMask.Val) {
3534      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3535        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3536        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3537      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3538        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3539        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3540      }
3541    }
3542  }
3543
3544  // Normalize the node to match x86 shuffle ops if needed
3545  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3546      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3547
3548  if (Commuted) {
3549    // Commute is back and try unpck* again.
3550    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3551    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3552        X86::isUNPCKLMask(PermMask.Val) ||
3553        X86::isUNPCKHMask(PermMask.Val))
3554      return Op;
3555  }
3556
3557  // If VT is integer, try PSHUF* first, then SHUFP*.
3558  if (MVT::isInteger(VT)) {
3559    if (X86::isPSHUFDMask(PermMask.Val) ||
3560        X86::isPSHUFHWMask(PermMask.Val) ||
3561        X86::isPSHUFLWMask(PermMask.Val)) {
3562      if (V2.getOpcode() != ISD::UNDEF)
3563        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3564                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3565      return Op;
3566    }
3567
3568    if (X86::isSHUFPMask(PermMask.Val))
3569      return Op;
3570
3571    // Handle v8i16 shuffle high / low shuffle node pair.
3572    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
3573      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3574      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3575      std::vector<SDOperand> MaskVec;
3576      for (unsigned i = 0; i != 4; ++i)
3577        MaskVec.push_back(PermMask.getOperand(i));
3578      for (unsigned i = 4; i != 8; ++i)
3579        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3580      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3581                                   &MaskVec[0], MaskVec.size());
3582      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3583      MaskVec.clear();
3584      for (unsigned i = 0; i != 4; ++i)
3585        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3586      for (unsigned i = 4; i != 8; ++i)
3587        MaskVec.push_back(PermMask.getOperand(i));
3588      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
3589      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3590    }
3591  } else {
3592    // Floating point cases in the other order.
3593    if (X86::isSHUFPMask(PermMask.Val))
3594      return Op;
3595    if (X86::isPSHUFDMask(PermMask.Val) ||
3596        X86::isPSHUFHWMask(PermMask.Val) ||
3597        X86::isPSHUFLWMask(PermMask.Val)) {
3598      if (V2.getOpcode() != ISD::UNDEF)
3599        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3600                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3601      return Op;
3602    }
3603  }
3604
3605  if (NumElems == 4) {
3606    MVT::ValueType MaskVT = PermMask.getValueType();
3607    MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
3608    std::vector<std::pair<int, int> > Locs;
3609    Locs.reserve(NumElems);
3610    std::vector<SDOperand> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3611    std::vector<SDOperand> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3612    unsigned NumHi = 0;
3613    unsigned NumLo = 0;
3614    // If no more than two elements come from either vector. This can be
3615    // implemented with two shuffles. First shuffle gather the elements.
3616    // The second shuffle, which takes the first shuffle as both of its
3617    // vector operands, put the elements into the right order.
3618    for (unsigned i = 0; i != NumElems; ++i) {
3619      SDOperand Elt = PermMask.getOperand(i);
3620      if (Elt.getOpcode() == ISD::UNDEF) {
3621        Locs[i] = std::make_pair(-1, -1);
3622      } else {
3623        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3624        if (Val < NumElems) {
3625          Locs[i] = std::make_pair(0, NumLo);
3626          Mask1[NumLo] = Elt;
3627          NumLo++;
3628        } else {
3629          Locs[i] = std::make_pair(1, NumHi);
3630          if (2+NumHi < NumElems)
3631            Mask1[2+NumHi] = Elt;
3632          NumHi++;
3633        }
3634      }
3635    }
3636    if (NumLo <= 2 && NumHi <= 2) {
3637      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3638                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3639                                   &Mask1[0], Mask1.size()));
3640      for (unsigned i = 0; i != NumElems; ++i) {
3641        if (Locs[i].first == -1)
3642          continue;
3643        else {
3644          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3645          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3646          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3647        }
3648      }
3649
3650      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3651                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3652                                     &Mask2[0], Mask2.size()));
3653    }
3654
3655    // Break it into (shuffle shuffle_hi, shuffle_lo).
3656    Locs.clear();
3657    std::vector<SDOperand> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3658    std::vector<SDOperand> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3659    std::vector<SDOperand> *MaskPtr = &LoMask;
3660    unsigned MaskIdx = 0;
3661    unsigned LoIdx = 0;
3662    unsigned HiIdx = NumElems/2;
3663    for (unsigned i = 0; i != NumElems; ++i) {
3664      if (i == NumElems/2) {
3665        MaskPtr = &HiMask;
3666        MaskIdx = 1;
3667        LoIdx = 0;
3668        HiIdx = NumElems/2;
3669      }
3670      SDOperand Elt = PermMask.getOperand(i);
3671      if (Elt.getOpcode() == ISD::UNDEF) {
3672        Locs[i] = std::make_pair(-1, -1);
3673      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3674        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3675        (*MaskPtr)[LoIdx] = Elt;
3676        LoIdx++;
3677      } else {
3678        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3679        (*MaskPtr)[HiIdx] = Elt;
3680        HiIdx++;
3681      }
3682    }
3683
3684    SDOperand LoShuffle =
3685      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3686                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3687                              &LoMask[0], LoMask.size()));
3688    SDOperand HiShuffle =
3689      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3690                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3691                              &HiMask[0], HiMask.size()));
3692    std::vector<SDOperand> MaskOps;
3693    for (unsigned i = 0; i != NumElems; ++i) {
3694      if (Locs[i].first == -1) {
3695        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3696      } else {
3697        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3698        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3699      }
3700    }
3701    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3702                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3703                                   &MaskOps[0], MaskOps.size()));
3704  }
3705
3706  return SDOperand();
3707}
3708
3709SDOperand
3710X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3711  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3712    return SDOperand();
3713
3714  MVT::ValueType VT = Op.getValueType();
3715  // TODO: handle v16i8.
3716  if (MVT::getSizeInBits(VT) == 16) {
3717    // Transform it so it match pextrw which produces a 32-bit result.
3718    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3719    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3720                                    Op.getOperand(0), Op.getOperand(1));
3721    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3722                                    DAG.getValueType(VT));
3723    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3724  } else if (MVT::getSizeInBits(VT) == 32) {
3725    SDOperand Vec = Op.getOperand(0);
3726    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3727    if (Idx == 0)
3728      return Op;
3729    // SHUFPS the element to the lowest double word, then movss.
3730    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3731    std::vector<SDOperand> IdxVec;
3732    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT)));
3733    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3734    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3735    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3736    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3737                                 &IdxVec[0], IdxVec.size());
3738    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3739                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3740    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3741                       DAG.getConstant(0, getPointerTy()));
3742  } else if (MVT::getSizeInBits(VT) == 64) {
3743    SDOperand Vec = Op.getOperand(0);
3744    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3745    if (Idx == 0)
3746      return Op;
3747
3748    // UNPCKHPD the element to the lowest double word, then movsd.
3749    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3750    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3751    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3752    std::vector<SDOperand> IdxVec;
3753    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT)));
3754    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3755    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3756                                 &IdxVec[0], IdxVec.size());
3757    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3758                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3759    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3760                       DAG.getConstant(0, getPointerTy()));
3761  }
3762
3763  return SDOperand();
3764}
3765
3766SDOperand
3767X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3768  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3769  // as its second argument.
3770  MVT::ValueType VT = Op.getValueType();
3771  MVT::ValueType BaseVT = MVT::getVectorBaseType(VT);
3772  SDOperand N0 = Op.getOperand(0);
3773  SDOperand N1 = Op.getOperand(1);
3774  SDOperand N2 = Op.getOperand(2);
3775  if (MVT::getSizeInBits(BaseVT) == 16) {
3776    if (N1.getValueType() != MVT::i32)
3777      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3778    if (N2.getValueType() != MVT::i32)
3779      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32);
3780    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3781  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3782    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3783    if (Idx == 0) {
3784      // Use a movss.
3785      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3786      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3787      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3788      std::vector<SDOperand> MaskVec;
3789      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3790      for (unsigned i = 1; i <= 3; ++i)
3791        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3792      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3793                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3794                                     &MaskVec[0], MaskVec.size()));
3795    } else {
3796      // Use two pinsrw instructions to insert a 32 bit value.
3797      Idx <<= 1;
3798      if (MVT::isFloatingPoint(N1.getValueType())) {
3799        if (ISD::isNON_EXTLoad(N1.Val)) {
3800          // Just load directly from f32mem to GR32.
3801          LoadSDNode *LD = cast<LoadSDNode>(N1);
3802          N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(),
3803                           LD->getSrcValue(), LD->getSrcValueOffset());
3804        } else {
3805          N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3806          N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3807          N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3808                           DAG.getConstant(0, getPointerTy()));
3809        }
3810      }
3811      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3812      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3813                       DAG.getConstant(Idx, getPointerTy()));
3814      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3815      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3816                       DAG.getConstant(Idx+1, getPointerTy()));
3817      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3818    }
3819  }
3820
3821  return SDOperand();
3822}
3823
3824SDOperand
3825X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3826  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3827  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3828}
3829
3830// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3831// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3832// one of the above mentioned nodes. It has to be wrapped because otherwise
3833// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3834// be used to form addressing mode. These wrapped nodes will be selected
3835// into MOV32ri.
