X86ISelLowering.cpp revision f595266b91ea5aef953ce3019557a5f3d3291ff9
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/PseudoSourceValue.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43// Forward declarations.
44static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG);
45
46X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
47  : TargetLowering(TM) {
48  Subtarget = &TM.getSubtarget<X86Subtarget>();
49  X86ScalarSSEf64 = Subtarget->hasSSE2();
50  X86ScalarSSEf32 = Subtarget->hasSSE1();
51  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
52
53  bool Fast = false;
54
55  RegInfo = TM.getRegisterInfo();
56
57  // Set up the TargetLowering object.
58
59  // X86 is weird, it always uses i8 for shift amounts and setcc results.
60  setShiftAmountType(MVT::i8);
61  setSetCCResultContents(ZeroOrOneSetCCResult);
62  setSchedulingPreference(SchedulingForRegPressure);
63  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
64  setStackPointerRegisterToSaveRestore(X86StackPtr);
65
66  if (Subtarget->isTargetDarwin()) {
67    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
68    setUseUnderscoreSetJmp(false);
69    setUseUnderscoreLongJmp(false);
70  } else if (Subtarget->isTargetMingw()) {
71    // MS runtime is weird: it exports _setjmp, but longjmp!
72    setUseUnderscoreSetJmp(true);
73    setUseUnderscoreLongJmp(false);
74  } else {
75    setUseUnderscoreSetJmp(true);
76    setUseUnderscoreLongJmp(true);
77  }
78
79  // Set up the register classes.
80  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
81  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
82  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
83  if (Subtarget->is64Bit())
84    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
85
86  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
87
88  // We don't accept any truncstore of integer registers.
89  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
90  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
91  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
92  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
93  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
94  setTruncStoreAction(MVT::i16, MVT::i8, Expand);
95
96  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
97  // operation.
98  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
99  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
100  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
101
102  if (Subtarget->is64Bit()) {
103    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
104    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
105  } else {
106    if (X86ScalarSSEf64)
107      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
108      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
109    else
110      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
111  }
112
113  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
114  // this operation.
115  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
116  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
117  // SSE has no i16 to fp conversion, only i32
118  if (X86ScalarSSEf32) {
119    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
120    // f32 and f64 cases are Legal, f80 case is not
121    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
122  } else {
123    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
124    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
125  }
126
127  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
128  // are Legal, f80 is custom lowered.
129  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
130  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
131
132  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
133  // this operation.
134  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
135  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
136
137  if (X86ScalarSSEf32) {
138    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
139    // f32 and f64 cases are Legal, f80 case is not
140    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
141  } else {
142    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
143    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
144  }
145
146  // Handle FP_TO_UINT by promoting the destination to a larger signed
147  // conversion.
148  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
149  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
150  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
151
152  if (Subtarget->is64Bit()) {
153    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
154    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
155  } else {
156    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
157      // Expand FP_TO_UINT into a select.
158      // FIXME: We would like to use a Custom expander here eventually to do
159      // the optimal thing for SSE vs. the default expansion in the legalizer.
160      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
161    else
162      // With SSE3 we can use fisttpll to convert to a signed i64.
163      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
164  }
165
166  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
167  if (!X86ScalarSSEf64) {
168    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
169    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
170  }
171
172  // Scalar integer divide and remainder are lowered to use operations that
173  // produce two results, to match the available instructions. This exposes
174  // the two-result form to trivial CSE, which is able to combine x/y and x%y
175  // into a single instruction.
176  //
177  // Scalar integer multiply-high is also lowered to use two-result
178  // operations, to match the available instructions. However, plain multiply
179  // (low) operations are left as Legal, as there are single-result
180  // instructions for this in x86. Using the two-result multiply instructions
181  // when both high and low results are needed must be arranged by dagcombine.
182  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
183  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
184  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
185  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
186  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
187  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
188  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
189  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
190  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
191  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
192  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
193  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
194  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
195  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
196  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
197  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
198  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
199  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
200  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
201  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
202  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
203  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
204  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
205  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
206
207  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
208  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
209  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
210  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
211  if (Subtarget->is64Bit())
212    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
213  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
214  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
215  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
216  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
217  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
218  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
219  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
220  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
221
222  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
223  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
224  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
225  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
226  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
227  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
228  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
229  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
230  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
231  if (Subtarget->is64Bit()) {
232    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
233    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
234    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
235  }
236
237  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
238  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
239
240  // These should be promoted to a larger select which is supported.
241  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
242  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
243  // X86 wants to expand cmov itself.
244  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
245  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
246  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
247  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
248  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
249  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
250  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
251  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
252  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
253  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
254  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
255  if (Subtarget->is64Bit()) {
256    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
257    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
258  }
259  // X86 ret instruction may pop stack.
260  setOperationAction(ISD::RET             , MVT::Other, Custom);
261  if (!Subtarget->is64Bit())
262    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
263
264  // Darwin ABI issue.
265  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
266  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
267  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
268  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
269  if (Subtarget->is64Bit())
270    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
271  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
272  if (Subtarget->is64Bit()) {
273    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
274    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
275    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
276    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
277  }
278  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
279  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
280  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
281  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
282  if (Subtarget->is64Bit()) {
283    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
284    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
285    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
286  }
287
288  if (Subtarget->hasSSE1())
289    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
290
291  if (!Subtarget->hasSSE2())
292    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
293
294  // Expand certain atomics
295  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i8, Custom);
296  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i16, Custom);
297  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i32, Custom);
298  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i64, Custom);
299  setOperationAction(ISD::ATOMIC_LOAD_SUB , MVT::i32, Expand);
300
301  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
302  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
303  // FIXME - use subtarget debug flags
304  if (!Subtarget->isTargetDarwin() &&
305      !Subtarget->isTargetELF() &&
306      !Subtarget->isTargetCygMing()) {
307    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
308    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
309  }
310
311  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
312  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
313  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
314  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
315  if (Subtarget->is64Bit()) {
316    // FIXME: Verify
317    setExceptionPointerRegister(X86::RAX);
318    setExceptionSelectorRegister(X86::RDX);
319  } else {
320    setExceptionPointerRegister(X86::EAX);
321    setExceptionSelectorRegister(X86::EDX);
322  }
323  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
324
325  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
326
327  setOperationAction(ISD::TRAP, MVT::Other, Legal);
328
329  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
330  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
331  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
332  if (Subtarget->is64Bit()) {
333    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
334    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
335  } else {
336    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
337    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
338  }
339
340  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
341  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
342  if (Subtarget->is64Bit())
343    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
344  if (Subtarget->isTargetCygMing())
345    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
346  else
347    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
348
349  if (X86ScalarSSEf64) {
350    // f32 and f64 use SSE.
351    // Set up the FP register classes.
352    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
353    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
354
355    // Use ANDPD to simulate FABS.
356    setOperationAction(ISD::FABS , MVT::f64, Custom);
357    setOperationAction(ISD::FABS , MVT::f32, Custom);
358
359    // Use XORP to simulate FNEG.
360    setOperationAction(ISD::FNEG , MVT::f64, Custom);
361    setOperationAction(ISD::FNEG , MVT::f32, Custom);
362
363    // Use ANDPD and ORPD to simulate FCOPYSIGN.
364    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
365    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
366
367    // We don't support sin/cos/fmod
368    setOperationAction(ISD::FSIN , MVT::f64, Expand);
369    setOperationAction(ISD::FCOS , MVT::f64, Expand);
370    setOperationAction(ISD::FSIN , MVT::f32, Expand);
371    setOperationAction(ISD::FCOS , MVT::f32, Expand);
372
373    // Expand FP immediates into loads from the stack, except for the special
374    // cases we handle.
375    addLegalFPImmediate(APFloat(+0.0)); // xorpd
376    addLegalFPImmediate(APFloat(+0.0f)); // xorps
377
378    // Floating truncations from f80 and extensions to f80 go through memory.
379    // If optimizing, we lie about this though and handle it in
380    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
381    if (Fast) {
382      setConvertAction(MVT::f32, MVT::f80, Expand);
383      setConvertAction(MVT::f64, MVT::f80, Expand);
384      setConvertAction(MVT::f80, MVT::f32, Expand);
385      setConvertAction(MVT::f80, MVT::f64, Expand);
386    }
387  } else if (X86ScalarSSEf32) {
388    // Use SSE for f32, x87 for f64.
389    // Set up the FP register classes.
390    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
391    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
392
393    // Use ANDPS to simulate FABS.
394    setOperationAction(ISD::FABS , MVT::f32, Custom);
395
396    // Use XORP to simulate FNEG.
397    setOperationAction(ISD::FNEG , MVT::f32, Custom);
398
399    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
400
401    // Use ANDPS and ORPS to simulate FCOPYSIGN.
402    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
403    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
404
405    // We don't support sin/cos/fmod
406    setOperationAction(ISD::FSIN , MVT::f32, Expand);
407    setOperationAction(ISD::FCOS , MVT::f32, Expand);
408
409    // Special cases we handle for FP constants.
410    addLegalFPImmediate(APFloat(+0.0f)); // xorps
411    addLegalFPImmediate(APFloat(+0.0)); // FLD0
412    addLegalFPImmediate(APFloat(+1.0)); // FLD1
413    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
414    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
415
416    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
417    // this though and handle it in InstructionSelectPreprocess so that
418    // dagcombine2 can hack on these.
419    if (Fast) {
420      setConvertAction(MVT::f32, MVT::f64, Expand);
421      setConvertAction(MVT::f32, MVT::f80, Expand);
422      setConvertAction(MVT::f80, MVT::f32, Expand);
423      setConvertAction(MVT::f64, MVT::f32, Expand);
424      // And x87->x87 truncations also.
425      setConvertAction(MVT::f80, MVT::f64, Expand);
426    }
427
428    if (!UnsafeFPMath) {
429      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
430      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
431    }
432  } else {
433    // f32 and f64 in x87.
434    // Set up the FP register classes.
435    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
436    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
437
438    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
439    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
440    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
441    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
442
443    // Floating truncations go through memory.  If optimizing, we lie about
444    // this though and handle it in InstructionSelectPreprocess so that
445    // dagcombine2 can hack on these.
446    if (Fast) {
447      setConvertAction(MVT::f80, MVT::f32, Expand);
448      setConvertAction(MVT::f64, MVT::f32, Expand);
449      setConvertAction(MVT::f80, MVT::f64, Expand);
450    }
451
452    if (!UnsafeFPMath) {
453      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
454      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
455    }
456    addLegalFPImmediate(APFloat(+0.0)); // FLD0
457    addLegalFPImmediate(APFloat(+1.0)); // FLD1
458    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
459    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
460    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
461    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
462    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
463    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
464  }
465
466  // Long double always uses X87.
467  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
468  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
469  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
470  {
471    APFloat TmpFlt(+0.0);
472    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
473    addLegalFPImmediate(TmpFlt);  // FLD0
474    TmpFlt.changeSign();
475    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
476    APFloat TmpFlt2(+1.0);
477    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
478    addLegalFPImmediate(TmpFlt2);  // FLD1
479    TmpFlt2.changeSign();
480    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
481  }
482
483  if (!UnsafeFPMath) {
484    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
485    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
486  }
487
488  // Always use a library call for pow.
489  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
490  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
491  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
492
493  // First set operation action for all vector types to expand. Then we
494  // will selectively turn on ones that can be effectively codegen'd.
495  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
496       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
497    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
498    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
499    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
500    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
501    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
502    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
503    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
504    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
505    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
506    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
507    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
508    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
509    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
510    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::SimpleValueType)VT, Expand);
511    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::SimpleValueType)VT, Expand);
512    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::SimpleValueType)VT, Expand);
513    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
514    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
515    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
516    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
517    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
518    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
519    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
520    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
521    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
522    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
523    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
524    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
525    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
526    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
527    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
528    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
529    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
530    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
531    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
532    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
533    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
534    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
535  }
536
537  if (Subtarget->hasMMX()) {
538    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
539    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
540    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
541    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
542    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
543
544    // FIXME: add MMX packed arithmetics
545
546    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
547    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
548    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
549    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
550
551    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
552    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
553    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
554    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
555
556    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
557    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
558
559    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
560    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
561    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
562    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
563    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
564    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
565    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
566
567    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
568    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
569    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
570    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
571    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
572    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
573    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
574
575    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
576    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
577    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
578    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
579    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
580    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
581    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
582
583    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
584    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
585    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
586    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
587    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
588    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
589    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
590    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
591    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
592
593    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
594    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
595    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
596    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
597    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
598
599    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
600    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
601    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
602    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
603
604    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
605    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
606    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
607  }
608
609  if (Subtarget->hasSSE1()) {
610    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
611
612    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
613    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
614    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
615    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
616    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
617    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
618    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
619    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
620    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
621    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
622    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
623    setOperationAction(ISD::VSETCC,             MVT::v4f32, Legal);
624  }
625
626  if (Subtarget->hasSSE2()) {
627    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
628    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
629    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
630    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
631    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
632
633    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
634    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
635    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
636    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
637    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
638    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
639    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
640    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
641    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
642    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
643    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
644    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
645    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
646    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
647    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
648
649    setOperationAction(ISD::VSETCC,             MVT::v2f64, Legal);
650    setOperationAction(ISD::VSETCC,             MVT::v16i8, Legal);
651    setOperationAction(ISD::VSETCC,             MVT::v8i16, Legal);
652    setOperationAction(ISD::VSETCC,             MVT::v4i32, Legal);
653    setOperationAction(ISD::VSETCC,             MVT::v2i64, Legal);
654
655    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
656    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
657    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
658    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
659    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
660
661    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
662    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
663      MVT VT = (MVT::SimpleValueType)i;
664      // Do not attempt to custom lower non-power-of-2 vectors
665      if (!isPowerOf2_32(VT.getVectorNumElements()))
666        continue;
667      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
668      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
669      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
670    }
671    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
672    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
674    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
675    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
676    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
677    if (Subtarget->is64Bit()) {
678      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
679      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
680    }
681
682    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
683    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
684      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
685      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
686      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
687      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
688      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
689      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
690      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
691      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
692      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
693      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
694    }
695
696    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
697
698    // Custom lower v2i64 and v2f64 selects.
699    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
700    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
701    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
702    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
703
704  }
705
706  if (Subtarget->hasSSE41()) {
707    // FIXME: Do we need to handle scalar-to-vector here?
708    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
709    setOperationAction(ISD::MUL,                MVT::v2i64, Legal);
710
711    // i8 and i16 vectors are custom , because the source register and source
712    // source memory operand types are not the same width.  f32 vectors are
713    // custom since the immediate controlling the insert encodes additional
714    // information.
715    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
716    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
717    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
718    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
719
720    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
721    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
722    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
723    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
724
725    if (Subtarget->is64Bit()) {
726      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
727      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
728    }
729  }
730
731  // We want to custom lower some of our intrinsics.
732  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
733
734  // We have target-specific dag combine patterns for the following nodes:
735  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
736  setTargetDAGCombine(ISD::BUILD_VECTOR);
737  setTargetDAGCombine(ISD::SELECT);
738  setTargetDAGCombine(ISD::STORE);
739
740  computeRegisterProperties();
741
742  // FIXME: These should be based on subtarget info. Plus, the values should
743  // be smaller when we are in optimizing for size mode.
744  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
745  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
746  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
747  allowUnalignedMemoryAccesses = true; // x86 supports it!
748  setPrefLoopAlignment(16);
749}
750
751
752MVT X86TargetLowering::getSetCCResultType(const SDOperand &) const {
753  return MVT::i8;
754}
755
756
757/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
758/// the desired ByVal argument alignment.
759static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
760  if (MaxAlign == 16)
761    return;
762  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
763    if (VTy->getBitWidth() == 128)
764      MaxAlign = 16;
765  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
766    unsigned EltAlign = 0;
767    getMaxByValAlign(ATy->getElementType(), EltAlign);
768    if (EltAlign > MaxAlign)
769      MaxAlign = EltAlign;
770  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
771    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
772      unsigned EltAlign = 0;
773      getMaxByValAlign(STy->getElementType(i), EltAlign);
774      if (EltAlign > MaxAlign)
775        MaxAlign = EltAlign;
776      if (MaxAlign == 16)
777        break;
778    }
779  }
780  return;
781}
782
783/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
784/// function arguments in the caller parameter area. For X86, aggregates
785/// that contain SSE vectors are placed at 16-byte boundaries while the rest
786/// are at 4-byte boundaries.
787unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
788  if (Subtarget->is64Bit())
789    return getTargetData()->getABITypeAlignment(Ty);
790  unsigned Align = 4;
791  if (Subtarget->hasSSE1())
792    getMaxByValAlign(Ty, Align);
793  return Align;
794}
795
796/// getOptimalMemOpType - Returns the target specific optimal type for load
797/// and store operations as a result of memset, memcpy, and memmove
798/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
799/// determining it.
800MVT
801X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
802                                       bool isSrcConst, bool isSrcStr) const {
803  if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
804    return MVT::v4i32;
805  if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
806    return MVT::v4f32;
807  if (Subtarget->is64Bit() && Size >= 8)
808    return MVT::i64;
809  return MVT::i32;
810}
811
812
813/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
814/// jumptable.
815SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
816                                                      SelectionDAG &DAG) const {
817  if (usesGlobalOffsetTable())
818    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
819  if (!Subtarget->isPICStyleRIPRel())
820    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
821  return Table;
822}
823
824//===----------------------------------------------------------------------===//
825//               Return Value Calling Convention Implementation
826//===----------------------------------------------------------------------===//
827
828#include "X86GenCallingConv.inc"
829
830/// LowerRET - Lower an ISD::RET node.
831SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
832  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
833
834  SmallVector<CCValAssign, 16> RVLocs;
835  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
836  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
837  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
838  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
839
840  // If this is the first return lowered for this function, add the regs to the
841  // liveout set for the function.
842  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
843    for (unsigned i = 0; i != RVLocs.size(); ++i)
844      if (RVLocs[i].isRegLoc())
845        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
846  }
847  SDOperand Chain = Op.getOperand(0);
848
849  // Handle tail call return.
850  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
851  if (Chain.getOpcode() == X86ISD::TAILCALL) {
852    SDOperand TailCall = Chain;
853    SDOperand TargetAddress = TailCall.getOperand(1);
854    SDOperand StackAdjustment = TailCall.getOperand(2);
855    assert(((TargetAddress.getOpcode() == ISD::Register &&
856               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
857                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
858              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
859              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
860             "Expecting an global address, external symbol, or register");
861    assert(StackAdjustment.getOpcode() == ISD::Constant &&
862           "Expecting a const value");
863
864    SmallVector<SDOperand,8> Operands;
865    Operands.push_back(Chain.getOperand(0));
866    Operands.push_back(TargetAddress);
867    Operands.push_back(StackAdjustment);
868    // Copy registers used by the call. Last operand is a flag so it is not
869    // copied.
870    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
871      Operands.push_back(Chain.getOperand(i));
872    }
873    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
874                       Operands.size());
875  }
876
877  // Regular return.
878  SDOperand Flag;
879
880  SmallVector<SDOperand, 6> RetOps;
881  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
882  // Operand #1 = Bytes To Pop
883  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
884
885  // Copy the result values into the output registers.
886  for (unsigned i = 0; i != RVLocs.size(); ++i) {
887    CCValAssign &VA = RVLocs[i];
888    assert(VA.isRegLoc() && "Can only return in registers!");
889    SDOperand ValToCopy = Op.getOperand(i*2+1);
890
891    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
892    // the RET instruction and handled by the FP Stackifier.
893    if (RVLocs[i].getLocReg() == X86::ST0 ||
894        RVLocs[i].getLocReg() == X86::ST1) {
895      // If this is a copy from an xmm register to ST(0), use an FPExtend to
896      // change the value to the FP stack register class.
897      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
898        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
899      RetOps.push_back(ValToCopy);
900      // Don't emit a copytoreg.
901      continue;
902    }
903
904    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
905    Flag = Chain.getValue(1);
906  }
907
908  // The x86-64 ABI for returning structs by value requires that we copy
909  // the sret argument into %rax for the return. We saved the argument into
910  // a virtual register in the entry block, so now we copy the value out
911  // and into %rax.
912  if (Subtarget->is64Bit() &&
913      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
914    MachineFunction &MF = DAG.getMachineFunction();
915    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
916    unsigned Reg = FuncInfo->getSRetReturnReg();
917    if (!Reg) {
918      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
919      FuncInfo->setSRetReturnReg(Reg);
920    }
921    SDOperand Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy());
922
923    Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag);
924    Flag = Chain.getValue(1);
925  }
926
927  RetOps[0] = Chain;  // Update chain.
928
929  // Add the flag if we have it.
930  if (Flag.Val)
931    RetOps.push_back(Flag);
932
933  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
934}
935
936
937/// LowerCallResult - Lower the result values of an ISD::CALL into the
938/// appropriate copies out of appropriate physical registers.  This assumes that
939/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
940/// being lowered.  The returns a SDNode with the same number of values as the
941/// ISD::CALL.
942SDNode *X86TargetLowering::
943LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
944                unsigned CallingConv, SelectionDAG &DAG) {
945
946  // Assign locations to each value returned by this call.
947  SmallVector<CCValAssign, 16> RVLocs;
948  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
949  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
950  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
951
952  SmallVector<SDOperand, 8> ResultVals;
953
954  // Copy all of the result registers out of their specified physreg.
955  for (unsigned i = 0; i != RVLocs.size(); ++i) {
956    MVT CopyVT = RVLocs[i].getValVT();
957
958    // If this is a call to a function that returns an fp value on the floating
959    // point stack, but where we prefer to use the value in xmm registers, copy
960    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
961    if (RVLocs[i].getLocReg() == X86::ST0 &&
962        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
963      CopyVT = MVT::f80;
964    }
965
966    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
967                               CopyVT, InFlag).getValue(1);
968    SDOperand Val = Chain.getValue(0);
969    InFlag = Chain.getValue(2);
970
971    if (CopyVT != RVLocs[i].getValVT()) {
972      // Round the F80 the right size, which also moves to the appropriate xmm
973      // register.
974      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
975                        // This truncation won't change the value.
976                        DAG.getIntPtrConstant(1));
977    }
978
979    ResultVals.push_back(Val);
980  }
981
982  // Merge everything together with a MERGE_VALUES node.
983  ResultVals.push_back(Chain);
984  return DAG.getMergeValues(TheCall->getVTList(), &ResultVals[0],
985                            ResultVals.size()).Val;
986}
987
988
989//===----------------------------------------------------------------------===//
990//                C & StdCall & Fast Calling Convention implementation
991//===----------------------------------------------------------------------===//
992//  StdCall calling convention seems to be standard for many Windows' API
993//  routines and around. It differs from C calling convention just a little:
994//  callee should clean up the stack, not caller. Symbols should be also
995//  decorated in some fancy way :) It doesn't support any vector arguments.
996//  For info on fast calling convention see Fast Calling Convention (tail call)
997//  implementation LowerX86_32FastCCCallTo.
998
999/// AddLiveIn - This helper function adds the specified physical register to the
1000/// MachineFunction as a live in value.  It also creates a corresponding virtual
1001/// register for it.
1002static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
1003                          const TargetRegisterClass *RC) {
1004  assert(RC->contains(PReg) && "Not the correct regclass!");
1005  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1006  MF.getRegInfo().addLiveIn(PReg, VReg);
1007  return VReg;
1008}
1009
1010/// CallIsStructReturn - Determines whether a CALL node uses struct return
1011/// semantics.
1012static bool CallIsStructReturn(SDOperand Op) {
1013  unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1014  if (!NumOps)
1015    return false;
1016
1017  return cast<ARG_FLAGSSDNode>(Op.getOperand(6))->getArgFlags().isSRet();
1018}
1019
1020/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1021/// return semantics.
1022static bool ArgsAreStructReturn(SDOperand Op) {
1023  unsigned NumArgs = Op.Val->getNumValues() - 1;
1024  if (!NumArgs)
1025    return false;
1026
1027  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1028}
1029
1030/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1031/// the callee to pop its own arguments. Callee pop is necessary to support tail
1032/// calls.
1033bool X86TargetLowering::IsCalleePop(SDOperand Op) {
1034  bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1035  if (IsVarArg)
1036    return false;
1037
1038  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1039  default:
1040    return false;
1041  case CallingConv::X86_StdCall:
1042    return !Subtarget->is64Bit();
1043  case CallingConv::X86_FastCall:
1044    return !Subtarget->is64Bit();
1045  case CallingConv::Fast:
1046    return PerformTailCallOpt;
1047  }
1048}
1049
1050/// CCAssignFnForNode - Selects the correct CCAssignFn for a CALL or
1051/// FORMAL_ARGUMENTS node.
1052CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDOperand Op) const {
1053  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1054
1055  if (Subtarget->is64Bit()) {
1056    if (Subtarget->isTargetWin64())
1057      return CC_X86_Win64_C;
1058    else {
1059      if (CC == CallingConv::Fast && PerformTailCallOpt)
1060        return CC_X86_64_TailCall;
1061      else
1062        return CC_X86_64_C;
1063    }
1064  }
1065
1066  if (CC == CallingConv::X86_FastCall)
1067    return CC_X86_32_FastCall;
1068  else if (CC == CallingConv::Fast && PerformTailCallOpt)
1069    return CC_X86_32_TailCall;
1070  else
1071    return CC_X86_32_C;
1072}
1073
1074/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1075/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1076NameDecorationStyle
1077X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDOperand Op) {
1078  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1079  if (CC == CallingConv::X86_FastCall)
1080    return FastCall;
1081  else if (CC == CallingConv::X86_StdCall)
1082    return StdCall;
1083  return None;
1084}
1085
1086
1087/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1088/// in a register before calling.
1089bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1090  return !IsTailCall && !Is64Bit &&
1091    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1092    Subtarget->isPICStyleGOT();
1093}
1094
1095/// CallRequiresFnAddressInReg - Check whether the call requires the function
1096/// address to be loaded in a register.
