X86ISelLowering.cpp revision f6c0747ae326a5ee83b846d40f6c657cf43a1e21
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VariadicFunction.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include "llvm/Target/TargetOptions.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76/// simple subregister reference.  Idx is an index in the 128 bits we
77/// want.  It need not be aligned to a 128-bit bounday.  That makes
78/// lowering EXTRACT_VECTOR_ELT operations easier.
79static SDValue Extract128BitVector(SDValue Vec,
80                                   SDValue Idx,
81                                   SelectionDAG &DAG,
82                                   DebugLoc dl) {
83  EVT VT = Vec.getValueType();
84  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85  EVT ElVT = VT.getVectorElementType();
86  int Factor = VT.getSizeInBits()/128;
87  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88                                  VT.getVectorNumElements()/Factor);
89
90  // Extract from UNDEF is UNDEF.
91  if (Vec.getOpcode() == ISD::UNDEF)
92    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93
94  if (isa<ConstantSDNode>(Idx)) {
95    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96
97    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98    // we can match to VEXTRACTF128.
99    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100
101    // This is the index of the first element of the 128-bit chunk
102    // we want.
103    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104                                 * ElemsPerChunk);
105
106    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108                                 VecIdx);
109
110    return Result;
111  }
112
113  return SDValue();
114}
115
116/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117/// sets things up to match to an AVX VINSERTF128 instruction or a
118/// simple superregister reference.  Idx is an index in the 128 bits
119/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120/// lowering INSERT_VECTOR_ELT operations easier.
121static SDValue Insert128BitVector(SDValue Result,
122                                  SDValue Vec,
123                                  SDValue Idx,
124                                  SelectionDAG &DAG,
125                                  DebugLoc dl) {
126  if (isa<ConstantSDNode>(Idx)) {
127    EVT VT = Vec.getValueType();
128    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129
130    EVT ElVT = VT.getVectorElementType();
131    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132    EVT ResultVT = Result.getValueType();
133
134    // Insert the relevant 128 bits.
135    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136
137    // This is the index of the first element of the 128-bit chunk
138    // we want.
139    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140                                 * ElemsPerChunk);
141
142    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144                         VecIdx);
145    return Result;
146  }
147
148  return SDValue();
149}
150
151static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153  bool is64Bit = Subtarget->is64Bit();
154
155  if (Subtarget->isTargetEnvMacho()) {
156    if (is64Bit)
157      return new X8664_MachoTargetObjectFile();
158    return new TargetLoweringObjectFileMachO();
159  }
160
161  if (Subtarget->isTargetELF())
162    return new TargetLoweringObjectFileELF();
163  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164    return new TargetLoweringObjectFileCOFF();
165  llvm_unreachable("unknown subtarget type");
166}
167
168X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169  : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<X86Subtarget>();
171  X86ScalarSSEf64 = Subtarget->hasSSE2();
172  X86ScalarSSEf32 = Subtarget->hasSSE1();
173  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174
175  RegInfo = TM.getRegisterInfo();
176  TD = getTargetData();
177
178  // Set up the TargetLowering object.
179  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180
181  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182  setBooleanContents(ZeroOrOneBooleanContent);
183  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
184  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
185
186  // For 64-bit since we have so many registers use the ILP scheduler, for
187  // 32-bit code use the register pressure specific scheduling.
188  if (Subtarget->is64Bit())
189    setSchedulingPreference(Sched::ILP);
190  else
191    setSchedulingPreference(Sched::RegPressure);
192  setStackPointerRegisterToSaveRestore(X86StackPtr);
193
194  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
195    // Setup Windows compiler runtime calls.
196    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
197    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
198    setLibcallName(RTLIB::SREM_I64, "_allrem");
199    setLibcallName(RTLIB::UREM_I64, "_aullrem");
200    setLibcallName(RTLIB::MUL_I64, "_allmul");
201    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
202    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
203    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
209    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
210  }
211
212  if (Subtarget->isTargetDarwin()) {
213    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
214    setUseUnderscoreSetJmp(false);
215    setUseUnderscoreLongJmp(false);
216  } else if (Subtarget->isTargetMingw()) {
217    // MS runtime is weird: it exports _setjmp, but longjmp!
218    setUseUnderscoreSetJmp(true);
219    setUseUnderscoreLongJmp(false);
220  } else {
221    setUseUnderscoreSetJmp(true);
222    setUseUnderscoreLongJmp(true);
223  }
224
225  // Set up the register classes.
226  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
227  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
228  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
229  if (Subtarget->is64Bit())
230    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
231
232  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
233
234  // We don't accept any truncstore of integer registers.
235  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
236  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
239  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
240  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
241
242  // SETOEQ and SETUNE require checking two conditions.
243  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
244  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
245  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
248  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
249
250  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
251  // operation.
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
254  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
255
256  if (Subtarget->is64Bit()) {
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
259  } else if (!TM.Options.UseSoftFloat) {
260    // We have an algorithm for SSE2->double, and we turn this into a
261    // 64-bit FILD followed by conditional FADD for other targets.