3836SDOperand
3837X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3838  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3839  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3840                                               getPointerTy(),
3841                                               CP->getAlignment());
3842  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3843  if (Subtarget->isTargetDarwin()) {
3844    // With PIC, the address is actually $g + Offset.
3845    if (!Subtarget->is64Bit() &&
3846        getTargetMachine().getRelocationModel() == Reloc::PIC_)
3847      Result = DAG.getNode(ISD::ADD, getPointerTy(),
3848                    DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result);
3849  }
3850
3851  return Result;
3852}
3853
3854SDOperand
3855X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3856  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3857  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3858  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3859  if (Subtarget->isTargetDarwin()) {
3860    // With PIC, the address is actually $g + Offset.
3861    if (!Subtarget->is64Bit() &&
3862        getTargetMachine().getRelocationModel() == Reloc::PIC_)
3863      Result = DAG.getNode(ISD::ADD, getPointerTy(),
3864                           DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3865                           Result);
3866
3867    // For Darwin, external and weak symbols are indirect, so we want to load
3868    // the value at address GV, not the value of GV itself. This means that
3869    // the GlobalAddress must be in the base or index register of the address,
3870    // not the GV offset field.
3871    if (getTargetMachine().getRelocationModel() != Reloc::Static &&
3872        Subtarget->GVRequiresExtraLoad(GV, false))
3873      Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3874  } else if (Subtarget->GVRequiresExtraLoad(GV, false)) {
3875    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3876  }
3877
3878  return Result;
3879}
3880
3881SDOperand
3882X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3883  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3884  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3885  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3886  if (Subtarget->isTargetDarwin()) {
3887    // With PIC, the address is actually $g + Offset.
3888    if (!Subtarget->is64Bit() &&
3889        getTargetMachine().getRelocationModel() == Reloc::PIC_)
3890      Result = DAG.getNode(ISD::ADD, getPointerTy(),
3891                           DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3892                           Result);
3893  }
3894
3895  return Result;
3896}
3897
3898SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3899    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3900           "Not an i64 shift!");
3901    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3902    SDOperand ShOpLo = Op.getOperand(0);
3903    SDOperand ShOpHi = Op.getOperand(1);
3904    SDOperand ShAmt  = Op.getOperand(2);
3905    SDOperand Tmp1 = isSRA ?
3906      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3907      DAG.getConstant(0, MVT::i32);
3908
3909    SDOperand Tmp2, Tmp3;
3910    if (Op.getOpcode() == ISD::SHL_PARTS) {
3911      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3912      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3913    } else {
3914      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3915      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3916    }
3917
3918    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3919    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3920                                    DAG.getConstant(32, MVT::i8));
3921    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3922    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3923
3924    SDOperand Hi, Lo;
3925    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3926
3927    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3928    SmallVector<SDOperand, 4> Ops;
3929    if (Op.getOpcode() == ISD::SHL_PARTS) {
3930      Ops.push_back(Tmp2);
3931      Ops.push_back(Tmp3);
3932      Ops.push_back(CC);
3933      Ops.push_back(InFlag);
3934      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3935      InFlag = Hi.getValue(1);
3936
3937      Ops.clear();
3938      Ops.push_back(Tmp3);
3939      Ops.push_back(Tmp1);
3940      Ops.push_back(CC);
3941      Ops.push_back(InFlag);
3942      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3943    } else {
3944      Ops.push_back(Tmp2);
3945      Ops.push_back(Tmp3);
3946      Ops.push_back(CC);
3947      Ops.push_back(InFlag);
3948      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3949      InFlag = Lo.getValue(1);
3950
3951      Ops.clear();
3952      Ops.push_back(Tmp3);
3953      Ops.push_back(Tmp1);
3954      Ops.push_back(CC);
3955      Ops.push_back(InFlag);
3956      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3957    }
3958
3959    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3960    Ops.clear();
3961    Ops.push_back(Lo);
3962    Ops.push_back(Hi);
3963    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3964}
3965
3966SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3967  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3968         Op.getOperand(0).getValueType() >= MVT::i16 &&
3969         "Unknown SINT_TO_FP to lower!");
3970
3971  SDOperand Result;
3972  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3973  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3974  MachineFunction &MF = DAG.getMachineFunction();
3975  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3976  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3977  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3978                                 StackSlot, NULL, 0);
3979
3980  // Build the FILD
3981  std::vector<MVT::ValueType> Tys;
3982  Tys.push_back(MVT::f64);
3983  Tys.push_back(MVT::Other);
3984  if (X86ScalarSSE) Tys.push_back(MVT::Flag);
3985  std::vector<SDOperand> Ops;
3986  Ops.push_back(Chain);
3987  Ops.push_back(StackSlot);
3988  Ops.push_back(DAG.getValueType(SrcVT));
3989  Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3990                       Tys, &Ops[0], Ops.size());
3991
3992  if (X86ScalarSSE) {
3993    Chain = Result.getValue(1);
3994    SDOperand InFlag = Result.getValue(2);
3995
3996    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3997    // shouldn't be necessary except that RFP cannot be live across
3998    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3999    MachineFunction &MF = DAG.getMachineFunction();
4000    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4001    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4002    std::vector<MVT::ValueType> Tys;
4003    Tys.push_back(MVT::Other);
4004    std::vector<SDOperand> Ops;
4005    Ops.push_back(Chain);
4006    Ops.push_back(Result);
4007    Ops.push_back(StackSlot);
4008    Ops.push_back(DAG.getValueType(Op.getValueType()));
4009    Ops.push_back(InFlag);
4010    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4011    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
4012  }
4013
4014  return Result;
4015}
4016
4017SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
4018  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
4019         "Unknown FP_TO_SINT to lower!");
4020  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4021  // stack slot.
4022  MachineFunction &MF = DAG.getMachineFunction();
4023  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
4024  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4025  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4026
4027  unsigned Opc;
4028  switch (Op.getValueType()) {
4029    default: assert(0 && "Invalid FP_TO_SINT to lower!");
4030    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4031    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4032    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4033  }
4034
4035  SDOperand Chain = DAG.getEntryNode();
4036  SDOperand Value = Op.getOperand(0);
4037  if (X86ScalarSSE) {
4038    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4039    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
4040    std::vector<MVT::ValueType> Tys;
4041    Tys.push_back(MVT::f64);
4042    Tys.push_back(MVT::Other);
4043    std::vector<SDOperand> Ops;
4044    Ops.push_back(Chain);
4045    Ops.push_back(StackSlot);
4046    Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType()));
4047    Value = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size());
4048    Chain = Value.getValue(1);
4049    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4050    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4051  }
4052
4053  // Build the FP_TO_INT*_IN_MEM
4054  std::vector<SDOperand> Ops;
4055  Ops.push_back(Chain);
4056  Ops.push_back(Value);
4057  Ops.push_back(StackSlot);
4058  SDOperand FIST = DAG.getNode(Opc, MVT::Other, &Ops[0], Ops.size());
4059
4060  // Load the result.
