X86ISelLowering.cpp revision f5d280a0a649a879f6571fe7c3a7cf5dc5d50cc1
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/ADT/VectorExtras.h"
26#include "llvm/Analysis/ScalarEvolutionExpressions.h"
27#include "llvm/CodeGen/CallingConvLower.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/SelectionDAG.h"
32#include "llvm/CodeGen/SSARegMap.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/ADT/StringExtras.h"
37using namespace llvm;
38
39// FIXME: temporary.
40static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden,
41                                  cl::desc("Enable fastcc on X86"));
42X86TargetLowering::X86TargetLowering(TargetMachine &TM)
43  : TargetLowering(TM) {
44  Subtarget = &TM.getSubtarget<X86Subtarget>();
45  X86ScalarSSE = Subtarget->hasSSE2();
46  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
47
48  // Set up the TargetLowering object.
49
50  // X86 is weird, it always uses i8 for shift amounts and setcc results.
51  setShiftAmountType(MVT::i8);
52  setSetCCResultType(MVT::i8);
53  setSetCCResultContents(ZeroOrOneSetCCResult);
54  setSchedulingPreference(SchedulingForRegPressure);
55  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
56  setStackPointerRegisterToSaveRestore(X86StackPtr);
57
58  if (Subtarget->isTargetDarwin()) {
59    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
60    setUseUnderscoreSetJmp(false);
61    setUseUnderscoreLongJmp(false);
62  } else if (Subtarget->isTargetMingw()) {
63    // MS runtime is weird: it exports _setjmp, but longjmp!
64    setUseUnderscoreSetJmp(true);
65    setUseUnderscoreLongJmp(false);
66  } else {
67    setUseUnderscoreSetJmp(true);
68    setUseUnderscoreLongJmp(true);
69  }
70
71  // Add legal addressing mode scale values.
72  addLegalAddressScale(8);
73  addLegalAddressScale(4);
74  addLegalAddressScale(2);
75  // Enter the ones which require both scale + index last. These are more
76  // expensive.
77  addLegalAddressScale(9);
78  addLegalAddressScale(5);
79  addLegalAddressScale(3);
80
81  // Set up the register classes.
82  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
83  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
84  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
85  if (Subtarget->is64Bit())
86    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
87
88  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
89
90  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
91  // operation.
92  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
93  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
94  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
95
96  if (Subtarget->is64Bit()) {
97    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
98    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
99  } else {
100    if (X86ScalarSSE)
101      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
102      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
103    else
104      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
105  }
106
107  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
108  // this operation.
109  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
110  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
111  // SSE has no i16 to fp conversion, only i32
112  if (X86ScalarSSE)
113    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
114  else {
115    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
116    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
117  }
118
119  if (!Subtarget->is64Bit()) {
120    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
121    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
122    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
123  }
124
125  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
126  // this operation.
127  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
128  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
129
130  if (X86ScalarSSE) {
131    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
132  } else {
133    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
134    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
135  }
136
137  // Handle FP_TO_UINT by promoting the destination to a larger signed
138  // conversion.
139  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
140  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
141  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
142
143  if (Subtarget->is64Bit()) {
144    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
145    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
146  } else {
147    if (X86ScalarSSE && !Subtarget->hasSSE3())
148      // Expand FP_TO_UINT into a select.
149      // FIXME: We would like to use a Custom expander here eventually to do
150      // the optimal thing for SSE vs. the default expansion in the legalizer.
151      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
152    else
153      // With SSE3 we can use fisttpll to convert to a signed i64.
154      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
155  }
156
157  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
158  if (!X86ScalarSSE) {
159    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
160    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
161  }
162
163  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
164  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
165  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
166  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
167  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
168  if (Subtarget->is64Bit())
169    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
170  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
171  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
172  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
173  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
174  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
175
176  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
177  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
178  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
179  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
180  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
181  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
182  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
183  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
184  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
185  if (Subtarget->is64Bit()) {
186    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
187    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
188    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
189  }
190
191  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
192  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
193
194  // These should be promoted to a larger select which is supported.
195  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
196  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
197  // X86 wants to expand cmov itself.
198  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
199  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
200  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
201  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
202  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
203  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
204  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
205  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
206  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
207  if (Subtarget->is64Bit()) {
208    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
209    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
210  }
211  // X86 ret instruction may pop stack.
212  setOperationAction(ISD::RET             , MVT::Other, Custom);
213  // Darwin ABI issue.
214  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
215  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
216  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
217  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
218  if (Subtarget->is64Bit()) {
219    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
220    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
221    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
222    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
223  }
224  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
225  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
226  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
227  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
228  // X86 wants to expand memset / memcpy itself.
229  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
230  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
231
232  // We don't have line number support yet.
233  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
234  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
235  // FIXME - use subtarget debug flags
236  if (!Subtarget->isTargetDarwin() &&
237      !Subtarget->isTargetELF() &&
238      !Subtarget->isTargetCygMing())
239    setOperationAction(ISD::LABEL, MVT::Other, Expand);
240
241  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
242  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
243
244  // Use the default implementation.
245  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
246  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
247  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
248  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
249  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
250  if (Subtarget->is64Bit())
251    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
252  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
253
254  if (X86ScalarSSE) {
255    // Set up the FP register classes.
256    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
257    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
258
259    // Use ANDPD to simulate FABS.
260    setOperationAction(ISD::FABS , MVT::f64, Custom);
261    setOperationAction(ISD::FABS , MVT::f32, Custom);
262
263    // Use XORP to simulate FNEG.
264    setOperationAction(ISD::FNEG , MVT::f64, Custom);
265    setOperationAction(ISD::FNEG , MVT::f32, Custom);
266
267    // Use ANDPD and ORPD to simulate FCOPYSIGN.
268    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
269    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
270
271    // We don't support sin/cos/fmod
272    setOperationAction(ISD::FSIN , MVT::f64, Expand);
273    setOperationAction(ISD::FCOS , MVT::f64, Expand);
274    setOperationAction(ISD::FREM , MVT::f64, Expand);
275    setOperationAction(ISD::FSIN , MVT::f32, Expand);
276    setOperationAction(ISD::FCOS , MVT::f32, Expand);
277    setOperationAction(ISD::FREM , MVT::f32, Expand);
278
279    // Expand FP immediates into loads from the stack, except for the special
280    // cases we handle.
281    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
282    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
283    addLegalFPImmediate(+0.0); // xorps / xorpd
284  } else {
285    // Set up the FP register classes.
286    addRegisterClass(MVT::f64, X86::RFPRegisterClass);
287
288    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
289    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
290    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
291
292    if (!UnsafeFPMath) {
293      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
294      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
295    }
296
297    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
298    addLegalFPImmediate(+0.0); // FLD0
299    addLegalFPImmediate(+1.0); // FLD1
300    addLegalFPImmediate(-0.0); // FLD0/FCHS
301    addLegalFPImmediate(-1.0); // FLD1/FCHS
302  }
303
304  // First set operation action for all vector types to expand. Then we
305  // will selectively turn on ones that can be effectively codegen'd.
306  for (unsigned VT = (unsigned)MVT::Vector + 1;
307       VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
308    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
309    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
310    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
311    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
312    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
313    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
314    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
315    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
316    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
317    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
318    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
319    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
320    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
321    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
322    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
323  }
324
325  if (Subtarget->hasMMX()) {
326    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
327    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
328    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
329
330    // FIXME: add MMX packed arithmetics
331    setOperationAction(ISD::BUILD_VECTOR,     MVT::v8i8,  Expand);
332    setOperationAction(ISD::BUILD_VECTOR,     MVT::v4i16, Expand);
333    setOperationAction(ISD::BUILD_VECTOR,     MVT::v2i32, Expand);
334  }
335
336  if (Subtarget->hasSSE1()) {
337    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
338
339    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
340    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
341    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
342    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
343    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
344    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
345    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
346    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
347    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
348  }
349
350  if (Subtarget->hasSSE2()) {
351    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
352    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
353    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
354    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
355    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
356
357    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
358    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
359    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
360    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
361    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
362    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
363    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
364    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
365    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
366    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
367    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
368
369    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
370    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
371    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
372    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
373    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
374    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
375
376    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
377    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
378      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
379      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
380      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
381    }
382    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
383    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
384    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
385    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
386    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
387    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
388
389    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
390    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
391      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
392      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
393      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
394      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
395      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
396      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
397      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
398      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
399      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
400      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
401    }
402
403    // Custom lower v2i64 and v2f64 selects.
404    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
405    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
406    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
407    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
408  }
409
410  // We want to custom lower some of our intrinsics.
411  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
412
413  // We have target-specific dag combine patterns for the following nodes:
414  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
415  setTargetDAGCombine(ISD::SELECT);
416
417  computeRegisterProperties();
418
419  // FIXME: These should be based on subtarget info. Plus, the values should
420  // be smaller when we are in optimizing for size mode.
421  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
422  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
423  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
424  allowUnalignedMemoryAccesses = true; // x86 supports it!
425}
426
427
428//===----------------------------------------------------------------------===//
429//               Return Value Calling Convention Implementation
430//===----------------------------------------------------------------------===//
431
432#include "X86GenCallingConv.inc"
433
434/// LowerRET - Lower an ISD::RET node.
435SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
436  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
437
438  SmallVector<CCValAssign, 16> RVLocs;
439  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
440  CCState CCInfo(CC, getTargetMachine(), RVLocs);
441
442  // Determine which register each value should be copied into.
443  for (unsigned i = 0; i != Op.getNumOperands() / 2; ++i) {
444    MVT::ValueType VT = Op.getOperand(i*2+1).getValueType();
445    if (RetCC_X86(i, VT, VT, CCValAssign::Full,
446                  cast<ConstantSDNode>(Op.getOperand(i*2+2))->getValue(),
447                  CCInfo))
448      assert(0 && "Unhandled result type!");
449  }
450
451  // If this is the first return lowered for this function, add the regs to the
452  // liveout set for the function.
453  if (DAG.getMachineFunction().liveout_empty()) {
454    for (unsigned i = 0; i != RVLocs.size(); ++i)
455      if (RVLocs[i].isRegLoc())
456        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
457  }
458
459  SDOperand Chain = Op.getOperand(0);
460  SDOperand Flag;
461
462  // Copy the result values into the output registers.
463  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
464      RVLocs[0].getLocReg() != X86::ST0) {
465    for (unsigned i = 0; i != RVLocs.size(); ++i) {
466      CCValAssign &VA = RVLocs[i];
467      assert(VA.isRegLoc() && "Can only return in registers!");
468      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
469                               Flag);
470      Flag = Chain.getValue(1);
471    }
472  } else {
473    // We need to handle a destination of ST0 specially, because it isn't really
474    // a register.
475    SDOperand Value = Op.getOperand(1);
476
477    // If this is an FP return with ScalarSSE, we need to move the value from
478    // an XMM register onto the fp-stack.
479    if (X86ScalarSSE) {
480      SDOperand MemLoc;
481
482      // If this is a load into a scalarsse value, don't store the loaded value
483      // back to the stack, only to reload it: just replace the scalar-sse load.
484      if (ISD::isNON_EXTLoad(Value.Val) &&
485          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
486        Chain  = Value.getOperand(0);
487        MemLoc = Value.getOperand(1);
488      } else {
489        // Spill the value to memory and reload it into top of stack.
490        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
491        MachineFunction &MF = DAG.getMachineFunction();
492        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
493        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
494        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
495      }
496      SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
497      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
498      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
499      Chain = Value.getValue(1);
500    }
501
502    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
503    SDOperand Ops[] = { Chain, Value };
504    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
505    Flag = Chain.getValue(1);
506  }
507
508  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
509  if (Flag.Val)
510    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
511  else
512    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
513}
514
515
516/// LowerCallResult - Lower the result values of an ISD::CALL into the
517/// appropriate copies out of appropriate physical registers.  This assumes that
518/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
519/// being lowered.  The returns a SDNode with the same number of values as the
520/// ISD::CALL.
521SDNode *X86TargetLowering::
522LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
523                unsigned CallingConv, SelectionDAG &DAG) {
524  SmallVector<SDOperand, 8> ResultVals;
525
526  SmallVector<CCValAssign, 16> RVLocs;
527  CCState CCInfo(CallingConv, getTargetMachine(), RVLocs);
528
529  for (unsigned i = 0, e = TheCall->getNumValues() - 1; i != e; ++i) {
530    MVT::ValueType VT = TheCall->getValueType(i);
531    if (RetCC_X86(i, VT, VT, CCValAssign::Full, 0, CCInfo))
532      assert(0 && "Unhandled result type!");
533  }
534
535  // Copy all of the result registers out of their specified physreg.
536  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
537    for (unsigned i = 0; i != RVLocs.size(); ++i) {
538      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
539                                 RVLocs[i].getValVT(), InFlag).getValue(1);
540      InFlag = Chain.getValue(2);
541      ResultVals.push_back(Chain.getValue(0));
542    }
543  } else {
544    // Copies from the FP stack are special, as ST0 isn't a valid register
545    // before the fp stackifier runs.
546
547    // Copy ST0 into an RFP register with FP_GET_RESULT.
548    SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
549    SDOperand GROps[] = { Chain, InFlag };
550    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
551    Chain  = RetVal.getValue(1);
552    InFlag = RetVal.getValue(2);
553
554    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
555    // an XMM register.
556    if (X86ScalarSSE) {
557      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
558      // shouldn't be necessary except that RFP cannot be live across
559      // multiple blocks. When stackifier is fixed, they can be uncoupled.
560      MachineFunction &MF = DAG.getMachineFunction();
561      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
562      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
563      SDOperand Ops[] = {
564        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
565      };
566      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
567      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
568      Chain = RetVal.getValue(1);
569    }
570
571    if (RVLocs[0].getValVT() == MVT::f32 && !X86ScalarSSE)
572      // FIXME: we would really like to remember that this FP_ROUND
573      // operation is okay to eliminate if we allow excess FP precision.
574      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
575    ResultVals.push_back(RetVal);
576  }
577
578  // Merge everything together with a MERGE_VALUES node.
579  ResultVals.push_back(Chain);
580  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
581                     &ResultVals[0], ResultVals.size()).Val;
582}
583
584
585//===----------------------------------------------------------------------===//
586//                C & StdCall Calling Convention implementation
587//===----------------------------------------------------------------------===//
588//  StdCall calling convention seems to be standard for many Windows' API
589//  routines and around. It differs from C calling convention just a little:
590//  callee should clean up the stack, not caller. Symbols should be also
591//  decorated in some fancy way :) It doesn't support any vector arguments.
592
593/// AddLiveIn - This helper function adds the specified physical register to the
594/// MachineFunction as a live in value.  It also creates a corresponding virtual
595/// register for it.
596static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
597                          const TargetRegisterClass *RC) {
598  assert(RC->contains(PReg) && "Not the correct regclass!");
599  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
600  MF.addLiveIn(PReg, VReg);
601  return VReg;
602}
603
604SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
605                                               bool isStdCall) {
606  unsigned NumArgs = Op.Val->getNumValues() - 1;
607  MachineFunction &MF = DAG.getMachineFunction();
608  MachineFrameInfo *MFI = MF.getFrameInfo();
609  SDOperand Root = Op.getOperand(0);
610  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
611
612  SmallVector<CCValAssign, 16> ArgLocs;
613  CCState CCInfo(MF.getFunction()->getCallingConv(), getTargetMachine(),
614                 ArgLocs);
615
616  for (unsigned i = 0; i != NumArgs; ++i) {
617    MVT::ValueType ArgVT = Op.getValue(i).getValueType();
618    unsigned ArgFlags = cast<ConstantSDNode>(Op.getOperand(3+i))->getValue();
619    if (CC_X86_32_C(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo))
620      assert(0 && "Unhandled argument type!");
621  }
622
623  SmallVector<SDOperand, 8> ArgValues;
624  unsigned LastVal = ~0U;
625  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
626    CCValAssign &VA = ArgLocs[i];
627    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
628    // places.
629    assert(VA.getValNo() != LastVal &&
630           "Don't support value assigned to multiple locs yet");
631    LastVal = VA.getValNo();
632
633    if (VA.isRegLoc()) {
634      MVT::ValueType RegVT = VA.getLocVT();
635      TargetRegisterClass *RC;
636      if (RegVT == MVT::i32)
637        RC = X86::GR32RegisterClass;
638      else {
639        assert(MVT::isVector(RegVT));
640        RC = X86::VR128RegisterClass;
641      }
642
643      SDOperand ArgValue = DAG.getCopyFromReg(Root, VA.getLocReg(), RegVT);
644      AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
645
646      // If this is an 8 or 16-bit value, it is really passed promoted to 32
647      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
648      // right size.
649      if (VA.getLocInfo() == CCValAssign::SExt)
650        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
651                               DAG.getValueType(VA.getValVT()));
652      else if (VA.getLocInfo() == CCValAssign::ZExt)
653        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
654                               DAG.getValueType(VA.getValVT()));
655
656      if (VA.getLocInfo() != CCValAssign::Full)
657        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
658
659      ArgValues.push_back(ArgValue);
660    } else {
661      assert(VA.isMemLoc());
662
663      // Create the nodes corresponding to a load from this parameter slot.
664      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
665                                      VA.getLocMemOffset());
666      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
667      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
668    }
669  }
670
671  unsigned StackSize = CCInfo.getNextStackOffset();
672
673  ArgValues.push_back(Root);
674
675  // If the function takes variable number of arguments, make a frame index for
676  // the start of the first vararg value... for expansion of llvm.va_start.
