X86ISelLowering.cpp revision f5b9d6cc82d46dbac7fc469e316a7f1cadd8277f
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Disable16Bit - 16-bit operations typically have a larger encoding than
61// corresponding 32-bit instructions, and 16-bit code is slow on some
62// processors. This is an experimental flag to disable 16-bit operations
63// (which forces them to be Legalized to 32-bit operations).
64static cl::opt<bool>
65Disable16Bit("disable-16bit", cl::Hidden,
66             cl::desc("Disable use of 16-bit instructions"));
67
68// Forward declarations.
69static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
70                       SDValue V2);
71
72static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
73  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
74  default: llvm_unreachable("unknown subtarget type");
75  case X86Subtarget::isDarwin:
76    if (TM.getSubtarget<X86Subtarget>().is64Bit())
77      return new X8664_MachoTargetObjectFile();
78    return new TargetLoweringObjectFileMachO();
79  case X86Subtarget::isELF:
80   if (TM.getSubtarget<X86Subtarget>().is64Bit())
81     return new X8664_ELFTargetObjectFile(TM);
82    return new X8632_ELFTargetObjectFile(TM);
83  case X86Subtarget::isMingw:
84  case X86Subtarget::isCygwin:
85  case X86Subtarget::isWindows:
86    return new TargetLoweringObjectFileCOFF();
87  }
88}
89
90X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
91  : TargetLowering(TM, createTLOF(TM)) {
92  Subtarget = &TM.getSubtarget<X86Subtarget>();
93  X86ScalarSSEf64 = Subtarget->hasSSE2();
94  X86ScalarSSEf32 = Subtarget->hasSSE1();
95  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
96
97  RegInfo = TM.getRegisterInfo();
98  TD = getTargetData();
99
100  // Set up the TargetLowering object.
101
102  // X86 is weird, it always uses i8 for shift amounts and setcc results.
103  setShiftAmountType(MVT::i8);
104  setBooleanContents(ZeroOrOneBooleanContent);
105  setSchedulingPreference(SchedulingForRegPressure);
106  setStackPointerRegisterToSaveRestore(X86StackPtr);
107
108  if (Subtarget->isTargetDarwin()) {
109    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
110    setUseUnderscoreSetJmp(false);
111    setUseUnderscoreLongJmp(false);
112  } else if (Subtarget->isTargetMingw()) {
113    // MS runtime is weird: it exports _setjmp, but longjmp!
114    setUseUnderscoreSetJmp(true);
115    setUseUnderscoreLongJmp(false);
116  } else {
117    setUseUnderscoreSetJmp(true);
118    setUseUnderscoreLongJmp(true);
119  }
120
121  // Set up the register classes.
122  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
123  if (!Disable16Bit)
124    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
125  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
126  if (Subtarget->is64Bit())
127    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
128
129  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
130
131  // We don't accept any truncstore of integer registers.
132  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
133  if (!Disable16Bit)
134    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
135  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
136  if (!Disable16Bit)
137    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
138  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
139  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
140
141  // SETOEQ and SETUNE require checking two conditions.
142  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
143  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
144  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
145  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
146  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
147  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
148
149  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
150  // operation.
151  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
152  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
153  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
154
155  if (Subtarget->is64Bit()) {
156    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
157    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
158  } else if (!UseSoftFloat) {
159    if (X86ScalarSSEf64) {
160      // We have an impenetrably clever algorithm for ui64->double only.
161      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
162    }
163    // We have an algorithm for SSE2, and we turn this into a 64-bit
164    // FILD for other targets.
165    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
166  }
167
168  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
169  // this operation.
170  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
171  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
172
173  if (!UseSoftFloat) {
174    // SSE has no i16 to fp conversion, only i32
175    if (X86ScalarSSEf32) {
176      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
177      // f32 and f64 cases are Legal, f80 case is not
178      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
179    } else {
180      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
181      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
182    }
183  } else {
184    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
185    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
186  }
187
188  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
189  // are Legal, f80 is custom lowered.
190  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
191  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
192
193  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
194  // this operation.
195  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
197
198  if (X86ScalarSSEf32) {
199    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
200    // f32 and f64 cases are Legal, f80 case is not
201    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
202  } else {
203    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
204    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
205  }
206
207  // Handle FP_TO_UINT by promoting the destination to a larger signed
208  // conversion.
209  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
210  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
211  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
212
213  if (Subtarget->is64Bit()) {
214    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
215    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
216  } else if (!UseSoftFloat) {
217    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
218      // Expand FP_TO_UINT into a select.
219      // FIXME: We would like to use a Custom expander here eventually to do
220      // the optimal thing for SSE vs. the default expansion in the legalizer.
221      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
222    else
223      // With SSE3 we can use fisttpll to convert to a signed i64; without
224      // SSE, we're stuck with a fistpll.
225      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
226  }
227
228  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
229  if (!X86ScalarSSEf64) {
230    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
231    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
232  }
233
234  // Scalar integer divide and remainder are lowered to use operations that
235  // produce two results, to match the available instructions. This exposes
236  // the two-result form to trivial CSE, which is able to combine x/y and x%y
237  // into a single instruction.
238  //
239  // Scalar integer multiply-high is also lowered to use two-result
240  // operations, to match the available instructions. However, plain multiply
241  // (low) operations are left as Legal, as there are single-result
242  // instructions for this in x86. Using the two-result multiply instructions
243  // when both high and low results are needed must be arranged by dagcombine.
244  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
248  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
249  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
262  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
263  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
264  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
265  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
266  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
267  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
268
269  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
270  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
271  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
272  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
273  if (Subtarget->is64Bit())
274    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
275  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
276  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
277  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
278  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
279  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
280  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
281  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
282  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
283
284  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
287  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
288  if (Disable16Bit) {
289    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
290    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
291  } else {
292    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
293    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
294  }
295  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
296  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
297  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
298  if (Subtarget->is64Bit()) {
299    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
300    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
301    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
302  }
303
304  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
305  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
306
307  // These should be promoted to a larger select which is supported.
308  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
309  // X86 wants to expand cmov itself.
310  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
311  if (Disable16Bit)
312    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
313  else
314    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
315  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
316  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
317  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
318  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
319  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
320  if (Disable16Bit)
321    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
322  else
323    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
324  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
325  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
326  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
327  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
328  if (Subtarget->is64Bit()) {
329    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
330    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
331  }
332  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
333
334  // Darwin ABI issue.
335  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
336  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
337  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
338  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
339  if (Subtarget->is64Bit())
340    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
341  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
342  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
343  if (Subtarget->is64Bit()) {
344    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
345    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
346    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
347    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
348    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
349  }
350  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
351  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
352  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
353  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
354  if (Subtarget->is64Bit()) {
355    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
356    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
357    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
358  }
359
360  if (Subtarget->hasSSE1())
361    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
362
363  if (!Subtarget->hasSSE2())
364    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
365
366  // Expand certain atomics
367  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
368  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
369  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
370  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
371
372  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
373  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
374  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
375  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
376
377  if (!Subtarget->is64Bit()) {
378    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
380    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
381    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
382    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
383    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
384    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
385  }
386
387  // FIXME - use subtarget debug flags
388  if (!Subtarget->isTargetDarwin() &&
389      !Subtarget->isTargetELF() &&
390      !Subtarget->isTargetCygMing()) {
391    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
392  }
393
394  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
395  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
396  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
397  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
398  if (Subtarget->is64Bit()) {
399    setExceptionPointerRegister(X86::RAX);
400    setExceptionSelectorRegister(X86::RDX);
401  } else {
402    setExceptionPointerRegister(X86::EAX);
403    setExceptionSelectorRegister(X86::EDX);
404  }
405  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
406  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
407
408  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
409
410  setOperationAction(ISD::TRAP, MVT::Other, Legal);
411
412  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
413  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
414  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
415  if (Subtarget->is64Bit()) {
416    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
417    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
418  } else {
419    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
420    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
421  }
422
423  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
424  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
425  if (Subtarget->is64Bit())
426    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
427  if (Subtarget->isTargetCygMing())
428    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
429  else
430    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
431
432  if (!UseSoftFloat && X86ScalarSSEf64) {
433    // f32 and f64 use SSE.
434    // Set up the FP register classes.
435    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
436    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
437
438    // Use ANDPD to simulate FABS.
439    setOperationAction(ISD::FABS , MVT::f64, Custom);
440    setOperationAction(ISD::FABS , MVT::f32, Custom);
441
442    // Use XORP to simulate FNEG.
443    setOperationAction(ISD::FNEG , MVT::f64, Custom);
444    setOperationAction(ISD::FNEG , MVT::f32, Custom);
445
446    // Use ANDPD and ORPD to simulate FCOPYSIGN.
447    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
448    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
449
450    // We don't support sin/cos/fmod
451    setOperationAction(ISD::FSIN , MVT::f64, Expand);
452    setOperationAction(ISD::FCOS , MVT::f64, Expand);
453    setOperationAction(ISD::FSIN , MVT::f32, Expand);
454    setOperationAction(ISD::FCOS , MVT::f32, Expand);
455
456    // Expand FP immediates into loads from the stack, except for the special
457    // cases we handle.
458    addLegalFPImmediate(APFloat(+0.0)); // xorpd
459    addLegalFPImmediate(APFloat(+0.0f)); // xorps
460  } else if (!UseSoftFloat && X86ScalarSSEf32) {
461    // Use SSE for f32, x87 for f64.
462    // Set up the FP register classes.
463    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
464    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
465
466    // Use ANDPS to simulate FABS.
467    setOperationAction(ISD::FABS , MVT::f32, Custom);
468
469    // Use XORP to simulate FNEG.
470    setOperationAction(ISD::FNEG , MVT::f32, Custom);
471
472    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
473
474    // Use ANDPS and ORPS to simulate FCOPYSIGN.
475    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
476    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
477
478    // We don't support sin/cos/fmod
479    setOperationAction(ISD::FSIN , MVT::f32, Expand);
480    setOperationAction(ISD::FCOS , MVT::f32, Expand);
481
482    // Special cases we handle for FP constants.
483    addLegalFPImmediate(APFloat(+0.0f)); // xorps
484    addLegalFPImmediate(APFloat(+0.0)); // FLD0
485    addLegalFPImmediate(APFloat(+1.0)); // FLD1
486    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
487    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
488
489    if (!UnsafeFPMath) {
490      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
491      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
492    }
493  } else if (!UseSoftFloat) {
494    // f32 and f64 in x87.
495    // Set up the FP register classes.
496    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
497    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
498
499    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
500    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
501    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
502    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
503
504    if (!UnsafeFPMath) {
505      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
506      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
507    }
508    addLegalFPImmediate(APFloat(+0.0)); // FLD0
509    addLegalFPImmediate(APFloat(+1.0)); // FLD1
510    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
511    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
512    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
513    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
514    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
515    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
516  }
517
518  // Long double always uses X87.
519  if (!UseSoftFloat) {
520    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
521    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
522    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
523    {
524      bool ignored;
525      APFloat TmpFlt(+0.0);
526      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
527                     &ignored);
528      addLegalFPImmediate(TmpFlt);  // FLD0
529      TmpFlt.changeSign();
530      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
531      APFloat TmpFlt2(+1.0);
532      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
533                      &ignored);
534      addLegalFPImmediate(TmpFlt2);  // FLD1
535      TmpFlt2.changeSign();
536      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
537    }
538
539    if (!UnsafeFPMath) {
540      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
541      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
542    }
543  }
544
545  // Always use a library call for pow.
546  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
547  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
548  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
549
550  setOperationAction(ISD::FLOG, MVT::f80, Expand);
551  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
552  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
553  setOperationAction(ISD::FEXP, MVT::f80, Expand);
554  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
555
556  // First set operation action for all vector types to either promote
557  // (for widening) or expand (for scalarization). Then we will selectively
558  // turn on ones that can be effectively codegen'd.
559  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
560       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
561    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
576    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
577    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
608    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
610    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
611    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
612    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
613    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
614    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
615         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
616      setTruncStoreAction((MVT::SimpleValueType)VT,
617                          (MVT::SimpleValueType)InnerVT, Expand);
618    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
619    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
620    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
621  }
622
623  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
624  // with -msoft-float, disable use of MMX as well.
625  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
626    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
627    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
628    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
629    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
630    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
631
632    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
633    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
634    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
635    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
636
637    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
638    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
639    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
640    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
641
642    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
643    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
644
645    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
646    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
647    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
648    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
649    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
650    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
651    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
652
653    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
654    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
655    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
656    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
657    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
658    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
659    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
660
661    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
662    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
663    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
664    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
665    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
666    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
667    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
668
669    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
670    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
671    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
672    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
673    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
674    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
675    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
676    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
677    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
678
679    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
680    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
681    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
682    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
683    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
684
685    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
686    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
687    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
688    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
689
690    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
691    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
692    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
693    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
694
695    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
696
697    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
698    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
699    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
700    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
701    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
702    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
703    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
704  }
705
706  if (!UseSoftFloat && Subtarget->hasSSE1()) {
707    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
708
709    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
710    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
711    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
712    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
713    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
714    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
715    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
716    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
717    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
718    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
719    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
720    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
721  }
722
723  if (!UseSoftFloat && Subtarget->hasSSE2()) {
724    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
725
726    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
727    // registers cannot be used even for integer operations.
728    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
729    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
730    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
731    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
732
733    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
734    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
735    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
736    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
737    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
738    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
739    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
740    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
741    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
742    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
743    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
744    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
745    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
746    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
747    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
748    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
749
750    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
751    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
752    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
753    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
754
755    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
756    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
757    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
758    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
759    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
760
761    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
762    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
763    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
764    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
765    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
766
767    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
768    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
769      EVT VT = (MVT::SimpleValueType)i;
770      // Do not attempt to custom lower non-power-of-2 vectors
771      if (!isPowerOf2_32(VT.getVectorNumElements()))
772        continue;
773      // Do not attempt to custom lower non-128-bit vectors
774      if (!VT.is128BitVector())
775        continue;
776      setOperationAction(ISD::BUILD_VECTOR,
777                         VT.getSimpleVT().SimpleTy, Custom);
778      setOperationAction(ISD::VECTOR_SHUFFLE,
779                         VT.getSimpleVT().SimpleTy, Custom);
780      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
781                         VT.getSimpleVT().SimpleTy, Custom);
782    }
783
784    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
785    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
786    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
787    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
788    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
789    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
790
791    if (Subtarget->is64Bit()) {
792      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
793      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
794    }
795
796    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
797    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
798      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
799      EVT VT = SVT;
800
801      // Do not attempt to promote non-128-bit vectors
802      if (!VT.is128BitVector()) {
803        continue;
804      }
805      setOperationAction(ISD::AND,    SVT, Promote);
806      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
807      setOperationAction(ISD::OR,     SVT, Promote);
808      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
809      setOperationAction(ISD::XOR,    SVT, Promote);
810      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
811      setOperationAction(ISD::LOAD,   SVT, Promote);
812      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
813      setOperationAction(ISD::SELECT, SVT, Promote);
814      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
815    }
816
817    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
818
819    // Custom lower v2i64 and v2f64 selects.
820    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
821    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
822    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
823    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
824
825    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
826    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
827    if (!DisableMMX && Subtarget->hasMMX()) {
828      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
829      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
830    }
831  }
832
833  if (Subtarget->hasSSE41()) {
834    // FIXME: Do we need to handle scalar-to-vector here?
835    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
836
837    // i8 and i16 vectors are custom , because the source register and source
838    // source memory operand types are not the same width.  f32 vectors are
839    // custom since the immediate controlling the insert encodes additional
840    // information.
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
842    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
843    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
844    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
845
846    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
847    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
848    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
849    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
850
851    if (Subtarget->is64Bit()) {
852      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
853      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
854    }
855  }
856
857  if (Subtarget->hasSSE42()) {
858    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
859  }
860
861  if (!UseSoftFloat && Subtarget->hasAVX()) {
862    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
863    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
864    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
865    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
866
867    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
868    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
869    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
870    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
871    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
872    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
873    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
874    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
875    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
876    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
877    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
878    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
879    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
880    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
881    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
882
883    // Operations to consider commented out -v16i16 v32i8
884    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
885    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
886    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
887    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
888    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
889    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
890    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
891    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
892    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
893    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
894    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
895    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
896    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
897    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
898
899    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
900    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
901    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
902    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
903
904    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
905    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
906    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
907    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
908    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
909
910    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
911    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
912    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
913    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
914    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
915    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
916
917#if 0
918    // Not sure we want to do this since there are no 256-bit integer
919    // operations in AVX
920
921    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
922    // This includes 256-bit vectors
923    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
924      EVT VT = (MVT::SimpleValueType)i;
925
926      // Do not attempt to custom lower non-power-of-2 vectors
927      if (!isPowerOf2_32(VT.getVectorNumElements()))
928        continue;
929
930      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
931      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
932      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
933    }
934
935    if (Subtarget->is64Bit()) {
936      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
937      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
938    }
939#endif
940
941#if 0
942    // Not sure we want to do this since there are no 256-bit integer
943    // operations in AVX
944
945    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
946    // Including 256-bit vectors
947    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
948      EVT VT = (MVT::SimpleValueType)i;
949
950      if (!VT.is256BitVector()) {
951        continue;
952      }
953      setOperationAction(ISD::AND,    VT, Promote);
954      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
955      setOperationAction(ISD::OR,     VT, Promote);
956      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
957      setOperationAction(ISD::XOR,    VT, Promote);
958      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
959      setOperationAction(ISD::LOAD,   VT, Promote);
960      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
961      setOperationAction(ISD::SELECT, VT, Promote);
962      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
963    }
964
965    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
966#endif
967  }
968
969  // We want to custom lower some of our intrinsics.
970  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
971
972  // Add/Sub/Mul with overflow operations are custom lowered.
973  setOperationAction(ISD::SADDO, MVT::i32, Custom);
974  setOperationAction(ISD::SADDO, MVT::i64, Custom);
975  setOperationAction(ISD::UADDO, MVT::i32, Custom);
976  setOperationAction(ISD::UADDO, MVT::i64, Custom);
977  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
978  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
979  setOperationAction(ISD::USUBO, MVT::i32, Custom);
980  setOperationAction(ISD::USUBO, MVT::i64, Custom);
981  setOperationAction(ISD::SMULO, MVT::i32, Custom);
982  setOperationAction(ISD::SMULO, MVT::i64, Custom);
983
984  if (!Subtarget->is64Bit()) {
985    // These libcalls are not available in 32-bit.
986    setLibcallName(RTLIB::SHL_I128, 0);
987    setLibcallName(RTLIB::SRL_I128, 0);
988    setLibcallName(RTLIB::SRA_I128, 0);
989  }
990
991  // We have target-specific dag combine patterns for the following nodes:
992  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
993  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
994  setTargetDAGCombine(ISD::BUILD_VECTOR);
995  setTargetDAGCombine(ISD::SELECT);
996  setTargetDAGCombine(ISD::SHL);
997  setTargetDAGCombine(ISD::SRA);
998  setTargetDAGCombine(ISD::SRL);
999  setTargetDAGCombine(ISD::OR);
1000  setTargetDAGCombine(ISD::STORE);
1001  setTargetDAGCombine(ISD::MEMBARRIER);
1002  setTargetDAGCombine(ISD::ZERO_EXTEND);
1003  if (Subtarget->is64Bit())
1004    setTargetDAGCombine(ISD::MUL);
1005
1006  computeRegisterProperties();
1007
1008  // FIXME: These should be based on subtarget info. Plus, the values should
1009  // be smaller when we are in optimizing for size mode.
1010  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1011  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
1012  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1013  setPrefLoopAlignment(16);
1014  benefitFromCodePlacementOpt = true;
1015}
1016
1017
1018MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1019  return MVT::i8;
1020}
1021
1022
1023/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1024/// the desired ByVal argument alignment.
1025static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1026  if (MaxAlign == 16)
1027    return;
1028  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1029    if (VTy->getBitWidth() == 128)
1030      MaxAlign = 16;
1031  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1032    unsigned EltAlign = 0;
1033    getMaxByValAlign(ATy->getElementType(), EltAlign);
1034    if (EltAlign > MaxAlign)
1035      MaxAlign = EltAlign;
1036  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1037    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1038      unsigned EltAlign = 0;
1039      getMaxByValAlign(STy->getElementType(i), EltAlign);
1040      if (EltAlign > MaxAlign)
1041        MaxAlign = EltAlign;
1042      if (MaxAlign == 16)
1043        break;
1044    }
1045  }
1046  return;
1047}
1048
1049/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1050/// function arguments in the caller parameter area. For X86, aggregates
1051/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1052/// are at 4-byte boundaries.
1053unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1054  if (Subtarget->is64Bit()) {
1055    // Max of 8 and alignment of type.
1056    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1057    if (TyAlign > 8)
1058      return TyAlign;
1059    return 8;
1060  }
1061
1062  unsigned Align = 4;
1063  if (Subtarget->hasSSE1())
1064    getMaxByValAlign(Ty, Align);
1065  return Align;
1066}
1067
1068/// getOptimalMemOpType - Returns the target specific optimal type for load
1069/// and store operations as a result of memset, memcpy, and memmove
1070/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1071/// determining it.
1072EVT
1073X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1074                                       bool isSrcConst, bool isSrcStr,
1075                                       SelectionDAG &DAG) const {
1076  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1077  // linux.  This is because the stack realignment code can't handle certain
1078  // cases like PR2962.  This should be removed when PR2962 is fixed.
1079  const Function *F = DAG.getMachineFunction().getFunction();
1080  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1081  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1082    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1083      return MVT::v4i32;
1084    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1085      return MVT::v4f32;
1086  }
1087  if (Subtarget->is64Bit() && Size >= 8)
1088    return MVT::i64;
1089  return MVT::i32;
1090}
1091
1092/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1093/// current function.  The returned value is a member of the
1094/// MachineJumpTableInfo::JTEntryKind enum.
1095unsigned X86TargetLowering::getJumpTableEncoding() const {
1096  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1097  // symbol.
1098  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1099      Subtarget->isPICStyleGOT())
1100    return MachineJumpTableInfo::EK_Custom32;
1101
1102  // Otherwise, use the normal jump table encoding heuristics.
1103  return TargetLowering::getJumpTableEncoding();
1104}
1105
1106/// getPICBaseSymbol - Return the X86-32 PIC base.
1107MCSymbol *
1108X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1109                                    MCContext &Ctx) const {
1110  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1111  return Ctx.GetOrCreateTemporarySymbol(Twine(MAI.getPrivateGlobalPrefix())+
1112                                        Twine(MF->getFunctionNumber())+"$pb");
1113}
1114
1115
1116const MCExpr *
1117X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1118                                             const MachineBasicBlock *MBB,
1119                                             unsigned uid,MCContext &Ctx) const{
1120  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1121         Subtarget->isPICStyleGOT());
1122  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1123  // entries.
1124  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1125                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1126}
1127
1128/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1129/// jumptable.
1130SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1131                                                    SelectionDAG &DAG) const {
1132  if (!Subtarget->is64Bit())
1133    // This doesn't have DebugLoc associated with it, but is not really the
1134    // same as a Register.
1135    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1136                       getPointerTy());
1137  return Table;
1138}
1139
1140/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1141/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1142/// MCExpr.
1143const MCExpr *X86TargetLowering::
1144getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1145                             MCContext &Ctx) const {
1146  // X86-64 uses RIP relative addressing based on the jump table label.
1147  if (Subtarget->isPICStyleRIPRel())
1148    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1149
1150  // Otherwise, the reference is relative to the PIC base.
1151  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1152}
1153
1154/// getFunctionAlignment - Return the Log2 alignment of this function.
1155unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1156  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1157}
1158
1159//===----------------------------------------------------------------------===//
1160//               Return Value Calling Convention Implementation
1161//===----------------------------------------------------------------------===//
1162
1163#include "X86GenCallingConv.inc"
1164
1165bool
1166X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1167                        const SmallVectorImpl<EVT> &OutTys,
1168                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1169                        SelectionDAG &DAG) {
1170  SmallVector<CCValAssign, 16> RVLocs;
1171  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1172                 RVLocs, *DAG.getContext());
1173  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1174}
1175
1176SDValue
1177X86TargetLowering::LowerReturn(SDValue Chain,
1178                               CallingConv::ID CallConv, bool isVarArg,
1179                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1180                               DebugLoc dl, SelectionDAG &DAG) {
1181
1182  SmallVector<CCValAssign, 16> RVLocs;
1183  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1184                 RVLocs, *DAG.getContext());
1185  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1186
1187  // Add the regs to the liveout set for the function.
1188  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1189  for (unsigned i = 0; i != RVLocs.size(); ++i)
1190    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1191      MRI.addLiveOut(RVLocs[i].getLocReg());
1192
1193  SDValue Flag;
1194
1195  SmallVector<SDValue, 6> RetOps;
1196  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1197  // Operand #1 = Bytes To Pop
1198  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1199
1200  // Copy the result values into the output registers.
1201  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1202    CCValAssign &VA = RVLocs[i];
1203    assert(VA.isRegLoc() && "Can only return in registers!");
1204    SDValue ValToCopy = Outs[i].Val;
1205
1206    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1207    // the RET instruction and handled by the FP Stackifier.
1208    if (VA.getLocReg() == X86::ST0 ||
1209        VA.getLocReg() == X86::ST1) {
1210      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1211      // change the value to the FP stack register class.
1212      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1213        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1214      RetOps.push_back(ValToCopy);
1215      // Don't emit a copytoreg.
1216      continue;
1217    }
1218
1219    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1220    // which is returned in RAX / RDX.
1221    if (Subtarget->is64Bit()) {
1222      EVT ValVT = ValToCopy.getValueType();
1223      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1224        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1225        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1226          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1227      }
1228    }
1229
1230    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1231    Flag = Chain.getValue(1);
1232  }
1233
1234  // The x86-64 ABI for returning structs by value requires that we copy
1235  // the sret argument into %rax for the return. We saved the argument into
1236  // a virtual register in the entry block, so now we copy the value out
1237  // and into %rax.
1238  if (Subtarget->is64Bit() &&
1239      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1240    MachineFunction &MF = DAG.getMachineFunction();
1241    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1242    unsigned Reg = FuncInfo->getSRetReturnReg();
1243    if (!Reg) {
1244      Reg = MRI.createVirtualRegister(getRegClassFor(MVT::i64));
1245      FuncInfo->setSRetReturnReg(Reg);
1246    }
1247    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1248
1249    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1250    Flag = Chain.getValue(1);
1251
1252    // RAX now acts like a return value.
1253    MRI.addLiveOut(X86::RAX);
1254  }
1255
1256  RetOps[0] = Chain;  // Update chain.
1257
1258  // Add the flag if we have it.
1259  if (Flag.getNode())
1260    RetOps.push_back(Flag);
1261
1262  return DAG.getNode(X86ISD::RET_FLAG, dl,
1263                     MVT::Other, &RetOps[0], RetOps.size());
1264}
1265
1266/// LowerCallResult - Lower the result values of a call into the
1267/// appropriate copies out of appropriate physical registers.
1268///
1269SDValue
1270X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1271                                   CallingConv::ID CallConv, bool isVarArg,
1272                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1273                                   DebugLoc dl, SelectionDAG &DAG,
1274                                   SmallVectorImpl<SDValue> &InVals) {
1275
1276  // Assign locations to each value returned by this call.
1277  SmallVector<CCValAssign, 16> RVLocs;
1278  bool Is64Bit = Subtarget->is64Bit();
1279  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1280                 RVLocs, *DAG.getContext());
1281  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1282
1283  // Copy all of the result registers out of their specified physreg.
1284  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1285    CCValAssign &VA = RVLocs[i];
1286    EVT CopyVT = VA.getValVT();
1287
1288    // If this is x86-64, and we disabled SSE, we can't return FP values
1289    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1290        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1291      llvm_report_error("SSE register return with SSE disabled");
1292    }
1293
1294    // If this is a call to a function that returns an fp value on the floating
1295    // point stack, but where we prefer to use the value in xmm registers, copy
1296    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1297    if ((VA.getLocReg() == X86::ST0 ||
1298         VA.getLocReg() == X86::ST1) &&
1299        isScalarFPTypeInSSEReg(VA.getValVT())) {
1300      CopyVT = MVT::f80;
1301    }
1302
1303    SDValue Val;
1304    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1305      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1306      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1307        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1308                                   MVT::v2i64, InFlag).getValue(1);
1309        Val = Chain.getValue(0);
1310        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1311                          Val, DAG.getConstant(0, MVT::i64));
1312      } else {
1313        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1314                                   MVT::i64, InFlag).getValue(1);
1315        Val = Chain.getValue(0);
1316      }
1317      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1318    } else {
1319      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1320                                 CopyVT, InFlag).getValue(1);
1321      Val = Chain.getValue(0);
1322    }
1323    InFlag = Chain.getValue(2);
1324
1325    if (CopyVT != VA.getValVT()) {
1326      // Round the F80 the right size, which also moves to the appropriate xmm
1327      // register.
1328      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1329                        // This truncation won't change the value.
1330                        DAG.getIntPtrConstant(1));
1331    }
1332
1333    InVals.push_back(Val);
1334  }
1335
1336  return Chain;
1337}
1338
1339
1340//===----------------------------------------------------------------------===//
1341//                C & StdCall & Fast Calling Convention implementation
1342//===----------------------------------------------------------------------===//
1343//  StdCall calling convention seems to be standard for many Windows' API
1344//  routines and around. It differs from C calling convention just a little:
1345//  callee should clean up the stack, not caller. Symbols should be also
1346//  decorated in some fancy way :) It doesn't support any vector arguments.
1347//  For info on fast calling convention see Fast Calling Convention (tail call)
1348//  implementation LowerX86_32FastCCCallTo.
1349
1350/// CallIsStructReturn - Determines whether a call uses struct return
1351/// semantics.
1352static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1353  if (Outs.empty())
1354    return false;
1355
1356  return Outs[0].Flags.isSRet();
1357}
1358
1359/// ArgsAreStructReturn - Determines whether a function uses struct
1360/// return semantics.
1361static bool
1362ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1363  if (Ins.empty())
1364    return false;
1365
1366  return Ins[0].Flags.isSRet();
1367}
1368
1369/// IsCalleePop - Determines whether the callee is required to pop its
1370/// own arguments. Callee pop is necessary to support tail calls.
1371bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1372  if (IsVarArg)
1373    return false;
1374
1375  switch (CallingConv) {
1376  default:
1377    return false;
1378  case CallingConv::X86_StdCall:
1379    return !Subtarget->is64Bit();
1380  case CallingConv::X86_FastCall:
1381    return !Subtarget->is64Bit();
1382  case CallingConv::Fast:
1383    return GuaranteedTailCallOpt;
1384  case CallingConv::GHC:
1385    return GuaranteedTailCallOpt;
1386  }
1387}
1388
1389/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1390/// given CallingConvention value.
1391CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1392  if (Subtarget->is64Bit()) {
1393    if (CC == CallingConv::GHC)
1394      return CC_X86_64_GHC;
1395    else if (Subtarget->isTargetWin64())
1396      return CC_X86_Win64_C;
1397    else
1398      return CC_X86_64_C;
1399  }
1400
1401  if (CC == CallingConv::X86_FastCall)
1402    return CC_X86_32_FastCall;
1403  else if (CC == CallingConv::Fast)
1404    return CC_X86_32_FastCC;
1405  else if (CC == CallingConv::GHC)
1406    return CC_X86_32_GHC;
1407  else
1408    return CC_X86_32_C;
1409}
1410
1411/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1412/// by "Src" to address "Dst" with size and alignment information specified by
1413/// the specific parameter attribute. The copy will be passed as a byval
1414/// function parameter.
1415static SDValue
1416CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1417                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1418                          DebugLoc dl) {
1419  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1420  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1421                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1422}
1423
1424/// IsTailCallConvention - Return true if the calling convention is one that
1425/// supports tail call optimization.
1426static bool IsTailCallConvention(CallingConv::ID CC) {
1427  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1428}
1429
1430/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1431/// a tailcall target by changing its ABI.
1432static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1433  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1434}
1435
1436SDValue
1437X86TargetLowering::LowerMemArgument(SDValue Chain,
1438                                    CallingConv::ID CallConv,
1439                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1440                                    DebugLoc dl, SelectionDAG &DAG,
1441                                    const CCValAssign &VA,
1442                                    MachineFrameInfo *MFI,
1443                                    unsigned i) {
1444  // Create the nodes corresponding to a load from this parameter slot.
1445  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1446  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1447  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1448  EVT ValVT;
1449
1450  // If value is passed by pointer we have address passed instead of the value
1451  // itself.
1452  if (VA.getLocInfo() == CCValAssign::Indirect)
1453    ValVT = VA.getLocVT();
1454  else
1455    ValVT = VA.getValVT();
1456
1457  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1458  // changed with more analysis.
1459  // In case of tail call optimization mark all arguments mutable. Since they
1460  // could be overwritten by lowering of arguments in case of a tail call.
1461  if (Flags.isByVal()) {
1462    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1463                                    VA.getLocMemOffset(), isImmutable, false);
1464    return DAG.getFrameIndex(FI, getPointerTy());
1465  } else {
1466    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1467                                    VA.getLocMemOffset(), isImmutable, false);
1468    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1469    return DAG.getLoad(ValVT, dl, Chain, FIN,
1470                       PseudoSourceValue::getFixedStack(FI), 0,
1471                       false, false, 0);
1472  }
1473}
1474
1475SDValue
1476X86TargetLowering::LowerFormalArguments(SDValue Chain,
1477                                        CallingConv::ID CallConv,
1478                                        bool isVarArg,
1479                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1480                                        DebugLoc dl,
1481                                        SelectionDAG &DAG,
1482                                        SmallVectorImpl<SDValue> &InVals) {
1483  MachineFunction &MF = DAG.getMachineFunction();
1484  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1485
1486  const Function* Fn = MF.getFunction();
1487  if (Fn->hasExternalLinkage() &&
1488      Subtarget->isTargetCygMing() &&
1489      Fn->getName() == "main")
1490    FuncInfo->setForceFramePointer(true);
1491
1492  MachineFrameInfo *MFI = MF.getFrameInfo();
1493  bool Is64Bit = Subtarget->is64Bit();
1494  bool IsWin64 = Subtarget->isTargetWin64();
1495
1496  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1497         "Var args not supported with calling convention fastcc or ghc");
1498
1499  // Assign locations to all of the incoming arguments.
1500  SmallVector<CCValAssign, 16> ArgLocs;
1501  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1502                 ArgLocs, *DAG.getContext());
1503  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1504
1505  unsigned LastVal = ~0U;
1506  SDValue ArgValue;
1507  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1508    CCValAssign &VA = ArgLocs[i];
1509    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1510    // places.
1511    assert(VA.getValNo() != LastVal &&
1512           "Don't support value assigned to multiple locs yet");
1513    LastVal = VA.getValNo();
1514
1515    if (VA.isRegLoc()) {
1516      EVT RegVT = VA.getLocVT();
1517      TargetRegisterClass *RC = NULL;
1518      if (RegVT == MVT::i32)
1519        RC = X86::GR32RegisterClass;
1520      else if (Is64Bit && RegVT == MVT::i64)
1521        RC = X86::GR64RegisterClass;
1522      else if (RegVT == MVT::f32)
1523        RC = X86::FR32RegisterClass;
1524      else if (RegVT == MVT::f64)
1525        RC = X86::FR64RegisterClass;
1526      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1527        RC = X86::VR128RegisterClass;
1528      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1529        RC = X86::VR64RegisterClass;
1530      else
1531        llvm_unreachable("Unknown argument type!");
1532
1533      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1534      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1535
1536      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1537      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1538      // right size.
1539      if (VA.getLocInfo() == CCValAssign::SExt)
1540        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1541                               DAG.getValueType(VA.getValVT()));
1542      else if (VA.getLocInfo() == CCValAssign::ZExt)
1543        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1544                               DAG.getValueType(VA.getValVT()));
1545      else if (VA.getLocInfo() == CCValAssign::BCvt)
1546        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1547
1548      if (VA.isExtInLoc()) {
1549        // Handle MMX values passed in XMM regs.
1550        if (RegVT.isVector()) {
1551          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1552                                 ArgValue, DAG.getConstant(0, MVT::i64));
1553          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1554        } else
1555          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1556      }
1557    } else {
1558      assert(VA.isMemLoc());
1559      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1560    }
1561
1562    // If value is passed via pointer - do a load.
1563    if (VA.getLocInfo() == CCValAssign::Indirect)
1564      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1565                             false, false, 0);
1566
1567    InVals.push_back(ArgValue);
1568  }
1569
1570  // The x86-64 ABI for returning structs by value requires that we copy
1571  // the sret argument into %rax for the return. Save the argument into
1572  // a virtual register so that we can access it from the return points.
1573  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1574    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1575    unsigned Reg = FuncInfo->getSRetReturnReg();
1576    if (!Reg) {
1577      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1578      FuncInfo->setSRetReturnReg(Reg);
1579    }
1580    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1581    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1582  }
1583
1584  unsigned StackSize = CCInfo.getNextStackOffset();
1585  // Align stack specially for tail calls.
1586  if (FuncIsMadeTailCallSafe(CallConv))
1587    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1588
1589  // If the function takes variable number of arguments, make a frame index for
1590  // the start of the first vararg value... for expansion of llvm.va_start.
1591  if (isVarArg) {
1592    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1593      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize, true, false);
1594    }
1595    if (Is64Bit) {
1596      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1597
1598      // FIXME: We should really autogenerate these arrays
1599      static const unsigned GPR64ArgRegsWin64[] = {
1600        X86::RCX, X86::RDX, X86::R8,  X86::R9
1601      };
1602      static const unsigned XMMArgRegsWin64[] = {
1603        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1604      };
1605      static const unsigned GPR64ArgRegs64Bit[] = {
1606        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1607      };
1608      static const unsigned XMMArgRegs64Bit[] = {
1609        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1610        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1611      };
1612      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1613
1614      if (IsWin64) {
1615        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1616        GPR64ArgRegs = GPR64ArgRegsWin64;
1617        XMMArgRegs = XMMArgRegsWin64;
1618      } else {
1619        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1620        GPR64ArgRegs = GPR64ArgRegs64Bit;
1621        XMMArgRegs = XMMArgRegs64Bit;
1622      }
1623      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1624                                                       TotalNumIntRegs);
1625      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1626                                                       TotalNumXMMRegs);
1627
1628      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1629      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1630             "SSE register cannot be used when SSE is disabled!");
1631      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1632             "SSE register cannot be used when SSE is disabled!");
1633      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1634        // Kernel mode asks for SSE to be disabled, so don't push them
1635        // on the stack.