4061  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4062}
4063
4064SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4065  MVT::ValueType VT = Op.getValueType();
4066  const Type *OpNTy =  MVT::getTypeForValueType(VT);
4067  std::vector<Constant*> CV;
4068  if (VT == MVT::f64) {
4069    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
4070    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4071  } else {
4072    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
4073    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4074    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4075    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4076  }
4077  Constant *CS = ConstantStruct::get(CV);
4078  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
4079  std::vector<MVT::ValueType> Tys;
4080  Tys.push_back(VT);
4081  Tys.push_back(MVT::Other);
4082  SmallVector<SDOperand, 3> Ops;
4083  Ops.push_back(DAG.getEntryNode());
4084  Ops.push_back(CPIdx);
4085  Ops.push_back(DAG.getSrcValue(NULL));
4086  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
4087  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4088}
4089
4090SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4091  MVT::ValueType VT = Op.getValueType();
4092  const Type *OpNTy =  MVT::getTypeForValueType(VT);
4093  std::vector<Constant*> CV;
4094  if (VT == MVT::f64) {
4095    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
4096    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4097  } else {
4098    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
4099    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4100    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4101    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4102  }
4103  Constant *CS = ConstantStruct::get(CV);
4104  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
4105  std::vector<MVT::ValueType> Tys;
4106  Tys.push_back(VT);
4107  Tys.push_back(MVT::Other);
4108  SmallVector<SDOperand, 3> Ops;
4109  Ops.push_back(DAG.getEntryNode());
4110  Ops.push_back(CPIdx);
4111  Ops.push_back(DAG.getSrcValue(NULL));
4112  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
4113  return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4114}
4115
4116SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
4117                                        SDOperand Chain) {
4118  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4119  SDOperand Cond;
4120  SDOperand Op0 = Op.getOperand(0);
4121  SDOperand Op1 = Op.getOperand(1);
4122  SDOperand CC = Op.getOperand(2);
4123  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4124  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4125  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4126  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4127  unsigned X86CC;
4128
4129  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4130                     Op0, Op1, DAG)) {
4131    SDOperand Ops1[] = { Chain, Op0, Op1 };
4132    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
4133    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4134    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
4135  }
4136
4137  assert(isFP && "Illegal integer SetCC!");
4138
4139  SDOperand COps[] = { Chain, Op0, Op1 };
4140  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
4141
4142  switch (SetCCOpcode) {
4143  default: assert(false && "Illegal floating point SetCC!");
4144  case ISD::SETOEQ: {  // !PF & ZF
4145    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
4146    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
4147    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
4148                         Tmp1.getValue(1) };
4149    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
4150    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4151  }
4152  case ISD::SETUNE: {  // PF | !ZF
4153    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
4154    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
4155    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
4156                         Tmp1.getValue(1) };
4157    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
4158    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4159  }
4160  }
4161}
4162
4163SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4164  bool addTest = true;
4165  SDOperand Chain = DAG.getEntryNode();
4166  SDOperand Cond  = Op.getOperand(0);
4167  SDOperand CC;
4168  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4169
4170  if (Cond.getOpcode() == ISD::SETCC)
4171    Cond = LowerSETCC(Cond, DAG, Chain);
4172
4173  if (Cond.getOpcode() == X86ISD::SETCC) {
4174    CC = Cond.getOperand(0);
4175
4176    // If condition flag is set by a X86ISD::CMP, then make a copy of it
4177    // (since flag operand cannot be shared). Use it as the condition setting
4178    // operand in place of the X86ISD::SETCC.
4179    // If the X86ISD::SETCC has more than one use, then perhaps it's better
4180    // to use a test instead of duplicating the X86ISD::CMP (for register
4181    // pressure reason)?
4182    SDOperand Cmp = Cond.getOperand(1);
4183    unsigned Opc = Cmp.getOpcode();
4184    bool IllegalFPCMov = !X86ScalarSSE &&
4185      MVT::isFloatingPoint(Op.getValueType()) &&
4186      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4187    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
4188        !IllegalFPCMov) {
4189      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
4190      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
4191      addTest = false;
4192    }
4193  }
4194
4195  if (addTest) {
4196    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4197    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
4198    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
4199  }
4200
4201  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
4202  SmallVector<SDOperand, 4> Ops;
4203  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4204  // condition is true.
4205  Ops.push_back(Op.getOperand(2));
4206  Ops.push_back(Op.getOperand(1));
4207  Ops.push_back(CC);
4208  Ops.push_back(Cond.getValue(1));
4209  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4210}
4211
4212SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4213  bool addTest = true;
4214  SDOperand Chain = Op.getOperand(0);
4215  SDOperand Cond  = Op.getOperand(1);
4216  SDOperand Dest  = Op.getOperand(2);
4217  SDOperand CC;
4218  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4219
4220  if (Cond.getOpcode() == ISD::SETCC)
4221    Cond = LowerSETCC(Cond, DAG, Chain);
4222
4223  if (Cond.getOpcode() == X86ISD::SETCC) {
4224    CC = Cond.getOperand(0);
4225
4226    // If condition flag is set by a X86ISD::CMP, then make a copy of it
4227    // (since flag operand cannot be shared). Use it as the condition setting
4228    // operand in place of the X86ISD::SETCC.
4229    // If the X86ISD::SETCC has more than one use, then perhaps it's better
4230    // to use a test instead of duplicating the X86ISD::CMP (for register
4231    // pressure reason)?
4232    SDOperand Cmp = Cond.getOperand(1);
4233    unsigned Opc = Cmp.getOpcode();
4234    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
4235      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
4236      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
4237      addTest = false;
4238    }
4239  }
4240
4241  if (addTest) {
4242    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4243    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
4244    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
4245  }
4246  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4247                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
4248}
4249
4250SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
4251  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4252  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4253  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4254  if (Subtarget->isTargetDarwin()) {
4255    // With PIC, the address is actually $g + Offset.
4256    if (!Subtarget->is64Bit() &&
4257        getTargetMachine().getRelocationModel() == Reloc::PIC_)
4258      Result = DAG.getNode(ISD::ADD, getPointerTy(),
4259                           DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4260                           Result);
4261  }
4262
4263  return Result;
4264}
4265
4266SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
4267  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4268
4269  if (Subtarget->is64Bit())
4270    return LowerX86_64CCCCallTo(Op, DAG);
4271  else
4272    switch (CallingConv) {
4273    default:
4274      assert(0 && "Unsupported calling convention");
4275    case CallingConv::Fast:
4276      if (EnableFastCC) {
4277        return LowerFastCCCallTo(Op, DAG, false);
4278      }
4279      // Falls through
4280    case CallingConv::C:
4281    case CallingConv::CSRet:
4282      return LowerCCCCallTo(Op, DAG);
4283    case CallingConv::X86_StdCall:
4284      return LowerStdCallCCCallTo(Op, DAG);
4285    case CallingConv::X86_FastCall:
4286      return LowerFastCCCallTo(Op, DAG, true);
4287    }
4288}
4289
4290SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
4291  SDOperand Copy;
4292
4293  switch(Op.getNumOperands()) {
4294    default:
4295      assert(0 && "Do not know how to return this many arguments!");
4296      abort();
4297    case 1:    // ret void.
4298      return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0),
4299                        DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
4300    case 3: {
4301      MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
4302
4303      if (MVT::isVector(ArgVT) ||
4304          (Subtarget->is64Bit() && MVT::isFloatingPoint(ArgVT))) {
4305        // Integer or FP vector result -> XMM0.
4306        if (DAG.getMachineFunction().liveout_empty())
4307          DAG.getMachineFunction().addLiveOut(X86::XMM0);
4308        Copy = DAG.getCopyToReg(Op.getOperand(0), X86::XMM0, Op.getOperand(1),
4309                                SDOperand());
4310      } else if (MVT::isInteger(ArgVT)) {
4311        // Integer result -> EAX / RAX.
4312        // The C calling convention guarantees the return value has been
4313        // promoted to at least MVT::i32. The X86-64 ABI doesn't require the
4314        // value to be promoted MVT::i64. So we don't have to extend it to
4315        // 64-bit. Return the value in EAX, but mark RAX as liveout.
4316        unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
4317        if (DAG.getMachineFunction().liveout_empty())
4318          DAG.getMachineFunction().addLiveOut(Reg);
4319
4320        Reg = (ArgVT == MVT::i64) ? X86::RAX : X86::EAX;
4321        Copy = DAG.getCopyToReg(Op.getOperand(0), Reg, Op.getOperand(1),
4322                                SDOperand());
4323      } else if (!X86ScalarSSE) {
4324        // FP return with fp-stack value.
4325        if (DAG.getMachineFunction().liveout_empty())
4326          DAG.getMachineFunction().addLiveOut(X86::ST0);
4327
4328        std::vector<MVT::ValueType> Tys;
4329        Tys.push_back(MVT::Other);
4330        Tys.push_back(MVT::Flag);
4331        std::vector<SDOperand> Ops;
4332        Ops.push_back(Op.getOperand(0));
4333        Ops.push_back(Op.getOperand(1));
4334        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size());
4335      } else {
4336        // FP return with ScalarSSE (return on fp-stack).
4337        if (DAG.getMachineFunction().liveout_empty())
4338          DAG.getMachineFunction().addLiveOut(X86::ST0);
4339
4340        SDOperand MemLoc;
4341        SDOperand Chain = Op.getOperand(0);
4342        SDOperand Value = Op.getOperand(1);
4343
4344        if (ISD::isNON_EXTLoad(Value.Val) &&
4345            (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
4346          Chain  = Value.getOperand(0);
4347          MemLoc = Value.getOperand(1);
4348        } else {
4349          // Spill the value to memory and reload it into top of stack.