677  if (isVarArg)
678    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
679
680  if (isStdCall && !isVarArg) {
681    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
682    BytesCallerReserves = 0;
683  } else {
684    BytesToPopOnReturn  = 0; // Callee pops hidden struct pointer.
685
686    // If this is an sret function, the return should pop the hidden pointer.
687    if (NumArgs && (cast<ConstantSDNode>(Op.getOperand(3))->getValue() & 4))
688      BytesToPopOnReturn = 4;
689
690    BytesCallerReserves = StackSize;
691  }
692
693  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
694  ReturnAddrIndex = 0;            // No return address slot generated yet.
695
696  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
697
698  // Return the new list of results.
699  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
700                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
701}
702
703SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
704                                            unsigned CC) {
705  SDOperand Chain     = Op.getOperand(0);
706  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
707  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
708  SDOperand Callee    = Op.getOperand(4);
709  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
710
711  SmallVector<CCValAssign, 16> ArgLocs;
712  CCState CCInfo(CC, getTargetMachine(), ArgLocs);
713
714  for (unsigned i = 0; i != NumOps; ++i) {
715    MVT::ValueType ArgVT = Op.getOperand(5+2*i).getValueType();
716    unsigned ArgFlags =cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
717    if (CC_X86_32_C(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo))
718      assert(0 && "Unhandled argument type!");
719  }
720
721  // Get a count of how many bytes are to be pushed on the stack.
722  unsigned NumBytes = CCInfo.getNextStackOffset();
723
724  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
725
726  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
727  SmallVector<SDOperand, 8> MemOpChains;
728
729  SDOperand StackPtr;
730
731  // Walk the register/memloc assignments, inserting copies/loads.
732  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
733    CCValAssign &VA = ArgLocs[i];
734    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
735
736    // Promote the value if needed.
737    switch (VA.getLocInfo()) {
738    default: assert(0 && "Unknown loc info!");
739    case CCValAssign::Full: break;
740    case CCValAssign::SExt:
741      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
742      break;
743    case CCValAssign::ZExt:
744      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
745      break;
746    case CCValAssign::AExt:
747      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
748      break;
749    }
750
751    if (VA.isRegLoc()) {
752      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
753    } else {
754      assert(VA.isMemLoc());
755      if (StackPtr.Val == 0)
756        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
757      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
758      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
759      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
760    }
761  }
762
763  // If the first argument is an sret pointer, remember it.
764  bool isSRet = NumOps &&(cast<ConstantSDNode>(Op.getOperand(6))->getValue()&4);
765
766  if (!MemOpChains.empty())
767    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
768                        &MemOpChains[0], MemOpChains.size());
769
770  // Build a sequence of copy-to-reg nodes chained together with token chain
771  // and flag operands which copy the outgoing args into registers.
772  SDOperand InFlag;
773  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
774    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
775                             InFlag);
776    InFlag = Chain.getValue(1);
777  }
778
779  // ELF / PIC requires GOT in the EBX register before function calls via PLT
780  // GOT pointer.
781  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
782      Subtarget->isPICStyleGOT()) {
783    Chain = DAG.getCopyToReg(Chain, X86::EBX,
784                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
785                             InFlag);
786    InFlag = Chain.getValue(1);
787  }
788
789  // If the callee is a GlobalAddress node (quite common, every direct call is)
790  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
791  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
792    // We should use extra load for direct calls to dllimported functions in
793    // non-JIT mode.
794    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
795                                        getTargetMachine(), true))
796      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
797  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
798    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
799
800  // Returns a chain & a flag for retval copy to use.
801  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
802  SmallVector<SDOperand, 8> Ops;
803  Ops.push_back(Chain);
804  Ops.push_back(Callee);
805
806  // Add argument registers to the end of the list so that they are known live
807  // into the call.
808  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
809    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
810                                  RegsToPass[i].second.getValueType()));
811
812  // Add an implicit use GOT pointer in EBX.
813  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
814      Subtarget->isPICStyleGOT())
815    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
816
817  if (InFlag.Val)
818    Ops.push_back(InFlag);
819
820  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
821                      NodeTys, &Ops[0], Ops.size());
822  InFlag = Chain.getValue(1);
823
824  // Create the CALLSEQ_END node.
825  unsigned NumBytesForCalleeToPush = 0;
826
827  if (CC == CallingConv::X86_StdCall) {
828    if (isVarArg)
829      NumBytesForCalleeToPush = isSRet ? 4 : 0;
830    else
831      NumBytesForCalleeToPush = NumBytes;
832  } else {
833    // If this is is a call to a struct-return function, the callee
834    // pops the hidden struct pointer, so we have to push it back.
835    // This is common for Darwin/X86, Linux & Mingw32 targets.
836    NumBytesForCalleeToPush = isSRet ? 4 : 0;
837  }
838
839  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
840  Ops.clear();
841  Ops.push_back(Chain);
842  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
843  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
844  Ops.push_back(InFlag);
845  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
846  InFlag = Chain.getValue(1);
847
848  // Handle result values, copying them out of physregs into vregs that we
849  // return.
850  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
851}
852
853
854//===----------------------------------------------------------------------===//
855//                   FastCall Calling Convention implementation
856//===----------------------------------------------------------------------===//
857//
858// The X86 'fastcall' calling convention passes up to two integer arguments in
859// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
860// and requires that the callee pop its arguments off the stack (allowing proper
861// tail calls), and has the same return value conventions as C calling convs.
862//
863// This calling convention always arranges for the callee pop value to be 8n+4
864// bytes, which is needed for tail recursion elimination and stack alignment
865// reasons.
866SDOperand
867X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
868  unsigned NumArgs = Op.Val->getNumValues()-1;
869  MachineFunction &MF = DAG.getMachineFunction();
870  MachineFrameInfo *MFI = MF.getFrameInfo();
871  SDOperand Root = Op.getOperand(0);
872
873  SmallVector<CCValAssign, 16> ArgLocs;
874  CCState CCInfo(MF.getFunction()->getCallingConv(), getTargetMachine(),
875                 ArgLocs);
876
877  for (unsigned i = 0; i != NumArgs; ++i) {
878    MVT::ValueType ArgVT = Op.getValue(i).getValueType();
879    unsigned ArgFlags = cast<ConstantSDNode>(Op.getOperand(3+i))->getValue();
880    if (CC_X86_32_FastCall(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,CCInfo))
881      assert(0 && "Unhandled argument type!");
882  }
883
884  SmallVector<SDOperand, 8> ArgValues;
885  unsigned LastVal = ~0U;
886  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
887    CCValAssign &VA = ArgLocs[i];
888    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
889    // places.
890    assert(VA.getValNo() != LastVal &&
891           "Don't support value assigned to multiple locs yet");
892    LastVal = VA.getValNo();
893
894    if (VA.isRegLoc()) {
895      MVT::ValueType RegVT = VA.getLocVT();
896      TargetRegisterClass *RC;
897      if (RegVT == MVT::i32)
898        RC = X86::GR32RegisterClass;
899      else {
900        assert(MVT::isVector(RegVT));
901        RC = X86::VR128RegisterClass;
902      }
903
904      SDOperand ArgValue = DAG.getCopyFromReg(Root, VA.getLocReg(), RegVT);
905      AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
906
907      // If this is an 8 or 16-bit value, it is really passed promoted to 32
908      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
909      // right size.
910      if (VA.getLocInfo() == CCValAssign::SExt)
911        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
912                               DAG.getValueType(VA.getValVT()));
913      else if (VA.getLocInfo() == CCValAssign::ZExt)
914        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
915                               DAG.getValueType(VA.getValVT()));
916
917      if (VA.getLocInfo() != CCValAssign::Full)
918        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
919
920      ArgValues.push_back(ArgValue);
921    } else {
922      assert(VA.isMemLoc());
923
924      // Create the nodes corresponding to a load from this parameter slot.
925      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
926                                      VA.getLocMemOffset());
927      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
928      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
929    }
930  }
931
932  ArgValues.push_back(Root);
933
934  unsigned StackSize = CCInfo.getNextStackOffset();
935
936  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
937  // arguments and the arguments after the retaddr has been pushed are aligned.
938  if ((StackSize & 7) == 0)
939    StackSize += 4;
940
941  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
942  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
943  ReturnAddrIndex = 0;             // No return address slot generated yet.
944  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
945  BytesCallerReserves = 0;
946
947  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
948
949  // Return the new list of results.
950  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
951                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
952}
953
954SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
955                                               unsigned CC) {
956  SDOperand Chain     = Op.getOperand(0);
957  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
958  SDOperand Callee    = Op.getOperand(4);
959  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
960
961
962  SmallVector<CCValAssign, 16> ArgLocs;
963  CCState CCInfo(CC, getTargetMachine(), ArgLocs);
964
965  for (unsigned i = 0; i != NumOps; ++i) {
966    MVT::ValueType ArgVT = Op.getOperand(5+2*i).getValueType();
967    unsigned ArgFlags =cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
968    if (CC_X86_32_C(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo))
969      assert(0 && "Unhandled argument type!");
970  }
971
972  // Get a count of how many bytes are to be pushed on the stack.
973  unsigned NumBytes = CCInfo.getNextStackOffset();
974
975  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
976  // arguments and the arguments after the retaddr has been pushed are aligned.
977  if ((NumBytes & 7) == 0)
978    NumBytes += 4;
979
980  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
981
982
983  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
984  SmallVector<SDOperand, 8> MemOpChains;
985
986  SDOperand StackPtr;
987
988  // Walk the register/memloc assignments, inserting copies/loads.
989  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
990    CCValAssign &VA = ArgLocs[i];
991    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
992
993    // Promote the value if needed.
994    switch (VA.getLocInfo()) {
995      default: assert(0 && "Unknown loc info!");
996      case CCValAssign::Full: break;
997      case CCValAssign::SExt:
998        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
999        break;
1000      case CCValAssign::ZExt:
1001        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1002        break;
1003      case CCValAssign::AExt:
1004        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1005        break;
1006    }
1007
1008    if (VA.isRegLoc()) {
1009      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1010    } else {
1011      assert(VA.isMemLoc());
1012      if (StackPtr.Val == 0)
1013        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1014      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1015      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1016      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1017    }
1018  }
1019
1020  if (!MemOpChains.empty())
1021    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1022                        &MemOpChains[0], MemOpChains.size());
1023
1024  // Build a sequence of copy-to-reg nodes chained together with token chain
1025  // and flag operands which copy the outgoing args into registers.
1026  SDOperand InFlag;
1027  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1028    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1029                             InFlag);
1030    InFlag = Chain.getValue(1);
1031  }
1032
1033  // If the callee is a GlobalAddress node (quite common, every direct call is)
1034  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1035  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1036    // We should use extra load for direct calls to dllimported functions in
1037    // non-JIT mode.
1038    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1039                                        getTargetMachine(), true))
1040      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1041  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1042    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1043
1044  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1045  // GOT pointer.
1046  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1047      Subtarget->isPICStyleGOT()) {
1048    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1049                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1050                             InFlag);
1051    InFlag = Chain.getValue(1);
1052  }
1053
1054  // Returns a chain & a flag for retval copy to use.
1055  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1056  SmallVector<SDOperand, 8> Ops;
1057  Ops.push_back(Chain);
1058  Ops.push_back(Callee);
1059
1060  // Add argument registers to the end of the list so that they are known live
1061  // into the call.
1062  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1063    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1064                                  RegsToPass[i].second.getValueType()));
1065
1066  // Add an implicit use GOT pointer in EBX.
1067  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1068      Subtarget->isPICStyleGOT())
1069    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1070
1071  if (InFlag.Val)
1072    Ops.push_back(InFlag);
1073
1074  // FIXME: Do not generate X86ISD::TAILCALL for now.
1075  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1076                      NodeTys, &Ops[0], Ops.size());
1077  InFlag = Chain.getValue(1);
1078
1079  // Returns a flag for retval copy to use.
1080  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1081  Ops.clear();
1082  Ops.push_back(Chain);
1083  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1084  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1085  Ops.push_back(InFlag);
1086  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1087  InFlag = Chain.getValue(1);
1088
1089  // Handle result values, copying them out of physregs into vregs that we
1090  // return.
1091  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1092}
1093
1094
1095//===----------------------------------------------------------------------===//
1096//                 X86-64 C Calling Convention implementation
1097//===----------------------------------------------------------------------===//
1098
1099SDOperand
1100X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1101  unsigned NumArgs = Op.Val->getNumValues() - 1;
1102  MachineFunction &MF = DAG.getMachineFunction();
1103  MachineFrameInfo *MFI = MF.getFrameInfo();
1104  SDOperand Root = Op.getOperand(0);
1105  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1106
1107  static const unsigned GPR64ArgRegs[] = {
1108    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1109  };
1110  static const unsigned XMMArgRegs[] = {
1111    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1112    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1113  };
1114
1115  SmallVector<CCValAssign, 16> ArgLocs;
1116  CCState CCInfo(MF.getFunction()->getCallingConv(), getTargetMachine(),
1117                 ArgLocs);
1118
1119  for (unsigned i = 0; i != NumArgs; ++i) {
1120    MVT::ValueType ArgVT = Op.getValue(i).getValueType();
1121    unsigned ArgFlags = cast<ConstantSDNode>(Op.getOperand(3+i))->getValue();
1122    if (CC_X86_64_C(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo))
1123      assert(0 && "Unhandled argument type!");
1124  }
1125
1126  SmallVector<SDOperand, 8> ArgValues;
1127  unsigned LastVal = ~0U;
1128  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1129    CCValAssign &VA = ArgLocs[i];
1130    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1131    // places.
1132    assert(VA.getValNo() != LastVal &&
1133           "Don't support value assigned to multiple locs yet");
1134    LastVal = VA.getValNo();
1135
1136    if (VA.isRegLoc()) {
1137      MVT::ValueType RegVT = VA.getLocVT();
1138      TargetRegisterClass *RC;
1139      if (RegVT == MVT::i32)
1140        RC = X86::GR32RegisterClass;
1141      else if (RegVT == MVT::i64)
1142        RC = X86::GR64RegisterClass;
1143      else if (RegVT == MVT::f32)
1144        RC = X86::FR32RegisterClass;
1145      else if (RegVT == MVT::f64)
1146        RC = X86::FR64RegisterClass;
1147      else {
1148        assert(MVT::isVector(RegVT));
1149        RC = X86::VR128RegisterClass;
1150      }
1151
1152      SDOperand ArgValue = DAG.getCopyFromReg(Root, VA.getLocReg(), RegVT);
1153      AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1154
1155      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1156      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1157      // right size.
1158      if (VA.getLocInfo() == CCValAssign::SExt)
1159        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1160                               DAG.getValueType(VA.getValVT()));
1161      else if (VA.getLocInfo() == CCValAssign::ZExt)
1162        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1163                               DAG.getValueType(VA.getValVT()));
1164
1165      if (VA.getLocInfo() != CCValAssign::Full)
1166        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1167
1168      ArgValues.push_back(ArgValue);
1169    } else {
1170      assert(VA.isMemLoc());
1171
1172      // Create the nodes corresponding to a load from this parameter slot.
1173      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1174                                      VA.getLocMemOffset());
1175      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1176      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
1177    }
1178  }
1179
1180  unsigned StackSize = CCInfo.getNextStackOffset();
1181
1182  // If the function takes variable number of arguments, make a frame index for
1183  // the start of the first vararg value... for expansion of llvm.va_start.
1184  if (isVarArg) {
1185    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1186    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1187
1188    // For X86-64, if there are vararg parameters that are passed via
1189    // registers, then we must store them to their spots on the stack so they
1190    // may be loaded by deferencing the result of va_next.
1191    VarArgsGPOffset = NumIntRegs * 8;
1192    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1193    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1194    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1195
1196    // Store the integer parameter registers.
1197    SmallVector<SDOperand, 8> MemOps;
1198    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1199    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1200                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1201    for (; NumIntRegs != 6; ++NumIntRegs) {
1202      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1203                                X86::GR64RegisterClass);
1204      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1205      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1206      MemOps.push_back(Store);
1207      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1208                        DAG.getConstant(8, getPointerTy()));
1209    }
1210
1211    // Now store the XMM (fp + vector) parameter registers.
1212    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1213                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1214    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1215      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1216                                X86::VR128RegisterClass);
1217      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1218      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1219      MemOps.push_back(Store);
1220      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1221                        DAG.getConstant(16, getPointerTy()));
1222    }
1223    if (!MemOps.empty())
1224        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1225                           &MemOps[0], MemOps.size());
1226  }
1227
1228  ArgValues.push_back(Root);
1229
1230  ReturnAddrIndex = 0;     // No return address slot generated yet.
1231  BytesToPopOnReturn = 0;  // Callee pops nothing.
1232  BytesCallerReserves = StackSize;
1233
1234  // Return the new list of results.
1235  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1236                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1237}
1238
1239SDOperand
1240X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1241                                        unsigned CC) {
1242  SDOperand Chain     = Op.getOperand(0);
1243  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1244  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1245  SDOperand Callee    = Op.getOperand(4);
1246  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1247
1248  SmallVector<CCValAssign, 16> ArgLocs;
1249  CCState CCInfo(CC, getTargetMachine(), ArgLocs);
1250
1251  for (unsigned i = 0; i != NumOps; ++i) {
1252    MVT::ValueType ArgVT = Op.getOperand(5+2*i).getValueType();
1253    unsigned ArgFlags =cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1254    if (CC_X86_64_C(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo))
1255      assert(0 && "Unhandled argument type!");
1256  }
1257
1258  // Get a count of how many bytes are to be pushed on the stack.