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
263    // We have an algorithm for SSE2, and we turn this into a 64-bit
264    // FILD for other targets.
265    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
266  }
267
268  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
269  // this operation.
270  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
271  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
272
273  if (!TM.Options.UseSoftFloat) {
274    // SSE has no i16 to fp conversion, only i32
275    if (X86ScalarSSEf32) {
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277      // f32 and f64 cases are Legal, f80 case is not
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
279    } else {
280      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
282    }
283  } else {
284    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
285    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
286  }
287
288  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
289  // are Legal, f80 is custom lowered.
290  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
291  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
292
293  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
294  // this operation.
295  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
296  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
297
298  if (X86ScalarSSEf32) {
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
300    // f32 and f64 cases are Legal, f80 case is not
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
302  } else {
303    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
305  }
306
307  // Handle FP_TO_UINT by promoting the destination to a larger signed
308  // conversion.
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
311  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
312
313  if (Subtarget->is64Bit()) {
314    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
315    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
316  } else if (!TM.Options.UseSoftFloat) {
317    // Since AVX is a superset of SSE3, only check for SSE here.
318    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
319      // Expand FP_TO_UINT into a select.
320      // FIXME: We would like to use a Custom expander here eventually to do
321      // the optimal thing for SSE vs. the default expansion in the legalizer.
322      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
323    else
324      // With SSE3 we can use fisttpll to convert to a signed i64; without
325      // SSE, we're stuck with a fistpll.
326      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
327  }
328
329  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
330  if (!X86ScalarSSEf64) {
331    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
332    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
333    if (Subtarget->is64Bit()) {
334      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
335      // Without SSE, i64->f64 goes through memory.
336      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
337    }
338  }
339
340  // Scalar integer divide and remainder are lowered to use operations that
341  // produce two results, to match the available instructions. This exposes
342  // the two-result form to trivial CSE, which is able to combine x/y and x%y
343  // into a single instruction.
344  //
345  // Scalar integer multiply-high is also lowered to use two-result
346  // operations, to match the available instructions. However, plain multiply
347  // (low) operations are left as Legal, as there are single-result
348  // instructions for this in x86. Using the two-result multiply instructions
349  // when both high and low results are needed must be arranged by dagcombine.
350  for (unsigned i = 0, e = 4; i != e; ++i) {
351    MVT VT = IntVTs[i];
352    setOperationAction(ISD::MULHS, VT, Expand);
353    setOperationAction(ISD::MULHU, VT, Expand);
354    setOperationAction(ISD::SDIV, VT, Expand);
355    setOperationAction(ISD::UDIV, VT, Expand);
356    setOperationAction(ISD::SREM, VT, Expand);
357    setOperationAction(ISD::UREM, VT, Expand);
358
359    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
360    setOperationAction(ISD::ADDC, VT, Custom);
361    setOperationAction(ISD::ADDE, VT, Custom);
362    setOperationAction(ISD::SUBC, VT, Custom);
363    setOperationAction(ISD::SUBE, VT, Custom);
364  }
365
366  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
367  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
368  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
369  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
370  if (Subtarget->is64Bit())
371    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
375  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
379  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
380
381  // Promote the i8 variants and force them on up to i32 which has a shorter
382  // encoding.
383  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
384  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
385  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
386  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
387  if (Subtarget->hasBMI()) {
388    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
389    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
390    if (Subtarget->is64Bit())
391      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
392  } else {
393    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
394    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
395    if (Subtarget->is64Bit())
396      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
397  }
398
399  if (Subtarget->hasLZCNT()) {
400    // When promoting the i8 variants, force them to i32 for a shorter
401    // encoding.
402    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
403    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
404    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
405    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
406    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
407    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
408    if (Subtarget->is64Bit())
409      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
410  } else {
411    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
412    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
413    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
415    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
416    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
417    if (Subtarget->is64Bit()) {
418      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
419      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
420    }
421  }
422
423  if (Subtarget->hasPOPCNT()) {
424    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
425  } else {
426    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
427    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
428    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
429    if (Subtarget->is64Bit())
430      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
431  }
432
433  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
434  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
435
436  // These should be promoted to a larger select which is supported.
437  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
438  // X86 wants to expand cmov itself.
439  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
440  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
443  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
444  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
446  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
450  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
451  if (Subtarget->is64Bit()) {
452    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
453    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
454  }
455  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
456
457  // Darwin ABI issue.
458  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
459  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
460  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
461  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
462  if (Subtarget->is64Bit())
463    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
464  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
465  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
466  if (Subtarget->is64Bit()) {
467    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
468    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
469    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
470    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
471    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
472  }
473  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
474  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
475  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
476  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
477  if (Subtarget->is64Bit()) {
478    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
479    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
480    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
481  }
482
483  if (Subtarget->hasSSE1())
484    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
485
486  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
487  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
488
489  // On X86 and X86-64, atomic operations are lowered to locked instructions.