4350          unsigned Size = MVT::getSizeInBits(ArgVT)/8;
4351          MachineFunction &MF = DAG.getMachineFunction();
4352          int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4353          MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
4354          Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
4355        }
4356        std::vector<MVT::ValueType> Tys;
4357        Tys.push_back(MVT::f64);
4358        Tys.push_back(MVT::Other);
4359        std::vector<SDOperand> Ops;
4360        Ops.push_back(Chain);
4361        Ops.push_back(MemLoc);
4362        Ops.push_back(DAG.getValueType(ArgVT));
4363        Copy = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size());
4364        Tys.clear();
4365        Tys.push_back(MVT::Other);
4366        Tys.push_back(MVT::Flag);
4367        Ops.clear();
4368        Ops.push_back(Copy.getValue(1));
4369        Ops.push_back(Copy);
4370        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size());
4371      }
4372      break;
4373    }
4374    case 5: {
4375      unsigned Reg1 = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
4376      unsigned Reg2 = Subtarget->is64Bit() ? X86::RDX : X86::EDX;
4377      if (DAG.getMachineFunction().liveout_empty()) {
4378        DAG.getMachineFunction().addLiveOut(Reg1);
4379        DAG.getMachineFunction().addLiveOut(Reg2);
4380      }
4381
4382      Copy = DAG.getCopyToReg(Op.getOperand(0), Reg2, Op.getOperand(3),
4383                              SDOperand());
4384      Copy = DAG.getCopyToReg(Copy, Reg1, Op.getOperand(1), Copy.getValue(1));
4385      break;
4386    }
4387  }
4388  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other,
4389                     Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16),
4390                     Copy.getValue(1));
4391}
4392
4393SDOperand
4394X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4395  MachineFunction &MF = DAG.getMachineFunction();
4396  const Function* Fn = MF.getFunction();
4397  if (Fn->hasExternalLinkage() &&
4398      Subtarget->isTargetCygwin() &&
4399      Fn->getName() == "main")
4400    MF.getInfo<X86FunctionInfo>()->setForceFramePointer(true);
4401
4402  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4403  if (Subtarget->is64Bit())
4404    return LowerX86_64CCCArguments(Op, DAG);
4405  else
4406    switch(CC) {
4407    default:
4408      assert(0 && "Unsupported calling convention");
4409    case CallingConv::Fast:
4410      if (EnableFastCC) {
4411        return LowerFastCCArguments(Op, DAG);
4412      }
4413      // Falls through
4414    case CallingConv::C:
4415    case CallingConv::CSRet:
4416      return LowerCCCArguments(Op, DAG);
4417    case CallingConv::X86_StdCall:
4418      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(StdCall);
4419      return LowerStdCallCCArguments(Op, DAG);
4420    case CallingConv::X86_FastCall:
4421      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(FastCall);
4422      return LowerFastCallCCArguments(Op, DAG);
4423    }
4424}
4425
4426SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4427  SDOperand InFlag(0, 0);
4428  SDOperand Chain = Op.getOperand(0);
4429  unsigned Align =
4430    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4431  if (Align == 0) Align = 1;
4432
4433  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4434  // If not DWORD aligned, call memset if size is less than the threshold.
4435  // It knows how to align to the right boundary first.
4436  if ((Align & 3) != 0 ||
4437      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
4438    MVT::ValueType IntPtr = getPointerTy();
4439    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4440    std::vector<std::pair<SDOperand, const Type*> > Args;
4441    Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
4442    // Extend the ubyte argument to be an int value for the call.
4443    SDOperand Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4444    Args.push_back(std::make_pair(Val, IntPtrTy));
4445    Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
4446    std::pair<SDOperand,SDOperand> CallResult =
4447      LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
4448                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4449    return CallResult.second;
4450  }
4451
4452  MVT::ValueType AVT;
4453  SDOperand Count;
4454  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4455  unsigned BytesLeft = 0;
4456  bool TwoRepStos = false;
4457  if (ValC) {
4458    unsigned ValReg;
4459    uint64_t Val = ValC->getValue() & 255;
4460
4461    // If the value is a constant, then we can potentially use larger sets.
4462    switch (Align & 3) {
4463      case 2:   // WORD aligned
4464        AVT = MVT::i16;
4465        ValReg = X86::AX;
4466        Val = (Val << 8) | Val;
4467        break;
4468      case 0:  // DWORD aligned
4469        AVT = MVT::i32;
4470        ValReg = X86::EAX;
4471        Val = (Val << 8)  | Val;
4472        Val = (Val << 16) | Val;
4473        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4474          AVT = MVT::i64;
4475          ValReg = X86::RAX;
4476          Val = (Val << 32) | Val;
4477        }
4478        break;
4479      default:  // Byte aligned
4480        AVT = MVT::i8;
4481        ValReg = X86::AL;
4482        Count = Op.getOperand(3);
4483        break;
4484    }
4485
4486    if (AVT > MVT::i8) {
4487      if (I) {
4488        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4489        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4490        BytesLeft = I->getValue() % UBytes;
4491      } else {
4492        assert(AVT >= MVT::i32 &&
4493               "Do not use rep;stos if not at least DWORD aligned");
4494        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4495                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4496        TwoRepStos = true;
4497      }
4498    }
4499
4500    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4501                              InFlag);
4502    InFlag = Chain.getValue(1);
4503  } else {
4504    AVT = MVT::i8;
4505    Count  = Op.getOperand(3);
4506    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4507    InFlag = Chain.getValue(1);
4508  }
4509
4510  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4511                            Count, InFlag);
4512  InFlag = Chain.getValue(1);
4513  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4514                            Op.getOperand(1), InFlag);
4515  InFlag = Chain.getValue(1);
4516
4517  std::vector<MVT::ValueType> Tys;
4518  Tys.push_back(MVT::Other);
4519  Tys.push_back(MVT::Flag);
4520  std::vector<SDOperand> Ops;
4521  Ops.push_back(Chain);
4522  Ops.push_back(DAG.getValueType(AVT));
4523  Ops.push_back(InFlag);
4524  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4525
4526  if (TwoRepStos) {
4527    InFlag = Chain.getValue(1);
4528    Count = Op.getOperand(3);
4529    MVT::ValueType CVT = Count.getValueType();
4530    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4531                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4532    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4533                              Left, InFlag);
4534    InFlag = Chain.getValue(1);
4535    Tys.clear();
4536    Tys.push_back(MVT::Other);
4537    Tys.push_back(MVT::Flag);
4538    Ops.clear();
4539    Ops.push_back(Chain);
4540    Ops.push_back(DAG.getValueType(MVT::i8));
4541    Ops.push_back(InFlag);
4542    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4543  } else if (BytesLeft) {
4544    // Issue stores for the last 1 - 7 bytes.
4545    SDOperand Value;
4546    unsigned Val = ValC->getValue() & 255;
4547    unsigned Offset = I->getValue() - BytesLeft;
4548    SDOperand DstAddr = Op.getOperand(1);
4549    MVT::ValueType AddrVT = DstAddr.getValueType();
4550    if (BytesLeft >= 4) {
4551      Val = (Val << 8)  | Val;
4552      Val = (Val << 16) | Val;
4553      Value = DAG.getConstant(Val, MVT::i32);
4554      Chain = DAG.getStore(Chain, Value,
4555                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4556                                       DAG.getConstant(Offset, AddrVT)),
4557                           NULL, 0);
4558      BytesLeft -= 4;
4559      Offset += 4;
4560    }
4561    if (BytesLeft >= 2) {
4562      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4563      Chain = DAG.getStore(Chain, Value,
4564                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4565                                       DAG.getConstant(Offset, AddrVT)),
4566                           NULL, 0);
4567      BytesLeft -= 2;
4568      Offset += 2;
4569    }
4570    if (BytesLeft == 1) {
4571      Value = DAG.getConstant(Val, MVT::i8);
4572      Chain = DAG.getStore(Chain, Value,
4573                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4574                                       DAG.getConstant(Offset, AddrVT)),
4575                           NULL, 0);
4576    }
4577  }
4578
4579  return Chain;
4580}
4581
4582SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
4583  SDOperand Chain = Op.getOperand(0);
4584  unsigned Align =
4585    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4586  if (Align == 0) Align = 1;
4587
4588  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4589  // If not DWORD aligned, call memcpy if size is less than the threshold.
4590  // It knows how to align to the right boundary first.