1259  unsigned NumBytes = CCInfo.getNextStackOffset();
1260  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1261
1262  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1263  SmallVector<SDOperand, 8> MemOpChains;
1264
1265  SDOperand StackPtr;
1266
1267  // Walk the register/memloc assignments, inserting copies/loads.
1268  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1269    CCValAssign &VA = ArgLocs[i];
1270    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1271
1272    // Promote the value if needed.
1273    switch (VA.getLocInfo()) {
1274    default: assert(0 && "Unknown loc info!");
1275    case CCValAssign::Full: break;
1276    case CCValAssign::SExt:
1277      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1278      break;
1279    case CCValAssign::ZExt:
1280      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1281      break;
1282    case CCValAssign::AExt:
1283      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1284      break;
1285    }
1286
1287    if (VA.isRegLoc()) {
1288      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1289    } else {
1290      assert(VA.isMemLoc());
1291      if (StackPtr.Val == 0)
1292        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1293      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1294      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1295      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1296    }
1297  }
1298
1299  if (!MemOpChains.empty())
1300    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1301                        &MemOpChains[0], MemOpChains.size());
1302
1303  // Build a sequence of copy-to-reg nodes chained together with token chain
1304  // and flag operands which copy the outgoing args into registers.
1305  SDOperand InFlag;
1306  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1307    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1308                             InFlag);
1309    InFlag = Chain.getValue(1);
1310  }
1311
1312  if (isVarArg) {
1313    // From AMD64 ABI document:
1314    // For calls that may call functions that use varargs or stdargs
1315    // (prototype-less calls or calls to functions containing ellipsis (...) in
1316    // the declaration) %al is used as hidden argument to specify the number
1317    // of SSE registers used. The contents of %al do not need to match exactly
1318    // the number of registers, but must be an ubound on the number of SSE
1319    // registers used and is in the range 0 - 8 inclusive.
1320
1321    // Count the number of XMM registers allocated.
1322    static const unsigned XMMArgRegs[] = {
1323      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1324      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1325    };
1326    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1327
1328    Chain = DAG.getCopyToReg(Chain, X86::AL,
1329                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1330    InFlag = Chain.getValue(1);
1331  }
1332
1333  // If the callee is a GlobalAddress node (quite common, every direct call is)
1334  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1335  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1336    // We should use extra load for direct calls to dllimported functions in
1337    // non-JIT mode.
1338    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1339                                        getTargetMachine(), true))
1340      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1341  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1342    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1343
1344  // Returns a chain & a flag for retval copy to use.
1345  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1346  SmallVector<SDOperand, 8> Ops;
1347  Ops.push_back(Chain);
1348  Ops.push_back(Callee);
1349
1350  // Add argument registers to the end of the list so that they are known live
1351  // into the call.
1352  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1353    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1354                                  RegsToPass[i].second.getValueType()));
1355
1356  if (InFlag.Val)
1357    Ops.push_back(InFlag);
1358
1359  // FIXME: Do not generate X86ISD::TAILCALL for now.
1360  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1361                      NodeTys, &Ops[0], Ops.size());
1362  InFlag = Chain.getValue(1);
1363
1364  // Returns a flag for retval copy to use.
1365  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1366  Ops.clear();
1367  Ops.push_back(Chain);
1368  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1369  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1370  Ops.push_back(InFlag);
1371  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1372  InFlag = Chain.getValue(1);
1373
1374  // Handle result values, copying them out of physregs into vregs that we
1375  // return.
1376  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1377}
1378
1379
1380//===----------------------------------------------------------------------===//
1381//                           Other Lowering Hooks
1382//===----------------------------------------------------------------------===//
1383
1384
1385SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1386  if (ReturnAddrIndex == 0) {
1387    // Set up a frame object for the return address.
1388    MachineFunction &MF = DAG.getMachineFunction();
1389    if (Subtarget->is64Bit())
1390      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1391    else
1392      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1393  }
1394
1395  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1396}
1397
1398
1399
1400/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1401/// specific condition code. It returns a false if it cannot do a direct
1402/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1403/// needed.
1404static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1405                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1406                           SelectionDAG &DAG) {
1407  X86CC = X86::COND_INVALID;
1408  if (!isFP) {
1409    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1410      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1411        // X > -1   -> X == 0, jump !sign.
1412        RHS = DAG.getConstant(0, RHS.getValueType());
1413        X86CC = X86::COND_NS;
1414        return true;
1415      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1416        // X < 0   -> X == 0, jump on sign.
1417        X86CC = X86::COND_S;
1418        return true;
1419      }
1420    }
1421
1422    switch (SetCCOpcode) {
1423    default: break;
1424    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1425    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1426    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1427    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1428    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1429    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1430    case ISD::SETULT: X86CC = X86::COND_B;  break;
1431    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1432    case ISD::SETULE: X86CC = X86::COND_BE; break;
1433    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1434    }
1435  } else {
1436    // On a floating point condition, the flags are set as follows:
1437    // ZF  PF  CF   op
1438    //  0 | 0 | 0 | X > Y
1439    //  0 | 0 | 1 | X < Y
1440    //  1 | 0 | 0 | X == Y
1441    //  1 | 1 | 1 | unordered
1442    bool Flip = false;
1443    switch (SetCCOpcode) {
1444    default: break;
1445    case ISD::SETUEQ:
1446    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1447    case ISD::SETOLT: Flip = true; // Fallthrough
1448    case ISD::SETOGT:
1449    case ISD::SETGT: X86CC = X86::COND_A;  break;
1450    case ISD::SETOLE: Flip = true; // Fallthrough
1451    case ISD::SETOGE:
1452    case ISD::SETGE: X86CC = X86::COND_AE; break;
1453    case ISD::SETUGT: Flip = true; // Fallthrough
1454    case ISD::SETULT:
1455    case ISD::SETLT: X86CC = X86::COND_B;  break;
1456    case ISD::SETUGE: Flip = true; // Fallthrough
1457    case ISD::SETULE:
1458    case ISD::SETLE: X86CC = X86::COND_BE; break;
1459    case ISD::SETONE:
1460    case ISD::SETNE: X86CC = X86::COND_NE; break;
1461    case ISD::SETUO: X86CC = X86::COND_P;  break;
1462    case ISD::SETO:  X86CC = X86::COND_NP; break;
1463    }
1464    if (Flip)
1465      std::swap(LHS, RHS);
1466  }
1467
1468  return X86CC != X86::COND_INVALID;
1469}
1470
1471/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1472/// code. Current x86 isa includes the following FP cmov instructions:
1473/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1474static bool hasFPCMov(unsigned X86CC) {
1475  switch (X86CC) {
1476  default:
1477    return false;
1478  case X86::COND_B:
1479  case X86::COND_BE:
1480  case X86::COND_E:
1481  case X86::COND_P:
1482  case X86::COND_A:
1483  case X86::COND_AE:
1484  case X86::COND_NE:
1485  case X86::COND_NP:
1486    return true;
1487  }
1488}
1489
1490/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1491/// true if Op is undef or if its value falls within the specified range (L, H].
1492static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1493  if (Op.getOpcode() == ISD::UNDEF)
1494    return true;
1495
1496  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1497  return (Val >= Low && Val < Hi);
1498}
1499
1500/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1501/// true if Op is undef or if its value equal to the specified value.
1502static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1503  if (Op.getOpcode() == ISD::UNDEF)
1504    return true;
1505  return cast<ConstantSDNode>(Op)->getValue() == Val;
1506}
1507
1508/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1509/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1510bool X86::isPSHUFDMask(SDNode *N) {
1511  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1512
1513  if (N->getNumOperands() != 4)
1514    return false;
1515
1516  // Check if the value doesn't reference the second vector.
1517  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1518    SDOperand Arg = N->getOperand(i);
1519    if (Arg.getOpcode() == ISD::UNDEF) continue;
1520    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1521    if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
1522      return false;
1523  }
1524
1525  return true;
1526}
1527
1528/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1529/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1530bool X86::isPSHUFHWMask(SDNode *N) {
1531  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1532
1533  if (N->getNumOperands() != 8)
1534    return false;
1535
1536  // Lower quadword copied in order.
1537  for (unsigned i = 0; i != 4; ++i) {
1538    SDOperand Arg = N->getOperand(i);
1539    if (Arg.getOpcode() == ISD::UNDEF) continue;
1540    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1541    if (cast<ConstantSDNode>(Arg)->getValue() != i)
1542      return false;
1543  }
1544
1545  // Upper quadword shuffled.
1546  for (unsigned i = 4; i != 8; ++i) {
1547    SDOperand Arg = N->getOperand(i);
1548    if (Arg.getOpcode() == ISD::UNDEF) continue;
1549    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1550    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1551    if (Val < 4 || Val > 7)
1552      return false;
1553  }
1554
1555  return true;
1556}
1557
1558/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1559/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1560bool X86::isPSHUFLWMask(SDNode *N) {
1561  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1562
1563  if (N->getNumOperands() != 8)
1564    return false;
1565
1566  // Upper quadword copied in order.
1567  for (unsigned i = 4; i != 8; ++i)
1568    if (!isUndefOrEqual(N->getOperand(i), i))
1569      return false;
1570
1571  // Lower quadword shuffled.
1572  for (unsigned i = 0; i != 4; ++i)
1573    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1574      return false;
1575
1576  return true;
1577}
1578
1579/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1580/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1581static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1582  if (NumElems != 2 && NumElems != 4) return false;
1583
1584  unsigned Half = NumElems / 2;
1585  for (unsigned i = 0; i < Half; ++i)
1586    if (!isUndefOrInRange(Elems[i], 0, NumElems))
1587      return false;
1588  for (unsigned i = Half; i < NumElems; ++i)
1589    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1590      return false;
1591
1592  return true;
1593}
1594
1595bool X86::isSHUFPMask(SDNode *N) {
1596  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1597  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1598}
1599
1600/// isCommutedSHUFP - Returns true if the shuffle mask is except
1601/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1602/// half elements to come from vector 1 (which would equal the dest.) and
1603/// the upper half to come from vector 2.
1604static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1605  if (NumOps != 2 && NumOps != 4) return false;
1606
1607  unsigned Half = NumOps / 2;
1608  for (unsigned i = 0; i < Half; ++i)
1609    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1610      return false;
1611  for (unsigned i = Half; i < NumOps; ++i)
1612    if (!isUndefOrInRange(Ops[i], 0, NumOps))
1613      return false;
1614  return true;
1615}
1616
1617static bool isCommutedSHUFP(SDNode *N) {
1618  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1619  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1620}
1621
1622/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1623/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1624bool X86::isMOVHLPSMask(SDNode *N) {
1625  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1626
1627  if (N->getNumOperands() != 4)
1628    return false;
1629
1630  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1631  return isUndefOrEqual(N->getOperand(0), 6) &&
1632         isUndefOrEqual(N->getOperand(1), 7) &&
1633         isUndefOrEqual(N->getOperand(2), 2) &&
1634         isUndefOrEqual(N->getOperand(3), 3);
1635}
1636
1637/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1638/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1639/// <2, 3, 2, 3>
1640bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1641  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1642
1643  if (N->getNumOperands() != 4)
1644    return false;
1645
1646  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1647  return isUndefOrEqual(N->getOperand(0), 2) &&
1648         isUndefOrEqual(N->getOperand(1), 3) &&
1649         isUndefOrEqual(N->getOperand(2), 2) &&
1650         isUndefOrEqual(N->getOperand(3), 3);
1651}
1652
1653/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1654/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1655bool X86::isMOVLPMask(SDNode *N) {
1656  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1657
1658  unsigned NumElems = N->getNumOperands();
1659  if (NumElems != 2 && NumElems != 4)
1660    return false;
1661
1662  for (unsigned i = 0; i < NumElems/2; ++i)
1663    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1664      return false;
1665
1666  for (unsigned i = NumElems/2; i < NumElems; ++i)
1667    if (!isUndefOrEqual(N->getOperand(i), i))
1668      return false;
1669
1670  return true;
1671}
1672
1673/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1674/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1675/// and MOVLHPS.
1676bool X86::isMOVHPMask(SDNode *N) {
1677  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1678
1679  unsigned NumElems = N->getNumOperands();
1680  if (NumElems != 2 && NumElems != 4)
1681    return false;
1682
1683  for (unsigned i = 0; i < NumElems/2; ++i)
1684    if (!isUndefOrEqual(N->getOperand(i), i))
1685      return false;
1686
1687  for (unsigned i = 0; i < NumElems/2; ++i) {
1688    SDOperand Arg = N->getOperand(i + NumElems/2);
1689    if (!isUndefOrEqual(Arg, i + NumElems))
1690      return false;
1691  }
1692
1693  return true;
1694}
1695
1696/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1697/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1698bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1699                         bool V2IsSplat = false) {
1700  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1701    return false;
1702
1703  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1704    SDOperand BitI  = Elts[i];
1705    SDOperand BitI1 = Elts[i+1];
1706    if (!isUndefOrEqual(BitI, j))
1707      return false;
1708    if (V2IsSplat) {
1709      if (isUndefOrEqual(BitI1, NumElts))
1710        return false;
1711    } else {
1712      if (!isUndefOrEqual(BitI1, j + NumElts))
1713        return false;
1714    }
1715  }
1716
1717  return true;
1718}
1719
1720bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1721  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1722  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1723}
1724
1725/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1726/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1727bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1728                         bool V2IsSplat = false) {
1729  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1730    return false;
1731
1732  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1733    SDOperand BitI  = Elts[i];
1734    SDOperand BitI1 = Elts[i+1];
1735    if (!isUndefOrEqual(BitI, j + NumElts/2))
1736      return false;
1737    if (V2IsSplat) {
1738      if (isUndefOrEqual(BitI1, NumElts))
1739        return false;
1740    } else {
1741      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1742        return false;
1743    }
1744  }
1745
1746  return true;
1747}
1748
1749bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1750  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1751  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1752}
1753
1754/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1755/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1756/// <0, 0, 1, 1>
1757bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1758  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1759
1760  unsigned NumElems = N->getNumOperands();
1761  if (NumElems != 4 && NumElems != 8 && NumElems != 16)
1762    return false;
1763
1764  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1765    SDOperand BitI  = N->getOperand(i);
1766    SDOperand BitI1 = N->getOperand(i+1);
1767
1768    if (!isUndefOrEqual(BitI, j))
1769      return false;
1770    if (!isUndefOrEqual(BitI1, j))
1771      return false;
1772  }
1773
1774  return true;
1775}
1776
1777/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1778/// specifies a shuffle of elements that is suitable for input to MOVSS,
1779/// MOVSD, and MOVD, i.e. setting the lowest element.
1780static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1781  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1782    return false;
1783
1784  if (!isUndefOrEqual(Elts[0], NumElts))
1785    return false;
1786
1787  for (unsigned i = 1; i < NumElts; ++i) {
1788    if (!isUndefOrEqual(Elts[i], i))
1789      return false;
1790  }
1791
1792  return true;
1793}
1794
1795bool X86::isMOVLMask(SDNode *N) {
1796  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1797  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
1798}
1799
1800/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
1801/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
1802/// element of vector 2 and the other elements to come from vector 1 in order.
1803static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
1804                           bool V2IsSplat = false,
1805                           bool V2IsUndef = false) {
1806  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
1807    return false;
1808
1809  if (!isUndefOrEqual(Ops[0], 0))
1810    return false;
1811
1812  for (unsigned i = 1; i < NumOps; ++i) {
1813    SDOperand Arg = Ops[i];
1814    if (!(isUndefOrEqual(Arg, i+NumOps) ||
1815          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
1816          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
1817      return false;
1818  }
1819
1820  return true;
1821}
1822
1823static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
1824                           bool V2IsUndef = false) {
1825  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1826  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
1827                        V2IsSplat, V2IsUndef);
1828}
1829
1830/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1831/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
1832bool X86::isMOVSHDUPMask(SDNode *N) {
1833  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1834
1835  if (N->getNumOperands() != 4)
1836    return false;
1837
1838  // Expect 1, 1, 3, 3
1839  for (unsigned i = 0; i < 2; ++i) {
1840    SDOperand Arg = N->getOperand(i);
1841    if (Arg.getOpcode() == ISD::UNDEF) continue;
1842    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1843    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1844    if (Val != 1) return false;
1845  }
1846
1847  bool HasHi = false;
1848  for (unsigned i = 2; i < 4; ++i) {
1849    SDOperand Arg = N->getOperand(i);
1850    if (Arg.getOpcode() == ISD::UNDEF) continue;
1851    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1852    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1853    if (Val != 3) return false;
1854    HasHi = true;
1855  }
1856
1857  // Don't use movshdup if it can be done with a shufps.
1858  return HasHi;
1859}
1860
1861/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1862/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
1863bool X86::isMOVSLDUPMask(SDNode *N) {
1864  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1865
1866  if (N->getNumOperands() != 4)
1867    return false;
1868
1869  // Expect 0, 0, 2, 2
1870  for (unsigned i = 0; i < 2; ++i) {
1871    SDOperand Arg = N->getOperand(i);
1872    if (Arg.getOpcode() == ISD::UNDEF) continue;
1873    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1874    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1875    if (Val != 0) return false;
1876  }
1877
1878  bool HasHi = false;
1879  for (unsigned i = 2; i < 4; ++i) {
1880    SDOperand Arg = N->getOperand(i);
1881    if (Arg.getOpcode() == ISD::UNDEF) continue;
1882    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1883    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1884    if (Val != 2) return false;
1885    HasHi = true;
1886  }
1887
1888  // Don't use movshdup if it can be done with a shufps.