1636        TotalNumXMMRegs = 0;
1637
1638      // For X86-64, if there are vararg parameters that are passed via
1639      // registers, then we must store them to their spots on the stack so they
1640      // may be loaded by deferencing the result of va_next.
1641      VarArgsGPOffset = NumIntRegs * 8;
1642      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1643      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1644                                                 TotalNumXMMRegs * 16, 16,
1645                                                 false);
1646
1647      // Store the integer parameter registers.
1648      SmallVector<SDValue, 8> MemOps;
1649      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1650      unsigned Offset = VarArgsGPOffset;
1651      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1652        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1653                                  DAG.getIntPtrConstant(Offset));
1654        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1655                                     X86::GR64RegisterClass);
1656        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1657        SDValue Store =
1658          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1659                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1660                       Offset, false, false, 0);
1661        MemOps.push_back(Store);
1662        Offset += 8;
1663      }
1664
1665      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1666        // Now store the XMM (fp + vector) parameter registers.
1667        SmallVector<SDValue, 11> SaveXMMOps;
1668        SaveXMMOps.push_back(Chain);
1669
1670        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1671        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1672        SaveXMMOps.push_back(ALVal);
1673
1674        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1675        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1676
1677        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1678          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1679                                       X86::VR128RegisterClass);
1680          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1681          SaveXMMOps.push_back(Val);
1682        }
1683        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1684                                     MVT::Other,
1685                                     &SaveXMMOps[0], SaveXMMOps.size()));
1686      }
1687
1688      if (!MemOps.empty())
1689        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1690                            &MemOps[0], MemOps.size());
1691    }
1692  }
1693
1694  // Some CCs need callee pop.
1695  if (IsCalleePop(isVarArg, CallConv)) {
1696    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1697  } else {
1698    BytesToPopOnReturn  = 0; // Callee pops nothing.
1699    // If this is an sret function, the return should pop the hidden pointer.
1700    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1701      BytesToPopOnReturn = 4;
1702  }
1703
1704  if (!Is64Bit) {
1705    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1706    if (CallConv == CallingConv::X86_FastCall)
1707      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1708  }
1709
1710  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1711
1712  return Chain;
1713}
1714
1715SDValue
1716X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1717                                    SDValue StackPtr, SDValue Arg,
1718                                    DebugLoc dl, SelectionDAG &DAG,
1719                                    const CCValAssign &VA,
1720                                    ISD::ArgFlagsTy Flags) {
1721  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1722  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1723  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1724  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1725  if (Flags.isByVal()) {
1726    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1727  }
1728  return DAG.getStore(Chain, dl, Arg, PtrOff,
1729                      PseudoSourceValue::getStack(), LocMemOffset,
1730                      false, false, 0);
1731}
1732
1733/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1734/// optimization is performed and it is required.
1735SDValue
1736X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1737                                           SDValue &OutRetAddr, SDValue Chain,
1738                                           bool IsTailCall, bool Is64Bit,
1739                                           int FPDiff, DebugLoc dl) {
1740  // Adjust the Return address stack slot.
1741  EVT VT = getPointerTy();
1742  OutRetAddr = getReturnAddressFrameIndex(DAG);
1743
1744  // Load the "old" Return address.
1745  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1746  return SDValue(OutRetAddr.getNode(), 1);
1747}
1748
1749/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1750/// optimization is performed and it is required (FPDiff!=0).
1751static SDValue
1752EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1753                         SDValue Chain, SDValue RetAddrFrIdx,
1754                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1755  // Store the return address to the appropriate stack slot.
1756  if (!FPDiff) return Chain;
1757  // Calculate the new stack slot for the return address.
1758  int SlotSize = Is64Bit ? 8 : 4;
1759  int NewReturnAddrFI =
1760    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false, false);
1761  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1762  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1763  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1764                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1765                       false, false, 0);
1766  return Chain;
1767}
1768
1769SDValue
1770X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1771                             CallingConv::ID CallConv, bool isVarArg,
1772                             bool &isTailCall,
1773                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1774                             const SmallVectorImpl<ISD::InputArg> &Ins,
1775                             DebugLoc dl, SelectionDAG &DAG,
1776                             SmallVectorImpl<SDValue> &InVals) {
1777  MachineFunction &MF = DAG.getMachineFunction();
1778  bool Is64Bit        = Subtarget->is64Bit();
1779  bool IsStructRet    = CallIsStructReturn(Outs);
1780  bool IsSibcall      = false;
1781
1782  if (isTailCall) {
1783    // Check if it's really possible to do a tail call.
1784    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1785                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1786                                                   Outs, Ins, DAG);
1787
1788    // Sibcalls are automatically detected tailcalls which do not require
1789    // ABI changes.
1790    if (!GuaranteedTailCallOpt && isTailCall)
1791      IsSibcall = true;
1792
1793    if (isTailCall)
1794      ++NumTailCalls;
1795  }
1796
1797  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1798         "Var args not supported with calling convention fastcc or ghc");
1799
1800  // Analyze operands of the call, assigning locations to each operand.
1801  SmallVector<CCValAssign, 16> ArgLocs;
1802  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1803                 ArgLocs, *DAG.getContext());
1804  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1805
1806  // Get a count of how many bytes are to be pushed on the stack.
1807  unsigned NumBytes = CCInfo.getNextStackOffset();
1808  if (IsSibcall)
1809    // This is a sibcall. The memory operands are available in caller's
1810    // own caller's stack.
1811    NumBytes = 0;
1812  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1813    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1814
1815  int FPDiff = 0;
1816  if (isTailCall && !IsSibcall) {
1817    // Lower arguments at fp - stackoffset + fpdiff.
1818    unsigned NumBytesCallerPushed =
1819      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1820    FPDiff = NumBytesCallerPushed - NumBytes;
1821
1822    // Set the delta of movement of the returnaddr stackslot.
1823    // But only set if delta is greater than previous delta.
1824    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1825      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1826  }
1827
1828  if (!IsSibcall)
1829    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1830
1831  SDValue RetAddrFrIdx;
1832  // Load return adress for tail calls.
1833  if (isTailCall && FPDiff)
1834    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1835                                    Is64Bit, FPDiff, dl);
1836
1837  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1838  SmallVector<SDValue, 8> MemOpChains;
1839  SDValue StackPtr;
1840
1841  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1842  // of tail call optimization arguments are handle later.
1843  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1844    CCValAssign &VA = ArgLocs[i];
1845    EVT RegVT = VA.getLocVT();
1846    SDValue Arg = Outs[i].Val;
1847    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1848    bool isByVal = Flags.isByVal();
1849
1850    // Promote the value if needed.
1851    switch (VA.getLocInfo()) {
1852    default: llvm_unreachable("Unknown loc info!");
1853    case CCValAssign::Full: break;
1854    case CCValAssign::SExt:
1855      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1856      break;
1857    case CCValAssign::ZExt:
1858      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1859      break;
1860    case CCValAssign::AExt:
1861      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1862        // Special case: passing MMX values in XMM registers.
1863        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1864        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1865        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1866      } else
1867        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1868      break;
1869    case CCValAssign::BCvt:
1870      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1871      break;
1872    case CCValAssign::Indirect: {
1873      // Store the argument.
1874      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1875      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1876      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1877                           PseudoSourceValue::getFixedStack(FI), 0,
1878                           false, false, 0);
1879      Arg = SpillSlot;
1880      break;
1881    }
1882    }
1883
1884    if (VA.isRegLoc()) {
1885      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1886    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1887      assert(VA.isMemLoc());
1888      if (StackPtr.getNode() == 0)
1889        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1890      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1891                                             dl, DAG, VA, Flags));
1892    }
1893  }
1894
1895  if (!MemOpChains.empty())
1896    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1897                        &MemOpChains[0], MemOpChains.size());
1898
1899  // Build a sequence of copy-to-reg nodes chained together with token chain
1900  // and flag operands which copy the outgoing args into registers.
1901  SDValue InFlag;
1902  // Tail call byval lowering might overwrite argument registers so in case of
1903  // tail call optimization the copies to registers are lowered later.
1904  if (!isTailCall)
1905    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1906      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1907                               RegsToPass[i].second, InFlag);
1908      InFlag = Chain.getValue(1);
1909    }
1910
1911  if (Subtarget->isPICStyleGOT()) {
1912    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1913    // GOT pointer.
1914    if (!isTailCall) {
1915      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1916                               DAG.getNode(X86ISD::GlobalBaseReg,
1917                                           DebugLoc::getUnknownLoc(),
1918                                           getPointerTy()),
1919                               InFlag);
1920      InFlag = Chain.getValue(1);
1921    } else {
1922      // If we are tail calling and generating PIC/GOT style code load the
1923      // address of the callee into ECX. The value in ecx is used as target of
1924      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1925      // for tail calls on PIC/GOT architectures. Normally we would just put the
1926      // address of GOT into ebx and then call target@PLT. But for tail calls
1927      // ebx would be restored (since ebx is callee saved) before jumping to the
1928      // target@PLT.
1929
1930      // Note: The actual moving to ECX is done further down.
1931      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1932      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1933          !G->getGlobal()->hasProtectedVisibility())
1934        Callee = LowerGlobalAddress(Callee, DAG);
1935      else if (isa<ExternalSymbolSDNode>(Callee))
1936        Callee = LowerExternalSymbol(Callee, DAG);
1937    }
1938  }
1939
1940  if (Is64Bit && isVarArg) {
1941    // From AMD64 ABI document:
1942    // For calls that may call functions that use varargs or stdargs
1943    // (prototype-less calls or calls to functions containing ellipsis (...) in
1944    // the declaration) %al is used as hidden argument to specify the number
1945    // of SSE registers used. The contents of %al do not need to match exactly
1946    // the number of registers, but must be an ubound on the number of SSE
1947    // registers used and is in the range 0 - 8 inclusive.
1948
1949    // FIXME: Verify this on Win64
1950    // Count the number of XMM registers allocated.
1951    static const unsigned XMMArgRegs[] = {
1952      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1953      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1954    };
1955    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1956    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1957           && "SSE registers cannot be used when SSE is disabled");
1958
1959    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1960                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1961    InFlag = Chain.getValue(1);
1962  }
1963
1964
1965  // For tail calls lower the arguments to the 'real' stack slot.
1966  if (isTailCall) {
1967    // Force all the incoming stack arguments to be loaded from the stack
1968    // before any new outgoing arguments are stored to the stack, because the
1969    // outgoing stack slots may alias the incoming argument stack slots, and
1970    // the alias isn't otherwise explicit. This is slightly more conservative
1971    // than necessary, because it means that each store effectively depends
1972    // on every argument instead of just those arguments it would clobber.
1973    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1974
1975    SmallVector<SDValue, 8> MemOpChains2;
1976    SDValue FIN;
1977    int FI = 0;
1978    // Do not flag preceeding copytoreg stuff together with the following stuff.
1979    InFlag = SDValue();
1980    if (GuaranteedTailCallOpt) {
1981      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1982        CCValAssign &VA = ArgLocs[i];
1983        if (VA.isRegLoc())
1984          continue;
1985        assert(VA.isMemLoc());
1986        SDValue Arg = Outs[i].Val;
1987        ISD::ArgFlagsTy Flags = Outs[i].Flags;
1988        // Create frame index.
1989        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1990        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1991        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
1992        FIN = DAG.getFrameIndex(FI, getPointerTy());
1993
1994        if (Flags.isByVal()) {
1995          // Copy relative to framepointer.
1996          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1997          if (StackPtr.getNode() == 0)
1998            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1999                                          getPointerTy());
2000          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2001
2002          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2003                                                           ArgChain,
2004                                                           Flags, DAG, dl));
2005        } else {
2006          // Store relative to framepointer.
2007          MemOpChains2.push_back(
2008            DAG.getStore(ArgChain, dl, Arg, FIN,
2009                         PseudoSourceValue::getFixedStack(FI), 0,
2010                         false, false, 0));
2011        }
2012      }
2013    }
2014
2015    if (!MemOpChains2.empty())
2016      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2017                          &MemOpChains2[0], MemOpChains2.size());
2018
2019    // Copy arguments to their registers.
2020    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2021      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2022                               RegsToPass[i].second, InFlag);
2023      InFlag = Chain.getValue(1);
2024    }
2025    InFlag =SDValue();
2026
2027    // Store the return address to the appropriate stack slot.
2028    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2029                                     FPDiff, dl);
2030  }
2031
2032  bool WasGlobalOrExternal = false;
2033  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2034    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2035    // In the 64-bit large code model, we have to make all calls
2036    // through a register, since the call instruction's 32-bit
2037    // pc-relative offset may not be large enough to hold the whole
2038    // address.
2039  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2040    WasGlobalOrExternal = true;
2041    // If the callee is a GlobalAddress node (quite common, every direct call
2042    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2043    // it.
2044
2045    // We should use extra load for direct calls to dllimported functions in
2046    // non-JIT mode.
2047    GlobalValue *GV = G->getGlobal();
2048    if (!GV->hasDLLImportLinkage()) {
2049      unsigned char OpFlags = 0;
2050
2051      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2052      // external symbols most go through the PLT in PIC mode.  If the symbol
2053      // has hidden or protected visibility, or if it is static or local, then
2054      // we don't need to use the PLT - we can directly call it.
2055      if (Subtarget->isTargetELF() &&
2056          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2057          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2058        OpFlags = X86II::MO_PLT;
2059      } else if (Subtarget->isPICStyleStubAny() &&
2060               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2061               Subtarget->getDarwinVers() < 9) {
2062        // PC-relative references to external symbols should go through $stub,
2063        // unless we're building with the leopard linker or later, which
2064        // automatically synthesizes these stubs.
2065        OpFlags = X86II::MO_DARWIN_STUB;
2066      }
2067
2068      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
2069                                          G->getOffset(), OpFlags);
2070    }
2071  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2072    WasGlobalOrExternal = true;
2073    unsigned char OpFlags = 0;
2074
2075    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2076    // symbols should go through the PLT.
2077    if (Subtarget->isTargetELF() &&
2078        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2079      OpFlags = X86II::MO_PLT;
2080    } else if (Subtarget->isPICStyleStubAny() &&
2081             Subtarget->getDarwinVers() < 9) {
2082      // PC-relative references to external symbols should go through $stub,
2083      // unless we're building with the leopard linker or later, which
2084      // automatically synthesizes these stubs.
2085      OpFlags = X86II::MO_DARWIN_STUB;
2086    }
2087
2088    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2089                                         OpFlags);
2090  }
2091
2092  // Returns a chain & a flag for retval copy to use.
2093  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2094  SmallVector<SDValue, 8> Ops;
2095
2096  if (!IsSibcall && isTailCall) {
2097    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2098                           DAG.getIntPtrConstant(0, true), InFlag);
2099    InFlag = Chain.getValue(1);
2100  }
2101
2102  Ops.push_back(Chain);
2103  Ops.push_back(Callee);
2104
2105  if (isTailCall)
2106    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2107
2108  // Add argument registers to the end of the list so that they are known live
2109  // into the call.
2110  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2111    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2112                                  RegsToPass[i].second.getValueType()));
2113
2114  // Add an implicit use GOT pointer in EBX.
2115  if (!isTailCall && Subtarget->isPICStyleGOT())
2116    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2117
2118  // Add an implicit use of AL for x86 vararg functions.
2119  if (Is64Bit && isVarArg)
2120    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2121
2122  if (InFlag.getNode())
2123    Ops.push_back(InFlag);
2124
2125  if (isTailCall) {
2126    // If this is the first return lowered for this function, add the regs
2127    // to the liveout set for the function.
2128    if (MF.getRegInfo().liveout_empty()) {
2129      SmallVector<CCValAssign, 16> RVLocs;
2130      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2131                     *DAG.getContext());
2132      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2133      for (unsigned i = 0; i != RVLocs.size(); ++i)
2134        if (RVLocs[i].isRegLoc())
2135          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2136    }
2137    return DAG.getNode(X86ISD::TC_RETURN, dl,
2138                       NodeTys, &Ops[0], Ops.size());
2139  }
2140
2141  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2142  InFlag = Chain.getValue(1);
2143
2144  // Create the CALLSEQ_END node.
2145  unsigned NumBytesForCalleeToPush;
2146  if (IsCalleePop(isVarArg, CallConv))
2147    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2148  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2149    // If this is a call to a struct-return function, the callee
2150    // pops the hidden struct pointer, so we have to push it back.
2151    // This is common for Darwin/X86, Linux & Mingw32 targets.
2152    NumBytesForCalleeToPush = 4;
2153  else
2154    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2155
2156  // Returns a flag for retval copy to use.
2157  if (!IsSibcall) {
2158    Chain = DAG.getCALLSEQ_END(Chain,
2159                               DAG.getIntPtrConstant(NumBytes, true),
2160                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2161                                                     true),
2162                               InFlag);
2163    InFlag = Chain.getValue(1);
2164  }
2165
2166  // Handle result values, copying them out of physregs into vregs that we
2167  // return.
2168  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2169                         Ins, dl, DAG, InVals);
2170}
2171
2172
2173//===----------------------------------------------------------------------===//
2174//                Fast Calling Convention (tail call) implementation
2175//===----------------------------------------------------------------------===//
2176
2177//  Like std call, callee cleans arguments, convention except that ECX is
2178//  reserved for storing the tail called function address. Only 2 registers are
2179//  free for argument passing (inreg). Tail call optimization is performed
2180//  provided:
2181//                * tailcallopt is enabled
2182//                * caller/callee are fastcc
2183//  On X86_64 architecture with GOT-style position independent code only local
2184//  (within module) calls are supported at the moment.
2185//  To keep the stack aligned according to platform abi the function
2186//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2187//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2188//  If a tail called function callee has more arguments than the caller the
2189//  caller needs to make sure that there is room to move the RETADDR to. This is
2190//  achieved by reserving an area the size of the argument delta right after the
2191//  original REtADDR, but before the saved framepointer or the spilled registers
2192//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2193//  stack layout:
2194//    arg1
2195//    arg2
2196//    RETADDR
2197//    [ new RETADDR
2198//      move area ]
2199//    (possible EBP)
2200//    ESI
2201//    EDI
2202//    local1 ..
2203
2204/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2205/// for a 16 byte align requirement.
2206unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2207                                                        SelectionDAG& DAG) {
2208  MachineFunction &MF = DAG.getMachineFunction();
2209  const TargetMachine &TM = MF.getTarget();
2210  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2211  unsigned StackAlignment = TFI.getStackAlignment();
2212  uint64_t AlignMask = StackAlignment - 1;
2213  int64_t Offset = StackSize;
2214  uint64_t SlotSize = TD->getPointerSize();
2215  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2216    // Number smaller than 12 so just add the difference.
2217    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2218  } else {
2219    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2220    Offset = ((~AlignMask) & Offset) + StackAlignment +
2221      (StackAlignment-SlotSize);
2222  }
2223  return Offset;
2224}
2225
2226/// MatchingStackOffset - Return true if the given stack call argument is
2227/// already available in the same position (relatively) of the caller's
2228/// incoming argument stack.
2229static
2230bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2231                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2232                         const X86InstrInfo *TII) {
2233  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2234  int FI = INT_MAX;
2235  if (Arg.getOpcode() == ISD::CopyFromReg) {
2236    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2237    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2238      return false;
2239    MachineInstr *Def = MRI->getVRegDef(VR);
2240    if (!Def)
2241      return false;
2242    if (!Flags.isByVal()) {
2243      if (!TII->isLoadFromStackSlot(Def, FI))
2244        return false;
2245    } else {
2246      unsigned Opcode = Def->getOpcode();
2247      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2248          Def->getOperand(1).isFI()) {
2249        FI = Def->getOperand(1).getIndex();
2250        Bytes = Flags.getByValSize();
2251      } else
2252        return false;
2253    }
2254  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2255    if (Flags.isByVal())
2256      // ByVal argument is passed in as a pointer but it's now being
2257      // dereferenced. e.g.
2258      // define @foo(%struct.X* %A) {
2259      //   tail call @bar(%struct.X* byval %A)
2260      // }
2261      return false;
2262    SDValue Ptr = Ld->getBasePtr();
2263    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2264    if (!FINode)
2265      return false;
2266    FI = FINode->getIndex();
2267  } else
2268    return false;
2269
2270  assert(FI != INT_MAX);
2271  if (!MFI->isFixedObjectIndex(FI))
2272    return false;
2273  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2274}
2275
2276/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2277/// for tail call optimization. Targets which want to do tail call
2278/// optimization should implement this function.
2279bool
2280X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2281                                                     CallingConv::ID CalleeCC,
2282                                                     bool isVarArg,
2283                                                     bool isCalleeStructRet,
2284                                                     bool isCallerStructRet,
2285                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2286                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2287                                                     SelectionDAG& DAG) const {
2288  if (!IsTailCallConvention(CalleeCC) &&
2289      CalleeCC != CallingConv::C)
2290    return false;
2291
2292  // If -tailcallopt is specified, make fastcc functions tail-callable.
2293  const Function *CallerF = DAG.getMachineFunction().getFunction();
2294  if (GuaranteedTailCallOpt) {
2295    if (IsTailCallConvention(CalleeCC) &&
2296        CallerF->getCallingConv() == CalleeCC)
2297      return true;
2298    return false;
2299  }
2300
2301  // Look for obvious safe cases to perform tail call optimization that does not
2302  // requite ABI changes. This is what gcc calls sibcall.
2303
2304  // Do not sibcall optimize vararg calls for now.
2305  if (isVarArg)
2306    return false;
2307
2308  // Also avoid sibcall optimization if either caller or callee uses struct
2309  // return semantics.
2310  if (isCalleeStructRet || isCallerStructRet)
2311    return false;
2312
2313  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2314  // Therefore if it's not used by the call it is not safe to optimize this into
2315  // a sibcall.
2316  bool Unused = false;
2317  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2318    if (!Ins[i].Used) {
2319      Unused = true;
2320      break;
2321    }
2322  }
2323  if (Unused) {
2324    SmallVector<CCValAssign, 16> RVLocs;
2325    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2326                   RVLocs, *DAG.getContext());
2327    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2328    for (unsigned i = 0; i != RVLocs.size(); ++i) {
2329      CCValAssign &VA = RVLocs[i];
2330      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2331        return false;
2332    }
2333  }
2334
2335  // If the callee takes no arguments then go on to check the results of the
2336  // call.
2337  if (!Outs.empty()) {
2338    // Check if stack adjustment is needed. For now, do not do this if any
2339    // argument is passed on the stack.
2340    SmallVector<CCValAssign, 16> ArgLocs;
2341    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2342                   ArgLocs, *DAG.getContext());
2343    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2344    if (CCInfo.getNextStackOffset()) {
2345      MachineFunction &MF = DAG.getMachineFunction();
2346      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2347        return false;
2348      if (Subtarget->isTargetWin64())
2349        // Win64 ABI has additional complications.
2350        return false;
2351
2352      // Check if the arguments are already laid out in the right way as
2353      // the caller's fixed stack objects.
2354      MachineFrameInfo *MFI = MF.getFrameInfo();
2355      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2356      const X86InstrInfo *TII =
2357        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2358      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2359        CCValAssign &VA = ArgLocs[i];
2360        EVT RegVT = VA.getLocVT();
2361        SDValue Arg = Outs[i].Val;
2362        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2363        if (VA.getLocInfo() == CCValAssign::Indirect)
2364          return false;
2365        if (!VA.isRegLoc()) {
2366          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2367                                   MFI, MRI, TII))
2368            return false;
2369        }
2370      }
2371    }
2372  }
2373
2374  return true;
2375}
2376
2377FastISel *
2378X86TargetLowering::createFastISel(MachineFunction &mf, MachineModuleInfo *mmo,
2379                            DwarfWriter *dw,
2380                            DenseMap<const Value *, unsigned> &vm,
2381                            DenseMap<const BasicBlock*, MachineBasicBlock*> &bm,
2382                            DenseMap<const AllocaInst *, int> &am
2383#ifndef NDEBUG
2384                          , SmallSet<Instruction*, 8> &cil
2385#endif
2386                                  ) {
2387  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2388#ifndef NDEBUG
2389                             , cil
2390#endif
2391                             );
2392}
2393
2394
2395//===----------------------------------------------------------------------===//
2396//                           Other Lowering Hooks
2397//===----------------------------------------------------------------------===//
2398
2399
2400SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2401  MachineFunction &MF = DAG.getMachineFunction();
2402  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2403  int ReturnAddrIndex = FuncInfo->getRAIndex();
2404
2405  if (ReturnAddrIndex == 0) {
2406    // Set up a frame object for the return address.
2407    uint64_t SlotSize = TD->getPointerSize();
2408    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2409                                                           false, false);
2410    FuncInfo->setRAIndex(ReturnAddrIndex);
2411  }
2412
2413  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2414}
2415
2416
2417bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2418                                       bool hasSymbolicDisplacement) {
2419  // Offset should fit into 32 bit immediate field.
2420  if (!isInt32(Offset))
2421    return false;
2422
2423  // If we don't have a symbolic displacement - we don't have any extra
2424  // restrictions.
2425  if (!hasSymbolicDisplacement)
2426    return true;
2427
2428  // FIXME: Some tweaks might be needed for medium code model.
2429  if (M != CodeModel::Small && M != CodeModel::Kernel)
2430    return false;
2431
2432  // For small code model we assume that latest object is 16MB before end of 31
2433  // bits boundary. We may also accept pretty large negative constants knowing
2434  // that all objects are in the positive half of address space.
2435  if (M == CodeModel::Small && Offset < 16*1024*1024)
2436    return true;
2437
2438  // For kernel code model we know that all object resist in the negative half
2439  // of 32bits address space. We may not accept negative offsets, since they may
2440  // be just off and we may accept pretty large positive ones.
2441  if (M == CodeModel::Kernel && Offset > 0)
2442    return true;
2443
2444  return false;
2445}
2446
2447/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2448/// specific condition code, returning the condition code and the LHS/RHS of the
2449/// comparison to make.
2450static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2451                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2452  if (!isFP) {
2453    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2454      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2455        // X > -1   -> X == 0, jump !sign.
2456        RHS = DAG.getConstant(0, RHS.getValueType());
2457        return X86::COND_NS;
2458      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2459        // X < 0   -> X == 0, jump on sign.
2460        return X86::COND_S;
2461      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2462        // X < 1   -> X <= 0
2463        RHS = DAG.getConstant(0, RHS.getValueType());
2464        return X86::COND_LE;
2465      }
2466    }
2467
2468    switch (SetCCOpcode) {
2469    default: llvm_unreachable("Invalid integer condition!");
2470    case ISD::SETEQ:  return X86::COND_E;
2471    case ISD::SETGT:  return X86::COND_G;
2472    case ISD::SETGE:  return X86::COND_GE;
2473    case ISD::SETLT:  return X86::COND_L;
2474    case ISD::SETLE:  return X86::COND_LE;
2475    case ISD::SETNE:  return X86::COND_NE;
2476    case ISD::SETULT: return X86::COND_B;
2477    case ISD::SETUGT: return X86::COND_A;
2478    case ISD::SETULE: return X86::COND_BE;
2479    case ISD::SETUGE: return X86::COND_AE;
2480    }
2481  }
2482
2483  // First determine if it is required or is profitable to flip the operands.
2484
2485  // If LHS is a foldable load, but RHS is not, flip the condition.
2486  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2487      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2488    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2489    std::swap(LHS, RHS);
2490  }
2491
2492  switch (SetCCOpcode) {
2493  default: break;
2494  case ISD::SETOLT:
2495  case ISD::SETOLE:
2496  case ISD::SETUGT:
2497  case ISD::SETUGE:
2498    std::swap(LHS, RHS);
2499    break;
2500  }
2501
2502  // On a floating point condition, the flags are set as follows:
2503  // ZF  PF  CF   op
2504  //  0 | 0 | 0 | X > Y
2505  //  0 | 0 | 1 | X < Y
2506  //  1 | 0 | 0 | X == Y
2507  //  1 | 1 | 1 | unordered
2508  switch (SetCCOpcode) {
2509  default: llvm_unreachable("Condcode should be pre-legalized away");
2510  case ISD::SETUEQ:
2511  case ISD::SETEQ:   return X86::COND_E;
2512  case ISD::SETOLT:              // flipped
2513  case ISD::SETOGT:
2514  case ISD::SETGT:   return X86::COND_A;
2515  case ISD::SETOLE:              // flipped
2516  case ISD::SETOGE:
2517  case ISD::SETGE:   return X86::COND_AE;
2518  case ISD::SETUGT:              // flipped
2519  case ISD::SETULT:
2520  case ISD::SETLT:   return X86::COND_B;
2521  case ISD::SETUGE:              // flipped
2522  case ISD::SETULE:
2523  case ISD::SETLE:   return X86::COND_BE;
2524  case ISD::SETONE:
2525  case ISD::SETNE:   return X86::COND_NE;
2526  case ISD::SETUO:   return X86::COND_P;
2527  case ISD::SETO:    return X86::COND_NP;
2528  case ISD::SETOEQ:
2529  case ISD::SETUNE:  return X86::COND_INVALID;
2530  }
2531}
2532
2533/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2534/// code. Current x86 isa includes the following FP cmov instructions:
2535/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2536static bool hasFPCMov(unsigned X86CC) {
2537  switch (X86CC) {
2538  default:
2539    return false;
2540  case X86::COND_B:
2541  case X86::COND_BE:
2542  case X86::COND_E:
2543  case X86::COND_P:
2544  case X86::COND_A:
2545  case X86::COND_AE:
2546  case X86::COND_NE:
2547  case X86::COND_NP:
2548    return true;
2549  }
2550}
2551
2552/// isFPImmLegal - Returns true if the target can instruction select the
2553/// specified FP immediate natively. If false, the legalizer will
2554/// materialize the FP immediate as a load from a constant pool.
2555bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2556  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2557    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2558      return true;
2559  }
2560  return false;
2561}
2562
2563/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2564/// the specified range (L, H].
2565static bool isUndefOrInRange(int Val, int Low, int Hi) {
2566  return (Val < 0) || (Val >= Low && Val < Hi);
2567}
2568
2569/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2570/// specified value.
2571static bool isUndefOrEqual(int Val, int CmpVal) {
2572  if (Val < 0 || Val == CmpVal)
2573    return true;
2574  return false;
2575}
2576
2577/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2578/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2579/// the second operand.
2580static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2581  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2582    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2583  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2584    return (Mask[0] < 2 && Mask[1] < 2);
2585  return false;
2586}
2587
2588bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2589  SmallVector<int, 8> M;
2590  N->getMask(M);
2591  return ::isPSHUFDMask(M, N->getValueType(0));
2592}
2593
2594/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2595/// is suitable for input to PSHUFHW.
2596static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2597  if (VT != MVT::v8i16)
2598    return false;
2599
2600  // Lower quadword copied in order or undef.
2601  for (int i = 0; i != 4; ++i)
2602    if (Mask[i] >= 0 && Mask[i] != i)
2603      return false;
2604
2605  // Upper quadword shuffled.
2606  for (int i = 4; i != 8; ++i)
2607    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2608      return false;
2609
2610  return true;
2611}
2612
2613bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2614  SmallVector<int, 8> M;
2615  N->getMask(M);
2616  return ::isPSHUFHWMask(M, N->getValueType(0));
2617}
2618
2619/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2620/// is suitable for input to PSHUFLW.
2621static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2622  if (VT != MVT::v8i16)
2623    return false;
2624
2625  // Upper quadword copied in order.
2626  for (int i = 4; i != 8; ++i)
2627    if (Mask[i] >= 0 && Mask[i] != i)
2628      return false;
2629
2630  // Lower quadword shuffled.
2631  for (int i = 0; i != 4; ++i)
2632    if (Mask[i] >= 4)
2633      return false;
2634
2635  return true;
2636}
2637
2638bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2639  SmallVector<int, 8> M;
2640  N->getMask(M);
2641  return ::isPSHUFLWMask(M, N->getValueType(0));
2642}
2643
2644/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2645/// is suitable for input to PALIGNR.
2646static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2647                          bool hasSSSE3) {
2648  int i, e = VT.getVectorNumElements();
2649
2650  // Do not handle v2i64 / v2f64 shuffles with palignr.
2651  if (e < 4 || !hasSSSE3)
2652    return false;
2653
2654  for (i = 0; i != e; ++i)
2655    if (Mask[i] >= 0)
2656      break;
2657
2658  // All undef, not a palignr.
2659  if (i == e)
2660    return false;
2661
2662  // Determine if it's ok to perform a palignr with only the LHS, since we
2663  // don't have access to the actual shuffle elements to see if RHS is undef.
2664  bool Unary = Mask[i] < (int)e;
2665  bool NeedsUnary = false;
2666
2667  int s = Mask[i] - i;
2668
2669  // Check the rest of the elements to see if they are consecutive.
2670  for (++i; i != e; ++i) {
2671    int m = Mask[i];
2672    if (m < 0)
2673      continue;
2674
2675    Unary = Unary && (m < (int)e);
2676    NeedsUnary = NeedsUnary || (m < s);
2677
2678    if (NeedsUnary && !Unary)
2679      return false;
2680    if (Unary && m != ((s+i) & (e-1)))
2681      return false;
2682    if (!Unary && m != (s+i))
2683      return false;
2684  }
2685  return true;
2686}
2687
2688bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2689  SmallVector<int, 8> M;
2690  N->getMask(M);
2691  return ::isPALIGNRMask(M, N->getValueType(0), true);
2692}
2693
2694/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2695/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2696static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2697  int NumElems = VT.getVectorNumElements();
2698  if (NumElems != 2 && NumElems != 4)
2699    return false;
2700
2701  int Half = NumElems / 2;
2702  for (int i = 0; i < Half; ++i)
2703    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2704      return false;
2705  for (int i = Half; i < NumElems; ++i)
2706    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2707      return false;
2708
2709  return true;
2710}
2711
2712bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2713  SmallVector<int, 8> M;
2714  N->getMask(M);
2715  return ::isSHUFPMask(M, N->getValueType(0));
2716}
2717
2718/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2719/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2720/// half elements to come from vector 1 (which would equal the dest.) and
2721/// the upper half to come from vector 2.
2722static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2723  int NumElems = VT.getVectorNumElements();
2724
2725  if (NumElems != 2 && NumElems != 4)
2726    return false;
2727
2728  int Half = NumElems / 2;
2729  for (int i = 0; i < Half; ++i)
2730    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2731      return false;
2732  for (int i = Half; i < NumElems; ++i)
2733    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2734      return false;
2735  return true;
2736}
2737
2738static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2739  SmallVector<int, 8> M;
2740  N->getMask(M);
2741  return isCommutedSHUFPMask(M, N->getValueType(0));
2742}
2743
2744/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2745/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2746bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2747  if (N->getValueType(0).getVectorNumElements() != 4)
2748    return false;
2749
2750  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2751  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2752         isUndefOrEqual(N->getMaskElt(1), 7) &&
2753         isUndefOrEqual(N->getMaskElt(2), 2) &&
2754         isUndefOrEqual(N->getMaskElt(3), 3);
2755}
2756
2757/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2758/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2759/// <2, 3, 2, 3>
2760bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2761  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2762
2763  if (NumElems != 4)
2764    return false;
2765
2766  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2767  isUndefOrEqual(N->getMaskElt(1), 3) &&
2768  isUndefOrEqual(N->getMaskElt(2), 2) &&
2769  isUndefOrEqual(N->getMaskElt(3), 3);
2770}
2771
2772/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2773/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2774bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2775  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2776
2777  if (NumElems != 2 && NumElems != 4)
2778    return false;
2779
2780  for (unsigned i = 0; i < NumElems/2; ++i)
2781    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2782      return false;
2783
2784  for (unsigned i = NumElems/2; i < NumElems; ++i)
2785    if (!isUndefOrEqual(N->getMaskElt(i), i))
2786      return false;
2787
2788  return true;
2789}
2790
2791/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2792/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2793bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2794  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2795
2796  if (NumElems != 2 && NumElems != 4)
2797    return false;
2798
2799  for (unsigned i = 0; i < NumElems/2; ++i)
2800    if (!isUndefOrEqual(N->getMaskElt(i), i))
2801      return false;
2802
2803  for (unsigned i = 0; i < NumElems/2; ++i)
2804    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2805      return false;
2806
2807  return true;
2808}
2809
2810/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2811/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2812static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2813                         bool V2IsSplat = false) {
2814  int NumElts = VT.getVectorNumElements();
2815  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2816    return false;
2817
2818  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2819    int BitI  = Mask[i];
2820    int BitI1 = Mask[i+1];
2821    if (!isUndefOrEqual(BitI, j))
2822      return false;
2823    if (V2IsSplat) {
2824      if (!isUndefOrEqual(BitI1, NumElts))
2825        return false;
2826    } else {
2827      if (!isUndefOrEqual(BitI1, j + NumElts))
2828        return false;
2829    }
2830  }
2831  return true;
2832}
2833
2834bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2835  SmallVector<int, 8> M;
2836  N->getMask(M);
2837  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2838}
2839
2840/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2841/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2842static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2843                         bool V2IsSplat = false) {
2844  int NumElts = VT.getVectorNumElements();
2845  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2846    return false;
2847
2848  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2849    int BitI  = Mask[i];
2850    int BitI1 = Mask[i+1];
2851    if (!isUndefOrEqual(BitI, j + NumElts/2))
2852      return false;
2853    if (V2IsSplat) {
2854      if (isUndefOrEqual(BitI1, NumElts))
2855        return false;
2856    } else {
2857      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2858        return false;
2859    }
2860  }
2861  return true;
2862}
2863
2864bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2865  SmallVector<int, 8> M;
2866  N->getMask(M);
2867  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2868}
2869
2870/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2871/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2872/// <0, 0, 1, 1>
2873static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2874  int NumElems = VT.getVectorNumElements();
2875  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2876    return false;
2877
2878  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2879    int BitI  = Mask[i];
2880    int BitI1 = Mask[i+1];
2881    if (!isUndefOrEqual(BitI, j))
2882      return false;
2883    if (!isUndefOrEqual(BitI1, j))
2884      return false;
2885  }
2886  return true;
2887}
2888
2889bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2890  SmallVector<int, 8> M;
2891  N->getMask(M);
2892  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2893}
2894
2895/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2896/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2897/// <2, 2, 3, 3>
2898static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2899  int NumElems = VT.getVectorNumElements();
2900  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2901    return false;
2902
2903  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2904    int BitI  = Mask[i];
2905    int BitI1 = Mask[i+1];
2906    if (!isUndefOrEqual(BitI, j))
2907      return false;
2908    if (!isUndefOrEqual(BitI1, j))
2909      return false;
2910  }
2911  return true;
2912}
2913
2914bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2915  SmallVector<int, 8> M;
2916  N->getMask(M);
2917  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2918}
2919
2920/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2921/// specifies a shuffle of elements that is suitable for input to MOVSS,
2922/// MOVSD, and MOVD, i.e. setting the lowest element.