4591  if ((Align & 3) != 0 ||
4592      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
4593    MVT::ValueType IntPtr = getPointerTy();
4594    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4595    std::vector<std::pair<SDOperand, const Type*> > Args;
4596    Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
4597    Args.push_back(std::make_pair(Op.getOperand(2), IntPtrTy));
4598    Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
4599    std::pair<SDOperand,SDOperand> CallResult =
4600      LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
4601                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
4602    return CallResult.second;
4603  }
4604
4605  MVT::ValueType AVT;
4606  SDOperand Count;
4607  unsigned BytesLeft = 0;
4608  bool TwoRepMovs = false;
4609  switch (Align & 3) {
4610    case 2:   // WORD aligned
4611      AVT = MVT::i16;
4612      break;
4613    case 0:  // DWORD aligned
4614      AVT = MVT::i32;
4615      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4616        AVT = MVT::i64;
4617      break;
4618    default:  // Byte aligned
4619      AVT = MVT::i8;
4620      Count = Op.getOperand(3);
4621      break;
4622  }
4623
4624  if (AVT > MVT::i8) {
4625    if (I) {
4626      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4627      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4628      BytesLeft = I->getValue() % UBytes;
4629    } else {
4630      assert(AVT >= MVT::i32 &&
4631             "Do not use rep;movs if not at least DWORD aligned");
4632      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4633                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4634      TwoRepMovs = true;
4635    }
4636  }
4637
4638  SDOperand InFlag(0, 0);
4639  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4640                            Count, InFlag);
4641  InFlag = Chain.getValue(1);
4642  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4643                            Op.getOperand(1), InFlag);
4644  InFlag = Chain.getValue(1);
4645  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4646                            Op.getOperand(2), InFlag);
4647  InFlag = Chain.getValue(1);
4648
4649  std::vector<MVT::ValueType> Tys;
4650  Tys.push_back(MVT::Other);
4651  Tys.push_back(MVT::Flag);
4652  std::vector<SDOperand> Ops;
4653  Ops.push_back(Chain);
4654  Ops.push_back(DAG.getValueType(AVT));
4655  Ops.push_back(InFlag);
4656  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4657
4658  if (TwoRepMovs) {
4659    InFlag = Chain.getValue(1);
4660    Count = Op.getOperand(3);
4661    MVT::ValueType CVT = Count.getValueType();
4662    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4663                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4664    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4665                              Left, InFlag);
4666    InFlag = Chain.getValue(1);
4667    Tys.clear();
4668    Tys.push_back(MVT::Other);
4669    Tys.push_back(MVT::Flag);
4670    Ops.clear();
4671    Ops.push_back(Chain);
4672    Ops.push_back(DAG.getValueType(MVT::i8));
4673    Ops.push_back(InFlag);
4674    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4675  } else if (BytesLeft) {
4676    // Issue loads and stores for the last 1 - 7 bytes.
4677    unsigned Offset = I->getValue() - BytesLeft;
4678    SDOperand DstAddr = Op.getOperand(1);
4679    MVT::ValueType DstVT = DstAddr.getValueType();
4680    SDOperand SrcAddr = Op.getOperand(2);
4681    MVT::ValueType SrcVT = SrcAddr.getValueType();
4682    SDOperand Value;
4683    if (BytesLeft >= 4) {
4684      Value = DAG.getLoad(MVT::i32, Chain,
4685                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4686                                      DAG.getConstant(Offset, SrcVT)),
4687                          NULL, 0);
4688      Chain = Value.getValue(1);
4689      Chain = DAG.getStore(Chain, Value,
4690                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4691                                       DAG.getConstant(Offset, DstVT)),
4692                           NULL, 0);
4693      BytesLeft -= 4;
4694      Offset += 4;
4695    }
4696    if (BytesLeft >= 2) {
4697      Value = DAG.getLoad(MVT::i16, Chain,
4698                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4699                                      DAG.getConstant(Offset, SrcVT)),
4700                          NULL, 0);
4701      Chain = Value.getValue(1);
4702      Chain = DAG.getStore(Chain, Value,
4703                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4704                                       DAG.getConstant(Offset, DstVT)),
4705                           NULL, 0);
4706      BytesLeft -= 2;
4707      Offset += 2;
4708    }
4709
4710    if (BytesLeft == 1) {
4711      Value = DAG.getLoad(MVT::i8, Chain,
4712                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4713                                      DAG.getConstant(Offset, SrcVT)),
4714                          NULL, 0);
4715      Chain = Value.getValue(1);
4716      Chain = DAG.getStore(Chain, Value,
4717                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4718                                       DAG.getConstant(Offset, DstVT)),
4719                           NULL, 0);
4720    }
4721  }
4722
4723  return Chain;
4724}
4725
4726SDOperand
4727X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4728  std::vector<MVT::ValueType> Tys;
4729  Tys.push_back(MVT::Other);
4730  Tys.push_back(MVT::Flag);
4731  std::vector<SDOperand> Ops;
4732  Ops.push_back(Op.getOperand(0));
4733  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &Ops[0], Ops.size());
4734  Ops.clear();
4735  if (Subtarget->is64Bit()) {
4736    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4737    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4738                                         MVT::i64, Copy1.getValue(2));
4739    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4740                                DAG.getConstant(32, MVT::i8));
4741    Ops.push_back(DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp));
4742    Ops.push_back(Copy2.getValue(1));
4743    Tys[0] = MVT::i64;
4744    Tys[1] = MVT::Other;
4745  } else {
4746    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4747    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4748                                         MVT::i32, Copy1.getValue(2));
4749    Ops.push_back(Copy1);
4750    Ops.push_back(Copy2);
4751    Ops.push_back(Copy2.getValue(1));
4752    Tys[0] = Tys[1] = MVT::i32;
4753    Tys.push_back(MVT::Other);
4754  }
4755  return DAG.getNode(ISD::MERGE_VALUES, Tys, &Ops[0], Ops.size());
4756}
4757
4758SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4759  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4760
4761  if (!Subtarget->is64Bit()) {
4762    // vastart just stores the address of the VarArgsFrameIndex slot into the
4763    // memory location argument.
4764    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4765    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4766                        SV->getOffset());
4767  }
4768
4769  // __va_list_tag:
4770  //   gp_offset         (0 - 6 * 8)
4771  //   fp_offset         (48 - 48 + 8 * 16)
4772  //   overflow_arg_area (point to parameters coming in memory).
4773  //   reg_save_area
4774  std::vector<SDOperand> MemOps;
4775  SDOperand FIN = Op.getOperand(1);
4776  // Store gp_offset
4777  SDOperand Store = DAG.getStore(Op.getOperand(0),
4778                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4779                                 FIN, SV->getValue(), SV->getOffset());
4780  MemOps.push_back(Store);
4781
4782  // Store fp_offset
4783  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4784                    DAG.getConstant(4, getPointerTy()));
4785  Store = DAG.getStore(Op.getOperand(0),
4786                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4787                       FIN, SV->getValue(), SV->getOffset());
4788  MemOps.push_back(Store);
4789
4790  // Store ptr to overflow_arg_area
4791  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4792                    DAG.getConstant(4, getPointerTy()));
4793  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4794  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4795                       SV->getOffset());
4796  MemOps.push_back(Store);
4797
4798  // Store ptr to reg_save_area.
4799  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4800                    DAG.getConstant(8, getPointerTy()));
4801  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4802  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4803                       SV->getOffset());
4804  MemOps.push_back(Store);
4805  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4806}
4807
4808SDOperand
4809X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4810  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4811  switch (IntNo) {
4812  default: return SDOperand();    // Don't custom lower most intrinsics.
4813    // Comparison intrinsics.