490  // Locked instructions, in turn, have implicit fence semantics (all memory
491  // operations are flushed before issuing the locked instruction, and they
492  // are not buffered), so we can fold away the common pattern of
493  // fence-atomic-fence.
494  setShouldFoldAtomicFences(true);
495
496  // Expand certain atomics
497  for (unsigned i = 0, e = 4; i != e; ++i) {
498    MVT VT = IntVTs[i];
499    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
500    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
501    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
502  }
503
504  if (!Subtarget->is64Bit()) {
505    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
513  }
514
515  if (Subtarget->hasCmpxchg16b()) {
516    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
517  }
518
519  // FIXME - use subtarget debug flags
520  if (!Subtarget->isTargetDarwin() &&
521      !Subtarget->isTargetELF() &&
522      !Subtarget->isTargetCygMing()) {
523    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
524  }
525
526  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
527  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
528  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
529  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
530  if (Subtarget->is64Bit()) {
531    setExceptionPointerRegister(X86::RAX);
532    setExceptionSelectorRegister(X86::RDX);
533  } else {
534    setExceptionPointerRegister(X86::EAX);
535    setExceptionSelectorRegister(X86::EDX);
536  }
537  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
538  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
539
540  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
541  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
542
543  setOperationAction(ISD::TRAP, MVT::Other, Legal);
544
545  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
546  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
547  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
548  if (Subtarget->is64Bit()) {
549    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
550    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
551  } else {
552    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
553    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
554  }
555
556  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
557  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
558
559  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
560    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
561                       MVT::i64 : MVT::i32, Custom);
562  else if (TM.Options.EnableSegmentedStacks)
563    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
564                       MVT::i64 : MVT::i32, Custom);
565  else
566    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
567                       MVT::i64 : MVT::i32, Expand);
568
569  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
570    // f32 and f64 use SSE.
571    // Set up the FP register classes.
572    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
573    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
574
575    // Use ANDPD to simulate FABS.
576    setOperationAction(ISD::FABS , MVT::f64, Custom);
577    setOperationAction(ISD::FABS , MVT::f32, Custom);
578
579    // Use XORP to simulate FNEG.
580    setOperationAction(ISD::FNEG , MVT::f64, Custom);
581    setOperationAction(ISD::FNEG , MVT::f32, Custom);
582
583    // Use ANDPD and ORPD to simulate FCOPYSIGN.
584    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
585    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
586
587    // Lower this to FGETSIGNx86 plus an AND.
588    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
589    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
590
591    // We don't support sin/cos/fmod
592    setOperationAction(ISD::FSIN , MVT::f64, Expand);
593    setOperationAction(ISD::FCOS , MVT::f64, Expand);
594    setOperationAction(ISD::FSIN , MVT::f32, Expand);
595    setOperationAction(ISD::FCOS , MVT::f32, Expand);
596
597    // Expand FP immediates into loads from the stack, except for the special
598    // cases we handle.
599    addLegalFPImmediate(APFloat(+0.0)); // xorpd
600    addLegalFPImmediate(APFloat(+0.0f)); // xorps
601  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
602    // Use SSE for f32, x87 for f64.
603    // Set up the FP register classes.
604    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
605    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
606
607    // Use ANDPS to simulate FABS.
608    setOperationAction(ISD::FABS , MVT::f32, Custom);
609
610    // Use XORP to simulate FNEG.
611    setOperationAction(ISD::FNEG , MVT::f32, Custom);
612
613    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
614
615    // Use ANDPS and ORPS to simulate FCOPYSIGN.
616    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
617    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
618
619    // We don't support sin/cos/fmod
620    setOperationAction(ISD::FSIN , MVT::f32, Expand);
621    setOperationAction(ISD::FCOS , MVT::f32, Expand);
622
623    // Special cases we handle for FP constants.
624    addLegalFPImmediate(APFloat(+0.0f)); // xorps
625    addLegalFPImmediate(APFloat(+0.0)); // FLD0
626    addLegalFPImmediate(APFloat(+1.0)); // FLD1
627    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
628    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
629
630    if (!TM.Options.UnsafeFPMath) {
631      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
632      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
633    }
634  } else if (!TM.Options.UseSoftFloat) {
635    // f32 and f64 in x87.
636    // Set up the FP register classes.
637    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
638    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
639
640    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
641    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
642    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
643    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
644
645    if (!TM.Options.UnsafeFPMath) {
646      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
647      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
648    }
649    addLegalFPImmediate(APFloat(+0.0)); // FLD0
650    addLegalFPImmediate(APFloat(+1.0)); // FLD1
651    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
652    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
653    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
654    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
655    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
656    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
657  }
658
659  // We don't support FMA.
660  setOperationAction(ISD::FMA, MVT::f64, Expand);
661  setOperationAction(ISD::FMA, MVT::f32, Expand);
662
663  // Long double always uses X87.