1097bool
1098X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1099  return !Is64Bit && IsTailCall &&
1100    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1101    Subtarget->isPICStyleGOT();
1102}
1103
1104/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1105/// by "Src" to address "Dst" with size and alignment information specified by
1106/// the specific parameter attribute. The copy will be passed as a byval
1107/// function parameter.
1108static SDOperand
1109CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1110                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
1111  SDOperand SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1112  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(),
1113                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1114}
1115
1116SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
1117                                              const CCValAssign &VA,
1118                                              MachineFrameInfo *MFI,
1119                                              unsigned CC,
1120                                              SDOperand Root, unsigned i) {
1121  // Create the nodes corresponding to a load from this parameter slot.
1122  ISD::ArgFlagsTy Flags =
1123    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1124  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1125  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1126
1127  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1128  // changed with more analysis.
1129  // In case of tail call optimization mark all arguments mutable. Since they
1130  // could be overwritten by lowering of arguments in case of a tail call.
1131  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1132                                  VA.getLocMemOffset(), isImmutable);
1133  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1134  if (Flags.isByVal())
1135    return FIN;
1136  return DAG.getLoad(VA.getValVT(), Root, FIN,
1137                     PseudoSourceValue::getFixedStack(FI), 0);
1138}
1139
1140SDOperand
1141X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
1142  MachineFunction &MF = DAG.getMachineFunction();
1143  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1144
1145  const Function* Fn = MF.getFunction();
1146  if (Fn->hasExternalLinkage() &&
1147      Subtarget->isTargetCygMing() &&
1148      Fn->getName() == "main")
1149    FuncInfo->setForceFramePointer(true);
1150
1151  // Decorate the function name.
1152  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1153
1154  MachineFrameInfo *MFI = MF.getFrameInfo();
1155  SDOperand Root = Op.getOperand(0);
1156  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1157  unsigned CC = MF.getFunction()->getCallingConv();
1158  bool Is64Bit = Subtarget->is64Bit();
1159  bool IsWin64 = Subtarget->isTargetWin64();
1160
1161  assert(!(isVarArg && CC == CallingConv::Fast) &&
1162         "Var args not supported with calling convention fastcc");
1163
1164  // Assign locations to all of the incoming arguments.
1165  SmallVector<CCValAssign, 16> ArgLocs;
1166  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1167  CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op));
1168
1169  SmallVector<SDOperand, 8> ArgValues;
1170  unsigned LastVal = ~0U;
1171  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1172    CCValAssign &VA = ArgLocs[i];
1173    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1174    // places.
1175    assert(VA.getValNo() != LastVal &&
1176           "Don't support value assigned to multiple locs yet");
1177    LastVal = VA.getValNo();
1178
1179    if (VA.isRegLoc()) {
1180      MVT RegVT = VA.getLocVT();
1181      TargetRegisterClass *RC;
1182      if (RegVT == MVT::i32)
1183        RC = X86::GR32RegisterClass;
1184      else if (Is64Bit && RegVT == MVT::i64)
1185        RC = X86::GR64RegisterClass;
1186      else if (RegVT == MVT::f32)
1187        RC = X86::FR32RegisterClass;
1188      else if (RegVT == MVT::f64)
1189        RC = X86::FR64RegisterClass;
1190      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1191        RC = X86::VR128RegisterClass;
1192      else if (RegVT.isVector()) {
1193        assert(RegVT.getSizeInBits() == 64);
1194        if (!Is64Bit)
1195          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1196        else {
1197          // Darwin calling convention passes MMX values in either GPRs or
1198          // XMMs in x86-64. Other targets pass them in memory.
1199          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1200            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1201            RegVT = MVT::v2i64;
1202          } else {
1203            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1204            RegVT = MVT::i64;
1205          }
1206        }
1207      } else {
1208        assert(0 && "Unknown argument type!");
1209      }
1210
1211      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1212      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1213
1214      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1215      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1216      // right size.
1217      if (VA.getLocInfo() == CCValAssign::SExt)
1218        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1219                               DAG.getValueType(VA.getValVT()));
1220      else if (VA.getLocInfo() == CCValAssign::ZExt)
1221        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1222                               DAG.getValueType(VA.getValVT()));
1223
1224      if (VA.getLocInfo() != CCValAssign::Full)
1225        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1226
1227      // Handle MMX values passed in GPRs.
1228      if (Is64Bit && RegVT != VA.getLocVT()) {
1229        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1230          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1231        else if (RC == X86::VR128RegisterClass) {
1232          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue,
1233                                 DAG.getConstant(0, MVT::i64));
1234          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1235        }
1236      }
1237
1238      ArgValues.push_back(ArgValue);
1239    } else {
1240      assert(VA.isMemLoc());
1241      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1242    }
1243  }
1244
1245  // The x86-64 ABI for returning structs by value requires that we copy
1246  // the sret argument into %rax for the return. Save the argument into
1247  // a virtual register so that we can access it from the return points.
1248  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1249    MachineFunction &MF = DAG.getMachineFunction();
1250    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1251    unsigned Reg = FuncInfo->getSRetReturnReg();
1252    if (!Reg) {
1253      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1254      FuncInfo->setSRetReturnReg(Reg);
1255    }
1256    SDOperand Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]);
1257    Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root);
1258  }
1259
1260  unsigned StackSize = CCInfo.getNextStackOffset();
1261  // align stack specially for tail calls
1262  if (CC == CallingConv::Fast)
1263    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1264
1265  // If the function takes variable number of arguments, make a frame index for
1266  // the start of the first vararg value... for expansion of llvm.va_start.
1267  if (isVarArg) {
1268    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1269      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1270    }
1271    if (Is64Bit) {
1272      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1273
1274      // FIXME: We should really autogenerate these arrays
1275      static const unsigned GPR64ArgRegsWin64[] = {
1276        X86::RCX, X86::RDX, X86::R8,  X86::R9
1277      };
1278      static const unsigned XMMArgRegsWin64[] = {
1279        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1280      };
1281      static const unsigned GPR64ArgRegs64Bit[] = {
1282        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1283      };
1284      static const unsigned XMMArgRegs64Bit[] = {
1285        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1286        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1287      };
1288      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1289
1290      if (IsWin64) {
1291        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1292        GPR64ArgRegs = GPR64ArgRegsWin64;
1293        XMMArgRegs = XMMArgRegsWin64;
1294      } else {
1295        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1296        GPR64ArgRegs = GPR64ArgRegs64Bit;
1297        XMMArgRegs = XMMArgRegs64Bit;
1298      }
1299      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1300                                                       TotalNumIntRegs);
1301      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1302                                                       TotalNumXMMRegs);
1303
1304      // For X86-64, if there are vararg parameters that are passed via
1305      // registers, then we must store them to their spots on the stack so they
1306      // may be loaded by deferencing the result of va_next.
1307      VarArgsGPOffset = NumIntRegs * 8;
1308      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1309      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1310                                                 TotalNumXMMRegs * 16, 16);
1311
1312      // Store the integer parameter registers.
1313      SmallVector<SDOperand, 8> MemOps;
1314      SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1315      SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1316                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1317      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1318        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1319                                  X86::GR64RegisterClass);
1320        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1321        SDOperand Store =
1322          DAG.getStore(Val.getValue(1), Val, FIN,
1323                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1324        MemOps.push_back(Store);
1325        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1326                          DAG.getIntPtrConstant(8));
1327      }
1328
1329      // Now store the XMM (fp + vector) parameter registers.
1330      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1331                        DAG.getIntPtrConstant(VarArgsFPOffset));
1332      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1333        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1334                                  X86::VR128RegisterClass);
1335        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1336        SDOperand Store =
1337          DAG.getStore(Val.getValue(1), Val, FIN,
1338                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1339        MemOps.push_back(Store);
1340        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1341                          DAG.getIntPtrConstant(16));
1342      }
1343      if (!MemOps.empty())
1344          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1345                             &MemOps[0], MemOps.size());
1346    }
1347  }
1348
1349  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1350  // arguments and the arguments after the retaddr has been pushed are
1351  // aligned.
1352  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1353      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1354      (StackSize & 7) == 0)
1355    StackSize += 4;
1356
1357  ArgValues.push_back(Root);
1358
1359  // Some CCs need callee pop.
1360  if (IsCalleePop(Op)) {
1361    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1362    BytesCallerReserves = 0;
1363  } else {
1364    BytesToPopOnReturn  = 0; // Callee pops nothing.
1365    // If this is an sret function, the return should pop the hidden pointer.
1366    if (!Is64Bit && ArgsAreStructReturn(Op))
1367      BytesToPopOnReturn = 4;
1368    BytesCallerReserves = StackSize;
1369  }
1370
1371  if (!Is64Bit) {
1372    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1373    if (CC == CallingConv::X86_FastCall)
1374      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1375  }
1376
1377  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1378
1379  // Return the new list of results.
1380  return DAG.getMergeValues(Op.Val->getVTList(), &ArgValues[0],
1381                            ArgValues.size()).getValue(Op.ResNo);
1382}
1383
1384SDOperand
1385X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1386                                    const SDOperand &StackPtr,
1387                                    const CCValAssign &VA,
1388                                    SDOperand Chain,
1389                                    SDOperand Arg) {
1390  unsigned LocMemOffset = VA.getLocMemOffset();
1391  SDOperand PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1392  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1393  ISD::ArgFlagsTy Flags =
1394    cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->getArgFlags();
1395  if (Flags.isByVal()) {
1396    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1397  }
1398  return DAG.getStore(Chain, Arg, PtrOff,
1399                      PseudoSourceValue::getStack(), LocMemOffset);
1400}
1401
1402/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call
1403/// optimization is performed and it is required.
1404SDOperand
1405X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1406                                           SDOperand &OutRetAddr,
1407                                           SDOperand Chain,
1408                                           bool IsTailCall,
1409                                           bool Is64Bit,
1410                                           int FPDiff) {
1411  if (!IsTailCall || FPDiff==0) return Chain;
1412
1413  // Adjust the Return address stack slot.
1414  MVT VT = getPointerTy();
1415  OutRetAddr = getReturnAddressFrameIndex(DAG);
1416  // Load the "old" Return address.
1417  OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0);
1418  return SDOperand(OutRetAddr.Val, 1);
1419}
1420
1421/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1422/// optimization is performed and it is required (FPDiff!=0).
1423static SDOperand
1424EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1425                         SDOperand Chain, SDOperand RetAddrFrIdx,
1426                         bool Is64Bit, int FPDiff) {
1427  // Store the return address to the appropriate stack slot.
1428  if (!FPDiff) return Chain;
1429  // Calculate the new stack slot for the return address.
1430  int SlotSize = Is64Bit ? 8 : 4;
1431  int NewReturnAddrFI =
1432    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1433  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1434  SDOperand NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1435  Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1436                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1437  return Chain;
1438}
1439
1440SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
1441  MachineFunction &MF = DAG.getMachineFunction();
1442  SDOperand Chain     = Op.getOperand(0);
1443  unsigned CC         = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1444  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1445  bool IsTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0
1446                        && CC == CallingConv::Fast && PerformTailCallOpt;
1447  SDOperand Callee    = Op.getOperand(4);
1448  bool Is64Bit        = Subtarget->is64Bit();
1449  bool IsStructRet    = CallIsStructReturn(Op);
1450
1451  assert(!(isVarArg && CC == CallingConv::Fast) &&
1452         "Var args not supported with calling convention fastcc");
1453
1454  // Analyze operands of the call, assigning locations to each operand.
1455  SmallVector<CCValAssign, 16> ArgLocs;
1456  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1457  CCInfo.AnalyzeCallOperands(Op.Val, CCAssignFnForNode(Op));
1458
1459  // Get a count of how many bytes are to be pushed on the stack.
1460  unsigned NumBytes = CCInfo.getNextStackOffset();
1461  if (CC == CallingConv::Fast)
1462    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1463
1464  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1465  // arguments and the arguments after the retaddr has been pushed are aligned.
1466  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1467      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1468      (NumBytes & 7) == 0)
1469    NumBytes += 4;
1470
1471  int FPDiff = 0;
1472  if (IsTailCall) {
1473    // Lower arguments at fp - stackoffset + fpdiff.
1474    unsigned NumBytesCallerPushed =
1475      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1476    FPDiff = NumBytesCallerPushed - NumBytes;
1477
1478    // Set the delta of movement of the returnaddr stackslot.
1479    // But only set if delta is greater than previous delta.
1480    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1481      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1482  }
1483
1484  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes));
1485
1486  SDOperand RetAddrFrIdx;
1487  // Load return adress for tail calls.
1488  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1489                                  FPDiff);
1490
1491  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1492  SmallVector<SDOperand, 8> MemOpChains;
1493  SDOperand StackPtr;
1494
1495  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1496  // of tail call optimization arguments are handle later.
1497  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1498    CCValAssign &VA = ArgLocs[i];
1499    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1500    bool isByVal = cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->
1501      getArgFlags().isByVal();
1502
1503    // Promote the value if needed.
1504    switch (VA.getLocInfo()) {
1505    default: assert(0 && "Unknown loc info!");
1506    case CCValAssign::Full: break;
1507    case CCValAssign::SExt:
1508      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1509      break;
1510    case CCValAssign::ZExt:
1511      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1512      break;
1513    case CCValAssign::AExt:
1514      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1515      break;
1516    }
1517
1518    if (VA.isRegLoc()) {
1519      if (Is64Bit) {
1520        MVT RegVT = VA.getLocVT();
1521        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1522          switch (VA.getLocReg()) {
1523          default:
1524            break;
1525          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1526          case X86::R8: {
1527            // Special case: passing MMX values in GPR registers.
1528            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1529            break;
1530          }
1531          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1532          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1533            // Special case: passing MMX values in XMM registers.
1534            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1535            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg);
1536            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
1537                              DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg,
1538                              getMOVLMask(2, DAG));
1539            break;
1540          }
1541          }
1542      }
1543      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1544    } else {
1545      if (!IsTailCall || (IsTailCall && isByVal)) {
1546        assert(VA.isMemLoc());
1547        if (StackPtr.Val == 0)
1548          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1549
1550        MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1551                                               Arg));
1552      }
1553    }
1554  }
1555
1556  if (!MemOpChains.empty())
1557    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1558                        &MemOpChains[0], MemOpChains.size());
1559
1560  // Build a sequence of copy-to-reg nodes chained together with token chain
1561  // and flag operands which copy the outgoing args into registers.
1562  SDOperand InFlag;
1563  // Tail call byval lowering might overwrite argument registers so in case of
1564  // tail call optimization the copies to registers are lowered later.
1565  if (!IsTailCall)
1566    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1567      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1568                               InFlag);
1569      InFlag = Chain.getValue(1);
1570    }
1571
1572  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1573  // GOT pointer.
1574  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1575    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1576                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1577                             InFlag);
1578    InFlag = Chain.getValue(1);
1579  }
1580  // If we are tail calling and generating PIC/GOT style code load the address
1581  // of the callee into ecx. The value in ecx is used as target of the tail
1582  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1583  // calls on PIC/GOT architectures. Normally we would just put the address of
1584  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1585  // restored (since ebx is callee saved) before jumping to the target@PLT.
1586  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1587    // Note: The actual moving to ecx is done further down.
1588    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1589    if (G &&  !G->getGlobal()->hasHiddenVisibility() &&
1590        !G->getGlobal()->hasProtectedVisibility())
1591      Callee =  LowerGlobalAddress(Callee, DAG);
1592    else if (isa<ExternalSymbolSDNode>(Callee))
1593      Callee = LowerExternalSymbol(Callee,DAG);
1594  }
1595
1596  if (Is64Bit && isVarArg) {
1597    // From AMD64 ABI document:
1598    // For calls that may call functions that use varargs or stdargs
1599    // (prototype-less calls or calls to functions containing ellipsis (...) in
1600    // the declaration) %al is used as hidden argument to specify the number
1601    // of SSE registers used. The contents of %al do not need to match exactly
1602    // the number of registers, but must be an ubound on the number of SSE
1603    // registers used and is in the range 0 - 8 inclusive.
1604
1605    // FIXME: Verify this on Win64
1606    // Count the number of XMM registers allocated.
1607    static const unsigned XMMArgRegs[] = {
1608      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1609      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1610    };
1611    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1612
1613    Chain = DAG.getCopyToReg(Chain, X86::AL,
1614                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1615    InFlag = Chain.getValue(1);
1616  }
1617
1618
1619  // For tail calls lower the arguments to the 'real' stack slot.
1620  if (IsTailCall) {
1621    SmallVector<SDOperand, 8> MemOpChains2;
1622    SDOperand FIN;
1623    int FI = 0;
1624    // Do not flag preceeding copytoreg stuff together with the following stuff.
1625    InFlag = SDOperand();
1626    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1627      CCValAssign &VA = ArgLocs[i];
1628      if (!VA.isRegLoc()) {
1629        assert(VA.isMemLoc());
1630        SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1631        SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1632        ISD::ArgFlagsTy Flags =
1633          cast<ARG_FLAGSSDNode>(FlagsOp)->getArgFlags();
1634        // Create frame index.
1635        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1636        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1637        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1638        FIN = DAG.getFrameIndex(FI, getPointerTy());
1639
1640        if (Flags.isByVal()) {
1641          // Copy relative to framepointer.
1642          SDOperand Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1643          if (StackPtr.Val == 0)
1644            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1645          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
1646
1647          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1648                                                           Flags, DAG));
1649        } else {
1650          // Store relative to framepointer.
1651          MemOpChains2.push_back(
1652            DAG.getStore(Chain, Arg, FIN,
1653                         PseudoSourceValue::getFixedStack(FI), 0));
1654        }
1655      }
1656    }
1657
1658    if (!MemOpChains2.empty())
1659      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1660                          &MemOpChains2[0], MemOpChains2.size());
1661
1662    // Copy arguments to their registers.
1663    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1664      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1665                               InFlag);
1666      InFlag = Chain.getValue(1);
1667    }
1668    InFlag =SDOperand();
1669
1670    // Store the return address to the appropriate stack slot.
1671    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1672                                     FPDiff);
1673  }
1674
1675  // If the callee is a GlobalAddress node (quite common, every direct call is)
1676  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1677  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1678    // We should use extra load for direct calls to dllimported functions in
1679    // non-JIT mode.
1680    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1681                                        getTargetMachine(), true))
1682      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1683  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1684    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1685  } else if (IsTailCall) {
1686    unsigned Opc = Is64Bit ? X86::R9 : X86::ECX;
1687
1688    Chain = DAG.getCopyToReg(Chain,
1689                             DAG.getRegister(Opc, getPointerTy()),
1690                             Callee,InFlag);
1691    Callee = DAG.getRegister(Opc, getPointerTy());
1692    // Add register as live out.
1693    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1694  }
1695
1696  // Returns a chain & a flag for retval copy to use.
1697  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1698  SmallVector<SDOperand, 8> Ops;
1699
1700  if (IsTailCall) {
1701    Ops.push_back(Chain);
1702    Ops.push_back(DAG.getIntPtrConstant(NumBytes));
1703    Ops.push_back(DAG.getIntPtrConstant(0));
1704    if (InFlag.Val)
1705      Ops.push_back(InFlag);
1706    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1707    InFlag = Chain.getValue(1);
1708
1709    // Returns a chain & a flag for retval copy to use.
1710    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1711    Ops.clear();
1712  }
1713
1714  Ops.push_back(Chain);
1715  Ops.push_back(Callee);
1716
1717  if (IsTailCall)
1718    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1719
1720  // Add argument registers to the end of the list so that they are known live
1721  // into the call.
1722  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1723    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1724                                  RegsToPass[i].second.getValueType()));
1725
1726  // Add an implicit use GOT pointer in EBX.
1727  if (!IsTailCall && !Is64Bit &&
1728      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1729      Subtarget->isPICStyleGOT())
1730    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1731
1732  // Add an implicit use of AL for x86 vararg functions.
1733  if (Is64Bit && isVarArg)
1734    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1735
1736  if (InFlag.Val)
1737    Ops.push_back(InFlag);
1738
1739  if (IsTailCall) {
1740    assert(InFlag.Val &&
1741           "Flag must be set. Depend on flag being set in LowerRET");
1742    Chain = DAG.getNode(X86ISD::TAILCALL,
1743                        Op.Val->getVTList(), &Ops[0], Ops.size());
1744
1745    return SDOperand(Chain.Val, Op.ResNo);
1746  }
1747
1748  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1749  InFlag = Chain.getValue(1);
1750
1751  // Create the CALLSEQ_END node.
1752  unsigned NumBytesForCalleeToPush;
1753  if (IsCalleePop(Op))
1754    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1755  else if (!Is64Bit && IsStructRet)
1756    // If this is is a call to a struct-return function, the callee
1757    // pops the hidden struct pointer, so we have to push it back.
1758    // This is common for Darwin/X86, Linux & Mingw32 targets.
1759    NumBytesForCalleeToPush = 4;
1760  else
1761    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1762
1763  // Returns a flag for retval copy to use.
1764  Chain = DAG.getCALLSEQ_END(Chain,
1765                             DAG.getIntPtrConstant(NumBytes),
1766                             DAG.getIntPtrConstant(NumBytesForCalleeToPush),
1767                             InFlag);
1768  InFlag = Chain.getValue(1);
1769
1770  // Handle result values, copying them out of physregs into vregs that we
1771  // return.
1772  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1773}
1774
1775
1776//===----------------------------------------------------------------------===//
1777//                Fast Calling Convention (tail call) implementation
1778//===----------------------------------------------------------------------===//
1779
1780//  Like std call, callee cleans arguments, convention except that ECX is
1781//  reserved for storing the tail called function address. Only 2 registers are
1782//  free for argument passing (inreg). Tail call optimization is performed
1783//  provided:
1784//                * tailcallopt is enabled
1785//                * caller/callee are fastcc
1786//  On X86_64 architecture with GOT-style position independent code only local
1787//  (within module) calls are supported at the moment.
1788//  To keep the stack aligned according to platform abi the function
1789//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1790//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1791//  If a tail called function callee has more arguments than the caller the
1792//  caller needs to make sure that there is room to move the RETADDR to. This is
1793//  achieved by reserving an area the size of the argument delta right after the
1794//  original REtADDR, but before the saved framepointer or the spilled registers
1795//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1796//  stack layout:
1797//    arg1
1798//    arg2
1799//    RETADDR
1800//    [ new RETADDR
1801//      move area ]
1802//    (possible EBP)
1803//    ESI
1804//    EDI
1805//    local1 ..
1806
1807/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1808/// for a 16 byte align requirement.
1809unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1810                                                        SelectionDAG& DAG) {
1811  if (PerformTailCallOpt) {
1812    MachineFunction &MF = DAG.getMachineFunction();
1813    const TargetMachine &TM = MF.getTarget();
1814    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1815    unsigned StackAlignment = TFI.getStackAlignment();
1816    uint64_t AlignMask = StackAlignment - 1;
1817    int64_t Offset = StackSize;
1818    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1819    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1820      // Number smaller than 12 so just add the difference.
1821      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1822    } else {
1823      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1824      Offset = ((~AlignMask) & Offset) + StackAlignment +
1825        (StackAlignment-SlotSize);
1826    }
1827    StackSize = Offset;
1828  }
1829  return StackSize;
1830}
1831
1832/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1833/// following the call is a return. A function is eligible if caller/callee
1834/// calling conventions match, currently only fastcc supports tail calls, and
1835/// the function CALL is immediatly followed by a RET.
1836bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1837                                                      SDOperand Ret,
1838                                                      SelectionDAG& DAG) const {
1839  if (!PerformTailCallOpt)
1840    return false;
1841
1842  if (CheckTailCallReturnConstraints(Call, Ret)) {
1843    MachineFunction &MF = DAG.getMachineFunction();
1844    unsigned CallerCC = MF.getFunction()->getCallingConv();
1845    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1846    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1847      SDOperand Callee = Call.getOperand(4);
1848      // On x86/32Bit PIC/GOT  tail calls are supported.
1849      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1850          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1851        return true;
1852
1853      // Can only do local tail calls (in same module, hidden or protected) on
1854      // x86_64 PIC/GOT at the moment.
1855      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1856        return G->getGlobal()->hasHiddenVisibility()
1857            || G->getGlobal()->hasProtectedVisibility();
1858    }
1859  }
1860
1861  return false;
1862}
1863
1864//===----------------------------------------------------------------------===//
1865//                           Other Lowering Hooks
1866//===----------------------------------------------------------------------===//
1867
1868
1869SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1870  MachineFunction &MF = DAG.getMachineFunction();
1871  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1872  int ReturnAddrIndex = FuncInfo->getRAIndex();
1873
1874  if (ReturnAddrIndex == 0) {
1875    // Set up a frame object for the return address.
1876    if (Subtarget->is64Bit())
1877      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1878    else
1879      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1880
1881    FuncInfo->setRAIndex(ReturnAddrIndex);
1882  }
1883
1884  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1885}
1886
1887
1888
1889/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1890/// specific condition code. It returns a false if it cannot do a direct
1891/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1892/// needed.
1893static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1894                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1895                           SelectionDAG &DAG) {
1896  X86CC = X86::COND_INVALID;
1897  if (!isFP) {
1898    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1899      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1900        // X > -1   -> X == 0, jump !sign.
1901        RHS = DAG.getConstant(0, RHS.getValueType());
1902        X86CC = X86::COND_NS;
1903        return true;
1904      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1905        // X < 0   -> X == 0, jump on sign.