4814  case Intrinsic::x86_sse_comieq_ss:
4815  case Intrinsic::x86_sse_comilt_ss:
4816  case Intrinsic::x86_sse_comile_ss:
4817  case Intrinsic::x86_sse_comigt_ss:
4818  case Intrinsic::x86_sse_comige_ss:
4819  case Intrinsic::x86_sse_comineq_ss:
4820  case Intrinsic::x86_sse_ucomieq_ss:
4821  case Intrinsic::x86_sse_ucomilt_ss:
4822  case Intrinsic::x86_sse_ucomile_ss:
4823  case Intrinsic::x86_sse_ucomigt_ss:
4824  case Intrinsic::x86_sse_ucomige_ss:
4825  case Intrinsic::x86_sse_ucomineq_ss:
4826  case Intrinsic::x86_sse2_comieq_sd:
4827  case Intrinsic::x86_sse2_comilt_sd:
4828  case Intrinsic::x86_sse2_comile_sd:
4829  case Intrinsic::x86_sse2_comigt_sd:
4830  case Intrinsic::x86_sse2_comige_sd:
4831  case Intrinsic::x86_sse2_comineq_sd:
4832  case Intrinsic::x86_sse2_ucomieq_sd:
4833  case Intrinsic::x86_sse2_ucomilt_sd:
4834  case Intrinsic::x86_sse2_ucomile_sd:
4835  case Intrinsic::x86_sse2_ucomigt_sd:
4836  case Intrinsic::x86_sse2_ucomige_sd:
4837  case Intrinsic::x86_sse2_ucomineq_sd: {
4838    unsigned Opc = 0;
4839    ISD::CondCode CC = ISD::SETCC_INVALID;
4840    switch (IntNo) {
4841    default: break;
4842    case Intrinsic::x86_sse_comieq_ss:
4843    case Intrinsic::x86_sse2_comieq_sd:
4844      Opc = X86ISD::COMI;
4845      CC = ISD::SETEQ;
4846      break;
4847    case Intrinsic::x86_sse_comilt_ss:
4848    case Intrinsic::x86_sse2_comilt_sd:
4849      Opc = X86ISD::COMI;
4850      CC = ISD::SETLT;
4851      break;
4852    case Intrinsic::x86_sse_comile_ss:
4853    case Intrinsic::x86_sse2_comile_sd:
4854      Opc = X86ISD::COMI;
4855      CC = ISD::SETLE;
4856      break;
4857    case Intrinsic::x86_sse_comigt_ss:
4858    case Intrinsic::x86_sse2_comigt_sd:
4859      Opc = X86ISD::COMI;
4860      CC = ISD::SETGT;
4861      break;
4862    case Intrinsic::x86_sse_comige_ss:
4863    case Intrinsic::x86_sse2_comige_sd:
4864      Opc = X86ISD::COMI;
4865      CC = ISD::SETGE;
4866      break;
4867    case Intrinsic::x86_sse_comineq_ss:
4868    case Intrinsic::x86_sse2_comineq_sd:
4869      Opc = X86ISD::COMI;
4870      CC = ISD::SETNE;
4871      break;
4872    case Intrinsic::x86_sse_ucomieq_ss:
4873    case Intrinsic::x86_sse2_ucomieq_sd:
4874      Opc = X86ISD::UCOMI;
4875      CC = ISD::SETEQ;
4876      break;
4877    case Intrinsic::x86_sse_ucomilt_ss:
4878    case Intrinsic::x86_sse2_ucomilt_sd:
4879      Opc = X86ISD::UCOMI;
4880      CC = ISD::SETLT;
4881      break;
4882    case Intrinsic::x86_sse_ucomile_ss:
4883    case Intrinsic::x86_sse2_ucomile_sd:
4884      Opc = X86ISD::UCOMI;
4885      CC = ISD::SETLE;
4886      break;
4887    case Intrinsic::x86_sse_ucomigt_ss:
4888    case Intrinsic::x86_sse2_ucomigt_sd:
4889      Opc = X86ISD::UCOMI;
4890      CC = ISD::SETGT;
4891      break;
4892    case Intrinsic::x86_sse_ucomige_ss:
4893    case Intrinsic::x86_sse2_ucomige_sd:
4894      Opc = X86ISD::UCOMI;
4895      CC = ISD::SETGE;
4896      break;
4897    case Intrinsic::x86_sse_ucomineq_ss:
4898    case Intrinsic::x86_sse2_ucomineq_sd:
4899      Opc = X86ISD::UCOMI;
4900      CC = ISD::SETNE;
4901      break;
4902    }
4903
4904    unsigned X86CC;
4905    SDOperand LHS = Op.getOperand(1);
4906    SDOperand RHS = Op.getOperand(2);
4907    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4908
4909    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4910    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4911    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4912    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4913    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4914    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4915    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4916  }
4917  }
4918}
4919
4920/// LowerOperation - Provide custom lowering hooks for some operations.
4921///
4922SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4923  switch (Op.getOpcode()) {
4924  default: assert(0 && "Should not custom lower this!");
4925  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4926  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4927  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4928  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4929  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4930  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4931  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4932  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4933  case ISD::SHL_PARTS:
4934  case ISD::SRA_PARTS:
4935  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4936  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4937  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4938  case ISD::FABS:               return LowerFABS(Op, DAG);
4939  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4940  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
4941  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4942  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4943  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4944  case ISD::CALL:               return LowerCALL(Op, DAG);
4945  case ISD::RET:                return LowerRET(Op, DAG);
4946  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4947  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4948  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4949  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4950  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4951  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4952  }
4953}
4954
4955const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4956  switch (Opcode) {
4957  default: return NULL;
4958  case X86ISD::SHLD:               return "X86ISD::SHLD";
4959  case X86ISD::SHRD:               return "X86ISD::SHRD";
4960  case X86ISD::FAND:               return "X86ISD::FAND";
4961  case X86ISD::FXOR:               return "X86ISD::FXOR";
4962  case X86ISD::FILD:               return "X86ISD::FILD";
4963  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4964  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4965  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4966  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4967  case X86ISD::FLD:                return "X86ISD::FLD";
4968  case X86ISD::FST:                return "X86ISD::FST";
4969  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4970  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4971  case X86ISD::CALL:               return "X86ISD::CALL";
4972  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4973  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4974  case X86ISD::CMP:                return "X86ISD::CMP";
4975  case X86ISD::COMI:               return "X86ISD::COMI";
4976  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4977  case X86ISD::SETCC:              return "X86ISD::SETCC";
4978  case X86ISD::CMOV:               return "X86ISD::CMOV";
4979  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4980  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4981  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4982  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4983  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
4984  case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
4985  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4986  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4987  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4988  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4989  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4990  case X86ISD::FMAX:               return "X86ISD::FMAX";
4991  case X86ISD::FMIN:               return "X86ISD::FMIN";
4992  }
4993}
4994
4995/// isLegalAddressImmediate - Return true if the integer value or
4996/// GlobalValue can be used as the offset of the target addressing mode.
4997bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const {
4998  // X86 allows a sign-extended 32-bit immediate field.
4999  return (V > -(1LL << 32) && V < (1LL << 32)-1);
5000}
5001
5002bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
5003  // In 64-bit mode, GV is 64-bit so it won't fit in the 32-bit displacement
5004  // field unless we are in small code model.
5005  if (Subtarget->is64Bit() &&
5006      getTargetMachine().getCodeModel() != CodeModel::Small)
5007    return false;
5008  Reloc::Model RModel = getTargetMachine().getRelocationModel();
5009  return (RModel == Reloc::Static) ||
5010    !Subtarget->GVRequiresExtraLoad(GV, false);
5011}
5012
5013/// isShuffleMaskLegal - Targets can use this to indicate that they only
5014/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5015/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5016/// are assumed to be legal.
5017bool
5018X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5019  // Only do shuffles on 128-bit vector types for now.
5020  if (MVT::getSizeInBits(VT) == 64) return false;
5021  return (Mask.Val->getNumOperands() <= 4 ||
5022          isSplatMask(Mask.Val)  ||
5023          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5024          X86::isUNPCKLMask(Mask.Val) ||
5025          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5026          X86::isUNPCKHMask(Mask.Val));
5027}
5028
5029bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5030                                               MVT::ValueType EVT,
5031                                               SelectionDAG &DAG) const {
5032  unsigned NumElts = BVOps.size();
5033  // Only do shuffles on 128-bit vector types for now.
5034  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5035  if (NumElts == 2) return true;
5036  if (NumElts == 4) {
5037    return (isMOVLMask(BVOps)  || isCommutedMOVL(BVOps, true) ||
5038            isSHUFPMask(BVOps) || isCommutedSHUFP(BVOps));
5039  }
5040  return false;
5041}
5042
5043//===----------------------------------------------------------------------===//
5044//                           X86 Scheduler Hooks
5045//===----------------------------------------------------------------------===//
5046
5047MachineBasicBlock *
5048X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
5049                                           MachineBasicBlock *BB) {
5050  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5051  switch (MI->getOpcode()) {
5052  default: assert(false && "Unexpected instr type to insert");
5053  case X86::CMOV_FR32:
5054  case X86::CMOV_FR64:
5055  case X86::CMOV_V4F32:
5056  case X86::CMOV_V2F64:
5057  case X86::CMOV_V2I64: {
5058    // To "insert" a SELECT_CC instruction, we actually have to insert the
5059    // diamond control-flow pattern.  The incoming instruction knows the
5060    // destination vreg to set, the condition code register to branch on, the
5061    // true/false values to select between, and a branch opcode to use.
5062    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5063    ilist<MachineBasicBlock>::iterator It = BB;
5064    ++It;
5065
5066    //  thisMBB:
5067    //  ...
5068    //   TrueVal = ...
5069    //   cmpTY ccX, r1, r2
5070    //   bCC copy1MBB
5071    //   fallthrough --> copy0MBB
5072    MachineBasicBlock *thisMBB = BB;
5073    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5074    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5075    unsigned Opc =
5076      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5077    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5078    MachineFunction *F = BB->getParent();
5079    F->getBasicBlockList().insert(It, copy0MBB);
5080    F->getBasicBlockList().insert(It, sinkMBB);
5081    // Update machine-CFG edges by first adding all successors of the current
5082    // block to the new block which will contain the Phi node for the select.
5083    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5084        e = BB->succ_end(); i != e; ++i)
5085      sinkMBB->addSuccessor(*i);
5086    // Next, remove all successors of the current block, and add the true
5087    // and fallthrough blocks as its successors.
5088    while(!BB->succ_empty())
5089      BB->removeSuccessor(BB->succ_begin());
5090    BB->addSuccessor(copy0MBB);
5091    BB->addSuccessor(sinkMBB);
5092
5093    //  copy0MBB:
5094    //   %FalseValue = ...
5095    //   # fallthrough to sinkMBB
5096    BB = copy0MBB;
5097
5098    // Update machine-CFG edges
5099    BB->addSuccessor(sinkMBB);
5100
5101    //  sinkMBB:
5102    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5103    //  ...
5104    BB = sinkMBB;
5105    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5106      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5107      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5108
5109    delete MI;   // The pseudo instruction is gone now.