664  if (!TM.Options.UseSoftFloat) {
665    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
666    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
667    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
668    {
669      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
670      addLegalFPImmediate(TmpFlt);  // FLD0
671      TmpFlt.changeSign();
672      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
673
674      bool ignored;
675      APFloat TmpFlt2(+1.0);
676      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
677                      &ignored);
678      addLegalFPImmediate(TmpFlt2);  // FLD1
679      TmpFlt2.changeSign();
680      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
681    }
682
683    if (!TM.Options.UnsafeFPMath) {
684      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
685      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
686    }
687
688    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
689    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
690    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
691    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
692    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
693    setOperationAction(ISD::FMA, MVT::f80, Expand);
694  }
695
696  // Always use a library call for pow.
697  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
698  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
699  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
700
701  setOperationAction(ISD::FLOG, MVT::f80, Expand);
702  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
703  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
704  setOperationAction(ISD::FEXP, MVT::f80, Expand);
705  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
706
707  // First set operation action for all vector types to either promote
708  // (for widening) or expand (for scalarization). Then we will selectively
709  // turn on ones that can be effectively codegen'd.
710  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
711       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
712    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
729    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
730    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
764    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
768    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
769    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
770         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
771      setTruncStoreAction((MVT::SimpleValueType)VT,
772                          (MVT::SimpleValueType)InnerVT, Expand);
773    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
774    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
775    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
776  }
777
778  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
779  // with -msoft-float, disable use of MMX as well.
780  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
781    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
782    // No operations on x86mmx supported, everything uses intrinsics.
783  }
784
785  // MMX-sized vectors (other than x86mmx) are expected to be expanded
786  // into smaller operations.
787  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
788  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
789  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
790  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
791  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
792  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
793  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
794  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
795  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
796  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
797  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
798  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
799  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
800  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
801  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
802  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
803  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
805  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
806  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
807  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
808  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
809  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
810  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
811  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
812  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
814  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
815  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
816
817  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
818    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
819
820    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
821    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
823    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
824    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
825    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
826    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
827    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
828    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
829    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
830    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
831    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
832  }
833
834  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
835    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
836
837    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
838    // registers cannot be used even for integer operations.
839    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
840    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
841    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
842    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
843
844    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
845    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
846    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
847    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
848    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
849    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
850    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
851    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
852    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
853    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
854    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
857    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
858    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
859    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
860
861    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
862    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
863    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
864    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
865
866    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
867    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
869    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
870    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
871
872    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
875    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
876    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
877
878    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
879    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
880      EVT VT = (MVT::SimpleValueType)i;
881      // Do not attempt to custom lower non-power-of-2 vectors
882      if (!isPowerOf2_32(VT.getVectorNumElements()))
883        continue;
884      // Do not attempt to custom lower non-128-bit vectors
885      if (!VT.is128BitVector())
886        continue;
887      setOperationAction(ISD::BUILD_VECTOR,
888                         VT.getSimpleVT().SimpleTy, Custom);
889      setOperationAction(ISD::VECTOR_SHUFFLE,
890                         VT.getSimpleVT().SimpleTy, Custom);
891      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
892                         VT.getSimpleVT().SimpleTy, Custom);
893    }
894
895    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
896    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
897    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
898    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
899    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
900    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
901
902    if (Subtarget->is64Bit()) {
903      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
904      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
905    }
906
907    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
908    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
909      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
910      EVT VT = SVT;
911
912      // Do not attempt to promote non-128-bit vectors
913      if (!VT.is128BitVector())
914        continue;
915
916      setOperationAction(ISD::AND,    SVT, Promote);
917      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
918      setOperationAction(ISD::OR,     SVT, Promote);
919      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
920      setOperationAction(ISD::XOR,    SVT, Promote);
921      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
922      setOperationAction(ISD::LOAD,   SVT, Promote);
923      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
924      setOperationAction(ISD::SELECT, SVT, Promote);
925      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
926    }
927
928    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
929
930    // Custom lower v2i64 and v2f64 selects.
931    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
932    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
933    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
934    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
935
936    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
937    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
938  }
939
940  if (Subtarget->hasSSE41()) {
941    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
942    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
943    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
944    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
945    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
946    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
947    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
948    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
949    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
950    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
951
952    // FIXME: Do we need to handle scalar-to-vector here?
953    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
954
955    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
956    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
958    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
959    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
960
961    // i8 and i16 vectors are custom , because the source register and source
962    // source memory operand types are not the same width.  f32 vectors are
963    // custom since the immediate controlling the insert encodes additional
964    // information.
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
967    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
968    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
969
970    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
972    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
973    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
974
975    // FIXME: these should be Legal but thats only for the case where
976    // the index is constant.  For now custom expand to deal with that.