1906        X86CC = X86::COND_S;
1907        return true;
1908      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1909        // X < 1   -> X <= 0
1910        RHS = DAG.getConstant(0, RHS.getValueType());
1911        X86CC = X86::COND_LE;
1912        return true;
1913      }
1914    }
1915
1916    switch (SetCCOpcode) {
1917    default: break;
1918    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1919    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1920    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1921    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1922    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1923    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1924    case ISD::SETULT: X86CC = X86::COND_B;  break;
1925    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1926    case ISD::SETULE: X86CC = X86::COND_BE; break;
1927    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1928    }
1929  } else {
1930    // On a floating point condition, the flags are set as follows:
1931    // ZF  PF  CF   op
1932    //  0 | 0 | 0 | X > Y
1933    //  0 | 0 | 1 | X < Y
1934    //  1 | 0 | 0 | X == Y
1935    //  1 | 1 | 1 | unordered
1936    bool Flip = false;
1937    switch (SetCCOpcode) {
1938    default: break;
1939    case ISD::SETUEQ:
1940    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1941    case ISD::SETOLT: Flip = true; // Fallthrough
1942    case ISD::SETOGT:
1943    case ISD::SETGT: X86CC = X86::COND_A;  break;
1944    case ISD::SETOLE: Flip = true; // Fallthrough
1945    case ISD::SETOGE:
1946    case ISD::SETGE: X86CC = X86::COND_AE; break;
1947    case ISD::SETUGT: Flip = true; // Fallthrough
1948    case ISD::SETULT:
1949    case ISD::SETLT: X86CC = X86::COND_B;  break;
1950    case ISD::SETUGE: Flip = true; // Fallthrough
1951    case ISD::SETULE:
1952    case ISD::SETLE: X86CC = X86::COND_BE; break;
1953    case ISD::SETONE:
1954    case ISD::SETNE: X86CC = X86::COND_NE; break;
1955    case ISD::SETUO: X86CC = X86::COND_P;  break;
1956    case ISD::SETO:  X86CC = X86::COND_NP; break;
1957    }
1958    if (Flip)
1959      std::swap(LHS, RHS);
1960  }
1961
1962  return X86CC != X86::COND_INVALID;
1963}
1964
1965/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1966/// code. Current x86 isa includes the following FP cmov instructions:
1967/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1968static bool hasFPCMov(unsigned X86CC) {
1969  switch (X86CC) {
1970  default:
1971    return false;
1972  case X86::COND_B:
1973  case X86::COND_BE:
1974  case X86::COND_E:
1975  case X86::COND_P:
1976  case X86::COND_A:
1977  case X86::COND_AE:
1978  case X86::COND_NE:
1979  case X86::COND_NP:
1980    return true;
1981  }
1982}
1983
1984/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1985/// true if Op is undef or if its value falls within the specified range (L, H].
1986static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1987  if (Op.getOpcode() == ISD::UNDEF)
1988    return true;
1989
1990  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1991  return (Val >= Low && Val < Hi);
1992}
1993
1994/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1995/// true if Op is undef or if its value equal to the specified value.
1996static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1997  if (Op.getOpcode() == ISD::UNDEF)
1998    return true;
1999  return cast<ConstantSDNode>(Op)->getValue() == Val;
2000}
2001
2002/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2003/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2004bool X86::isPSHUFDMask(SDNode *N) {
2005  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2006
2007  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2008    return false;
2009
2010  // Check if the value doesn't reference the second vector.
2011  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2012    SDOperand Arg = N->getOperand(i);
2013    if (Arg.getOpcode() == ISD::UNDEF) continue;
2014    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2015    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
2016      return false;
2017  }
2018
2019  return true;
2020}
2021
2022/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2023/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2024bool X86::isPSHUFHWMask(SDNode *N) {
2025  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2026
2027  if (N->getNumOperands() != 8)
2028    return false;
2029
2030  // Lower quadword copied in order.
2031  for (unsigned i = 0; i != 4; ++i) {
2032    SDOperand Arg = N->getOperand(i);
2033    if (Arg.getOpcode() == ISD::UNDEF) continue;
2034    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2035    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2036      return false;
2037  }
2038
2039  // Upper quadword shuffled.
2040  for (unsigned i = 4; i != 8; ++i) {
2041    SDOperand Arg = N->getOperand(i);
2042    if (Arg.getOpcode() == ISD::UNDEF) continue;
2043    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2044    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2045    if (Val < 4 || Val > 7)
2046      return false;
2047  }
2048
2049  return true;
2050}
2051
2052/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2053/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2054bool X86::isPSHUFLWMask(SDNode *N) {
2055  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2056
2057  if (N->getNumOperands() != 8)
2058    return false;
2059
2060  // Upper quadword copied in order.
2061  for (unsigned i = 4; i != 8; ++i)
2062    if (!isUndefOrEqual(N->getOperand(i), i))
2063      return false;
2064
2065  // Lower quadword shuffled.
2066  for (unsigned i = 0; i != 4; ++i)
2067    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2068      return false;
2069
2070  return true;
2071}
2072
2073/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2074/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2075static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) {
2076  if (NumElems != 2 && NumElems != 4) return false;
2077
2078  unsigned Half = NumElems / 2;
2079  for (unsigned i = 0; i < Half; ++i)
2080    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2081      return false;
2082  for (unsigned i = Half; i < NumElems; ++i)
2083    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2084      return false;
2085
2086  return true;
2087}
2088
2089bool X86::isSHUFPMask(SDNode *N) {
2090  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2091  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2092}
2093
2094/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2095/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2096/// half elements to come from vector 1 (which would equal the dest.) and
2097/// the upper half to come from vector 2.
2098static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) {
2099  if (NumOps != 2 && NumOps != 4) return false;
2100
2101  unsigned Half = NumOps / 2;
2102  for (unsigned i = 0; i < Half; ++i)
2103    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2104      return false;
2105  for (unsigned i = Half; i < NumOps; ++i)
2106    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2107      return false;
2108  return true;
2109}
2110
2111static bool isCommutedSHUFP(SDNode *N) {
2112  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2113  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2114}
2115
2116/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2117/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2118bool X86::isMOVHLPSMask(SDNode *N) {
2119  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2120
2121  if (N->getNumOperands() != 4)
2122    return false;
2123
2124  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2125  return isUndefOrEqual(N->getOperand(0), 6) &&
2126         isUndefOrEqual(N->getOperand(1), 7) &&
2127         isUndefOrEqual(N->getOperand(2), 2) &&
2128         isUndefOrEqual(N->getOperand(3), 3);
2129}
2130
2131/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2132/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2133/// <2, 3, 2, 3>
2134bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2135  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2136
2137  if (N->getNumOperands() != 4)
2138    return false;
2139
2140  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2141  return isUndefOrEqual(N->getOperand(0), 2) &&
2142         isUndefOrEqual(N->getOperand(1), 3) &&
2143         isUndefOrEqual(N->getOperand(2), 2) &&
2144         isUndefOrEqual(N->getOperand(3), 3);
2145}
2146
2147/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2148/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2149bool X86::isMOVLPMask(SDNode *N) {
2150  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2151
2152  unsigned NumElems = N->getNumOperands();
2153  if (NumElems != 2 && NumElems != 4)
2154    return false;
2155
2156  for (unsigned i = 0; i < NumElems/2; ++i)
2157    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2158      return false;
2159
2160  for (unsigned i = NumElems/2; i < NumElems; ++i)
2161    if (!isUndefOrEqual(N->getOperand(i), i))
2162      return false;
2163
2164  return true;
2165}
2166
2167/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2168/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2169/// and MOVLHPS.
2170bool X86::isMOVHPMask(SDNode *N) {
2171  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2172
2173  unsigned NumElems = N->getNumOperands();
2174  if (NumElems != 2 && NumElems != 4)
2175    return false;
2176
2177  for (unsigned i = 0; i < NumElems/2; ++i)
2178    if (!isUndefOrEqual(N->getOperand(i), i))
2179      return false;
2180
2181  for (unsigned i = 0; i < NumElems/2; ++i) {
2182    SDOperand Arg = N->getOperand(i + NumElems/2);
2183    if (!isUndefOrEqual(Arg, i + NumElems))
2184      return false;
2185  }
2186
2187  return true;
2188}
2189
2190/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2191/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2192bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts,
2193                         bool V2IsSplat = false) {
2194  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2195    return false;
2196
2197  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2198    SDOperand BitI  = Elts[i];
2199    SDOperand BitI1 = Elts[i+1];
2200    if (!isUndefOrEqual(BitI, j))
2201      return false;
2202    if (V2IsSplat) {
2203      if (isUndefOrEqual(BitI1, NumElts))
2204        return false;
2205    } else {
2206      if (!isUndefOrEqual(BitI1, j + NumElts))
2207        return false;
2208    }
2209  }
2210
2211  return true;
2212}
2213
2214bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2215  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2216  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2217}
2218
2219/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2220/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2221bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts,
2222                         bool V2IsSplat = false) {
2223  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2224    return false;
2225
2226  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2227    SDOperand BitI  = Elts[i];
2228    SDOperand BitI1 = Elts[i+1];
2229    if (!isUndefOrEqual(BitI, j + NumElts/2))
2230      return false;
2231    if (V2IsSplat) {
2232      if (isUndefOrEqual(BitI1, NumElts))
2233        return false;
2234    } else {
2235      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2236        return false;
2237    }
2238  }
2239
2240  return true;
2241}
2242
2243bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2244  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2245  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2246}
2247
2248/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2249/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2250/// <0, 0, 1, 1>
2251bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2252  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2253
2254  unsigned NumElems = N->getNumOperands();
2255  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2256    return false;
2257
2258  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2259    SDOperand BitI  = N->getOperand(i);
2260    SDOperand BitI1 = N->getOperand(i+1);
2261
2262    if (!isUndefOrEqual(BitI, j))
2263      return false;
2264    if (!isUndefOrEqual(BitI1, j))
2265      return false;
2266  }
2267
2268  return true;
2269}
2270
2271/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2272/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2273/// <2, 2, 3, 3>
2274bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2275  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2276
2277  unsigned NumElems = N->getNumOperands();
2278  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2279    return false;
2280
2281  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2282    SDOperand BitI  = N->getOperand(i);
2283    SDOperand BitI1 = N->getOperand(i + 1);
2284
2285    if (!isUndefOrEqual(BitI, j))
2286      return false;
2287    if (!isUndefOrEqual(BitI1, j))
2288      return false;
2289  }
2290
2291  return true;
2292}
2293
2294/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2295/// specifies a shuffle of elements that is suitable for input to MOVSS,
2296/// MOVSD, and MOVD, i.e. setting the lowest element.
2297static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) {
2298  if (NumElts != 2 && NumElts != 4)
2299    return false;
2300
2301  if (!isUndefOrEqual(Elts[0], NumElts))
2302    return false;
2303
2304  for (unsigned i = 1; i < NumElts; ++i) {
2305    if (!isUndefOrEqual(Elts[i], i))
2306      return false;
2307  }
2308
2309  return true;
2310}
2311
2312bool X86::isMOVLMask(SDNode *N) {
2313  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2314  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2315}
2316
2317/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2318/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2319/// element of vector 2 and the other elements to come from vector 1 in order.
2320static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps,
2321                           bool V2IsSplat = false,
2322                           bool V2IsUndef = false) {
2323  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2324    return false;
2325
2326  if (!isUndefOrEqual(Ops[0], 0))
2327    return false;
2328
2329  for (unsigned i = 1; i < NumOps; ++i) {
2330    SDOperand Arg = Ops[i];
2331    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2332          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2333          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2334      return false;
2335  }
2336
2337  return true;
2338}
2339
2340static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2341                           bool V2IsUndef = false) {
2342  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2343  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2344                        V2IsSplat, V2IsUndef);
2345}
2346
2347/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2348/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2349bool X86::isMOVSHDUPMask(SDNode *N) {
2350  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2351
2352  if (N->getNumOperands() != 4)
2353    return false;
2354
2355  // Expect 1, 1, 3, 3
2356  for (unsigned i = 0; i < 2; ++i) {
2357    SDOperand Arg = N->getOperand(i);
2358    if (Arg.getOpcode() == ISD::UNDEF) continue;
2359    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2360    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2361    if (Val != 1) return false;
2362  }
2363
2364  bool HasHi = false;
2365  for (unsigned i = 2; i < 4; ++i) {
2366    SDOperand Arg = N->getOperand(i);
2367    if (Arg.getOpcode() == ISD::UNDEF) continue;
2368    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2369    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2370    if (Val != 3) return false;
2371    HasHi = true;
2372  }
2373
2374  // Don't use movshdup if it can be done with a shufps.
2375  return HasHi;
2376}
2377
2378/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2379/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2380bool X86::isMOVSLDUPMask(SDNode *N) {
2381  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2382
2383  if (N->getNumOperands() != 4)
2384    return false;
2385
2386  // Expect 0, 0, 2, 2
2387  for (unsigned i = 0; i < 2; ++i) {
2388    SDOperand Arg = N->getOperand(i);
2389    if (Arg.getOpcode() == ISD::UNDEF) continue;
2390    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2391    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2392    if (Val != 0) return false;
2393  }
2394
2395  bool HasHi = false;
2396  for (unsigned i = 2; i < 4; ++i) {
2397    SDOperand Arg = N->getOperand(i);
2398    if (Arg.getOpcode() == ISD::UNDEF) continue;
2399    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2400    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2401    if (Val != 2) return false;
2402    HasHi = true;
2403  }
2404
2405  // Don't use movshdup if it can be done with a shufps.
2406  return HasHi;
2407}
2408
2409/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2410/// specifies a identity operation on the LHS or RHS.
2411static bool isIdentityMask(SDNode *N, bool RHS = false) {
2412  unsigned NumElems = N->getNumOperands();
2413  for (unsigned i = 0; i < NumElems; ++i)
2414    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2415      return false;
2416  return true;
2417}
2418
2419/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2420/// a splat of a single element.
2421static bool isSplatMask(SDNode *N) {
2422  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2423
2424  // This is a splat operation if each element of the permute is the same, and
2425  // if the value doesn't reference the second vector.
2426  unsigned NumElems = N->getNumOperands();
2427  SDOperand ElementBase;
2428  unsigned i = 0;
2429  for (; i != NumElems; ++i) {
2430    SDOperand Elt = N->getOperand(i);
2431    if (isa<ConstantSDNode>(Elt)) {
2432      ElementBase = Elt;
2433      break;
2434    }
2435  }
2436
2437  if (!ElementBase.Val)
2438    return false;
2439
2440  for (; i != NumElems; ++i) {
2441    SDOperand Arg = N->getOperand(i);
2442    if (Arg.getOpcode() == ISD::UNDEF) continue;
2443    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2444    if (Arg != ElementBase) return false;
2445  }
2446
2447  // Make sure it is a splat of the first vector operand.
2448  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2449}
2450
2451/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2452/// a splat of a single element and it's a 2 or 4 element mask.
2453bool X86::isSplatMask(SDNode *N) {
2454  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2455
2456  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2457  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2458    return false;
2459  return ::isSplatMask(N);
2460}
2461
2462/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2463/// specifies a splat of zero element.
2464bool X86::isSplatLoMask(SDNode *N) {
2465  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2466
2467  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2468    if (!isUndefOrEqual(N->getOperand(i), 0))
2469      return false;
2470  return true;
2471}
2472
2473/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2474/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2475/// instructions.
2476unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2477  unsigned NumOperands = N->getNumOperands();
2478  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2479  unsigned Mask = 0;
2480  for (unsigned i = 0; i < NumOperands; ++i) {
2481    unsigned Val = 0;
2482    SDOperand Arg = N->getOperand(NumOperands-i-1);
2483    if (Arg.getOpcode() != ISD::UNDEF)
2484      Val = cast<ConstantSDNode>(Arg)->getValue();
2485    if (Val >= NumOperands) Val -= NumOperands;
2486    Mask |= Val;
2487    if (i != NumOperands - 1)
2488      Mask <<= Shift;
2489  }
2490
2491  return Mask;
2492}
2493
2494/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2495/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2496/// instructions.
2497unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2498  unsigned Mask = 0;
2499  // 8 nodes, but we only care about the last 4.
2500  for (unsigned i = 7; i >= 4; --i) {
2501    unsigned Val = 0;
2502    SDOperand Arg = N->getOperand(i);
2503    if (Arg.getOpcode() != ISD::UNDEF)
2504      Val = cast<ConstantSDNode>(Arg)->getValue();
2505    Mask |= (Val - 4);
2506    if (i != 4)
2507      Mask <<= 2;
2508  }
2509
2510  return Mask;
2511}
2512
2513/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2514/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2515/// instructions.
2516unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2517  unsigned Mask = 0;
2518  // 8 nodes, but we only care about the first 4.
2519  for (int i = 3; i >= 0; --i) {
2520    unsigned Val = 0;
2521    SDOperand Arg = N->getOperand(i);
2522    if (Arg.getOpcode() != ISD::UNDEF)
2523      Val = cast<ConstantSDNode>(Arg)->getValue();
2524    Mask |= Val;
2525    if (i != 0)
2526      Mask <<= 2;
2527  }
2528
2529  return Mask;
2530}
2531
2532/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2533/// specifies a 8 element shuffle that can be broken into a pair of
2534/// PSHUFHW and PSHUFLW.
2535static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2536  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2537
2538  if (N->getNumOperands() != 8)
2539    return false;
2540
2541  // Lower quadword shuffled.
2542  for (unsigned i = 0; i != 4; ++i) {
2543    SDOperand Arg = N->getOperand(i);
2544    if (Arg.getOpcode() == ISD::UNDEF) continue;
2545    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2546    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2547    if (Val >= 4)
2548      return false;
2549  }
2550
2551  // Upper quadword shuffled.
2552  for (unsigned i = 4; i != 8; ++i) {
2553    SDOperand Arg = N->getOperand(i);
2554    if (Arg.getOpcode() == ISD::UNDEF) continue;
2555    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2556    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2557    if (Val < 4 || Val > 7)
2558      return false;
2559  }
2560
2561  return true;
2562}
2563
2564/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2565/// values in ther permute mask.
2566static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2567                                      SDOperand &V2, SDOperand &Mask,
2568                                      SelectionDAG &DAG) {
2569  MVT VT = Op.getValueType();
2570  MVT MaskVT = Mask.getValueType();
2571  MVT EltVT = MaskVT.getVectorElementType();
2572  unsigned NumElems = Mask.getNumOperands();
2573  SmallVector<SDOperand, 8> MaskVec;
2574
2575  for (unsigned i = 0; i != NumElems; ++i) {
2576    SDOperand Arg = Mask.getOperand(i);
2577    if (Arg.getOpcode() == ISD::UNDEF) {
2578      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2579      continue;
2580    }
2581    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2582    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2583    if (Val < NumElems)
2584      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2585    else
2586      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2587  }
2588
2589  std::swap(V1, V2);
2590  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2591  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2592}
2593
2594/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2595/// the two vector operands have swapped position.
2596static
2597SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) {
2598  MVT MaskVT = Mask.getValueType();
2599  MVT EltVT = MaskVT.getVectorElementType();
2600  unsigned NumElems = Mask.getNumOperands();
2601  SmallVector<SDOperand, 8> MaskVec;
2602  for (unsigned i = 0; i != NumElems; ++i) {
2603    SDOperand Arg = Mask.getOperand(i);
2604    if (Arg.getOpcode() == ISD::UNDEF) {
2605      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2606      continue;
2607    }
2608    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2609    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2610    if (Val < NumElems)
2611      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2612    else
2613      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2614  }
2615  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2616}
2617
2618
2619/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2620/// match movhlps. The lower half elements should come from upper half of
2621/// V1 (and in order), and the upper half elements should come from the upper
2622/// half of V2 (and in order).
2623static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2624  unsigned NumElems = Mask->getNumOperands();
2625  if (NumElems != 4)
2626    return false;
2627  for (unsigned i = 0, e = 2; i != e; ++i)
2628    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2629      return false;
2630  for (unsigned i = 2; i != 4; ++i)
2631    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2632      return false;
2633  return true;
2634}
2635
2636/// isScalarLoadToVector - Returns true if the node is a scalar load that
2637/// is promoted to a vector. It also returns the LoadSDNode by reference if
2638/// required.
2639static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2640  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2641    N = N->getOperand(0).Val;
2642    if (ISD::isNON_EXTLoad(N)) {
2643      if (LD)
2644        *LD = cast<LoadSDNode>(N);
2645      return true;
2646    }
2647  }
2648  return false;
2649}
2650
2651/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2652/// match movlp{s|d}. The lower half elements should come from lower half of
2653/// V1 (and in order), and the upper half elements should come from the upper
2654/// half of V2 (and in order). And since V1 will become the source of the
2655/// MOVLP, it must be either a vector load or a scalar load to vector.
2656static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2657  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2658    return false;
2659  // Is V2 is a vector load, don't do this transformation. We will try to use
2660  // load folding shufps op.
2661  if (ISD::isNON_EXTLoad(V2))
2662    return false;
2663
2664  unsigned NumElems = Mask->getNumOperands();
2665  if (NumElems != 2 && NumElems != 4)
2666    return false;
2667  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2668    if (!isUndefOrEqual(Mask->getOperand(i), i))
2669      return false;
2670  for (unsigned i = NumElems/2; i != NumElems; ++i)
2671    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2672      return false;
2673  return true;
2674}
2675
2676/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2677/// all the same.
2678static bool isSplatVector(SDNode *N) {
2679  if (N->getOpcode() != ISD::BUILD_VECTOR)
2680    return false;
2681
2682  SDOperand SplatValue = N->getOperand(0);
2683  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2684    if (N->getOperand(i) != SplatValue)
2685      return false;
2686  return true;
2687}
2688
2689/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2690/// to an undef.
2691static bool isUndefShuffle(SDNode *N) {
2692  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2693    return false;
2694
2695  SDOperand V1 = N->getOperand(0);
2696  SDOperand V2 = N->getOperand(1);
2697  SDOperand Mask = N->getOperand(2);
2698  unsigned NumElems = Mask.getNumOperands();
2699  for (unsigned i = 0; i != NumElems; ++i) {
2700    SDOperand Arg = Mask.getOperand(i);
2701    if (Arg.getOpcode() != ISD::UNDEF) {
2702      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2703      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2704        return false;
2705      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2706        return false;
2707    }
2708  }
2709  return true;
2710}
2711
2712/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2713/// constant +0.0.
2714static inline bool isZeroNode(SDOperand Elt) {
2715  return ((isa<ConstantSDNode>(Elt) &&
2716           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2717          (isa<ConstantFPSDNode>(Elt) &&
2718           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2719}
2720
2721/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2722/// to an zero vector.
2723static bool isZeroShuffle(SDNode *N) {
2724  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2725    return false;
2726
2727  SDOperand V1 = N->getOperand(0);
2728  SDOperand V2 = N->getOperand(1);
2729  SDOperand Mask = N->getOperand(2);
2730  unsigned NumElems = Mask.getNumOperands();
2731  for (unsigned i = 0; i != NumElems; ++i) {
2732    SDOperand Arg = Mask.getOperand(i);
2733    if (Arg.getOpcode() == ISD::UNDEF)
2734      continue;
2735
2736    unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2737    if (Idx < NumElems) {
2738      unsigned Opc = V1.Val->getOpcode();
2739      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
2740        continue;
2741      if (Opc != ISD::BUILD_VECTOR ||
2742          !isZeroNode(V1.Val->getOperand(Idx)))
2743        return false;
2744    } else if (Idx >= NumElems) {
2745      unsigned Opc = V2.Val->getOpcode();
2746      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
2747        continue;
2748      if (Opc != ISD::BUILD_VECTOR ||
2749          !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2750        return false;
2751    }
2752  }
2753  return true;
2754}
2755
2756/// getZeroVector - Returns a vector of specified type with all zero elements.
2757///
2758static SDOperand getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) {
2759  assert(VT.isVector() && "Expected a vector type");
2760
2761  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2762  // type.  This ensures they get CSE'd.
2763  SDOperand Vec;
2764  if (VT.getSizeInBits() == 64) { // MMX
2765    SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
2766    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2767  } else if (HasSSE2) {  // SSE2
2768    SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
2769    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2770  } else { // SSE1
2771    SDOperand Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2772    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst);
2773  }
2774  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2775}
2776
2777/// getOnesVector - Returns a vector of specified type with all bits set.
2778///
2779static SDOperand getOnesVector(MVT VT, SelectionDAG &DAG) {
2780  assert(VT.isVector() && "Expected a vector type");
2781
2782  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2783  // type.  This ensures they get CSE'd.
2784  SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32);
2785  SDOperand Vec;
2786  if (VT.getSizeInBits() == 64)  // MMX
2787    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2788  else                                              // SSE
2789    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2790  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2791}
2792
2793
2794/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2795/// that point to V2 points to its first element.
2796static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2797  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2798
2799  bool Changed = false;
2800  SmallVector<SDOperand, 8> MaskVec;
2801  unsigned NumElems = Mask.getNumOperands();
2802  for (unsigned i = 0; i != NumElems; ++i) {
2803    SDOperand Arg = Mask.getOperand(i);
2804    if (Arg.getOpcode() != ISD::UNDEF) {
2805      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2806      if (Val > NumElems) {
2807        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2808        Changed = true;
2809      }
2810    }
2811    MaskVec.push_back(Arg);
2812  }
2813
2814  if (Changed)
2815    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2816                       &MaskVec[0], MaskVec.size());
2817  return Mask;
2818}
2819
2820/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2821/// operation of specified width.
2822static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2823  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2824  MVT BaseVT = MaskVT.getVectorElementType();
2825
2826  SmallVector<SDOperand, 8> MaskVec;
2827  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2828  for (unsigned i = 1; i != NumElems; ++i)
2829    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2830  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2831}
2832
2833/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2834/// of specified width.
2835static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2836  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2837  MVT BaseVT = MaskVT.getVectorElementType();
2838  SmallVector<SDOperand, 8> MaskVec;
2839  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2840    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2841    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2842  }
2843  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2844}
2845
2846/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2847/// of specified width.
2848static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2849  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2850  MVT BaseVT = MaskVT.getVectorElementType();
2851  unsigned Half = NumElems/2;
2852  SmallVector<SDOperand, 8> MaskVec;
2853  for (unsigned i = 0; i != Half; ++i) {
2854    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2855    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2856  }
2857  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2858}
2859
2860/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2861/// element #0 of a vector with the specified index, leaving the rest of the
2862/// elements in place.
2863static SDOperand getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2864                                   SelectionDAG &DAG) {
2865  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2866  MVT BaseVT = MaskVT.getVectorElementType();
2867  SmallVector<SDOperand, 8> MaskVec;
2868  // Element #0 of the result gets the elt we are replacing.