1889  return HasHi;
1890}
1891
1892/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
1893/// a splat of a single element.
1894static bool isSplatMask(SDNode *N) {
1895  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1896
1897  // This is a splat operation if each element of the permute is the same, and
1898  // if the value doesn't reference the second vector.
1899  unsigned NumElems = N->getNumOperands();
1900  SDOperand ElementBase;
1901  unsigned i = 0;
1902  for (; i != NumElems; ++i) {
1903    SDOperand Elt = N->getOperand(i);
1904    if (isa<ConstantSDNode>(Elt)) {
1905      ElementBase = Elt;
1906      break;
1907    }
1908  }
1909
1910  if (!ElementBase.Val)
1911    return false;
1912
1913  for (; i != NumElems; ++i) {
1914    SDOperand Arg = N->getOperand(i);
1915    if (Arg.getOpcode() == ISD::UNDEF) continue;
1916    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1917    if (Arg != ElementBase) return false;
1918  }
1919
1920  // Make sure it is a splat of the first vector operand.
1921  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
1922}
1923
1924/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
1925/// a splat of a single element and it's a 2 or 4 element mask.
1926bool X86::isSplatMask(SDNode *N) {
1927  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1928
1929  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
1930  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
1931    return false;
1932  return ::isSplatMask(N);
1933}
1934
1935/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
1936/// specifies a splat of zero element.
1937bool X86::isSplatLoMask(SDNode *N) {
1938  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1939
1940  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
1941    if (!isUndefOrEqual(N->getOperand(i), 0))
1942      return false;
1943  return true;
1944}
1945
1946/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
1947/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
1948/// instructions.
1949unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
1950  unsigned NumOperands = N->getNumOperands();
1951  unsigned Shift = (NumOperands == 4) ? 2 : 1;
1952  unsigned Mask = 0;
1953  for (unsigned i = 0; i < NumOperands; ++i) {
1954    unsigned Val = 0;
1955    SDOperand Arg = N->getOperand(NumOperands-i-1);
1956    if (Arg.getOpcode() != ISD::UNDEF)
1957      Val = cast<ConstantSDNode>(Arg)->getValue();
1958    if (Val >= NumOperands) Val -= NumOperands;
1959    Mask |= Val;
1960    if (i != NumOperands - 1)
1961      Mask <<= Shift;
1962  }
1963
1964  return Mask;
1965}
1966
1967/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
1968/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
1969/// instructions.
1970unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
1971  unsigned Mask = 0;
1972  // 8 nodes, but we only care about the last 4.
1973  for (unsigned i = 7; i >= 4; --i) {
1974    unsigned Val = 0;
1975    SDOperand Arg = N->getOperand(i);
1976    if (Arg.getOpcode() != ISD::UNDEF)
1977      Val = cast<ConstantSDNode>(Arg)->getValue();
1978    Mask |= (Val - 4);
1979    if (i != 4)
1980      Mask <<= 2;
1981  }
1982
1983  return Mask;
1984}
1985
1986/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
1987/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
1988/// instructions.
1989unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
1990  unsigned Mask = 0;
1991  // 8 nodes, but we only care about the first 4.
1992  for (int i = 3; i >= 0; --i) {
1993    unsigned Val = 0;
1994    SDOperand Arg = N->getOperand(i);
1995    if (Arg.getOpcode() != ISD::UNDEF)
1996      Val = cast<ConstantSDNode>(Arg)->getValue();
1997    Mask |= Val;
1998    if (i != 0)
1999      Mask <<= 2;
2000  }
2001
2002  return Mask;
2003}
2004
2005/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2006/// specifies a 8 element shuffle that can be broken into a pair of
2007/// PSHUFHW and PSHUFLW.
2008static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2009  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2010
2011  if (N->getNumOperands() != 8)
2012    return false;
2013
2014  // Lower quadword shuffled.
2015  for (unsigned i = 0; i != 4; ++i) {
2016    SDOperand Arg = N->getOperand(i);
2017    if (Arg.getOpcode() == ISD::UNDEF) continue;
2018    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2019    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2020    if (Val > 4)
2021      return false;
2022  }
2023
2024  // Upper quadword shuffled.
2025  for (unsigned i = 4; i != 8; ++i) {
2026    SDOperand Arg = N->getOperand(i);
2027    if (Arg.getOpcode() == ISD::UNDEF) continue;
2028    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2029    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2030    if (Val < 4 || Val > 7)
2031      return false;
2032  }
2033
2034  return true;
2035}
2036
2037/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2038/// values in ther permute mask.
2039static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2040                                      SDOperand &V2, SDOperand &Mask,
2041                                      SelectionDAG &DAG) {
2042  MVT::ValueType VT = Op.getValueType();
2043  MVT::ValueType MaskVT = Mask.getValueType();
2044  MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT);
2045  unsigned NumElems = Mask.getNumOperands();
2046  SmallVector<SDOperand, 8> MaskVec;
2047
2048  for (unsigned i = 0; i != NumElems; ++i) {
2049    SDOperand Arg = Mask.getOperand(i);
2050    if (Arg.getOpcode() == ISD::UNDEF) {
2051      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2052      continue;
2053    }
2054    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2055    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2056    if (Val < NumElems)
2057      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2058    else
2059      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2060  }
2061
2062  std::swap(V1, V2);
2063  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2064  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2065}
2066
2067/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2068/// match movhlps. The lower half elements should come from upper half of
2069/// V1 (and in order), and the upper half elements should come from the upper
2070/// half of V2 (and in order).
2071static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2072  unsigned NumElems = Mask->getNumOperands();
2073  if (NumElems != 4)
2074    return false;
2075  for (unsigned i = 0, e = 2; i != e; ++i)
2076    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2077      return false;
2078  for (unsigned i = 2; i != 4; ++i)
2079    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2080      return false;
2081  return true;
2082}
2083
2084/// isScalarLoadToVector - Returns true if the node is a scalar load that
2085/// is promoted to a vector.
2086static inline bool isScalarLoadToVector(SDNode *N) {
2087  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2088    N = N->getOperand(0).Val;
2089    return ISD::isNON_EXTLoad(N);
2090  }
2091  return false;
2092}
2093
2094/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2095/// match movlp{s|d}. The lower half elements should come from lower half of
2096/// V1 (and in order), and the upper half elements should come from the upper
2097/// half of V2 (and in order). And since V1 will become the source of the
2098/// MOVLP, it must be either a vector load or a scalar load to vector.
2099static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2100  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2101    return false;
2102  // Is V2 is a vector load, don't do this transformation. We will try to use
2103  // load folding shufps op.
2104  if (ISD::isNON_EXTLoad(V2))
2105    return false;
2106
2107  unsigned NumElems = Mask->getNumOperands();
2108  if (NumElems != 2 && NumElems != 4)
2109    return false;
2110  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2111    if (!isUndefOrEqual(Mask->getOperand(i), i))
2112      return false;
2113  for (unsigned i = NumElems/2; i != NumElems; ++i)
2114    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2115      return false;
2116  return true;
2117}
2118
2119/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2120/// all the same.
2121static bool isSplatVector(SDNode *N) {
2122  if (N->getOpcode() != ISD::BUILD_VECTOR)
2123    return false;
2124
2125  SDOperand SplatValue = N->getOperand(0);
2126  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2127    if (N->getOperand(i) != SplatValue)
2128      return false;
2129  return true;
2130}
2131
2132/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2133/// to an undef.
2134static bool isUndefShuffle(SDNode *N) {
2135  if (N->getOpcode() != ISD::BUILD_VECTOR)
2136    return false;
2137
2138  SDOperand V1 = N->getOperand(0);
2139  SDOperand V2 = N->getOperand(1);
2140  SDOperand Mask = N->getOperand(2);
2141  unsigned NumElems = Mask.getNumOperands();
2142  for (unsigned i = 0; i != NumElems; ++i) {
2143    SDOperand Arg = Mask.getOperand(i);
2144    if (Arg.getOpcode() != ISD::UNDEF) {
2145      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2146      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2147        return false;
2148      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2149        return false;
2150    }
2151  }
2152  return true;
2153}
2154
2155/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2156/// that point to V2 points to its first element.
2157static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2158  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2159
2160  bool Changed = false;
2161  SmallVector<SDOperand, 8> MaskVec;
2162  unsigned NumElems = Mask.getNumOperands();
2163  for (unsigned i = 0; i != NumElems; ++i) {
2164    SDOperand Arg = Mask.getOperand(i);
2165    if (Arg.getOpcode() != ISD::UNDEF) {
2166      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2167      if (Val > NumElems) {
2168        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2169        Changed = true;
2170      }
2171    }
2172    MaskVec.push_back(Arg);
2173  }
2174
2175  if (Changed)
2176    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2177                       &MaskVec[0], MaskVec.size());
2178  return Mask;
2179}
2180
2181/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2182/// operation of specified width.
2183static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2184  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2185  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2186
2187  SmallVector<SDOperand, 8> MaskVec;
2188  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2189  for (unsigned i = 1; i != NumElems; ++i)
2190    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2191  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2192}
2193
2194/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2195/// of specified width.
2196static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2197  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2198  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2199  SmallVector<SDOperand, 8> MaskVec;
2200  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2201    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2202    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2203  }
2204  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2205}
2206
2207/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2208/// of specified width.
2209static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2210  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2211  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2212  unsigned Half = NumElems/2;
2213  SmallVector<SDOperand, 8> MaskVec;
2214  for (unsigned i = 0; i != Half; ++i) {
2215    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2216    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2217  }
2218  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2219}
2220
2221/// getZeroVector - Returns a vector of specified type with all zero elements.
2222///
2223static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2224  assert(MVT::isVector(VT) && "Expected a vector type");
2225  unsigned NumElems = getVectorNumElements(VT);
2226  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
2227  bool isFP = MVT::isFloatingPoint(EVT);
2228  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2229  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2230  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2231}
2232
2233/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2234///
2235static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2236  SDOperand V1 = Op.getOperand(0);
2237  SDOperand Mask = Op.getOperand(2);
2238  MVT::ValueType VT = Op.getValueType();
2239  unsigned NumElems = Mask.getNumOperands();
2240  Mask = getUnpacklMask(NumElems, DAG);
2241  while (NumElems != 4) {
2242    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2243    NumElems >>= 1;
2244  }
2245  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2246
2247  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2248  Mask = getZeroVector(MaskVT, DAG);
2249  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2250                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2251  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2252}
2253
2254/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2255/// constant +0.0.
2256static inline bool isZeroNode(SDOperand Elt) {
2257  return ((isa<ConstantSDNode>(Elt) &&
2258           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2259          (isa<ConstantFPSDNode>(Elt) &&
2260           cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
2261}
2262
2263/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2264/// vector and zero or undef vector.
2265static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2266                                             unsigned NumElems, unsigned Idx,
2267                                             bool isZero, SelectionDAG &DAG) {
2268  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2269  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2270  MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
2271  SDOperand Zero = DAG.getConstant(0, EVT);
2272  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2273  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2274  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2275                               &MaskVec[0], MaskVec.size());
2276  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2277}
2278
2279/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2280///
2281static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2282                                       unsigned NumNonZero, unsigned NumZero,
2283                                       SelectionDAG &DAG, TargetLowering &TLI) {
2284  if (NumNonZero > 8)
2285    return SDOperand();
2286
2287  SDOperand V(0, 0);
2288  bool First = true;
2289  for (unsigned i = 0; i < 16; ++i) {
2290    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2291    if (ThisIsNonZero && First) {
2292      if (NumZero)
2293        V = getZeroVector(MVT::v8i16, DAG);
2294      else
2295        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2296      First = false;
2297    }
2298
2299    if ((i & 1) != 0) {
2300      SDOperand ThisElt(0, 0), LastElt(0, 0);
2301      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2302      if (LastIsNonZero) {
2303        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2304      }
2305      if (ThisIsNonZero) {
2306        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2307        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2308                              ThisElt, DAG.getConstant(8, MVT::i8));
2309        if (LastIsNonZero)
2310          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2311      } else
2312        ThisElt = LastElt;
2313
2314      if (ThisElt.Val)
2315        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2316                        DAG.getConstant(i/2, TLI.getPointerTy()));
2317    }
2318  }
2319
2320  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2321}
2322
2323/// LowerBuildVectorv16i8 - Custom lower build_vector of v8i16.
2324///
2325static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2326                                       unsigned NumNonZero, unsigned NumZero,
2327                                       SelectionDAG &DAG, TargetLowering &TLI) {
2328  if (NumNonZero > 4)
2329    return SDOperand();
2330
2331  SDOperand V(0, 0);
2332  bool First = true;
2333  for (unsigned i = 0; i < 8; ++i) {
2334    bool isNonZero = (NonZeros & (1 << i)) != 0;
2335    if (isNonZero) {
2336      if (First) {
2337        if (NumZero)
2338          V = getZeroVector(MVT::v8i16, DAG);
2339        else
2340          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2341        First = false;
2342      }
2343      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2344                      DAG.getConstant(i, TLI.getPointerTy()));
2345    }
2346  }
2347
2348  return V;
2349}
2350
2351SDOperand
2352X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2353  // All zero's are handled with pxor.
2354  if (ISD::isBuildVectorAllZeros(Op.Val))
2355    return Op;
2356
2357  // All one's are handled with pcmpeqd.
2358  if (ISD::isBuildVectorAllOnes(Op.Val))
2359    return Op;
2360
2361  MVT::ValueType VT = Op.getValueType();
2362  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
2363  unsigned EVTBits = MVT::getSizeInBits(EVT);
2364
2365  unsigned NumElems = Op.getNumOperands();
2366  unsigned NumZero  = 0;
2367  unsigned NumNonZero = 0;
2368  unsigned NonZeros = 0;
2369  std::set<SDOperand> Values;
2370  for (unsigned i = 0; i < NumElems; ++i) {
2371    SDOperand Elt = Op.getOperand(i);
2372    if (Elt.getOpcode() != ISD::UNDEF) {
2373      Values.insert(Elt);
2374      if (isZeroNode(Elt))
2375        NumZero++;
2376      else {
2377        NonZeros |= (1 << i);
2378        NumNonZero++;
2379      }
2380    }
2381  }
2382
2383  if (NumNonZero == 0)
2384    // Must be a mix of zero and undef. Return a zero vector.
2385    return getZeroVector(VT, DAG);
2386
2387  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2388  if (Values.size() == 1)
2389    return SDOperand();
2390
2391  // Special case for single non-zero element.
2392  if (NumNonZero == 1) {
2393    unsigned Idx = CountTrailingZeros_32(NonZeros);
2394    SDOperand Item = Op.getOperand(Idx);
2395    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2396    if (Idx == 0)
2397      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2398      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2399                                         NumZero > 0, DAG);
2400
2401    if (EVTBits == 32) {
2402      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2403      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2404                                         DAG);
2405      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2406      MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
2407      SmallVector<SDOperand, 8> MaskVec;
2408      for (unsigned i = 0; i < NumElems; i++)
2409        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2410      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2411                                   &MaskVec[0], MaskVec.size());
2412      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2413                         DAG.getNode(ISD::UNDEF, VT), Mask);
2414    }
2415  }
2416
2417  // Let legalizer expand 2-wide build_vector's.
2418  if (EVTBits == 64)
2419    return SDOperand();
2420
2421  // If element VT is < 32 bits, convert it to inserts into a zero vector.
2422  if (EVTBits == 8) {
2423    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2424                                        *this);
2425    if (V.Val) return V;
2426  }
2427
2428  if (EVTBits == 16) {
2429    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2430                                        *this);
2431    if (V.Val) return V;
2432  }
2433
2434  // If element VT is == 32 bits, turn it into a number of shuffles.
2435  SmallVector<SDOperand, 8> V;
2436  V.resize(NumElems);
2437  if (NumElems == 4 && NumZero > 0) {
2438    for (unsigned i = 0; i < 4; ++i) {
2439      bool isZero = !(NonZeros & (1 << i));
2440      if (isZero)
2441        V[i] = getZeroVector(VT, DAG);
2442      else
2443        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2444    }
2445
2446    for (unsigned i = 0; i < 2; ++i) {
2447      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2448        default: break;
2449        case 0:
2450          V[i] = V[i*2];  // Must be a zero vector.
2451          break;
2452        case 1:
2453          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2454                             getMOVLMask(NumElems, DAG));
2455          break;
2456        case 2:
2457          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2458                             getMOVLMask(NumElems, DAG));
2459          break;
2460        case 3:
2461          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2462                             getUnpacklMask(NumElems, DAG));
2463          break;
2464      }
2465    }
2466
2467    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2468    // clears the upper bits.
2469    // FIXME: we can do the same for v4f32 case when we know both parts of
2470    // the lower half come from scalar_to_vector (loadf32). We should do
2471    // that in post legalizer dag combiner with target specific hooks.