977    if (Subtarget->is64Bit()) {
978      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
979      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
980    }
981  }
982
983  if (Subtarget->hasSSE2()) {
984    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
985    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
986
987    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
988    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
989
990    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
991    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
992
993    if (Subtarget->hasAVX2()) {
994      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
995      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
996
997      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
998      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
999
1000      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1001    } else {
1002      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1003      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1004
1005      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1006      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1007
1008      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1009    }
1010  }
1011
1012  if (Subtarget->hasSSE42())
1013    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1014
1015  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1016    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1017    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1018    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1019    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1020    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1021    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1022
1023    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1024    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1025    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1026
1027    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1030    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1031    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1032    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1033
1034    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1035    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1037    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1038    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1039    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1040
1041    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1042    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1043    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1044
1045    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1048    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1049    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1050    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1051
1052    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1053    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1054
1055    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1056    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1057
1058    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1059    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1060
1061    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1063    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1064    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1065
1066    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1067    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1068    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1069
1070    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1072    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1073    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1074
1075    if (Subtarget->hasAVX2()) {
1076      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1077      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1078      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1079      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1080
1081      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1082      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1083      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1084      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1085
1086      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1087      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1088      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1089      // Don't lower v32i8 because there is no 128-bit byte mul
1090
1091      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1092
1093      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1094      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1095
1096      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1097      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1098
1099      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1100    } else {
1101      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1102      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1103      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1104      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1105
1106      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1107      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1108      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1109      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1110
1111      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1112      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1113      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1114      // Don't lower v32i8 because there is no 128-bit byte mul
1115
1116      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1117      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1118
1119      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1120      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1121
1122      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1123    }
1124
1125    // Custom lower several nodes for 256-bit types.
1126    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1127                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1128      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1129      EVT VT = SVT;
1130
1131      // Extract subvector is special because the value type
1132      // (result) is 128-bit but the source is 256-bit wide.
1133      if (VT.is128BitVector())
1134        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1135
1136      // Do not attempt to custom lower other non-256-bit vectors
1137      if (!VT.is256BitVector())
1138        continue;
1139
1140      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1141      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1142      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1143      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1144      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1145      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1146    }
1147
1148    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1149    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1150      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1151      EVT VT = SVT;
1152
1153      // Do not attempt to promote non-256-bit vectors
1154      if (!VT.is256BitVector())
1155        continue;
1156
1157      setOperationAction(ISD::AND,    SVT, Promote);
1158      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1159      setOperationAction(ISD::OR,     SVT, Promote);
1160      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1161      setOperationAction(ISD::XOR,    SVT, Promote);
1162      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1163      setOperationAction(ISD::LOAD,   SVT, Promote);
1164      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1165      setOperationAction(ISD::SELECT, SVT, Promote);
1166      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1167    }
1168  }
1169
1170  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1171  // of this type with custom code.
1172  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1173         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1174    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1175                       Custom);
1176  }
1177
1178  // We want to custom lower some of our intrinsics.
1179  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1180
1181
1182  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1183  // handle type legalization for these operations here.
1184  //
1185  // FIXME: We really should do custom legalization for addition and
1186  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1187  // than generic legalization for 64-bit multiplication-with-overflow, though.
1188  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1189    // Add/Sub/Mul with overflow operations are custom lowered.
1190    MVT VT = IntVTs[i];
1191    setOperationAction(ISD::SADDO, VT, Custom);
1192    setOperationAction(ISD::UADDO, VT, Custom);
1193    setOperationAction(ISD::SSUBO, VT, Custom);
1194    setOperationAction(ISD::USUBO, VT, Custom);
1195    setOperationAction(ISD::SMULO, VT, Custom);
1196    setOperationAction(ISD::UMULO, VT, Custom);
1197  }
1198
1199  // There are no 8-bit 3-address imul/mul instructions
1200  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1201  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1202
1203  if (!Subtarget->is64Bit()) {
1204    // These libcalls are not available in 32-bit.
1205    setLibcallName(RTLIB::SHL_I128, 0);
1206    setLibcallName(RTLIB::SRL_I128, 0);
1207    setLibcallName(RTLIB::SRA_I128, 0);
1208  }
1209
1210  // We have target-specific dag combine patterns for the following nodes:
1211  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1212  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1213  setTargetDAGCombine(ISD::VSELECT);
1214  setTargetDAGCombine(ISD::SELECT);
1215  setTargetDAGCombine(ISD::SHL);
1216  setTargetDAGCombine(ISD::SRA);
1217  setTargetDAGCombine(ISD::SRL);
1218  setTargetDAGCombine(ISD::OR);
1219  setTargetDAGCombine(ISD::AND);
1220  setTargetDAGCombine(ISD::ADD);
1221  setTargetDAGCombine(ISD::FADD);
1222  setTargetDAGCombine(ISD::FSUB);
1223  setTargetDAGCombine(ISD::SUB);
1224  setTargetDAGCombine(ISD::LOAD);
1225  setTargetDAGCombine(ISD::STORE);
1226  setTargetDAGCombine(ISD::ZERO_EXTEND);
1227  setTargetDAGCombine(ISD::SINT_TO_FP);
1228  if (Subtarget->is64Bit())
1229    setTargetDAGCombine(ISD::MUL);
1230  if (Subtarget->hasBMI())
1231    setTargetDAGCombine(ISD::XOR);
1232
1233  computeRegisterProperties();
1234
1235  // On Darwin, -Os means optimize for size without hurting performance,
1236  // do not reduce the limit.