2869  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2870  for (unsigned i = 1; i != NumElems; ++i)
2871    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2872  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2873}
2874
2875/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2876static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG, bool HasSSE2) {
2877  MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
2878  MVT VT = Op.getValueType();
2879  if (PVT == VT)
2880    return Op;
2881  SDOperand V1 = Op.getOperand(0);
2882  SDOperand Mask = Op.getOperand(2);
2883  unsigned NumElems = Mask.getNumOperands();
2884  // Special handling of v4f32 -> v4i32.
2885  if (VT != MVT::v4f32) {
2886    Mask = getUnpacklMask(NumElems, DAG);
2887    while (NumElems > 4) {
2888      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2889      NumElems >>= 1;
2890    }
2891    Mask = getZeroVector(MVT::v4i32, true, DAG);
2892  }
2893
2894  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
2895  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
2896                                  DAG.getNode(ISD::UNDEF, PVT), Mask);
2897  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2898}
2899
2900/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2901/// vector of zero or undef vector.  This produces a shuffle where the low
2902/// element of V2 is swizzled into the zero/undef vector, landing at element
2903/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2904static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, unsigned Idx,
2905                                             bool isZero, bool HasSSE2,
2906                                             SelectionDAG &DAG) {
2907  MVT VT = V2.getValueType();
2908  SDOperand V1 = isZero
2909    ? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT);
2910  unsigned NumElems = V2.getValueType().getVectorNumElements();
2911  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2912  MVT EVT = MaskVT.getVectorElementType();
2913  SmallVector<SDOperand, 16> MaskVec;
2914  for (unsigned i = 0; i != NumElems; ++i)
2915    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
2916      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
2917    else
2918      MaskVec.push_back(DAG.getConstant(i, EVT));
2919  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2920                               &MaskVec[0], MaskVec.size());
2921  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2922}
2923
2924/// getNumOfConsecutiveZeros - Return the number of elements in a result of
2925/// a shuffle that is zero.
2926static
2927unsigned getNumOfConsecutiveZeros(SDOperand Op, SDOperand Mask,
2928                                  unsigned NumElems, bool Low,
2929                                  SelectionDAG &DAG) {
2930  unsigned NumZeros = 0;
2931  for (unsigned i = 0; i < NumElems; ++i) {
2932    unsigned Index = Low ? i : NumElems-i-1;
2933    SDOperand Idx = Mask.getOperand(Index);
2934    if (Idx.getOpcode() == ISD::UNDEF) {
2935      ++NumZeros;
2936      continue;
2937    }
2938    SDOperand Elt = DAG.getShuffleScalarElt(Op.Val, Index);
2939    if (Elt.Val && isZeroNode(Elt))
2940      ++NumZeros;
2941    else
2942      break;
2943  }
2944  return NumZeros;
2945}
2946
2947/// isVectorShift - Returns true if the shuffle can be implemented as a
2948/// logical left or right shift of a vector.
2949static bool isVectorShift(SDOperand Op, SDOperand Mask, SelectionDAG &DAG,
2950                          bool &isLeft, SDOperand &ShVal, unsigned &ShAmt) {
2951  unsigned NumElems = Mask.getNumOperands();
2952
2953  isLeft = true;
2954  unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
2955  if (!NumZeros) {
2956    isLeft = false;
2957    NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
2958    if (!NumZeros)
2959      return false;
2960  }
2961
2962  bool SeenV1 = false;
2963  bool SeenV2 = false;
2964  for (unsigned i = NumZeros; i < NumElems; ++i) {
2965    unsigned Val = isLeft ? (i - NumZeros) : i;
2966    SDOperand Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
2967    if (Idx.getOpcode() == ISD::UNDEF)
2968      continue;
2969    unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
2970    if (Index < NumElems)
2971      SeenV1 = true;
2972    else {
2973      Index -= NumElems;
2974      SeenV2 = true;
2975    }
2976    if (Index != Val)
2977      return false;
2978  }
2979  if (SeenV1 && SeenV2)
2980    return false;
2981
2982  ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
2983  ShAmt = NumZeros;
2984  return true;
2985}
2986
2987
2988/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2989///
2990static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2991                                       unsigned NumNonZero, unsigned NumZero,
2992                                       SelectionDAG &DAG, TargetLowering &TLI) {
2993  if (NumNonZero > 8)
2994    return SDOperand();
2995
2996  SDOperand V(0, 0);
2997  bool First = true;
2998  for (unsigned i = 0; i < 16; ++i) {
2999    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3000    if (ThisIsNonZero && First) {
3001      if (NumZero)
3002        V = getZeroVector(MVT::v8i16, true, DAG);
3003      else
3004        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3005      First = false;
3006    }
3007
3008    if ((i & 1) != 0) {
3009      SDOperand ThisElt(0, 0), LastElt(0, 0);
3010      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3011      if (LastIsNonZero) {
3012        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3013      }
3014      if (ThisIsNonZero) {
3015        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3016        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3017                              ThisElt, DAG.getConstant(8, MVT::i8));
3018        if (LastIsNonZero)
3019          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3020      } else
3021        ThisElt = LastElt;
3022
3023      if (ThisElt.Val)
3024        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3025                        DAG.getIntPtrConstant(i/2));
3026    }
3027  }
3028
3029  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3030}
3031
3032/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3033///
3034static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3035                                       unsigned NumNonZero, unsigned NumZero,
3036                                       SelectionDAG &DAG, TargetLowering &TLI) {
3037  if (NumNonZero > 4)
3038    return SDOperand();
3039
3040  SDOperand V(0, 0);
3041  bool First = true;
3042  for (unsigned i = 0; i < 8; ++i) {
3043    bool isNonZero = (NonZeros & (1 << i)) != 0;
3044    if (isNonZero) {
3045      if (First) {
3046        if (NumZero)
3047          V = getZeroVector(MVT::v8i16, true, DAG);
3048        else
3049          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3050        First = false;
3051      }
3052      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3053                      DAG.getIntPtrConstant(i));
3054    }
3055  }
3056
3057  return V;
3058}
3059
3060/// getVShift - Return a vector logical shift node.
3061///
3062static SDOperand getVShift(bool isLeft, MVT VT, SDOperand SrcOp,
3063                           unsigned NumBits, SelectionDAG &DAG,
3064                           const TargetLowering &TLI) {
3065  bool isMMX = VT.getSizeInBits() == 64;
3066  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3067  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3068  SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp);
3069  return DAG.getNode(ISD::BIT_CONVERT, VT,
3070                     DAG.getNode(Opc, ShVT, SrcOp,
3071                              DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3072}
3073
3074SDOperand
3075X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3076  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3077  if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
3078    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3079    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3080    // eliminated on x86-32 hosts.
3081    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3082      return Op;
3083
3084    if (ISD::isBuildVectorAllOnes(Op.Val))
3085      return getOnesVector(Op.getValueType(), DAG);
3086    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG);
3087  }
3088
3089  MVT VT = Op.getValueType();
3090  MVT EVT = VT.getVectorElementType();
3091  unsigned EVTBits = EVT.getSizeInBits();
3092
3093  unsigned NumElems = Op.getNumOperands();
3094  unsigned NumZero  = 0;
3095  unsigned NumNonZero = 0;
3096  unsigned NonZeros = 0;
3097  bool IsAllConstants = true;
3098  SmallSet<SDOperand, 8> Values;
3099  for (unsigned i = 0; i < NumElems; ++i) {
3100    SDOperand Elt = Op.getOperand(i);
3101    if (Elt.getOpcode() == ISD::UNDEF)
3102      continue;
3103    Values.insert(Elt);
3104    if (Elt.getOpcode() != ISD::Constant &&
3105        Elt.getOpcode() != ISD::ConstantFP)
3106      IsAllConstants = false;
3107    if (isZeroNode(Elt))
3108      NumZero++;
3109    else {
3110      NonZeros |= (1 << i);
3111      NumNonZero++;
3112    }
3113  }
3114
3115  if (NumNonZero == 0) {
3116    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3117    return DAG.getNode(ISD::UNDEF, VT);
3118  }
3119
3120  // Special case for single non-zero, non-undef, element.
3121  if (NumNonZero == 1 && NumElems <= 4) {
3122    unsigned Idx = CountTrailingZeros_32(NonZeros);
3123    SDOperand Item = Op.getOperand(Idx);
3124
3125    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3126    // the value are obviously zero, truncate the value to i32 and do the
3127    // insertion that way.  Only do this if the value is non-constant or if the
3128    // value is a constant being inserted into element 0.  It is cheaper to do
3129    // a constant pool load than it is to do a movd + shuffle.
3130    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3131        (!IsAllConstants || Idx == 0)) {
3132      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3133        // Handle MMX and SSE both.
3134        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3135        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3136
3137        // Truncate the value (which may itself be a constant) to i32, and
3138        // convert it to a vector with movd (S2V+shuffle to zero extend).
3139        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
3140        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
3141        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3142                                           Subtarget->hasSSE2(), DAG);
3143
3144        // Now we have our 32-bit value zero extended in the low element of
3145        // a vector.  If Idx != 0, swizzle it into place.
3146        if (Idx != 0) {
3147          SDOperand Ops[] = {
3148            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
3149            getSwapEltZeroMask(VecElts, Idx, DAG)
3150          };
3151          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
3152        }
3153        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
3154      }
3155    }
3156
3157    // If we have a constant or non-constant insertion into the low element of
3158    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3159    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3160    // depending on what the source datatype is.  Because we can only get here
3161    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3162    if (Idx == 0 &&
3163        // Don't do this for i64 values on x86-32.
3164        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3165      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3166      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3167      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3168                                         Subtarget->hasSSE2(), DAG);
3169    }
3170
3171    // Is it a vector logical left shift?
3172    if (NumElems == 2 && Idx == 1 &&
3173        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3174      unsigned NumBits = VT.getSizeInBits();
3175      return getVShift(true, VT,
3176                       DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)),
3177                       NumBits/2, DAG, *this);
3178    }
3179
3180    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3181      return SDOperand();
3182
3183    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3184    // is a non-constant being inserted into an element other than the low one,
3185    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3186    // movd/movss) to move this into the low element, then shuffle it into
3187    // place.
3188    if (EVTBits == 32) {
3189      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3190
3191      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3192      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3193                                         Subtarget->hasSSE2(), DAG);
3194      MVT MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3195      MVT MaskEVT = MaskVT.getVectorElementType();
3196      SmallVector<SDOperand, 8> MaskVec;
3197      for (unsigned i = 0; i < NumElems; i++)
3198        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3199      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3200                                   &MaskVec[0], MaskVec.size());
3201      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3202                         DAG.getNode(ISD::UNDEF, VT), Mask);
3203    }
3204  }
3205
3206  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3207  if (Values.size() == 1)
3208    return SDOperand();
3209
3210  // A vector full of immediates; various special cases are already
3211  // handled, so this is best done with a single constant-pool load.
3212  if (IsAllConstants)
3213    return SDOperand();
3214
3215  // Let legalizer expand 2-wide build_vectors.
3216  if (EVTBits == 64) {
3217    if (NumNonZero == 1) {
3218      // One half is zero or undef.
3219      unsigned Idx = CountTrailingZeros_32(NonZeros);
3220      SDOperand V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
3221                                 Op.getOperand(Idx));
3222      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3223                                         Subtarget->hasSSE2(), DAG);
3224    }
3225    return SDOperand();
3226  }
3227
3228  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3229  if (EVTBits == 8 && NumElems == 16) {
3230    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3231                                        *this);
3232    if (V.Val) return V;
3233  }
3234
3235  if (EVTBits == 16 && NumElems == 8) {
3236    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3237                                        *this);
3238    if (V.Val) return V;
3239  }
3240
3241  // If element VT is == 32 bits, turn it into a number of shuffles.
3242  SmallVector<SDOperand, 8> V;
3243  V.resize(NumElems);
3244  if (NumElems == 4 && NumZero > 0) {
3245    for (unsigned i = 0; i < 4; ++i) {
3246      bool isZero = !(NonZeros & (1 << i));
3247      if (isZero)
3248        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3249      else
3250        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3251    }
3252
3253    for (unsigned i = 0; i < 2; ++i) {
3254      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3255        default: break;
3256        case 0:
3257          V[i] = V[i*2];  // Must be a zero vector.
3258          break;
3259        case 1:
3260          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3261                             getMOVLMask(NumElems, DAG));
3262          break;
3263        case 2:
3264          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3265                             getMOVLMask(NumElems, DAG));
3266          break;
3267        case 3:
3268          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3269                             getUnpacklMask(NumElems, DAG));
3270          break;
3271      }
3272    }
3273
3274    MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3275    MVT EVT = MaskVT.getVectorElementType();
3276    SmallVector<SDOperand, 8> MaskVec;
3277    bool Reverse = (NonZeros & 0x3) == 2;
3278    for (unsigned i = 0; i < 2; ++i)
3279      if (Reverse)
3280        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3281      else
3282        MaskVec.push_back(DAG.getConstant(i, EVT));
3283    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3284    for (unsigned i = 0; i < 2; ++i)
3285      if (Reverse)
3286        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3287      else
3288        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3289    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3290                                     &MaskVec[0], MaskVec.size());
3291    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3292  }
3293
3294  if (Values.size() > 2) {
3295    // Expand into a number of unpckl*.
3296    // e.g. for v4f32
3297    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3298    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3299    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3300    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3301    for (unsigned i = 0; i < NumElems; ++i)
3302      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3303    NumElems >>= 1;
3304    while (NumElems != 0) {
3305      for (unsigned i = 0; i < NumElems; ++i)
3306        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3307                           UnpckMask);
3308      NumElems >>= 1;
3309    }
3310    return V[0];
3311  }
3312
3313  return SDOperand();
3314}
3315
3316static
3317SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2,
3318                                   SDOperand PermMask, SelectionDAG &DAG,
3319                                   TargetLowering &TLI) {
3320  SDOperand NewV;
3321  MVT MaskVT = MVT::getIntVectorWithNumElements(8);
3322  MVT MaskEVT = MaskVT.getVectorElementType();
3323  MVT PtrVT = TLI.getPointerTy();
3324  SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(),
3325                                     PermMask.Val->op_end());
3326
3327  // First record which half of which vector the low elements come from.
3328  SmallVector<unsigned, 4> LowQuad(4);
3329  for (unsigned i = 0; i < 4; ++i) {
3330    SDOperand Elt = MaskElts[i];
3331    if (Elt.getOpcode() == ISD::UNDEF)
3332      continue;
3333    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3334    int QuadIdx = EltIdx / 4;
3335    ++LowQuad[QuadIdx];
3336  }
3337  int BestLowQuad = -1;
3338  unsigned MaxQuad = 1;
3339  for (unsigned i = 0; i < 4; ++i) {
3340    if (LowQuad[i] > MaxQuad) {
3341      BestLowQuad = i;
3342      MaxQuad = LowQuad[i];
3343    }
3344  }
3345
3346  // Record which half of which vector the high elements come from.
3347  SmallVector<unsigned, 4> HighQuad(4);
3348  for (unsigned i = 4; i < 8; ++i) {
3349    SDOperand Elt = MaskElts[i];
3350    if (Elt.getOpcode() == ISD::UNDEF)
3351      continue;
3352    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3353    int QuadIdx = EltIdx / 4;
3354    ++HighQuad[QuadIdx];
3355  }
3356  int BestHighQuad = -1;
3357  MaxQuad = 1;
3358  for (unsigned i = 0; i < 4; ++i) {
3359    if (HighQuad[i] > MaxQuad) {
3360      BestHighQuad = i;
3361      MaxQuad = HighQuad[i];
3362    }
3363  }
3364
3365  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3366  if (BestLowQuad != -1 || BestHighQuad != -1) {
3367    // First sort the 4 chunks in order using shufpd.
3368    SmallVector<SDOperand, 8> MaskVec;
3369    if (BestLowQuad != -1)
3370      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3371    else
3372      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3373    if (BestHighQuad != -1)
3374      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3375    else
3376      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3377    SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3378    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3379                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3380                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3381    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3382
3383    // Now sort high and low parts separately.
3384    BitVector InOrder(8);
3385    if (BestLowQuad != -1) {
3386      // Sort lower half in order using PSHUFLW.
3387      MaskVec.clear();
3388      bool AnyOutOrder = false;
3389      for (unsigned i = 0; i != 4; ++i) {
3390        SDOperand Elt = MaskElts[i];
3391        if (Elt.getOpcode() == ISD::UNDEF) {
3392          MaskVec.push_back(Elt);
3393          InOrder.set(i);
3394        } else {
3395          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3396          if (EltIdx != i)
3397            AnyOutOrder = true;
3398          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3399          // If this element is in the right place after this shuffle, then
3400          // remember it.
3401          if ((int)(EltIdx / 4) == BestLowQuad)
3402            InOrder.set(i);
3403        }
3404      }
3405      if (AnyOutOrder) {
3406        for (unsigned i = 4; i != 8; ++i)
3407          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3408        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3409        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3410      }
3411    }
3412
3413    if (BestHighQuad != -1) {
3414      // Sort high half in order using PSHUFHW if possible.
3415      MaskVec.clear();
3416      for (unsigned i = 0; i != 4; ++i)
3417        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3418      bool AnyOutOrder = false;
3419      for (unsigned i = 4; i != 8; ++i) {
3420        SDOperand Elt = MaskElts[i];
3421        if (Elt.getOpcode() == ISD::UNDEF) {
3422          MaskVec.push_back(Elt);
3423          InOrder.set(i);
3424        } else {
3425          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3426          if (EltIdx != i)
3427            AnyOutOrder = true;
3428          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3429          // If this element is in the right place after this shuffle, then
3430          // remember it.
3431          if ((int)(EltIdx / 4) == BestHighQuad)
3432            InOrder.set(i);
3433        }
3434      }
3435      if (AnyOutOrder) {
3436        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3437        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3438      }
3439    }
3440
3441    // The other elements are put in the right place using pextrw and pinsrw.
3442    for (unsigned i = 0; i != 8; ++i) {
3443      if (InOrder[i])
3444        continue;
3445      SDOperand Elt = MaskElts[i];
3446      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3447      SDOperand ExtOp = (EltIdx < 8)
3448        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3449                      DAG.getConstant(EltIdx, PtrVT))
3450        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3451                      DAG.getConstant(EltIdx - 8, PtrVT));
3452      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3453                         DAG.getConstant(i, PtrVT));
3454    }
3455    return NewV;
3456  }
3457
3458  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use
3459  ///as few as possible.
3460  // First, let's find out how many elements are already in the right order.
3461  unsigned V1InOrder = 0;
3462  unsigned V1FromV1 = 0;
3463  unsigned V2InOrder = 0;
3464  unsigned V2FromV2 = 0;
3465  SmallVector<SDOperand, 8> V1Elts;
3466  SmallVector<SDOperand, 8> V2Elts;
3467  for (unsigned i = 0; i < 8; ++i) {
3468    SDOperand Elt = MaskElts[i];
3469    if (Elt.getOpcode() == ISD::UNDEF) {
3470      V1Elts.push_back(Elt);
3471      V2Elts.push_back(Elt);
3472      ++V1InOrder;
3473      ++V2InOrder;
3474      continue;
3475    }
3476    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3477    if (EltIdx == i) {
3478      V1Elts.push_back(Elt);
3479      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3480      ++V1InOrder;
3481    } else if (EltIdx == i+8) {
3482      V1Elts.push_back(Elt);
3483      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3484      ++V2InOrder;
3485    } else if (EltIdx < 8) {
3486      V1Elts.push_back(Elt);
3487      ++V1FromV1;
3488    } else {
3489      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3490      ++V2FromV2;
3491    }
3492  }
3493
3494  if (V2InOrder > V1InOrder) {
3495    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3496    std::swap(V1, V2);
3497    std::swap(V1Elts, V2Elts);
3498    std::swap(V1FromV1, V2FromV2);
3499  }
3500
3501  if ((V1FromV1 + V1InOrder) != 8) {
3502    // Some elements are from V2.
3503    if (V1FromV1) {
3504      // If there are elements that are from V1 but out of place,
3505      // then first sort them in place
3506      SmallVector<SDOperand, 8> MaskVec;
3507      for (unsigned i = 0; i < 8; ++i) {
3508        SDOperand Elt = V1Elts[i];
3509        if (Elt.getOpcode() == ISD::UNDEF) {
3510          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3511          continue;
3512        }
3513        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3514        if (EltIdx >= 8)
3515          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3516        else
3517          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3518      }
3519      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3520      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3521    }
3522
3523    NewV = V1;
3524    for (unsigned i = 0; i < 8; ++i) {
3525      SDOperand Elt = V1Elts[i];
3526      if (Elt.getOpcode() == ISD::UNDEF)
3527        continue;
3528      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3529      if (EltIdx < 8)
3530        continue;
3531      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3532                                    DAG.getConstant(EltIdx - 8, PtrVT));
3533      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3534                         DAG.getConstant(i, PtrVT));
3535    }
3536    return NewV;
3537  } else {
3538    // All elements are from V1.
3539    NewV = V1;
3540    for (unsigned i = 0; i < 8; ++i) {
3541      SDOperand Elt = V1Elts[i];
3542      if (Elt.getOpcode() == ISD::UNDEF)
3543        continue;
3544      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3545      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3546                                    DAG.getConstant(EltIdx, PtrVT));
3547      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3548                         DAG.getConstant(i, PtrVT));
3549    }
3550    return NewV;
3551  }
3552}
3553
3554/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3555/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3556/// done when every pair / quad of shuffle mask elements point to elements in
3557/// the right sequence. e.g.
3558/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3559static
3560SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2,
3561                                MVT VT,
3562                                SDOperand PermMask, SelectionDAG &DAG,
3563                                TargetLowering &TLI) {
3564  unsigned NumElems = PermMask.getNumOperands();
3565  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3566  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3567  MVT NewVT = MaskVT;
3568  switch (VT.getSimpleVT()) {
3569  default: assert(false && "Unexpected!");
3570  case MVT::v4f32: NewVT = MVT::v2f64; break;
3571  case MVT::v4i32: NewVT = MVT::v2i64; break;
3572  case MVT::v8i16: NewVT = MVT::v4i32; break;
3573  case MVT::v16i8: NewVT = MVT::v4i32; break;
3574  }
3575
3576  if (NewWidth == 2) {
3577    if (VT.isInteger())
3578      NewVT = MVT::v2i64;
3579    else
3580      NewVT = MVT::v2f64;
3581  }
3582  unsigned Scale = NumElems / NewWidth;
3583  SmallVector<SDOperand, 8> MaskVec;
3584  for (unsigned i = 0; i < NumElems; i += Scale) {
3585    unsigned StartIdx = ~0U;
3586    for (unsigned j = 0; j < Scale; ++j) {
3587      SDOperand Elt = PermMask.getOperand(i+j);
3588      if (Elt.getOpcode() == ISD::UNDEF)
3589        continue;
3590      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3591      if (StartIdx == ~0U)
3592        StartIdx = EltIdx - (EltIdx % Scale);
3593      if (EltIdx != StartIdx + j)
3594        return SDOperand();
3595    }
3596    if (StartIdx == ~0U)
3597      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
3598    else
3599      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32));
3600  }
3601
3602  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3603  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3604  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3605                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3606                                 &MaskVec[0], MaskVec.size()));
3607}
3608
3609/// getVZextMovL - Return a zero-extending vector move low node.
3610///
3611static SDOperand getVZextMovL(MVT VT, MVT OpVT,
3612                              SDOperand SrcOp, SelectionDAG &DAG,
3613                              const X86Subtarget *Subtarget) {
3614  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3615    LoadSDNode *LD = NULL;
3616    if (!isScalarLoadToVector(SrcOp.Val, &LD))
3617      LD = dyn_cast<LoadSDNode>(SrcOp);
3618    if (!LD) {
3619      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3620      // instead.
3621      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3622      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3623          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3624          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3625          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3626        // PR2108
3627        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3628        return DAG.getNode(ISD::BIT_CONVERT, VT,
3629                           DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3630                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT,
3631                                                   SrcOp.getOperand(0).getOperand(0))));
3632      }
3633    }
3634  }
3635
3636  return DAG.getNode(ISD::BIT_CONVERT, VT,
3637                     DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3638                                 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp)));
3639}
3640
3641SDOperand
3642X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3643  SDOperand V1 = Op.getOperand(0);
3644  SDOperand V2 = Op.getOperand(1);
3645  SDOperand PermMask = Op.getOperand(2);
3646  MVT VT = Op.getValueType();
3647  unsigned NumElems = PermMask.getNumOperands();
3648  bool isMMX = VT.getSizeInBits() == 64;
3649  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3650  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3651  bool V1IsSplat = false;
3652  bool V2IsSplat = false;
3653
3654  if (isUndefShuffle(Op.Val))
3655    return DAG.getNode(ISD::UNDEF, VT);
3656
3657  if (isZeroShuffle(Op.Val))
3658    return getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3659
3660  if (isIdentityMask(PermMask.Val))
3661    return V1;
3662  else if (isIdentityMask(PermMask.Val, true))
3663    return V2;
3664
3665  if (isSplatMask(PermMask.Val)) {
3666    if (isMMX || NumElems < 4) return Op;
3667    // Promote it to a v4{if}32 splat.
3668    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
3669  }
3670
3671  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3672  // do it!
3673  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3674    SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3675    if (NewOp.Val)
3676      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3677  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3678    // FIXME: Figure out a cleaner way to do this.
3679    // Try to make use of movq to zero out the top part.
3680    if (ISD::isBuildVectorAllZeros(V2.Val)) {
3681      SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
3682                                                 DAG, *this);
3683      if (NewOp.Val) {
3684        SDOperand NewV1 = NewOp.getOperand(0);
3685        SDOperand NewV2 = NewOp.getOperand(1);
3686        SDOperand NewMask = NewOp.getOperand(2);
3687        if (isCommutedMOVL(NewMask.Val, true, false)) {
3688          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
3689          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget);
3690        }
3691      }
3692    } else if (ISD::isBuildVectorAllZeros(V1.Val)) {
3693      SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
3694                                                DAG, *this);
3695      if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val))
3696        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
3697                             DAG, Subtarget);
3698    }
3699  }
3700
3701  // Check if this can be converted into a logical shift.