2472    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2473      return V[0];
2474    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2475    MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
2476    SmallVector<SDOperand, 8> MaskVec;
2477    bool Reverse = (NonZeros & 0x3) == 2;
2478    for (unsigned i = 0; i < 2; ++i)
2479      if (Reverse)
2480        MaskVec.push_back(DAG.getConstant(1-i, EVT));
2481      else
2482        MaskVec.push_back(DAG.getConstant(i, EVT));
2483    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2484    for (unsigned i = 0; i < 2; ++i)
2485      if (Reverse)
2486        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2487      else
2488        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2489    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2490                                     &MaskVec[0], MaskVec.size());
2491    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2492  }
2493
2494  if (Values.size() > 2) {
2495    // Expand into a number of unpckl*.
2496    // e.g. for v4f32
2497    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2498    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2499    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
2500    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2501    for (unsigned i = 0; i < NumElems; ++i)
2502      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2503    NumElems >>= 1;
2504    while (NumElems != 0) {
2505      for (unsigned i = 0; i < NumElems; ++i)
2506        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2507                           UnpckMask);
2508      NumElems >>= 1;
2509    }
2510    return V[0];
2511  }
2512
2513  return SDOperand();
2514}
2515
2516SDOperand
2517X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2518  SDOperand V1 = Op.getOperand(0);
2519  SDOperand V2 = Op.getOperand(1);
2520  SDOperand PermMask = Op.getOperand(2);
2521  MVT::ValueType VT = Op.getValueType();
2522  unsigned NumElems = PermMask.getNumOperands();
2523  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2524  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2525  bool V1IsSplat = false;
2526  bool V2IsSplat = false;
2527
2528  if (isUndefShuffle(Op.Val))
2529    return DAG.getNode(ISD::UNDEF, VT);
2530
2531  if (isSplatMask(PermMask.Val)) {
2532    if (NumElems <= 4) return Op;
2533    // Promote it to a v4i32 splat.
2534    return PromoteSplat(Op, DAG);
2535  }
2536
2537  if (X86::isMOVLMask(PermMask.Val))
2538    return (V1IsUndef) ? V2 : Op;
2539
2540  if (X86::isMOVSHDUPMask(PermMask.Val) ||
2541      X86::isMOVSLDUPMask(PermMask.Val) ||
2542      X86::isMOVHLPSMask(PermMask.Val) ||
2543      X86::isMOVHPMask(PermMask.Val) ||
2544      X86::isMOVLPMask(PermMask.Val))
2545    return Op;
2546
2547  if (ShouldXformToMOVHLPS(PermMask.Val) ||
2548      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2549    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2550
2551  bool Commuted = false;
2552  V1IsSplat = isSplatVector(V1.Val);
2553  V2IsSplat = isSplatVector(V2.Val);
2554  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2555    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2556    std::swap(V1IsSplat, V2IsSplat);
2557    std::swap(V1IsUndef, V2IsUndef);
2558    Commuted = true;
2559  }
2560
2561  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2562    if (V2IsUndef) return V1;
2563    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2564    if (V2IsSplat) {
2565      // V2 is a splat, so the mask may be malformed. That is, it may point
2566      // to any V2 element. The instruction selectior won't like this. Get
2567      // a corrected mask and commute to form a proper MOVS{S|D}.
2568      SDOperand NewMask = getMOVLMask(NumElems, DAG);
2569      if (NewMask.Val != PermMask.Val)
2570        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2571    }
2572    return Op;
2573  }
2574
2575  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2576      X86::isUNPCKLMask(PermMask.Val) ||
2577      X86::isUNPCKHMask(PermMask.Val))
2578    return Op;
2579
2580  if (V2IsSplat) {
2581    // Normalize mask so all entries that point to V2 points to its first
2582    // element then try to match unpck{h|l} again. If match, return a
2583    // new vector_shuffle with the corrected mask.
2584    SDOperand NewMask = NormalizeMask(PermMask, DAG);
2585    if (NewMask.Val != PermMask.Val) {
2586      if (X86::isUNPCKLMask(PermMask.Val, true)) {
2587        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2588        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2589      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2590        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2591        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2592      }
2593    }
2594  }
2595
2596  // Normalize the node to match x86 shuffle ops if needed
2597  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2598      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2599
2600  if (Commuted) {
2601    // Commute is back and try unpck* again.
2602    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2603    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2604        X86::isUNPCKLMask(PermMask.Val) ||
2605        X86::isUNPCKHMask(PermMask.Val))
2606      return Op;
2607  }
2608
2609  // If VT is integer, try PSHUF* first, then SHUFP*.
2610  if (MVT::isInteger(VT)) {
2611    if (X86::isPSHUFDMask(PermMask.Val) ||
2612        X86::isPSHUFHWMask(PermMask.Val) ||
2613        X86::isPSHUFLWMask(PermMask.Val)) {
2614      if (V2.getOpcode() != ISD::UNDEF)
2615        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2616                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2617      return Op;
2618    }
2619
2620    if (X86::isSHUFPMask(PermMask.Val))
2621      return Op;
2622
2623    // Handle v8i16 shuffle high / low shuffle node pair.
2624    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2625      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2626      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2627      SmallVector<SDOperand, 8> MaskVec;
2628      for (unsigned i = 0; i != 4; ++i)
2629        MaskVec.push_back(PermMask.getOperand(i));
2630      for (unsigned i = 4; i != 8; ++i)
2631        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2632      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2633                                   &MaskVec[0], MaskVec.size());
2634      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2635      MaskVec.clear();
2636      for (unsigned i = 0; i != 4; ++i)
2637        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2638      for (unsigned i = 4; i != 8; ++i)
2639        MaskVec.push_back(PermMask.getOperand(i));
2640      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2641      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2642    }
2643  } else {
2644    // Floating point cases in the other order.
2645    if (X86::isSHUFPMask(PermMask.Val))
2646      return Op;
2647    if (X86::isPSHUFDMask(PermMask.Val) ||
2648        X86::isPSHUFHWMask(PermMask.Val) ||
2649        X86::isPSHUFLWMask(PermMask.Val)) {
2650      if (V2.getOpcode() != ISD::UNDEF)
2651        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2652                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2653      return Op;
2654    }
2655  }
2656
2657  if (NumElems == 4) {
2658    MVT::ValueType MaskVT = PermMask.getValueType();
2659    MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
2660    SmallVector<std::pair<int, int>, 8> Locs;
2661    Locs.reserve(NumElems);
2662    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2663    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2664    unsigned NumHi = 0;
2665    unsigned NumLo = 0;
2666    // If no more than two elements come from either vector. This can be
2667    // implemented with two shuffles. First shuffle gather the elements.
2668    // The second shuffle, which takes the first shuffle as both of its
2669    // vector operands, put the elements into the right order.
2670    for (unsigned i = 0; i != NumElems; ++i) {
2671      SDOperand Elt = PermMask.getOperand(i);
2672      if (Elt.getOpcode() == ISD::UNDEF) {
2673        Locs[i] = std::make_pair(-1, -1);
2674      } else {
2675        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2676        if (Val < NumElems) {
2677          Locs[i] = std::make_pair(0, NumLo);
2678          Mask1[NumLo] = Elt;
2679          NumLo++;
2680        } else {
2681          Locs[i] = std::make_pair(1, NumHi);
2682          if (2+NumHi < NumElems)
2683            Mask1[2+NumHi] = Elt;
2684          NumHi++;
2685        }
2686      }
2687    }
2688    if (NumLo <= 2 && NumHi <= 2) {
2689      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2690                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2691                                   &Mask1[0], Mask1.size()));
2692      for (unsigned i = 0; i != NumElems; ++i) {
2693        if (Locs[i].first == -1)
2694          continue;
2695        else {
2696          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2697          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2698          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2699        }
2700      }
2701
2702      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2703                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2704                                     &Mask2[0], Mask2.size()));
2705    }
2706
2707    // Break it into (shuffle shuffle_hi, shuffle_lo).
2708    Locs.clear();
2709    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2710    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2711    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2712    unsigned MaskIdx = 0;
2713    unsigned LoIdx = 0;
2714    unsigned HiIdx = NumElems/2;
2715    for (unsigned i = 0; i != NumElems; ++i) {
2716      if (i == NumElems/2) {
2717        MaskPtr = &HiMask;
2718        MaskIdx = 1;
2719        LoIdx = 0;
2720        HiIdx = NumElems/2;
2721      }
2722      SDOperand Elt = PermMask.getOperand(i);
2723      if (Elt.getOpcode() == ISD::UNDEF) {
2724        Locs[i] = std::make_pair(-1, -1);
2725      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
2726        Locs[i] = std::make_pair(MaskIdx, LoIdx);
2727        (*MaskPtr)[LoIdx] = Elt;
2728        LoIdx++;
2729      } else {
2730        Locs[i] = std::make_pair(MaskIdx, HiIdx);
2731        (*MaskPtr)[HiIdx] = Elt;
2732        HiIdx++;
2733      }
2734    }
2735
2736    SDOperand LoShuffle =
2737      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2738                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2739                              &LoMask[0], LoMask.size()));
2740    SDOperand HiShuffle =
2741      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2742                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2743                              &HiMask[0], HiMask.size()));
2744    SmallVector<SDOperand, 8> MaskOps;
2745    for (unsigned i = 0; i != NumElems; ++i) {
2746      if (Locs[i].first == -1) {
2747        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
2748      } else {
2749        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
2750        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
2751      }
2752    }
2753    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
2754                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2755                                   &MaskOps[0], MaskOps.size()));
2756  }
2757
2758  return SDOperand();
2759}
2760
2761SDOperand
2762X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2763  if (!isa<ConstantSDNode>(Op.getOperand(1)))
2764    return SDOperand();
2765
2766  MVT::ValueType VT = Op.getValueType();
2767  // TODO: handle v16i8.
2768  if (MVT::getSizeInBits(VT) == 16) {
2769    // Transform it so it match pextrw which produces a 32-bit result.
2770    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
2771    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
2772                                    Op.getOperand(0), Op.getOperand(1));
2773    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
2774                                    DAG.getValueType(VT));
2775    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
2776  } else if (MVT::getSizeInBits(VT) == 32) {
2777    SDOperand Vec = Op.getOperand(0);
2778    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2779    if (Idx == 0)
2780      return Op;
2781    // SHUFPS the element to the lowest double word, then movss.
2782    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2783    SmallVector<SDOperand, 8> IdxVec;
2784    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT)));
2785    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2786    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2787    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2788    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2789                                 &IdxVec[0], IdxVec.size());
2790    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
2791                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
2792    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
2793                       DAG.getConstant(0, getPointerTy()));
2794  } else if (MVT::getSizeInBits(VT) == 64) {
2795    SDOperand Vec = Op.getOperand(0);
2796    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2797    if (Idx == 0)
2798      return Op;
2799
2800    // UNPCKHPD the element to the lowest double word, then movsd.
2801    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
2802    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
2803    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2804    SmallVector<SDOperand, 8> IdxVec;
2805    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT)));
2806    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2807    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2808                                 &IdxVec[0], IdxVec.size());
2809    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
2810                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
2811    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
2812                       DAG.getConstant(0, getPointerTy()));
2813  }
2814
2815  return SDOperand();
2816}
2817
2818SDOperand
2819X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2820  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
2821  // as its second argument.
2822  MVT::ValueType VT = Op.getValueType();
2823  MVT::ValueType BaseVT = MVT::getVectorBaseType(VT);
2824  SDOperand N0 = Op.getOperand(0);
2825  SDOperand N1 = Op.getOperand(1);
2826  SDOperand N2 = Op.getOperand(2);
2827  if (MVT::getSizeInBits(BaseVT) == 16) {
2828    if (N1.getValueType() != MVT::i32)
2829      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
2830    if (N2.getValueType() != MVT::i32)
2831      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32);
2832    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
2833  } else if (MVT::getSizeInBits(BaseVT) == 32) {
2834    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
2835    if (Idx == 0) {
2836      // Use a movss.
2837      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
2838      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2839      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2840      SmallVector<SDOperand, 8> MaskVec;
2841      MaskVec.push_back(DAG.getConstant(4, BaseVT));
2842      for (unsigned i = 1; i <= 3; ++i)
2843        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2844      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
2845                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2846                                     &MaskVec[0], MaskVec.size()));
2847    } else {
2848      // Use two pinsrw instructions to insert a 32 bit value.
2849      Idx <<= 1;
2850      if (MVT::isFloatingPoint(N1.getValueType())) {
2851        if (ISD::isNON_EXTLoad(N1.Val)) {
2852          // Just load directly from f32mem to GR32.
2853          LoadSDNode *LD = cast<LoadSDNode>(N1);
2854          N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(),
2855                           LD->getSrcValue(), LD->getSrcValueOffset());
2856        } else {
2857          N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
2858          N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
2859          N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
2860                           DAG.getConstant(0, getPointerTy()));
2861        }
2862      }
2863      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
2864      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
2865                       DAG.getConstant(Idx, getPointerTy()));
2866      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
2867      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
2868                       DAG.getConstant(Idx+1, getPointerTy()));
2869      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
2870    }
2871  }
2872
2873  return SDOperand();
2874}
2875
2876SDOperand
2877X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2878  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
2879  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
2880}
2881
2882// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2883// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
2884// one of the above mentioned nodes. It has to be wrapped because otherwise
2885// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2886// be used to form addressing mode. These wrapped nodes will be selected
2887// into MOV32ri.
2888SDOperand
2889X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
2890  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2891  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
2892                                               getPointerTy(),
2893                                               CP->getAlignment());
2894  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
2895  // With PIC, the address is actually $g + Offset.
2896  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2897      !Subtarget->isPICStyleRIPRel()) {
2898    Result = DAG.getNode(ISD::ADD, getPointerTy(),
2899                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
2900                         Result);
2901  }
2902
2903  return Result;
2904}
2905
2906SDOperand
2907X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
2908  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2909  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
2910  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
2911  // With PIC, the address is actually $g + Offset.
2912  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2913      !Subtarget->isPICStyleRIPRel()) {
2914    Result = DAG.getNode(ISD::ADD, getPointerTy(),
2915                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
2916                         Result);
2917  }
2918
2919  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
2920  // load the value at address GV, not the value of GV itself. This means that
2921  // the GlobalAddress must be in the base or index register of the address, not
2922  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
2923  // The same applies for external symbols during PIC codegen
2924  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
2925    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
2926
2927  return Result;
2928}
2929
2930SDOperand
2931X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
2932  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
2933  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
2934  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
2935  // With PIC, the address is actually $g + Offset.
2936  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2937      !Subtarget->isPICStyleRIPRel()) {
2938    Result = DAG.getNode(ISD::ADD, getPointerTy(),
2939                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
2940                         Result);
2941  }
2942
2943  return Result;
2944}
2945
2946SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
2947  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2948  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
2949  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
2950  // With PIC, the address is actually $g + Offset.
2951  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2952      !Subtarget->isPICStyleRIPRel()) {
2953    Result = DAG.getNode(ISD::ADD, getPointerTy(),
2954                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
2955                         Result);
2956  }
2957
2958  return Result;
2959}
2960
2961SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
2962    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2963           "Not an i64 shift!");
2964    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
2965    SDOperand ShOpLo = Op.getOperand(0);
2966    SDOperand ShOpHi = Op.getOperand(1);
2967    SDOperand ShAmt  = Op.getOperand(2);
2968    SDOperand Tmp1 = isSRA ?
2969      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
2970      DAG.getConstant(0, MVT::i32);
2971
2972    SDOperand Tmp2, Tmp3;
2973    if (Op.getOpcode() == ISD::SHL_PARTS) {
2974      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
2975      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
2976    } else {
2977      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
2978      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
2979    }
2980
2981    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
2982    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
2983                                    DAG.getConstant(32, MVT::i8));
2984    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
2985    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
2986
2987    SDOperand Hi, Lo;
2988    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
2989
2990    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
2991    SmallVector<SDOperand, 4> Ops;
2992    if (Op.getOpcode() == ISD::SHL_PARTS) {
2993      Ops.push_back(Tmp2);
2994      Ops.push_back(Tmp3);
2995      Ops.push_back(CC);
2996      Ops.push_back(InFlag);
2997      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
2998      InFlag = Hi.getValue(1);
2999
3000      Ops.clear();
3001      Ops.push_back(Tmp3);
3002      Ops.push_back(Tmp1);
3003      Ops.push_back(CC);
3004      Ops.push_back(InFlag);
3005      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3006    } else {
3007      Ops.push_back(Tmp2);
3008      Ops.push_back(Tmp3);
3009      Ops.push_back(CC);
3010      Ops.push_back(InFlag);
3011      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3012      InFlag = Lo.getValue(1);
3013
3014      Ops.clear();
3015      Ops.push_back(Tmp3);
3016      Ops.push_back(Tmp1);
3017      Ops.push_back(CC);
3018      Ops.push_back(InFlag);
3019      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3020    }
3021
3022    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3023    Ops.clear();
3024    Ops.push_back(Lo);
3025    Ops.push_back(Hi);
3026    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3027}
3028
3029SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3030  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3031         Op.getOperand(0).getValueType() >= MVT::i16 &&
3032         "Unknown SINT_TO_FP to lower!");
3033
3034  SDOperand Result;
3035  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3036  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3037  MachineFunction &MF = DAG.getMachineFunction();
3038  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3039  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3040  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3041                                 StackSlot, NULL, 0);
3042
3043  // Build the FILD
3044  SDVTList Tys;
3045  if (X86ScalarSSE)
3046    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3047  else
3048    Tys = DAG.getVTList(MVT::f64, MVT::Other);
3049  SmallVector<SDOperand, 8> Ops;
3050  Ops.push_back(Chain);
3051  Ops.push_back(StackSlot);
3052  Ops.push_back(DAG.getValueType(SrcVT));
3053  Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3054                       Tys, &Ops[0], Ops.size());
3055
3056  if (X86ScalarSSE) {
3057    Chain = Result.getValue(1);
3058    SDOperand InFlag = Result.getValue(2);
3059
3060    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3061    // shouldn't be necessary except that RFP cannot be live across
3062    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3063    MachineFunction &MF = DAG.getMachineFunction();
3064    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3065    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3066    Tys = DAG.getVTList(MVT::Other);
3067    SmallVector<SDOperand, 8> Ops;
3068    Ops.push_back(Chain);
3069    Ops.push_back(Result);
3070    Ops.push_back(StackSlot);
3071    Ops.push_back(DAG.getValueType(Op.getValueType()));
3072    Ops.push_back(InFlag);
3073    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3074    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3075  }
3076
3077  return Result;
3078}
3079
3080SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3081  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3082         "Unknown FP_TO_SINT to lower!");
3083  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3084  // stack slot.