5110    return BB;
5111  }
5112
5113  case X86::FP_TO_INT16_IN_MEM:
5114  case X86::FP_TO_INT32_IN_MEM:
5115  case X86::FP_TO_INT64_IN_MEM: {
5116    // Change the floating point control register to use "round towards zero"
5117    // mode when truncating to an integer value.
5118    MachineFunction *F = BB->getParent();
5119    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5120    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5121
5122    // Load the old value of the high byte of the control word...
5123    unsigned OldCW =
5124      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
5125    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5126
5127    // Set the high part to be round to zero...
5128    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5129      .addImm(0xC7F);
5130
5131    // Reload the modified control word now...
5132    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5133
5134    // Restore the memory image of control word to original value
5135    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5136      .addReg(OldCW);
5137
5138    // Get the X86 opcode to use.
5139    unsigned Opc;
5140    switch (MI->getOpcode()) {
5141    default: assert(0 && "illegal opcode!");
5142    case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
5143    case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
5144    case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
5145    }
5146
5147    X86AddressMode AM;
5148    MachineOperand &Op = MI->getOperand(0);
5149    if (Op.isRegister()) {
5150      AM.BaseType = X86AddressMode::RegBase;
5151      AM.Base.Reg = Op.getReg();
5152    } else {
5153      AM.BaseType = X86AddressMode::FrameIndexBase;
5154      AM.Base.FrameIndex = Op.getFrameIndex();
5155    }
5156    Op = MI->getOperand(1);
5157    if (Op.isImmediate())
5158      AM.Scale = Op.getImm();
5159    Op = MI->getOperand(2);
5160    if (Op.isImmediate())
5161      AM.IndexReg = Op.getImm();
5162    Op = MI->getOperand(3);
5163    if (Op.isGlobalAddress()) {
5164      AM.GV = Op.getGlobal();
5165    } else {
5166      AM.Disp = Op.getImm();
5167    }
5168    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5169                      .addReg(MI->getOperand(4).getReg());
5170
5171    // Reload the original control word now.
5172    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5173
5174    delete MI;   // The pseudo instruction is gone now.
5175    return BB;
5176  }
5177  }
5178}
5179
5180//===----------------------------------------------------------------------===//
5181//                           X86 Optimization Hooks
5182//===----------------------------------------------------------------------===//
5183
5184void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5185                                                       uint64_t Mask,
5186                                                       uint64_t &KnownZero,
5187                                                       uint64_t &KnownOne,
5188                                                       unsigned Depth) const {
5189  unsigned Opc = Op.getOpcode();
5190  assert((Opc >= ISD::BUILTIN_OP_END ||
5191          Opc == ISD::INTRINSIC_WO_CHAIN ||
5192          Opc == ISD::INTRINSIC_W_CHAIN ||
5193          Opc == ISD::INTRINSIC_VOID) &&
5194         "Should use MaskedValueIsZero if you don't know whether Op"
5195         " is a target node!");
5196
5197  KnownZero = KnownOne = 0;   // Don't know anything.
5198  switch (Opc) {
5199  default: break;
5200  case X86ISD::SETCC:
5201    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5202    break;
5203  }
5204}
5205
5206/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5207/// element of the result of the vector shuffle.
5208static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5209  MVT::ValueType VT = N->getValueType(0);
5210  SDOperand PermMask = N->getOperand(2);
5211  unsigned NumElems = PermMask.getNumOperands();
5212  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5213  i %= NumElems;
5214  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5215    return (i == 0)
5216      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
5217  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5218    SDOperand Idx = PermMask.getOperand(i);
5219    if (Idx.getOpcode() == ISD::UNDEF)
5220      return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
5221    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5222  }
5223  return SDOperand();
5224}
5225
5226/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5227/// node is a GlobalAddress + an offset.
5228static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5229  unsigned Opc = N->getOpcode();
5230  if (Opc == X86ISD::Wrapper) {
5231    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5232      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5233      return true;
5234    }
5235  } else if (Opc == ISD::ADD) {
5236    SDOperand N1 = N->getOperand(0);
5237    SDOperand N2 = N->getOperand(1);
5238    if (isGAPlusOffset(N1.Val, GA, Offset)) {
5239      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5240      if (V) {
5241        Offset += V->getSignExtended();
5242        return true;
5243      }
5244    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5245      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5246      if (V) {
5247        Offset += V->getSignExtended();
5248        return true;
5249      }
5250    }
5251  }
5252  return false;
5253}
5254
5255/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5256/// + Dist * Size.
5257static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5258                              MachineFrameInfo *MFI) {
5259  if (N->getOperand(0).Val != Base->getOperand(0).Val)
5260    return false;
5261
5262  SDOperand Loc = N->getOperand(1);
5263  SDOperand BaseLoc = Base->getOperand(1);
5264  if (Loc.getOpcode() == ISD::FrameIndex) {
5265    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5266      return false;
5267    int FI  = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
5268    int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5269    int FS  = MFI->getObjectSize(FI);
5270    int BFS = MFI->getObjectSize(BFI);
5271    if (FS != BFS || FS != Size) return false;
5272    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5273  } else {
5274    GlobalValue *GV1 = NULL;
5275    GlobalValue *GV2 = NULL;
5276    int64_t Offset1 = 0;
5277    int64_t Offset2 = 0;
5278    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5279    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5280    if (isGA1 && isGA2 && GV1 == GV2)
5281      return Offset1 == (Offset2 + Dist*Size);
5282  }
5283
5284  return false;
5285}
5286
5287static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5288                              const X86Subtarget *Subtarget) {
5289  GlobalValue *GV;
5290  int64_t Offset;
5291  if (isGAPlusOffset(Base, GV, Offset))
5292    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5293  else {
5294    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
5295    int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
5296    if (BFI < 0)
5297      // Fixed objects do not specify alignment, however the offsets are known.
5298      return ((Subtarget->getStackAlignment() % 16) == 0 &&
5299              (MFI->getObjectOffset(BFI) % 16) == 0);
5300    else
5301      return MFI->getObjectAlignment(BFI) >= 16;
5302  }
5303  return false;
5304}
5305
5306
5307/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5308/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5309/// if the load addresses are consecutive, non-overlapping, and in the right
5310/// order.
5311static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5312                                       const X86Subtarget *Subtarget) {
5313  MachineFunction &MF = DAG.getMachineFunction();
5314  MachineFrameInfo *MFI = MF.getFrameInfo();
5315  MVT::ValueType VT = N->getValueType(0);
5316  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
5317  SDOperand PermMask = N->getOperand(2);
5318  int NumElems = (int)PermMask.getNumOperands();
5319  SDNode *Base = NULL;
5320  for (int i = 0; i < NumElems; ++i) {
5321    SDOperand Idx = PermMask.getOperand(i);
5322    if (Idx.getOpcode() == ISD::UNDEF) {
5323      if (!Base) return SDOperand();
5324    } else {
5325      SDOperand Arg =
5326        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5327      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5328        return SDOperand();
5329      if (!Base)
5330        Base = Arg.Val;
5331      else if (!isConsecutiveLoad(Arg.Val, Base,
5332                                  i, MVT::getSizeInBits(EVT)/8,MFI))
5333        return SDOperand();
5334    }
5335  }
5336
5337  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
5338  if (isAlign16) {
5339    LoadSDNode *LD = cast<LoadSDNode>(Base);
5340    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5341                       LD->getSrcValueOffset());
5342  } else {
5343    // Just use movups, it's shorter.
5344    std::vector<MVT::ValueType> Tys;
5345    Tys.push_back(MVT::v4f32);
5346    Tys.push_back(MVT::Other);
5347    SmallVector<SDOperand, 3> Ops;
5348    Ops.push_back(Base->getOperand(0));
5349    Ops.push_back(Base->getOperand(1));
5350    Ops.push_back(Base->getOperand(2));
5351    return DAG.getNode(ISD::BIT_CONVERT, VT,
5352                       DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
5353  }
5354}
5355
5356/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5357static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5358                                      const X86Subtarget *Subtarget) {
5359  SDOperand Cond = N->getOperand(0);
5360
5361  // If we have SSE[12] support, try to form min/max nodes.
5362  if (Subtarget->hasSSE2() &&
5363      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5364    if (Cond.getOpcode() == ISD::SETCC) {
5365      // Get the LHS/RHS of the select.
5366      SDOperand LHS = N->getOperand(1);
5367      SDOperand RHS = N->getOperand(2);
5368      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5369
5370      unsigned Opcode = 0;
5371      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5372        switch (CC) {
5373        default: break;
5374        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5375        case ISD::SETULE:
5376        case ISD::SETLE:
5377          if (!UnsafeFPMath) break;
5378          // FALL THROUGH.
5379        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
5380        case ISD::SETLT:
5381          Opcode = X86ISD::FMIN;
5382          break;
5383
5384        case ISD::SETOGT: // (X > Y) ? X : Y -> max
5385        case ISD::SETUGT:
5386        case ISD::SETGT:
5387          if (!UnsafeFPMath) break;
5388          // FALL THROUGH.