3702  bool isLeft = false;
3703  unsigned ShAmt = 0;
3704  SDOperand ShVal;
3705  bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
3706  if (isShift && ShVal.hasOneUse()) {
3707    // If the shifted value has multiple uses, it may be cheaper to use
3708    // v_set0 + movlhps or movhlps, etc.
3709    MVT EVT = VT.getVectorElementType();
3710    ShAmt *= EVT.getSizeInBits();
3711    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
3712  }
3713
3714  if (X86::isMOVLMask(PermMask.Val)) {
3715    if (V1IsUndef)
3716      return V2;
3717    if (ISD::isBuildVectorAllZeros(V1.Val))
3718      return getVZextMovL(VT, VT, V2, DAG, Subtarget);
3719    return Op;
3720  }
3721
3722  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3723      X86::isMOVSLDUPMask(PermMask.Val) ||
3724      X86::isMOVHLPSMask(PermMask.Val) ||
3725      X86::isMOVHPMask(PermMask.Val) ||
3726      X86::isMOVLPMask(PermMask.Val))
3727    return Op;
3728
3729  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3730      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3731    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3732
3733  if (isShift) {
3734    // No better options. Use a vshl / vsrl.
3735    MVT EVT = VT.getVectorElementType();
3736    ShAmt *= EVT.getSizeInBits();
3737    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
3738  }
3739
3740  bool Commuted = false;
3741  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
3742  // 1,1,1,1 -> v8i16 though.
3743  V1IsSplat = isSplatVector(V1.Val);
3744  V2IsSplat = isSplatVector(V2.Val);
3745
3746  // Canonicalize the splat or undef, if present, to be on the RHS.
3747  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3748    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3749    std::swap(V1IsSplat, V2IsSplat);
3750    std::swap(V1IsUndef, V2IsUndef);
3751    Commuted = true;
3752  }
3753
3754  // FIXME: Figure out a cleaner way to do this.
3755  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3756    if (V2IsUndef) return V1;
3757    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3758    if (V2IsSplat) {
3759      // V2 is a splat, so the mask may be malformed. That is, it may point
3760      // to any V2 element. The instruction selectior won't like this. Get
3761      // a corrected mask and commute to form a proper MOVS{S|D}.
3762      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3763      if (NewMask.Val != PermMask.Val)
3764        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3765    }
3766    return Op;
3767  }
3768
3769  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3770      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3771      X86::isUNPCKLMask(PermMask.Val) ||
3772      X86::isUNPCKHMask(PermMask.Val))
3773    return Op;
3774
3775  if (V2IsSplat) {
3776    // Normalize mask so all entries that point to V2 points to its first
3777    // element then try to match unpck{h|l} again. If match, return a
3778    // new vector_shuffle with the corrected mask.
3779    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3780    if (NewMask.Val != PermMask.Val) {
3781      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3782        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3783        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3784      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3785        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3786        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3787      }
3788    }
3789  }
3790
3791  // Normalize the node to match x86 shuffle ops if needed
3792  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3793      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3794
3795  if (Commuted) {
3796    // Commute is back and try unpck* again.
3797    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3798    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3799        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3800        X86::isUNPCKLMask(PermMask.Val) ||
3801        X86::isUNPCKHMask(PermMask.Val))
3802      return Op;
3803  }
3804
3805  // Try PSHUF* first, then SHUFP*.
3806  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
3807  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3808  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.Val)) {
3809    if (V2.getOpcode() != ISD::UNDEF)
3810      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3811                         DAG.getNode(ISD::UNDEF, VT), PermMask);
3812    return Op;
3813  }
3814
3815  if (!isMMX) {
3816    if (Subtarget->hasSSE2() &&
3817        (X86::isPSHUFDMask(PermMask.Val) ||
3818         X86::isPSHUFHWMask(PermMask.Val) ||
3819         X86::isPSHUFLWMask(PermMask.Val))) {
3820      MVT RVT = VT;
3821      if (VT == MVT::v4f32) {
3822        RVT = MVT::v4i32;
3823        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT,
3824                         DAG.getNode(ISD::BIT_CONVERT, RVT, V1),
3825                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
3826      } else if (V2.getOpcode() != ISD::UNDEF)
3827        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1,
3828                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
3829      if (RVT != VT)
3830        Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
3831      return Op;
3832    }
3833
3834    // Binary or unary shufps.
3835    if (X86::isSHUFPMask(PermMask.Val) ||
3836        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.Val)))
3837      return Op;
3838  }
3839
3840  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
3841  if (VT == MVT::v8i16) {
3842    SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
3843    if (NewOp.Val)
3844      return NewOp;
3845  }
3846
3847  // Handle all 4 wide cases with a number of shuffles.
3848  if (NumElems == 4 && !isMMX) {
3849    // Don't do this for MMX.
3850    MVT MaskVT = PermMask.getValueType();
3851    MVT MaskEVT = MaskVT.getVectorElementType();
3852    SmallVector<std::pair<int, int>, 8> Locs;
3853    Locs.reserve(NumElems);
3854    SmallVector<SDOperand, 8> Mask1(NumElems,
3855                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3856    SmallVector<SDOperand, 8> Mask2(NumElems,
3857                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3858    unsigned NumHi = 0;
3859    unsigned NumLo = 0;
3860    // If no more than two elements come from either vector. This can be
3861    // implemented with two shuffles. First shuffle gather the elements.
3862    // The second shuffle, which takes the first shuffle as both of its
3863    // vector operands, put the elements into the right order.
3864    for (unsigned i = 0; i != NumElems; ++i) {
3865      SDOperand Elt = PermMask.getOperand(i);
3866      if (Elt.getOpcode() == ISD::UNDEF) {
3867        Locs[i] = std::make_pair(-1, -1);
3868      } else {
3869        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3870        if (Val < NumElems) {
3871          Locs[i] = std::make_pair(0, NumLo);
3872          Mask1[NumLo] = Elt;
3873          NumLo++;
3874        } else {
3875          Locs[i] = std::make_pair(1, NumHi);
3876          if (2+NumHi < NumElems)
3877            Mask1[2+NumHi] = Elt;
3878          NumHi++;
3879        }
3880      }
3881    }
3882    if (NumLo <= 2 && NumHi <= 2) {
3883      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3884                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3885                                   &Mask1[0], Mask1.size()));
3886      for (unsigned i = 0; i != NumElems; ++i) {
3887        if (Locs[i].first == -1)
3888          continue;
3889        else {
3890          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3891          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3892          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3893        }
3894      }
3895
3896      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3897                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3898                                     &Mask2[0], Mask2.size()));
3899    }
3900
3901    // Break it into (shuffle shuffle_hi, shuffle_lo).
3902    Locs.clear();
3903    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3904    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3905    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3906    unsigned MaskIdx = 0;
3907    unsigned LoIdx = 0;
3908    unsigned HiIdx = NumElems/2;
3909    for (unsigned i = 0; i != NumElems; ++i) {
3910      if (i == NumElems/2) {
3911        MaskPtr = &HiMask;
3912        MaskIdx = 1;
3913        LoIdx = 0;
3914        HiIdx = NumElems/2;
3915      }
3916      SDOperand Elt = PermMask.getOperand(i);
3917      if (Elt.getOpcode() == ISD::UNDEF) {
3918        Locs[i] = std::make_pair(-1, -1);
3919      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3920        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3921        (*MaskPtr)[LoIdx] = Elt;
3922        LoIdx++;
3923      } else {
3924        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3925        (*MaskPtr)[HiIdx] = Elt;
3926        HiIdx++;
3927      }
3928    }
3929
3930    SDOperand LoShuffle =
3931      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3932                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3933                              &LoMask[0], LoMask.size()));
3934    SDOperand HiShuffle =
3935      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3936                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3937                              &HiMask[0], HiMask.size()));
3938    SmallVector<SDOperand, 8> MaskOps;
3939    for (unsigned i = 0; i != NumElems; ++i) {
3940      if (Locs[i].first == -1) {
3941        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3942      } else {
3943        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3944        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3945      }
3946    }
3947    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3948                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3949                                   &MaskOps[0], MaskOps.size()));
3950  }
3951
3952  return SDOperand();
3953}
3954
3955SDOperand
3956X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDOperand Op,
3957                                                SelectionDAG &DAG) {
3958  MVT VT = Op.getValueType();
3959  if (VT.getSizeInBits() == 8) {
3960    SDOperand Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
3961                                    Op.getOperand(0), Op.getOperand(1));
3962    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
3963                                    DAG.getValueType(VT));
3964    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3965  } else if (VT.getSizeInBits() == 16) {
3966    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
3967                                    Op.getOperand(0), Op.getOperand(1));
3968    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
3969                                    DAG.getValueType(VT));
3970    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3971  } else if (VT == MVT::f32) {
3972    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
3973    // the result back to FR32 register. It's only worth matching if the
3974    // result has a single use which is a store or a bitcast to i32.
3975    if (!Op.hasOneUse())
3976      return SDOperand();
3977    SDNode *User = Op.Val->use_begin()->getUser();
3978    if (User->getOpcode() != ISD::STORE &&
3979        (User->getOpcode() != ISD::BIT_CONVERT ||
3980         User->getValueType(0) != MVT::i32))
3981      return SDOperand();
3982    SDOperand Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
3983                    DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)),
3984                                    Op.getOperand(1));
3985    return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract);
3986  }
3987  return SDOperand();
3988}
3989
3990
3991SDOperand
3992X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3993  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3994    return SDOperand();
3995
3996  if (Subtarget->hasSSE41()) {
3997    SDOperand Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
3998    if (Res.Val)
3999      return Res;
4000  }
4001
4002  MVT VT = Op.getValueType();
4003  // TODO: handle v16i8.
4004  if (VT.getSizeInBits() == 16) {
4005    SDOperand Vec = Op.getOperand(0);
4006    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4007    if (Idx == 0)
4008      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
4009                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4010                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
4011                                     Op.getOperand(1)));
4012    // Transform it so it match pextrw which produces a 32-bit result.
4013    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4014    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
4015                                    Op.getOperand(0), Op.getOperand(1));
4016    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
4017                                    DAG.getValueType(VT));
4018    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4019  } else if (VT.getSizeInBits() == 32) {
4020    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4021    if (Idx == 0)
4022      return Op;
4023    // SHUFPS the element to the lowest double word, then movss.
4024    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
4025    SmallVector<SDOperand, 8> IdxVec;
4026    IdxVec.
4027      push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
4028    IdxVec.
4029      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4030    IdxVec.
4031      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4032    IdxVec.
4033      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4034    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4035                                 &IdxVec[0], IdxVec.size());
4036    SDOperand Vec = Op.getOperand(0);
4037    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4038                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4039    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4040                       DAG.getIntPtrConstant(0));
4041  } else if (VT.getSizeInBits() == 64) {
4042    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4043    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4044    //        to match extract_elt for f64.
4045    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4046    if (Idx == 0)
4047      return Op;
4048
4049    // UNPCKHPD the element to the lowest double word, then movsd.
4050    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4051    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4052    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
4053    SmallVector<SDOperand, 8> IdxVec;
4054    IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
4055    IdxVec.
4056      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4057    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4058                                 &IdxVec[0], IdxVec.size());
4059    SDOperand Vec = Op.getOperand(0);
4060    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4061                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4062    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4063                       DAG.getIntPtrConstant(0));
4064  }
4065
4066  return SDOperand();
4067}
4068
4069SDOperand
4070X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDOperand Op, SelectionDAG &DAG){
4071  MVT VT = Op.getValueType();
4072  MVT EVT = VT.getVectorElementType();
4073
4074  SDOperand N0 = Op.getOperand(0);
4075  SDOperand N1 = Op.getOperand(1);
4076  SDOperand N2 = Op.getOperand(2);
4077
4078  if ((EVT.getSizeInBits() == 8) || (EVT.getSizeInBits() == 16)) {
4079    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4080                                                  : X86ISD::PINSRW;
4081    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4082    // argument.
4083    if (N1.getValueType() != MVT::i32)
4084      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4085    if (N2.getValueType() != MVT::i32)
4086      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
4087    return DAG.getNode(Opc, VT, N0, N1, N2);
4088  } else if (EVT == MVT::f32) {
4089    // Bits [7:6] of the constant are the source select.  This will always be
4090    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4091    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4092    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4093    // Bits [5:4] of the constant are the destination select.  This is the
4094    //  value of the incoming immediate.
4095    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4096    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4097    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue() << 4);
4098    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
4099  }
4100  return SDOperand();
4101}
4102
4103SDOperand
4104X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
4105  MVT VT = Op.getValueType();
4106  MVT EVT = VT.getVectorElementType();
4107
4108  if (Subtarget->hasSSE41())
4109    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4110
4111  if (EVT == MVT::i8)
4112    return SDOperand();
4113
4114  SDOperand N0 = Op.getOperand(0);
4115  SDOperand N1 = Op.getOperand(1);
4116  SDOperand N2 = Op.getOperand(2);
4117
4118  if (EVT.getSizeInBits() == 16) {
4119    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4120    // as its second argument.
4121    if (N1.getValueType() != MVT::i32)
4122      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4123    if (N2.getValueType() != MVT::i32)
4124      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
4125    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
4126  }
4127  return SDOperand();
4128}
4129
4130SDOperand
4131X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
4132  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
4133  MVT VT = MVT::v2i32;
4134  switch (Op.getValueType().getSimpleVT()) {
4135  default: break;
4136  case MVT::v16i8:
4137  case MVT::v8i16:
4138    VT = MVT::v4i32;
4139    break;
4140  }
4141  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
4142                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
4143}
4144
4145// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4146// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4147// one of the above mentioned nodes. It has to be wrapped because otherwise
4148// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4149// be used to form addressing mode. These wrapped nodes will be selected
4150// into MOV32ri.
4151SDOperand
4152X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
4153  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4154  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
4155                                               getPointerTy(),
4156                                               CP->getAlignment());
4157  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4158  // With PIC, the address is actually $g + Offset.
4159  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4160      !Subtarget->isPICStyleRIPRel()) {
4161    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4162                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4163                         Result);
4164  }
4165
4166  return Result;
4167}
4168
4169SDOperand
4170X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
4171  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4172  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
4173  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4174  // With PIC, the address is actually $g + Offset.
4175  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4176      !Subtarget->isPICStyleRIPRel()) {
4177    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4178                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4179                         Result);
4180  }
4181
4182  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4183  // load the value at address GV, not the value of GV itself. This means that
4184  // the GlobalAddress must be in the base or index register of the address, not
4185  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4186  // The same applies for external symbols during PIC codegen
4187  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
4188    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
4189                         PseudoSourceValue::getGOT(), 0);
4190
4191  return Result;
4192}
4193
4194// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4195static SDOperand
4196LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4197                                const MVT PtrVT) {
4198  SDOperand InFlag;
4199  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4200                                     DAG.getNode(X86ISD::GlobalBaseReg,
4201                                                 PtrVT), InFlag);
4202  InFlag = Chain.getValue(1);
4203
4204  // emit leal symbol@TLSGD(,%ebx,1), %eax
4205  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4206  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4207                                             GA->getValueType(0),
4208                                             GA->getOffset());
4209  SDOperand Ops[] = { Chain,  TGA, InFlag };
4210  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4211  InFlag = Result.getValue(2);
4212  Chain = Result.getValue(1);
4213
4214  // call ___tls_get_addr. This function receives its argument in
4215  // the register EAX.
4216  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4217  InFlag = Chain.getValue(1);
4218
4219  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4220  SDOperand Ops1[] = { Chain,
4221                      DAG.getTargetExternalSymbol("___tls_get_addr",
4222                                                  PtrVT),
4223                      DAG.getRegister(X86::EAX, PtrVT),
4224                      DAG.getRegister(X86::EBX, PtrVT),
4225                      InFlag };
4226  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4227  InFlag = Chain.getValue(1);
4228
4229  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4230}
4231
4232// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4233static SDOperand
4234LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4235                                const MVT PtrVT) {
4236  SDOperand InFlag, Chain;
4237
4238  // emit leaq symbol@TLSGD(%rip), %rdi
4239  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4240  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4241                                             GA->getValueType(0),
4242                                             GA->getOffset());
4243  SDOperand Ops[]  = { DAG.getEntryNode(), TGA};
4244  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2);
4245  Chain  = Result.getValue(1);
4246  InFlag = Result.getValue(2);
4247
4248  // call ___tls_get_addr. This function receives its argument in
4249  // the register RDI.
4250  Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag);
4251  InFlag = Chain.getValue(1);
4252
4253  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4254  SDOperand Ops1[] = { Chain,
4255                      DAG.getTargetExternalSymbol("___tls_get_addr",
4256                                                  PtrVT),
4257                      DAG.getRegister(X86::RDI, PtrVT),
4258                      InFlag };
4259  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4);
4260  InFlag = Chain.getValue(1);
4261
4262  return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag);
4263}
4264
4265// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4266// "local exec" model.
4267static SDOperand LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4268                                     const MVT PtrVT) {
4269  // Get the Thread Pointer
4270  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4271  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4272  // exec)
4273  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4274                                             GA->getValueType(0),
4275                                             GA->getOffset());
4276  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4277
4278  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4279    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
4280                         PseudoSourceValue::getGOT(), 0);
4281
4282  // The address of the thread local variable is the add of the thread
4283  // pointer with the offset of the variable.
4284  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4285}
4286
4287SDOperand
4288X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
4289  // TODO: implement the "local dynamic" model
4290  // TODO: implement the "initial exec"model for pic executables
4291  assert(Subtarget->isTargetELF() &&
4292         "TLS not implemented for non-ELF targets");
4293  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4294  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4295  // otherwise use the "Local Exec"TLS Model
4296  if (Subtarget->is64Bit()) {
4297    return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4298  } else {
4299    if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4300      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4301    else
4302      return LowerToTLSExecModel(GA, DAG, getPointerTy());
4303  }
4304}
4305
4306SDOperand
4307X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
4308  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4309  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4310  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4311  // With PIC, the address is actually $g + Offset.
4312  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4313      !Subtarget->isPICStyleRIPRel()) {
4314    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4315                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4316                         Result);
4317  }
4318
4319  return Result;
4320}
4321
4322SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
4323  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4324  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4325  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4326  // With PIC, the address is actually $g + Offset.
4327  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4328      !Subtarget->isPICStyleRIPRel()) {
4329    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4330                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4331                         Result);
4332  }
4333
4334  return Result;
4335}
4336
4337/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4338/// take a 2 x i32 value to shift plus a shift amount.
4339SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
4340  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4341  MVT VT = Op.getValueType();
4342  unsigned VTBits = VT.getSizeInBits();
4343  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4344  SDOperand ShOpLo = Op.getOperand(0);
4345  SDOperand ShOpHi = Op.getOperand(1);
4346  SDOperand ShAmt  = Op.getOperand(2);
4347  SDOperand Tmp1 = isSRA ?
4348    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4349    DAG.getConstant(0, VT);
4350
4351  SDOperand Tmp2, Tmp3;
4352  if (Op.getOpcode() == ISD::SHL_PARTS) {
4353    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4354    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4355  } else {
4356    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4357    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4358  }
4359
4360  SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4361                                  DAG.getConstant(VTBits, MVT::i8));
4362  SDOperand Cond = DAG.getNode(X86ISD::CMP, VT,
4363                               AndNode, DAG.getConstant(0, MVT::i8));
4364
4365  SDOperand Hi, Lo;
4366  SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4367  SDOperand Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4368  SDOperand Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4369
4370  if (Op.getOpcode() == ISD::SHL_PARTS) {
4371    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4372    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4373  } else {
4374    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4375    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4376  }
4377
4378  SDOperand Ops[2] = { Lo, Hi };
4379  return DAG.getMergeValues(Ops, 2);
4380}
4381
4382SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
4383  MVT SrcVT = Op.getOperand(0).getValueType();
4384  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4385         "Unknown SINT_TO_FP to lower!");
4386
4387  // These are really Legal; caller falls through into that case.
4388  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4389    return SDOperand();
4390  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4391      Subtarget->is64Bit())
4392    return SDOperand();
4393
4394  unsigned Size = SrcVT.getSizeInBits()/8;
4395  MachineFunction &MF = DAG.getMachineFunction();
4396  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4397  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4398  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4399                                 StackSlot,
4400                                 PseudoSourceValue::getFixedStack(SSFI), 0);
4401
4402  // Build the FILD
4403  SDVTList Tys;
4404  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4405  if (useSSE)
4406    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4407  else
4408    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4409  SmallVector<SDOperand, 8> Ops;
4410  Ops.push_back(Chain);
4411  Ops.push_back(StackSlot);
4412  Ops.push_back(DAG.getValueType(SrcVT));
4413  SDOperand Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4414                                 Tys, &Ops[0], Ops.size());
4415
4416  if (useSSE) {
4417    Chain = Result.getValue(1);
4418    SDOperand InFlag = Result.getValue(2);
4419
4420    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4421    // shouldn't be necessary except that RFP cannot be live across
4422    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4423    MachineFunction &MF = DAG.getMachineFunction();
4424    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4425    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4426    Tys = DAG.getVTList(MVT::Other);
4427    SmallVector<SDOperand, 8> Ops;
4428    Ops.push_back(Chain);
4429    Ops.push_back(Result);
4430    Ops.push_back(StackSlot);
4431    Ops.push_back(DAG.getValueType(Op.getValueType()));
4432    Ops.push_back(InFlag);
4433    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4434    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4435                         PseudoSourceValue::getFixedStack(SSFI), 0);
4436  }
4437
4438  return Result;
4439}
4440
4441std::pair<SDOperand,SDOperand> X86TargetLowering::
4442FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) {
4443  assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
4444         Op.getValueType().getSimpleVT() >= MVT::i16 &&
4445         "Unknown FP_TO_SINT to lower!");
4446
4447  // These are really Legal.
4448  if (Op.getValueType() == MVT::i32 &&
4449      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4450    return std::make_pair(SDOperand(), SDOperand());
4451  if (Subtarget->is64Bit() &&
4452      Op.getValueType() == MVT::i64 &&
4453      Op.getOperand(0).getValueType() != MVT::f80)
4454    return std::make_pair(SDOperand(), SDOperand());
4455
4456  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4457  // stack slot.
4458  MachineFunction &MF = DAG.getMachineFunction();
4459  unsigned MemSize = Op.getValueType().getSizeInBits()/8;
4460  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4461  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4462  unsigned Opc;
4463  switch (Op.getValueType().getSimpleVT()) {
4464  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4465  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4466  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4467  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4468  }
4469
4470  SDOperand Chain = DAG.getEntryNode();
4471  SDOperand Value = Op.getOperand(0);
4472  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4473    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4474    Chain = DAG.getStore(Chain, Value, StackSlot,
4475                         PseudoSourceValue::getFixedStack(SSFI), 0);
4476    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4477    SDOperand Ops[] = {
4478      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4479    };
4480    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4481    Chain = Value.getValue(1);
4482    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4483    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4484  }
4485
4486  // Build the FP_TO_INT*_IN_MEM
4487  SDOperand Ops[] = { Chain, Value, StackSlot };
4488  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4489
4490  return std::make_pair(FIST, StackSlot);
4491}
4492
4493SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
4494  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG);
4495  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4496  if (FIST.Val == 0) return SDOperand();
4497
4498  // Load the result.
4499  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4500}
4501
4502SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4503  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG);
4504  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4505  if (FIST.Val == 0) return 0;
4506
4507  MVT VT = N->getValueType(0);
4508
4509  // Return a load from the stack slot.
4510  SDOperand Res = DAG.getLoad(VT, FIST, StackSlot, NULL, 0);
4511
4512  // Use MERGE_VALUES to drop the chain result value and get a node with one
4513  // result.  This requires turning off getMergeValues simplification, since
4514  // otherwise it will give us Res back.
4515  return DAG.getMergeValues(&Res, 1, false).Val;
4516}
4517
4518SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4519  MVT VT = Op.getValueType();
4520  MVT EltVT = VT;
4521  if (VT.isVector())
4522    EltVT = VT.getVectorElementType();
4523  std::vector<Constant*> CV;
4524  if (EltVT == MVT::f64) {
4525    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4526    CV.push_back(C);
4527    CV.push_back(C);
4528  } else {
4529    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4530    CV.push_back(C);
4531    CV.push_back(C);
4532    CV.push_back(C);
4533    CV.push_back(C);
4534  }
4535  Constant *C = ConstantVector::get(CV);
4536  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4537  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4538                               PseudoSourceValue::getConstantPool(), 0,
4539                               false, 16);
4540  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4541}
4542
4543SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4544  MVT VT = Op.getValueType();
4545  MVT EltVT = VT;
4546  unsigned EltNum = 1;
4547  if (VT.isVector()) {
4548    EltVT = VT.getVectorElementType();
4549    EltNum = VT.getVectorNumElements();
4550  }
4551  std::vector<Constant*> CV;
4552  if (EltVT == MVT::f64) {
4553    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4554    CV.push_back(C);
4555    CV.push_back(C);
4556  } else {
4557    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4558    CV.push_back(C);
4559    CV.push_back(C);
4560    CV.push_back(C);
4561    CV.push_back(C);
4562  }
4563  Constant *C = ConstantVector::get(CV);
4564  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4565  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4566                               PseudoSourceValue::getConstantPool(), 0,
4567                               false, 16);
4568  if (VT.isVector()) {
4569    return DAG.getNode(ISD::BIT_CONVERT, VT,
4570                       DAG.getNode(ISD::XOR, MVT::v2i64,
4571                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4572                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4573  } else {
4574    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4575  }
4576}
4577
4578SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4579  SDOperand Op0 = Op.getOperand(0);
4580  SDOperand Op1 = Op.getOperand(1);
4581  MVT VT = Op.getValueType();
4582  MVT SrcVT = Op1.getValueType();
4583
4584  // If second operand is smaller, extend it first.
4585  if (SrcVT.bitsLT(VT)) {
4586    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4587    SrcVT = VT;
4588  }
4589  // And if it is bigger, shrink it first.