3085  MachineFunction &MF = DAG.getMachineFunction();
3086  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3087  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3088  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3089
3090  unsigned Opc;
3091  switch (Op.getValueType()) {
3092    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3093    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3094    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3095    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3096  }
3097
3098  SDOperand Chain = DAG.getEntryNode();
3099  SDOperand Value = Op.getOperand(0);
3100  if (X86ScalarSSE) {
3101    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3102    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3103    SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
3104    SDOperand Ops[] = {
3105      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3106    };
3107    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3108    Chain = Value.getValue(1);
3109    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3110    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3111  }
3112
3113  // Build the FP_TO_INT*_IN_MEM
3114  SDOperand Ops[] = { Chain, Value, StackSlot };
3115  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3116
3117  // Load the result.
3118  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3119}
3120
3121SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3122  MVT::ValueType VT = Op.getValueType();
3123  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3124  std::vector<Constant*> CV;
3125  if (VT == MVT::f64) {
3126    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
3127    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3128  } else {
3129    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
3130    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3131    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3132    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3133  }
3134  Constant *CS = ConstantStruct::get(CV);
3135  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3136  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3137  SmallVector<SDOperand, 3> Ops;
3138  Ops.push_back(DAG.getEntryNode());
3139  Ops.push_back(CPIdx);
3140  Ops.push_back(DAG.getSrcValue(NULL));
3141  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3142  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3143}
3144
3145SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3146  MVT::ValueType VT = Op.getValueType();
3147  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3148  std::vector<Constant*> CV;
3149  if (VT == MVT::f64) {
3150    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
3151    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3152  } else {
3153    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
3154    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3155    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3156    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3157  }
3158  Constant *CS = ConstantStruct::get(CV);
3159  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3160  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3161  SmallVector<SDOperand, 3> Ops;
3162  Ops.push_back(DAG.getEntryNode());
3163  Ops.push_back(CPIdx);
3164  Ops.push_back(DAG.getSrcValue(NULL));
3165  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3166  return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3167}
3168
3169SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3170  SDOperand Op0 = Op.getOperand(0);
3171  SDOperand Op1 = Op.getOperand(1);
3172  MVT::ValueType VT = Op.getValueType();
3173  MVT::ValueType SrcVT = Op1.getValueType();
3174  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
3175
3176  // If second operand is smaller, extend it first.
3177  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3178    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3179    SrcVT = VT;
3180  }
3181
3182  // First get the sign bit of second operand.
3183  std::vector<Constant*> CV;
3184  if (SrcVT == MVT::f64) {
3185    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
3186    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3187  } else {
3188    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
3189    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3190    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3191    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3192  }
3193  Constant *CS = ConstantStruct::get(CV);
3194  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3195  SDVTList Tys = DAG.getVTList(SrcVT, MVT::Other);
3196  SmallVector<SDOperand, 3> Ops;
3197  Ops.push_back(DAG.getEntryNode());
3198  Ops.push_back(CPIdx);
3199  Ops.push_back(DAG.getSrcValue(NULL));
3200  SDOperand Mask1 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3201  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3202
3203  // Shift sign bit right or left if the two operands have different types.
3204  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3205    // Op0 is MVT::f32, Op1 is MVT::f64.
3206    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3207    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3208                          DAG.getConstant(32, MVT::i32));
3209    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3210    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3211                          DAG.getConstant(0, getPointerTy()));
3212  }
3213
3214  // Clear first operand sign bit.
3215  CV.clear();
3216  if (VT == MVT::f64) {
3217    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
3218    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3219  } else {
3220    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
3221    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3222    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3223    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3224  }
3225  CS = ConstantStruct::get(CV);
3226  CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3227  Tys = DAG.getVTList(VT, MVT::Other);
3228  Ops.clear();
3229  Ops.push_back(DAG.getEntryNode());
3230  Ops.push_back(CPIdx);
3231  Ops.push_back(DAG.getSrcValue(NULL));
3232  SDOperand Mask2 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3233  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3234
3235  // Or the value with the sign bit.
3236  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3237}
3238
3239SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3240                                        SDOperand Chain) {
3241  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3242  SDOperand Cond;
3243  SDOperand Op0 = Op.getOperand(0);
3244  SDOperand Op1 = Op.getOperand(1);
3245  SDOperand CC = Op.getOperand(2);
3246  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3247  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3248  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3249  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3250  unsigned X86CC;
3251
3252  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3253                     Op0, Op1, DAG)) {
3254    SDOperand Ops1[] = { Chain, Op0, Op1 };
3255    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3256    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3257    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3258  }
3259
3260  assert(isFP && "Illegal integer SetCC!");
3261
3262  SDOperand COps[] = { Chain, Op0, Op1 };
3263  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3264
3265  switch (SetCCOpcode) {
3266  default: assert(false && "Illegal floating point SetCC!");
3267  case ISD::SETOEQ: {  // !PF & ZF
3268    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3269    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3270    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3271                         Tmp1.getValue(1) };
3272    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3273    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3274  }
3275  case ISD::SETUNE: {  // PF | !ZF
3276    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3277    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3278    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3279                         Tmp1.getValue(1) };
3280    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3281    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3282  }
3283  }
3284}
3285
3286SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3287  bool addTest = true;
3288  SDOperand Chain = DAG.getEntryNode();
3289  SDOperand Cond  = Op.getOperand(0);
3290  SDOperand CC;
3291  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3292
3293  if (Cond.getOpcode() == ISD::SETCC)
3294    Cond = LowerSETCC(Cond, DAG, Chain);
3295
3296  if (Cond.getOpcode() == X86ISD::SETCC) {
3297    CC = Cond.getOperand(0);
3298
3299    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3300    // (since flag operand cannot be shared). Use it as the condition setting
3301    // operand in place of the X86ISD::SETCC.
3302    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3303    // to use a test instead of duplicating the X86ISD::CMP (for register
3304    // pressure reason)?
3305    SDOperand Cmp = Cond.getOperand(1);
3306    unsigned Opc = Cmp.getOpcode();
3307    bool IllegalFPCMov = !X86ScalarSSE &&
3308      MVT::isFloatingPoint(Op.getValueType()) &&
3309      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3310    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3311        !IllegalFPCMov) {
3312      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3313      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3314      addTest = false;
3315    }
3316  }
3317
3318  if (addTest) {
3319    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3320    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3321    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3322  }
3323
3324  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3325  SmallVector<SDOperand, 4> Ops;
3326  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3327  // condition is true.
3328  Ops.push_back(Op.getOperand(2));
3329  Ops.push_back(Op.getOperand(1));
3330  Ops.push_back(CC);
3331  Ops.push_back(Cond.getValue(1));
3332  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3333}
3334
3335SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3336  bool addTest = true;
3337  SDOperand Chain = Op.getOperand(0);
3338  SDOperand Cond  = Op.getOperand(1);
3339  SDOperand Dest  = Op.getOperand(2);
3340  SDOperand CC;
3341  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3342
3343  if (Cond.getOpcode() == ISD::SETCC)
3344    Cond = LowerSETCC(Cond, DAG, Chain);
3345
3346  if (Cond.getOpcode() == X86ISD::SETCC) {
3347    CC = Cond.getOperand(0);
3348
3349    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3350    // (since flag operand cannot be shared). Use it as the condition setting
3351    // operand in place of the X86ISD::SETCC.
3352    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3353    // to use a test instead of duplicating the X86ISD::CMP (for register
3354    // pressure reason)?
3355    SDOperand Cmp = Cond.getOperand(1);
3356    unsigned Opc = Cmp.getOpcode();
3357    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3358      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3359      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3360      addTest = false;
3361    }
3362  }
3363
3364  if (addTest) {
3365    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3366    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3367    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3368  }
3369  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3370                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
3371}
3372
3373SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3374  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3375
3376  if (Subtarget->is64Bit())
3377    return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3378  else
3379    switch (CallingConv) {
3380    default:
3381      assert(0 && "Unsupported calling convention");
3382    case CallingConv::Fast:
3383      // TODO: Implement fastcc
3384      // Falls through
3385    case CallingConv::C:
3386    case CallingConv::X86_StdCall:
3387      return LowerCCCCallTo(Op, DAG, CallingConv);
3388    case CallingConv::X86_FastCall:
3389      return LowerFastCCCallTo(Op, DAG, CallingConv);
3390    }
3391}
3392
3393SDOperand
3394X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3395  MachineFunction &MF = DAG.getMachineFunction();
3396  const Function* Fn = MF.getFunction();
3397  if (Fn->hasExternalLinkage() &&
3398      Subtarget->isTargetCygMing() &&
3399      Fn->getName() == "main")
3400    MF.getInfo<X86FunctionInfo>()->setForceFramePointer(true);
3401
3402  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3403  if (Subtarget->is64Bit())
3404    return LowerX86_64CCCArguments(Op, DAG);
3405  else
3406    switch(CC) {
3407    default:
3408      assert(0 && "Unsupported calling convention");
3409    case CallingConv::Fast:
3410      // TODO: implement fastcc.
3411
3412      // Falls through
3413    case CallingConv::C:
3414      return LowerCCCArguments(Op, DAG);
3415    case CallingConv::X86_StdCall:
3416      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(StdCall);
3417      return LowerCCCArguments(Op, DAG, true);
3418    case CallingConv::X86_FastCall:
3419      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(FastCall);
3420      return LowerFastCCArguments(Op, DAG);
3421    }
3422}
3423
3424SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3425  SDOperand InFlag(0, 0);
3426  SDOperand Chain = Op.getOperand(0);
3427  unsigned Align =
3428    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3429  if (Align == 0) Align = 1;
3430
3431  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3432  // If not DWORD aligned, call memset if size is less than the threshold.
3433  // It knows how to align to the right boundary first.
3434  if ((Align & 3) != 0 ||
3435      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3436    MVT::ValueType IntPtr = getPointerTy();
3437    const Type *IntPtrTy = getTargetData()->getIntPtrType();
3438    TargetLowering::ArgListTy Args;
3439    TargetLowering::ArgListEntry Entry;
3440    Entry.Node = Op.getOperand(1);
3441    Entry.Ty = IntPtrTy;
3442    Entry.isSigned = false;
3443    Entry.isInReg = false;
3444    Entry.isSRet = false;
3445    Args.push_back(Entry);
3446    // Extend the unsigned i8 argument to be an int value for the call.
3447    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3448    Entry.Ty = IntPtrTy;
3449    Entry.isSigned = false;
3450    Entry.isInReg = false;
3451    Entry.isSRet = false;
3452    Args.push_back(Entry);
3453    Entry.Node = Op.getOperand(3);
3454    Args.push_back(Entry);
3455    std::pair<SDOperand,SDOperand> CallResult =
3456      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3457                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3458    return CallResult.second;
3459  }
3460
3461  MVT::ValueType AVT;
3462  SDOperand Count;
3463  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3464  unsigned BytesLeft = 0;
3465  bool TwoRepStos = false;
3466  if (ValC) {
3467    unsigned ValReg;
3468    uint64_t Val = ValC->getValue() & 255;
3469
3470    // If the value is a constant, then we can potentially use larger sets.
3471    switch (Align & 3) {
3472      case 2:   // WORD aligned
3473        AVT = MVT::i16;
3474        ValReg = X86::AX;
3475        Val = (Val << 8) | Val;
3476        break;
3477      case 0:  // DWORD aligned
3478        AVT = MVT::i32;
3479        ValReg = X86::EAX;
3480        Val = (Val << 8)  | Val;
3481        Val = (Val << 16) | Val;
3482        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
3483          AVT = MVT::i64;
3484          ValReg = X86::RAX;
3485          Val = (Val << 32) | Val;
3486        }
3487        break;
3488      default:  // Byte aligned
3489        AVT = MVT::i8;
3490        ValReg = X86::AL;
3491        Count = Op.getOperand(3);
3492        break;
3493    }
3494
3495    if (AVT > MVT::i8) {
3496      if (I) {
3497        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3498        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3499        BytesLeft = I->getValue() % UBytes;
3500      } else {
3501        assert(AVT >= MVT::i32 &&
3502               "Do not use rep;stos if not at least DWORD aligned");
3503        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3504                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3505        TwoRepStos = true;
3506      }
3507    }
3508
3509    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3510                              InFlag);
3511    InFlag = Chain.getValue(1);
3512  } else {
3513    AVT = MVT::i8;
3514    Count  = Op.getOperand(3);
3515    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3516    InFlag = Chain.getValue(1);
3517  }
3518
3519  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3520                            Count, InFlag);
3521  InFlag = Chain.getValue(1);
3522  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3523                            Op.getOperand(1), InFlag);
3524  InFlag = Chain.getValue(1);
3525
3526  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3527  SmallVector<SDOperand, 8> Ops;
3528  Ops.push_back(Chain);
3529  Ops.push_back(DAG.getValueType(AVT));
3530  Ops.push_back(InFlag);
3531  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3532
3533  if (TwoRepStos) {
3534    InFlag = Chain.getValue(1);
3535    Count = Op.getOperand(3);
3536    MVT::ValueType CVT = Count.getValueType();
3537    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3538                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3539    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3540                              Left, InFlag);
3541    InFlag = Chain.getValue(1);
3542    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3543    Ops.clear();
3544    Ops.push_back(Chain);
3545    Ops.push_back(DAG.getValueType(MVT::i8));
3546    Ops.push_back(InFlag);
3547    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3548  } else if (BytesLeft) {
3549    // Issue stores for the last 1 - 7 bytes.
3550    SDOperand Value;
3551    unsigned Val = ValC->getValue() & 255;
3552    unsigned Offset = I->getValue() - BytesLeft;
3553    SDOperand DstAddr = Op.getOperand(1);
3554    MVT::ValueType AddrVT = DstAddr.getValueType();
3555    if (BytesLeft >= 4) {
3556      Val = (Val << 8)  | Val;
3557      Val = (Val << 16) | Val;
3558      Value = DAG.getConstant(Val, MVT::i32);
3559      Chain = DAG.getStore(Chain, Value,
3560                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3561                                       DAG.getConstant(Offset, AddrVT)),
3562                           NULL, 0);
3563      BytesLeft -= 4;
3564      Offset += 4;
3565    }
3566    if (BytesLeft >= 2) {
3567      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3568      Chain = DAG.getStore(Chain, Value,
3569                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3570                                       DAG.getConstant(Offset, AddrVT)),
3571                           NULL, 0);
3572      BytesLeft -= 2;
3573      Offset += 2;
3574    }
3575    if (BytesLeft == 1) {
3576      Value = DAG.getConstant(Val, MVT::i8);
3577      Chain = DAG.getStore(Chain, Value,
3578                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3579                                       DAG.getConstant(Offset, AddrVT)),
3580                           NULL, 0);
3581    }
3582  }
3583
3584  return Chain;
3585}
3586
3587SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
3588  SDOperand Chain = Op.getOperand(0);
3589  unsigned Align =
3590    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3591  if (Align == 0) Align = 1;
3592
3593  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3594  // If not DWORD aligned, call memcpy if size is less than the threshold.
3595  // It knows how to align to the right boundary first.
3596  if ((Align & 3) != 0 ||
3597      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3598    MVT::ValueType IntPtr = getPointerTy();
3599    TargetLowering::ArgListTy Args;
3600    TargetLowering::ArgListEntry Entry;
3601    Entry.Ty = getTargetData()->getIntPtrType();
3602    Entry.isSigned = false;
3603    Entry.isInReg = false;
3604    Entry.isSRet = false;
3605    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
3606    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
3607    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
3608    std::pair<SDOperand,SDOperand> CallResult =
3609      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3610                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
3611    return CallResult.second;
3612  }
3613
3614  MVT::ValueType AVT;
3615  SDOperand Count;
3616  unsigned BytesLeft = 0;
3617  bool TwoRepMovs = false;
3618  switch (Align & 3) {
3619    case 2:   // WORD aligned
3620      AVT = MVT::i16;
3621      break;
3622    case 0:  // DWORD aligned
3623      AVT = MVT::i32;
3624      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
3625        AVT = MVT::i64;
3626      break;
3627    default:  // Byte aligned
3628      AVT = MVT::i8;
3629      Count = Op.getOperand(3);
3630      break;
3631  }
3632
3633  if (AVT > MVT::i8) {
3634    if (I) {
3635      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3636      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3637      BytesLeft = I->getValue() % UBytes;
3638    } else {
3639      assert(AVT >= MVT::i32 &&
3640             "Do not use rep;movs if not at least DWORD aligned");
3641      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3642                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3643      TwoRepMovs = true;
3644    }
3645  }
3646
3647  SDOperand InFlag(0, 0);
3648  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3649                            Count, InFlag);
3650  InFlag = Chain.getValue(1);
3651  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3652                            Op.getOperand(1), InFlag);
3653  InFlag = Chain.getValue(1);
3654  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
3655                            Op.getOperand(2), InFlag);
3656  InFlag = Chain.getValue(1);
3657
3658  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3659  SmallVector<SDOperand, 8> Ops;
3660  Ops.push_back(Chain);
3661  Ops.push_back(DAG.getValueType(AVT));
3662  Ops.push_back(InFlag);
3663  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3664
3665  if (TwoRepMovs) {
3666    InFlag = Chain.getValue(1);
3667    Count = Op.getOperand(3);
3668    MVT::ValueType CVT = Count.getValueType();
3669    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3670                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3671    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3672                              Left, InFlag);
3673    InFlag = Chain.getValue(1);
3674    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3675    Ops.clear();
3676    Ops.push_back(Chain);
3677    Ops.push_back(DAG.getValueType(MVT::i8));
3678    Ops.push_back(InFlag);
3679    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3680  } else if (BytesLeft) {
3681    // Issue loads and stores for the last 1 - 7 bytes.