1237  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243  setPrefLoopAlignment(4); // 2^4 bytes.
1244  benefitFromCodePlacementOpt = true;
1245
1246  setPrefFunctionAlignment(4); // 2^4 bytes.
1247}
1248
1249
1250EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1251  if (!VT.isVector()) return MVT::i8;
1252  return VT.changeVectorElementTypeToInteger();
1253}
1254
1255
1256/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1257/// the desired ByVal argument alignment.
1258static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1259  if (MaxAlign == 16)
1260    return;
1261  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1262    if (VTy->getBitWidth() == 128)
1263      MaxAlign = 16;
1264  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1265    unsigned EltAlign = 0;
1266    getMaxByValAlign(ATy->getElementType(), EltAlign);
1267    if (EltAlign > MaxAlign)
1268      MaxAlign = EltAlign;
1269  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1270    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1271      unsigned EltAlign = 0;
1272      getMaxByValAlign(STy->getElementType(i), EltAlign);
1273      if (EltAlign > MaxAlign)
1274        MaxAlign = EltAlign;
1275      if (MaxAlign == 16)
1276        break;
1277    }
1278  }
1279  return;
1280}
1281
1282/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1283/// function arguments in the caller parameter area. For X86, aggregates
1284/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1285/// are at 4-byte boundaries.
1286unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1287  if (Subtarget->is64Bit()) {
1288    // Max of 8 and alignment of type.
1289    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1290    if (TyAlign > 8)
1291      return TyAlign;
1292    return 8;
1293  }
1294
1295  unsigned Align = 4;
1296  if (Subtarget->hasSSE1())
1297    getMaxByValAlign(Ty, Align);
1298  return Align;
1299}
1300
1301/// getOptimalMemOpType - Returns the target specific optimal type for load
1302/// and store operations as a result of memset, memcpy, and memmove
1303/// lowering. If DstAlign is zero that means it's safe to destination
1304/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1305/// means there isn't a need to check it against alignment requirement,
1306/// probably because the source does not need to be loaded. If
1307/// 'IsZeroVal' is true, that means it's safe to return a
1308/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1309/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1310/// constant so it does not need to be loaded.
1311/// It returns EVT::Other if the type should be determined using generic
1312/// target-independent logic.
1313EVT
1314X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1315                                       unsigned DstAlign, unsigned SrcAlign,
1316                                       bool IsZeroVal,
1317                                       bool MemcpyStrSrc,
1318                                       MachineFunction &MF) const {
1319  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1320  // linux.  This is because the stack realignment code can't handle certain
1321  // cases like PR2962.  This should be removed when PR2962 is fixed.
1322  const Function *F = MF.getFunction();
1323  if (IsZeroVal &&
1324      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1325    if (Size >= 16 &&
1326        (Subtarget->isUnalignedMemAccessFast() ||
1327         ((DstAlign == 0 || DstAlign >= 16) &&
1328          (SrcAlign == 0 || SrcAlign >= 16))) &&
1329        Subtarget->getStackAlignment() >= 16) {
1330      if (Subtarget->hasAVX() &&
1331          Subtarget->getStackAlignment() >= 32)
1332        return MVT::v8f32;
1333      if (Subtarget->hasSSE2())
1334        return MVT::v4i32;
1335      if (Subtarget->hasSSE1())
1336        return MVT::v4f32;
1337    } else if (!MemcpyStrSrc && Size >= 8 &&
1338               !Subtarget->is64Bit() &&
1339               Subtarget->getStackAlignment() >= 8 &&
1340               Subtarget->hasSSE2()) {
1341      // Do not use f64 to lower memcpy if source is string constant. It's
1342      // better to use i32 to avoid the loads.
1343      return MVT::f64;
1344    }
1345  }
1346  if (Subtarget->is64Bit() && Size >= 8)
1347    return MVT::i64;
1348  return MVT::i32;
1349}
1350
1351/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1352/// current function.  The returned value is a member of the
1353/// MachineJumpTableInfo::JTEntryKind enum.
1354unsigned X86TargetLowering::getJumpTableEncoding() const {
1355  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1356  // symbol.
1357  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1358      Subtarget->isPICStyleGOT())
1359    return MachineJumpTableInfo::EK_Custom32;
1360
1361  // Otherwise, use the normal jump table encoding heuristics.
1362  return TargetLowering::getJumpTableEncoding();
1363}
1364
1365const MCExpr *
1366X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1367                                             const MachineBasicBlock *MBB,
1368                                             unsigned uid,MCContext &Ctx) const{
1369  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1370         Subtarget->isPICStyleGOT());
1371  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1372  // entries.
1373  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1374                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1375}
1376
1377/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1378/// jumptable.
1379SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1380                                                    SelectionDAG &DAG) const {
1381  if (!Subtarget->is64Bit())
1382    // This doesn't have DebugLoc associated with it, but is not really the
1383    // same as a Register.