4590  if (SrcVT.bitsGT(VT)) {
4591    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4592    SrcVT = VT;
4593  }
4594
4595  // At this point the operands and the result should have the same
4596  // type, and that won't be f80 since that is not custom lowered.
4597
4598  // First get the sign bit of second operand.
4599  std::vector<Constant*> CV;
4600  if (SrcVT == MVT::f64) {
4601    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4602    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4603  } else {
4604    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4605    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4606    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4607    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4608  }
4609  Constant *C = ConstantVector::get(CV);
4610  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4611  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
4612                                PseudoSourceValue::getConstantPool(), 0,
4613                                false, 16);
4614  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4615
4616  // Shift sign bit right or left if the two operands have different types.
4617  if (SrcVT.bitsGT(VT)) {
4618    // Op0 is MVT::f32, Op1 is MVT::f64.
4619    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4620    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4621                          DAG.getConstant(32, MVT::i32));
4622    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4623    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4624                          DAG.getIntPtrConstant(0));
4625  }
4626
4627  // Clear first operand sign bit.
4628  CV.clear();
4629  if (VT == MVT::f64) {
4630    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
4631    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4632  } else {
4633    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
4634    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4635    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4636    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4637  }
4638  C = ConstantVector::get(CV);
4639  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4640  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4641                                PseudoSourceValue::getConstantPool(), 0,
4642                                false, 16);
4643  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4644
4645  // Or the value with the sign bit.
4646  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4647}
4648
4649SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
4650  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4651  SDOperand Cond;
4652  SDOperand Op0 = Op.getOperand(0);
4653  SDOperand Op1 = Op.getOperand(1);
4654  SDOperand CC = Op.getOperand(2);
4655  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4656  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
4657  unsigned X86CC;
4658
4659  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4660                     Op0, Op1, DAG)) {
4661    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4662    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4663                       DAG.getConstant(X86CC, MVT::i8), Cond);
4664  }
4665
4666  assert(isFP && "Illegal integer SetCC!");
4667
4668  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4669  switch (SetCCOpcode) {
4670  default: assert(false && "Illegal floating point SetCC!");
4671  case ISD::SETOEQ: {  // !PF & ZF
4672    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4673                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4674    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4675                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4676    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4677  }
4678  case ISD::SETUNE: {  // PF | !ZF
4679    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4680                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4681    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4682                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4683    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4684  }
4685  }
4686}
4687
4688
4689SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4690  bool addTest = true;
4691  SDOperand Cond  = Op.getOperand(0);
4692  SDOperand CC;
4693
4694  if (Cond.getOpcode() == ISD::SETCC)
4695    Cond = LowerSETCC(Cond, DAG);
4696
4697  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4698  // setting operand in place of the X86ISD::SETCC.
4699  if (Cond.getOpcode() == X86ISD::SETCC) {
4700    CC = Cond.getOperand(0);
4701
4702    SDOperand Cmp = Cond.getOperand(1);
4703    unsigned Opc = Cmp.getOpcode();
4704    MVT VT = Op.getValueType();
4705
4706    bool IllegalFPCMov = false;
4707    if (VT.isFloatingPoint() && !VT.isVector() &&
4708        !isScalarFPTypeInSSEReg(VT))  // FPStack?
4709      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4710
4711    if ((Opc == X86ISD::CMP ||
4712         Opc == X86ISD::COMI ||
4713         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4714      Cond = Cmp;
4715      addTest = false;
4716    }
4717  }
4718
4719  if (addTest) {
4720    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4721    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4722  }
4723
4724  const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4725                                                    MVT::Flag);
4726  SmallVector<SDOperand, 4> Ops;
4727  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4728  // condition is true.
4729  Ops.push_back(Op.getOperand(2));
4730  Ops.push_back(Op.getOperand(1));
4731  Ops.push_back(CC);
4732  Ops.push_back(Cond);
4733  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4734}
4735
4736SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4737  bool addTest = true;
4738  SDOperand Chain = Op.getOperand(0);
4739  SDOperand Cond  = Op.getOperand(1);
4740  SDOperand Dest  = Op.getOperand(2);
4741  SDOperand CC;
4742
4743  if (Cond.getOpcode() == ISD::SETCC)
4744    Cond = LowerSETCC(Cond, DAG);
4745
4746  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4747  // setting operand in place of the X86ISD::SETCC.
4748  if (Cond.getOpcode() == X86ISD::SETCC) {
4749    CC = Cond.getOperand(0);
4750
4751    SDOperand Cmp = Cond.getOperand(1);
4752    unsigned Opc = Cmp.getOpcode();
4753    if (Opc == X86ISD::CMP ||
4754        Opc == X86ISD::COMI ||
4755        Opc == X86ISD::UCOMI) {
4756      Cond = Cmp;
4757      addTest = false;
4758    }
4759  }
4760
4761  if (addTest) {
4762    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4763    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4764  }
4765  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4766                     Chain, Op.getOperand(2), CC, Cond);
4767}
4768
4769
4770// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4771// Calls to _alloca is needed to probe the stack when allocating more than 4k
4772// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4773// that the guard pages used by the OS virtual memory manager are allocated in
4774// correct sequence.
4775SDOperand
4776X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4777                                           SelectionDAG &DAG) {
4778  assert(Subtarget->isTargetCygMing() &&
4779         "This should be used only on Cygwin/Mingw targets");
4780
4781  // Get the inputs.
4782  SDOperand Chain = Op.getOperand(0);
4783  SDOperand Size  = Op.getOperand(1);
4784  // FIXME: Ensure alignment here
4785
4786  SDOperand Flag;
4787
4788  MVT IntPtr = getPointerTy();
4789  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
4790
4791  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0));
4792
4793  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4794  Flag = Chain.getValue(1);
4795
4796  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4797  SDOperand Ops[] = { Chain,
4798                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
4799                      DAG.getRegister(X86::EAX, IntPtr),
4800                      DAG.getRegister(X86StackPtr, SPTy),
4801                      Flag };
4802  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5);
4803  Flag = Chain.getValue(1);
4804
4805  Chain = DAG.getCALLSEQ_END(Chain,
4806                             DAG.getIntPtrConstant(0),
4807                             DAG.getIntPtrConstant(0),
4808                             Flag);
4809
4810  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4811
4812  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4813  return DAG.getMergeValues(Ops1, 2);
4814}
4815
4816SDOperand
4817X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG,
4818                                           SDOperand Chain,
4819                                           SDOperand Dst, SDOperand Src,
4820                                           SDOperand Size, unsigned Align,
4821                                        const Value *DstSV, uint64_t DstSVOff) {
4822  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4823
4824  /// If not DWORD aligned or size is more than the threshold, call the library.
4825  /// The libc version is likely to be faster for these cases. It can use the
4826  /// address value and run time information about the CPU.
4827  if ((Align & 3) == 0 ||
4828      !ConstantSize ||
4829      ConstantSize->getValue() > getSubtarget()->getMaxInlineSizeThreshold()) {
4830    SDOperand InFlag(0, 0);
4831
4832    // Check to see if there is a specialized entry-point for memory zeroing.
4833    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
4834    if (const char *bzeroEntry =
4835          V && V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
4836      MVT IntPtr = getPointerTy();
4837      const Type *IntPtrTy = getTargetData()->getIntPtrType();
4838      TargetLowering::ArgListTy Args;
4839      TargetLowering::ArgListEntry Entry;
4840      Entry.Node = Dst;
4841      Entry.Ty = IntPtrTy;
4842      Args.push_back(Entry);
4843      Entry.Node = Size;
4844      Args.push_back(Entry);
4845      std::pair<SDOperand,SDOperand> CallResult =
4846        LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C,
4847                    false, DAG.getExternalSymbol(bzeroEntry, IntPtr),
4848                    Args, DAG);
4849      return CallResult.second;
4850    }
4851
4852    // Otherwise have the target-independent code call memset.
4853    return SDOperand();
4854  }
4855
4856  uint64_t SizeVal = ConstantSize->getValue();
4857  SDOperand InFlag(0, 0);
4858  MVT AVT;
4859  SDOperand Count;
4860  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
4861  unsigned BytesLeft = 0;
4862  bool TwoRepStos = false;
4863  if (ValC) {
4864    unsigned ValReg;
4865    uint64_t Val = ValC->getValue() & 255;
4866
4867    // If the value is a constant, then we can potentially use larger sets.
4868    switch (Align & 3) {
4869      case 2:   // WORD aligned
4870        AVT = MVT::i16;
4871        ValReg = X86::AX;
4872        Val = (Val << 8) | Val;
4873        break;
4874      case 0:  // DWORD aligned
4875        AVT = MVT::i32;
4876        ValReg = X86::EAX;
4877        Val = (Val << 8)  | Val;
4878        Val = (Val << 16) | Val;
4879        if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
4880          AVT = MVT::i64;
4881          ValReg = X86::RAX;
4882          Val = (Val << 32) | Val;
4883        }
4884        break;
4885      default:  // Byte aligned
4886        AVT = MVT::i8;
4887        ValReg = X86::AL;
4888        Count = DAG.getIntPtrConstant(SizeVal);
4889        break;
4890    }
4891
4892    if (AVT.bitsGT(MVT::i8)) {
4893      unsigned UBytes = AVT.getSizeInBits() / 8;
4894      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
4895      BytesLeft = SizeVal % UBytes;
4896    }
4897
4898    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4899                              InFlag);
4900    InFlag = Chain.getValue(1);
4901  } else {
4902    AVT = MVT::i8;
4903    Count  = DAG.getIntPtrConstant(SizeVal);
4904    Chain  = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag);
4905    InFlag = Chain.getValue(1);
4906  }
4907
4908  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4909                            Count, InFlag);
4910  InFlag = Chain.getValue(1);
4911  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4912                            Dst, InFlag);
4913  InFlag = Chain.getValue(1);
4914
4915  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4916  SmallVector<SDOperand, 8> Ops;
4917  Ops.push_back(Chain);
4918  Ops.push_back(DAG.getValueType(AVT));
4919  Ops.push_back(InFlag);
4920  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4921
4922  if (TwoRepStos) {
4923    InFlag = Chain.getValue(1);
4924    Count  = Size;
4925    MVT CVT = Count.getValueType();
4926    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4927                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4928    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4929                              Left, InFlag);
4930    InFlag = Chain.getValue(1);
4931    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4932    Ops.clear();
4933    Ops.push_back(Chain);
4934    Ops.push_back(DAG.getValueType(MVT::i8));
4935    Ops.push_back(InFlag);
4936    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4937  } else if (BytesLeft) {
4938    // Handle the last 1 - 7 bytes.
4939    unsigned Offset = SizeVal - BytesLeft;
4940    MVT AddrVT = Dst.getValueType();
4941    MVT SizeVT = Size.getValueType();
4942
4943    Chain = DAG.getMemset(Chain,
4944                          DAG.getNode(ISD::ADD, AddrVT, Dst,
4945                                      DAG.getConstant(Offset, AddrVT)),
4946                          Src,
4947                          DAG.getConstant(BytesLeft, SizeVT),
4948                          Align, DstSV, DstSVOff + Offset);
4949  }
4950
4951  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
4952  return Chain;
4953}
4954
4955SDOperand
4956X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
4957                                           SDOperand Chain,
4958                                           SDOperand Dst, SDOperand Src,
4959                                           SDOperand Size, unsigned Align,
4960                                           bool AlwaysInline,
4961                                           const Value *DstSV, uint64_t DstSVOff,
4962                                           const Value *SrcSV, uint64_t SrcSVOff){
4963
4964  // This requires the copy size to be a constant, preferrably
4965  // within a subtarget-specific limit.
4966  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4967  if (!ConstantSize)
4968    return SDOperand();
4969  uint64_t SizeVal = ConstantSize->getValue();
4970  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
4971    return SDOperand();
4972
4973  MVT AVT;
4974  unsigned BytesLeft = 0;
4975  if (Align >= 8 && Subtarget->is64Bit())
4976    AVT = MVT::i64;
4977  else if (Align >= 4)
4978    AVT = MVT::i32;
4979  else if (Align >= 2)
4980    AVT = MVT::i16;
4981  else
4982    AVT = MVT::i8;
4983
4984  unsigned UBytes = AVT.getSizeInBits() / 8;
4985  unsigned CountVal = SizeVal / UBytes;
4986  SDOperand Count = DAG.getIntPtrConstant(CountVal);
4987  BytesLeft = SizeVal % UBytes;
4988
4989  SDOperand InFlag(0, 0);
4990  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4991                            Count, InFlag);
4992  InFlag = Chain.getValue(1);
4993  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4994                            Dst, InFlag);
4995  InFlag = Chain.getValue(1);
4996  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4997                            Src, InFlag);
4998  InFlag = Chain.getValue(1);
4999
5000  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5001  SmallVector<SDOperand, 8> Ops;
5002  Ops.push_back(Chain);
5003  Ops.push_back(DAG.getValueType(AVT));
5004  Ops.push_back(InFlag);
5005  SDOperand RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
5006
5007  SmallVector<SDOperand, 4> Results;
5008  Results.push_back(RepMovs);
5009  if (BytesLeft) {
5010    // Handle the last 1 - 7 bytes.
5011    unsigned Offset = SizeVal - BytesLeft;
5012    MVT DstVT = Dst.getValueType();
5013    MVT SrcVT = Src.getValueType();
5014    MVT SizeVT = Size.getValueType();
5015    Results.push_back(DAG.getMemcpy(Chain,
5016                                    DAG.getNode(ISD::ADD, DstVT, Dst,
5017                                                DAG.getConstant(Offset, DstVT)),
5018                                    DAG.getNode(ISD::ADD, SrcVT, Src,
5019                                                DAG.getConstant(Offset, SrcVT)),
5020                                    DAG.getConstant(BytesLeft, SizeVT),
5021                                    Align, AlwaysInline,
5022                                    DstSV, DstSVOff + Offset,
5023                                    SrcSV, SrcSVOff + Offset));
5024  }
5025
5026  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size());
5027}
5028
5029/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
5030SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
5031  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5032  SDOperand TheChain = N->getOperand(0);
5033  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
5034  if (Subtarget->is64Bit()) {
5035    SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
5036    SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
5037                                       MVT::i64, rax.getValue(2));
5038    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
5039                                DAG.getConstant(32, MVT::i8));
5040    SDOperand Ops[] = {
5041      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
5042    };
5043
5044    return DAG.getMergeValues(Ops, 2).Val;
5045  }
5046
5047  SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
5048  SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
5049                                       MVT::i32, eax.getValue(2));
5050  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
5051  SDOperand Ops[] = { eax, edx };
5052  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
5053
5054  // Use a MERGE_VALUES to return the value and chain.
5055  Ops[1] = edx.getValue(1);
5056  return DAG.getMergeValues(Ops, 2).Val;
5057}
5058
5059SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
5060  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5061
5062  if (!Subtarget->is64Bit()) {
5063    // vastart just stores the address of the VarArgsFrameIndex slot into the
5064    // memory location argument.
5065    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5066    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
5067  }
5068
5069  // __va_list_tag:
5070  //   gp_offset         (0 - 6 * 8)
5071  //   fp_offset         (48 - 48 + 8 * 16)
5072  //   overflow_arg_area (point to parameters coming in memory).
5073  //   reg_save_area
5074  SmallVector<SDOperand, 8> MemOps;
5075  SDOperand FIN = Op.getOperand(1);
5076  // Store gp_offset
5077  SDOperand Store = DAG.getStore(Op.getOperand(0),
5078                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5079                                 FIN, SV, 0);
5080  MemOps.push_back(Store);
5081
5082  // Store fp_offset
5083  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5084  Store = DAG.getStore(Op.getOperand(0),
5085                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5086                       FIN, SV, 0);
5087  MemOps.push_back(Store);
5088
5089  // Store ptr to overflow_arg_area
5090  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5091  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5092  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
5093  MemOps.push_back(Store);
5094
5095  // Store ptr to reg_save_area.
5096  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
5097  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5098  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
5099  MemOps.push_back(Store);
5100  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
5101}
5102
5103SDOperand X86TargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG) {
5104  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5105  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
5106  SDOperand Chain = Op.getOperand(0);
5107  SDOperand SrcPtr = Op.getOperand(1);
5108  SDOperand SrcSV = Op.getOperand(2);
5109
5110  assert(0 && "VAArgInst is not yet implemented for x86-64!");
5111  abort();
5112  return SDOperand();
5113}
5114
5115SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
5116  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5117  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5118  SDOperand Chain = Op.getOperand(0);
5119  SDOperand DstPtr = Op.getOperand(1);
5120  SDOperand SrcPtr = Op.getOperand(2);
5121  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5122  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5123
5124  return DAG.getMemcpy(Chain, DstPtr, SrcPtr,
5125                       DAG.getIntPtrConstant(24), 8, false,
5126                       DstSV, 0, SrcSV, 0);
5127}
5128
5129SDOperand
5130X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
5131  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
5132  switch (IntNo) {
5133  default: return SDOperand();    // Don't custom lower most intrinsics.
5134  // Comparison intrinsics.
5135  case Intrinsic::x86_sse_comieq_ss:
5136  case Intrinsic::x86_sse_comilt_ss:
5137  case Intrinsic::x86_sse_comile_ss:
5138  case Intrinsic::x86_sse_comigt_ss:
5139  case Intrinsic::x86_sse_comige_ss:
5140  case Intrinsic::x86_sse_comineq_ss:
5141  case Intrinsic::x86_sse_ucomieq_ss:
5142  case Intrinsic::x86_sse_ucomilt_ss:
5143  case Intrinsic::x86_sse_ucomile_ss:
5144  case Intrinsic::x86_sse_ucomigt_ss:
5145  case Intrinsic::x86_sse_ucomige_ss:
5146  case Intrinsic::x86_sse_ucomineq_ss:
5147  case Intrinsic::x86_sse2_comieq_sd:
5148  case Intrinsic::x86_sse2_comilt_sd:
5149  case Intrinsic::x86_sse2_comile_sd:
5150  case Intrinsic::x86_sse2_comigt_sd:
5151  case Intrinsic::x86_sse2_comige_sd:
5152  case Intrinsic::x86_sse2_comineq_sd:
5153  case Intrinsic::x86_sse2_ucomieq_sd:
5154  case Intrinsic::x86_sse2_ucomilt_sd:
5155  case Intrinsic::x86_sse2_ucomile_sd:
5156  case Intrinsic::x86_sse2_ucomigt_sd:
5157  case Intrinsic::x86_sse2_ucomige_sd:
5158  case Intrinsic::x86_sse2_ucomineq_sd: {
5159    unsigned Opc = 0;
5160    ISD::CondCode CC = ISD::SETCC_INVALID;
5161    switch (IntNo) {
5162    default: break;
5163    case Intrinsic::x86_sse_comieq_ss:
5164    case Intrinsic::x86_sse2_comieq_sd:
5165      Opc = X86ISD::COMI;
5166      CC = ISD::SETEQ;
5167      break;
5168    case Intrinsic::x86_sse_comilt_ss:
5169    case Intrinsic::x86_sse2_comilt_sd:
5170      Opc = X86ISD::COMI;
5171      CC = ISD::SETLT;
5172      break;
5173    case Intrinsic::x86_sse_comile_ss:
5174    case Intrinsic::x86_sse2_comile_sd:
5175      Opc = X86ISD::COMI;
5176      CC = ISD::SETLE;
5177      break;
5178    case Intrinsic::x86_sse_comigt_ss:
5179    case Intrinsic::x86_sse2_comigt_sd:
5180      Opc = X86ISD::COMI;
5181      CC = ISD::SETGT;
5182      break;
5183    case Intrinsic::x86_sse_comige_ss:
5184    case Intrinsic::x86_sse2_comige_sd:
5185      Opc = X86ISD::COMI;
5186      CC = ISD::SETGE;
5187      break;
5188    case Intrinsic::x86_sse_comineq_ss:
5189    case Intrinsic::x86_sse2_comineq_sd:
5190      Opc = X86ISD::COMI;
5191      CC = ISD::SETNE;
5192      break;
5193    case Intrinsic::x86_sse_ucomieq_ss:
5194    case Intrinsic::x86_sse2_ucomieq_sd:
5195      Opc = X86ISD::UCOMI;
5196      CC = ISD::SETEQ;
5197      break;
5198    case Intrinsic::x86_sse_ucomilt_ss:
5199    case Intrinsic::x86_sse2_ucomilt_sd:
5200      Opc = X86ISD::UCOMI;
5201      CC = ISD::SETLT;
5202      break;
5203    case Intrinsic::x86_sse_ucomile_ss:
5204    case Intrinsic::x86_sse2_ucomile_sd:
5205      Opc = X86ISD::UCOMI;
5206      CC = ISD::SETLE;
5207      break;
5208    case Intrinsic::x86_sse_ucomigt_ss:
5209    case Intrinsic::x86_sse2_ucomigt_sd:
5210      Opc = X86ISD::UCOMI;
5211      CC = ISD::SETGT;
5212      break;
5213    case Intrinsic::x86_sse_ucomige_ss:
5214    case Intrinsic::x86_sse2_ucomige_sd:
5215      Opc = X86ISD::UCOMI;
5216      CC = ISD::SETGE;
5217      break;
5218    case Intrinsic::x86_sse_ucomineq_ss:
5219    case Intrinsic::x86_sse2_ucomineq_sd:
5220      Opc = X86ISD::UCOMI;
5221      CC = ISD::SETNE;
5222      break;
5223    }
5224
5225    unsigned X86CC;
5226    SDOperand LHS = Op.getOperand(1);
5227    SDOperand RHS = Op.getOperand(2);
5228    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
5229
5230    SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5231    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5232                                  DAG.getConstant(X86CC, MVT::i8), Cond);
5233    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
5234  }
5235
5236  // Fix vector shift instructions where the last operand is a non-immediate
5237  // i32 value.
5238  case Intrinsic::x86_sse2_pslli_w:
5239  case Intrinsic::x86_sse2_pslli_d:
5240  case Intrinsic::x86_sse2_pslli_q:
5241  case Intrinsic::x86_sse2_psrli_w:
5242  case Intrinsic::x86_sse2_psrli_d:
5243  case Intrinsic::x86_sse2_psrli_q:
5244  case Intrinsic::x86_sse2_psrai_w:
5245  case Intrinsic::x86_sse2_psrai_d:
5246  case Intrinsic::x86_mmx_pslli_w:
5247  case Intrinsic::x86_mmx_pslli_d:
5248  case Intrinsic::x86_mmx_pslli_q:
5249  case Intrinsic::x86_mmx_psrli_w:
5250  case Intrinsic::x86_mmx_psrli_d:
5251  case Intrinsic::x86_mmx_psrli_q:
5252  case Intrinsic::x86_mmx_psrai_w:
5253  case Intrinsic::x86_mmx_psrai_d: {
5254    SDOperand ShAmt = Op.getOperand(2);
5255    if (isa<ConstantSDNode>(ShAmt))
5256      return SDOperand();
5257
5258    unsigned NewIntNo = 0;
5259    MVT ShAmtVT = MVT::v4i32;
5260    switch (IntNo) {
5261    case Intrinsic::x86_sse2_pslli_w:
5262      NewIntNo = Intrinsic::x86_sse2_psll_w;
5263      break;
5264    case Intrinsic::x86_sse2_pslli_d:
5265      NewIntNo = Intrinsic::x86_sse2_psll_d;
5266      break;
5267    case Intrinsic::x86_sse2_pslli_q:
5268      NewIntNo = Intrinsic::x86_sse2_psll_q;
5269      break;
5270    case Intrinsic::x86_sse2_psrli_w:
5271      NewIntNo = Intrinsic::x86_sse2_psrl_w;
5272      break;
5273    case Intrinsic::x86_sse2_psrli_d:
5274      NewIntNo = Intrinsic::x86_sse2_psrl_d;
5275      break;
5276    case Intrinsic::x86_sse2_psrli_q:
5277      NewIntNo = Intrinsic::x86_sse2_psrl_q;
5278      break;
5279    case Intrinsic::x86_sse2_psrai_w:
5280      NewIntNo = Intrinsic::x86_sse2_psra_w;
5281      break;
5282    case Intrinsic::x86_sse2_psrai_d:
5283      NewIntNo = Intrinsic::x86_sse2_psra_d;
5284      break;
5285    default: {
5286      ShAmtVT = MVT::v2i32;
5287      switch (IntNo) {
5288      case Intrinsic::x86_mmx_pslli_w:
5289        NewIntNo = Intrinsic::x86_mmx_psll_w;
5290        break;
5291      case Intrinsic::x86_mmx_pslli_d:
5292        NewIntNo = Intrinsic::x86_mmx_psll_d;
5293        break;
5294      case Intrinsic::x86_mmx_pslli_q:
5295        NewIntNo = Intrinsic::x86_mmx_psll_q;
5296        break;
5297      case Intrinsic::x86_mmx_psrli_w:
5298        NewIntNo = Intrinsic::x86_mmx_psrl_w;
5299        break;
5300      case Intrinsic::x86_mmx_psrli_d:
5301        NewIntNo = Intrinsic::x86_mmx_psrl_d;
5302        break;
5303      case Intrinsic::x86_mmx_psrli_q:
5304        NewIntNo = Intrinsic::x86_mmx_psrl_q;
5305        break;
5306      case Intrinsic::x86_mmx_psrai_w:
5307        NewIntNo = Intrinsic::x86_mmx_psra_w;
5308        break;
5309      case Intrinsic::x86_mmx_psrai_d:
5310        NewIntNo = Intrinsic::x86_mmx_psra_d;
5311        break;
5312      default: abort();  // Can't reach here.
5313      }
5314      break;
5315    }
5316    }
5317    MVT VT = Op.getValueType();
5318    ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT,
5319                        DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt));
5320    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
5321                       DAG.getConstant(NewIntNo, MVT::i32),
5322                       Op.getOperand(1), ShAmt);
5323  }
5324  }
5325}
5326
5327SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
5328  // Depths > 0 not supported yet!
5329  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5330    return SDOperand();
5331
5332  // Just load the return address
5333  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5334  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5335}
5336
5337SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
5338  // Depths > 0 not supported yet!