3682    unsigned Offset = I->getValue() - BytesLeft;
3683    SDOperand DstAddr = Op.getOperand(1);
3684    MVT::ValueType DstVT = DstAddr.getValueType();
3685    SDOperand SrcAddr = Op.getOperand(2);
3686    MVT::ValueType SrcVT = SrcAddr.getValueType();
3687    SDOperand Value;
3688    if (BytesLeft >= 4) {
3689      Value = DAG.getLoad(MVT::i32, Chain,
3690                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3691                                      DAG.getConstant(Offset, SrcVT)),
3692                          NULL, 0);
3693      Chain = Value.getValue(1);
3694      Chain = DAG.getStore(Chain, Value,
3695                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
3696                                       DAG.getConstant(Offset, DstVT)),
3697                           NULL, 0);
3698      BytesLeft -= 4;
3699      Offset += 4;
3700    }
3701    if (BytesLeft >= 2) {
3702      Value = DAG.getLoad(MVT::i16, Chain,
3703                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3704                                      DAG.getConstant(Offset, SrcVT)),
3705                          NULL, 0);
3706      Chain = Value.getValue(1);
3707      Chain = DAG.getStore(Chain, Value,
3708                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
3709                                       DAG.getConstant(Offset, DstVT)),
3710                           NULL, 0);
3711      BytesLeft -= 2;
3712      Offset += 2;
3713    }
3714
3715    if (BytesLeft == 1) {
3716      Value = DAG.getLoad(MVT::i8, Chain,
3717                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3718                                      DAG.getConstant(Offset, SrcVT)),
3719                          NULL, 0);
3720      Chain = Value.getValue(1);
3721      Chain = DAG.getStore(Chain, Value,
3722                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
3723                                       DAG.getConstant(Offset, DstVT)),
3724                           NULL, 0);
3725    }
3726  }
3727
3728  return Chain;
3729}
3730
3731SDOperand
3732X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
3733  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3734  SDOperand TheOp = Op.getOperand(0);
3735  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
3736  if (Subtarget->is64Bit()) {
3737    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
3738    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
3739                                         MVT::i64, Copy1.getValue(2));
3740    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
3741                                DAG.getConstant(32, MVT::i8));
3742    SDOperand Ops[] = {
3743      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
3744    };
3745
3746    Tys = DAG.getVTList(MVT::i64, MVT::Other);
3747    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
3748  }
3749
3750  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
3751  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
3752                                       MVT::i32, Copy1.getValue(2));
3753  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
3754  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
3755  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
3756}
3757
3758SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
3759  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
3760
3761  if (!Subtarget->is64Bit()) {
3762    // vastart just stores the address of the VarArgsFrameIndex slot into the
3763    // memory location argument.
3764    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
3765    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
3766                        SV->getOffset());
3767  }
3768
3769  // __va_list_tag:
3770  //   gp_offset         (0 - 6 * 8)
3771  //   fp_offset         (48 - 48 + 8 * 16)
3772  //   overflow_arg_area (point to parameters coming in memory).
3773  //   reg_save_area
3774  SmallVector<SDOperand, 8> MemOps;
3775  SDOperand FIN = Op.getOperand(1);
3776  // Store gp_offset
3777  SDOperand Store = DAG.getStore(Op.getOperand(0),
3778                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
3779                                 FIN, SV->getValue(), SV->getOffset());
3780  MemOps.push_back(Store);
3781
3782  // Store fp_offset
3783  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
3784                    DAG.getConstant(4, getPointerTy()));
3785  Store = DAG.getStore(Op.getOperand(0),
3786                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
3787                       FIN, SV->getValue(), SV->getOffset());
3788  MemOps.push_back(Store);
3789
3790  // Store ptr to overflow_arg_area
3791  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
3792                    DAG.getConstant(4, getPointerTy()));
3793  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
3794  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
3795                       SV->getOffset());
3796  MemOps.push_back(Store);
3797
3798  // Store ptr to reg_save_area.
3799  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
3800                    DAG.getConstant(8, getPointerTy()));
3801  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
3802  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
3803                       SV->getOffset());
3804  MemOps.push_back(Store);
3805  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
3806}
3807
3808SDOperand
3809X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
3810  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
3811  switch (IntNo) {
3812  default: return SDOperand();    // Don't custom lower most intrinsics.
3813    // Comparison intrinsics.
3814  case Intrinsic::x86_sse_comieq_ss:
3815  case Intrinsic::x86_sse_comilt_ss:
3816  case Intrinsic::x86_sse_comile_ss:
3817  case Intrinsic::x86_sse_comigt_ss:
3818  case Intrinsic::x86_sse_comige_ss:
3819  case Intrinsic::x86_sse_comineq_ss:
3820  case Intrinsic::x86_sse_ucomieq_ss:
3821  case Intrinsic::x86_sse_ucomilt_ss:
3822  case Intrinsic::x86_sse_ucomile_ss:
3823  case Intrinsic::x86_sse_ucomigt_ss:
3824  case Intrinsic::x86_sse_ucomige_ss:
3825  case Intrinsic::x86_sse_ucomineq_ss:
3826  case Intrinsic::x86_sse2_comieq_sd:
3827  case Intrinsic::x86_sse2_comilt_sd:
3828  case Intrinsic::x86_sse2_comile_sd:
3829  case Intrinsic::x86_sse2_comigt_sd:
3830  case Intrinsic::x86_sse2_comige_sd:
3831  case Intrinsic::x86_sse2_comineq_sd:
3832  case Intrinsic::x86_sse2_ucomieq_sd:
3833  case Intrinsic::x86_sse2_ucomilt_sd:
3834  case Intrinsic::x86_sse2_ucomile_sd:
3835  case Intrinsic::x86_sse2_ucomigt_sd:
3836  case Intrinsic::x86_sse2_ucomige_sd:
3837  case Intrinsic::x86_sse2_ucomineq_sd: {
3838    unsigned Opc = 0;
3839    ISD::CondCode CC = ISD::SETCC_INVALID;
3840    switch (IntNo) {
3841    default: break;
3842    case Intrinsic::x86_sse_comieq_ss:
3843    case Intrinsic::x86_sse2_comieq_sd:
3844      Opc = X86ISD::COMI;
3845      CC = ISD::SETEQ;
3846      break;
3847    case Intrinsic::x86_sse_comilt_ss:
3848    case Intrinsic::x86_sse2_comilt_sd:
3849      Opc = X86ISD::COMI;
3850      CC = ISD::SETLT;
3851      break;
3852    case Intrinsic::x86_sse_comile_ss:
3853    case Intrinsic::x86_sse2_comile_sd:
3854      Opc = X86ISD::COMI;
3855      CC = ISD::SETLE;
3856      break;
3857    case Intrinsic::x86_sse_comigt_ss:
3858    case Intrinsic::x86_sse2_comigt_sd:
3859      Opc = X86ISD::COMI;
3860      CC = ISD::SETGT;
3861      break;
3862    case Intrinsic::x86_sse_comige_ss:
3863    case Intrinsic::x86_sse2_comige_sd:
3864      Opc = X86ISD::COMI;
3865      CC = ISD::SETGE;
3866      break;
3867    case Intrinsic::x86_sse_comineq_ss:
3868    case Intrinsic::x86_sse2_comineq_sd:
3869      Opc = X86ISD::COMI;
3870      CC = ISD::SETNE;
3871      break;
3872    case Intrinsic::x86_sse_ucomieq_ss:
3873    case Intrinsic::x86_sse2_ucomieq_sd:
3874      Opc = X86ISD::UCOMI;
3875      CC = ISD::SETEQ;
3876      break;
3877    case Intrinsic::x86_sse_ucomilt_ss:
3878    case Intrinsic::x86_sse2_ucomilt_sd:
3879      Opc = X86ISD::UCOMI;
3880      CC = ISD::SETLT;
3881      break;
3882    case Intrinsic::x86_sse_ucomile_ss:
3883    case Intrinsic::x86_sse2_ucomile_sd:
3884      Opc = X86ISD::UCOMI;
3885      CC = ISD::SETLE;
3886      break;
3887    case Intrinsic::x86_sse_ucomigt_ss:
3888    case Intrinsic::x86_sse2_ucomigt_sd:
3889      Opc = X86ISD::UCOMI;
3890      CC = ISD::SETGT;
3891      break;
3892    case Intrinsic::x86_sse_ucomige_ss:
3893    case Intrinsic::x86_sse2_ucomige_sd:
3894      Opc = X86ISD::UCOMI;
3895      CC = ISD::SETGE;
3896      break;
3897    case Intrinsic::x86_sse_ucomineq_ss:
3898    case Intrinsic::x86_sse2_ucomineq_sd:
3899      Opc = X86ISD::UCOMI;
3900      CC = ISD::SETNE;
3901      break;
3902    }
3903
3904    unsigned X86CC;
3905    SDOperand LHS = Op.getOperand(1);
3906    SDOperand RHS = Op.getOperand(2);
3907    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
3908
3909    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3910    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
3911    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
3912    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3913    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3914    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
3915    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
3916  }
3917  }
3918}
3919
3920SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3921  // Depths > 0 not supported yet!
3922  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3923    return SDOperand();
3924
3925  // Just load the return address
3926  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
3927  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3928}
3929
3930SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
3931  // Depths > 0 not supported yet!
3932  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3933    return SDOperand();
3934
3935  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
3936  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
3937                     DAG.getConstant(4, getPointerTy()));
3938}
3939
3940/// LowerOperation - Provide custom lowering hooks for some operations.
3941///
3942SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3943  switch (Op.getOpcode()) {
3944  default: assert(0 && "Should not custom lower this!");
3945  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3946  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3947  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3948  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
3949  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3950  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3951  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3952  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
3953  case ISD::SHL_PARTS:
3954  case ISD::SRA_PARTS:
3955  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
3956  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3957  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3958  case ISD::FABS:               return LowerFABS(Op, DAG);
3959  case ISD::FNEG:               return LowerFNEG(Op, DAG);
3960  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
3961  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
3962  case ISD::SELECT:             return LowerSELECT(Op, DAG);
3963  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
3964  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3965  case ISD::CALL:               return LowerCALL(Op, DAG);
3966  case ISD::RET:                return LowerRET(Op, DAG);
3967  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
3968  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
3969  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
3970  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
3971  case ISD::VASTART:            return LowerVASTART(Op, DAG);
3972  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3973  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3974  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3975  }
3976  return SDOperand();
3977}
3978
3979const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
3980  switch (Opcode) {
3981  default: return NULL;
3982  case X86ISD::SHLD:               return "X86ISD::SHLD";
3983  case X86ISD::SHRD:               return "X86ISD::SHRD";
3984  case X86ISD::FAND:               return "X86ISD::FAND";
3985  case X86ISD::FOR:                return "X86ISD::FOR";
3986  case X86ISD::FXOR:               return "X86ISD::FXOR";
3987  case X86ISD::FSRL:               return "X86ISD::FSRL";
3988  case X86ISD::FILD:               return "X86ISD::FILD";
3989  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
3990  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
3991  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
3992  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
3993  case X86ISD::FLD:                return "X86ISD::FLD";
3994  case X86ISD::FST:                return "X86ISD::FST";
3995  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
3996  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
3997  case X86ISD::CALL:               return "X86ISD::CALL";
3998  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
3999  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4000  case X86ISD::CMP:                return "X86ISD::CMP";
4001  case X86ISD::COMI:               return "X86ISD::COMI";
4002  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4003  case X86ISD::SETCC:              return "X86ISD::SETCC";
4004  case X86ISD::CMOV:               return "X86ISD::CMOV";
4005  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4006  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4007  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4008  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4009  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
4010  case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
4011  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4012  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4013  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4014  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4015  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4016  case X86ISD::FMAX:               return "X86ISD::FMAX";
4017  case X86ISD::FMIN:               return "X86ISD::FMIN";
4018  }
4019}
4020
4021/// isLegalAddressImmediate - Return true if the integer value or
4022/// GlobalValue can be used as the offset of the target addressing mode.
4023bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const {
4024  // X86 allows a sign-extended 32-bit immediate field.
4025  return (V > -(1LL << 32) && V < (1LL << 32)-1);
4026}
4027
4028bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
4029  // In 64-bit mode, GV is 64-bit so it won't fit in the 32-bit displacement
4030  // field unless we are in small code model.
4031  if (Subtarget->is64Bit() &&
4032      getTargetMachine().getCodeModel() != CodeModel::Small)
4033    return false;
4034
4035  return (!Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false));
4036}
4037
4038/// isShuffleMaskLegal - Targets can use this to indicate that they only
4039/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4040/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4041/// are assumed to be legal.
4042bool
4043X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4044  // Only do shuffles on 128-bit vector types for now.
4045  if (MVT::getSizeInBits(VT) == 64) return false;
4046  return (Mask.Val->getNumOperands() <= 4 ||
4047          isSplatMask(Mask.Val)  ||
4048          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4049          X86::isUNPCKLMask(Mask.Val) ||
4050          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4051          X86::isUNPCKHMask(Mask.Val));
4052}
4053
4054bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4055                                               MVT::ValueType EVT,
4056                                               SelectionDAG &DAG) const {
4057  unsigned NumElts = BVOps.size();
4058  // Only do shuffles on 128-bit vector types for now.
4059  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4060  if (NumElts == 2) return true;
4061  if (NumElts == 4) {
4062    return (isMOVLMask(&BVOps[0], 4)  ||
4063            isCommutedMOVL(&BVOps[0], 4, true) ||
4064            isSHUFPMask(&BVOps[0], 4) ||
4065            isCommutedSHUFP(&BVOps[0], 4));
4066  }
4067  return false;
4068}
4069
4070//===----------------------------------------------------------------------===//
4071//                           X86 Scheduler Hooks
4072//===----------------------------------------------------------------------===//
4073
4074MachineBasicBlock *
4075X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4076                                           MachineBasicBlock *BB) {
4077  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4078  switch (MI->getOpcode()) {
4079  default: assert(false && "Unexpected instr type to insert");
4080  case X86::CMOV_FR32:
4081  case X86::CMOV_FR64:
4082  case X86::CMOV_V4F32:
4083  case X86::CMOV_V2F64:
4084  case X86::CMOV_V2I64: {
4085    // To "insert" a SELECT_CC instruction, we actually have to insert the
4086    // diamond control-flow pattern.  The incoming instruction knows the
4087    // destination vreg to set, the condition code register to branch on, the
4088    // true/false values to select between, and a branch opcode to use.
4089    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4090    ilist<MachineBasicBlock>::iterator It = BB;
4091    ++It;
4092
4093    //  thisMBB:
4094    //  ...
4095    //   TrueVal = ...
4096    //   cmpTY ccX, r1, r2
4097    //   bCC copy1MBB
4098    //   fallthrough --> copy0MBB
4099    MachineBasicBlock *thisMBB = BB;
4100    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4101    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4102    unsigned Opc =
4103      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4104    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4105    MachineFunction *F = BB->getParent();
4106    F->getBasicBlockList().insert(It, copy0MBB);
4107    F->getBasicBlockList().insert(It, sinkMBB);
4108    // Update machine-CFG edges by first adding all successors of the current
4109    // block to the new block which will contain the Phi node for the select.
4110    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4111        e = BB->succ_end(); i != e; ++i)
4112      sinkMBB->addSuccessor(*i);
4113    // Next, remove all successors of the current block, and add the true
4114    // and fallthrough blocks as its successors.
4115    while(!BB->succ_empty())
4116      BB->removeSuccessor(BB->succ_begin());
4117    BB->addSuccessor(copy0MBB);
4118    BB->addSuccessor(sinkMBB);
4119
4120    //  copy0MBB:
4121    //   %FalseValue = ...
4122    //   # fallthrough to sinkMBB
4123    BB = copy0MBB;
4124
4125    // Update machine-CFG edges
4126    BB->addSuccessor(sinkMBB);
4127
4128    //  sinkMBB:
4129    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4130    //  ...
4131    BB = sinkMBB;
4132    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4133      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4134      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4135
4136    delete MI;   // The pseudo instruction is gone now.
4137    return BB;
4138  }
4139
4140  case X86::FP_TO_INT16_IN_MEM:
4141  case X86::FP_TO_INT32_IN_MEM:
4142  case X86::FP_TO_INT64_IN_MEM: {
4143    // Change the floating point control register to use "round towards zero"
4144    // mode when truncating to an integer value.