2923static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2924  if (VT.getVectorElementType().getSizeInBits() < 32)
2925    return false;
2926
2927  int NumElts = VT.getVectorNumElements();
2928
2929  if (!isUndefOrEqual(Mask[0], NumElts))
2930    return false;
2931
2932  for (int i = 1; i < NumElts; ++i)
2933    if (!isUndefOrEqual(Mask[i], i))
2934      return false;
2935
2936  return true;
2937}
2938
2939bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2940  SmallVector<int, 8> M;
2941  N->getMask(M);
2942  return ::isMOVLMask(M, N->getValueType(0));
2943}
2944
2945/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2946/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2947/// element of vector 2 and the other elements to come from vector 1 in order.
2948static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2949                               bool V2IsSplat = false, bool V2IsUndef = false) {
2950  int NumOps = VT.getVectorNumElements();
2951  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2952    return false;
2953
2954  if (!isUndefOrEqual(Mask[0], 0))
2955    return false;
2956
2957  for (int i = 1; i < NumOps; ++i)
2958    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2959          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2960          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2961      return false;
2962
2963  return true;
2964}
2965
2966static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2967                           bool V2IsUndef = false) {
2968  SmallVector<int, 8> M;
2969  N->getMask(M);
2970  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2971}
2972
2973/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2974/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2975bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2976  if (N->getValueType(0).getVectorNumElements() != 4)
2977    return false;
2978
2979  // Expect 1, 1, 3, 3
2980  for (unsigned i = 0; i < 2; ++i) {
2981    int Elt = N->getMaskElt(i);
2982    if (Elt >= 0 && Elt != 1)
2983      return false;
2984  }
2985
2986  bool HasHi = false;
2987  for (unsigned i = 2; i < 4; ++i) {
2988    int Elt = N->getMaskElt(i);
2989    if (Elt >= 0 && Elt != 3)
2990      return false;
2991    if (Elt == 3)
2992      HasHi = true;
2993  }
2994  // Don't use movshdup if it can be done with a shufps.
2995  // FIXME: verify that matching u, u, 3, 3 is what we want.
2996  return HasHi;
2997}
2998
2999/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3000/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3001bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3002  if (N->getValueType(0).getVectorNumElements() != 4)
3003    return false;
3004
3005  // Expect 0, 0, 2, 2
3006  for (unsigned i = 0; i < 2; ++i)
3007    if (N->getMaskElt(i) > 0)
3008      return false;
3009
3010  bool HasHi = false;
3011  for (unsigned i = 2; i < 4; ++i) {
3012    int Elt = N->getMaskElt(i);
3013    if (Elt >= 0 && Elt != 2)
3014      return false;
3015    if (Elt == 2)
3016      HasHi = true;
3017  }
3018  // Don't use movsldup if it can be done with a shufps.
3019  return HasHi;
3020}
3021
3022/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3023/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3024bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3025  int e = N->getValueType(0).getVectorNumElements() / 2;
3026
3027  for (int i = 0; i < e; ++i)
3028    if (!isUndefOrEqual(N->getMaskElt(i), i))
3029      return false;
3030  for (int i = 0; i < e; ++i)
3031    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3032      return false;
3033  return true;
3034}
3035
3036/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3037/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3038unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3039  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3040  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3041
3042  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3043  unsigned Mask = 0;
3044  for (int i = 0; i < NumOperands; ++i) {
3045    int Val = SVOp->getMaskElt(NumOperands-i-1);
3046    if (Val < 0) Val = 0;
3047    if (Val >= NumOperands) Val -= NumOperands;
3048    Mask |= Val;
3049    if (i != NumOperands - 1)
3050      Mask <<= Shift;
3051  }
3052  return Mask;
3053}
3054
3055/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3056/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3057unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3058  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3059  unsigned Mask = 0;
3060  // 8 nodes, but we only care about the last 4.
3061  for (unsigned i = 7; i >= 4; --i) {
3062    int Val = SVOp->getMaskElt(i);
3063    if (Val >= 0)
3064      Mask |= (Val - 4);
3065    if (i != 4)
3066      Mask <<= 2;
3067  }
3068  return Mask;
3069}
3070
3071/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3072/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3073unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3074  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3075  unsigned Mask = 0;
3076  // 8 nodes, but we only care about the first 4.
3077  for (int i = 3; i >= 0; --i) {
3078    int Val = SVOp->getMaskElt(i);
3079    if (Val >= 0)
3080      Mask |= Val;
3081    if (i != 0)
3082      Mask <<= 2;
3083  }
3084  return Mask;
3085}
3086
3087/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3088/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3089unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3090  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3091  EVT VVT = N->getValueType(0);
3092  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3093  int Val = 0;
3094
3095  unsigned i, e;
3096  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3097    Val = SVOp->getMaskElt(i);
3098    if (Val >= 0)
3099      break;
3100  }
3101  return (Val - i) * EltSize;
3102}
3103
3104/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3105/// constant +0.0.
3106bool X86::isZeroNode(SDValue Elt) {
3107  return ((isa<ConstantSDNode>(Elt) &&
3108           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
3109          (isa<ConstantFPSDNode>(Elt) &&
3110           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3111}
3112
3113/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3114/// their permute mask.
3115static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3116                                    SelectionDAG &DAG) {
3117  EVT VT = SVOp->getValueType(0);
3118  unsigned NumElems = VT.getVectorNumElements();
3119  SmallVector<int, 8> MaskVec;
3120
3121  for (unsigned i = 0; i != NumElems; ++i) {
3122    int idx = SVOp->getMaskElt(i);
3123    if (idx < 0)
3124      MaskVec.push_back(idx);
3125    else if (idx < (int)NumElems)
3126      MaskVec.push_back(idx + NumElems);
3127    else
3128      MaskVec.push_back(idx - NumElems);
3129  }
3130  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3131                              SVOp->getOperand(0), &MaskVec[0]);
3132}
3133
3134/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3135/// the two vector operands have swapped position.
3136static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3137  unsigned NumElems = VT.getVectorNumElements();
3138  for (unsigned i = 0; i != NumElems; ++i) {
3139    int idx = Mask[i];
3140    if (idx < 0)
3141      continue;
3142    else if (idx < (int)NumElems)
3143      Mask[i] = idx + NumElems;
3144    else
3145      Mask[i] = idx - NumElems;
3146  }
3147}
3148
3149/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3150/// match movhlps. The lower half elements should come from upper half of
3151/// V1 (and in order), and the upper half elements should come from the upper
3152/// half of V2 (and in order).
3153static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3154  if (Op->getValueType(0).getVectorNumElements() != 4)
3155    return false;
3156  for (unsigned i = 0, e = 2; i != e; ++i)
3157    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3158      return false;
3159  for (unsigned i = 2; i != 4; ++i)
3160    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3161      return false;
3162  return true;
3163}
3164
3165/// isScalarLoadToVector - Returns true if the node is a scalar load that
3166/// is promoted to a vector. It also returns the LoadSDNode by reference if
3167/// required.
3168static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3169  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3170    return false;
3171  N = N->getOperand(0).getNode();
3172  if (!ISD::isNON_EXTLoad(N))
3173    return false;
3174  if (LD)
3175    *LD = cast<LoadSDNode>(N);
3176  return true;
3177}
3178
3179/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3180/// match movlp{s|d}. The lower half elements should come from lower half of
3181/// V1 (and in order), and the upper half elements should come from the upper
3182/// half of V2 (and in order). And since V1 will become the source of the
3183/// MOVLP, it must be either a vector load or a scalar load to vector.
3184static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3185                               ShuffleVectorSDNode *Op) {
3186  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3187    return false;
3188  // Is V2 is a vector load, don't do this transformation. We will try to use
3189  // load folding shufps op.
3190  if (ISD::isNON_EXTLoad(V2))
3191    return false;
3192
3193  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3194
3195  if (NumElems != 2 && NumElems != 4)
3196    return false;
3197  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3198    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3199      return false;
3200  for (unsigned i = NumElems/2; i != NumElems; ++i)
3201    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3202      return false;
3203  return true;
3204}
3205
3206/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3207/// all the same.
3208static bool isSplatVector(SDNode *N) {
3209  if (N->getOpcode() != ISD::BUILD_VECTOR)
3210    return false;
3211
3212  SDValue SplatValue = N->getOperand(0);
3213  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3214    if (N->getOperand(i) != SplatValue)
3215      return false;
3216  return true;
3217}
3218
3219/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3220/// to an zero vector.
3221/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3222static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3223  SDValue V1 = N->getOperand(0);
3224  SDValue V2 = N->getOperand(1);
3225  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3226  for (unsigned i = 0; i != NumElems; ++i) {
3227    int Idx = N->getMaskElt(i);
3228    if (Idx >= (int)NumElems) {
3229      unsigned Opc = V2.getOpcode();
3230      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3231        continue;
3232      if (Opc != ISD::BUILD_VECTOR ||
3233          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3234        return false;
3235    } else if (Idx >= 0) {
3236      unsigned Opc = V1.getOpcode();
3237      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3238        continue;
3239      if (Opc != ISD::BUILD_VECTOR ||
3240          !X86::isZeroNode(V1.getOperand(Idx)))
3241        return false;
3242    }
3243  }
3244  return true;
3245}
3246
3247/// getZeroVector - Returns a vector of specified type with all zero elements.
3248///
3249static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3250                             DebugLoc dl) {
3251  assert(VT.isVector() && "Expected a vector type");
3252
3253  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3254  // type.  This ensures they get CSE'd.
3255  SDValue Vec;
3256  if (VT.getSizeInBits() == 64) { // MMX
3257    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3258    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3259  } else if (HasSSE2) {  // SSE2
3260    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3261    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3262  } else { // SSE1
3263    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3264    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3265  }
3266  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3267}
3268
3269/// getOnesVector - Returns a vector of specified type with all bits set.
3270///
3271static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3272  assert(VT.isVector() && "Expected a vector type");
3273
3274  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3275  // type.  This ensures they get CSE'd.
3276  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3277  SDValue Vec;
3278  if (VT.getSizeInBits() == 64)  // MMX
3279    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3280  else                                              // SSE
3281    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3282  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3283}
3284
3285
3286/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3287/// that point to V2 points to its first element.
3288static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3289  EVT VT = SVOp->getValueType(0);
3290  unsigned NumElems = VT.getVectorNumElements();
3291
3292  bool Changed = false;
3293  SmallVector<int, 8> MaskVec;
3294  SVOp->getMask(MaskVec);
3295
3296  for (unsigned i = 0; i != NumElems; ++i) {
3297    if (MaskVec[i] > (int)NumElems) {
3298      MaskVec[i] = NumElems;
3299      Changed = true;
3300    }
3301  }
3302  if (Changed)
3303    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3304                                SVOp->getOperand(1), &MaskVec[0]);
3305  return SDValue(SVOp, 0);
3306}
3307
3308/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3309/// operation of specified width.
3310static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3311                       SDValue V2) {
3312  unsigned NumElems = VT.getVectorNumElements();
3313  SmallVector<int, 8> Mask;
3314  Mask.push_back(NumElems);
3315  for (unsigned i = 1; i != NumElems; ++i)
3316    Mask.push_back(i);
3317  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3318}
3319
3320/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3321static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3322                          SDValue V2) {
3323  unsigned NumElems = VT.getVectorNumElements();
3324  SmallVector<int, 8> Mask;
3325  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3326    Mask.push_back(i);
3327    Mask.push_back(i + NumElems);
3328  }
3329  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3330}
3331
3332/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3333static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3334                          SDValue V2) {
3335  unsigned NumElems = VT.getVectorNumElements();
3336  unsigned Half = NumElems/2;
3337  SmallVector<int, 8> Mask;
3338  for (unsigned i = 0; i != Half; ++i) {
3339    Mask.push_back(i + Half);
3340    Mask.push_back(i + NumElems + Half);
3341  }
3342  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3343}
3344
3345/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3346static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3347                            bool HasSSE2) {
3348  if (SV->getValueType(0).getVectorNumElements() <= 4)
3349    return SDValue(SV, 0);
3350
3351  EVT PVT = MVT::v4f32;
3352  EVT VT = SV->getValueType(0);
3353  DebugLoc dl = SV->getDebugLoc();
3354  SDValue V1 = SV->getOperand(0);
3355  int NumElems = VT.getVectorNumElements();
3356  int EltNo = SV->getSplatIndex();
3357
3358  // unpack elements to the correct location
3359  while (NumElems > 4) {
3360    if (EltNo < NumElems/2) {
3361      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3362    } else {
3363      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3364      EltNo -= NumElems/2;
3365    }
3366    NumElems >>= 1;
3367  }
3368
3369  // Perform the splat.
3370  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3371  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3372  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3373  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3374}
3375
3376/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3377/// vector of zero or undef vector.  This produces a shuffle where the low
3378/// element of V2 is swizzled into the zero/undef vector, landing at element
3379/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3380static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3381                                             bool isZero, bool HasSSE2,
3382                                             SelectionDAG &DAG) {
3383  EVT VT = V2.getValueType();
3384  SDValue V1 = isZero
3385    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3386  unsigned NumElems = VT.getVectorNumElements();
3387  SmallVector<int, 16> MaskVec;
3388  for (unsigned i = 0; i != NumElems; ++i)
3389    // If this is the insertion idx, put the low elt of V2 here.
3390    MaskVec.push_back(i == Idx ? NumElems : i);
3391  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3392}
3393
3394/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3395/// a shuffle that is zero.
3396static
3397unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3398                                  bool Low, SelectionDAG &DAG) {
3399  unsigned NumZeros = 0;
3400  for (int i = 0; i < NumElems; ++i) {
3401    unsigned Index = Low ? i : NumElems-i-1;
3402    int Idx = SVOp->getMaskElt(Index);
3403    if (Idx < 0) {
3404      ++NumZeros;
3405      continue;
3406    }
3407    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3408    if (Elt.getNode() && X86::isZeroNode(Elt))
3409      ++NumZeros;
3410    else
3411      break;
3412  }
3413  return NumZeros;
3414}
3415
3416/// isVectorShift - Returns true if the shuffle can be implemented as a
3417/// logical left or right shift of a vector.
3418/// FIXME: split into pslldqi, psrldqi, palignr variants.
3419static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3420                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3421  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3422
3423  isLeft = true;
3424  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3425  if (!NumZeros) {
3426    isLeft = false;
3427    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3428    if (!NumZeros)
3429      return false;
3430  }
3431  bool SeenV1 = false;
3432  bool SeenV2 = false;
3433  for (int i = NumZeros; i < NumElems; ++i) {
3434    int Val = isLeft ? (i - NumZeros) : i;
3435    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3436    if (Idx < 0)
3437      continue;
3438    if (Idx < NumElems)
3439      SeenV1 = true;
3440    else {
3441      Idx -= NumElems;
3442      SeenV2 = true;
3443    }
3444    if (Idx != Val)
3445      return false;
3446  }
3447  if (SeenV1 && SeenV2)
3448    return false;
3449
3450  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3451  ShAmt = NumZeros;
3452  return true;
3453}
3454
3455
3456/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3457///
3458static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3459                                       unsigned NumNonZero, unsigned NumZero,
3460                                       SelectionDAG &DAG, TargetLowering &TLI) {
3461  if (NumNonZero > 8)
3462    return SDValue();
3463
3464  DebugLoc dl = Op.getDebugLoc();
3465  SDValue V(0, 0);
3466  bool First = true;
3467  for (unsigned i = 0; i < 16; ++i) {
3468    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3469    if (ThisIsNonZero && First) {
3470      if (NumZero)
3471        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3472      else
3473        V = DAG.getUNDEF(MVT::v8i16);
3474      First = false;
3475    }
3476
3477    if ((i & 1) != 0) {
3478      SDValue ThisElt(0, 0), LastElt(0, 0);
3479      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3480      if (LastIsNonZero) {
3481        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3482                              MVT::i16, Op.getOperand(i-1));
3483      }
3484      if (ThisIsNonZero) {
3485        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3486        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3487                              ThisElt, DAG.getConstant(8, MVT::i8));
3488        if (LastIsNonZero)
3489          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3490      } else
3491        ThisElt = LastElt;
3492
3493      if (ThisElt.getNode())
3494        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3495                        DAG.getIntPtrConstant(i/2));
3496    }
3497  }
3498
3499  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3500}
3501
3502/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3503///
3504static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3505                                       unsigned NumNonZero, unsigned NumZero,
3506                                       SelectionDAG &DAG, TargetLowering &TLI) {
3507  if (NumNonZero > 4)
3508    return SDValue();
3509
3510  DebugLoc dl = Op.getDebugLoc();
3511  SDValue V(0, 0);
3512  bool First = true;
3513  for (unsigned i = 0; i < 8; ++i) {
3514    bool isNonZero = (NonZeros & (1 << i)) != 0;
3515    if (isNonZero) {
3516      if (First) {
3517        if (NumZero)
3518          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3519        else
3520          V = DAG.getUNDEF(MVT::v8i16);
3521        First = false;
3522      }
3523      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3524                      MVT::v8i16, V, Op.getOperand(i),
3525                      DAG.getIntPtrConstant(i));
3526    }
3527  }
3528
3529  return V;
3530}
3531
3532/// getVShift - Return a vector logical shift node.
3533///
3534static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3535                         unsigned NumBits, SelectionDAG &DAG,
3536                         const TargetLowering &TLI, DebugLoc dl) {
3537  bool isMMX = VT.getSizeInBits() == 64;
3538  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3539  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3540  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3541  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3542                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3543                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3544}
3545
3546SDValue
3547X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3548                                          SelectionDAG &DAG) {
3549
3550  // Check if the scalar load can be widened into a vector load. And if
3551  // the address is "base + cst" see if the cst can be "absorbed" into
3552  // the shuffle mask.
3553  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3554    SDValue Ptr = LD->getBasePtr();
3555    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3556      return SDValue();
3557    EVT PVT = LD->getValueType(0);
3558    if (PVT != MVT::i32 && PVT != MVT::f32)
3559      return SDValue();
3560
3561    int FI = -1;
3562    int64_t Offset = 0;
3563    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3564      FI = FINode->getIndex();
3565      Offset = 0;
3566    } else if (Ptr.getOpcode() == ISD::ADD &&
3567               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3568               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3569      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3570      Offset = Ptr.getConstantOperandVal(1);
3571      Ptr = Ptr.getOperand(0);
3572    } else {
3573      return SDValue();
3574    }
3575
3576    SDValue Chain = LD->getChain();
3577    // Make sure the stack object alignment is at least 16.
3578    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3579    if (DAG.InferPtrAlignment(Ptr) < 16) {
3580      if (MFI->isFixedObjectIndex(FI)) {
3581        // Can't change the alignment. FIXME: It's possible to compute
3582        // the exact stack offset and reference FI + adjust offset instead.
3583        // If someone *really* cares about this. That's the way to implement it.
3584        return SDValue();
3585      } else {
3586        MFI->setObjectAlignment(FI, 16);
3587      }
3588    }
3589
3590    // (Offset % 16) must be multiple of 4. Then address is then
3591    // Ptr + (Offset & ~15).
3592    if (Offset < 0)
3593      return SDValue();
3594    if ((Offset % 16) & 3)
3595      return SDValue();
3596    int64_t StartOffset = Offset & ~15;
3597    if (StartOffset)
3598      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3599                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3600
3601    int EltNo = (Offset - StartOffset) >> 2;
3602    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3603    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3604    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3605                             false, false, 0);
3606    // Canonicalize it to a v4i32 shuffle.
3607    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3608    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3609                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3610                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3611  }
3612
3613  return SDValue();
3614}
3615
3616SDValue
3617X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3618  DebugLoc dl = Op.getDebugLoc();
3619  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3620  if (ISD::isBuildVectorAllZeros(Op.getNode())
3621      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3622    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3623    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3624    // eliminated on x86-32 hosts.
3625    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3626      return Op;
3627
3628    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3629      return getOnesVector(Op.getValueType(), DAG, dl);
3630    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3631  }
3632
3633  EVT VT = Op.getValueType();
3634  EVT ExtVT = VT.getVectorElementType();
3635  unsigned EVTBits = ExtVT.getSizeInBits();
3636
3637  unsigned NumElems = Op.getNumOperands();
3638  unsigned NumZero  = 0;
3639  unsigned NumNonZero = 0;
3640  unsigned NonZeros = 0;
3641  bool IsAllConstants = true;
3642  SmallSet<SDValue, 8> Values;
3643  for (unsigned i = 0; i < NumElems; ++i) {
3644    SDValue Elt = Op.getOperand(i);
3645    if (Elt.getOpcode() == ISD::UNDEF)
3646      continue;
3647    Values.insert(Elt);
3648    if (Elt.getOpcode() != ISD::Constant &&
3649        Elt.getOpcode() != ISD::ConstantFP)
3650      IsAllConstants = false;
3651    if (X86::isZeroNode(Elt))
3652      NumZero++;
3653    else {
3654      NonZeros |= (1 << i);
3655      NumNonZero++;
3656    }
3657  }
3658
3659  if (NumNonZero == 0) {
3660    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3661    return DAG.getUNDEF(VT);
3662  }
3663
3664  // Special case for single non-zero, non-undef, element.
3665  if (NumNonZero == 1) {
3666    unsigned Idx = CountTrailingZeros_32(NonZeros);
3667    SDValue Item = Op.getOperand(Idx);
3668
3669    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3670    // the value are obviously zero, truncate the value to i32 and do the
3671    // insertion that way.  Only do this if the value is non-constant or if the
3672    // value is a constant being inserted into element 0.  It is cheaper to do
3673    // a constant pool load than it is to do a movd + shuffle.
3674    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3675        (!IsAllConstants || Idx == 0)) {
3676      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3677        // Handle MMX and SSE both.
3678        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3679        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3680
3681        // Truncate the value (which may itself be a constant) to i32, and
3682        // convert it to a vector with movd (S2V+shuffle to zero extend).
3683        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3684        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3685        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3686                                           Subtarget->hasSSE2(), DAG);
3687
3688        // Now we have our 32-bit value zero extended in the low element of
3689        // a vector.  If Idx != 0, swizzle it into place.
3690        if (Idx != 0) {
3691          SmallVector<int, 4> Mask;
3692          Mask.push_back(Idx);
3693          for (unsigned i = 1; i != VecElts; ++i)
3694            Mask.push_back(i);
3695          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3696                                      DAG.getUNDEF(Item.getValueType()),
3697                                      &Mask[0]);
3698        }
3699        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3700      }
3701    }
3702
3703    // If we have a constant or non-constant insertion into the low element of
3704    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3705    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3706    // depending on what the source datatype is.
3707    if (Idx == 0) {
3708      if (NumZero == 0) {
3709        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3710      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3711          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3712        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3713        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3714        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3715                                           DAG);
3716      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3717        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3718        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3719        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3720        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3721                                           Subtarget->hasSSE2(), DAG);
3722        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3723      }
3724    }
3725
3726    // Is it a vector logical left shift?
3727    if (NumElems == 2 && Idx == 1 &&
3728        X86::isZeroNode(Op.getOperand(0)) &&
3729        !X86::isZeroNode(Op.getOperand(1))) {
3730      unsigned NumBits = VT.getSizeInBits();
3731      return getVShift(true, VT,
3732                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3733                                   VT, Op.getOperand(1)),
3734                       NumBits/2, DAG, *this, dl);
3735    }
3736
3737    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3738      return SDValue();
3739
3740    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3741    // is a non-constant being inserted into an element other than the low one,
3742    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3743    // movd/movss) to move this into the low element, then shuffle it into
3744    // place.
3745    if (EVTBits == 32) {
3746      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3747
3748      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3749      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3750                                         Subtarget->hasSSE2(), DAG);
3751      SmallVector<int, 8> MaskVec;
3752      for (unsigned i = 0; i < NumElems; i++)
3753        MaskVec.push_back(i == Idx ? 0 : 1);
3754      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3755    }
3756  }
3757
3758  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3759  if (Values.size() == 1) {
3760    if (EVTBits == 32) {
3761      // Instead of a shuffle like this:
3762      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
3763      // Check if it's possible to issue this instead.
3764      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
3765      unsigned Idx = CountTrailingZeros_32(NonZeros);
3766      SDValue Item = Op.getOperand(Idx);
3767      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
3768        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
3769    }
3770    return SDValue();
3771  }
3772
3773  // A vector full of immediates; various special cases are already
3774  // handled, so this is best done with a single constant-pool load.
3775  if (IsAllConstants)
3776    return SDValue();
3777
3778  // Let legalizer expand 2-wide build_vectors.
3779  if (EVTBits == 64) {
3780    if (NumNonZero == 1) {
3781      // One half is zero or undef.
3782      unsigned Idx = CountTrailingZeros_32(NonZeros);
3783      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3784                                 Op.getOperand(Idx));
3785      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3786                                         Subtarget->hasSSE2(), DAG);
3787    }
3788    return SDValue();
3789  }
3790
3791  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3792  if (EVTBits == 8 && NumElems == 16) {
3793    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3794                                        *this);
3795    if (V.getNode()) return V;
3796  }
3797
3798  if (EVTBits == 16 && NumElems == 8) {
3799    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3800                                        *this);
3801    if (V.getNode()) return V;
3802  }
3803
3804  // If element VT is == 32 bits, turn it into a number of shuffles.
3805  SmallVector<SDValue, 8> V;
3806  V.resize(NumElems);
3807  if (NumElems == 4 && NumZero > 0) {
3808    for (unsigned i = 0; i < 4; ++i) {
3809      bool isZero = !(NonZeros & (1 << i));
3810      if (isZero)
3811        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3812      else
3813        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3814    }
3815
3816    for (unsigned i = 0; i < 2; ++i) {
3817      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3818        default: break;
3819        case 0:
3820          V[i] = V[i*2];  // Must be a zero vector.
3821          break;
3822        case 1:
3823          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3824          break;
3825        case 2:
3826          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3827          break;
3828        case 3:
3829          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3830          break;
3831      }
3832    }
3833
3834    SmallVector<int, 8> MaskVec;
3835    bool Reverse = (NonZeros & 0x3) == 2;
3836    for (unsigned i = 0; i < 2; ++i)
3837      MaskVec.push_back(Reverse ? 1-i : i);
3838    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3839    for (unsigned i = 0; i < 2; ++i)
3840      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3841    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3842  }
3843
3844  if (Values.size() > 2) {
3845    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3846    // values to be inserted is equal to the number of elements, in which case
3847    // use the unpack code below in the hopes of matching the consecutive elts
3848    // load merge pattern for shuffles.
3849    // FIXME: We could probably just check that here directly.
3850    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3851        getSubtarget()->hasSSE41()) {
3852      V[0] = DAG.getUNDEF(VT);
3853      for (unsigned i = 0; i < NumElems; ++i)
3854        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3855          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3856                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3857      return V[0];
3858    }
3859    // Expand into a number of unpckl*.
3860    // e.g. for v4f32
3861    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3862    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3863    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3864    for (unsigned i = 0; i < NumElems; ++i)
3865      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3866    NumElems >>= 1;
3867    while (NumElems != 0) {
3868      for (unsigned i = 0; i < NumElems; ++i)
3869        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3870      NumElems >>= 1;
3871    }
3872    return V[0];
3873  }
3874
3875  return SDValue();
3876}
3877
3878SDValue
3879X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3880  // We support concatenate two MMX registers and place them in a MMX
3881  // register.  This is better than doing a stack convert.
3882  DebugLoc dl = Op.getDebugLoc();
3883  EVT ResVT = Op.getValueType();
3884  assert(Op.getNumOperands() == 2);
3885  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
3886         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
3887  int Mask[2];
3888  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
3889  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3890  InVec = Op.getOperand(1);
3891  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3892    unsigned NumElts = ResVT.getVectorNumElements();
3893    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3894    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
3895                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
3896  } else {
3897    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
3898    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3899    Mask[0] = 0; Mask[1] = 2;
3900    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
3901  }
3902  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3903}
3904
3905// v8i16 shuffles - Prefer shuffles in the following order:
3906// 1. [all]   pshuflw, pshufhw, optional move
3907// 2. [ssse3] 1 x pshufb
3908// 3. [ssse3] 2 x pshufb + 1 x por
3909// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3910static
3911SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3912                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3913  SDValue V1 = SVOp->getOperand(0);
3914  SDValue V2 = SVOp->getOperand(1);
3915  DebugLoc dl = SVOp->getDebugLoc();
3916  SmallVector<int, 8> MaskVals;
3917
3918  // Determine if more than 1 of the words in each of the low and high quadwords
3919  // of the result come from the same quadword of one of the two inputs.  Undef
3920  // mask values count as coming from any quadword, for better codegen.
3921  SmallVector<unsigned, 4> LoQuad(4);
3922  SmallVector<unsigned, 4> HiQuad(4);
3923  BitVector InputQuads(4);
3924  for (unsigned i = 0; i < 8; ++i) {
3925    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3926    int EltIdx = SVOp->getMaskElt(i);
3927    MaskVals.push_back(EltIdx);
3928    if (EltIdx < 0) {
3929      ++Quad[0];
3930      ++Quad[1];
3931      ++Quad[2];
3932      ++Quad[3];
3933      continue;
3934    }
3935    ++Quad[EltIdx / 4];
3936    InputQuads.set(EltIdx / 4);
3937  }
3938
3939  int BestLoQuad = -1;
3940  unsigned MaxQuad = 1;
3941  for (unsigned i = 0; i < 4; ++i) {
3942    if (LoQuad[i] > MaxQuad) {
3943      BestLoQuad = i;
3944      MaxQuad = LoQuad[i];
3945    }
3946  }
3947
3948  int BestHiQuad = -1;
3949  MaxQuad = 1;
3950  for (unsigned i = 0; i < 4; ++i) {
3951    if (HiQuad[i] > MaxQuad) {
3952      BestHiQuad = i;
3953      MaxQuad = HiQuad[i];
3954    }
3955  }
3956
3957  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3958  // of the two input vectors, shuffle them into one input vector so only a
3959  // single pshufb instruction is necessary. If There are more than 2 input
3960  // quads, disable the next transformation since it does not help SSSE3.
3961  bool V1Used = InputQuads[0] || InputQuads[1];
3962  bool V2Used = InputQuads[2] || InputQuads[3];
3963  if (TLI.getSubtarget()->hasSSSE3()) {
3964    if (InputQuads.count() == 2 && V1Used && V2Used) {
3965      BestLoQuad = InputQuads.find_first();
3966      BestHiQuad = InputQuads.find_next(BestLoQuad);
3967    }
3968    if (InputQuads.count() > 2) {
3969      BestLoQuad = -1;
3970      BestHiQuad = -1;
3971    }
3972  }
3973
3974  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3975  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3976  // words from all 4 input quadwords.
3977  SDValue NewV;
3978  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3979    SmallVector<int, 8> MaskV;
3980    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3981    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3982    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3983                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3984                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3985    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3986
3987    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3988    // source words for the shuffle, to aid later transformations.
3989    bool AllWordsInNewV = true;
3990    bool InOrder[2] = { true, true };
3991    for (unsigned i = 0; i != 8; ++i) {
3992      int idx = MaskVals[i];
3993      if (idx != (int)i)
3994        InOrder[i/4] = false;
3995      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3996        continue;
3997      AllWordsInNewV = false;
3998      break;
3999    }
4000
4001    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4002    if (AllWordsInNewV) {
4003      for (int i = 0; i != 8; ++i) {
4004        int idx = MaskVals[i];
4005        if (idx < 0)
4006          continue;
4007        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4008        if ((idx != i) && idx < 4)
4009          pshufhw = false;
4010        if ((idx != i) && idx > 3)
4011          pshuflw = false;
4012      }
4013      V1 = NewV;
4014      V2Used = false;
4015      BestLoQuad = 0;
4016      BestHiQuad = 1;
4017    }
4018
4019    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4020    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4021    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4022      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4023                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4024    }
4025  }
4026
4027  // If we have SSSE3, and all words of the result are from 1 input vector,
4028  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4029  // is present, fall back to case 4.
4030  if (TLI.getSubtarget()->hasSSSE3()) {
4031    SmallVector<SDValue,16> pshufbMask;
4032
4033    // If we have elements from both input vectors, set the high bit of the
4034    // shuffle mask element to zero out elements that come from V2 in the V1
4035    // mask, and elements that come from V1 in the V2 mask, so that the two
4036    // results can be OR'd together.
4037    bool TwoInputs = V1Used && V2Used;
4038    for (unsigned i = 0; i != 8; ++i) {
4039      int EltIdx = MaskVals[i] * 2;
4040      if (TwoInputs && (EltIdx >= 16)) {
4041        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4042        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4043        continue;
4044      }
4045      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4046      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4047    }
4048    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4049    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4050                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4051                                 MVT::v16i8, &pshufbMask[0], 16));
4052    if (!TwoInputs)
4053      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4054
4055    // Calculate the shuffle mask for the second input, shuffle it, and
4056    // OR it with the first shuffled input.
4057    pshufbMask.clear();
4058    for (unsigned i = 0; i != 8; ++i) {
4059      int EltIdx = MaskVals[i] * 2;
4060      if (EltIdx < 16) {
4061        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4062        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4063        continue;
4064      }
4065      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4066      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4067    }
4068    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4069    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4070                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4071                                 MVT::v16i8, &pshufbMask[0], 16));
4072    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4073    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4074  }
4075
4076  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4077  // and update MaskVals with new element order.
4078  BitVector InOrder(8);
4079  if (BestLoQuad >= 0) {
4080    SmallVector<int, 8> MaskV;
4081    for (int i = 0; i != 4; ++i) {
4082      int idx = MaskVals[i];
4083      if (idx < 0) {
4084        MaskV.push_back(-1);
4085        InOrder.set(i);
4086      } else if ((idx / 4) == BestLoQuad) {
4087        MaskV.push_back(idx & 3);
4088        InOrder.set(i);
4089      } else {
4090        MaskV.push_back(-1);
4091      }
4092    }
4093    for (unsigned i = 4; i != 8; ++i)
4094      MaskV.push_back(i);
4095    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4096                                &MaskV[0]);
4097  }
4098
4099  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4100  // and update MaskVals with the new element order.
4101  if (BestHiQuad >= 0) {
4102    SmallVector<int, 8> MaskV;
4103    for (unsigned i = 0; i != 4; ++i)
4104      MaskV.push_back(i);
4105    for (unsigned i = 4; i != 8; ++i) {
4106      int idx = MaskVals[i];
4107      if (idx < 0) {
4108        MaskV.push_back(-1);
4109        InOrder.set(i);
4110      } else if ((idx / 4) == BestHiQuad) {
4111        MaskV.push_back((idx & 3) + 4);
4112        InOrder.set(i);
4113      } else {
4114        MaskV.push_back(-1);
4115      }
4116    }
4117    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4118                                &MaskV[0]);
4119  }
4120
4121  // In case BestHi & BestLo were both -1, which means each quadword has a word
4122  // from each of the four input quadwords, calculate the InOrder bitvector now
4123  // before falling through to the insert/extract cleanup.
4124  if (BestLoQuad == -1 && BestHiQuad == -1) {
4125    NewV = V1;
4126    for (int i = 0; i != 8; ++i)
4127      if (MaskVals[i] < 0 || MaskVals[i] == i)
4128        InOrder.set(i);
4129  }
4130
4131  // The other elements are put in the right place using pextrw and pinsrw.
4132  for (unsigned i = 0; i != 8; ++i) {
4133    if (InOrder[i])
4134      continue;
4135    int EltIdx = MaskVals[i];
4136    if (EltIdx < 0)
4137      continue;
4138    SDValue ExtOp = (EltIdx < 8)
4139    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4140                  DAG.getIntPtrConstant(EltIdx))
4141    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4142                  DAG.getIntPtrConstant(EltIdx - 8));
4143    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4144                       DAG.getIntPtrConstant(i));
4145  }
4146  return NewV;
4147}
4148
4149// v16i8 shuffles - Prefer shuffles in the following order:
4150// 1. [ssse3] 1 x pshufb
4151// 2. [ssse3] 2 x pshufb + 1 x por
4152// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4153static
4154SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4155                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
4156  SDValue V1 = SVOp->getOperand(0);
4157  SDValue V2 = SVOp->getOperand(1);
4158  DebugLoc dl = SVOp->getDebugLoc();
4159  SmallVector<int, 16> MaskVals;
4160  SVOp->getMask(MaskVals);
4161
4162  // If we have SSSE3, case 1 is generated when all result bytes come from
4163  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4164  // present, fall back to case 3.
4165  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4166  bool V1Only = true;
4167  bool V2Only = true;
4168  for (unsigned i = 0; i < 16; ++i) {
4169    int EltIdx = MaskVals[i];
4170    if (EltIdx < 0)
4171      continue;
4172    if (EltIdx < 16)
4173      V2Only = false;
4174    else
4175      V1Only = false;
4176  }
4177
4178  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4179  if (TLI.getSubtarget()->hasSSSE3()) {
4180    SmallVector<SDValue,16> pshufbMask;
4181
4182    // If all result elements are from one input vector, then only translate
4183    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4184    //
4185    // Otherwise, we have elements from both input vectors, and must zero out
4186    // elements that come from V2 in the first mask, and V1 in the second mask
4187    // so that we can OR them together.
4188    bool TwoInputs = !(V1Only || V2Only);
4189    for (unsigned i = 0; i != 16; ++i) {
4190      int EltIdx = MaskVals[i];
4191      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4192        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4193        continue;
4194      }
4195      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4196    }
4197    // If all the elements are from V2, assign it to V1 and return after
4198    // building the first pshufb.
4199    if (V2Only)
4200      V1 = V2;
4201    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4202                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4203                                 MVT::v16i8, &pshufbMask[0], 16));
4204    if (!TwoInputs)
4205      return V1;
4206
4207    // Calculate the shuffle mask for the second input, shuffle it, and
4208    // OR it with the first shuffled input.
4209    pshufbMask.clear();
4210    for (unsigned i = 0; i != 16; ++i) {
4211      int EltIdx = MaskVals[i];
4212      if (EltIdx < 16) {
4213        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4214        continue;
4215      }
4216      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4217    }
4218    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4219                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4220                                 MVT::v16i8, &pshufbMask[0], 16));
4221    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4222  }
4223
4224  // No SSSE3 - Calculate in place words and then fix all out of place words
4225  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4226  // the 16 different words that comprise the two doublequadword input vectors.
4227  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4228  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4229  SDValue NewV = V2Only ? V2 : V1;
4230  for (int i = 0; i != 8; ++i) {
4231    int Elt0 = MaskVals[i*2];
4232    int Elt1 = MaskVals[i*2+1];
4233
4234    // This word of the result is all undef, skip it.