5339  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5340    return SDOperand();
5341
5342  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5343  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
5344                     DAG.getIntPtrConstant(!Subtarget->is64Bit() ? 4 : 8));
5345}
5346
5347SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
5348                                                       SelectionDAG &DAG) {
5349  // Is not yet supported on x86-64
5350  if (Subtarget->is64Bit())
5351    return SDOperand();
5352
5353  return DAG.getIntPtrConstant(8);
5354}
5355
5356SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
5357{
5358  assert(!Subtarget->is64Bit() &&
5359         "Lowering of eh_return builtin is not supported yet on x86-64");
5360
5361  MachineFunction &MF = DAG.getMachineFunction();
5362  SDOperand Chain     = Op.getOperand(0);
5363  SDOperand Offset    = Op.getOperand(1);
5364  SDOperand Handler   = Op.getOperand(2);
5365
5366  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
5367                                    getPointerTy());
5368
5369  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5370                                    DAG.getIntPtrConstant(-4UL));
5371  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5372  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5373  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
5374  MF.getRegInfo().addLiveOut(X86::ECX);
5375
5376  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
5377                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
5378}
5379
5380SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
5381                                             SelectionDAG &DAG) {
5382  SDOperand Root = Op.getOperand(0);
5383  SDOperand Trmp = Op.getOperand(1); // trampoline
5384  SDOperand FPtr = Op.getOperand(2); // nested function
5385  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
5386
5387  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5388
5389  const X86InstrInfo *TII =
5390    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5391
5392  if (Subtarget->is64Bit()) {
5393    SDOperand OutChains[6];
5394
5395    // Large code-model.
5396
5397    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
5398    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
5399
5400    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
5401    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
5402
5403    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
5404
5405    // Load the pointer to the nested function into R11.
5406    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
5407    SDOperand Addr = Trmp;
5408    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5409                                TrmpAddr, 0);
5410
5411    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
5412    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
5413
5414    // Load the 'nest' parameter value into R10.
5415    // R10 is specified in X86CallingConv.td
5416    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
5417    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
5418    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5419                                TrmpAddr, 10);
5420
5421    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
5422    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
5423
5424    // Jump to the nested function.
5425    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
5426    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
5427    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5428                                TrmpAddr, 20);
5429
5430    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
5431    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
5432    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
5433                                TrmpAddr, 22);
5434
5435    SDOperand Ops[] =
5436      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
5437    return DAG.getMergeValues(Ops, 2);
5438  } else {
5439    const Function *Func =
5440      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5441    unsigned CC = Func->getCallingConv();
5442    unsigned NestReg;
5443
5444    switch (CC) {
5445    default:
5446      assert(0 && "Unsupported calling convention");
5447    case CallingConv::C:
5448    case CallingConv::X86_StdCall: {
5449      // Pass 'nest' parameter in ECX.
5450      // Must be kept in sync with X86CallingConv.td
5451      NestReg = X86::ECX;
5452
5453      // Check that ECX wasn't needed by an 'inreg' parameter.
5454      const FunctionType *FTy = Func->getFunctionType();
5455      const PAListPtr &Attrs = Func->getParamAttrs();
5456
5457      if (!Attrs.isEmpty() && !Func->isVarArg()) {
5458        unsigned InRegCount = 0;
5459        unsigned Idx = 1;
5460
5461        for (FunctionType::param_iterator I = FTy->param_begin(),
5462             E = FTy->param_end(); I != E; ++I, ++Idx)
5463          if (Attrs.paramHasAttr(Idx, ParamAttr::InReg))
5464            // FIXME: should only count parameters that are lowered to integers.
5465            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
5466
5467        if (InRegCount > 2) {
5468          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5469          abort();
5470        }
5471      }
5472      break;
5473    }
5474    case CallingConv::X86_FastCall:
5475      // Pass 'nest' parameter in EAX.
5476      // Must be kept in sync with X86CallingConv.td
5477      NestReg = X86::EAX;
5478      break;
5479    }
5480
5481    SDOperand OutChains[4];
5482    SDOperand Addr, Disp;
5483
5484    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5485    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5486
5487    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5488    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
5489    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
5490                                Trmp, TrmpAddr, 0);
5491
5492    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
5493    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
5494
5495    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
5496    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
5497    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
5498                                TrmpAddr, 5, false, 1);
5499
5500    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
5501    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
5502
5503    SDOperand Ops[] =
5504      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
5505    return DAG.getMergeValues(Ops, 2);
5506  }
5507}
5508
5509SDOperand X86TargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
5510  /*
5511   The rounding mode is in bits 11:10 of FPSR, and has the following
5512   settings:
5513     00 Round to nearest
5514     01 Round to -inf
5515     10 Round to +inf
5516     11 Round to 0
5517
5518  FLT_ROUNDS, on the other hand, expects the following:
5519    -1 Undefined
5520     0 Round to 0
5521     1 Round to nearest
5522     2 Round to +inf
5523     3 Round to -inf
5524
5525  To perform the conversion, we do:
5526    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
5527  */
5528
5529  MachineFunction &MF = DAG.getMachineFunction();
5530  const TargetMachine &TM = MF.getTarget();
5531  const TargetFrameInfo &TFI = *TM.getFrameInfo();
5532  unsigned StackAlignment = TFI.getStackAlignment();
5533  MVT VT = Op.getValueType();
5534
5535  // Save FP Control Word to stack slot
5536  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
5537  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5538
5539  SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
5540                                DAG.getEntryNode(), StackSlot);
5541
5542  // Load FP Control Word from stack slot
5543  SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
5544
5545  // Transform as necessary
5546  SDOperand CWD1 =
5547    DAG.getNode(ISD::SRL, MVT::i16,
5548                DAG.getNode(ISD::AND, MVT::i16,
5549                            CWD, DAG.getConstant(0x800, MVT::i16)),
5550                DAG.getConstant(11, MVT::i8));
5551  SDOperand CWD2 =
5552    DAG.getNode(ISD::SRL, MVT::i16,
5553                DAG.getNode(ISD::AND, MVT::i16,
5554                            CWD, DAG.getConstant(0x400, MVT::i16)),
5555                DAG.getConstant(9, MVT::i8));
5556
5557  SDOperand RetVal =
5558    DAG.getNode(ISD::AND, MVT::i16,
5559                DAG.getNode(ISD::ADD, MVT::i16,
5560                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5561                            DAG.getConstant(1, MVT::i16)),
5562                DAG.getConstant(3, MVT::i16));
5563
5564
5565  return DAG.getNode((VT.getSizeInBits() < 16 ?
5566                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5567}
5568
5569SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) {
5570  MVT VT = Op.getValueType();
5571  MVT OpVT = VT;
5572  unsigned NumBits = VT.getSizeInBits();
5573
5574  Op = Op.getOperand(0);
5575  if (VT == MVT::i8) {
5576    // Zero extend to i32 since there is not an i8 bsr.
5577    OpVT = MVT::i32;
5578    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5579  }
5580
5581  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
5582  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5583  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
5584
5585  // If src is zero (i.e. bsr sets ZF), returns NumBits.
5586  SmallVector<SDOperand, 4> Ops;
5587  Ops.push_back(Op);
5588  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
5589  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5590  Ops.push_back(Op.getValue(1));
5591  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5592
5593  // Finally xor with NumBits-1.
5594  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
5595
5596  if (VT == MVT::i8)
5597    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5598  return Op;
5599}
5600
5601SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) {
5602  MVT VT = Op.getValueType();
5603  MVT OpVT = VT;
5604  unsigned NumBits = VT.getSizeInBits();
5605
5606  Op = Op.getOperand(0);
5607  if (VT == MVT::i8) {
5608    OpVT = MVT::i32;
5609    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5610  }
5611
5612  // Issue a bsf (scan bits forward) which also sets EFLAGS.
5613  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5614  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
5615
5616  // If src is zero (i.e. bsf sets ZF), returns NumBits.
5617  SmallVector<SDOperand, 4> Ops;
5618  Ops.push_back(Op);
5619  Ops.push_back(DAG.getConstant(NumBits, OpVT));
5620  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5621  Ops.push_back(Op.getValue(1));
5622  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5623
5624  if (VT == MVT::i8)
5625    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5626  return Op;
5627}
5628
5629SDOperand X86TargetLowering::LowerCMP_SWAP(SDOperand Op, SelectionDAG &DAG) {
5630  MVT T = Op.getValueType();
5631  unsigned Reg = 0;
5632  unsigned size = 0;
5633  switch(T.getSimpleVT()) {
5634  default:
5635    assert(false && "Invalid value type!");
5636  case MVT::i8:  Reg = X86::AL;  size = 1; break;
5637  case MVT::i16: Reg = X86::AX;  size = 2; break;
5638  case MVT::i32: Reg = X86::EAX; size = 4; break;
5639  case MVT::i64:
5640    if (Subtarget->is64Bit()) {
5641      Reg = X86::RAX; size = 8;
5642    } else //Should go away when LowerType stuff lands
5643      return SDOperand(ExpandATOMIC_CMP_SWAP(Op.Val, DAG), 0);
5644    break;
5645  };
5646  SDOperand cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
5647                                    Op.getOperand(3), SDOperand());
5648  SDOperand Ops[] = { cpIn.getValue(0),
5649                      Op.getOperand(1),
5650                      Op.getOperand(2),
5651                      DAG.getTargetConstant(size, MVT::i8),
5652                      cpIn.getValue(1) };
5653  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5654  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
5655  SDOperand cpOut =
5656    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
5657  return cpOut;
5658}
5659
5660SDNode* X86TargetLowering::ExpandATOMIC_CMP_SWAP(SDNode* Op, SelectionDAG &DAG) {
5661  MVT T = Op->getValueType(0);
5662  assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
5663  SDOperand cpInL, cpInH;
5664  cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5665                      DAG.getConstant(0, MVT::i32));
5666  cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5667                      DAG.getConstant(1, MVT::i32));
5668  cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX,
5669                           cpInL, SDOperand());
5670  cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX,
5671                           cpInH, cpInL.getValue(1));
5672  SDOperand swapInL, swapInH;
5673  swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5674                        DAG.getConstant(0, MVT::i32));
5675  swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5676                        DAG.getConstant(1, MVT::i32));
5677  swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX,
5678                             swapInL, cpInH.getValue(1));
5679  swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX,
5680                             swapInH, swapInL.getValue(1));
5681  SDOperand Ops[] = { swapInH.getValue(0),
5682                      Op->getOperand(1),
5683                      swapInH.getValue(1)};
5684  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5685  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
5686  SDOperand cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
5687                                        Result.getValue(1));
5688  SDOperand cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
5689                                        cpOutL.getValue(2));
5690  SDOperand OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
5691  SDOperand ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
5692  SDOperand Vals[2] = { ResultVal, cpOutH.getValue(1) };
5693  return DAG.getMergeValues(Vals, 2).Val;
5694}
5695
5696SDNode* X86TargetLowering::ExpandATOMIC_LOAD_SUB(SDNode* Op, SelectionDAG &DAG) {
5697  MVT T = Op->getValueType(0);
5698  assert (T == MVT::i32 && "Only know how to expand i32 Atomic Load Sub");
5699  SDOperand negOp = DAG.getNode(ISD::SUB, T,
5700                                DAG.getConstant(0, T), Op->getOperand(2));
5701  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, Op->getOperand(0),
5702                       Op->getOperand(1), negOp,
5703                       cast<AtomicSDNode>(Op)->getSrcValue(),
5704                       cast<AtomicSDNode>(Op)->getAlignment()).Val;
5705}
5706
5707/// LowerOperation - Provide custom lowering hooks for some operations.
5708///
5709SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
5710  switch (Op.getOpcode()) {
5711  default: assert(0 && "Should not custom lower this!");
5712  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
5713  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5714  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5715  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5716  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
5717  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5718  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5719  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5720  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5721  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
5722  case ISD::SHL_PARTS:
5723  case ISD::SRA_PARTS:
5724  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
5725  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5726  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
5727  case ISD::FABS:               return LowerFABS(Op, DAG);
5728  case ISD::FNEG:               return LowerFNEG(Op, DAG);
5729  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
5730  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5731  case ISD::SELECT:             return LowerSELECT(Op, DAG);
5732  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
5733  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5734  case ISD::CALL:               return LowerCALL(Op, DAG);
5735  case ISD::RET:                return LowerRET(Op, DAG);
5736  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
5737  case ISD::VASTART:            return LowerVASTART(Op, DAG);
5738  case ISD::VAARG:              return LowerVAARG(Op, DAG);
5739  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
5740  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5741  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5742  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5743  case ISD::FRAME_TO_ARGS_OFFSET:
5744                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5745  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5746  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
5747  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
5748  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5749  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
5750  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
5751
5752  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5753  case ISD::READCYCLECOUNTER:
5754    return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
5755  }
5756}
5757
5758/// ReplaceNodeResults - Replace a node with an illegal result type
5759/// with a new node built out of custom code.
5760SDNode *X86TargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
5761  switch (N->getOpcode()) {
5762  default: assert(0 && "Should not custom lower this!");
5763  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
5764  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
5765  case ISD::ATOMIC_CMP_SWAP:    return ExpandATOMIC_CMP_SWAP(N, DAG);
5766  case ISD::ATOMIC_LOAD_SUB:    return ExpandATOMIC_LOAD_SUB(N,DAG);
5767  }
5768}
5769
5770const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5771  switch (Opcode) {
5772  default: return NULL;
5773  case X86ISD::BSF:                return "X86ISD::BSF";
5774  case X86ISD::BSR:                return "X86ISD::BSR";
5775  case X86ISD::SHLD:               return "X86ISD::SHLD";
5776  case X86ISD::SHRD:               return "X86ISD::SHRD";
5777  case X86ISD::FAND:               return "X86ISD::FAND";
5778  case X86ISD::FOR:                return "X86ISD::FOR";
5779  case X86ISD::FXOR:               return "X86ISD::FXOR";
5780  case X86ISD::FSRL:               return "X86ISD::FSRL";
5781  case X86ISD::FILD:               return "X86ISD::FILD";
5782  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
5783  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5784  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5785  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5786  case X86ISD::FLD:                return "X86ISD::FLD";
5787  case X86ISD::FST:                return "X86ISD::FST";
5788  case X86ISD::CALL:               return "X86ISD::CALL";
5789  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
5790  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
5791  case X86ISD::CMP:                return "X86ISD::CMP";
5792  case X86ISD::COMI:               return "X86ISD::COMI";
5793  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
5794  case X86ISD::SETCC:              return "X86ISD::SETCC";
5795  case X86ISD::CMOV:               return "X86ISD::CMOV";
5796  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
5797  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
5798  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5799  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5800  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5801  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
5802  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
5803  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
5804  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
5805  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
5806  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5807  case X86ISD::FMAX:               return "X86ISD::FMAX";
5808  case X86ISD::FMIN:               return "X86ISD::FMIN";
5809  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
5810  case X86ISD::FRCP:               return "X86ISD::FRCP";
5811  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
5812  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
5813  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
5814  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
5815  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
5816  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
5817  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
5818  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
5819  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
5820  case X86ISD::VSHL:               return "X86ISD::VSHL";
5821  case X86ISD::VSRL:               return "X86ISD::VSRL";
5822  }
5823}
5824
5825// isLegalAddressingMode - Return true if the addressing mode represented
5826// by AM is legal for this target, for a load/store of the specified type.
5827bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5828                                              const Type *Ty) const {
5829  // X86 supports extremely general addressing modes.
5830
5831  // X86 allows a sign-extended 32-bit immediate field as a displacement.
5832  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5833    return false;
5834
5835  if (AM.BaseGV) {
5836    // We can only fold this if we don't need an extra load.
5837    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5838      return false;
5839
5840    // X86-64 only supports addr of globals in small code model.
5841    if (Subtarget->is64Bit()) {
5842      if (getTargetMachine().getCodeModel() != CodeModel::Small)
5843        return false;
5844      // If lower 4G is not available, then we must use rip-relative addressing.
5845      if (AM.BaseOffs || AM.Scale > 1)
5846        return false;
5847    }
5848  }
5849
5850  switch (AM.Scale) {
5851  case 0:
5852  case 1:
5853  case 2:
5854  case 4:
5855  case 8:
5856    // These scales always work.
5857    break;
5858  case 3:
5859  case 5:
5860  case 9:
5861    // These scales are formed with basereg+scalereg.  Only accept if there is
5862    // no basereg yet.
5863    if (AM.HasBaseReg)
5864      return false;
5865    break;
5866  default:  // Other stuff never works.
5867    return false;
5868  }
5869
5870  return true;
5871}
5872
5873
5874bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5875  if (!Ty1->isInteger() || !Ty2->isInteger())
5876    return false;
5877  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5878  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5879  if (NumBits1 <= NumBits2)
5880    return false;
5881  return Subtarget->is64Bit() || NumBits1 < 64;
5882}
5883
5884bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
5885  if (!VT1.isInteger() || !VT2.isInteger())
5886    return false;
5887  unsigned NumBits1 = VT1.getSizeInBits();
5888  unsigned NumBits2 = VT2.getSizeInBits();
5889  if (NumBits1 <= NumBits2)
5890    return false;
5891  return Subtarget->is64Bit() || NumBits1 < 64;
5892}
5893
5894/// isShuffleMaskLegal - Targets can use this to indicate that they only
5895/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5896/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5897/// are assumed to be legal.
5898bool
5899X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT VT) const {
5900  // Only do shuffles on 128-bit vector types for now.
5901  if (VT.getSizeInBits() == 64) return false;
5902  return (Mask.Val->getNumOperands() <= 4 ||
5903          isIdentityMask(Mask.Val) ||
5904          isIdentityMask(Mask.Val, true) ||
5905          isSplatMask(Mask.Val)  ||
5906          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5907          X86::isUNPCKLMask(Mask.Val) ||
5908          X86::isUNPCKHMask(Mask.Val) ||
5909          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5910          X86::isUNPCKH_v_undef_Mask(Mask.Val));
5911}
5912
5913bool
5914X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDOperand> &BVOps,
5915                                          MVT EVT, SelectionDAG &DAG) const {
5916  unsigned NumElts = BVOps.size();
5917  // Only do shuffles on 128-bit vector types for now.
5918  if (EVT.getSizeInBits() * NumElts == 64) return false;
5919  if (NumElts == 2) return true;
5920  if (NumElts == 4) {
5921    return (isMOVLMask(&BVOps[0], 4)  ||
5922            isCommutedMOVL(&BVOps[0], 4, true) ||
5923            isSHUFPMask(&BVOps[0], 4) ||
5924            isCommutedSHUFP(&BVOps[0], 4));
5925  }
5926  return false;
5927}
5928
5929//===----------------------------------------------------------------------===//
5930//                           X86 Scheduler Hooks
5931//===----------------------------------------------------------------------===//
5932
5933// private utility function
5934MachineBasicBlock *
5935X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
5936                                                       MachineBasicBlock *MBB,
5937                                                       unsigned regOpc,
5938                                                       unsigned immOpc,
5939                                                       bool invSrc) {
5940  // For the atomic bitwise operator, we generate
5941  //   thisMBB:
5942  //   newMBB:
5943  //     ld  t1 = [bitinstr.addr]
5944  //     op  t2 = t1, [bitinstr.val]
5945  //     mov EAX = t1
5946  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
5947  //     bz  newMBB
5948  //     fallthrough -->nextMBB
5949  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5950  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
5951  MachineFunction::iterator MBBIter = MBB;
5952  ++MBBIter;
5953
5954  /// First build the CFG
5955  MachineFunction *F = MBB->getParent();
5956  MachineBasicBlock *thisMBB = MBB;
5957  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
5958  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
5959  F->insert(MBBIter, newMBB);
5960  F->insert(MBBIter, nextMBB);
5961
5962  // Move all successors to thisMBB to nextMBB
5963  nextMBB->transferSuccessors(thisMBB);
5964
5965  // Update thisMBB to fall through to newMBB
5966  thisMBB->addSuccessor(newMBB);
5967
5968  // newMBB jumps to itself and fall through to nextMBB
5969  newMBB->addSuccessor(nextMBB);
5970  newMBB->addSuccessor(newMBB);
5971
5972  // Insert instructions into newMBB based on incoming instruction
5973  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
5974  MachineOperand& destOper = bInstr->getOperand(0);
5975  MachineOperand* argOpers[6];
5976  int numArgs = bInstr->getNumOperands() - 1;
5977  for (int i=0; i < numArgs; ++i)
5978    argOpers[i] = &bInstr->getOperand(i+1);
5979
5980  // x86 address has 4 operands: base, index, scale, and displacement
5981  int lastAddrIndx = 3; // [0,3]
5982  int valArgIndx = 4;
5983
5984  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
5985  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
5986  for (int i=0; i <= lastAddrIndx; ++i)
5987    (*MIB).addOperand(*argOpers[i]);
5988
5989  unsigned tt = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
5990  if (invSrc) {
5991    MIB = BuildMI(newMBB, TII->get(X86::NOT32r), tt).addReg(t1);
5992  }
5993  else
5994    tt = t1;
5995
5996  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
5997  assert(   (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm())
5998         && "invalid operand");
5999  if (argOpers[valArgIndx]->isReg())
6000    MIB = BuildMI(newMBB, TII->get(regOpc), t2);
6001  else
6002    MIB = BuildMI(newMBB, TII->get(immOpc), t2);
6003  MIB.addReg(tt);
6004  (*MIB).addOperand(*argOpers[valArgIndx]);
6005
6006  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
6007  MIB.addReg(t1);
6008
6009  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
6010  for (int i=0; i <= lastAddrIndx; ++i)
6011    (*MIB).addOperand(*argOpers[i]);
6012  MIB.addReg(t2);
6013  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6014  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
6015
6016  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
6017  MIB.addReg(X86::EAX);
6018
6019  // insert branch
6020  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6021
6022  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
6023  return nextMBB;
6024}
6025
6026// private utility function
6027MachineBasicBlock *
6028X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
6029                                                      MachineBasicBlock *MBB,
6030                                                      unsigned cmovOpc) {
6031  // For the atomic min/max operator, we generate
6032  //   thisMBB:
6033  //   newMBB:
6034  //     ld t1 = [min/max.addr]
6035  //     mov t2 = [min/max.val]
6036  //     cmp  t1, t2
6037  //     cmov[cond] t2 = t1
6038  //     mov EAX = t1
6039  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6040  //     bz   newMBB
6041  //     fallthrough -->nextMBB
6042  //
6043  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6044  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6045  MachineFunction::iterator MBBIter = MBB;
6046  ++MBBIter;
6047
6048  /// First build the CFG
6049  MachineFunction *F = MBB->getParent();
6050  MachineBasicBlock *thisMBB = MBB;
6051  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6052  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6053  F->insert(MBBIter, newMBB);
6054  F->insert(MBBIter, nextMBB);
6055
6056  // Move all successors to thisMBB to nextMBB
6057  nextMBB->transferSuccessors(thisMBB);
6058
6059  // Update thisMBB to fall through to newMBB
6060  thisMBB->addSuccessor(newMBB);
6061
6062  // newMBB jumps to newMBB and fall through to nextMBB
6063  newMBB->addSuccessor(nextMBB);
6064  newMBB->addSuccessor(newMBB);
6065
6066  // Insert instructions into newMBB based on incoming instruction
6067  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
6068  MachineOperand& destOper = mInstr->getOperand(0);
6069  MachineOperand* argOpers[6];
6070  int numArgs = mInstr->getNumOperands() - 1;
6071  for (int i=0; i < numArgs; ++i)
6072    argOpers[i] = &mInstr->getOperand(i+1);
6073
6074  // x86 address has 4 operands: base, index, scale, and displacement
6075  int lastAddrIndx = 3; // [0,3]
6076  int valArgIndx = 4;
6077
6078  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6079  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
6080  for (int i=0; i <= lastAddrIndx; ++i)
6081    (*MIB).addOperand(*argOpers[i]);
6082
6083  // We only support register and immediate values
6084  assert(   (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm())
6085         && "invalid operand");
6086
6087  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6088  if (argOpers[valArgIndx]->isReg())
6089    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6090  else
6091    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6092  (*MIB).addOperand(*argOpers[valArgIndx]);
6093
6094  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
6095  MIB.addReg(t1);
6096
6097  MIB = BuildMI(newMBB, TII->get(X86::CMP32rr));
6098  MIB.addReg(t1);
6099  MIB.addReg(t2);
6100
6101  // Generate movc
6102  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6103  MIB = BuildMI(newMBB, TII->get(cmovOpc),t3);
6104  MIB.addReg(t2);
6105  MIB.addReg(t1);
6106
6107  // Cmp and exchange if none has modified the memory location
6108  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
6109  for (int i=0; i <= lastAddrIndx; ++i)
6110    (*MIB).addOperand(*argOpers[i]);
6111  MIB.addReg(t3);
6112  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6113  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
6114
6115  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
6116  MIB.addReg(X86::EAX);
6117
6118  // insert branch
6119  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6120
6121  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
6122  return nextMBB;
6123}
6124
6125
6126MachineBasicBlock *
6127X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6128                                               MachineBasicBlock *BB) {
6129  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6130  switch (MI->getOpcode()) {
6131  default: assert(false && "Unexpected instr type to insert");
6132  case X86::CMOV_FR32:
6133  case X86::CMOV_FR64:
6134  case X86::CMOV_V4F32:
6135  case X86::CMOV_V2F64:
6136  case X86::CMOV_V2I64: {
6137    // To "insert" a SELECT_CC instruction, we actually have to insert the
6138    // diamond control-flow pattern.  The incoming instruction knows the
6139    // destination vreg to set, the condition code register to branch on, the
6140    // true/false values to select between, and a branch opcode to use.
6141    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6142    MachineFunction::iterator It = BB;
6143    ++It;
6144
6145    //  thisMBB:
6146    //  ...
6147    //   TrueVal = ...