5389        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
5390        case ISD::SETGE:
5391          Opcode = X86ISD::FMAX;
5392          break;
5393        }
5394      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5395        switch (CC) {
5396        default: break;
5397        case ISD::SETOGT: // (X > Y) ? Y : X -> min
5398        case ISD::SETUGT:
5399        case ISD::SETGT:
5400          if (!UnsafeFPMath) break;
5401          // FALL THROUGH.
5402        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
5403        case ISD::SETGE:
5404          Opcode = X86ISD::FMIN;
5405          break;
5406
5407        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
5408        case ISD::SETULE:
5409        case ISD::SETLE:
5410          if (!UnsafeFPMath) break;
5411          // FALL THROUGH.
5412        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
5413        case ISD::SETLT:
5414          Opcode = X86ISD::FMAX;
5415          break;
5416        }
5417      }
5418
5419      if (Opcode)
5420        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5421    }
5422
5423  }
5424
5425  return SDOperand();
5426}
5427
5428
5429SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5430                                               DAGCombinerInfo &DCI) const {
5431  SelectionDAG &DAG = DCI.DAG;
5432  switch (N->getOpcode()) {
5433  default: break;
5434  case ISD::VECTOR_SHUFFLE:
5435    return PerformShuffleCombine(N, DAG, Subtarget);
5436  case ISD::SELECT:
5437    return PerformSELECTCombine(N, DAG, Subtarget);
5438  }
5439
5440  return SDOperand();
5441}
5442
5443//===----------------------------------------------------------------------===//
5444//                           X86 Inline Assembly Support
5445//===----------------------------------------------------------------------===//
5446
5447/// getConstraintType - Given a constraint letter, return the type of
5448/// constraint it is for this target.
5449X86TargetLowering::ConstraintType
5450X86TargetLowering::getConstraintType(char ConstraintLetter) const {
5451  switch (ConstraintLetter) {
5452  case 'A':
5453  case 'r':
5454  case 'R':
5455  case 'l':
5456  case 'q':
5457  case 'Q':
5458  case 'x':
5459  case 'Y':
5460    return C_RegisterClass;
5461  default: return TargetLowering::getConstraintType(ConstraintLetter);
5462  }
5463}
5464
5465/// isOperandValidForConstraint - Return the specified operand (possibly
5466/// modified) if the specified SDOperand is valid for the specified target
5467/// constraint letter, otherwise return null.
5468SDOperand X86TargetLowering::
5469isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) {
5470  switch (Constraint) {
5471  default: break;
5472  case 'i':
5473    // Literal immediates are always ok.
5474    if (isa<ConstantSDNode>(Op)) return Op;
5475
5476    // If we are in non-pic codegen mode, we allow the address of a global to
5477    // be used with 'i'.
5478    if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5479      if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
5480        return SDOperand(0, 0);
5481
5482      if (GA->getOpcode() != ISD::TargetGlobalAddress)
5483        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5484                                        GA->getOffset());
5485      return Op;
5486    }
5487
5488    // Otherwise, not valid for this mode.
5489    return SDOperand(0, 0);
5490  }
5491  return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG);
5492}
5493
5494
5495std::vector<unsigned> X86TargetLowering::
5496getRegClassForInlineAsmConstraint(const std::string &Constraint,
5497                                  MVT::ValueType VT) const {
5498  if (Constraint.size() == 1) {
5499    // FIXME: not handling fp-stack yet!
5500    // FIXME: not handling MMX registers yet ('y' constraint).
5501    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5502    default: break;  // Unknown constraint letter
5503    case 'A':   // EAX/EDX
5504      if (VT == MVT::i32 || VT == MVT::i64)
5505        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5506      break;
5507    case 'r':   // GENERAL_REGS
5508    case 'R':   // LEGACY_REGS
5509      if (VT == MVT::i64 && Subtarget->is64Bit())
5510        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
5511                                     X86::RSI, X86::RDI, X86::RBP, X86::RSP,
5512                                     X86::R8,  X86::R9,  X86::R10, X86::R11,
5513                                     X86::R12, X86::R13, X86::R14, X86::R15, 0);
5514      if (VT == MVT::i32)
5515        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
5516                                     X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0);
5517      else if (VT == MVT::i16)
5518        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
5519                                     X86::SI, X86::DI, X86::BP, X86::SP, 0);
5520      else if (VT == MVT::i8)
5521        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
5522      break;
5523    case 'l':   // INDEX_REGS
5524      if (VT == MVT::i32)
5525        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
5526                                     X86::ESI, X86::EDI, X86::EBP, 0);
5527      else if (VT == MVT::i16)
5528        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
5529                                     X86::SI, X86::DI, X86::BP, 0);
5530      else if (VT == MVT::i8)
5531        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
5532      break;
5533    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5534    case 'Q':   // Q_REGS
5535      if (VT == MVT::i32)
5536        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5537      else if (VT == MVT::i16)
5538        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5539      else if (VT == MVT::i8)
5540        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
5541        break;
5542    case 'x':   // SSE_REGS if SSE1 allowed
5543      if (Subtarget->hasSSE1())
5544        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
5545                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
5546                                     0);
5547      return std::vector<unsigned>();
5548    case 'Y':   // SSE_REGS if SSE2 allowed
5549      if (Subtarget->hasSSE2())
5550        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
5551                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
5552                                     0);
5553      return std::vector<unsigned>();
5554    }
5555  }
5556
5557  return std::vector<unsigned>();
5558}
5559
5560std::pair<unsigned, const TargetRegisterClass*>
5561X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5562                                                MVT::ValueType VT) const {
5563  // Use the default implementation in TargetLowering to convert the register
5564  // constraint into a member of a register class.
5565  std::pair<unsigned, const TargetRegisterClass*> Res;
5566  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5567
5568  // Not found as a standard register?
5569  if (Res.second == 0) {
5570    // GCC calls "st(0)" just plain "st".
5571    if (StringsEqualNoCase("{st}", Constraint)) {
5572      Res.first = X86::ST0;
5573      Res.second = X86::RSTRegisterClass;
5574    }
5575
5576    return Res;
5577  }
5578
5579  // Otherwise, check to see if this is a register class of the wrong value
5580  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5581  // turn into {ax},{dx}.
5582  if (Res.second->hasType(VT))
5583    return Res;   // Correct type already, nothing to do.
5584
5585  // All of the single-register GCC register classes map their values onto
5586  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5587  // really want an 8-bit or 32-bit register, map to the appropriate register
5588  // class and return the appropriate register.
5589  if (Res.second != X86::GR16RegisterClass)
5590    return Res;
5591
5592  if (VT == MVT::i8) {
5593    unsigned DestReg = 0;
5594    switch (Res.first) {
5595    default: break;
5596    case X86::AX: DestReg = X86::AL; break;
5597    case X86::DX: DestReg = X86::DL; break;
5598    case X86::CX: DestReg = X86::CL; break;
5599    case X86::BX: DestReg = X86::BL; break;
5600    }
5601    if (DestReg) {
5602      Res.first = DestReg;
5603      Res.second = Res.second = X86::GR8RegisterClass;
5604    }
5605  } else if (VT == MVT::i32) {
5606    unsigned DestReg = 0;
5607    switch (Res.first) {
5608    default: break;
5609    case X86::AX: DestReg = X86::EAX; break;
5610    case X86::DX: DestReg = X86::EDX; break;
5611    case X86::CX: DestReg = X86::ECX; break;
5612    case X86::BX: DestReg = X86::EBX; break;
5613    case X86::SI: DestReg = X86::ESI; break;
5614    case X86::DI: DestReg = X86::EDI; break;
5615    case X86::BP: DestReg = X86::EBP; break;
5616    case X86::SP: DestReg = X86::ESP; break;
5617    }
5618    if (DestReg) {
5619      Res.first = DestReg;
5620      Res.second = Res.second = X86::GR32RegisterClass;
5621    }
5622  } else if (VT == MVT::i64) {
5623    unsigned DestReg = 0;
5624    switch (Res.first) {
5625    default: break;
5626    case X86::AX: DestReg = X86::RAX; break;
5627    case X86::DX: DestReg = X86::RDX; break;
5628    case X86::CX: DestReg = X86::RCX; break;
5629    case X86::BX: DestReg = X86::RBX; break;
5630    case X86::SI: DestReg = X86::RSI; break;
5631    case X86::DI: DestReg = X86::RDI; break;
5632    case X86::BP: DestReg = X86::RBP; break;
5633    case X86::SP: DestReg = X86::RSP; break;
5634    }
5635    if (DestReg) {
5636      Res.first = DestReg;
5637      Res.second = Res.second = X86::GR64RegisterClass;
5638    }
5639  }
5640
5641  return Res;
5642}
5643