4145    MachineFunction *F = BB->getParent();
4146    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4147    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4148
4149    // Load the old value of the high byte of the control word...
4150    unsigned OldCW =
4151      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4152    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4153
4154    // Set the high part to be round to zero...
4155    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4156      .addImm(0xC7F);
4157
4158    // Reload the modified control word now...
4159    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4160
4161    // Restore the memory image of control word to original value
4162    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4163      .addReg(OldCW);
4164
4165    // Get the X86 opcode to use.
4166    unsigned Opc;
4167    switch (MI->getOpcode()) {
4168    default: assert(0 && "illegal opcode!");
4169    case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
4170    case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
4171    case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
4172    }
4173
4174    X86AddressMode AM;
4175    MachineOperand &Op = MI->getOperand(0);
4176    if (Op.isRegister()) {
4177      AM.BaseType = X86AddressMode::RegBase;
4178      AM.Base.Reg = Op.getReg();
4179    } else {
4180      AM.BaseType = X86AddressMode::FrameIndexBase;
4181      AM.Base.FrameIndex = Op.getFrameIndex();
4182    }
4183    Op = MI->getOperand(1);
4184    if (Op.isImmediate())
4185      AM.Scale = Op.getImm();
4186    Op = MI->getOperand(2);
4187    if (Op.isImmediate())
4188      AM.IndexReg = Op.getImm();
4189    Op = MI->getOperand(3);
4190    if (Op.isGlobalAddress()) {
4191      AM.GV = Op.getGlobal();
4192    } else {
4193      AM.Disp = Op.getImm();
4194    }
4195    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4196                      .addReg(MI->getOperand(4).getReg());
4197
4198    // Reload the original control word now.
4199    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4200
4201    delete MI;   // The pseudo instruction is gone now.
4202    return BB;
4203  }
4204  }
4205}
4206
4207//===----------------------------------------------------------------------===//
4208//                           X86 Optimization Hooks
4209//===----------------------------------------------------------------------===//
4210
4211void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4212                                                       uint64_t Mask,
4213                                                       uint64_t &KnownZero,
4214                                                       uint64_t &KnownOne,
4215                                                       unsigned Depth) const {
4216  unsigned Opc = Op.getOpcode();
4217  assert((Opc >= ISD::BUILTIN_OP_END ||
4218          Opc == ISD::INTRINSIC_WO_CHAIN ||
4219          Opc == ISD::INTRINSIC_W_CHAIN ||
4220          Opc == ISD::INTRINSIC_VOID) &&
4221         "Should use MaskedValueIsZero if you don't know whether Op"
4222         " is a target node!");
4223
4224  KnownZero = KnownOne = 0;   // Don't know anything.
4225  switch (Opc) {
4226  default: break;
4227  case X86ISD::SETCC:
4228    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4229    break;
4230  }
4231}
4232
4233/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4234/// element of the result of the vector shuffle.
4235static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4236  MVT::ValueType VT = N->getValueType(0);
4237  SDOperand PermMask = N->getOperand(2);
4238  unsigned NumElems = PermMask.getNumOperands();
4239  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4240  i %= NumElems;
4241  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4242    return (i == 0)
4243      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
4244  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4245    SDOperand Idx = PermMask.getOperand(i);
4246    if (Idx.getOpcode() == ISD::UNDEF)
4247      return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
4248    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4249  }
4250  return SDOperand();
4251}
4252
4253/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4254/// node is a GlobalAddress + an offset.
4255static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4256  unsigned Opc = N->getOpcode();
4257  if (Opc == X86ISD::Wrapper) {
4258    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4259      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4260      return true;
4261    }
4262  } else if (Opc == ISD::ADD) {
4263    SDOperand N1 = N->getOperand(0);
4264    SDOperand N2 = N->getOperand(1);
4265    if (isGAPlusOffset(N1.Val, GA, Offset)) {
4266      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4267      if (V) {
4268        Offset += V->getSignExtended();
4269        return true;
4270      }
4271    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4272      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4273      if (V) {
4274        Offset += V->getSignExtended();
4275        return true;
4276      }
4277    }
4278  }
4279  return false;
4280}
4281
4282/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4283/// + Dist * Size.
4284static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4285                              MachineFrameInfo *MFI) {
4286  if (N->getOperand(0).Val != Base->getOperand(0).Val)
4287    return false;
4288
4289  SDOperand Loc = N->getOperand(1);
4290  SDOperand BaseLoc = Base->getOperand(1);
4291  if (Loc.getOpcode() == ISD::FrameIndex) {
4292    if (BaseLoc.getOpcode() != ISD::FrameIndex)
4293      return false;
4294    int FI  = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
4295    int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
4296    int FS  = MFI->getObjectSize(FI);
4297    int BFS = MFI->getObjectSize(BFI);
4298    if (FS != BFS || FS != Size) return false;
4299    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4300  } else {
4301    GlobalValue *GV1 = NULL;
4302    GlobalValue *GV2 = NULL;
4303    int64_t Offset1 = 0;
4304    int64_t Offset2 = 0;
4305    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4306    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4307    if (isGA1 && isGA2 && GV1 == GV2)
4308      return Offset1 == (Offset2 + Dist*Size);
4309  }
4310
4311  return false;
4312}
4313
4314static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4315                              const X86Subtarget *Subtarget) {
4316  GlobalValue *GV;
4317  int64_t Offset;
4318  if (isGAPlusOffset(Base, GV, Offset))
4319    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4320  else {
4321    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
4322    int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
4323    if (BFI < 0)
4324      // Fixed objects do not specify alignment, however the offsets are known.
4325      return ((Subtarget->getStackAlignment() % 16) == 0 &&
4326              (MFI->getObjectOffset(BFI) % 16) == 0);
4327    else
4328      return MFI->getObjectAlignment(BFI) >= 16;
4329  }
4330  return false;
4331}
4332
4333
4334/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4335/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4336/// if the load addresses are consecutive, non-overlapping, and in the right
4337/// order.
4338static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4339                                       const X86Subtarget *Subtarget) {
4340  MachineFunction &MF = DAG.getMachineFunction();
4341  MachineFrameInfo *MFI = MF.getFrameInfo();
4342  MVT::ValueType VT = N->getValueType(0);
4343  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
4344  SDOperand PermMask = N->getOperand(2);
4345  int NumElems = (int)PermMask.getNumOperands();
4346  SDNode *Base = NULL;
4347  for (int i = 0; i < NumElems; ++i) {
4348    SDOperand Idx = PermMask.getOperand(i);
4349    if (Idx.getOpcode() == ISD::UNDEF) {
4350      if (!Base) return SDOperand();
4351    } else {
4352      SDOperand Arg =
4353        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4354      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4355        return SDOperand();
4356      if (!Base)
4357        Base = Arg.Val;
4358      else if (!isConsecutiveLoad(Arg.Val, Base,
4359                                  i, MVT::getSizeInBits(EVT)/8,MFI))
4360        return SDOperand();
4361    }
4362  }
4363
4364  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
4365  if (isAlign16) {
4366    LoadSDNode *LD = cast<LoadSDNode>(Base);
4367    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4368                       LD->getSrcValueOffset());
4369  } else {
4370    // Just use movups, it's shorter.
4371    SDVTList Tys = DAG.getVTList(MVT::v4f32, MVT::Other);
4372    SmallVector<SDOperand, 3> Ops;
4373    Ops.push_back(Base->getOperand(0));
4374    Ops.push_back(Base->getOperand(1));
4375    Ops.push_back(Base->getOperand(2));
4376    return DAG.getNode(ISD::BIT_CONVERT, VT,
4377                       DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
4378  }
4379}
4380
4381/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4382static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4383                                      const X86Subtarget *Subtarget) {
4384  SDOperand Cond = N->getOperand(0);
4385
4386  // If we have SSE[12] support, try to form min/max nodes.
4387  if (Subtarget->hasSSE2() &&
4388      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4389    if (Cond.getOpcode() == ISD::SETCC) {
4390      // Get the LHS/RHS of the select.
4391      SDOperand LHS = N->getOperand(1);
4392      SDOperand RHS = N->getOperand(2);
4393      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4394
4395      unsigned Opcode = 0;
4396      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4397        switch (CC) {
4398        default: break;
4399        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4400        case ISD::SETULE:
4401        case ISD::SETLE:
4402          if (!UnsafeFPMath) break;
4403          // FALL THROUGH.
4404        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
4405        case ISD::SETLT:
4406          Opcode = X86ISD::FMIN;
4407          break;
4408
4409        case ISD::SETOGT: // (X > Y) ? X : Y -> max
4410        case ISD::SETUGT:
4411        case ISD::SETGT:
4412          if (!UnsafeFPMath) break;
4413          // FALL THROUGH.
4414        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
4415        case ISD::SETGE:
4416          Opcode = X86ISD::FMAX;
4417          break;
4418        }
4419      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4420        switch (CC) {
4421        default: break;
4422        case ISD::SETOGT: // (X > Y) ? Y : X -> min
4423        case ISD::SETUGT:
4424        case ISD::SETGT:
4425          if (!UnsafeFPMath) break;
4426          // FALL THROUGH.
4427        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
4428        case ISD::SETGE:
4429          Opcode = X86ISD::FMIN;
4430          break;
4431
4432        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
4433        case ISD::SETULE:
4434        case ISD::SETLE:
4435          if (!UnsafeFPMath) break;
4436          // FALL THROUGH.
4437        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
4438        case ISD::SETLT:
4439          Opcode = X86ISD::FMAX;
4440          break;
4441        }
4442      }
4443
4444      if (Opcode)
4445        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
4446    }
4447
4448  }
4449
4450  return SDOperand();
4451}
4452
4453
4454SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
4455                                               DAGCombinerInfo &DCI) const {
4456  SelectionDAG &DAG = DCI.DAG;
4457  switch (N->getOpcode()) {
4458  default: break;
4459  case ISD::VECTOR_SHUFFLE:
4460    return PerformShuffleCombine(N, DAG, Subtarget);
4461  case ISD::SELECT:
4462    return PerformSELECTCombine(N, DAG, Subtarget);
4463  }
4464
4465  return SDOperand();
4466}
4467
4468//===----------------------------------------------------------------------===//
4469//                           X86 Inline Assembly Support
4470//===----------------------------------------------------------------------===//
4471
4472/// getConstraintType - Given a constraint letter, return the type of
4473/// constraint it is for this target.
4474X86TargetLowering::ConstraintType
4475X86TargetLowering::getConstraintType(char ConstraintLetter) const {
4476  switch (ConstraintLetter) {
4477  case 'A':
4478  case 'r':
4479  case 'R':
4480  case 'l':
4481  case 'q':
4482  case 'Q':
4483  case 'x':
4484  case 'Y':
4485    return C_RegisterClass;
4486  default: return TargetLowering::getConstraintType(ConstraintLetter);
4487  }
4488}
4489
4490/// isOperandValidForConstraint - Return the specified operand (possibly
4491/// modified) if the specified SDOperand is valid for the specified target
4492/// constraint letter, otherwise return null.
4493SDOperand X86TargetLowering::
4494isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) {
4495  switch (Constraint) {
4496  default: break;
4497  case 'i':
4498    // Literal immediates are always ok.
4499    if (isa<ConstantSDNode>(Op)) return Op;
4500
4501    // If we are in non-pic codegen mode, we allow the address of a global to
4502    // be used with 'i'.
4503    if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4504      if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4505        return SDOperand(0, 0);
4506
4507      if (GA->getOpcode() != ISD::TargetGlobalAddress)
4508        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4509                                        GA->getOffset());
4510      return Op;
4511    }
4512
4513    // Otherwise, not valid for this mode.
4514    return SDOperand(0, 0);
4515  }
4516  return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG);
4517}
4518
4519
4520std::vector<unsigned> X86TargetLowering::
4521getRegClassForInlineAsmConstraint(const std::string &Constraint,
4522                                  MVT::ValueType VT) const {
4523  if (Constraint.size() == 1) {
4524    // FIXME: not handling fp-stack yet!
4525    // FIXME: not handling MMX registers yet ('y' constraint).
4526    switch (Constraint[0]) {      // GCC X86 Constraint Letters
4527    default: break;  // Unknown constraint letter
4528    case 'A':   // EAX/EDX
4529      if (VT == MVT::i32 || VT == MVT::i64)
4530        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
4531      break;
4532    case 'r':   // GENERAL_REGS
4533    case 'R':   // LEGACY_REGS
4534      if (VT == MVT::i64 && Subtarget->is64Bit())
4535        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
4536                                     X86::RSI, X86::RDI, X86::RBP, X86::RSP,
4537                                     X86::R8,  X86::R9,  X86::R10, X86::R11,
4538                                     X86::R12, X86::R13, X86::R14, X86::R15, 0);
4539      if (VT == MVT::i32)
4540        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
4541                                     X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0);
4542      else if (VT == MVT::i16)
4543        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
4544                                     X86::SI, X86::DI, X86::BP, X86::SP, 0);
4545      else if (VT == MVT::i8)
4546        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
4547      break;
4548    case 'l':   // INDEX_REGS
4549      if (VT == MVT::i32)
4550        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
4551                                     X86::ESI, X86::EDI, X86::EBP, 0);
4552      else if (VT == MVT::i16)
4553        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
4554                                     X86::SI, X86::DI, X86::BP, 0);
4555      else if (VT == MVT::i8)
4556        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
4557      break;
4558    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
4559    case 'Q':   // Q_REGS
4560      if (VT == MVT::i32)
4561        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
4562      else if (VT == MVT::i16)
4563        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
4564      else if (VT == MVT::i8)
4565        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
4566        break;
4567    case 'x':   // SSE_REGS if SSE1 allowed
4568      if (Subtarget->hasSSE1())
4569        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
4570                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
4571                                     0);
4572      return std::vector<unsigned>();
4573    case 'Y':   // SSE_REGS if SSE2 allowed
4574      if (Subtarget->hasSSE2())
4575        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
4576                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
4577                                     0);
4578      return std::vector<unsigned>();
4579    }
4580  }
4581
4582  return std::vector<unsigned>();
4583}
4584
4585std::pair<unsigned, const TargetRegisterClass*>
4586X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4587                                                MVT::ValueType VT) const {
4588  // Use the default implementation in TargetLowering to convert the register
4589  // constraint into a member of a register class.
4590  std::pair<unsigned, const TargetRegisterClass*> Res;
4591  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4592
4593  // Not found as a standard register?
4594  if (Res.second == 0) {
4595    // GCC calls "st(0)" just plain "st".
4596    if (StringsEqualNoCase("{st}", Constraint)) {
4597      Res.first = X86::ST0;
4598      Res.second = X86::RSTRegisterClass;
4599    }
4600
4601    return Res;
4602  }
4603
4604  // Otherwise, check to see if this is a register class of the wrong value
4605  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
4606  // turn into {ax},{dx}.
4607  if (Res.second->hasType(VT))
4608    return Res;   // Correct type already, nothing to do.
4609
4610  // All of the single-register GCC register classes map their values onto
4611  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
4612  // really want an 8-bit or 32-bit register, map to the appropriate register
4613  // class and return the appropriate register.
4614  if (Res.second != X86::GR16RegisterClass)
4615    return Res;
4616
4617  if (VT == MVT::i8) {
4618    unsigned DestReg = 0;
4619    switch (Res.first) {
4620    default: break;
4621    case X86::AX: DestReg = X86::AL; break;
4622    case X86::DX: DestReg = X86::DL; break;
4623    case X86::CX: DestReg = X86::CL; break;
4624    case X86::BX: DestReg = X86::BL; break;
4625    }
4626    if (DestReg) {
4627      Res.first = DestReg;
4628      Res.second = Res.second = X86::GR8RegisterClass;
4629    }
4630  } else if (VT == MVT::i32) {
4631    unsigned DestReg = 0;
4632    switch (Res.first) {
4633    default: break;
4634    case X86::AX: DestReg = X86::EAX; break;
4635    case X86::DX: DestReg = X86::EDX; break;
4636    case X86::CX: DestReg = X86::ECX; break;
4637    case X86::BX: DestReg = X86::EBX; break;
4638    case X86::SI: DestReg = X86::ESI; break;
4639    case X86::DI: DestReg = X86::EDI; break;
4640    case X86::BP: DestReg = X86::EBP; break;
4641    case X86::SP: DestReg = X86::ESP; break;
4642    }
4643    if (DestReg) {
4644      Res.first = DestReg;
4645      Res.second = Res.second = X86::GR32RegisterClass;
4646    }
4647  } else if (VT == MVT::i64) {
4648    unsigned DestReg = 0;
4649    switch (Res.first) {
4650    default: break;
4651    case X86::AX: DestReg = X86::RAX; break;
4652    case X86::DX: DestReg = X86::RDX; break;
4653    case X86::CX: DestReg = X86::RCX; break;
4654    case X86::BX: DestReg = X86::RBX; break;
4655    case X86::SI: DestReg = X86::RSI; break;
4656    case X86::DI: DestReg = X86::RDI; break;
4657    case X86::BP: DestReg = X86::RBP; break;
4658    case X86::SP: DestReg = X86::RSP; break;
4659    }
4660    if (DestReg) {
4661      Res.first = DestReg;
4662      Res.second = Res.second = X86::GR64RegisterClass;
4663    }
4664  }
4665
4666  return Res;
4667}
4668