6148    //   cmpTY ccX, r1, r2
6149    //   bCC copy1MBB
6150    //   fallthrough --> copy0MBB
6151    MachineBasicBlock *thisMBB = BB;
6152    MachineFunction *F = BB->getParent();
6153    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6154    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6155    unsigned Opc =
6156      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
6157    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
6158    F->insert(It, copy0MBB);
6159    F->insert(It, sinkMBB);
6160    // Update machine-CFG edges by transferring all successors of the current
6161    // block to the new block which will contain the Phi node for the select.
6162    sinkMBB->transferSuccessors(BB);
6163
6164    // Add the true and fallthrough blocks as its successors.
6165    BB->addSuccessor(copy0MBB);
6166    BB->addSuccessor(sinkMBB);
6167
6168    //  copy0MBB:
6169    //   %FalseValue = ...
6170    //   # fallthrough to sinkMBB
6171    BB = copy0MBB;
6172
6173    // Update machine-CFG edges
6174    BB->addSuccessor(sinkMBB);
6175
6176    //  sinkMBB:
6177    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6178    //  ...
6179    BB = sinkMBB;
6180    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
6181      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6182      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6183
6184    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
6185    return BB;
6186  }
6187
6188  case X86::FP32_TO_INT16_IN_MEM:
6189  case X86::FP32_TO_INT32_IN_MEM:
6190  case X86::FP32_TO_INT64_IN_MEM:
6191  case X86::FP64_TO_INT16_IN_MEM:
6192  case X86::FP64_TO_INT32_IN_MEM:
6193  case X86::FP64_TO_INT64_IN_MEM:
6194  case X86::FP80_TO_INT16_IN_MEM:
6195  case X86::FP80_TO_INT32_IN_MEM:
6196  case X86::FP80_TO_INT64_IN_MEM: {
6197    // Change the floating point control register to use "round towards zero"
6198    // mode when truncating to an integer value.
6199    MachineFunction *F = BB->getParent();
6200    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
6201    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
6202
6203    // Load the old value of the high byte of the control word...
6204    unsigned OldCW =
6205      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
6206    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
6207
6208    // Set the high part to be round to zero...
6209    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
6210      .addImm(0xC7F);
6211
6212    // Reload the modified control word now...
6213    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6214
6215    // Restore the memory image of control word to original value
6216    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
6217      .addReg(OldCW);
6218
6219    // Get the X86 opcode to use.
6220    unsigned Opc;
6221    switch (MI->getOpcode()) {
6222    default: assert(0 && "illegal opcode!");
6223    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
6224    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
6225    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
6226    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
6227    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
6228    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
6229    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
6230    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
6231    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
6232    }
6233
6234    X86AddressMode AM;
6235    MachineOperand &Op = MI->getOperand(0);
6236    if (Op.isRegister()) {
6237      AM.BaseType = X86AddressMode::RegBase;
6238      AM.Base.Reg = Op.getReg();
6239    } else {
6240      AM.BaseType = X86AddressMode::FrameIndexBase;
6241      AM.Base.FrameIndex = Op.getIndex();
6242    }
6243    Op = MI->getOperand(1);
6244    if (Op.isImmediate())
6245      AM.Scale = Op.getImm();
6246    Op = MI->getOperand(2);
6247    if (Op.isImmediate())
6248      AM.IndexReg = Op.getImm();
6249    Op = MI->getOperand(3);
6250    if (Op.isGlobalAddress()) {
6251      AM.GV = Op.getGlobal();
6252    } else {
6253      AM.Disp = Op.getImm();
6254    }
6255    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
6256                      .addReg(MI->getOperand(4).getReg());
6257
6258    // Reload the original control word now.
6259    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6260
6261    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
6262    return BB;
6263  }
6264  case X86::ATOMAND32:
6265    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
6266                                                       X86::AND32ri);
6267  case X86::ATOMOR32:
6268    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
6269                                                       X86::OR32ri);
6270  case X86::ATOMXOR32:
6271    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
6272                                                       X86::XOR32ri);
6273  case X86::ATOMNAND32:
6274    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
6275                                               X86::AND32ri, true);
6276  case X86::ATOMMIN32:
6277    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
6278  case X86::ATOMMAX32:
6279    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
6280  case X86::ATOMUMIN32:
6281    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
6282  case X86::ATOMUMAX32:
6283    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
6284  }
6285}
6286
6287//===----------------------------------------------------------------------===//
6288//                           X86 Optimization Hooks
6289//===----------------------------------------------------------------------===//
6290
6291void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
6292                                                       const APInt &Mask,
6293                                                       APInt &KnownZero,
6294                                                       APInt &KnownOne,
6295                                                       const SelectionDAG &DAG,
6296                                                       unsigned Depth) const {
6297  unsigned Opc = Op.getOpcode();
6298  assert((Opc >= ISD::BUILTIN_OP_END ||
6299          Opc == ISD::INTRINSIC_WO_CHAIN ||
6300          Opc == ISD::INTRINSIC_W_CHAIN ||
6301          Opc == ISD::INTRINSIC_VOID) &&
6302         "Should use MaskedValueIsZero if you don't know whether Op"
6303         " is a target node!");
6304
6305  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
6306  switch (Opc) {
6307  default: break;
6308  case X86ISD::SETCC:
6309    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
6310                                       Mask.getBitWidth() - 1);
6311    break;
6312  }
6313}
6314
6315/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
6316/// node is a GlobalAddress + offset.
6317bool X86TargetLowering::isGAPlusOffset(SDNode *N,
6318                                       GlobalValue* &GA, int64_t &Offset) const{
6319  if (N->getOpcode() == X86ISD::Wrapper) {
6320    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
6321      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
6322      return true;
6323    }
6324  }
6325  return TargetLowering::isGAPlusOffset(N, GA, Offset);
6326}
6327
6328static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
6329                               const TargetLowering &TLI) {
6330  GlobalValue *GV;
6331  int64_t Offset = 0;
6332  if (TLI.isGAPlusOffset(Base, GV, Offset))
6333    return (GV->getAlignment() >= N && (Offset % N) == 0);
6334  // DAG combine handles the stack object case.
6335  return false;
6336}
6337
6338static bool EltsFromConsecutiveLoads(SDNode *N, SDOperand PermMask,
6339                                     unsigned NumElems, MVT EVT,
6340                                     SDNode *&Base,
6341                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
6342                                     const TargetLowering &TLI) {
6343  Base = NULL;
6344  for (unsigned i = 0; i < NumElems; ++i) {
6345    SDOperand Idx = PermMask.getOperand(i);
6346    if (Idx.getOpcode() == ISD::UNDEF) {
6347      if (!Base)
6348        return false;
6349      continue;
6350    }
6351
6352    SDOperand Elt = DAG.getShuffleScalarElt(N, i);
6353    if (!Elt.Val ||
6354        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.Val)))
6355      return false;
6356    if (!Base) {
6357      Base = Elt.Val;
6358      if (Base->getOpcode() == ISD::UNDEF)
6359        return false;
6360      continue;
6361    }
6362    if (Elt.getOpcode() == ISD::UNDEF)
6363      continue;
6364
6365    if (!TLI.isConsecutiveLoad(Elt.Val, Base,
6366                               EVT.getSizeInBits()/8, i, MFI))
6367      return false;
6368  }
6369  return true;
6370}
6371
6372/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
6373/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
6374/// if the load addresses are consecutive, non-overlapping, and in the right
6375/// order.
6376static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
6377                                       const TargetLowering &TLI) {
6378  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6379  MVT VT = N->getValueType(0);
6380  MVT EVT = VT.getVectorElementType();
6381  SDOperand PermMask = N->getOperand(2);
6382  unsigned NumElems = PermMask.getNumOperands();
6383  SDNode *Base = NULL;
6384  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
6385                                DAG, MFI, TLI))
6386    return SDOperand();
6387
6388  LoadSDNode *LD = cast<LoadSDNode>(Base);
6389  if (isBaseAlignmentOfN(16, Base->getOperand(1).Val, TLI))
6390    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6391                       LD->getSrcValueOffset(), LD->isVolatile());
6392  return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6393                     LD->getSrcValueOffset(), LD->isVolatile(),
6394                     LD->getAlignment());
6395}
6396
6397/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
6398static SDOperand PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
6399                                           const X86Subtarget *Subtarget,
6400                                           const TargetLowering &TLI) {
6401  unsigned NumOps = N->getNumOperands();
6402
6403  // Ignore single operand BUILD_VECTOR.
6404  if (NumOps == 1)
6405    return SDOperand();
6406
6407  MVT VT = N->getValueType(0);
6408  MVT EVT = VT.getVectorElementType();
6409  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
6410    // We are looking for load i64 and zero extend. We want to transform
6411    // it before legalizer has a chance to expand it. Also look for i64
6412    // BUILD_PAIR bit casted to f64.
6413    return SDOperand();
6414  // This must be an insertion into a zero vector.
6415  SDOperand HighElt = N->getOperand(1);
6416  if (!isZeroNode(HighElt))
6417    return SDOperand();
6418
6419  // Value must be a load.
6420  SDNode *Base = N->getOperand(0).Val;
6421  if (!isa<LoadSDNode>(Base)) {
6422    if (Base->getOpcode() != ISD::BIT_CONVERT)
6423      return SDOperand();
6424    Base = Base->getOperand(0).Val;
6425    if (!isa<LoadSDNode>(Base))
6426      return SDOperand();
6427  }
6428
6429  // Transform it into VZEXT_LOAD addr.
6430  LoadSDNode *LD = cast<LoadSDNode>(Base);
6431
6432  // Load must not be an extload.
6433  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
6434    return SDOperand();
6435
6436  return DAG.getNode(X86ISD::VZEXT_LOAD, VT, LD->getChain(), LD->getBasePtr());
6437}
6438
6439/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
6440static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
6441                                      const X86Subtarget *Subtarget) {
6442  SDOperand Cond = N->getOperand(0);
6443
6444  // If we have SSE[12] support, try to form min/max nodes.
6445  if (Subtarget->hasSSE2() &&
6446      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
6447    if (Cond.getOpcode() == ISD::SETCC) {
6448      // Get the LHS/RHS of the select.
6449      SDOperand LHS = N->getOperand(1);
6450      SDOperand RHS = N->getOperand(2);
6451      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
6452
6453      unsigned Opcode = 0;
6454      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
6455        switch (CC) {
6456        default: break;
6457        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
6458        case ISD::SETULE:
6459        case ISD::SETLE:
6460          if (!UnsafeFPMath) break;
6461          // FALL THROUGH.
6462        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
6463        case ISD::SETLT:
6464          Opcode = X86ISD::FMIN;
6465          break;
6466
6467        case ISD::SETOGT: // (X > Y) ? X : Y -> max
6468        case ISD::SETUGT:
6469        case ISD::SETGT:
6470          if (!UnsafeFPMath) break;
6471          // FALL THROUGH.
6472        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
6473        case ISD::SETGE:
6474          Opcode = X86ISD::FMAX;
6475          break;
6476        }
6477      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
6478        switch (CC) {
6479        default: break;
6480        case ISD::SETOGT: // (X > Y) ? Y : X -> min
6481        case ISD::SETUGT:
6482        case ISD::SETGT:
6483          if (!UnsafeFPMath) break;
6484          // FALL THROUGH.
6485        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
6486        case ISD::SETGE:
6487          Opcode = X86ISD::FMIN;
6488          break;
6489
6490        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
6491        case ISD::SETULE:
6492        case ISD::SETLE:
6493          if (!UnsafeFPMath) break;
6494          // FALL THROUGH.
6495        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
6496        case ISD::SETLT:
6497          Opcode = X86ISD::FMAX;
6498          break;
6499        }
6500      }
6501
6502      if (Opcode)
6503        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
6504    }
6505
6506  }
6507
6508  return SDOperand();
6509}
6510
6511/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
6512static SDOperand PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
6513                                     const X86Subtarget *Subtarget) {
6514  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
6515  // the FP state in cases where an emms may be missing.
6516  // A preferable solution to the general problem is to figure out the right
6517  // places to insert EMMS.  This qualifies as a quick hack.
6518  StoreSDNode *St = cast<StoreSDNode>(N);
6519  if (St->getValue().getValueType().isVector() &&
6520      St->getValue().getValueType().getSizeInBits() == 64 &&
6521      isa<LoadSDNode>(St->getValue()) &&
6522      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
6523      St->getChain().hasOneUse() && !St->isVolatile()) {
6524    SDNode* LdVal = St->getValue().Val;
6525    LoadSDNode *Ld = 0;
6526    int TokenFactorIndex = -1;
6527    SmallVector<SDOperand, 8> Ops;
6528    SDNode* ChainVal = St->getChain().Val;
6529    // Must be a store of a load.  We currently handle two cases:  the load
6530    // is a direct child, and it's under an intervening TokenFactor.  It is
6531    // possible to dig deeper under nested TokenFactors.
6532    if (ChainVal == LdVal)
6533      Ld = cast<LoadSDNode>(St->getChain());
6534    else if (St->getValue().hasOneUse() &&
6535             ChainVal->getOpcode() == ISD::TokenFactor) {
6536      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
6537        if (ChainVal->getOperand(i).Val == LdVal) {
6538          TokenFactorIndex = i;
6539          Ld = cast<LoadSDNode>(St->getValue());
6540        } else
6541          Ops.push_back(ChainVal->getOperand(i));
6542      }
6543    }
6544    if (Ld) {
6545      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
6546      if (Subtarget->is64Bit()) {
6547        SDOperand NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
6548                                      Ld->getBasePtr(), Ld->getSrcValue(),
6549                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
6550                                      Ld->getAlignment());
6551        SDOperand NewChain = NewLd.getValue(1);
6552        if (TokenFactorIndex != -1) {
6553          Ops.push_back(NewChain);
6554          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6555                                 Ops.size());
6556        }
6557        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
6558                            St->getSrcValue(), St->getSrcValueOffset(),
6559                            St->isVolatile(), St->getAlignment());
6560      }
6561
6562      // Otherwise, lower to two 32-bit copies.
6563      SDOperand LoAddr = Ld->getBasePtr();
6564      SDOperand HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6565                                     DAG.getConstant(4, MVT::i32));
6566
6567      SDOperand LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
6568                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
6569                                   Ld->isVolatile(), Ld->getAlignment());
6570      SDOperand HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
6571                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
6572                                   Ld->isVolatile(),
6573                                   MinAlign(Ld->getAlignment(), 4));
6574
6575      SDOperand NewChain = LoLd.getValue(1);
6576      if (TokenFactorIndex != -1) {
6577        Ops.push_back(LoLd);
6578        Ops.push_back(HiLd);
6579        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6580                               Ops.size());
6581      }
6582
6583      LoAddr = St->getBasePtr();
6584      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6585                           DAG.getConstant(4, MVT::i32));
6586
6587      SDOperand LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
6588                          St->getSrcValue(), St->getSrcValueOffset(),
6589                          St->isVolatile(), St->getAlignment());
6590      SDOperand HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
6591                                    St->getSrcValue(), St->getSrcValueOffset()+4,
6592                                    St->isVolatile(),
6593                                    MinAlign(St->getAlignment(), 4));
6594      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
6595    }
6596  }
6597  return SDOperand();
6598}
6599
6600/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
6601/// X86ISD::FXOR nodes.
6602static SDOperand PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
6603  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
6604  // F[X]OR(0.0, x) -> x
6605  // F[X]OR(x, 0.0) -> x
6606  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6607    if (C->getValueAPF().isPosZero())
6608      return N->getOperand(1);
6609  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6610    if (C->getValueAPF().isPosZero())
6611      return N->getOperand(0);
6612  return SDOperand();
6613}
6614
6615/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
6616static SDOperand PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
6617  // FAND(0.0, x) -> 0.0
6618  // FAND(x, 0.0) -> 0.0
6619  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6620    if (C->getValueAPF().isPosZero())
6621      return N->getOperand(0);
6622  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6623    if (C->getValueAPF().isPosZero())
6624      return N->getOperand(1);
6625  return SDOperand();
6626}
6627
6628
6629SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
6630                                               DAGCombinerInfo &DCI) const {
6631  SelectionDAG &DAG = DCI.DAG;
6632  switch (N->getOpcode()) {
6633  default: break;
6634  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
6635  case ISD::BUILD_VECTOR:
6636    return PerformBuildVectorCombine(N, DAG, Subtarget, *this);
6637  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
6638  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
6639  case X86ISD::FXOR:
6640  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
6641  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
6642  }
6643
6644  return SDOperand();
6645}
6646
6647//===----------------------------------------------------------------------===//
6648//                           X86 Inline Assembly Support
6649//===----------------------------------------------------------------------===//
6650
6651/// getConstraintType - Given a constraint letter, return the type of
6652/// constraint it is for this target.
6653X86TargetLowering::ConstraintType
6654X86TargetLowering::getConstraintType(const std::string &Constraint) const {
6655  if (Constraint.size() == 1) {
6656    switch (Constraint[0]) {
6657    case 'A':
6658    case 'f':
6659    case 'r':
6660    case 'R':
6661    case 'l':
6662    case 'q':
6663    case 'Q':
6664    case 'x':
6665    case 'y':
6666    case 'Y':
6667      return C_RegisterClass;
6668    default:
6669      break;
6670    }
6671  }
6672  return TargetLowering::getConstraintType(Constraint);
6673}
6674
6675/// LowerXConstraint - try to replace an X constraint, which matches anything,
6676/// with another that has more specific requirements based on the type of the
6677/// corresponding operand.
6678const char *X86TargetLowering::
6679LowerXConstraint(MVT ConstraintVT) const {
6680  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
6681  // 'f' like normal targets.
6682  if (ConstraintVT.isFloatingPoint()) {
6683    if (Subtarget->hasSSE2())
6684      return "Y";
6685    if (Subtarget->hasSSE1())
6686      return "x";
6687  }
6688
6689  return TargetLowering::LowerXConstraint(ConstraintVT);
6690}
6691
6692/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6693/// vector.  If it is invalid, don't add anything to Ops.
6694void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
6695                                                     char Constraint,
6696                                                     std::vector<SDOperand>&Ops,
6697                                                     SelectionDAG &DAG) const {
6698  SDOperand Result(0, 0);
6699
6700  switch (Constraint) {
6701  default: break;
6702  case 'I':
6703    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6704      if (C->getValue() <= 31) {
6705        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6706        break;
6707      }
6708    }
6709    return;
6710  case 'N':
6711    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6712      if (C->getValue() <= 255) {
6713        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6714        break;
6715      }
6716    }
6717    return;
6718  case 'i': {
6719    // Literal immediates are always ok.
6720    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
6721      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
6722      break;
6723    }
6724
6725    // If we are in non-pic codegen mode, we allow the address of a global (with
6726    // an optional displacement) to be used with 'i'.
6727    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
6728    int64_t Offset = 0;
6729
6730    // Match either (GA) or (GA+C)
6731    if (GA) {
6732      Offset = GA->getOffset();
6733    } else if (Op.getOpcode() == ISD::ADD) {
6734      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6735      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6736      if (C && GA) {
6737        Offset = GA->getOffset()+C->getValue();
6738      } else {
6739        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6740        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6741        if (C && GA)
6742          Offset = GA->getOffset()+C->getValue();
6743        else
6744          C = 0, GA = 0;
6745      }
6746    }
6747
6748    if (GA) {
6749      // If addressing this global requires a load (e.g. in PIC mode), we can't
6750      // match.
6751      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
6752                                         false))
6753        return;
6754
6755      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
6756                                      Offset);
6757      Result = Op;
6758      break;
6759    }
6760
6761    // Otherwise, not valid for this mode.
6762    return;
6763  }
6764  }
6765
6766  if (Result.Val) {
6767    Ops.push_back(Result);
6768    return;
6769  }
6770  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6771}
6772
6773std::vector<unsigned> X86TargetLowering::
6774getRegClassForInlineAsmConstraint(const std::string &Constraint,
6775                                  MVT VT) const {
6776  if (Constraint.size() == 1) {
6777    // FIXME: not handling fp-stack yet!
6778    switch (Constraint[0]) {      // GCC X86 Constraint Letters
6779    default: break;  // Unknown constraint letter
6780    case 'A':   // EAX/EDX
6781      if (VT == MVT::i32 || VT == MVT::i64)
6782        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
6783      break;
6784    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
6785    case 'Q':   // Q_REGS
6786      if (VT == MVT::i32)
6787        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
6788      else if (VT == MVT::i16)
6789        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
6790      else if (VT == MVT::i8)
6791        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
6792      else if (VT == MVT::i64)
6793        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
6794      break;
6795    }
6796  }
6797
6798  return std::vector<unsigned>();
6799}
6800
6801std::pair<unsigned, const TargetRegisterClass*>
6802X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6803                                                MVT VT) const {
6804  // First, see if this is a constraint that directly corresponds to an LLVM
6805  // register class.
6806  if (Constraint.size() == 1) {
6807    // GCC Constraint Letters
6808    switch (Constraint[0]) {
6809    default: break;
6810    case 'r':   // GENERAL_REGS
6811    case 'R':   // LEGACY_REGS
6812    case 'l':   // INDEX_REGS
6813      if (VT == MVT::i64 && Subtarget->is64Bit())
6814        return std::make_pair(0U, X86::GR64RegisterClass);
6815      if (VT == MVT::i32)
6816        return std::make_pair(0U, X86::GR32RegisterClass);
6817      else if (VT == MVT::i16)
6818        return std::make_pair(0U, X86::GR16RegisterClass);
6819      else if (VT == MVT::i8)
6820        return std::make_pair(0U, X86::GR8RegisterClass);
6821      break;
6822    case 'f':  // FP Stack registers.
6823      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
6824      // value to the correct fpstack register class.
6825      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
6826        return std::make_pair(0U, X86::RFP32RegisterClass);
6827      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
6828        return std::make_pair(0U, X86::RFP64RegisterClass);
6829      return std::make_pair(0U, X86::RFP80RegisterClass);
6830    case 'y':   // MMX_REGS if MMX allowed.
6831      if (!Subtarget->hasMMX()) break;
6832      return std::make_pair(0U, X86::VR64RegisterClass);
6833      break;
6834    case 'Y':   // SSE_REGS if SSE2 allowed
6835      if (!Subtarget->hasSSE2()) break;
6836      // FALL THROUGH.
6837    case 'x':   // SSE_REGS if SSE1 allowed
6838      if (!Subtarget->hasSSE1()) break;
6839
6840      switch (VT.getSimpleVT()) {
6841      default: break;
6842      // Scalar SSE types.
6843      case MVT::f32:
6844      case MVT::i32:
6845        return std::make_pair(0U, X86::FR32RegisterClass);
6846      case MVT::f64:
6847      case MVT::i64:
6848        return std::make_pair(0U, X86::FR64RegisterClass);
6849      // Vector types.
6850      case MVT::v16i8:
6851      case MVT::v8i16:
6852      case MVT::v4i32:
6853      case MVT::v2i64:
6854      case MVT::v4f32:
6855      case MVT::v2f64:
6856        return std::make_pair(0U, X86::VR128RegisterClass);
6857      }
6858      break;
6859    }
6860  }
6861
6862  // Use the default implementation in TargetLowering to convert the register
6863  // constraint into a member of a register class.
6864  std::pair<unsigned, const TargetRegisterClass*> Res;
6865  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6866
6867  // Not found as a standard register?
6868  if (Res.second == 0) {
6869    // GCC calls "st(0)" just plain "st".
6870    if (StringsEqualNoCase("{st}", Constraint)) {
6871      Res.first = X86::ST0;
6872      Res.second = X86::RFP80RegisterClass;
6873    }
6874
6875    return Res;
6876  }
6877
6878  // Otherwise, check to see if this is a register class of the wrong value
6879  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
6880  // turn into {ax},{dx}.
6881  if (Res.second->hasType(VT))
6882    return Res;   // Correct type already, nothing to do.
6883
6884  // All of the single-register GCC register classes map their values onto
6885  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
6886  // really want an 8-bit or 32-bit register, map to the appropriate register
6887  // class and return the appropriate register.
6888  if (Res.second != X86::GR16RegisterClass)
6889    return Res;
6890
6891  if (VT == MVT::i8) {
6892    unsigned DestReg = 0;
6893    switch (Res.first) {
6894    default: break;
6895    case X86::AX: DestReg = X86::AL; break;
6896    case X86::DX: DestReg = X86::DL; break;
6897    case X86::CX: DestReg = X86::CL; break;
6898    case X86::BX: DestReg = X86::BL; break;
6899    }
6900    if (DestReg) {
6901      Res.first = DestReg;
6902      Res.second = Res.second = X86::GR8RegisterClass;
6903    }
6904  } else if (VT == MVT::i32) {
6905    unsigned DestReg = 0;
6906    switch (Res.first) {
6907    default: break;
6908    case X86::AX: DestReg = X86::EAX; break;
6909    case X86::DX: DestReg = X86::EDX; break;
6910    case X86::CX: DestReg = X86::ECX; break;
6911    case X86::BX: DestReg = X86::EBX; break;
6912    case X86::SI: DestReg = X86::ESI; break;
6913    case X86::DI: DestReg = X86::EDI; break;
6914    case X86::BP: DestReg = X86::EBP; break;
6915    case X86::SP: DestReg = X86::ESP; break;
6916    }
6917    if (DestReg) {
6918      Res.first = DestReg;
6919      Res.second = Res.second = X86::GR32RegisterClass;
6920    }
6921  } else if (VT == MVT::i64) {
6922    unsigned DestReg = 0;
6923    switch (Res.first) {
6924    default: break;
6925    case X86::AX: DestReg = X86::RAX; break;
6926    case X86::DX: DestReg = X86::RDX; break;
6927    case X86::CX: DestReg = X86::RCX; break;
6928    case X86::BX: DestReg = X86::RBX; break;
6929    case X86::SI: DestReg = X86::RSI; break;
6930    case X86::DI: DestReg = X86::RDI; break;
6931    case X86::BP: DestReg = X86::RBP; break;
6932    case X86::SP: DestReg = X86::RSP; break;
6933    }
6934    if (DestReg) {
6935      Res.first = DestReg;
6936      Res.second = Res.second = X86::GR64RegisterClass;
6937    }
6938  }
6939
6940  return Res;
6941}
6942