4235    if (Elt0 < 0 && Elt1 < 0)
4236      continue;
4237
4238    // This word of the result is already in the correct place, skip it.
4239    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4240      continue;
4241    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4242      continue;
4243
4244    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4245    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4246    SDValue InsElt;
4247
4248    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4249    // using a single extract together, load it and store it.
4250    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4251      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4252                           DAG.getIntPtrConstant(Elt1 / 2));
4253      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4254                        DAG.getIntPtrConstant(i));
4255      continue;
4256    }
4257
4258    // If Elt1 is defined, extract it from the appropriate source.  If the
4259    // source byte is not also odd, shift the extracted word left 8 bits
4260    // otherwise clear the bottom 8 bits if we need to do an or.
4261    if (Elt1 >= 0) {
4262      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4263                           DAG.getIntPtrConstant(Elt1 / 2));
4264      if ((Elt1 & 1) == 0)
4265        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4266                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4267      else if (Elt0 >= 0)
4268        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4269                             DAG.getConstant(0xFF00, MVT::i16));
4270    }
4271    // If Elt0 is defined, extract it from the appropriate source.  If the
4272    // source byte is not also even, shift the extracted word right 8 bits. If
4273    // Elt1 was also defined, OR the extracted values together before
4274    // inserting them in the result.
4275    if (Elt0 >= 0) {
4276      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4277                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4278      if ((Elt0 & 1) != 0)
4279        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4280                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4281      else if (Elt1 >= 0)
4282        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4283                             DAG.getConstant(0x00FF, MVT::i16));
4284      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4285                         : InsElt0;
4286    }
4287    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4288                       DAG.getIntPtrConstant(i));
4289  }
4290  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4291}
4292
4293/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4294/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
4295/// done when every pair / quad of shuffle mask elements point to elements in
4296/// the right sequence. e.g.
4297/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4298static
4299SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4300                                 SelectionDAG &DAG,
4301                                 TargetLowering &TLI, DebugLoc dl) {
4302  EVT VT = SVOp->getValueType(0);
4303  SDValue V1 = SVOp->getOperand(0);
4304  SDValue V2 = SVOp->getOperand(1);
4305  unsigned NumElems = VT.getVectorNumElements();
4306  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4307  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4308  EVT MaskEltVT = MaskVT.getVectorElementType();
4309  EVT NewVT = MaskVT;
4310  switch (VT.getSimpleVT().SimpleTy) {
4311  default: assert(false && "Unexpected!");
4312  case MVT::v4f32: NewVT = MVT::v2f64; break;
4313  case MVT::v4i32: NewVT = MVT::v2i64; break;
4314  case MVT::v8i16: NewVT = MVT::v4i32; break;
4315  case MVT::v16i8: NewVT = MVT::v4i32; break;
4316  }
4317
4318  if (NewWidth == 2) {
4319    if (VT.isInteger())
4320      NewVT = MVT::v2i64;
4321    else
4322      NewVT = MVT::v2f64;
4323  }
4324  int Scale = NumElems / NewWidth;
4325  SmallVector<int, 8> MaskVec;
4326  for (unsigned i = 0; i < NumElems; i += Scale) {
4327    int StartIdx = -1;
4328    for (int j = 0; j < Scale; ++j) {
4329      int EltIdx = SVOp->getMaskElt(i+j);
4330      if (EltIdx < 0)
4331        continue;
4332      if (StartIdx == -1)
4333        StartIdx = EltIdx - (EltIdx % Scale);
4334      if (EltIdx != StartIdx + j)
4335        return SDValue();
4336    }
4337    if (StartIdx == -1)
4338      MaskVec.push_back(-1);
4339    else
4340      MaskVec.push_back(StartIdx / Scale);
4341  }
4342
4343  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4344  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4345  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4346}
4347
4348/// getVZextMovL - Return a zero-extending vector move low node.
4349///
4350static SDValue getVZextMovL(EVT VT, EVT OpVT,
4351                            SDValue SrcOp, SelectionDAG &DAG,
4352                            const X86Subtarget *Subtarget, DebugLoc dl) {
4353  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4354    LoadSDNode *LD = NULL;
4355    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4356      LD = dyn_cast<LoadSDNode>(SrcOp);
4357    if (!LD) {
4358      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4359      // instead.
4360      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4361      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4362          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4363          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4364          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4365        // PR2108
4366        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4367        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4368                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4369                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4370                                                   OpVT,
4371                                                   SrcOp.getOperand(0)
4372                                                          .getOperand(0))));
4373      }
4374    }
4375  }
4376
4377  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4378                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4379                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4380                                             OpVT, SrcOp)));
4381}
4382
4383/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4384/// shuffles.
4385static SDValue
4386LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4387  SDValue V1 = SVOp->getOperand(0);
4388  SDValue V2 = SVOp->getOperand(1);
4389  DebugLoc dl = SVOp->getDebugLoc();
4390  EVT VT = SVOp->getValueType(0);
4391
4392  SmallVector<std::pair<int, int>, 8> Locs;
4393  Locs.resize(4);
4394  SmallVector<int, 8> Mask1(4U, -1);
4395  SmallVector<int, 8> PermMask;
4396  SVOp->getMask(PermMask);
4397
4398  unsigned NumHi = 0;
4399  unsigned NumLo = 0;
4400  for (unsigned i = 0; i != 4; ++i) {
4401    int Idx = PermMask[i];
4402    if (Idx < 0) {
4403      Locs[i] = std::make_pair(-1, -1);
4404    } else {
4405      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4406      if (Idx < 4) {
4407        Locs[i] = std::make_pair(0, NumLo);
4408        Mask1[NumLo] = Idx;
4409        NumLo++;
4410      } else {
4411        Locs[i] = std::make_pair(1, NumHi);
4412        if (2+NumHi < 4)
4413          Mask1[2+NumHi] = Idx;
4414        NumHi++;
4415      }
4416    }
4417  }
4418
4419  if (NumLo <= 2 && NumHi <= 2) {
4420    // If no more than two elements come from either vector. This can be
4421    // implemented with two shuffles. First shuffle gather the elements.
4422    // The second shuffle, which takes the first shuffle as both of its
4423    // vector operands, put the elements into the right order.
4424    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4425
4426    SmallVector<int, 8> Mask2(4U, -1);
4427
4428    for (unsigned i = 0; i != 4; ++i) {
4429      if (Locs[i].first == -1)
4430        continue;
4431      else {
4432        unsigned Idx = (i < 2) ? 0 : 4;
4433        Idx += Locs[i].first * 2 + Locs[i].second;
4434        Mask2[i] = Idx;
4435      }
4436    }
4437
4438    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4439  } else if (NumLo == 3 || NumHi == 3) {
4440    // Otherwise, we must have three elements from one vector, call it X, and
4441    // one element from the other, call it Y.  First, use a shufps to build an
4442    // intermediate vector with the one element from Y and the element from X
4443    // that will be in the same half in the final destination (the indexes don't
4444    // matter). Then, use a shufps to build the final vector, taking the half
4445    // containing the element from Y from the intermediate, and the other half
4446    // from X.
4447    if (NumHi == 3) {
4448      // Normalize it so the 3 elements come from V1.
4449      CommuteVectorShuffleMask(PermMask, VT);
4450      std::swap(V1, V2);
4451    }
4452
4453    // Find the element from V2.
4454    unsigned HiIndex;
4455    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4456      int Val = PermMask[HiIndex];
4457      if (Val < 0)
4458        continue;
4459      if (Val >= 4)
4460        break;
4461    }
4462
4463    Mask1[0] = PermMask[HiIndex];
4464    Mask1[1] = -1;
4465    Mask1[2] = PermMask[HiIndex^1];
4466    Mask1[3] = -1;
4467    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4468
4469    if (HiIndex >= 2) {
4470      Mask1[0] = PermMask[0];
4471      Mask1[1] = PermMask[1];
4472      Mask1[2] = HiIndex & 1 ? 6 : 4;
4473      Mask1[3] = HiIndex & 1 ? 4 : 6;
4474      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4475    } else {
4476      Mask1[0] = HiIndex & 1 ? 2 : 0;
4477      Mask1[1] = HiIndex & 1 ? 0 : 2;
4478      Mask1[2] = PermMask[2];
4479      Mask1[3] = PermMask[3];
4480      if (Mask1[2] >= 0)
4481        Mask1[2] += 4;
4482      if (Mask1[3] >= 0)
4483        Mask1[3] += 4;
4484      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4485    }
4486  }
4487
4488  // Break it into (shuffle shuffle_hi, shuffle_lo).
4489  Locs.clear();
4490  SmallVector<int,8> LoMask(4U, -1);
4491  SmallVector<int,8> HiMask(4U, -1);
4492
4493  SmallVector<int,8> *MaskPtr = &LoMask;
4494  unsigned MaskIdx = 0;
4495  unsigned LoIdx = 0;
4496  unsigned HiIdx = 2;
4497  for (unsigned i = 0; i != 4; ++i) {
4498    if (i == 2) {
4499      MaskPtr = &HiMask;
4500      MaskIdx = 1;
4501      LoIdx = 0;
4502      HiIdx = 2;
4503    }
4504    int Idx = PermMask[i];
4505    if (Idx < 0) {
4506      Locs[i] = std::make_pair(-1, -1);
4507    } else if (Idx < 4) {
4508      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4509      (*MaskPtr)[LoIdx] = Idx;
4510      LoIdx++;
4511    } else {
4512      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4513      (*MaskPtr)[HiIdx] = Idx;
4514      HiIdx++;
4515    }
4516  }
4517
4518  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4519  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4520  SmallVector<int, 8> MaskOps;
4521  for (unsigned i = 0; i != 4; ++i) {
4522    if (Locs[i].first == -1) {
4523      MaskOps.push_back(-1);
4524    } else {
4525      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4526      MaskOps.push_back(Idx);
4527    }
4528  }
4529  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4530}
4531
4532SDValue
4533X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4534  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4535  SDValue V1 = Op.getOperand(0);
4536  SDValue V2 = Op.getOperand(1);
4537  EVT VT = Op.getValueType();
4538  DebugLoc dl = Op.getDebugLoc();
4539  unsigned NumElems = VT.getVectorNumElements();
4540  bool isMMX = VT.getSizeInBits() == 64;
4541  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4542  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4543  bool V1IsSplat = false;
4544  bool V2IsSplat = false;
4545
4546  if (isZeroShuffle(SVOp))
4547    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4548
4549  // Promote splats to v4f32.
4550  if (SVOp->isSplat()) {
4551    if (isMMX || NumElems < 4)
4552      return Op;
4553    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4554  }
4555
4556  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4557  // do it!
4558  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4559    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4560    if (NewOp.getNode())
4561      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4562                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4563  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4564    // FIXME: Figure out a cleaner way to do this.
4565    // Try to make use of movq to zero out the top part.
4566    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4567      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4568      if (NewOp.getNode()) {
4569        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4570          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4571                              DAG, Subtarget, dl);
4572      }
4573    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4574      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4575      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4576        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4577                            DAG, Subtarget, dl);
4578    }
4579  }
4580
4581  if (X86::isPSHUFDMask(SVOp))
4582    return Op;
4583
4584  // Check if this can be converted into a logical shift.
4585  bool isLeft = false;
4586  unsigned ShAmt = 0;
4587  SDValue ShVal;
4588  bool isShift = getSubtarget()->hasSSE2() &&
4589    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4590  if (isShift && ShVal.hasOneUse()) {
4591    // If the shifted value has multiple uses, it may be cheaper to use
4592    // v_set0 + movlhps or movhlps, etc.
4593    EVT EltVT = VT.getVectorElementType();
4594    ShAmt *= EltVT.getSizeInBits();
4595    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4596  }
4597
4598  if (X86::isMOVLMask(SVOp)) {
4599    if (V1IsUndef)
4600      return V2;
4601    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4602      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4603    if (!isMMX)
4604      return Op;
4605  }
4606
4607  // FIXME: fold these into legal mask.
4608  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4609                 X86::isMOVSLDUPMask(SVOp) ||
4610                 X86::isMOVHLPSMask(SVOp) ||
4611                 X86::isMOVLHPSMask(SVOp) ||
4612                 X86::isMOVLPMask(SVOp)))
4613    return Op;
4614
4615  if (ShouldXformToMOVHLPS(SVOp) ||
4616      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4617    return CommuteVectorShuffle(SVOp, DAG);
4618
4619  if (isShift) {
4620    // No better options. Use a vshl / vsrl.
4621    EVT EltVT = VT.getVectorElementType();
4622    ShAmt *= EltVT.getSizeInBits();
4623    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4624  }
4625
4626  bool Commuted = false;
4627  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4628  // 1,1,1,1 -> v8i16 though.
4629  V1IsSplat = isSplatVector(V1.getNode());
4630  V2IsSplat = isSplatVector(V2.getNode());
4631
4632  // Canonicalize the splat or undef, if present, to be on the RHS.
4633  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4634    Op = CommuteVectorShuffle(SVOp, DAG);
4635    SVOp = cast<ShuffleVectorSDNode>(Op);
4636    V1 = SVOp->getOperand(0);
4637    V2 = SVOp->getOperand(1);
4638    std::swap(V1IsSplat, V2IsSplat);
4639    std::swap(V1IsUndef, V2IsUndef);
4640    Commuted = true;
4641  }
4642
4643  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4644    // Shuffling low element of v1 into undef, just return v1.
4645    if (V2IsUndef)
4646      return V1;
4647    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4648    // the instruction selector will not match, so get a canonical MOVL with
4649    // swapped operands to undo the commute.
4650    return getMOVL(DAG, dl, VT, V2, V1);
4651  }
4652
4653  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4654      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4655      X86::isUNPCKLMask(SVOp) ||
4656      X86::isUNPCKHMask(SVOp))
4657    return Op;
4658
4659  if (V2IsSplat) {
4660    // Normalize mask so all entries that point to V2 points to its first
4661    // element then try to match unpck{h|l} again. If match, return a
4662    // new vector_shuffle with the corrected mask.
4663    SDValue NewMask = NormalizeMask(SVOp, DAG);
4664    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4665    if (NSVOp != SVOp) {
4666      if (X86::isUNPCKLMask(NSVOp, true)) {
4667        return NewMask;
4668      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4669        return NewMask;
4670      }
4671    }
4672  }
4673
4674  if (Commuted) {
4675    // Commute is back and try unpck* again.
4676    // FIXME: this seems wrong.
4677    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4678    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4679    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4680        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4681        X86::isUNPCKLMask(NewSVOp) ||
4682        X86::isUNPCKHMask(NewSVOp))
4683      return NewOp;
4684  }
4685
4686  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4687
4688  // Normalize the node to match x86 shuffle ops if needed
4689  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4690    return CommuteVectorShuffle(SVOp, DAG);
4691
4692  // Check for legal shuffle and return?
4693  SmallVector<int, 16> PermMask;
4694  SVOp->getMask(PermMask);
4695  if (isShuffleMaskLegal(PermMask, VT))
4696    return Op;
4697
4698  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4699  if (VT == MVT::v8i16) {
4700    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4701    if (NewOp.getNode())
4702      return NewOp;
4703  }
4704
4705  if (VT == MVT::v16i8) {
4706    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4707    if (NewOp.getNode())
4708      return NewOp;
4709  }
4710
4711  // Handle all 4 wide cases with a number of shuffles except for MMX.
4712  if (NumElems == 4 && !isMMX)
4713    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4714
4715  return SDValue();
4716}
4717
4718SDValue
4719X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4720                                                SelectionDAG &DAG) {
4721  EVT VT = Op.getValueType();
4722  DebugLoc dl = Op.getDebugLoc();
4723  if (VT.getSizeInBits() == 8) {
4724    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4725                                    Op.getOperand(0), Op.getOperand(1));
4726    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4727                                    DAG.getValueType(VT));
4728    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4729  } else if (VT.getSizeInBits() == 16) {
4730    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4731    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4732    if (Idx == 0)
4733      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4734                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4735                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4736                                                 MVT::v4i32,
4737                                                 Op.getOperand(0)),
4738                                     Op.getOperand(1)));
4739    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4740                                    Op.getOperand(0), Op.getOperand(1));
4741    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4742                                    DAG.getValueType(VT));
4743    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4744  } else if (VT == MVT::f32) {
4745    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4746    // the result back to FR32 register. It's only worth matching if the
4747    // result has a single use which is a store or a bitcast to i32.  And in
4748    // the case of a store, it's not worth it if the index is a constant 0,
4749    // because a MOVSSmr can be used instead, which is smaller and faster.
4750    if (!Op.hasOneUse())
4751      return SDValue();
4752    SDNode *User = *Op.getNode()->use_begin();
4753    if ((User->getOpcode() != ISD::STORE ||
4754         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4755          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4756        (User->getOpcode() != ISD::BIT_CONVERT ||
4757         User->getValueType(0) != MVT::i32))
4758      return SDValue();
4759    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4760                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4761                                              Op.getOperand(0)),
4762                                              Op.getOperand(1));
4763    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4764  } else if (VT == MVT::i32) {
4765    // ExtractPS works with constant index.
4766    if (isa<ConstantSDNode>(Op.getOperand(1)))
4767      return Op;
4768  }
4769  return SDValue();
4770}
4771
4772
4773SDValue
4774X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4775  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4776    return SDValue();
4777
4778  if (Subtarget->hasSSE41()) {
4779    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4780    if (Res.getNode())
4781      return Res;
4782  }
4783
4784  EVT VT = Op.getValueType();
4785  DebugLoc dl = Op.getDebugLoc();
4786  // TODO: handle v16i8.
4787  if (VT.getSizeInBits() == 16) {
4788    SDValue Vec = Op.getOperand(0);
4789    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4790    if (Idx == 0)
4791      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4792                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4793                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4794                                                 MVT::v4i32, Vec),
4795                                     Op.getOperand(1)));
4796    // Transform it so it match pextrw which produces a 32-bit result.
4797    EVT EltVT = MVT::i32;
4798    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4799                                    Op.getOperand(0), Op.getOperand(1));
4800    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4801                                    DAG.getValueType(VT));
4802    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4803  } else if (VT.getSizeInBits() == 32) {
4804    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4805    if (Idx == 0)
4806      return Op;
4807
4808    // SHUFPS the element to the lowest double word, then movss.
4809    int Mask[4] = { Idx, -1, -1, -1 };
4810    EVT VVT = Op.getOperand(0).getValueType();
4811    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4812                                       DAG.getUNDEF(VVT), Mask);
4813    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4814                       DAG.getIntPtrConstant(0));
4815  } else if (VT.getSizeInBits() == 64) {
4816    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4817    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4818    //        to match extract_elt for f64.
4819    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4820    if (Idx == 0)
4821      return Op;
4822
4823    // UNPCKHPD the element to the lowest double word, then movsd.
4824    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4825    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4826    int Mask[2] = { 1, -1 };
4827    EVT VVT = Op.getOperand(0).getValueType();
4828    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4829                                       DAG.getUNDEF(VVT), Mask);
4830    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4831                       DAG.getIntPtrConstant(0));
4832  }
4833
4834  return SDValue();
4835}
4836
4837SDValue
4838X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4839  EVT VT = Op.getValueType();
4840  EVT EltVT = VT.getVectorElementType();
4841  DebugLoc dl = Op.getDebugLoc();
4842
4843  SDValue N0 = Op.getOperand(0);
4844  SDValue N1 = Op.getOperand(1);
4845  SDValue N2 = Op.getOperand(2);
4846
4847  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4848      isa<ConstantSDNode>(N2)) {
4849    unsigned Opc;
4850    if (VT == MVT::v8i16)
4851      Opc = X86ISD::PINSRW;
4852    else if (VT == MVT::v4i16)
4853      Opc = X86ISD::MMX_PINSRW;
4854    else if (VT == MVT::v16i8)
4855      Opc = X86ISD::PINSRB;
4856    else
4857      Opc = X86ISD::PINSRB;
4858
4859    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4860    // argument.
4861    if (N1.getValueType() != MVT::i32)
4862      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4863    if (N2.getValueType() != MVT::i32)
4864      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4865    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4866  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4867    // Bits [7:6] of the constant are the source select.  This will always be
4868    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4869    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4870    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4871    // Bits [5:4] of the constant are the destination select.  This is the
4872    //  value of the incoming immediate.
4873    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4874    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4875    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4876    // Create this as a scalar to vector..
4877    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4878    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4879  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4880    // PINSR* works with constant index.
4881    return Op;
4882  }
4883  return SDValue();
4884}
4885
4886SDValue
4887X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4888  EVT VT = Op.getValueType();
4889  EVT EltVT = VT.getVectorElementType();
4890
4891  if (Subtarget->hasSSE41())
4892    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4893
4894  if (EltVT == MVT::i8)
4895    return SDValue();
4896
4897  DebugLoc dl = Op.getDebugLoc();
4898  SDValue N0 = Op.getOperand(0);
4899  SDValue N1 = Op.getOperand(1);
4900  SDValue N2 = Op.getOperand(2);
4901
4902  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4903    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4904    // as its second argument.
4905    if (N1.getValueType() != MVT::i32)
4906      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4907    if (N2.getValueType() != MVT::i32)
4908      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4909    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
4910                       dl, VT, N0, N1, N2);
4911  }
4912  return SDValue();
4913}
4914
4915SDValue
4916X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4917  DebugLoc dl = Op.getDebugLoc();
4918  if (Op.getValueType() == MVT::v2f32)
4919    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4920                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4921                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4922                                               Op.getOperand(0))));
4923
4924  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4925    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4926
4927  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4928  EVT VT = MVT::v2i32;
4929  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4930  default: break;
4931  case MVT::v16i8:
4932  case MVT::v8i16:
4933    VT = MVT::v4i32;
4934    break;
4935  }
4936  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4937                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4938}
4939
4940// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4941// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4942// one of the above mentioned nodes. It has to be wrapped because otherwise
4943// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4944// be used to form addressing mode. These wrapped nodes will be selected
4945// into MOV32ri.
4946SDValue
4947X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4948  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4949
4950  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4951  // global base reg.
4952  unsigned char OpFlag = 0;
4953  unsigned WrapperKind = X86ISD::Wrapper;
4954  CodeModel::Model M = getTargetMachine().getCodeModel();
4955
4956  if (Subtarget->isPICStyleRIPRel() &&
4957      (M == CodeModel::Small || M == CodeModel::Kernel))
4958    WrapperKind = X86ISD::WrapperRIP;
4959  else if (Subtarget->isPICStyleGOT())
4960    OpFlag = X86II::MO_GOTOFF;
4961  else if (Subtarget->isPICStyleStubPIC())
4962    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4963
4964  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4965                                             CP->getAlignment(),
4966                                             CP->getOffset(), OpFlag);
4967  DebugLoc DL = CP->getDebugLoc();
4968  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4969  // With PIC, the address is actually $g + Offset.
4970  if (OpFlag) {
4971    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4972                         DAG.getNode(X86ISD::GlobalBaseReg,
4973                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4974                         Result);
4975  }
4976
4977  return Result;
4978}
4979
4980SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4981  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4982
4983  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4984  // global base reg.
4985  unsigned char OpFlag = 0;
4986  unsigned WrapperKind = X86ISD::Wrapper;
4987  CodeModel::Model M = getTargetMachine().getCodeModel();
4988
4989  if (Subtarget->isPICStyleRIPRel() &&
4990      (M == CodeModel::Small || M == CodeModel::Kernel))
4991    WrapperKind = X86ISD::WrapperRIP;
4992  else if (Subtarget->isPICStyleGOT())
4993    OpFlag = X86II::MO_GOTOFF;
4994  else if (Subtarget->isPICStyleStubPIC())
4995    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4996
4997  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4998                                          OpFlag);
4999  DebugLoc DL = JT->getDebugLoc();
5000  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5001
5002  // With PIC, the address is actually $g + Offset.
5003  if (OpFlag) {
5004    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5005                         DAG.getNode(X86ISD::GlobalBaseReg,
5006                                     DebugLoc::getUnknownLoc(), getPointerTy()),
5007                         Result);
5008  }
5009
5010  return Result;
5011}
5012
5013SDValue
5014X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
5015  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5016
5017  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5018  // global base reg.
5019  unsigned char OpFlag = 0;
5020  unsigned WrapperKind = X86ISD::Wrapper;
5021  CodeModel::Model M = getTargetMachine().getCodeModel();
5022
5023  if (Subtarget->isPICStyleRIPRel() &&
5024      (M == CodeModel::Small || M == CodeModel::Kernel))
5025    WrapperKind = X86ISD::WrapperRIP;
5026  else if (Subtarget->isPICStyleGOT())
5027    OpFlag = X86II::MO_GOTOFF;
5028  else if (Subtarget->isPICStyleStubPIC())
5029    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5030
5031  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5032
5033  DebugLoc DL = Op.getDebugLoc();
5034  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5035
5036
5037  // With PIC, the address is actually $g + Offset.
5038  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5039      !Subtarget->is64Bit()) {
5040    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5041                         DAG.getNode(X86ISD::GlobalBaseReg,
5042                                     DebugLoc::getUnknownLoc(),
5043                                     getPointerTy()),
5044                         Result);
5045  }
5046
5047  return Result;
5048}
5049
5050SDValue
5051X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
5052  // Create the TargetBlockAddressAddress node.
5053  unsigned char OpFlags =
5054    Subtarget->ClassifyBlockAddressReference();
5055  CodeModel::Model M = getTargetMachine().getCodeModel();
5056  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5057  DebugLoc dl = Op.getDebugLoc();
5058  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5059                                       /*isTarget=*/true, OpFlags);
5060
5061  if (Subtarget->isPICStyleRIPRel() &&
5062      (M == CodeModel::Small || M == CodeModel::Kernel))
5063    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5064  else
5065    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5066
5067  // With PIC, the address is actually $g + Offset.
5068  if (isGlobalRelativeToPICBase(OpFlags)) {
5069    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5070                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5071                         Result);
5072  }
5073
5074  return Result;
5075}
5076
5077SDValue
5078X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5079                                      int64_t Offset,
5080                                      SelectionDAG &DAG) const {
5081  // Create the TargetGlobalAddress node, folding in the constant
5082  // offset if it is legal.
5083  unsigned char OpFlags =
5084    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5085  CodeModel::Model M = getTargetMachine().getCodeModel();
5086  SDValue Result;
5087  if (OpFlags == X86II::MO_NO_FLAG &&
5088      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5089    // A direct static reference to a global.
5090    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
5091    Offset = 0;
5092  } else {
5093    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
5094  }
5095
5096  if (Subtarget->isPICStyleRIPRel() &&
5097      (M == CodeModel::Small || M == CodeModel::Kernel))
5098    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5099  else
5100    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5101
5102  // With PIC, the address is actually $g + Offset.
5103  if (isGlobalRelativeToPICBase(OpFlags)) {
5104    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5105                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5106                         Result);
5107  }
5108
5109  // For globals that require a load from a stub to get the address, emit the
5110  // load.
5111  if (isGlobalStubReference(OpFlags))
5112    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5113                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5114
5115  // If there was a non-zero offset that we didn't fold, create an explicit
5116  // addition for it.
5117  if (Offset != 0)
5118    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5119                         DAG.getConstant(Offset, getPointerTy()));
5120
5121  return Result;
5122}
5123
5124SDValue
5125X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
5126  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5127  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5128  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5129}
5130
5131static SDValue
5132GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5133           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5134           unsigned char OperandFlags) {
5135  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5136  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5137  DebugLoc dl = GA->getDebugLoc();
5138  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
5139                                           GA->getValueType(0),
5140                                           GA->getOffset(),
5141                                           OperandFlags);
5142  if (InFlag) {
5143    SDValue Ops[] = { Chain,  TGA, *InFlag };
5144    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5145  } else {
5146    SDValue Ops[]  = { Chain, TGA };
5147    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5148  }
5149
5150  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5151  MFI->setHasCalls(true);
5152
5153  SDValue Flag = Chain.getValue(1);
5154  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5155}
5156
5157// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5158static SDValue
5159LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5160                                const EVT PtrVT) {
5161  SDValue InFlag;
5162  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5163  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5164                                     DAG.getNode(X86ISD::GlobalBaseReg,
5165                                                 DebugLoc::getUnknownLoc(),
5166                                                 PtrVT), InFlag);
5167  InFlag = Chain.getValue(1);
5168
5169  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5170}
5171
5172// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5173static SDValue
5174LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5175                                const EVT PtrVT) {
5176  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5177                    X86::RAX, X86II::MO_TLSGD);
5178}
5179
5180// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5181// "local exec" model.
5182static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5183                                   const EVT PtrVT, TLSModel::Model model,
5184                                   bool is64Bit) {
5185  DebugLoc dl = GA->getDebugLoc();
5186  // Get the Thread Pointer
5187  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5188                             DebugLoc::getUnknownLoc(), PtrVT,
5189                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5190                                             MVT::i32));
5191
5192  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5193                                      NULL, 0, false, false, 0);
5194
5195  unsigned char OperandFlags = 0;
5196  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5197  // initialexec.
5198  unsigned WrapperKind = X86ISD::Wrapper;
5199  if (model == TLSModel::LocalExec) {
5200    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5201  } else if (is64Bit) {
5202    assert(model == TLSModel::InitialExec);
5203    OperandFlags = X86II::MO_GOTTPOFF;
5204    WrapperKind = X86ISD::WrapperRIP;
5205  } else {
5206    assert(model == TLSModel::InitialExec);
5207    OperandFlags = X86II::MO_INDNTPOFF;
5208  }
5209
5210  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5211  // exec)
5212  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5213                                           GA->getOffset(), OperandFlags);
5214  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5215
5216  if (model == TLSModel::InitialExec)
5217    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5218                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5219
5220  // The address of the thread local variable is the add of the thread
5221  // pointer with the offset of the variable.
5222  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5223}
5224
5225SDValue
5226X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
5227  // TODO: implement the "local dynamic" model
5228  // TODO: implement the "initial exec"model for pic executables
5229  assert(Subtarget->isTargetELF() &&
5230         "TLS not implemented for non-ELF targets");
5231  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5232  const GlobalValue *GV = GA->getGlobal();
5233
5234  // If GV is an alias then use the aliasee for determining
5235  // thread-localness.
5236  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5237    GV = GA->resolveAliasedGlobal(false);
5238
5239  TLSModel::Model model = getTLSModel(GV,
5240                                      getTargetMachine().getRelocationModel());
5241
5242  switch (model) {
5243  case TLSModel::GeneralDynamic:
5244  case TLSModel::LocalDynamic: // not implemented
5245    if (Subtarget->is64Bit())
5246      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5247    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5248
5249  case TLSModel::InitialExec:
5250  case TLSModel::LocalExec:
5251    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5252                               Subtarget->is64Bit());
5253  }
5254
5255  llvm_unreachable("Unreachable");
5256  return SDValue();
5257}
5258
5259
5260/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5261/// take a 2 x i32 value to shift plus a shift amount.
5262SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
5263  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5264  EVT VT = Op.getValueType();
5265  unsigned VTBits = VT.getSizeInBits();
5266  DebugLoc dl = Op.getDebugLoc();
5267  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5268  SDValue ShOpLo = Op.getOperand(0);
5269  SDValue ShOpHi = Op.getOperand(1);
5270  SDValue ShAmt  = Op.getOperand(2);
5271  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5272                                     DAG.getConstant(VTBits - 1, MVT::i8))
5273                       : DAG.getConstant(0, VT);
5274
5275  SDValue Tmp2, Tmp3;
5276  if (Op.getOpcode() == ISD::SHL_PARTS) {
5277    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5278    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5279  } else {
5280    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5281    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5282  }
5283
5284  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5285                                DAG.getConstant(VTBits, MVT::i8));
5286  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5287                             AndNode, DAG.getConstant(0, MVT::i8));
5288
5289  SDValue Hi, Lo;
5290  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5291  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5292  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5293
5294  if (Op.getOpcode() == ISD::SHL_PARTS) {
5295    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5296    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5297  } else {
5298    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5299    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5300  }
5301
5302  SDValue Ops[2] = { Lo, Hi };
5303  return DAG.getMergeValues(Ops, 2, dl);
5304}
5305
5306SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5307  EVT SrcVT = Op.getOperand(0).getValueType();
5308
5309  if (SrcVT.isVector()) {
5310    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5311      return Op;
5312    }
5313    return SDValue();
5314  }
5315
5316  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5317         "Unknown SINT_TO_FP to lower!");
5318
5319  // These are really Legal; return the operand so the caller accepts it as
5320  // Legal.
5321  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5322    return Op;
5323  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5324      Subtarget->is64Bit()) {
5325    return Op;
5326  }
5327
5328  DebugLoc dl = Op.getDebugLoc();
5329  unsigned Size = SrcVT.getSizeInBits()/8;
5330  MachineFunction &MF = DAG.getMachineFunction();
5331  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5332  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5333  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5334                               StackSlot,
5335                               PseudoSourceValue::getFixedStack(SSFI), 0,
5336                               false, false, 0);
5337  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5338}
5339
5340SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5341                                     SDValue StackSlot,
5342                                     SelectionDAG &DAG) {
5343  // Build the FILD
5344  DebugLoc dl = Op.getDebugLoc();
5345  SDVTList Tys;
5346  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5347  if (useSSE)
5348    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5349  else
5350    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5351  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5352  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5353                               Tys, Ops, array_lengthof(Ops));
5354
5355  if (useSSE) {
5356    Chain = Result.getValue(1);
5357    SDValue InFlag = Result.getValue(2);
5358
5359    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5360    // shouldn't be necessary except that RFP cannot be live across
5361    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5362    MachineFunction &MF = DAG.getMachineFunction();
5363    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5364    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5365    Tys = DAG.getVTList(MVT::Other);
5366    SDValue Ops[] = {
5367      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5368    };
5369    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5370    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5371                         PseudoSourceValue::getFixedStack(SSFI), 0,
5372                         false, false, 0);
5373  }
5374
5375  return Result;
5376}
5377
5378// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5379SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5380  // This algorithm is not obvious. Here it is in C code, more or less:
5381  /*
5382    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5383      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5384      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5385
5386      // Copy ints to xmm registers.
5387      __m128i xh = _mm_cvtsi32_si128( hi );
5388      __m128i xl = _mm_cvtsi32_si128( lo );
5389
5390      // Combine into low half of a single xmm register.
5391      __m128i x = _mm_unpacklo_epi32( xh, xl );
5392      __m128d d;
5393      double sd;
5394
5395      // Merge in appropriate exponents to give the integer bits the right
5396      // magnitude.
5397      x = _mm_unpacklo_epi32( x, exp );
5398
5399      // Subtract away the biases to deal with the IEEE-754 double precision
5400      // implicit 1.
5401      d = _mm_sub_pd( (__m128d) x, bias );
5402
5403      // All conversions up to here are exact. The correctly rounded result is
5404      // calculated using the current rounding mode using the following
5405      // horizontal add.
5406      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5407      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5408                                // store doesn't really need to be here (except
5409                                // maybe to zero the other double)
5410      return sd;
5411    }
5412  */
5413
5414  DebugLoc dl = Op.getDebugLoc();
5415  LLVMContext *Context = DAG.getContext();
5416
5417  // Build some magic constants.
5418  std::vector<Constant*> CV0;
5419  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5420  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5421  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5422  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5423  Constant *C0 = ConstantVector::get(CV0);
5424  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5425
5426  std::vector<Constant*> CV1;
5427  CV1.push_back(
5428    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5429  CV1.push_back(
5430    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5431  Constant *C1 = ConstantVector::get(CV1);
5432  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5433
5434  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5435                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5436                                        Op.getOperand(0),
5437                                        DAG.getIntPtrConstant(1)));
5438  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5439                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5440                                        Op.getOperand(0),
5441                                        DAG.getIntPtrConstant(0)));
5442  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5443  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5444                              PseudoSourceValue::getConstantPool(), 0,
5445                              false, false, 16);
5446  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5447  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5448  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5449                              PseudoSourceValue::getConstantPool(), 0,
5450                              false, false, 16);
5451  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5452
5453  // Add the halves; easiest way is to swap them into another reg first.
5454  int ShufMask[2] = { 1, -1 };
5455  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5456                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5457  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5458  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5459                     DAG.getIntPtrConstant(0));
5460}
5461
5462// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5463SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5464  DebugLoc dl = Op.getDebugLoc();
5465  // FP constant to bias correct the final result.
5466  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5467                                   MVT::f64);
5468
5469  // Load the 32-bit value into an XMM register.
5470  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5471                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5472                                         Op.getOperand(0),
5473                                         DAG.getIntPtrConstant(0)));
5474
5475  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5476                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5477                     DAG.getIntPtrConstant(0));
5478
5479  // Or the load with the bias.
5480  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5481                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5482                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5483                                                   MVT::v2f64, Load)),
5484                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5485                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5486                                                   MVT::v2f64, Bias)));
5487  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5488                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5489                   DAG.getIntPtrConstant(0));
5490
5491  // Subtract the bias.
5492  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5493
5494  // Handle final rounding.
5495  EVT DestVT = Op.getValueType();
5496
5497  if (DestVT.bitsLT(MVT::f64)) {
5498    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5499                       DAG.getIntPtrConstant(0));
5500  } else if (DestVT.bitsGT(MVT::f64)) {
5501    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5502  }
5503
5504  // Handle final rounding.
5505  return Sub;
5506}
5507
5508SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5509  SDValue N0 = Op.getOperand(0);
5510  DebugLoc dl = Op.getDebugLoc();
5511
5512  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5513  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5514  // the optimization here.
5515  if (DAG.SignBitIsZero(N0))
5516    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5517
5518  EVT SrcVT = N0.getValueType();
5519  if (SrcVT == MVT::i64) {
5520    // We only handle SSE2 f64 target here; caller can expand the rest.
5521    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5522      return SDValue();
5523
5524    return LowerUINT_TO_FP_i64(Op, DAG);
5525  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5526    return LowerUINT_TO_FP_i32(Op, DAG);
5527  }
5528
5529  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5530
5531  // Make a 64-bit buffer, and use it to build an FILD.
5532  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5533  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5534  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5535                                   getPointerTy(), StackSlot, WordOff);
5536  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5537                                StackSlot, NULL, 0, false, false, 0);
5538  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5539                                OffsetSlot, NULL, 0, false, false, 0);
5540  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5541}
5542
5543std::pair<SDValue,SDValue> X86TargetLowering::
5544FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5545  DebugLoc dl = Op.getDebugLoc();
5546
5547  EVT DstTy = Op.getValueType();
5548
5549  if (!IsSigned) {
5550    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5551    DstTy = MVT::i64;
5552  }
5553
5554  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5555         DstTy.getSimpleVT() >= MVT::i16 &&
5556         "Unknown FP_TO_SINT to lower!");
5557
5558  // These are really Legal.