1384    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1385  return Table;
1386}
1387
1388/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1389/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1390/// MCExpr.
1391const MCExpr *X86TargetLowering::
1392getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1393                             MCContext &Ctx) const {
1394  // X86-64 uses RIP relative addressing based on the jump table label.
1395  if (Subtarget->isPICStyleRIPRel())
1396    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1397
1398  // Otherwise, the reference is relative to the PIC base.
1399  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1400}
1401
1402// FIXME: Why this routine is here? Move to RegInfo!
1403std::pair<const TargetRegisterClass*, uint8_t>
1404X86TargetLowering::findRepresentativeClass(EVT VT) const{
1405  const TargetRegisterClass *RRC = 0;
1406  uint8_t Cost = 1;
1407  switch (VT.getSimpleVT().SimpleTy) {
1408  default:
1409    return TargetLowering::findRepresentativeClass(VT);
1410  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1411    RRC = (Subtarget->is64Bit()
1412           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1413    break;
1414  case MVT::x86mmx:
1415    RRC = X86::VR64RegisterClass;
1416    break;
1417  case MVT::f32: case MVT::f64:
1418  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1419  case MVT::v4f32: case MVT::v2f64:
1420  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1421  case MVT::v4f64:
1422    RRC = X86::VR128RegisterClass;
1423    break;
1424  }
1425  return std::make_pair(RRC, Cost);
1426}
1427
1428bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1429                                               unsigned &Offset) const {
1430  if (!Subtarget->isTargetLinux())
1431    return false;
1432
1433  if (Subtarget->is64Bit()) {
1434    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1435    Offset = 0x28;
1436    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1437      AddressSpace = 256;
1438    else
1439      AddressSpace = 257;
1440  } else {
1441    // %gs:0x14 on i386
1442    Offset = 0x14;
1443    AddressSpace = 256;
1444  }
1445  return true;
1446}
1447
1448
1449//===----------------------------------------------------------------------===//
1450//               Return Value Calling Convention Implementation
1451//===----------------------------------------------------------------------===//
1452
1453#include "X86GenCallingConv.inc"
1454
1455bool
1456X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1457				  MachineFunction &MF, bool isVarArg,
1458                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1459                        LLVMContext &Context) const {
1460  SmallVector<CCValAssign, 16> RVLocs;
1461  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1462                 RVLocs, Context);
1463  return CCInfo.CheckReturn(Outs, RetCC_X86);
1464}
1465
1466SDValue
1467X86TargetLowering::LowerReturn(SDValue Chain,
1468                               CallingConv::ID CallConv, bool isVarArg,
1469                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1470                               const SmallVectorImpl<SDValue> &OutVals,
1471                               DebugLoc dl, SelectionDAG &DAG) const {
1472  MachineFunction &MF = DAG.getMachineFunction();
1473  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1474
1475  SmallVector<CCValAssign, 16> RVLocs;
1476  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1477                 RVLocs, *DAG.getContext());
1478  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1479
1480  // Add the regs to the liveout set for the function.
1481  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1482  for (unsigned i = 0; i != RVLocs.size(); ++i)
1483    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1484      MRI.addLiveOut(RVLocs[i].getLocReg());
1485
1486  SDValue Flag;
1487
1488  SmallVector<SDValue, 6> RetOps;
1489  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1490  // Operand #1 = Bytes To Pop
1491  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1492                   MVT::i16));
1493
1494  // Copy the result values into the output registers.
1495  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1496    CCValAssign &VA = RVLocs[i];
1497    assert(VA.isRegLoc() && "Can only return in registers!");
1498    SDValue ValToCopy = OutVals[i];
1499    EVT ValVT = ValToCopy.getValueType();
1500
1501    // If this is x86-64, and we disabled SSE, we can't return FP values,
1502    // or SSE or MMX vectors.
1503    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1504         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1505          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1506      report_fatal_error("SSE register return with SSE disabled");
1507    }
1508    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1509    // llvm-gcc has never done it right and no one has noticed, so this
1510    // should be OK for now.
1511    if (ValVT == MVT::f64 &&
1512        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1513      report_fatal_error("SSE2 register return with SSE2 disabled");
1514
1515    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1516    // the RET instruction and handled by the FP Stackifier.
1517    if (VA.getLocReg() == X86::ST0 ||
1518        VA.getLocReg() == X86::ST1) {
1519      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1520      // change the value to the FP stack register class.
1521      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1522        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1523      RetOps.push_back(ValToCopy);
1524      // Don't emit a copytoreg.
1525      continue;
1526    }
1527
1528    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1529    // which is returned in RAX / RDX.
1530    if (Subtarget->is64Bit()) {
1531      if (ValVT == MVT::x86mmx) {
1532        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1533          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1534          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1535                                  ValToCopy);
1536          // If we don't have SSE2 available, convert to v4f32 so the generated
1537          // register is legal.