5559  if (DstTy == MVT::i32 &&
5560      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5561    return std::make_pair(SDValue(), SDValue());
5562  if (Subtarget->is64Bit() &&
5563      DstTy == MVT::i64 &&
5564      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5565    return std::make_pair(SDValue(), SDValue());
5566
5567  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5568  // stack slot.
5569  MachineFunction &MF = DAG.getMachineFunction();
5570  unsigned MemSize = DstTy.getSizeInBits()/8;
5571  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5572  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5573
5574  unsigned Opc;
5575  switch (DstTy.getSimpleVT().SimpleTy) {
5576  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5577  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5578  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5579  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5580  }
5581
5582  SDValue Chain = DAG.getEntryNode();
5583  SDValue Value = Op.getOperand(0);
5584  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5585    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5586    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5587                         PseudoSourceValue::getFixedStack(SSFI), 0,
5588                         false, false, 0);
5589    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5590    SDValue Ops[] = {
5591      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5592    };
5593    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5594    Chain = Value.getValue(1);
5595    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5596    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5597  }
5598
5599  // Build the FP_TO_INT*_IN_MEM
5600  SDValue Ops[] = { Chain, Value, StackSlot };
5601  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5602
5603  return std::make_pair(FIST, StackSlot);
5604}
5605
5606SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5607  if (Op.getValueType().isVector()) {
5608    if (Op.getValueType() == MVT::v2i32 &&
5609        Op.getOperand(0).getValueType() == MVT::v2f64) {
5610      return Op;
5611    }
5612    return SDValue();
5613  }
5614
5615  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5616  SDValue FIST = Vals.first, StackSlot = Vals.second;
5617  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5618  if (FIST.getNode() == 0) return Op;
5619
5620  // Load the result.
5621  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5622                     FIST, StackSlot, NULL, 0, false, false, 0);
5623}
5624
5625SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5626  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5627  SDValue FIST = Vals.first, StackSlot = Vals.second;
5628  assert(FIST.getNode() && "Unexpected failure");
5629
5630  // Load the result.
5631  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5632                     FIST, StackSlot, NULL, 0, false, false, 0);
5633}
5634
5635SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5636  LLVMContext *Context = DAG.getContext();
5637  DebugLoc dl = Op.getDebugLoc();
5638  EVT VT = Op.getValueType();
5639  EVT EltVT = VT;
5640  if (VT.isVector())
5641    EltVT = VT.getVectorElementType();
5642  std::vector<Constant*> CV;
5643  if (EltVT == MVT::f64) {
5644    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5645    CV.push_back(C);
5646    CV.push_back(C);
5647  } else {
5648    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5649    CV.push_back(C);
5650    CV.push_back(C);
5651    CV.push_back(C);
5652    CV.push_back(C);
5653  }
5654  Constant *C = ConstantVector::get(CV);
5655  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5656  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5657                             PseudoSourceValue::getConstantPool(), 0,
5658                             false, false, 16);
5659  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5660}
5661
5662SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5663  LLVMContext *Context = DAG.getContext();
5664  DebugLoc dl = Op.getDebugLoc();
5665  EVT VT = Op.getValueType();
5666  EVT EltVT = VT;
5667  if (VT.isVector())
5668    EltVT = VT.getVectorElementType();
5669  std::vector<Constant*> CV;
5670  if (EltVT == MVT::f64) {
5671    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5672    CV.push_back(C);
5673    CV.push_back(C);
5674  } else {
5675    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5676    CV.push_back(C);
5677    CV.push_back(C);
5678    CV.push_back(C);
5679    CV.push_back(C);
5680  }
5681  Constant *C = ConstantVector::get(CV);
5682  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5683  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5684                             PseudoSourceValue::getConstantPool(), 0,
5685                             false, false, 16);
5686  if (VT.isVector()) {
5687    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5688                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5689                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5690                                Op.getOperand(0)),
5691                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5692  } else {
5693    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5694  }
5695}
5696
5697SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5698  LLVMContext *Context = DAG.getContext();
5699  SDValue Op0 = Op.getOperand(0);
5700  SDValue Op1 = Op.getOperand(1);
5701  DebugLoc dl = Op.getDebugLoc();
5702  EVT VT = Op.getValueType();
5703  EVT SrcVT = Op1.getValueType();
5704
5705  // If second operand is smaller, extend it first.
5706  if (SrcVT.bitsLT(VT)) {
5707    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5708    SrcVT = VT;
5709  }
5710  // And if it is bigger, shrink it first.
5711  if (SrcVT.bitsGT(VT)) {
5712    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5713    SrcVT = VT;
5714  }
5715
5716  // At this point the operands and the result should have the same
5717  // type, and that won't be f80 since that is not custom lowered.
5718
5719  // First get the sign bit of second operand.
5720  std::vector<Constant*> CV;
5721  if (SrcVT == MVT::f64) {
5722    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5723    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5724  } else {
5725    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5726    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5727    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5728    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5729  }
5730  Constant *C = ConstantVector::get(CV);
5731  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5732  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5733                              PseudoSourceValue::getConstantPool(), 0,
5734                              false, false, 16);
5735  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5736
5737  // Shift sign bit right or left if the two operands have different types.
5738  if (SrcVT.bitsGT(VT)) {
5739    // Op0 is MVT::f32, Op1 is MVT::f64.
5740    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5741    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5742                          DAG.getConstant(32, MVT::i32));
5743    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5744    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5745                          DAG.getIntPtrConstant(0));
5746  }
5747
5748  // Clear first operand sign bit.
5749  CV.clear();
5750  if (VT == MVT::f64) {
5751    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5752    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5753  } else {
5754    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5755    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5756    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5757    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5758  }
5759  C = ConstantVector::get(CV);
5760  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5761  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5762                              PseudoSourceValue::getConstantPool(), 0,
5763                              false, false, 16);
5764  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5765
5766  // Or the value with the sign bit.
5767  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5768}
5769
5770/// Emit nodes that will be selected as "test Op0,Op0", or something
5771/// equivalent.
5772SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5773                                    SelectionDAG &DAG) {
5774  DebugLoc dl = Op.getDebugLoc();
5775
5776  // CF and OF aren't always set the way we want. Determine which
5777  // of these we need.
5778  bool NeedCF = false;
5779  bool NeedOF = false;
5780  switch (X86CC) {
5781  case X86::COND_A: case X86::COND_AE:
5782  case X86::COND_B: case X86::COND_BE:
5783    NeedCF = true;
5784    break;
5785  case X86::COND_G: case X86::COND_GE:
5786  case X86::COND_L: case X86::COND_LE:
5787  case X86::COND_O: case X86::COND_NO:
5788    NeedOF = true;
5789    break;
5790  default: break;
5791  }
5792
5793  // See if we can use the EFLAGS value from the operand instead of
5794  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5795  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5796  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5797    unsigned Opcode = 0;
5798    unsigned NumOperands = 0;
5799    switch (Op.getNode()->getOpcode()) {
5800    case ISD::ADD:
5801      // Due to an isel shortcoming, be conservative if this add is likely to
5802      // be selected as part of a load-modify-store instruction. When the root
5803      // node in a match is a store, isel doesn't know how to remap non-chain
5804      // non-flag uses of other nodes in the match, such as the ADD in this
5805      // case. This leads to the ADD being left around and reselected, with
5806      // the result being two adds in the output.
5807      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5808           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5809        if (UI->getOpcode() == ISD::STORE)
5810          goto default_case;
5811      if (ConstantSDNode *C =
5812            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5813        // An add of one will be selected as an INC.
5814        if (C->getAPIntValue() == 1) {
5815          Opcode = X86ISD::INC;
5816          NumOperands = 1;
5817          break;
5818        }
5819        // An add of negative one (subtract of one) will be selected as a DEC.
5820        if (C->getAPIntValue().isAllOnesValue()) {
5821          Opcode = X86ISD::DEC;
5822          NumOperands = 1;
5823          break;
5824        }
5825      }
5826      // Otherwise use a regular EFLAGS-setting add.
5827      Opcode = X86ISD::ADD;
5828      NumOperands = 2;
5829      break;
5830    case ISD::AND: {
5831      // If the primary and result isn't used, don't bother using X86ISD::AND,
5832      // because a TEST instruction will be better.
5833      bool NonFlagUse = false;
5834      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5835             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
5836        SDNode *User = *UI;
5837        unsigned UOpNo = UI.getOperandNo();
5838        if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
5839          // Look pass truncate.
5840          UOpNo = User->use_begin().getOperandNo();
5841          User = *User->use_begin();
5842        }
5843        if (User->getOpcode() != ISD::BRCOND &&
5844            User->getOpcode() != ISD::SETCC &&
5845            (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
5846          NonFlagUse = true;
5847          break;
5848        }
5849      }
5850      if (!NonFlagUse)
5851        break;
5852    }
5853    // FALL THROUGH
5854    case ISD::SUB:
5855    case ISD::OR:
5856    case ISD::XOR:
5857      // Due to the ISEL shortcoming noted above, be conservative if this op is
5858      // likely to be selected as part of a load-modify-store instruction.
5859      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5860           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5861        if (UI->getOpcode() == ISD::STORE)
5862          goto default_case;
5863      // Otherwise use a regular EFLAGS-setting instruction.
5864      switch (Op.getNode()->getOpcode()) {
5865      case ISD::SUB: Opcode = X86ISD::SUB; break;
5866      case ISD::OR:  Opcode = X86ISD::OR;  break;
5867      case ISD::XOR: Opcode = X86ISD::XOR; break;
5868      case ISD::AND: Opcode = X86ISD::AND; break;
5869      default: llvm_unreachable("unexpected operator!");
5870      }
5871      NumOperands = 2;
5872      break;
5873    case X86ISD::ADD:
5874    case X86ISD::SUB:
5875    case X86ISD::INC:
5876    case X86ISD::DEC:
5877    case X86ISD::OR:
5878    case X86ISD::XOR:
5879    case X86ISD::AND:
5880      return SDValue(Op.getNode(), 1);
5881    default:
5882    default_case:
5883      break;
5884    }
5885    if (Opcode != 0) {
5886      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5887      SmallVector<SDValue, 4> Ops;
5888      for (unsigned i = 0; i != NumOperands; ++i)
5889        Ops.push_back(Op.getOperand(i));
5890      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5891      DAG.ReplaceAllUsesWith(Op, New);
5892      return SDValue(New.getNode(), 1);
5893    }
5894  }
5895
5896  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5897  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5898                     DAG.getConstant(0, Op.getValueType()));
5899}
5900
5901/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5902/// equivalent.
5903SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5904                                   SelectionDAG &DAG) {
5905  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5906    if (C->getAPIntValue() == 0)
5907      return EmitTest(Op0, X86CC, DAG);
5908
5909  DebugLoc dl = Op0.getDebugLoc();
5910  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5911}
5912
5913/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
5914/// if it's possible.
5915static SDValue LowerToBT(SDValue And, ISD::CondCode CC,
5916                         DebugLoc dl, SelectionDAG &DAG) {
5917  SDValue Op0 = And.getOperand(0);
5918  SDValue Op1 = And.getOperand(1);
5919  if (Op0.getOpcode() == ISD::TRUNCATE)
5920    Op0 = Op0.getOperand(0);
5921  if (Op1.getOpcode() == ISD::TRUNCATE)
5922    Op1 = Op1.getOperand(0);
5923
5924  SDValue LHS, RHS;
5925  if (Op1.getOpcode() == ISD::SHL) {
5926    if (ConstantSDNode *And10C = dyn_cast<ConstantSDNode>(Op1.getOperand(0)))
5927      if (And10C->getZExtValue() == 1) {
5928        LHS = Op0;
5929        RHS = Op1.getOperand(1);
5930      }
5931  } else if (Op0.getOpcode() == ISD::SHL) {
5932    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
5933      if (And00C->getZExtValue() == 1) {
5934        LHS = Op1;
5935        RHS = Op0.getOperand(1);
5936      }
5937  } else if (Op1.getOpcode() == ISD::Constant) {
5938    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
5939    SDValue AndLHS = Op0;
5940    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5941      LHS = AndLHS.getOperand(0);
5942      RHS = AndLHS.getOperand(1);
5943    }
5944  }
5945
5946  if (LHS.getNode()) {
5947    // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5948    // instruction.  Since the shift amount is in-range-or-undefined, we know
5949    // that doing a bittest on the i16 value is ok.  We extend to i32 because
5950    // the encoding for the i16 version is larger than the i32 version.
5951    if (LHS.getValueType() == MVT::i8)
5952      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5953
5954    // If the operand types disagree, extend the shift amount to match.  Since
5955    // BT ignores high bits (like shifts) we can use anyextend.
5956    if (LHS.getValueType() != RHS.getValueType())
5957      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5958
5959    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5960    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5961    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5962                       DAG.getConstant(Cond, MVT::i8), BT);
5963  }
5964
5965  return SDValue();
5966}
5967
5968SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5969  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5970  SDValue Op0 = Op.getOperand(0);
5971  SDValue Op1 = Op.getOperand(1);
5972  DebugLoc dl = Op.getDebugLoc();
5973  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5974
5975  // Optimize to BT if possible.
5976  // Lower (X & (1 << N)) == 0 to BT(X, N).
5977  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5978  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5979  if (Op0.getOpcode() == ISD::AND &&
5980      Op0.hasOneUse() &&
5981      Op1.getOpcode() == ISD::Constant &&
5982      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5983      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5984    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
5985    if (NewSetCC.getNode())
5986      return NewSetCC;
5987  }
5988
5989  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
5990  if (Op0.getOpcode() == X86ISD::SETCC &&
5991      Op1.getOpcode() == ISD::Constant &&
5992      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
5993       cast<ConstantSDNode>(Op1)->isNullValue()) &&
5994      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5995    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
5996    bool Invert = (CC == ISD::SETNE) ^
5997      cast<ConstantSDNode>(Op1)->isNullValue();
5998    if (Invert)
5999      CCode = X86::GetOppositeBranchCondition(CCode);
6000    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6001                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6002  }
6003
6004  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6005  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6006  if (X86CC == X86::COND_INVALID)
6007    return SDValue();
6008
6009  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6010
6011  // Use sbb x, x to materialize carry bit into a GPR.
6012  if (X86CC == X86::COND_B)
6013    return DAG.getNode(ISD::AND, dl, MVT::i8,
6014                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6015                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6016                       DAG.getConstant(1, MVT::i8));
6017
6018  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6019                     DAG.getConstant(X86CC, MVT::i8), Cond);
6020}
6021
6022SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
6023  SDValue Cond;
6024  SDValue Op0 = Op.getOperand(0);
6025  SDValue Op1 = Op.getOperand(1);
6026  SDValue CC = Op.getOperand(2);
6027  EVT VT = Op.getValueType();
6028  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6029  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6030  DebugLoc dl = Op.getDebugLoc();
6031
6032  if (isFP) {
6033    unsigned SSECC = 8;
6034    EVT VT0 = Op0.getValueType();
6035    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6036    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6037    bool Swap = false;
6038
6039    switch (SetCCOpcode) {
6040    default: break;
6041    case ISD::SETOEQ:
6042    case ISD::SETEQ:  SSECC = 0; break;
6043    case ISD::SETOGT:
6044    case ISD::SETGT: Swap = true; // Fallthrough
6045    case ISD::SETLT:
6046    case ISD::SETOLT: SSECC = 1; break;
6047    case ISD::SETOGE:
6048    case ISD::SETGE: Swap = true; // Fallthrough
6049    case ISD::SETLE:
6050    case ISD::SETOLE: SSECC = 2; break;
6051    case ISD::SETUO:  SSECC = 3; break;
6052    case ISD::SETUNE:
6053    case ISD::SETNE:  SSECC = 4; break;
6054    case ISD::SETULE: Swap = true;
6055    case ISD::SETUGE: SSECC = 5; break;
6056    case ISD::SETULT: Swap = true;
6057    case ISD::SETUGT: SSECC = 6; break;
6058    case ISD::SETO:   SSECC = 7; break;
6059    }
6060    if (Swap)
6061      std::swap(Op0, Op1);
6062
6063    // In the two special cases we can't handle, emit two comparisons.
6064    if (SSECC == 8) {
6065      if (SetCCOpcode == ISD::SETUEQ) {
6066        SDValue UNORD, EQ;
6067        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6068        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6069        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6070      }
6071      else if (SetCCOpcode == ISD::SETONE) {
6072        SDValue ORD, NEQ;
6073        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6074        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6075        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6076      }
6077      llvm_unreachable("Illegal FP comparison");
6078    }
6079    // Handle all other FP comparisons here.
6080    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6081  }
6082
6083  // We are handling one of the integer comparisons here.  Since SSE only has
6084  // GT and EQ comparisons for integer, swapping operands and multiple
6085  // operations may be required for some comparisons.
6086  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6087  bool Swap = false, Invert = false, FlipSigns = false;
6088
6089  switch (VT.getSimpleVT().SimpleTy) {
6090  default: break;
6091  case MVT::v8i8:
6092  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6093  case MVT::v4i16:
6094  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6095  case MVT::v2i32:
6096  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6097  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6098  }
6099
6100  switch (SetCCOpcode) {
6101  default: break;
6102  case ISD::SETNE:  Invert = true;
6103  case ISD::SETEQ:  Opc = EQOpc; break;
6104  case ISD::SETLT:  Swap = true;
6105  case ISD::SETGT:  Opc = GTOpc; break;
6106  case ISD::SETGE:  Swap = true;
6107  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6108  case ISD::SETULT: Swap = true;
6109  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6110  case ISD::SETUGE: Swap = true;
6111  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6112  }
6113  if (Swap)
6114    std::swap(Op0, Op1);
6115
6116  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6117  // bits of the inputs before performing those operations.
6118  if (FlipSigns) {
6119    EVT EltVT = VT.getVectorElementType();
6120    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6121                                      EltVT);
6122    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6123    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6124                                    SignBits.size());
6125    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6126    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6127  }
6128
6129  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6130
6131  // If the logical-not of the result is required, perform that now.
6132  if (Invert)
6133    Result = DAG.getNOT(dl, Result, VT);
6134
6135  return Result;
6136}
6137
6138// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6139static bool isX86LogicalCmp(SDValue Op) {
6140  unsigned Opc = Op.getNode()->getOpcode();
6141  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6142    return true;
6143  if (Op.getResNo() == 1 &&
6144      (Opc == X86ISD::ADD ||
6145       Opc == X86ISD::SUB ||
6146       Opc == X86ISD::SMUL ||
6147       Opc == X86ISD::UMUL ||
6148       Opc == X86ISD::INC ||
6149       Opc == X86ISD::DEC ||
6150       Opc == X86ISD::OR ||
6151       Opc == X86ISD::XOR ||
6152       Opc == X86ISD::AND))
6153    return true;
6154
6155  return false;
6156}
6157
6158SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
6159  bool addTest = true;
6160  SDValue Cond  = Op.getOperand(0);
6161  DebugLoc dl = Op.getDebugLoc();
6162  SDValue CC;
6163
6164  if (Cond.getOpcode() == ISD::SETCC) {
6165    SDValue NewCond = LowerSETCC(Cond, DAG);
6166    if (NewCond.getNode())
6167      Cond = NewCond;
6168  }
6169
6170  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6171  SDValue Op1 = Op.getOperand(1);
6172  SDValue Op2 = Op.getOperand(2);
6173  if (Cond.getOpcode() == X86ISD::SETCC &&
6174      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6175    SDValue Cmp = Cond.getOperand(1);
6176    if (Cmp.getOpcode() == X86ISD::CMP) {
6177      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6178      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6179      ConstantSDNode *RHSC =
6180        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6181      if (N1C && N1C->isAllOnesValue() &&
6182          N2C && N2C->isNullValue() &&
6183          RHSC && RHSC->isNullValue()) {
6184        SDValue CmpOp0 = Cmp.getOperand(0);
6185        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6186                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6187        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6188                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6189      }
6190    }
6191  }
6192
6193  // Look pass (and (setcc_carry (cmp ...)), 1).
6194  if (Cond.getOpcode() == ISD::AND &&
6195      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6196    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6197    if (C && C->getAPIntValue() == 1)
6198      Cond = Cond.getOperand(0);
6199  }
6200
6201  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6202  // setting operand in place of the X86ISD::SETCC.
6203  if (Cond.getOpcode() == X86ISD::SETCC ||
6204      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6205    CC = Cond.getOperand(0);
6206
6207    SDValue Cmp = Cond.getOperand(1);
6208    unsigned Opc = Cmp.getOpcode();
6209    EVT VT = Op.getValueType();
6210
6211    bool IllegalFPCMov = false;
6212    if (VT.isFloatingPoint() && !VT.isVector() &&
6213        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6214      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6215
6216    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6217        Opc == X86ISD::BT) { // FIXME
6218      Cond = Cmp;
6219      addTest = false;
6220    }
6221  }
6222
6223  if (addTest) {
6224    // Look pass the truncate.
6225    if (Cond.getOpcode() == ISD::TRUNCATE)
6226      Cond = Cond.getOperand(0);
6227
6228    // We know the result of AND is compared against zero. Try to match
6229    // it to BT.
6230    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6231      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6232      if (NewSetCC.getNode()) {
6233        CC = NewSetCC.getOperand(0);
6234        Cond = NewSetCC.getOperand(1);
6235        addTest = false;
6236      }
6237    }
6238  }
6239
6240  if (addTest) {
6241    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6242    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6243  }
6244
6245  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6246  // condition is true.
6247  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6248  SDValue Ops[] = { Op2, Op1, CC, Cond };
6249  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6250}
6251
6252// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6253// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6254// from the AND / OR.
6255static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6256  Opc = Op.getOpcode();
6257  if (Opc != ISD::OR && Opc != ISD::AND)
6258    return false;
6259  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6260          Op.getOperand(0).hasOneUse() &&
6261          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6262          Op.getOperand(1).hasOneUse());
6263}
6264
6265// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6266// 1 and that the SETCC node has a single use.
6267static bool isXor1OfSetCC(SDValue Op) {
6268  if (Op.getOpcode() != ISD::XOR)
6269    return false;
6270  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6271  if (N1C && N1C->getAPIntValue() == 1) {
6272    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6273      Op.getOperand(0).hasOneUse();
6274  }
6275  return false;
6276}
6277
6278SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
6279  bool addTest = true;
6280  SDValue Chain = Op.getOperand(0);
6281  SDValue Cond  = Op.getOperand(1);
6282  SDValue Dest  = Op.getOperand(2);
6283  DebugLoc dl = Op.getDebugLoc();
6284  SDValue CC;
6285
6286  if (Cond.getOpcode() == ISD::SETCC) {
6287    SDValue NewCond = LowerSETCC(Cond, DAG);
6288    if (NewCond.getNode())
6289      Cond = NewCond;
6290  }
6291#if 0
6292  // FIXME: LowerXALUO doesn't handle these!!
6293  else if (Cond.getOpcode() == X86ISD::ADD  ||
6294           Cond.getOpcode() == X86ISD::SUB  ||
6295           Cond.getOpcode() == X86ISD::SMUL ||
6296           Cond.getOpcode() == X86ISD::UMUL)
6297    Cond = LowerXALUO(Cond, DAG);
6298#endif
6299
6300  // Look pass (and (setcc_carry (cmp ...)), 1).
6301  if (Cond.getOpcode() == ISD::AND &&
6302      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6303    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6304    if (C && C->getAPIntValue() == 1)
6305      Cond = Cond.getOperand(0);
6306  }
6307
6308  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6309  // setting operand in place of the X86ISD::SETCC.
6310  if (Cond.getOpcode() == X86ISD::SETCC ||
6311      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6312    CC = Cond.getOperand(0);
6313
6314    SDValue Cmp = Cond.getOperand(1);
6315    unsigned Opc = Cmp.getOpcode();
6316    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6317    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6318      Cond = Cmp;
6319      addTest = false;
6320    } else {
6321      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6322      default: break;
6323      case X86::COND_O:
6324      case X86::COND_B:
6325        // These can only come from an arithmetic instruction with overflow,
6326        // e.g. SADDO, UADDO.
6327        Cond = Cond.getNode()->getOperand(1);
6328        addTest = false;
6329        break;
6330      }
6331    }
6332  } else {
6333    unsigned CondOpc;
6334    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6335      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6336      if (CondOpc == ISD::OR) {
6337        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6338        // two branches instead of an explicit OR instruction with a
6339        // separate test.
6340        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6341            isX86LogicalCmp(Cmp)) {
6342          CC = Cond.getOperand(0).getOperand(0);
6343          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6344                              Chain, Dest, CC, Cmp);
6345          CC = Cond.getOperand(1).getOperand(0);
6346          Cond = Cmp;
6347          addTest = false;
6348        }
6349      } else { // ISD::AND
6350        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6351        // two branches instead of an explicit AND instruction with a
6352        // separate test. However, we only do this if this block doesn't
6353        // have a fall-through edge, because this requires an explicit
6354        // jmp when the condition is false.
6355        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6356            isX86LogicalCmp(Cmp) &&
6357            Op.getNode()->hasOneUse()) {
6358          X86::CondCode CCode =
6359            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6360          CCode = X86::GetOppositeBranchCondition(CCode);
6361          CC = DAG.getConstant(CCode, MVT::i8);
6362          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
6363          // Look for an unconditional branch following this conditional branch.
6364          // We need this because we need to reverse the successors in order
6365          // to implement FCMP_OEQ.
6366          if (User.getOpcode() == ISD::BR) {
6367            SDValue FalseBB = User.getOperand(1);
6368            SDValue NewBR =
6369              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
6370            assert(NewBR == User);
6371            Dest = FalseBB;
6372
6373            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6374                                Chain, Dest, CC, Cmp);
6375            X86::CondCode CCode =
6376              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6377            CCode = X86::GetOppositeBranchCondition(CCode);
6378            CC = DAG.getConstant(CCode, MVT::i8);
6379            Cond = Cmp;
6380            addTest = false;
6381          }
6382        }
6383      }
6384    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6385      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6386      // It should be transformed during dag combiner except when the condition
6387      // is set by a arithmetics with overflow node.
6388      X86::CondCode CCode =
6389        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6390      CCode = X86::GetOppositeBranchCondition(CCode);
6391      CC = DAG.getConstant(CCode, MVT::i8);
6392      Cond = Cond.getOperand(0).getOperand(1);
6393      addTest = false;
6394    }
6395  }
6396
6397  if (addTest) {
6398    // Look pass the truncate.
6399    if (Cond.getOpcode() == ISD::TRUNCATE)
6400      Cond = Cond.getOperand(0);
6401
6402    // We know the result of AND is compared against zero. Try to match
6403    // it to BT.
6404    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6405      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6406      if (NewSetCC.getNode()) {
6407        CC = NewSetCC.getOperand(0);
6408        Cond = NewSetCC.getOperand(1);
6409        addTest = false;
6410      }
6411    }
6412  }
6413
6414  if (addTest) {
6415    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6416    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6417  }
6418  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6419                     Chain, Dest, CC, Cond);
6420}
6421
6422
6423// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6424// Calls to _alloca is needed to probe the stack when allocating more than 4k
6425// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6426// that the guard pages used by the OS virtual memory manager are allocated in
6427// correct sequence.
6428SDValue
6429X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6430                                           SelectionDAG &DAG) {
6431  assert(Subtarget->isTargetCygMing() &&
6432         "This should be used only on Cygwin/Mingw targets");
6433  DebugLoc dl = Op.getDebugLoc();
6434
6435  // Get the inputs.
6436  SDValue Chain = Op.getOperand(0);
6437  SDValue Size  = Op.getOperand(1);
6438  // FIXME: Ensure alignment here
6439
6440  SDValue Flag;
6441
6442  EVT IntPtr = getPointerTy();
6443  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6444
6445  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6446  Flag = Chain.getValue(1);
6447
6448  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6449
6450  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
6451  Flag = Chain.getValue(1);
6452
6453  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6454
6455  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6456  return DAG.getMergeValues(Ops1, 2, dl);
6457}
6458
6459SDValue
6460X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
6461                                           SDValue Chain,
6462                                           SDValue Dst, SDValue Src,
6463                                           SDValue Size, unsigned Align,
6464                                           const Value *DstSV,
6465                                           uint64_t DstSVOff) {
6466  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6467
6468  // If not DWORD aligned or size is more than the threshold, call the library.
6469  // The libc version is likely to be faster for these cases. It can use the
6470  // address value and run time information about the CPU.
6471  if ((Align & 3) != 0 ||
6472      !ConstantSize ||
6473      ConstantSize->getZExtValue() >
6474        getSubtarget()->getMaxInlineSizeThreshold()) {
6475    SDValue InFlag(0, 0);
6476
6477    // Check to see if there is a specialized entry-point for memory zeroing.
6478    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
6479
6480    if (const char *bzeroEntry =  V &&
6481        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
6482      EVT IntPtr = getPointerTy();
6483      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
6484      TargetLowering::ArgListTy Args;
6485      TargetLowering::ArgListEntry Entry;
6486      Entry.Node = Dst;
6487      Entry.Ty = IntPtrTy;
6488      Args.push_back(Entry);
6489      Entry.Node = Size;
6490      Args.push_back(Entry);
6491      std::pair<SDValue,SDValue> CallResult =
6492        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6493                    false, false, false, false,
6494                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6495                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
6496      return CallResult.second;
6497    }
6498
6499    // Otherwise have the target-independent code call memset.
6500    return SDValue();
6501  }
6502
6503  uint64_t SizeVal = ConstantSize->getZExtValue();
6504  SDValue InFlag(0, 0);
6505  EVT AVT;
6506  SDValue Count;
6507  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6508  unsigned BytesLeft = 0;
6509  bool TwoRepStos = false;
6510  if (ValC) {
6511    unsigned ValReg;
6512    uint64_t Val = ValC->getZExtValue() & 255;
6513
6514    // If the value is a constant, then we can potentially use larger sets.
6515    switch (Align & 3) {
6516    case 2:   // WORD aligned
6517      AVT = MVT::i16;
6518      ValReg = X86::AX;
6519      Val = (Val << 8) | Val;
6520      break;
6521    case 0:  // DWORD aligned
6522      AVT = MVT::i32;
6523      ValReg = X86::EAX;
6524      Val = (Val << 8)  | Val;
6525      Val = (Val << 16) | Val;
6526      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6527        AVT = MVT::i64;
6528        ValReg = X86::RAX;
6529        Val = (Val << 32) | Val;
6530      }
6531      break;
6532    default:  // Byte aligned
6533      AVT = MVT::i8;
6534      ValReg = X86::AL;
6535      Count = DAG.getIntPtrConstant(SizeVal);
6536      break;
6537    }
6538
6539    if (AVT.bitsGT(MVT::i8)) {
6540      unsigned UBytes = AVT.getSizeInBits() / 8;
6541      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6542      BytesLeft = SizeVal % UBytes;
6543    }
6544
6545    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6546                              InFlag);
6547    InFlag = Chain.getValue(1);
6548  } else {
6549    AVT = MVT::i8;
6550    Count  = DAG.getIntPtrConstant(SizeVal);
6551    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6552    InFlag = Chain.getValue(1);
6553  }
6554
6555  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6556                                                              X86::ECX,
6557                            Count, InFlag);
6558  InFlag = Chain.getValue(1);
6559  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6560                                                              X86::EDI,
6561                            Dst, InFlag);
6562  InFlag = Chain.getValue(1);
6563
6564  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6565  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6566  Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6567
6568  if (TwoRepStos) {
6569    InFlag = Chain.getValue(1);
6570    Count  = Size;
6571    EVT CVT = Count.getValueType();
6572    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6573                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6574    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6575                                                             X86::ECX,
6576                              Left, InFlag);
6577    InFlag = Chain.getValue(1);
6578    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6579    SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
6580    Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6581  } else if (BytesLeft) {
6582    // Handle the last 1 - 7 bytes.
6583    unsigned Offset = SizeVal - BytesLeft;
6584    EVT AddrVT = Dst.getValueType();
6585    EVT SizeVT = Size.getValueType();
6586
6587    Chain = DAG.getMemset(Chain, dl,
6588                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6589                                      DAG.getConstant(Offset, AddrVT)),
6590                          Src,
6591                          DAG.getConstant(BytesLeft, SizeVT),
6592                          Align, DstSV, DstSVOff + Offset);
6593  }
6594
6595  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6596  return Chain;
6597}
6598
6599SDValue
6600X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6601                                      SDValue Chain, SDValue Dst, SDValue Src,
6602                                      SDValue Size, unsigned Align,
6603                                      bool AlwaysInline,
6604                                      const Value *DstSV, uint64_t DstSVOff,
6605                                      const Value *SrcSV, uint64_t SrcSVOff) {
6606  // This requires the copy size to be a constant, preferrably
6607  // within a subtarget-specific limit.
6608  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6609  if (!ConstantSize)
6610    return SDValue();
6611  uint64_t SizeVal = ConstantSize->getZExtValue();
6612  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6613    return SDValue();
6614
6615  /// If not DWORD aligned, call the library.
6616  if ((Align & 3) != 0)
6617    return SDValue();
6618
6619  // DWORD aligned
6620  EVT AVT = MVT::i32;
6621  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6622    AVT = MVT::i64;
6623
6624  unsigned UBytes = AVT.getSizeInBits() / 8;
6625  unsigned CountVal = SizeVal / UBytes;
6626  SDValue Count = DAG.getIntPtrConstant(CountVal);
6627  unsigned BytesLeft = SizeVal % UBytes;
6628
6629  SDValue InFlag(0, 0);
6630  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6631                                                              X86::ECX,
6632                            Count, InFlag);
6633  InFlag = Chain.getValue(1);
6634  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6635                                                             X86::EDI,
6636                            Dst, InFlag);
6637  InFlag = Chain.getValue(1);
6638  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6639                                                              X86::ESI,
6640                            Src, InFlag);
6641  InFlag = Chain.getValue(1);
6642
6643  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6644  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6645  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops,
6646                                array_lengthof(Ops));
6647
6648  SmallVector<SDValue, 4> Results;
6649  Results.push_back(RepMovs);
6650  if (BytesLeft) {
6651    // Handle the last 1 - 7 bytes.
6652    unsigned Offset = SizeVal - BytesLeft;
6653    EVT DstVT = Dst.getValueType();
6654    EVT SrcVT = Src.getValueType();
6655    EVT SizeVT = Size.getValueType();
6656    Results.push_back(DAG.getMemcpy(Chain, dl,
6657                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6658                                                DAG.getConstant(Offset, DstVT)),
6659                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6660                                                DAG.getConstant(Offset, SrcVT)),
6661                                    DAG.getConstant(BytesLeft, SizeVT),
6662                                    Align, AlwaysInline,
6663                                    DstSV, DstSVOff + Offset,
6664                                    SrcSV, SrcSVOff + Offset));
6665  }
6666
6667  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6668                     &Results[0], Results.size());
6669}
6670
6671SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6672  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6673  DebugLoc dl = Op.getDebugLoc();
6674
6675  if (!Subtarget->is64Bit()) {
6676    // vastart just stores the address of the VarArgsFrameIndex slot into the
6677    // memory location argument.
6678    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6679    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6680                        false, false, 0);
6681  }
6682
6683  // __va_list_tag:
6684  //   gp_offset         (0 - 6 * 8)
6685  //   fp_offset         (48 - 48 + 8 * 16)
6686  //   overflow_arg_area (point to parameters coming in memory).
6687  //   reg_save_area
6688  SmallVector<SDValue, 8> MemOps;
6689  SDValue FIN = Op.getOperand(1);
6690  // Store gp_offset
6691  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6692                               DAG.getConstant(VarArgsGPOffset, MVT::i32),
6693                               FIN, SV, 0, false, false, 0);
6694  MemOps.push_back(Store);
6695
6696  // Store fp_offset
6697  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6698                    FIN, DAG.getIntPtrConstant(4));
6699  Store = DAG.getStore(Op.getOperand(0), dl,
6700                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6701                       FIN, SV, 0, false, false, 0);
6702  MemOps.push_back(Store);
6703
6704  // Store ptr to overflow_arg_area
6705  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6706                    FIN, DAG.getIntPtrConstant(4));
6707  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6708  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0,
6709                       false, false, 0);
6710  MemOps.push_back(Store);
6711
6712  // Store ptr to reg_save_area.
6713  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6714                    FIN, DAG.getIntPtrConstant(8));
6715  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6716  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0,
6717                       false, false, 0);
6718  MemOps.push_back(Store);
6719  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6720                     &MemOps[0], MemOps.size());
6721}
6722
6723SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6724  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6725  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6726  SDValue Chain = Op.getOperand(0);
6727  SDValue SrcPtr = Op.getOperand(1);
6728  SDValue SrcSV = Op.getOperand(2);
6729
6730  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6731  return SDValue();
6732}
6733
6734SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6735  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6736  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6737  SDValue Chain = Op.getOperand(0);
6738  SDValue DstPtr = Op.getOperand(1);
6739  SDValue SrcPtr = Op.getOperand(2);
6740  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6741  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6742  DebugLoc dl = Op.getDebugLoc();
6743
6744  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6745                       DAG.getIntPtrConstant(24), 8, false,
6746                       DstSV, 0, SrcSV, 0);
6747}
6748
6749SDValue
6750X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6751  DebugLoc dl = Op.getDebugLoc();
6752  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6753  switch (IntNo) {
6754  default: return SDValue();    // Don't custom lower most intrinsics.
6755  // Comparison intrinsics.
6756  case Intrinsic::x86_sse_comieq_ss:
6757  case Intrinsic::x86_sse_comilt_ss:
6758  case Intrinsic::x86_sse_comile_ss:
6759  case Intrinsic::x86_sse_comigt_ss:
6760  case Intrinsic::x86_sse_comige_ss:
6761  case Intrinsic::x86_sse_comineq_ss:
6762  case Intrinsic::x86_sse_ucomieq_ss:
6763  case Intrinsic::x86_sse_ucomilt_ss:
6764  case Intrinsic::x86_sse_ucomile_ss:
6765  case Intrinsic::x86_sse_ucomigt_ss:
6766  case Intrinsic::x86_sse_ucomige_ss:
6767  case Intrinsic::x86_sse_ucomineq_ss:
6768  case Intrinsic::x86_sse2_comieq_sd:
6769  case Intrinsic::x86_sse2_comilt_sd:
6770  case Intrinsic::x86_sse2_comile_sd:
6771  case Intrinsic::x86_sse2_comigt_sd:
6772  case Intrinsic::x86_sse2_comige_sd:
6773  case Intrinsic::x86_sse2_comineq_sd:
6774  case Intrinsic::x86_sse2_ucomieq_sd:
6775  case Intrinsic::x86_sse2_ucomilt_sd:
6776  case Intrinsic::x86_sse2_ucomile_sd:
6777  case Intrinsic::x86_sse2_ucomigt_sd:
6778  case Intrinsic::x86_sse2_ucomige_sd:
6779  case Intrinsic::x86_sse2_ucomineq_sd: {
6780    unsigned Opc = 0;
6781    ISD::CondCode CC = ISD::SETCC_INVALID;
6782    switch (IntNo) {
6783    default: break;
6784    case Intrinsic::x86_sse_comieq_ss:
6785    case Intrinsic::x86_sse2_comieq_sd:
6786      Opc = X86ISD::COMI;
6787      CC = ISD::SETEQ;
6788      break;
6789    case Intrinsic::x86_sse_comilt_ss:
6790    case Intrinsic::x86_sse2_comilt_sd:
6791      Opc = X86ISD::COMI;
6792      CC = ISD::SETLT;
6793      break;
6794    case Intrinsic::x86_sse_comile_ss:
6795    case Intrinsic::x86_sse2_comile_sd:
6796      Opc = X86ISD::COMI;
6797      CC = ISD::SETLE;
6798      break;
6799    case Intrinsic::x86_sse_comigt_ss:
6800    case Intrinsic::x86_sse2_comigt_sd:
6801      Opc = X86ISD::COMI;
6802      CC = ISD::SETGT;
6803      break;
6804    case Intrinsic::x86_sse_comige_ss:
6805    case Intrinsic::x86_sse2_comige_sd:
6806      Opc = X86ISD::COMI;
6807      CC = ISD::SETGE;
6808      break;
6809    case Intrinsic::x86_sse_comineq_ss:
6810    case Intrinsic::x86_sse2_comineq_sd:
6811      Opc = X86ISD::COMI;
6812      CC = ISD::SETNE;
6813      break;
6814    case Intrinsic::x86_sse_ucomieq_ss:
6815    case Intrinsic::x86_sse2_ucomieq_sd:
6816      Opc = X86ISD::UCOMI;
6817      CC = ISD::SETEQ;
6818      break;
6819    case Intrinsic::x86_sse_ucomilt_ss:
6820    case Intrinsic::x86_sse2_ucomilt_sd:
6821      Opc = X86ISD::UCOMI;
6822      CC = ISD::SETLT;
6823      break;
6824    case Intrinsic::x86_sse_ucomile_ss:
6825    case Intrinsic::x86_sse2_ucomile_sd:
6826      Opc = X86ISD::UCOMI;
6827      CC = ISD::SETLE;
6828      break;
6829    case Intrinsic::x86_sse_ucomigt_ss:
6830    case Intrinsic::x86_sse2_ucomigt_sd:
6831      Opc = X86ISD::UCOMI;
6832      CC = ISD::SETGT;
6833      break;
6834    case Intrinsic::x86_sse_ucomige_ss:
6835    case Intrinsic::x86_sse2_ucomige_sd:
6836      Opc = X86ISD::UCOMI;
6837      CC = ISD::SETGE;
6838      break;
6839    case Intrinsic::x86_sse_ucomineq_ss:
6840    case Intrinsic::x86_sse2_ucomineq_sd:
6841      Opc = X86ISD::UCOMI;
6842      CC = ISD::SETNE;
6843      break;
6844    }
6845
6846    SDValue LHS = Op.getOperand(1);
6847    SDValue RHS = Op.getOperand(2);
6848    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6849    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6850    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6851    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6852                                DAG.getConstant(X86CC, MVT::i8), Cond);
6853    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6854  }
6855  // ptest intrinsics. The intrinsic these come from are designed to return
6856  // an integer value, not just an instruction so lower it to the ptest
6857  // pattern and a setcc for the result.
6858  case Intrinsic::x86_sse41_ptestz:
6859  case Intrinsic::x86_sse41_ptestc:
6860  case Intrinsic::x86_sse41_ptestnzc:{
6861    unsigned X86CC = 0;
6862    switch (IntNo) {
6863    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6864    case Intrinsic::x86_sse41_ptestz:
6865      // ZF = 1
6866      X86CC = X86::COND_E;
6867      break;
6868    case Intrinsic::x86_sse41_ptestc:
6869      // CF = 1
6870      X86CC = X86::COND_B;
6871      break;
6872    case Intrinsic::x86_sse41_ptestnzc:
6873      // ZF and CF = 0
6874      X86CC = X86::COND_A;
6875      break;
6876    }
6877
6878    SDValue LHS = Op.getOperand(1);
6879    SDValue RHS = Op.getOperand(2);
6880    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6881    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6882    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6883    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6884  }
6885
6886  // Fix vector shift instructions where the last operand is a non-immediate
6887  // i32 value.
6888  case Intrinsic::x86_sse2_pslli_w:
6889  case Intrinsic::x86_sse2_pslli_d:
6890  case Intrinsic::x86_sse2_pslli_q:
6891  case Intrinsic::x86_sse2_psrli_w:
6892  case Intrinsic::x86_sse2_psrli_d:
6893  case Intrinsic::x86_sse2_psrli_q:
6894  case Intrinsic::x86_sse2_psrai_w:
6895  case Intrinsic::x86_sse2_psrai_d:
6896  case Intrinsic::x86_mmx_pslli_w:
6897  case Intrinsic::x86_mmx_pslli_d:
6898  case Intrinsic::x86_mmx_pslli_q:
6899  case Intrinsic::x86_mmx_psrli_w:
6900  case Intrinsic::x86_mmx_psrli_d:
6901  case Intrinsic::x86_mmx_psrli_q:
6902  case Intrinsic::x86_mmx_psrai_w:
6903  case Intrinsic::x86_mmx_psrai_d: {
6904    SDValue ShAmt = Op.getOperand(2);
6905    if (isa<ConstantSDNode>(ShAmt))
6906      return SDValue();
6907
6908    unsigned NewIntNo = 0;
6909    EVT ShAmtVT = MVT::v4i32;
6910    switch (IntNo) {
6911    case Intrinsic::x86_sse2_pslli_w:
6912      NewIntNo = Intrinsic::x86_sse2_psll_w;
6913      break;
6914    case Intrinsic::x86_sse2_pslli_d:
6915      NewIntNo = Intrinsic::x86_sse2_psll_d;
6916      break;
6917    case Intrinsic::x86_sse2_pslli_q:
6918      NewIntNo = Intrinsic::x86_sse2_psll_q;
6919      break;
6920    case Intrinsic::x86_sse2_psrli_w:
6921      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6922      break;
6923    case Intrinsic::x86_sse2_psrli_d:
6924      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6925      break;
6926    case Intrinsic::x86_sse2_psrli_q:
6927      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6928      break;
6929    case Intrinsic::x86_sse2_psrai_w:
6930      NewIntNo = Intrinsic::x86_sse2_psra_w;
6931      break;
6932    case Intrinsic::x86_sse2_psrai_d:
6933      NewIntNo = Intrinsic::x86_sse2_psra_d;
6934      break;
6935    default: {
6936      ShAmtVT = MVT::v2i32;
6937      switch (IntNo) {
6938      case Intrinsic::x86_mmx_pslli_w:
6939        NewIntNo = Intrinsic::x86_mmx_psll_w;
6940        break;
6941      case Intrinsic::x86_mmx_pslli_d:
6942        NewIntNo = Intrinsic::x86_mmx_psll_d;
6943        break;
6944      case Intrinsic::x86_mmx_pslli_q:
6945        NewIntNo = Intrinsic::x86_mmx_psll_q;
6946        break;
6947      case Intrinsic::x86_mmx_psrli_w:
6948        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6949        break;
6950      case Intrinsic::x86_mmx_psrli_d:
6951        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6952        break;
6953      case Intrinsic::x86_mmx_psrli_q:
6954        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6955        break;
6956      case Intrinsic::x86_mmx_psrai_w:
6957        NewIntNo = Intrinsic::x86_mmx_psra_w;
6958        break;
6959      case Intrinsic::x86_mmx_psrai_d:
6960        NewIntNo = Intrinsic::x86_mmx_psra_d;
6961        break;
6962      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6963      }
6964      break;
6965    }
6966    }
6967
6968    // The vector shift intrinsics with scalars uses 32b shift amounts but
6969    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
6970    // to be zero.
6971    SDValue ShOps[4];
6972    ShOps[0] = ShAmt;
6973    ShOps[1] = DAG.getConstant(0, MVT::i32);
6974    if (ShAmtVT == MVT::v4i32) {
6975      ShOps[2] = DAG.getUNDEF(MVT::i32);
6976      ShOps[3] = DAG.getUNDEF(MVT::i32);
6977      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
6978    } else {
6979      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
6980    }
6981
6982    EVT VT = Op.getValueType();
6983    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
6984    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6985                       DAG.getConstant(NewIntNo, MVT::i32),
6986                       Op.getOperand(1), ShAmt);
6987  }
6988  }
6989}
6990
6991SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6992  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6993  DebugLoc dl = Op.getDebugLoc();
6994
6995  if (Depth > 0) {
6996    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6997    SDValue Offset =
6998      DAG.getConstant(TD->getPointerSize(),
6999                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7000    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7001                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7002                                   FrameAddr, Offset),
7003                       NULL, 0, false, false, 0);
7004  }
7005
7006  // Just load the return address.
7007  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7008  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7009                     RetAddrFI, NULL, 0, false, false, 0);
7010}
7011
7012SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
7013  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7014  MFI->setFrameAddressIsTaken(true);
7015  EVT VT = Op.getValueType();
7016  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7017  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7018  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7019  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7020  while (Depth--)
7021    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7022                            false, false, 0);
7023  return FrameAddr;
7024}
7025
7026SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7027                                                     SelectionDAG &DAG) {
7028  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7029}
7030
7031SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
7032{
7033  MachineFunction &MF = DAG.getMachineFunction();
7034  SDValue Chain     = Op.getOperand(0);
7035  SDValue Offset    = Op.getOperand(1);
7036  SDValue Handler   = Op.getOperand(2);
7037  DebugLoc dl       = Op.getDebugLoc();
7038
7039  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7040                                  getPointerTy());
7041  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7042
7043  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
7044                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
7045  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7046  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7047  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7048  MF.getRegInfo().addLiveOut(StoreAddrReg);
7049
7050  return DAG.getNode(X86ISD::EH_RETURN, dl,
7051                     MVT::Other,
7052                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7053}
7054
7055SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7056                                             SelectionDAG &DAG) {
7057  SDValue Root = Op.getOperand(0);
7058  SDValue Trmp = Op.getOperand(1); // trampoline
7059  SDValue FPtr = Op.getOperand(2); // nested function
7060  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7061  DebugLoc dl  = Op.getDebugLoc();
7062
7063  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7064
7065  if (Subtarget->is64Bit()) {
7066    SDValue OutChains[6];
7067
7068    // Large code-model.
7069    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7070    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7071
7072    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7073    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7074
7075    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7076
7077    // Load the pointer to the nested function into R11.
7078    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7079    SDValue Addr = Trmp;
7080    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7081                                Addr, TrmpAddr, 0, false, false, 0);
7082
7083    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7084                       DAG.getConstant(2, MVT::i64));
7085    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7086                                false, false, 2);
7087
7088    // Load the 'nest' parameter value into R10.
7089    // R10 is specified in X86CallingConv.td
7090    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7091    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7092                       DAG.getConstant(10, MVT::i64));
7093    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7094                                Addr, TrmpAddr, 10, false, false, 0);
7095
7096    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7097                       DAG.getConstant(12, MVT::i64));
7098    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7099                                false, false, 2);
7100
7101    // Jump to the nested function.
7102    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7103    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7104                       DAG.getConstant(20, MVT::i64));
7105    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7106                                Addr, TrmpAddr, 20, false, false, 0);
7107
7108    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7109    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7110                       DAG.getConstant(22, MVT::i64));
7111    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7112                                TrmpAddr, 22, false, false, 0);
7113
7114    SDValue Ops[] =
7115      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7116    return DAG.getMergeValues(Ops, 2, dl);
7117  } else {
7118    const Function *Func =
7119      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7120    CallingConv::ID CC = Func->getCallingConv();
7121    unsigned NestReg;
7122
7123    switch (CC) {
7124    default:
7125      llvm_unreachable("Unsupported calling convention");
7126    case CallingConv::C:
7127    case CallingConv::X86_StdCall: {
7128      // Pass 'nest' parameter in ECX.
7129      // Must be kept in sync with X86CallingConv.td
7130      NestReg = X86::ECX;
7131
7132      // Check that ECX wasn't needed by an 'inreg' parameter.
7133      const FunctionType *FTy = Func->getFunctionType();
7134      const AttrListPtr &Attrs = Func->getAttributes();
7135
7136      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7137        unsigned InRegCount = 0;
7138        unsigned Idx = 1;
7139
7140        for (FunctionType::param_iterator I = FTy->param_begin(),
7141             E = FTy->param_end(); I != E; ++I, ++Idx)
7142          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7143            // FIXME: should only count parameters that are lowered to integers.
7144            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7145
7146        if (InRegCount > 2) {
7147          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
7148        }
7149      }
7150      break;
7151    }
7152    case CallingConv::X86_FastCall:
7153    case CallingConv::Fast:
7154      // Pass 'nest' parameter in EAX.
7155      // Must be kept in sync with X86CallingConv.td
7156      NestReg = X86::EAX;
7157      break;
7158    }
7159
7160    SDValue OutChains[4];
7161    SDValue Addr, Disp;
7162
7163    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7164                       DAG.getConstant(10, MVT::i32));
7165    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7166
7167    // This is storing the opcode for MOV32ri.
7168    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7169    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7170    OutChains[0] = DAG.getStore(Root, dl,
7171                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7172                                Trmp, TrmpAddr, 0, false, false, 0);
7173
7174    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7175                       DAG.getConstant(1, MVT::i32));
7176    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7177                                false, false, 1);
7178
7179    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7180    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7181                       DAG.getConstant(5, MVT::i32));
7182    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7183                                TrmpAddr, 5, false, false, 1);
7184
7185    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7186                       DAG.getConstant(6, MVT::i32));
7187    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7188                                false, false, 1);
7189
7190    SDValue Ops[] =
7191      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7192    return DAG.getMergeValues(Ops, 2, dl);
7193  }
7194}
7195
7196SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
7197  /*
7198   The rounding mode is in bits 11:10 of FPSR, and has the following
7199   settings:
7200     00 Round to nearest
7201     01 Round to -inf
7202     10 Round to +inf
7203     11 Round to 0
7204
7205  FLT_ROUNDS, on the other hand, expects the following:
7206    -1 Undefined
7207     0 Round to 0
7208     1 Round to nearest
7209     2 Round to +inf
7210     3 Round to -inf
7211
7212  To perform the conversion, we do:
7213    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7214  */
7215
7216  MachineFunction &MF = DAG.getMachineFunction();
7217  const TargetMachine &TM = MF.getTarget();
7218  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7219  unsigned StackAlignment = TFI.getStackAlignment();
7220  EVT VT = Op.getValueType();
7221  DebugLoc dl = Op.getDebugLoc();
7222
7223  // Save FP Control Word to stack slot
7224  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7225  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7226
7227  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7228                              DAG.getEntryNode(), StackSlot);
7229
7230  // Load FP Control Word from stack slot
7231  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7232                            false, false, 0);
7233
7234  // Transform as necessary
7235  SDValue CWD1 =
7236    DAG.getNode(ISD::SRL, dl, MVT::i16,
7237                DAG.getNode(ISD::AND, dl, MVT::i16,
7238                            CWD, DAG.getConstant(0x800, MVT::i16)),
7239                DAG.getConstant(11, MVT::i8));
7240  SDValue CWD2 =
7241    DAG.getNode(ISD::SRL, dl, MVT::i16,
7242                DAG.getNode(ISD::AND, dl, MVT::i16,
7243                            CWD, DAG.getConstant(0x400, MVT::i16)),
7244                DAG.getConstant(9, MVT::i8));
7245
7246  SDValue RetVal =
7247    DAG.getNode(ISD::AND, dl, MVT::i16,
7248                DAG.getNode(ISD::ADD, dl, MVT::i16,
7249                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7250                            DAG.getConstant(1, MVT::i16)),
7251                DAG.getConstant(3, MVT::i16));
7252
7253
7254  return DAG.getNode((VT.getSizeInBits() < 16 ?
7255                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7256}
7257
7258SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
7259  EVT VT = Op.getValueType();
7260  EVT OpVT = VT;
7261  unsigned NumBits = VT.getSizeInBits();
7262  DebugLoc dl = Op.getDebugLoc();
7263
7264  Op = Op.getOperand(0);
7265  if (VT == MVT::i8) {
7266    // Zero extend to i32 since there is not an i8 bsr.
7267    OpVT = MVT::i32;
7268    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7269  }
7270
7271  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7272  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7273  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7274
7275  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7276  SDValue Ops[] = {
7277    Op,
7278    DAG.getConstant(NumBits+NumBits-1, OpVT),
7279    DAG.getConstant(X86::COND_E, MVT::i8),
7280    Op.getValue(1)
7281  };
7282  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7283
7284  // Finally xor with NumBits-1.
7285  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7286
7287  if (VT == MVT::i8)
7288    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7289  return Op;
7290}
7291
7292SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
7293  EVT VT = Op.getValueType();
7294  EVT OpVT = VT;
7295  unsigned NumBits = VT.getSizeInBits();
7296  DebugLoc dl = Op.getDebugLoc();
7297
7298  Op = Op.getOperand(0);
7299  if (VT == MVT::i8) {
7300    OpVT = MVT::i32;
7301    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7302  }
7303
7304  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7305  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7306  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7307
7308  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7309  SDValue Ops[] = {
7310    Op,
7311    DAG.getConstant(NumBits, OpVT),
7312    DAG.getConstant(X86::COND_E, MVT::i8),
7313    Op.getValue(1)
7314  };
7315  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7316
7317  if (VT == MVT::i8)
7318    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7319  return Op;
7320}
7321
7322SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
7323  EVT VT = Op.getValueType();
7324  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7325  DebugLoc dl = Op.getDebugLoc();
7326
7327  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7328  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7329  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7330  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7331  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7332  //
7333  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7334  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7335  //  return AloBlo + AloBhi + AhiBlo;
7336
7337  SDValue A = Op.getOperand(0);
7338  SDValue B = Op.getOperand(1);
7339
7340  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7341                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7342                       A, DAG.getConstant(32, MVT::i32));
7343  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7344                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7345                       B, DAG.getConstant(32, MVT::i32));
7346  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7347                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7348                       A, B);
7349  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7350                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7351                       A, Bhi);
7352  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7353                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7354                       Ahi, B);
7355  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7356                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7357                       AloBhi, DAG.getConstant(32, MVT::i32));
7358  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7359                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7360                       AhiBlo, DAG.getConstant(32, MVT::i32));
7361  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7362  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7363  return Res;
7364}
7365
7366
7367SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
7368  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7369  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7370  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7371  // has only one use.
7372  SDNode *N = Op.getNode();
7373  SDValue LHS = N->getOperand(0);
7374  SDValue RHS = N->getOperand(1);
7375  unsigned BaseOp = 0;
7376  unsigned Cond = 0;
7377  DebugLoc dl = Op.getDebugLoc();
7378
7379  switch (Op.getOpcode()) {
7380  default: llvm_unreachable("Unknown ovf instruction!");
7381  case ISD::SADDO:
7382    // A subtract of one will be selected as a INC. Note that INC doesn't
7383    // set CF, so we can't do this for UADDO.
7384    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7385      if (C->getAPIntValue() == 1) {
7386        BaseOp = X86ISD::INC;
7387        Cond = X86::COND_O;
7388        break;
7389      }
7390    BaseOp = X86ISD::ADD;
7391    Cond = X86::COND_O;
7392    break;
7393  case ISD::UADDO:
7394    BaseOp = X86ISD::ADD;
7395    Cond = X86::COND_B;
7396    break;
7397  case ISD::SSUBO:
7398    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7399    // set CF, so we can't do this for USUBO.
7400    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7401      if (C->getAPIntValue() == 1) {
7402        BaseOp = X86ISD::DEC;
7403        Cond = X86::COND_O;
7404        break;
7405      }
7406    BaseOp = X86ISD::SUB;
7407    Cond = X86::COND_O;
7408    break;
7409  case ISD::USUBO:
7410    BaseOp = X86ISD::SUB;
7411    Cond = X86::COND_B;
7412    break;
7413  case ISD::SMULO:
7414    BaseOp = X86ISD::SMUL;
7415    Cond = X86::COND_O;
7416    break;
7417  case ISD::UMULO:
7418    BaseOp = X86ISD::UMUL;
7419    Cond = X86::COND_B;
7420    break;
7421  }
7422
7423  // Also sets EFLAGS.
7424  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7425  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7426
7427  SDValue SetCC =
7428    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7429                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7430
7431  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7432  return Sum;
7433}
7434
7435SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
7436  EVT T = Op.getValueType();
7437  DebugLoc dl = Op.getDebugLoc();
7438  unsigned Reg = 0;
7439  unsigned size = 0;
7440  switch(T.getSimpleVT().SimpleTy) {
7441  default:
7442    assert(false && "Invalid value type!");
7443  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7444  case MVT::i16: Reg = X86::AX;  size = 2; break;
7445  case MVT::i32: Reg = X86::EAX; size = 4; break;
7446  case MVT::i64:
7447    assert(Subtarget->is64Bit() && "Node not type legal!");
7448    Reg = X86::RAX; size = 8;
7449    break;
7450  }
7451  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7452                                    Op.getOperand(2), SDValue());
7453  SDValue Ops[] = { cpIn.getValue(0),
7454                    Op.getOperand(1),
7455                    Op.getOperand(3),
7456                    DAG.getTargetConstant(size, MVT::i8),
7457                    cpIn.getValue(1) };
7458  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7459  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7460  SDValue cpOut =
7461    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7462  return cpOut;
7463}
7464
7465SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7466                                                 SelectionDAG &DAG) {
7467  assert(Subtarget->is64Bit() && "Result not type legalized?");
7468  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7469  SDValue TheChain = Op.getOperand(0);
7470  DebugLoc dl = Op.getDebugLoc();
7471  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7472  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7473  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7474                                   rax.getValue(2));
7475  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7476                            DAG.getConstant(32, MVT::i8));
7477  SDValue Ops[] = {
7478    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7479    rdx.getValue(1)
7480  };
7481  return DAG.getMergeValues(Ops, 2, dl);
7482}
7483
7484SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
7485  SDNode *Node = Op.getNode();
7486  DebugLoc dl = Node->getDebugLoc();
7487  EVT T = Node->getValueType(0);
7488  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7489                              DAG.getConstant(0, T), Node->getOperand(2));
7490  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7491                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7492                       Node->getOperand(0),
7493                       Node->getOperand(1), negOp,
7494                       cast<AtomicSDNode>(Node)->getSrcValue(),
7495                       cast<AtomicSDNode>(Node)->getAlignment());
7496}
7497
7498/// LowerOperation - Provide custom lowering hooks for some operations.
7499///
7500SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
7501  switch (Op.getOpcode()) {
7502  default: llvm_unreachable("Should not custom lower this!");
7503  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7504  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7505  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7506  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7507  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7508  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7509  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7510  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7511  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7512  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7513  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7514  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7515  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7516  case ISD::SHL_PARTS:
7517  case ISD::SRA_PARTS:
7518  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7519  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7520  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7521  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7522  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7523  case ISD::FABS:               return LowerFABS(Op, DAG);
7524  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7525  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7526  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7527  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7528  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7529  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7530  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7531  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7532  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7533  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7534  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7535  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7536  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7537  case ISD::FRAME_TO_ARGS_OFFSET:
7538                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7539  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7540  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7541  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7542  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7543  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7544  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7545  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7546  case ISD::SADDO:
7547  case ISD::UADDO:
7548  case ISD::SSUBO:
7549  case ISD::USUBO:
7550  case ISD::SMULO:
7551  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7552  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7553  }
7554}
7555
7556void X86TargetLowering::
7557ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7558                        SelectionDAG &DAG, unsigned NewOp) {
7559  EVT T = Node->getValueType(0);
7560  DebugLoc dl = Node->getDebugLoc();
7561  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7562
7563  SDValue Chain = Node->getOperand(0);
7564  SDValue In1 = Node->getOperand(1);
7565  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7566                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7567  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7568                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7569  SDValue Ops[] = { Chain, In1, In2L, In2H };
7570  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7571  SDValue Result =
7572    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7573                            cast<MemSDNode>(Node)->getMemOperand());
7574  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7575  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7576  Results.push_back(Result.getValue(2));
7577}
7578
7579/// ReplaceNodeResults - Replace a node with an illegal result type
7580/// with a new node built out of custom code.
7581void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7582                                           SmallVectorImpl<SDValue>&Results,
7583                                           SelectionDAG &DAG) {
7584  DebugLoc dl = N->getDebugLoc();
7585  switch (N->getOpcode()) {
7586  default:
7587    assert(false && "Do not know how to custom type legalize this operation!");
7588    return;
7589  case ISD::FP_TO_SINT: {
7590    std::pair<SDValue,SDValue> Vals =
7591        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7592    SDValue FIST = Vals.first, StackSlot = Vals.second;
7593    if (FIST.getNode() != 0) {
7594      EVT VT = N->getValueType(0);
7595      // Return a load from the stack slot.
7596      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7597                                    false, false, 0));
7598    }
7599    return;
7600  }
7601  case ISD::READCYCLECOUNTER: {
7602    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7603    SDValue TheChain = N->getOperand(0);
7604    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7605    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7606                                     rd.getValue(1));
7607    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7608                                     eax.getValue(2));
7609    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7610    SDValue Ops[] = { eax, edx };
7611    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7612    Results.push_back(edx.getValue(1));
7613    return;
7614  }
7615  case ISD::ATOMIC_CMP_SWAP: {
7616    EVT T = N->getValueType(0);
7617    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7618    SDValue cpInL, cpInH;
7619    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7620                        DAG.getConstant(0, MVT::i32));
7621    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7622                        DAG.getConstant(1, MVT::i32));
7623    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7624    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7625                             cpInL.getValue(1));
7626    SDValue swapInL, swapInH;
7627    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7628                          DAG.getConstant(0, MVT::i32));
7629    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7630                          DAG.getConstant(1, MVT::i32));
7631    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7632                               cpInH.getValue(1));
7633    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7634                               swapInL.getValue(1));
7635    SDValue Ops[] = { swapInH.getValue(0),
7636                      N->getOperand(1),
7637                      swapInH.getValue(1) };
7638    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7639    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7640    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7641                                        MVT::i32, Result.getValue(1));
7642    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7643                                        MVT::i32, cpOutL.getValue(2));
7644    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7645    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7646    Results.push_back(cpOutH.getValue(1));
7647    return;
7648  }
7649  case ISD::ATOMIC_LOAD_ADD:
7650    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7651    return;
7652  case ISD::ATOMIC_LOAD_AND:
7653    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7654    return;
7655  case ISD::ATOMIC_LOAD_NAND:
7656    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7657    return;
7658  case ISD::ATOMIC_LOAD_OR:
7659    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7660    return;
7661  case ISD::ATOMIC_LOAD_SUB:
7662    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7663    return;
7664  case ISD::ATOMIC_LOAD_XOR:
7665    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7666    return;
7667  case ISD::ATOMIC_SWAP:
7668    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7669    return;
7670  }
7671}
7672
7673const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7674  switch (Opcode) {
7675  default: return NULL;
7676  case X86ISD::BSF:                return "X86ISD::BSF";
7677  case X86ISD::BSR:                return "X86ISD::BSR";
7678  case X86ISD::SHLD:               return "X86ISD::SHLD";
7679  case X86ISD::SHRD:               return "X86ISD::SHRD";
7680  case X86ISD::FAND:               return "X86ISD::FAND";
7681  case X86ISD::FOR:                return "X86ISD::FOR";
7682  case X86ISD::FXOR:               return "X86ISD::FXOR";
7683  case X86ISD::FSRL:               return "X86ISD::FSRL";
7684  case X86ISD::FILD:               return "X86ISD::FILD";
7685  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7686  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7687  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7688  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7689  case X86ISD::FLD:                return "X86ISD::FLD";
7690  case X86ISD::FST:                return "X86ISD::FST";
7691  case X86ISD::CALL:               return "X86ISD::CALL";
7692  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7693  case X86ISD::BT:                 return "X86ISD::BT";
7694  case X86ISD::CMP:                return "X86ISD::CMP";
7695  case X86ISD::COMI:               return "X86ISD::COMI";
7696  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7697  case X86ISD::SETCC:              return "X86ISD::SETCC";
7698  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
7699  case X86ISD::CMOV:               return "X86ISD::CMOV";
7700  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7701  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7702  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7703  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7704  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7705  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7706  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7707  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7708  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7709  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7710  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7711  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7712  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
7713  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7714  case X86ISD::FMAX:               return "X86ISD::FMAX";
7715  case X86ISD::FMIN:               return "X86ISD::FMIN";
7716  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7717  case X86ISD::FRCP:               return "X86ISD::FRCP";
7718  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7719  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7720  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7721  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7722  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7723  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7724  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7725  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7726  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7727  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7728  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7729  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7730  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7731  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7732  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7733  case X86ISD::VSHL:               return "X86ISD::VSHL";
7734  case X86ISD::VSRL:               return "X86ISD::VSRL";
7735  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7736  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7737  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7738  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7739  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7740  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7741  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7742  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7743  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7744  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7745  case X86ISD::ADD:                return "X86ISD::ADD";
7746  case X86ISD::SUB:                return "X86ISD::SUB";
7747  case X86ISD::SMUL:               return "X86ISD::SMUL";
7748  case X86ISD::UMUL:               return "X86ISD::UMUL";
7749  case X86ISD::INC:                return "X86ISD::INC";
7750  case X86ISD::DEC:                return "X86ISD::DEC";
7751  case X86ISD::OR:                 return "X86ISD::OR";
7752  case X86ISD::XOR:                return "X86ISD::XOR";
7753  case X86ISD::AND:                return "X86ISD::AND";
7754  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7755  case X86ISD::PTEST:              return "X86ISD::PTEST";
7756  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7757  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
7758  }
7759}
7760
7761// isLegalAddressingMode - Return true if the addressing mode represented
7762// by AM is legal for this target, for a load/store of the specified type.
7763bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7764                                              const Type *Ty) const {
7765  // X86 supports extremely general addressing modes.
7766  CodeModel::Model M = getTargetMachine().getCodeModel();
7767
7768  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7769  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7770    return false;
7771
7772  if (AM.BaseGV) {
7773    unsigned GVFlags =
7774      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7775
7776    // If a reference to this global requires an extra load, we can't fold it.
7777    if (isGlobalStubReference(GVFlags))
7778      return false;
7779
7780    // If BaseGV requires a register for the PIC base, we cannot also have a
7781    // BaseReg specified.
7782    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7783      return false;
7784
7785    // If lower 4G is not available, then we must use rip-relative addressing.
7786    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7787      return false;
7788  }
7789
7790  switch (AM.Scale) {
7791  case 0:
7792  case 1:
7793  case 2:
7794  case 4:
7795  case 8:
7796    // These scales always work.
7797    break;
7798  case 3:
7799  case 5:
7800  case 9:
7801    // These scales are formed with basereg+scalereg.  Only accept if there is
7802    // no basereg yet.
7803    if (AM.HasBaseReg)
7804      return false;
7805    break;
7806  default:  // Other stuff never works.
7807    return false;
7808  }
7809
7810  return true;
7811}
7812
7813
7814bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7815  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7816    return false;
7817  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7818  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7819  if (NumBits1 <= NumBits2)
7820    return false;
7821  return true;
7822}
7823
7824bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7825  if (!VT1.isInteger() || !VT2.isInteger())
7826    return false;
7827  unsigned NumBits1 = VT1.getSizeInBits();
7828  unsigned NumBits2 = VT2.getSizeInBits();
7829  if (NumBits1 <= NumBits2)
7830    return false;
7831  return true;
7832}
7833
7834bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7835  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7836  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
7837}
7838
7839bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7840  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7841  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7842}
7843
7844bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7845  // i16 instructions are longer (0x66 prefix) and potentially slower.
7846  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7847}
7848
7849/// isShuffleMaskLegal - Targets can use this to indicate that they only
7850/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7851/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7852/// are assumed to be legal.
7853bool
7854X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7855                                      EVT VT) const {
7856  // Only do shuffles on 128-bit vector types for now.
7857  if (VT.getSizeInBits() == 64)
7858    return false;
7859
7860  // FIXME: pshufb, blends, shifts.
7861  return (VT.getVectorNumElements() == 2 ||
7862          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7863          isMOVLMask(M, VT) ||
7864          isSHUFPMask(M, VT) ||
7865          isPSHUFDMask(M, VT) ||
7866          isPSHUFHWMask(M, VT) ||
7867          isPSHUFLWMask(M, VT) ||
7868          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7869          isUNPCKLMask(M, VT) ||
7870          isUNPCKHMask(M, VT) ||
7871          isUNPCKL_v_undef_Mask(M, VT) ||
7872          isUNPCKH_v_undef_Mask(M, VT));
7873}
7874
7875bool
7876X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7877                                          EVT VT) const {
7878  unsigned NumElts = VT.getVectorNumElements();
7879  // FIXME: This collection of masks seems suspect.
7880  if (NumElts == 2)
7881    return true;
7882  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7883    return (isMOVLMask(Mask, VT)  ||
7884            isCommutedMOVLMask(Mask, VT, true) ||
7885            isSHUFPMask(Mask, VT) ||
7886            isCommutedSHUFPMask(Mask, VT));
7887  }
7888  return false;
7889}
7890
7891//===----------------------------------------------------------------------===//
7892//                           X86 Scheduler Hooks
7893//===----------------------------------------------------------------------===//
7894
7895// private utility function
7896MachineBasicBlock *
7897X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7898                                                       MachineBasicBlock *MBB,
7899                                                       unsigned regOpc,
7900                                                       unsigned immOpc,
7901                                                       unsigned LoadOpc,
7902                                                       unsigned CXchgOpc,
7903                                                       unsigned copyOpc,
7904                                                       unsigned notOpc,
7905                                                       unsigned EAXreg,
7906                                                       TargetRegisterClass *RC,
7907                                                       bool invSrc) const {
7908  // For the atomic bitwise operator, we generate
7909  //   thisMBB:
7910  //   newMBB:
7911  //     ld  t1 = [bitinstr.addr]
7912  //     op  t2 = t1, [bitinstr.val]
7913  //     mov EAX = t1
7914  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7915  //     bz  newMBB
7916  //     fallthrough -->nextMBB
7917  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7918  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7919  MachineFunction::iterator MBBIter = MBB;
7920  ++MBBIter;
7921
7922  /// First build the CFG
7923  MachineFunction *F = MBB->getParent();
7924  MachineBasicBlock *thisMBB = MBB;
7925  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7926  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7927  F->insert(MBBIter, newMBB);
7928  F->insert(MBBIter, nextMBB);
7929
7930  // Move all successors to thisMBB to nextMBB
7931  nextMBB->transferSuccessors(thisMBB);
7932
7933  // Update thisMBB to fall through to newMBB
7934  thisMBB->addSuccessor(newMBB);
7935
7936  // newMBB jumps to itself and fall through to nextMBB
7937  newMBB->addSuccessor(nextMBB);
7938  newMBB->addSuccessor(newMBB);
7939
7940  // Insert instructions into newMBB based on incoming instruction
7941  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7942         "unexpected number of operands");
7943  DebugLoc dl = bInstr->getDebugLoc();
7944  MachineOperand& destOper = bInstr->getOperand(0);
7945  MachineOperand* argOpers[2 + X86AddrNumOperands];
7946  int numArgs = bInstr->getNumOperands() - 1;
7947  for (int i=0; i < numArgs; ++i)
7948    argOpers[i] = &bInstr->getOperand(i+1);
7949
7950  // x86 address has 4 operands: base, index, scale, and displacement
7951  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7952  int valArgIndx = lastAddrIndx + 1;
7953
7954  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7955  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7956  for (int i=0; i <= lastAddrIndx; ++i)
7957    (*MIB).addOperand(*argOpers[i]);
7958
7959  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7960  if (invSrc) {
7961    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7962  }
7963  else
7964    tt = t1;
7965
7966  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7967  assert((argOpers[valArgIndx]->isReg() ||
7968          argOpers[valArgIndx]->isImm()) &&
7969         "invalid operand");
7970  if (argOpers[valArgIndx]->isReg())
7971    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7972  else
7973    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7974  MIB.addReg(tt);
7975  (*MIB).addOperand(*argOpers[valArgIndx]);
7976
7977  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7978  MIB.addReg(t1);
7979
7980  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7981  for (int i=0; i <= lastAddrIndx; ++i)
7982    (*MIB).addOperand(*argOpers[i]);
7983  MIB.addReg(t2);
7984  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7985  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7986                    bInstr->memoperands_end());
7987
7988  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7989  MIB.addReg(EAXreg);
7990
7991  // insert branch
7992  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
7993
7994  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7995  return nextMBB;
7996}
7997
7998// private utility function:  64 bit atomics on 32 bit host.
7999MachineBasicBlock *
8000X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8001                                                       MachineBasicBlock *MBB,
8002                                                       unsigned regOpcL,
8003                                                       unsigned regOpcH,
8004                                                       unsigned immOpcL,
8005                                                       unsigned immOpcH,
8006                                                       bool invSrc) const {
8007  // For the atomic bitwise operator, we generate
8008  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8009  //     ld t1,t2 = [bitinstr.addr]
8010  //   newMBB:
8011  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8012  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8013  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8014  //     mov ECX, EBX <- t5, t6
8015  //     mov EAX, EDX <- t1, t2
8016  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8017  //     mov t3, t4 <- EAX, EDX
8018  //     bz  newMBB
8019  //     result in out1, out2
8020  //     fallthrough -->nextMBB
8021
8022  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8023  const unsigned LoadOpc = X86::MOV32rm;
8024  const unsigned copyOpc = X86::MOV32rr;
8025  const unsigned NotOpc = X86::NOT32r;
8026  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8027  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8028  MachineFunction::iterator MBBIter = MBB;
8029  ++MBBIter;
8030
8031  /// First build the CFG
8032  MachineFunction *F = MBB->getParent();
8033  MachineBasicBlock *thisMBB = MBB;
8034  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8035  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8036  F->insert(MBBIter, newMBB);
8037  F->insert(MBBIter, nextMBB);
8038
8039  // Move all successors to thisMBB to nextMBB
8040  nextMBB->transferSuccessors(thisMBB);
8041
8042  // Update thisMBB to fall through to newMBB
8043  thisMBB->addSuccessor(newMBB);
8044
8045  // newMBB jumps to itself and fall through to nextMBB
8046  newMBB->addSuccessor(nextMBB);
8047  newMBB->addSuccessor(newMBB);
8048
8049  DebugLoc dl = bInstr->getDebugLoc();
8050  // Insert instructions into newMBB based on incoming instruction
8051  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8052  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
8053         "unexpected number of operands");
8054  MachineOperand& dest1Oper = bInstr->getOperand(0);
8055  MachineOperand& dest2Oper = bInstr->getOperand(1);
8056  MachineOperand* argOpers[2 + X86AddrNumOperands];
8057  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
8058    argOpers[i] = &bInstr->getOperand(i+2);
8059
8060  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8061  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8062
8063  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8064  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8065  for (int i=0; i <= lastAddrIndx; ++i)
8066    (*MIB).addOperand(*argOpers[i]);
8067  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8068  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8069  // add 4 to displacement.
8070  for (int i=0; i <= lastAddrIndx-2; ++i)
8071    (*MIB).addOperand(*argOpers[i]);
8072  MachineOperand newOp3 = *(argOpers[3]);
8073  if (newOp3.isImm())
8074    newOp3.setImm(newOp3.getImm()+4);
8075  else
8076    newOp3.setOffset(newOp3.getOffset()+4);
8077  (*MIB).addOperand(newOp3);
8078  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8079
8080  // t3/4 are defined later, at the bottom of the loop
8081  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8082  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8083  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8084    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8085  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8086    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8087
8088  // The subsequent operations should be using the destination registers of
8089  //the PHI instructions.
8090  if (invSrc) {
8091    t1 = F->getRegInfo().createVirtualRegister(RC);
8092    t2 = F->getRegInfo().createVirtualRegister(RC);
8093    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8094    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8095  } else {
8096    t1 = dest1Oper.getReg();
8097    t2 = dest2Oper.getReg();
8098  }
8099
8100  int valArgIndx = lastAddrIndx + 1;
8101  assert((argOpers[valArgIndx]->isReg() ||
8102          argOpers[valArgIndx]->isImm()) &&
8103         "invalid operand");
8104  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8105  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8106  if (argOpers[valArgIndx]->isReg())
8107    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8108  else
8109    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8110  if (regOpcL != X86::MOV32rr)
8111    MIB.addReg(t1);
8112  (*MIB).addOperand(*argOpers[valArgIndx]);
8113  assert(argOpers[valArgIndx + 1]->isReg() ==
8114         argOpers[valArgIndx]->isReg());
8115  assert(argOpers[valArgIndx + 1]->isImm() ==
8116         argOpers[valArgIndx]->isImm());
8117  if (argOpers[valArgIndx + 1]->isReg())
8118    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8119  else
8120    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8121  if (regOpcH != X86::MOV32rr)
8122    MIB.addReg(t2);
8123  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8124
8125  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
8126  MIB.addReg(t1);
8127  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
8128  MIB.addReg(t2);
8129
8130  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
8131  MIB.addReg(t5);
8132  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
8133  MIB.addReg(t6);
8134
8135  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8136  for (int i=0; i <= lastAddrIndx; ++i)
8137    (*MIB).addOperand(*argOpers[i]);
8138
8139  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8140  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8141                    bInstr->memoperands_end());
8142
8143  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
8144  MIB.addReg(X86::EAX);
8145  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
8146  MIB.addReg(X86::EDX);
8147
8148  // insert branch
8149  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8150
8151  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8152  return nextMBB;
8153}
8154
8155// private utility function
8156MachineBasicBlock *
8157X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8158                                                      MachineBasicBlock *MBB,
8159                                                      unsigned cmovOpc) const {
8160  // For the atomic min/max operator, we generate
8161  //   thisMBB:
8162  //   newMBB:
8163  //     ld t1 = [min/max.addr]
8164  //     mov t2 = [min/max.val]
8165  //     cmp  t1, t2
8166  //     cmov[cond] t2 = t1
8167  //     mov EAX = t1
8168  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8169  //     bz   newMBB
8170  //     fallthrough -->nextMBB
8171  //
8172  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8173  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8174  MachineFunction::iterator MBBIter = MBB;
8175  ++MBBIter;
8176
8177  /// First build the CFG
8178  MachineFunction *F = MBB->getParent();
8179  MachineBasicBlock *thisMBB = MBB;
8180  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8181  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8182  F->insert(MBBIter, newMBB);
8183  F->insert(MBBIter, nextMBB);
8184
8185  // Move all successors of thisMBB to nextMBB
8186  nextMBB->transferSuccessors(thisMBB);
8187
8188  // Update thisMBB to fall through to newMBB
8189  thisMBB->addSuccessor(newMBB);
8190
8191  // newMBB jumps to newMBB and fall through to nextMBB
8192  newMBB->addSuccessor(nextMBB);
8193  newMBB->addSuccessor(newMBB);
8194
8195  DebugLoc dl = mInstr->getDebugLoc();
8196  // Insert instructions into newMBB based on incoming instruction
8197  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8198         "unexpected number of operands");
8199  MachineOperand& destOper = mInstr->getOperand(0);
8200  MachineOperand* argOpers[2 + X86AddrNumOperands];
8201  int numArgs = mInstr->getNumOperands() - 1;
8202  for (int i=0; i < numArgs; ++i)
8203    argOpers[i] = &mInstr->getOperand(i+1);
8204
8205  // x86 address has 4 operands: base, index, scale, and displacement
8206  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8207  int valArgIndx = lastAddrIndx + 1;
8208
8209  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8210  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8211  for (int i=0; i <= lastAddrIndx; ++i)
8212    (*MIB).addOperand(*argOpers[i]);
8213
8214  // We only support register and immediate values
8215  assert((argOpers[valArgIndx]->isReg() ||
8216          argOpers[valArgIndx]->isImm()) &&
8217         "invalid operand");
8218
8219  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8220  if (argOpers[valArgIndx]->isReg())
8221    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8222  else
8223    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8224  (*MIB).addOperand(*argOpers[valArgIndx]);
8225
8226  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
8227  MIB.addReg(t1);
8228
8229  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8230  MIB.addReg(t1);
8231  MIB.addReg(t2);
8232
8233  // Generate movc
8234  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8235  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8236  MIB.addReg(t2);
8237  MIB.addReg(t1);
8238
8239  // Cmp and exchange if none has modified the memory location
8240  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8241  for (int i=0; i <= lastAddrIndx; ++i)
8242    (*MIB).addOperand(*argOpers[i]);
8243  MIB.addReg(t3);
8244  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8245  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8246                    mInstr->memoperands_end());
8247
8248  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
8249  MIB.addReg(X86::EAX);
8250
8251  // insert branch
8252  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8253
8254  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
8255  return nextMBB;
8256}
8257
8258// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8259// all of this code can be replaced with that in the .td file.
8260MachineBasicBlock *
8261X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8262                            unsigned numArgs, bool memArg) const {
8263
8264  MachineFunction *F = BB->getParent();
8265  DebugLoc dl = MI->getDebugLoc();
8266  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8267
8268  unsigned Opc;
8269  if (memArg)
8270    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8271  else
8272    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8273
8274  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8275
8276  for (unsigned i = 0; i < numArgs; ++i) {
8277    MachineOperand &Op = MI->getOperand(i+1);
8278
8279    if (!(Op.isReg() && Op.isImplicit()))
8280      MIB.addOperand(Op);
8281  }
8282
8283  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8284    .addReg(X86::XMM0);
8285
8286  F->DeleteMachineInstr(MI);
8287
8288  return BB;
8289}
8290
8291MachineBasicBlock *
8292X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8293                                                 MachineInstr *MI,
8294                                                 MachineBasicBlock *MBB) const {
8295  // Emit code to save XMM registers to the stack. The ABI says that the
8296  // number of registers to save is given in %al, so it's theoretically
8297  // possible to do an indirect jump trick to avoid saving all of them,
8298  // however this code takes a simpler approach and just executes all
8299  // of the stores if %al is non-zero. It's less code, and it's probably
8300  // easier on the hardware branch predictor, and stores aren't all that
8301  // expensive anyway.
8302
8303  // Create the new basic blocks. One block contains all the XMM stores,
8304  // and one block is the final destination regardless of whether any
8305  // stores were performed.
8306  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8307  MachineFunction *F = MBB->getParent();
8308  MachineFunction::iterator MBBIter = MBB;
8309  ++MBBIter;
8310  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8311  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8312  F->insert(MBBIter, XMMSaveMBB);
8313  F->insert(MBBIter, EndMBB);
8314
8315  // Set up the CFG.
8316  // Move any original successors of MBB to the end block.
8317  EndMBB->transferSuccessors(MBB);
8318  // The original block will now fall through to the XMM save block.
8319  MBB->addSuccessor(XMMSaveMBB);
8320  // The XMMSaveMBB will fall through to the end block.
8321  XMMSaveMBB->addSuccessor(EndMBB);
8322
8323  // Now add the instructions.
8324  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8325  DebugLoc DL = MI->getDebugLoc();
8326
8327  unsigned CountReg = MI->getOperand(0).getReg();
8328  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8329  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8330
8331  if (!Subtarget->isTargetWin64()) {
8332    // If %al is 0, branch around the XMM save block.
8333    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8334    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8335    MBB->addSuccessor(EndMBB);
8336  }
8337
8338  // In the XMM save block, save all the XMM argument registers.
8339  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8340    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8341    MachineMemOperand *MMO =
8342      F->getMachineMemOperand(
8343        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8344        MachineMemOperand::MOStore, Offset,
8345        /*Size=*/16, /*Align=*/16);
8346    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8347      .addFrameIndex(RegSaveFrameIndex)
8348      .addImm(/*Scale=*/1)
8349      .addReg(/*IndexReg=*/0)
8350      .addImm(/*Disp=*/Offset)
8351      .addReg(/*Segment=*/0)
8352      .addReg(MI->getOperand(i).getReg())
8353      .addMemOperand(MMO);
8354  }
8355
8356  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8357
8358  return EndMBB;
8359}
8360
8361MachineBasicBlock *
8362X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8363                                     MachineBasicBlock *BB,
8364                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8365  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8366  DebugLoc DL = MI->getDebugLoc();
8367
8368  // To "insert" a SELECT_CC instruction, we actually have to insert the
8369  // diamond control-flow pattern.  The incoming instruction knows the
8370  // destination vreg to set, the condition code register to branch on, the
8371  // true/false values to select between, and a branch opcode to use.
8372  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8373  MachineFunction::iterator It = BB;
8374  ++It;
8375
8376  //  thisMBB:
8377  //  ...
8378  //   TrueVal = ...
8379  //   cmpTY ccX, r1, r2
8380  //   bCC copy1MBB
8381  //   fallthrough --> copy0MBB
8382  MachineBasicBlock *thisMBB = BB;
8383  MachineFunction *F = BB->getParent();
8384  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8385  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8386  unsigned Opc =
8387    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8388  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8389  F->insert(It, copy0MBB);
8390  F->insert(It, sinkMBB);
8391  // Update machine-CFG edges by first adding all successors of the current
8392  // block to the new block which will contain the Phi node for the select.
8393  // Also inform sdisel of the edge changes.
8394  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
8395         E = BB->succ_end(); I != E; ++I) {
8396    EM->insert(std::make_pair(*I, sinkMBB));
8397    sinkMBB->addSuccessor(*I);
8398  }
8399  // Next, remove all successors of the current block, and add the true
8400  // and fallthrough blocks as its successors.
8401  while (!BB->succ_empty())
8402    BB->removeSuccessor(BB->succ_begin());
8403  // Add the true and fallthrough blocks as its successors.
8404  BB->addSuccessor(copy0MBB);
8405  BB->addSuccessor(sinkMBB);
8406
8407  //  copy0MBB:
8408  //   %FalseValue = ...
8409  //   # fallthrough to sinkMBB
8410  BB = copy0MBB;
8411
8412  // Update machine-CFG edges
8413  BB->addSuccessor(sinkMBB);
8414
8415  //  sinkMBB:
8416  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8417  //  ...
8418  BB = sinkMBB;
8419  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
8420    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8421    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8422
8423  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8424  return BB;
8425}
8426
8427MachineBasicBlock *
8428X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
8429                                          MachineBasicBlock *BB,
8430                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8431  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8432  DebugLoc DL = MI->getDebugLoc();
8433  MachineFunction *F = BB->getParent();
8434
8435  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
8436  // non-trivial part is impdef of ESP.
8437  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
8438  // mingw-w64.
8439
8440  BuildMI(BB, DL, TII->get(X86::CALLpcrel32))
8441    .addExternalSymbol("_alloca")
8442    .addReg(X86::EAX, RegState::Implicit)
8443    .addReg(X86::ESP, RegState::Implicit)
8444    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
8445    .addReg(X86::ESP, RegState::Define | RegState::Implicit);
8446
8447  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8448  return BB;
8449}
8450
8451MachineBasicBlock *
8452X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8453                                               MachineBasicBlock *BB,
8454                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8455  switch (MI->getOpcode()) {
8456  default: assert(false && "Unexpected instr type to insert");
8457  case X86::MINGW_ALLOCA:
8458    return EmitLoweredMingwAlloca(MI, BB, EM);
8459  case X86::CMOV_GR8:
8460  case X86::CMOV_V1I64:
8461  case X86::CMOV_FR32:
8462  case X86::CMOV_FR64:
8463  case X86::CMOV_V4F32:
8464  case X86::CMOV_V2F64:
8465  case X86::CMOV_V2I64:
8466  case X86::CMOV_GR16:
8467  case X86::CMOV_GR32:
8468  case X86::CMOV_RFP32:
8469  case X86::CMOV_RFP64:
8470  case X86::CMOV_RFP80:
8471    return EmitLoweredSelect(MI, BB, EM);
8472
8473  case X86::FP32_TO_INT16_IN_MEM:
8474  case X86::FP32_TO_INT32_IN_MEM:
8475  case X86::FP32_TO_INT64_IN_MEM:
8476  case X86::FP64_TO_INT16_IN_MEM:
8477  case X86::FP64_TO_INT32_IN_MEM:
8478  case X86::FP64_TO_INT64_IN_MEM:
8479  case X86::FP80_TO_INT16_IN_MEM:
8480  case X86::FP80_TO_INT32_IN_MEM:
8481  case X86::FP80_TO_INT64_IN_MEM: {
8482    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8483    DebugLoc DL = MI->getDebugLoc();
8484
8485    // Change the floating point control register to use "round towards zero"
8486    // mode when truncating to an integer value.
8487    MachineFunction *F = BB->getParent();
8488    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8489    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
8490
8491    // Load the old value of the high byte of the control word...
8492    unsigned OldCW =
8493      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8494    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8495                      CWFrameIdx);
8496
8497    // Set the high part to be round to zero...
8498    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8499      .addImm(0xC7F);
8500
8501    // Reload the modified control word now...
8502    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8503
8504    // Restore the memory image of control word to original value
8505    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8506      .addReg(OldCW);
8507
8508    // Get the X86 opcode to use.
8509    unsigned Opc;
8510    switch (MI->getOpcode()) {
8511    default: llvm_unreachable("illegal opcode!");
8512    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8513    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8514    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8515    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8516    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8517    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8518    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8519    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8520    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8521    }
8522
8523    X86AddressMode AM;
8524    MachineOperand &Op = MI->getOperand(0);
8525    if (Op.isReg()) {
8526      AM.BaseType = X86AddressMode::RegBase;
8527      AM.Base.Reg = Op.getReg();
8528    } else {
8529      AM.BaseType = X86AddressMode::FrameIndexBase;
8530      AM.Base.FrameIndex = Op.getIndex();
8531    }
8532    Op = MI->getOperand(1);
8533    if (Op.isImm())
8534      AM.Scale = Op.getImm();
8535    Op = MI->getOperand(2);
8536    if (Op.isImm())
8537      AM.IndexReg = Op.getImm();
8538    Op = MI->getOperand(3);
8539    if (Op.isGlobal()) {
8540      AM.GV = Op.getGlobal();
8541    } else {
8542      AM.Disp = Op.getImm();
8543    }
8544    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8545                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8546
8547    // Reload the original control word now.
8548    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8549
8550    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8551    return BB;
8552  }
8553    // DBG_VALUE.  Only the frame index case is done here.
8554  case X86::DBG_VALUE: {
8555    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8556    DebugLoc DL = MI->getDebugLoc();
8557    X86AddressMode AM;
8558    MachineFunction *F = BB->getParent();
8559    AM.BaseType = X86AddressMode::FrameIndexBase;
8560    AM.Base.FrameIndex = MI->getOperand(0).getImm();
8561    addFullAddress(BuildMI(BB, DL, TII->get(X86::DBG_VALUE)), AM).
8562      addImm(MI->getOperand(1).getImm()).
8563      addMetadata(MI->getOperand(2).getMetadata());
8564    F->DeleteMachineInstr(MI);      // Remove pseudo.
8565    return BB;
8566  }
8567
8568    // String/text processing lowering.
8569  case X86::PCMPISTRM128REG:
8570    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8571  case X86::PCMPISTRM128MEM:
8572    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8573  case X86::PCMPESTRM128REG:
8574    return EmitPCMP(MI, BB, 5, false /* in mem */);
8575  case X86::PCMPESTRM128MEM:
8576    return EmitPCMP(MI, BB, 5, true /* in mem */);
8577
8578    // Atomic Lowering.
8579  case X86::ATOMAND32:
8580    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8581                                               X86::AND32ri, X86::MOV32rm,
8582                                               X86::LCMPXCHG32, X86::MOV32rr,
8583                                               X86::NOT32r, X86::EAX,
8584                                               X86::GR32RegisterClass);
8585  case X86::ATOMOR32:
8586    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8587                                               X86::OR32ri, X86::MOV32rm,
8588                                               X86::LCMPXCHG32, X86::MOV32rr,
8589                                               X86::NOT32r, X86::EAX,
8590                                               X86::GR32RegisterClass);
8591  case X86::ATOMXOR32:
8592    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8593                                               X86::XOR32ri, X86::MOV32rm,
8594                                               X86::LCMPXCHG32, X86::MOV32rr,
8595                                               X86::NOT32r, X86::EAX,
8596                                               X86::GR32RegisterClass);
8597  case X86::ATOMNAND32:
8598    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8599                                               X86::AND32ri, X86::MOV32rm,
8600                                               X86::LCMPXCHG32, X86::MOV32rr,
8601                                               X86::NOT32r, X86::EAX,
8602                                               X86::GR32RegisterClass, true);
8603  case X86::ATOMMIN32:
8604    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8605  case X86::ATOMMAX32:
8606    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8607  case X86::ATOMUMIN32:
8608    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8609  case X86::ATOMUMAX32:
8610    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8611
8612  case X86::ATOMAND16:
8613    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8614                                               X86::AND16ri, X86::MOV16rm,
8615                                               X86::LCMPXCHG16, X86::MOV16rr,
8616                                               X86::NOT16r, X86::AX,
8617                                               X86::GR16RegisterClass);
8618  case X86::ATOMOR16:
8619    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8620                                               X86::OR16ri, X86::MOV16rm,
8621                                               X86::LCMPXCHG16, X86::MOV16rr,
8622                                               X86::NOT16r, X86::AX,
8623                                               X86::GR16RegisterClass);
8624  case X86::ATOMXOR16:
8625    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8626                                               X86::XOR16ri, X86::MOV16rm,
8627                                               X86::LCMPXCHG16, X86::MOV16rr,
8628                                               X86::NOT16r, X86::AX,
8629                                               X86::GR16RegisterClass);
8630  case X86::ATOMNAND16:
8631    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8632                                               X86::AND16ri, X86::MOV16rm,
8633                                               X86::LCMPXCHG16, X86::MOV16rr,
8634                                               X86::NOT16r, X86::AX,
8635                                               X86::GR16RegisterClass, true);
8636  case X86::ATOMMIN16:
8637    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8638  case X86::ATOMMAX16:
8639    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8640  case X86::ATOMUMIN16:
8641    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8642  case X86::ATOMUMAX16:
8643    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8644
8645  case X86::ATOMAND8:
8646    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8647                                               X86::AND8ri, X86::MOV8rm,
8648                                               X86::LCMPXCHG8, X86::MOV8rr,
8649                                               X86::NOT8r, X86::AL,
8650                                               X86::GR8RegisterClass);
8651  case X86::ATOMOR8:
8652    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8653                                               X86::OR8ri, X86::MOV8rm,
8654                                               X86::LCMPXCHG8, X86::MOV8rr,
8655                                               X86::NOT8r, X86::AL,
8656                                               X86::GR8RegisterClass);
8657  case X86::ATOMXOR8:
8658    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8659                                               X86::XOR8ri, X86::MOV8rm,
8660                                               X86::LCMPXCHG8, X86::MOV8rr,
8661                                               X86::NOT8r, X86::AL,
8662                                               X86::GR8RegisterClass);
8663  case X86::ATOMNAND8:
8664    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8665                                               X86::AND8ri, X86::MOV8rm,
8666                                               X86::LCMPXCHG8, X86::MOV8rr,
8667                                               X86::NOT8r, X86::AL,
8668                                               X86::GR8RegisterClass, true);
8669  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8670  // This group is for 64-bit host.
8671  case X86::ATOMAND64:
8672    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8673                                               X86::AND64ri32, X86::MOV64rm,
8674                                               X86::LCMPXCHG64, X86::MOV64rr,
8675                                               X86::NOT64r, X86::RAX,
8676                                               X86::GR64RegisterClass);
8677  case X86::ATOMOR64:
8678    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8679                                               X86::OR64ri32, X86::MOV64rm,
8680                                               X86::LCMPXCHG64, X86::MOV64rr,
8681                                               X86::NOT64r, X86::RAX,
8682                                               X86::GR64RegisterClass);
8683  case X86::ATOMXOR64:
8684    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8685                                               X86::XOR64ri32, X86::MOV64rm,
8686                                               X86::LCMPXCHG64, X86::MOV64rr,
8687                                               X86::NOT64r, X86::RAX,
8688                                               X86::GR64RegisterClass);
8689  case X86::ATOMNAND64:
8690    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8691                                               X86::AND64ri32, X86::MOV64rm,
8692                                               X86::LCMPXCHG64, X86::MOV64rr,
8693                                               X86::NOT64r, X86::RAX,
8694                                               X86::GR64RegisterClass, true);
8695  case X86::ATOMMIN64:
8696    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8697  case X86::ATOMMAX64:
8698    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8699  case X86::ATOMUMIN64:
8700    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8701  case X86::ATOMUMAX64:
8702    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8703
8704  // This group does 64-bit operations on a 32-bit host.
8705  case X86::ATOMAND6432:
8706    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8707                                               X86::AND32rr, X86::AND32rr,
8708                                               X86::AND32ri, X86::AND32ri,
8709                                               false);
8710  case X86::ATOMOR6432:
8711    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8712                                               X86::OR32rr, X86::OR32rr,
8713                                               X86::OR32ri, X86::OR32ri,
8714                                               false);
8715  case X86::ATOMXOR6432:
8716    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8717                                               X86::XOR32rr, X86::XOR32rr,
8718                                               X86::XOR32ri, X86::XOR32ri,
8719                                               false);
8720  case X86::ATOMNAND6432:
8721    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8722                                               X86::AND32rr, X86::AND32rr,
8723                                               X86::AND32ri, X86::AND32ri,
8724                                               true);
8725  case X86::ATOMADD6432:
8726    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8727                                               X86::ADD32rr, X86::ADC32rr,
8728                                               X86::ADD32ri, X86::ADC32ri,
8729                                               false);
8730  case X86::ATOMSUB6432:
8731    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8732                                               X86::SUB32rr, X86::SBB32rr,
8733                                               X86::SUB32ri, X86::SBB32ri,
8734                                               false);
8735  case X86::ATOMSWAP6432:
8736    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8737                                               X86::MOV32rr, X86::MOV32rr,
8738                                               X86::MOV32ri, X86::MOV32ri,
8739                                               false);
8740  case X86::VASTART_SAVE_XMM_REGS:
8741    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8742  }
8743}
8744
8745//===----------------------------------------------------------------------===//
8746//                           X86 Optimization Hooks
8747//===----------------------------------------------------------------------===//
8748
8749void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8750                                                       const APInt &Mask,
8751                                                       APInt &KnownZero,
8752                                                       APInt &KnownOne,
8753                                                       const SelectionDAG &DAG,
8754                                                       unsigned Depth) const {
8755  unsigned Opc = Op.getOpcode();
8756  assert((Opc >= ISD::BUILTIN_OP_END ||
8757          Opc == ISD::INTRINSIC_WO_CHAIN ||
8758          Opc == ISD::INTRINSIC_W_CHAIN ||
8759          Opc == ISD::INTRINSIC_VOID) &&
8760         "Should use MaskedValueIsZero if you don't know whether Op"
8761         " is a target node!");
8762
8763  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8764  switch (Opc) {
8765  default: break;
8766  case X86ISD::ADD:
8767  case X86ISD::SUB:
8768  case X86ISD::SMUL:
8769  case X86ISD::UMUL:
8770  case X86ISD::INC:
8771  case X86ISD::DEC:
8772  case X86ISD::OR:
8773  case X86ISD::XOR:
8774  case X86ISD::AND:
8775    // These nodes' second result is a boolean.
8776    if (Op.getResNo() == 0)
8777      break;
8778    // Fallthrough
8779  case X86ISD::SETCC:
8780    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8781                                       Mask.getBitWidth() - 1);
8782    break;
8783  }
8784}
8785
8786/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8787/// node is a GlobalAddress + offset.
8788bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8789                                       GlobalValue* &GA, int64_t &Offset) const{
8790  if (N->getOpcode() == X86ISD::Wrapper) {
8791    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8792      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8793      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8794      return true;
8795    }
8796  }
8797  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8798}
8799
8800static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
8801                                     EVT EltVT, LoadSDNode *&LDBase,
8802                                     unsigned &LastLoadedElt,
8803                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8804                                     const TargetLowering &TLI) {
8805  LDBase = NULL;
8806  LastLoadedElt = -1U;
8807  for (unsigned i = 0; i < NumElems; ++i) {
8808    if (N->getMaskElt(i) < 0) {
8809      if (!LDBase)
8810        return false;
8811      continue;
8812    }
8813
8814    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8815    if (!Elt.getNode() ||
8816        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8817      return false;
8818    if (!LDBase) {
8819      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
8820        return false;
8821      LDBase = cast<LoadSDNode>(Elt.getNode());
8822      LastLoadedElt = i;
8823      continue;
8824    }
8825    if (Elt.getOpcode() == ISD::UNDEF)
8826      continue;
8827
8828    LoadSDNode *LD = cast<LoadSDNode>(Elt);
8829    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
8830      return false;
8831    LastLoadedElt = i;
8832  }
8833  return true;
8834}
8835
8836/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8837/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8838/// if the load addresses are consecutive, non-overlapping, and in the right
8839/// order.  In the case of v2i64, it will see if it can rewrite the
8840/// shuffle to be an appropriate build vector so it can take advantage of
8841// performBuildVectorCombine.
8842static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8843                                     const TargetLowering &TLI) {
8844  DebugLoc dl = N->getDebugLoc();
8845  EVT VT = N->getValueType(0);
8846  EVT EltVT = VT.getVectorElementType();
8847  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8848  unsigned NumElems = VT.getVectorNumElements();
8849
8850  if (VT.getSizeInBits() != 128)
8851    return SDValue();
8852
8853  // Try to combine a vector_shuffle into a 128-bit load.
8854  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8855  LoadSDNode *LD = NULL;
8856  unsigned LastLoadedElt;
8857  if (!EltsFromConsecutiveLoads(SVN, NumElems, EltVT, LD, LastLoadedElt, DAG,
8858                                MFI, TLI))
8859    return SDValue();
8860
8861  if (LastLoadedElt == NumElems - 1) {
8862    if (DAG.InferPtrAlignment(LD->getBasePtr()) >= 16)
8863      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8864                         LD->getSrcValue(), LD->getSrcValueOffset(),
8865                         LD->isVolatile(), LD->isNonTemporal(), 0);
8866    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8867                       LD->getSrcValue(), LD->getSrcValueOffset(),
8868                       LD->isVolatile(), LD->isNonTemporal(),
8869                       LD->getAlignment());
8870  } else if (NumElems == 4 && LastLoadedElt == 1) {
8871    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8872    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8873    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8874    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8875  }
8876  return SDValue();
8877}
8878
8879/// PerformShuffleCombine - Detect vector gather/scatter index generation
8880/// and convert it from being a bunch of shuffles and extracts to a simple
8881/// store and scalar loads to extract the elements.
8882static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
8883                                                const TargetLowering &TLI) {
8884  SDValue InputVector = N->getOperand(0);
8885
8886  // Only operate on vectors of 4 elements, where the alternative shuffling
8887  // gets to be more expensive.
8888  if (InputVector.getValueType() != MVT::v4i32)
8889    return SDValue();
8890
8891  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
8892  // single use which is a sign-extend or zero-extend, and all elements are
8893  // used.
8894  SmallVector<SDNode *, 4> Uses;
8895  unsigned ExtractedElements = 0;
8896  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
8897       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
8898    if (UI.getUse().getResNo() != InputVector.getResNo())
8899      return SDValue();
8900
8901    SDNode *Extract = *UI;
8902    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8903      return SDValue();
8904
8905    if (Extract->getValueType(0) != MVT::i32)
8906      return SDValue();
8907    if (!Extract->hasOneUse())
8908      return SDValue();
8909    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
8910        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
8911      return SDValue();
8912    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
8913      return SDValue();
8914
8915    // Record which element was extracted.
8916    ExtractedElements |=
8917      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
8918
8919    Uses.push_back(Extract);
8920  }
8921
8922  // If not all the elements were used, this may not be worthwhile.
8923  if (ExtractedElements != 15)
8924    return SDValue();
8925
8926  // Ok, we've now decided to do the transformation.
8927  DebugLoc dl = InputVector.getDebugLoc();
8928
8929  // Store the value to a temporary stack slot.
8930  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
8931  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL, 0,
8932                            false, false, 0);
8933
8934  // Replace each use (extract) with a load of the appropriate element.
8935  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
8936       UE = Uses.end(); UI != UE; ++UI) {
8937    SDNode *Extract = *UI;
8938
8939    // Compute the element's address.
8940    SDValue Idx = Extract->getOperand(1);
8941    unsigned EltSize =
8942        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
8943    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
8944    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
8945
8946    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), OffsetVal, StackPtr);
8947
8948    // Load the scalar.
8949    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, ScalarAddr,
8950                          NULL, 0, false, false, 0);
8951
8952    // Replace the exact with the load.
8953    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
8954  }
8955
8956  // The replacement was made in place; don't return anything.
8957  return SDValue();
8958}
8959
8960/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8961static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8962                                    const X86Subtarget *Subtarget) {
8963  DebugLoc DL = N->getDebugLoc();
8964  SDValue Cond = N->getOperand(0);
8965  // Get the LHS/RHS of the select.
8966  SDValue LHS = N->getOperand(1);
8967  SDValue RHS = N->getOperand(2);
8968
8969  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
8970  // instructions match the semantics of the common C idiom x<y?x:y but not
8971  // x<=y?x:y, because of how they handle negative zero (which can be
8972  // ignored in unsafe-math mode).
8973  if (Subtarget->hasSSE2() &&
8974      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8975      Cond.getOpcode() == ISD::SETCC) {
8976    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8977
8978    unsigned Opcode = 0;
8979    // Check for x CC y ? x : y.
8980    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
8981        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
8982      switch (CC) {
8983      default: break;
8984      case ISD::SETULT:
8985        // Converting this to a min would handle NaNs incorrectly, and swapping
8986        // the operands would cause it to handle comparisons between positive
8987        // and negative zero incorrectly.
8988        if (!FiniteOnlyFPMath() &&
8989            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
8990          if (!UnsafeFPMath &&
8991              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8992            break;
8993          std::swap(LHS, RHS);
8994        }
8995        Opcode = X86ISD::FMIN;
8996        break;
8997      case ISD::SETOLE:
8998        // Converting this to a min would handle comparisons between positive
8999        // and negative zero incorrectly.
9000        if (!UnsafeFPMath &&
9001            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9002          break;
9003        Opcode = X86ISD::FMIN;
9004        break;
9005      case ISD::SETULE:
9006        // Converting this to a min would handle both negative zeros and NaNs
9007        // incorrectly, but we can swap the operands to fix both.
9008        std::swap(LHS, RHS);
9009      case ISD::SETOLT:
9010      case ISD::SETLT:
9011      case ISD::SETLE:
9012        Opcode = X86ISD::FMIN;
9013        break;
9014
9015      case ISD::SETOGE:
9016        // Converting this to a max would handle comparisons between positive
9017        // and negative zero incorrectly.
9018        if (!UnsafeFPMath &&
9019            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9020          break;
9021        Opcode = X86ISD::FMAX;
9022        break;
9023      case ISD::SETUGT:
9024        // Converting this to a max would handle NaNs incorrectly, and swapping
9025        // the operands would cause it to handle comparisons between positive
9026        // and negative zero incorrectly.
9027        if (!FiniteOnlyFPMath() &&
9028            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
9029          if (!UnsafeFPMath &&
9030              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9031            break;
9032          std::swap(LHS, RHS);
9033        }
9034        Opcode = X86ISD::FMAX;
9035        break;
9036      case ISD::SETUGE:
9037        // Converting this to a max would handle both negative zeros and NaNs
9038        // incorrectly, but we can swap the operands to fix both.
9039        std::swap(LHS, RHS);
9040      case ISD::SETOGT:
9041      case ISD::SETGT:
9042      case ISD::SETGE:
9043        Opcode = X86ISD::FMAX;
9044        break;
9045      }
9046    // Check for x CC y ? y : x -- a min/max with reversed arms.
9047    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9048               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9049      switch (CC) {
9050      default: break;
9051      case ISD::SETOGE:
9052        // Converting this to a min would handle comparisons between positive
9053        // and negative zero incorrectly, and swapping the operands would
9054        // cause it to handle NaNs incorrectly.
9055        if (!UnsafeFPMath &&
9056            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9057          if (!FiniteOnlyFPMath() &&
9058              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9059            break;
9060          std::swap(LHS, RHS);
9061        }
9062        Opcode = X86ISD::FMIN;
9063        break;
9064      case ISD::SETUGT:
9065        // Converting this to a min would handle NaNs incorrectly.
9066        if (!UnsafeFPMath &&
9067            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9068          break;
9069        Opcode = X86ISD::FMIN;
9070        break;
9071      case ISD::SETUGE:
9072        // Converting this to a min would handle both negative zeros and NaNs
9073        // incorrectly, but we can swap the operands to fix both.
9074        std::swap(LHS, RHS);
9075      case ISD::SETOGT:
9076      case ISD::SETGT:
9077      case ISD::SETGE:
9078        Opcode = X86ISD::FMIN;
9079        break;
9080
9081      case ISD::SETULT:
9082        // Converting this to a max would handle NaNs incorrectly.
9083        if (!FiniteOnlyFPMath() &&
9084            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9085          break;
9086        Opcode = X86ISD::FMAX;
9087        break;
9088      case ISD::SETOLE:
9089        // Converting this to a max would handle comparisons between positive
9090        // and negative zero incorrectly, and swapping the operands would
9091        // cause it to handle NaNs incorrectly.
9092        if (!UnsafeFPMath &&
9093            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9094          if (!FiniteOnlyFPMath() &&
9095              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9096            break;
9097          std::swap(LHS, RHS);
9098        }
9099        Opcode = X86ISD::FMAX;
9100        break;
9101      case ISD::SETULE:
9102        // Converting this to a max would handle both negative zeros and NaNs
9103        // incorrectly, but we can swap the operands to fix both.
9104        std::swap(LHS, RHS);
9105      case ISD::SETOLT:
9106      case ISD::SETLT:
9107      case ISD::SETLE:
9108        Opcode = X86ISD::FMAX;
9109        break;
9110      }
9111    }
9112
9113    if (Opcode)
9114      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9115  }
9116
9117  // If this is a select between two integer constants, try to do some
9118  // optimizations.
9119  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9120    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9121      // Don't do this for crazy integer types.
9122      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9123        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9124        // so that TrueC (the true value) is larger than FalseC.
9125        bool NeedsCondInvert = false;
9126
9127        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9128            // Efficiently invertible.
9129            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9130             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9131              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9132          NeedsCondInvert = true;
9133          std::swap(TrueC, FalseC);
9134        }
9135
9136        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9137        if (FalseC->getAPIntValue() == 0 &&
9138            TrueC->getAPIntValue().isPowerOf2()) {
9139          if (NeedsCondInvert) // Invert the condition if needed.
9140            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9141                               DAG.getConstant(1, Cond.getValueType()));
9142
9143          // Zero extend the condition if needed.
9144          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9145
9146          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9147          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9148                             DAG.getConstant(ShAmt, MVT::i8));
9149        }
9150
9151        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9152        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9153          if (NeedsCondInvert) // Invert the condition if needed.
9154            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9155                               DAG.getConstant(1, Cond.getValueType()));
9156
9157          // Zero extend the condition if needed.
9158          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9159                             FalseC->getValueType(0), Cond);
9160          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9161                             SDValue(FalseC, 0));
9162        }
9163
9164        // Optimize cases that will turn into an LEA instruction.  This requires
9165        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9166        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9167          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9168          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9169
9170          bool isFastMultiplier = false;
9171          if (Diff < 10) {
9172            switch ((unsigned char)Diff) {
9173              default: break;
9174              case 1:  // result = add base, cond
9175              case 2:  // result = lea base(    , cond*2)
9176              case 3:  // result = lea base(cond, cond*2)
9177              case 4:  // result = lea base(    , cond*4)
9178              case 5:  // result = lea base(cond, cond*4)
9179              case 8:  // result = lea base(    , cond*8)
9180              case 9:  // result = lea base(cond, cond*8)
9181                isFastMultiplier = true;
9182                break;
9183            }
9184          }
9185
9186          if (isFastMultiplier) {
9187            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9188            if (NeedsCondInvert) // Invert the condition if needed.
9189              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9190                                 DAG.getConstant(1, Cond.getValueType()));
9191
9192            // Zero extend the condition if needed.
9193            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9194                               Cond);
9195            // Scale the condition by the difference.
9196            if (Diff != 1)
9197              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9198                                 DAG.getConstant(Diff, Cond.getValueType()));
9199
9200            // Add the base if non-zero.
9201            if (FalseC->getAPIntValue() != 0)
9202              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9203                                 SDValue(FalseC, 0));
9204            return Cond;
9205          }
9206        }
9207      }
9208  }
9209
9210  return SDValue();
9211}
9212
9213/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9214static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9215                                  TargetLowering::DAGCombinerInfo &DCI) {
9216  DebugLoc DL = N->getDebugLoc();
9217
9218  // If the flag operand isn't dead, don't touch this CMOV.
9219  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9220    return SDValue();
9221
9222  // If this is a select between two integer constants, try to do some
9223  // optimizations.  Note that the operands are ordered the opposite of SELECT
9224  // operands.
9225  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9226    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9227      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9228      // larger than FalseC (the false value).
9229      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9230
9231      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9232        CC = X86::GetOppositeBranchCondition(CC);
9233        std::swap(TrueC, FalseC);
9234      }
9235
9236      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9237      // This is efficient for any integer data type (including i8/i16) and
9238      // shift amount.
9239      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9240        SDValue Cond = N->getOperand(3);
9241        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9242                           DAG.getConstant(CC, MVT::i8), Cond);
9243
9244        // Zero extend the condition if needed.
9245        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9246
9247        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9248        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9249                           DAG.getConstant(ShAmt, MVT::i8));
9250        if (N->getNumValues() == 2)  // Dead flag value?
9251          return DCI.CombineTo(N, Cond, SDValue());
9252        return Cond;
9253      }
9254
9255      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9256      // for any integer data type, including i8/i16.
9257      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9258        SDValue Cond = N->getOperand(3);
9259        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9260                           DAG.getConstant(CC, MVT::i8), Cond);
9261
9262        // Zero extend the condition if needed.
9263        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9264                           FalseC->getValueType(0), Cond);
9265        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9266                           SDValue(FalseC, 0));
9267
9268        if (N->getNumValues() == 2)  // Dead flag value?
9269          return DCI.CombineTo(N, Cond, SDValue());
9270        return Cond;
9271      }
9272
9273      // Optimize cases that will turn into an LEA instruction.  This requires
9274      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9275      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9276        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9277        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9278
9279        bool isFastMultiplier = false;
9280        if (Diff < 10) {
9281          switch ((unsigned char)Diff) {
9282          default: break;
9283          case 1:  // result = add base, cond
9284          case 2:  // result = lea base(    , cond*2)
9285          case 3:  // result = lea base(cond, cond*2)
9286          case 4:  // result = lea base(    , cond*4)
9287          case 5:  // result = lea base(cond, cond*4)
9288          case 8:  // result = lea base(    , cond*8)
9289          case 9:  // result = lea base(cond, cond*8)
9290            isFastMultiplier = true;
9291            break;
9292          }
9293        }
9294
9295        if (isFastMultiplier) {
9296          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9297          SDValue Cond = N->getOperand(3);
9298          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9299                             DAG.getConstant(CC, MVT::i8), Cond);
9300          // Zero extend the condition if needed.
9301          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9302                             Cond);
9303          // Scale the condition by the difference.
9304          if (Diff != 1)
9305            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9306                               DAG.getConstant(Diff, Cond.getValueType()));
9307
9308          // Add the base if non-zero.
9309          if (FalseC->getAPIntValue() != 0)
9310            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9311                               SDValue(FalseC, 0));
9312          if (N->getNumValues() == 2)  // Dead flag value?
9313            return DCI.CombineTo(N, Cond, SDValue());
9314          return Cond;
9315        }
9316      }
9317    }
9318  }
9319  return SDValue();
9320}
9321
9322
9323/// PerformMulCombine - Optimize a single multiply with constant into two
9324/// in order to implement it with two cheaper instructions, e.g.
9325/// LEA + SHL, LEA + LEA.
9326static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9327                                 TargetLowering::DAGCombinerInfo &DCI) {
9328  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9329    return SDValue();
9330
9331  EVT VT = N->getValueType(0);
9332  if (VT != MVT::i64)
9333    return SDValue();
9334
9335  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9336  if (!C)
9337    return SDValue();
9338  uint64_t MulAmt = C->getZExtValue();
9339  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9340    return SDValue();
9341
9342  uint64_t MulAmt1 = 0;
9343  uint64_t MulAmt2 = 0;
9344  if ((MulAmt % 9) == 0) {
9345    MulAmt1 = 9;
9346    MulAmt2 = MulAmt / 9;
9347  } else if ((MulAmt % 5) == 0) {
9348    MulAmt1 = 5;
9349    MulAmt2 = MulAmt / 5;
9350  } else if ((MulAmt % 3) == 0) {
9351    MulAmt1 = 3;
9352    MulAmt2 = MulAmt / 3;
9353  }
9354  if (MulAmt2 &&
9355      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9356    DebugLoc DL = N->getDebugLoc();
9357
9358    if (isPowerOf2_64(MulAmt2) &&
9359        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9360      // If second multiplifer is pow2, issue it first. We want the multiply by
9361      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9362      // is an add.
9363      std::swap(MulAmt1, MulAmt2);
9364
9365    SDValue NewMul;
9366    if (isPowerOf2_64(MulAmt1))
9367      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9368                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9369    else
9370      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9371                           DAG.getConstant(MulAmt1, VT));
9372
9373    if (isPowerOf2_64(MulAmt2))
9374      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9375                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9376    else
9377      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9378                           DAG.getConstant(MulAmt2, VT));
9379
9380    // Do not add new nodes to DAG combiner worklist.
9381    DCI.CombineTo(N, NewMul, false);
9382  }
9383  return SDValue();
9384}
9385
9386static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9387  SDValue N0 = N->getOperand(0);
9388  SDValue N1 = N->getOperand(1);
9389  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9390  EVT VT = N0.getValueType();
9391
9392  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9393  // since the result of setcc_c is all zero's or all ones.
9394  if (N1C && N0.getOpcode() == ISD::AND &&
9395      N0.getOperand(1).getOpcode() == ISD::Constant) {
9396    SDValue N00 = N0.getOperand(0);
9397    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9398        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9399          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9400         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9401      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9402      APInt ShAmt = N1C->getAPIntValue();
9403      Mask = Mask.shl(ShAmt);
9404      if (Mask != 0)
9405        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9406                           N00, DAG.getConstant(Mask, VT));
9407    }
9408  }
9409
9410  return SDValue();
9411}
9412
9413/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9414///                       when possible.
9415static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9416                                   const X86Subtarget *Subtarget) {
9417  EVT VT = N->getValueType(0);
9418  if (!VT.isVector() && VT.isInteger() &&
9419      N->getOpcode() == ISD::SHL)
9420    return PerformSHLCombine(N, DAG);
9421
9422  // On X86 with SSE2 support, we can transform this to a vector shift if
9423  // all elements are shifted by the same amount.  We can't do this in legalize
9424  // because the a constant vector is typically transformed to a constant pool
9425  // so we have no knowledge of the shift amount.
9426  if (!Subtarget->hasSSE2())
9427    return SDValue();
9428
9429  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9430    return SDValue();
9431
9432  SDValue ShAmtOp = N->getOperand(1);
9433  EVT EltVT = VT.getVectorElementType();
9434  DebugLoc DL = N->getDebugLoc();
9435  SDValue BaseShAmt = SDValue();
9436  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9437    unsigned NumElts = VT.getVectorNumElements();
9438    unsigned i = 0;
9439    for (; i != NumElts; ++i) {
9440      SDValue Arg = ShAmtOp.getOperand(i);
9441      if (Arg.getOpcode() == ISD::UNDEF) continue;
9442      BaseShAmt = Arg;
9443      break;
9444    }
9445    for (; i != NumElts; ++i) {
9446      SDValue Arg = ShAmtOp.getOperand(i);
9447      if (Arg.getOpcode() == ISD::UNDEF) continue;
9448      if (Arg != BaseShAmt) {
9449        return SDValue();
9450      }
9451    }
9452  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9453             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9454    SDValue InVec = ShAmtOp.getOperand(0);
9455    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9456      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9457      unsigned i = 0;
9458      for (; i != NumElts; ++i) {
9459        SDValue Arg = InVec.getOperand(i);
9460        if (Arg.getOpcode() == ISD::UNDEF) continue;
9461        BaseShAmt = Arg;
9462        break;
9463      }
9464    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9465       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9466         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9467         if (C->getZExtValue() == SplatIdx)
9468           BaseShAmt = InVec.getOperand(1);
9469       }
9470    }
9471    if (BaseShAmt.getNode() == 0)
9472      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9473                              DAG.getIntPtrConstant(0));
9474  } else
9475    return SDValue();
9476
9477  // The shift amount is an i32.
9478  if (EltVT.bitsGT(MVT::i32))
9479    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9480  else if (EltVT.bitsLT(MVT::i32))
9481    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9482
9483  // The shift amount is identical so we can do a vector shift.
9484  SDValue  ValOp = N->getOperand(0);
9485  switch (N->getOpcode()) {
9486  default:
9487    llvm_unreachable("Unknown shift opcode!");
9488    break;
9489  case ISD::SHL:
9490    if (VT == MVT::v2i64)
9491      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9492                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9493                         ValOp, BaseShAmt);
9494    if (VT == MVT::v4i32)
9495      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9496                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9497                         ValOp, BaseShAmt);
9498    if (VT == MVT::v8i16)
9499      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9500                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9501                         ValOp, BaseShAmt);
9502    break;
9503  case ISD::SRA:
9504    if (VT == MVT::v4i32)
9505      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9506                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9507                         ValOp, BaseShAmt);
9508    if (VT == MVT::v8i16)
9509      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9510                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9511                         ValOp, BaseShAmt);
9512    break;
9513  case ISD::SRL:
9514    if (VT == MVT::v2i64)
9515      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9516                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9517                         ValOp, BaseShAmt);
9518    if (VT == MVT::v4i32)
9519      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9520                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9521                         ValOp, BaseShAmt);
9522    if (VT ==  MVT::v8i16)
9523      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9524                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9525                         ValOp, BaseShAmt);
9526    break;
9527  }
9528  return SDValue();
9529}
9530
9531static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9532                                const X86Subtarget *Subtarget) {
9533  EVT VT = N->getValueType(0);
9534  if (VT != MVT::i64 || !Subtarget->is64Bit())
9535    return SDValue();
9536
9537  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9538  SDValue N0 = N->getOperand(0);
9539  SDValue N1 = N->getOperand(1);
9540  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9541    std::swap(N0, N1);
9542  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9543    return SDValue();
9544
9545  SDValue ShAmt0 = N0.getOperand(1);
9546  if (ShAmt0.getValueType() != MVT::i8)
9547    return SDValue();
9548  SDValue ShAmt1 = N1.getOperand(1);
9549  if (ShAmt1.getValueType() != MVT::i8)
9550    return SDValue();
9551  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9552    ShAmt0 = ShAmt0.getOperand(0);
9553  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9554    ShAmt1 = ShAmt1.getOperand(0);
9555
9556  DebugLoc DL = N->getDebugLoc();
9557  unsigned Opc = X86ISD::SHLD;
9558  SDValue Op0 = N0.getOperand(0);
9559  SDValue Op1 = N1.getOperand(0);
9560  if (ShAmt0.getOpcode() == ISD::SUB) {
9561    Opc = X86ISD::SHRD;
9562    std::swap(Op0, Op1);
9563    std::swap(ShAmt0, ShAmt1);
9564  }
9565
9566  if (ShAmt1.getOpcode() == ISD::SUB) {
9567    SDValue Sum = ShAmt1.getOperand(0);
9568    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9569      if (SumC->getSExtValue() == 64 &&
9570          ShAmt1.getOperand(1) == ShAmt0)
9571        return DAG.getNode(Opc, DL, VT,
9572                           Op0, Op1,
9573                           DAG.getNode(ISD::TRUNCATE, DL,
9574                                       MVT::i8, ShAmt0));
9575    }
9576  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9577    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9578    if (ShAmt0C &&
9579        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == 64)
9580      return DAG.getNode(Opc, DL, VT,
9581                         N0.getOperand(0), N1.getOperand(0),
9582                         DAG.getNode(ISD::TRUNCATE, DL,
9583                                       MVT::i8, ShAmt0));
9584  }
9585
9586  return SDValue();
9587}
9588
9589/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9590static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9591                                   const X86Subtarget *Subtarget) {
9592  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9593  // the FP state in cases where an emms may be missing.
9594  // A preferable solution to the general problem is to figure out the right
9595  // places to insert EMMS.  This qualifies as a quick hack.
9596
9597  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9598  StoreSDNode *St = cast<StoreSDNode>(N);
9599  EVT VT = St->getValue().getValueType();
9600  if (VT.getSizeInBits() != 64)
9601    return SDValue();
9602
9603  const Function *F = DAG.getMachineFunction().getFunction();
9604  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9605  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9606    && Subtarget->hasSSE2();
9607  if ((VT.isVector() ||
9608       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9609      isa<LoadSDNode>(St->getValue()) &&
9610      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9611      St->getChain().hasOneUse() && !St->isVolatile()) {
9612    SDNode* LdVal = St->getValue().getNode();
9613    LoadSDNode *Ld = 0;
9614    int TokenFactorIndex = -1;
9615    SmallVector<SDValue, 8> Ops;
9616    SDNode* ChainVal = St->getChain().getNode();
9617    // Must be a store of a load.  We currently handle two cases:  the load
9618    // is a direct child, and it's under an intervening TokenFactor.  It is
9619    // possible to dig deeper under nested TokenFactors.
9620    if (ChainVal == LdVal)
9621      Ld = cast<LoadSDNode>(St->getChain());
9622    else if (St->getValue().hasOneUse() &&
9623             ChainVal->getOpcode() == ISD::TokenFactor) {
9624      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9625        if (ChainVal->getOperand(i).getNode() == LdVal) {
9626          TokenFactorIndex = i;
9627          Ld = cast<LoadSDNode>(St->getValue());
9628        } else
9629          Ops.push_back(ChainVal->getOperand(i));
9630      }
9631    }
9632
9633    if (!Ld || !ISD::isNormalLoad(Ld))
9634      return SDValue();
9635
9636    // If this is not the MMX case, i.e. we are just turning i64 load/store
9637    // into f64 load/store, avoid the transformation if there are multiple
9638    // uses of the loaded value.
9639    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9640      return SDValue();
9641
9642    DebugLoc LdDL = Ld->getDebugLoc();
9643    DebugLoc StDL = N->getDebugLoc();
9644    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9645    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9646    // pair instead.
9647    if (Subtarget->is64Bit() || F64IsLegal) {
9648      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9649      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9650                                  Ld->getBasePtr(), Ld->getSrcValue(),
9651                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9652                                  Ld->isNonTemporal(), Ld->getAlignment());
9653      SDValue NewChain = NewLd.getValue(1);
9654      if (TokenFactorIndex != -1) {
9655        Ops.push_back(NewChain);
9656        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9657                               Ops.size());
9658      }
9659      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9660                          St->getSrcValue(), St->getSrcValueOffset(),
9661                          St->isVolatile(), St->isNonTemporal(),
9662                          St->getAlignment());
9663    }
9664
9665    // Otherwise, lower to two pairs of 32-bit loads / stores.
9666    SDValue LoAddr = Ld->getBasePtr();
9667    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9668                                 DAG.getConstant(4, MVT::i32));
9669
9670    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9671                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9672                               Ld->isVolatile(), Ld->isNonTemporal(),
9673                               Ld->getAlignment());
9674    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9675                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9676                               Ld->isVolatile(), Ld->isNonTemporal(),
9677                               MinAlign(Ld->getAlignment(), 4));
9678
9679    SDValue NewChain = LoLd.getValue(1);
9680    if (TokenFactorIndex != -1) {
9681      Ops.push_back(LoLd);
9682      Ops.push_back(HiLd);
9683      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9684                             Ops.size());
9685    }
9686
9687    LoAddr = St->getBasePtr();
9688    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9689                         DAG.getConstant(4, MVT::i32));
9690
9691    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9692                                St->getSrcValue(), St->getSrcValueOffset(),
9693                                St->isVolatile(), St->isNonTemporal(),
9694                                St->getAlignment());
9695    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9696                                St->getSrcValue(),
9697                                St->getSrcValueOffset() + 4,
9698                                St->isVolatile(),
9699                                St->isNonTemporal(),
9700                                MinAlign(St->getAlignment(), 4));
9701    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9702  }
9703  return SDValue();
9704}
9705
9706/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9707/// X86ISD::FXOR nodes.
9708static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9709  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9710  // F[X]OR(0.0, x) -> x
9711  // F[X]OR(x, 0.0) -> x
9712  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9713    if (C->getValueAPF().isPosZero())
9714      return N->getOperand(1);
9715  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9716    if (C->getValueAPF().isPosZero())
9717      return N->getOperand(0);
9718  return SDValue();
9719}
9720
9721/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9722static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9723  // FAND(0.0, x) -> 0.0
9724  // FAND(x, 0.0) -> 0.0
9725  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9726    if (C->getValueAPF().isPosZero())
9727      return N->getOperand(0);
9728  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9729    if (C->getValueAPF().isPosZero())
9730      return N->getOperand(1);
9731  return SDValue();
9732}
9733
9734static SDValue PerformBTCombine(SDNode *N,
9735                                SelectionDAG &DAG,
9736                                TargetLowering::DAGCombinerInfo &DCI) {
9737  // BT ignores high bits in the bit index operand.
9738  SDValue Op1 = N->getOperand(1);
9739  if (Op1.hasOneUse()) {
9740    unsigned BitWidth = Op1.getValueSizeInBits();
9741    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9742    APInt KnownZero, KnownOne;
9743    TargetLowering::TargetLoweringOpt TLO(DAG);
9744    TargetLowering &TLI = DAG.getTargetLoweringInfo();
9745    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9746        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9747      DCI.CommitTargetLoweringOpt(TLO);
9748  }
9749  return SDValue();
9750}
9751
9752static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9753  SDValue Op = N->getOperand(0);
9754  if (Op.getOpcode() == ISD::BIT_CONVERT)
9755    Op = Op.getOperand(0);
9756  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9757  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9758      VT.getVectorElementType().getSizeInBits() ==
9759      OpVT.getVectorElementType().getSizeInBits()) {
9760    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9761  }
9762  return SDValue();
9763}
9764
9765// On X86 and X86-64, atomic operations are lowered to locked instructions.
9766// Locked instructions, in turn, have implicit fence semantics (all memory
9767// operations are flushed before issuing the locked instruction, and the
9768// are not buffered), so we can fold away the common pattern of
9769// fence-atomic-fence.
9770static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9771  SDValue atomic = N->getOperand(0);
9772  switch (atomic.getOpcode()) {
9773    case ISD::ATOMIC_CMP_SWAP:
9774    case ISD::ATOMIC_SWAP:
9775    case ISD::ATOMIC_LOAD_ADD:
9776    case ISD::ATOMIC_LOAD_SUB:
9777    case ISD::ATOMIC_LOAD_AND:
9778    case ISD::ATOMIC_LOAD_OR:
9779    case ISD::ATOMIC_LOAD_XOR:
9780    case ISD::ATOMIC_LOAD_NAND:
9781    case ISD::ATOMIC_LOAD_MIN:
9782    case ISD::ATOMIC_LOAD_MAX:
9783    case ISD::ATOMIC_LOAD_UMIN:
9784    case ISD::ATOMIC_LOAD_UMAX:
9785      break;
9786    default:
9787      return SDValue();
9788  }
9789
9790  SDValue fence = atomic.getOperand(0);
9791  if (fence.getOpcode() != ISD::MEMBARRIER)
9792    return SDValue();
9793
9794  switch (atomic.getOpcode()) {
9795    case ISD::ATOMIC_CMP_SWAP:
9796      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9797                                    atomic.getOperand(1), atomic.getOperand(2),
9798                                    atomic.getOperand(3));
9799    case ISD::ATOMIC_SWAP:
9800    case ISD::ATOMIC_LOAD_ADD:
9801    case ISD::ATOMIC_LOAD_SUB:
9802    case ISD::ATOMIC_LOAD_AND:
9803    case ISD::ATOMIC_LOAD_OR:
9804    case ISD::ATOMIC_LOAD_XOR:
9805    case ISD::ATOMIC_LOAD_NAND:
9806    case ISD::ATOMIC_LOAD_MIN:
9807    case ISD::ATOMIC_LOAD_MAX:
9808    case ISD::ATOMIC_LOAD_UMIN:
9809    case ISD::ATOMIC_LOAD_UMAX:
9810      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9811                                    atomic.getOperand(1), atomic.getOperand(2));
9812    default:
9813      return SDValue();
9814  }
9815}
9816
9817static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
9818  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
9819  //           (and (i32 x86isd::setcc_carry), 1)
9820  // This eliminates the zext. This transformation is necessary because
9821  // ISD::SETCC is always legalized to i8.
9822  DebugLoc dl = N->getDebugLoc();
9823  SDValue N0 = N->getOperand(0);
9824  EVT VT = N->getValueType(0);
9825  if (N0.getOpcode() == ISD::AND &&
9826      N0.hasOneUse() &&
9827      N0.getOperand(0).hasOneUse()) {
9828    SDValue N00 = N0.getOperand(0);
9829    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
9830      return SDValue();
9831    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9832    if (!C || C->getZExtValue() != 1)
9833      return SDValue();
9834    return DAG.getNode(ISD::AND, dl, VT,
9835                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
9836                                   N00.getOperand(0), N00.getOperand(1)),
9837                       DAG.getConstant(1, VT));
9838  }
9839
9840  return SDValue();
9841}
9842
9843SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9844                                             DAGCombinerInfo &DCI) const {
9845  SelectionDAG &DAG = DCI.DAG;
9846  switch (N->getOpcode()) {
9847  default: break;
9848  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9849  case ISD::EXTRACT_VECTOR_ELT:
9850                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
9851  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9852  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9853  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9854  case ISD::SHL:
9855  case ISD::SRA:
9856  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9857  case ISD::OR:             return PerformOrCombine(N, DAG, Subtarget);
9858  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9859  case X86ISD::FXOR:
9860  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9861  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9862  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9863  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9864  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9865  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
9866  }
9867
9868  return SDValue();
9869}
9870
9871//===----------------------------------------------------------------------===//
9872//                           X86 Inline Assembly Support
9873//===----------------------------------------------------------------------===//
9874
9875static bool LowerToBSwap(CallInst *CI) {
9876  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9877  // we will turn this bswap into something that will be lowered to logical ops
9878  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9879  // so don't worry about this.
9880
9881  // Verify this is a simple bswap.
9882  if (CI->getNumOperands() != 2 ||
9883      CI->getType() != CI->getOperand(1)->getType() ||
9884      !CI->getType()->isIntegerTy())
9885    return false;
9886
9887  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9888  if (!Ty || Ty->getBitWidth() % 16 != 0)
9889    return false;
9890
9891  // Okay, we can do this xform, do so now.
9892  const Type *Tys[] = { Ty };
9893  Module *M = CI->getParent()->getParent()->getParent();
9894  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9895
9896  Value *Op = CI->getOperand(1);
9897  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9898
9899  CI->replaceAllUsesWith(Op);
9900  CI->eraseFromParent();
9901  return true;
9902}
9903
9904bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9905  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9906  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9907
9908  std::string AsmStr = IA->getAsmString();
9909
9910  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9911  SmallVector<StringRef, 4> AsmPieces;
9912  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9913
9914  switch (AsmPieces.size()) {
9915  default: return false;
9916  case 1:
9917    AsmStr = AsmPieces[0];
9918    AsmPieces.clear();
9919    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9920
9921    // bswap $0
9922    if (AsmPieces.size() == 2 &&
9923        (AsmPieces[0] == "bswap" ||
9924         AsmPieces[0] == "bswapq" ||
9925         AsmPieces[0] == "bswapl") &&
9926        (AsmPieces[1] == "$0" ||
9927         AsmPieces[1] == "${0:q}")) {
9928      // No need to check constraints, nothing other than the equivalent of
9929      // "=r,0" would be valid here.
9930      return LowerToBSwap(CI);
9931    }
9932    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9933    if (CI->getType()->isIntegerTy(16) &&
9934        AsmPieces.size() == 3 &&
9935        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
9936        AsmPieces[1] == "$$8," &&
9937        AsmPieces[2] == "${0:w}" &&
9938        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
9939      AsmPieces.clear();
9940      const std::string &Constraints = IA->getConstraintString();
9941      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
9942      std::sort(AsmPieces.begin(), AsmPieces.end());
9943      if (AsmPieces.size() == 4 &&
9944          AsmPieces[0] == "~{cc}" &&
9945          AsmPieces[1] == "~{dirflag}" &&
9946          AsmPieces[2] == "~{flags}" &&
9947          AsmPieces[3] == "~{fpsr}") {
9948        return LowerToBSwap(CI);
9949      }
9950    }
9951    break;
9952  case 3:
9953    if (CI->getType()->isIntegerTy(64) &&
9954        Constraints.size() >= 2 &&
9955        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9956        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9957      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9958      SmallVector<StringRef, 4> Words;
9959      SplitString(AsmPieces[0], Words, " \t");
9960      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9961        Words.clear();
9962        SplitString(AsmPieces[1], Words, " \t");
9963        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9964          Words.clear();
9965          SplitString(AsmPieces[2], Words, " \t,");
9966          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
9967              Words[2] == "%edx") {
9968            return LowerToBSwap(CI);
9969          }
9970        }
9971      }
9972    }
9973    break;
9974  }
9975  return false;
9976}
9977
9978
9979
9980/// getConstraintType - Given a constraint letter, return the type of
9981/// constraint it is for this target.
9982X86TargetLowering::ConstraintType
9983X86TargetLowering::getConstraintType(const std::string &Constraint) const {
9984  if (Constraint.size() == 1) {
9985    switch (Constraint[0]) {
9986    case 'A':
9987      return C_Register;
9988    case 'f':
9989    case 'r':
9990    case 'R':
9991    case 'l':
9992    case 'q':
9993    case 'Q':
9994    case 'x':
9995    case 'y':
9996    case 'Y':
9997      return C_RegisterClass;
9998    case 'e':
9999    case 'Z':
10000      return C_Other;
10001    default:
10002      break;
10003    }
10004  }
10005  return TargetLowering::getConstraintType(Constraint);
10006}
10007
10008/// LowerXConstraint - try to replace an X constraint, which matches anything,
10009/// with another that has more specific requirements based on the type of the
10010/// corresponding operand.
10011const char *X86TargetLowering::
10012LowerXConstraint(EVT ConstraintVT) const {
10013  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10014  // 'f' like normal targets.
10015  if (ConstraintVT.isFloatingPoint()) {
10016    if (Subtarget->hasSSE2())
10017      return "Y";
10018    if (Subtarget->hasSSE1())
10019      return "x";
10020  }
10021
10022  return TargetLowering::LowerXConstraint(ConstraintVT);
10023}
10024
10025/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10026/// vector.  If it is invalid, don't add anything to Ops.
10027void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10028                                                     char Constraint,
10029                                                     bool hasMemory,
10030                                                     std::vector<SDValue>&Ops,
10031                                                     SelectionDAG &DAG) const {
10032  SDValue Result(0, 0);
10033
10034  switch (Constraint) {
10035  default: break;
10036  case 'I':
10037    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10038      if (C->getZExtValue() <= 31) {
10039        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10040        break;
10041      }
10042    }
10043    return;
10044  case 'J':
10045    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10046      if (C->getZExtValue() <= 63) {
10047        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10048        break;
10049      }
10050    }
10051    return;
10052  case 'K':
10053    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10054      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10055        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10056        break;
10057      }
10058    }
10059    return;
10060  case 'N':
10061    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10062      if (C->getZExtValue() <= 255) {
10063        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10064        break;
10065      }
10066    }
10067    return;
10068  case 'e': {
10069    // 32-bit signed value
10070    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10071      const ConstantInt *CI = C->getConstantIntValue();
10072      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10073                                  C->getSExtValue())) {
10074        // Widen to 64 bits here to get it sign extended.
10075        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10076        break;
10077      }
10078    // FIXME gcc accepts some relocatable values here too, but only in certain
10079    // memory models; it's complicated.
10080    }
10081    return;
10082  }
10083  case 'Z': {
10084    // 32-bit unsigned value
10085    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10086      const ConstantInt *CI = C->getConstantIntValue();
10087      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10088                                  C->getZExtValue())) {
10089        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10090        break;
10091      }
10092    }
10093    // FIXME gcc accepts some relocatable values here too, but only in certain
10094    // memory models; it's complicated.
10095    return;
10096  }
10097  case 'i': {
10098    // Literal immediates are always ok.
10099    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10100      // Widen to 64 bits here to get it sign extended.
10101      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10102      break;
10103    }
10104
10105    // If we are in non-pic codegen mode, we allow the address of a global (with
10106    // an optional displacement) to be used with 'i'.
10107    GlobalAddressSDNode *GA = 0;
10108    int64_t Offset = 0;
10109
10110    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10111    while (1) {
10112      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10113        Offset += GA->getOffset();
10114        break;
10115      } else if (Op.getOpcode() == ISD::ADD) {
10116        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10117          Offset += C->getZExtValue();
10118          Op = Op.getOperand(0);
10119          continue;
10120        }
10121      } else if (Op.getOpcode() == ISD::SUB) {
10122        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10123          Offset += -C->getZExtValue();
10124          Op = Op.getOperand(0);
10125          continue;
10126        }
10127      }
10128
10129      // Otherwise, this isn't something we can handle, reject it.
10130      return;
10131    }
10132
10133    GlobalValue *GV = GA->getGlobal();
10134    // If we require an extra load to get this address, as in PIC mode, we
10135    // can't accept it.
10136    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10137                                                        getTargetMachine())))
10138      return;
10139
10140    if (hasMemory)
10141      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
10142    else
10143      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
10144    Result = Op;
10145    break;
10146  }
10147  }
10148
10149  if (Result.getNode()) {
10150    Ops.push_back(Result);
10151    return;
10152  }
10153  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
10154                                                      Ops, DAG);
10155}
10156
10157std::vector<unsigned> X86TargetLowering::
10158getRegClassForInlineAsmConstraint(const std::string &Constraint,
10159                                  EVT VT) const {
10160  if (Constraint.size() == 1) {
10161    // FIXME: not handling fp-stack yet!
10162    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10163    default: break;  // Unknown constraint letter
10164    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10165      if (Subtarget->is64Bit()) {
10166        if (VT == MVT::i32)
10167          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10168                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10169                                       X86::R10D,X86::R11D,X86::R12D,
10170                                       X86::R13D,X86::R14D,X86::R15D,
10171                                       X86::EBP, X86::ESP, 0);
10172        else if (VT == MVT::i16)
10173          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10174                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10175                                       X86::R10W,X86::R11W,X86::R12W,
10176                                       X86::R13W,X86::R14W,X86::R15W,
10177                                       X86::BP,  X86::SP, 0);
10178        else if (VT == MVT::i8)
10179          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10180                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10181                                       X86::R10B,X86::R11B,X86::R12B,
10182                                       X86::R13B,X86::R14B,X86::R15B,
10183                                       X86::BPL, X86::SPL, 0);
10184
10185        else if (VT == MVT::i64)
10186          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10187                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10188                                       X86::R10, X86::R11, X86::R12,
10189                                       X86::R13, X86::R14, X86::R15,
10190                                       X86::RBP, X86::RSP, 0);
10191
10192        break;
10193      }
10194      // 32-bit fallthrough
10195    case 'Q':   // Q_REGS
10196      if (VT == MVT::i32)
10197        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10198      else if (VT == MVT::i16)
10199        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10200      else if (VT == MVT::i8)
10201        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10202      else if (VT == MVT::i64)
10203        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10204      break;
10205    }
10206  }
10207
10208  return std::vector<unsigned>();
10209}
10210
10211std::pair<unsigned, const TargetRegisterClass*>
10212X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10213                                                EVT VT) const {
10214  // First, see if this is a constraint that directly corresponds to an LLVM
10215  // register class.
10216  if (Constraint.size() == 1) {
10217    // GCC Constraint Letters
10218    switch (Constraint[0]) {
10219    default: break;
10220    case 'r':   // GENERAL_REGS
10221    case 'l':   // INDEX_REGS
10222      if (VT == MVT::i8)
10223        return std::make_pair(0U, X86::GR8RegisterClass);
10224      if (VT == MVT::i16)
10225        return std::make_pair(0U, X86::GR16RegisterClass);
10226      if (VT == MVT::i32 || !Subtarget->is64Bit())
10227        return std::make_pair(0U, X86::GR32RegisterClass);
10228      return std::make_pair(0U, X86::GR64RegisterClass);
10229    case 'R':   // LEGACY_REGS
10230      if (VT == MVT::i8)
10231        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10232      if (VT == MVT::i16)
10233        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10234      if (VT == MVT::i32 || !Subtarget->is64Bit())
10235        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10236      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10237    case 'f':  // FP Stack registers.
10238      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10239      // value to the correct fpstack register class.
10240      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10241        return std::make_pair(0U, X86::RFP32RegisterClass);
10242      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10243        return std::make_pair(0U, X86::RFP64RegisterClass);
10244      return std::make_pair(0U, X86::RFP80RegisterClass);
10245    case 'y':   // MMX_REGS if MMX allowed.
10246      if (!Subtarget->hasMMX()) break;
10247      return std::make_pair(0U, X86::VR64RegisterClass);
10248    case 'Y':   // SSE_REGS if SSE2 allowed
10249      if (!Subtarget->hasSSE2()) break;
10250      // FALL THROUGH.
10251    case 'x':   // SSE_REGS if SSE1 allowed
10252      if (!Subtarget->hasSSE1()) break;
10253
10254      switch (VT.getSimpleVT().SimpleTy) {
10255      default: break;
10256      // Scalar SSE types.
10257      case MVT::f32:
10258      case MVT::i32:
10259        return std::make_pair(0U, X86::FR32RegisterClass);
10260      case MVT::f64:
10261      case MVT::i64:
10262        return std::make_pair(0U, X86::FR64RegisterClass);
10263      // Vector types.
10264      case MVT::v16i8:
10265      case MVT::v8i16:
10266      case MVT::v4i32:
10267      case MVT::v2i64:
10268      case MVT::v4f32:
10269      case MVT::v2f64:
10270        return std::make_pair(0U, X86::VR128RegisterClass);
10271      }
10272      break;
10273    }
10274  }
10275
10276  // Use the default implementation in TargetLowering to convert the register
10277  // constraint into a member of a register class.
10278  std::pair<unsigned, const TargetRegisterClass*> Res;
10279  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10280
10281  // Not found as a standard register?
10282  if (Res.second == 0) {
10283    // Map st(0) -> st(7) -> ST0
10284    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10285        tolower(Constraint[1]) == 's' &&
10286        tolower(Constraint[2]) == 't' &&
10287        Constraint[3] == '(' &&
10288        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10289        Constraint[5] == ')' &&
10290        Constraint[6] == '}') {
10291
10292      Res.first = X86::ST0+Constraint[4]-'0';
10293      Res.second = X86::RFP80RegisterClass;
10294      return Res;
10295    }
10296
10297    // GCC allows "st(0)" to be called just plain "st".
10298    if (StringRef("{st}").equals_lower(Constraint)) {
10299      Res.first = X86::ST0;
10300      Res.second = X86::RFP80RegisterClass;
10301      return Res;
10302    }
10303
10304    // flags -> EFLAGS
10305    if (StringRef("{flags}").equals_lower(Constraint)) {
10306      Res.first = X86::EFLAGS;
10307      Res.second = X86::CCRRegisterClass;
10308      return Res;
10309    }
10310
10311    // 'A' means EAX + EDX.
10312    if (Constraint == "A") {
10313      Res.first = X86::EAX;
10314      Res.second = X86::GR32_ADRegisterClass;
10315      return Res;
10316    }
10317    return Res;
10318  }
10319
10320  // Otherwise, check to see if this is a register class of the wrong value
10321  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10322  // turn into {ax},{dx}.
10323  if (Res.second->hasType(VT))
10324    return Res;   // Correct type already, nothing to do.
10325
10326  // All of the single-register GCC register classes map their values onto
10327  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10328  // really want an 8-bit or 32-bit register, map to the appropriate register
10329  // class and return the appropriate register.
10330  if (Res.second == X86::GR16RegisterClass) {
10331    if (VT == MVT::i8) {
10332      unsigned DestReg = 0;
10333      switch (Res.first) {
10334      default: break;
10335      case X86::AX: DestReg = X86::AL; break;
10336      case X86::DX: DestReg = X86::DL; break;
10337      case X86::CX: DestReg = X86::CL; break;
10338      case X86::BX: DestReg = X86::BL; break;
10339      }
10340      if (DestReg) {
10341        Res.first = DestReg;
10342        Res.second = X86::GR8RegisterClass;
10343      }
10344    } else if (VT == MVT::i32) {
10345      unsigned DestReg = 0;
10346      switch (Res.first) {
10347      default: break;
10348      case X86::AX: DestReg = X86::EAX; break;
10349      case X86::DX: DestReg = X86::EDX; break;
10350      case X86::CX: DestReg = X86::ECX; break;
10351      case X86::BX: DestReg = X86::EBX; break;
10352      case X86::SI: DestReg = X86::ESI; break;
10353      case X86::DI: DestReg = X86::EDI; break;
10354      case X86::BP: DestReg = X86::EBP; break;
10355      case X86::SP: DestReg = X86::ESP; break;
10356      }
10357      if (DestReg) {
10358        Res.first = DestReg;
10359        Res.second = X86::GR32RegisterClass;
10360      }
10361    } else if (VT == MVT::i64) {
10362      unsigned DestReg = 0;
10363      switch (Res.first) {
10364      default: break;
10365      case X86::AX: DestReg = X86::RAX; break;
10366      case X86::DX: DestReg = X86::RDX; break;
10367      case X86::CX: DestReg = X86::RCX; break;
10368      case X86::BX: DestReg = X86::RBX; break;
10369      case X86::SI: DestReg = X86::RSI; break;
10370      case X86::DI: DestReg = X86::RDI; break;
10371      case X86::BP: DestReg = X86::RBP; break;
10372      case X86::SP: DestReg = X86::RSP; break;
10373      }
10374      if (DestReg) {
10375        Res.first = DestReg;
10376        Res.second = X86::GR64RegisterClass;
10377      }
10378    }
10379  } else if (Res.second == X86::FR32RegisterClass ||
10380             Res.second == X86::FR64RegisterClass ||
10381             Res.second == X86::VR128RegisterClass) {
10382    // Handle references to XMM physical registers that got mapped into the
10383    // wrong class.  This can happen with constraints like {xmm0} where the
10384    // target independent register mapper will just pick the first match it can
10385    // find, ignoring the required type.
10386    if (VT == MVT::f32)
10387      Res.second = X86::FR32RegisterClass;
10388    else if (VT == MVT::f64)
10389      Res.second = X86::FR64RegisterClass;
10390    else if (X86::VR128RegisterClass->hasType(VT))
10391      Res.second = X86::VR128RegisterClass;
10392  }
10393
10394  return Res;
10395}
10396