1538          if (!Subtarget->hasSSE2())
1539            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1540        }
1541      }
1542    }
1543
1544    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1545    Flag = Chain.getValue(1);
1546  }
1547
1548  // The x86-64 ABI for returning structs by value requires that we copy
1549  // the sret argument into %rax for the return. We saved the argument into
1550  // a virtual register in the entry block, so now we copy the value out
1551  // and into %rax.
1552  if (Subtarget->is64Bit() &&
1553      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1554    MachineFunction &MF = DAG.getMachineFunction();
1555    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1556    unsigned Reg = FuncInfo->getSRetReturnReg();
1557    assert(Reg &&
1558           "SRetReturnReg should have been set in LowerFormalArguments().");
1559    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1560
1561    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1562    Flag = Chain.getValue(1);
1563
1564    // RAX now acts like a return value.
1565    MRI.addLiveOut(X86::RAX);
1566  }
1567
1568  RetOps[0] = Chain;  // Update chain.
1569
1570  // Add the flag if we have it.
1571  if (Flag.getNode())
1572    RetOps.push_back(Flag);
1573
1574  return DAG.getNode(X86ISD::RET_FLAG, dl,
1575                     MVT::Other, &RetOps[0], RetOps.size());
1576}
1577
1578bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1579  if (N->getNumValues() != 1)
1580    return false;
1581  if (!N->hasNUsesOfValue(1, 0))
1582    return false;
1583
1584  SDNode *Copy = *N->use_begin();
1585  if (Copy->getOpcode() != ISD::CopyToReg &&
1586      Copy->getOpcode() != ISD::FP_EXTEND)
1587    return false;
1588
1589  bool HasRet = false;
1590  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1591       UI != UE; ++UI) {
1592    if (UI->getOpcode() != X86ISD::RET_FLAG)
1593      return false;
1594    HasRet = true;
1595  }
1596
1597  return HasRet;
1598}
1599
1600EVT
1601X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1602                                            ISD::NodeType ExtendKind) const {
1603  MVT ReturnMVT;
1604  // TODO: Is this also valid on 32-bit?
1605  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1606    ReturnMVT = MVT::i8;
1607  else
1608    ReturnMVT = MVT::i32;
1609
1610  EVT MinVT = getRegisterType(Context, ReturnMVT);
1611  return VT.bitsLT(MinVT) ? MinVT : VT;
1612}
1613
1614/// LowerCallResult - Lower the result values of a call into the
1615/// appropriate copies out of appropriate physical registers.
1616///
1617SDValue
1618X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1619                                   CallingConv::ID CallConv, bool isVarArg,
1620                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1621                                   DebugLoc dl, SelectionDAG &DAG,
1622                                   SmallVectorImpl<SDValue> &InVals) const {
1623
1624  // Assign locations to each value returned by this call.
1625  SmallVector<CCValAssign, 16> RVLocs;
1626  bool Is64Bit = Subtarget->is64Bit();
1627  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1628		 getTargetMachine(), RVLocs, *DAG.getContext());
1629  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1630
1631  // Copy all of the result registers out of their specified physreg.
1632  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1633    CCValAssign &VA = RVLocs[i];
1634    EVT CopyVT = VA.getValVT();
1635
1636    // If this is x86-64, and we disabled SSE, we can't return FP values
1637    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1638        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1639      report_fatal_error("SSE register return with SSE disabled");
1640    }
1641
1642    SDValue Val;
1643
1644    // If this is a call to a function that returns an fp value on the floating
1645    // point stack, we must guarantee the the value is popped from the stack, so
1646    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1647    // if the return value is not used. We use the FpPOP_RETVAL instruction
1648    // instead.
1649    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1650      // If we prefer to use the value in xmm registers, copy it out as f80 and
1651      // use a truncate to move it from fp stack reg to xmm reg.
1652      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1653      SDValue Ops[] = { Chain, InFlag };
1654      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1655                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1656      Val = Chain.getValue(0);
1657
1658      // Round the f80 to the right size, which also moves it to the appropriate
1659      // xmm register.
1660      if (CopyVT != VA.getValVT())
1661        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1662                          // This truncation won't change the value.
1663                          DAG.getIntPtrConstant(1));
1664    } else {
1665      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1666                                 CopyVT, InFlag).getValue(1);
1667      Val = Chain.getValue(0);
1668    }
1669    InFlag = Chain.getValue(2);
1670    InVals.push_back(Val);
1671  }
1672
1673  return Chain;
1674}
1675
1676
1677//===----------------------------------------------------------------------===//
1678//                C & StdCall & Fast Calling Convention implementation
1679//===----------------------------------------------------------------------===//
1680//  StdCall calling convention seems to be standard for many Windows' API
1681//  routines and around. It differs from C calling convention just a little:
1682//  callee should clean up the stack, not caller. Symbols should be also
1683//  decorated in some fancy way :) It doesn't support any vector arguments.
1684//  For info on fast calling convention see Fast Calling Convention (tail call)
1685//  implementation LowerX86_32FastCCCallTo.
1686
1687/// CallIsStructReturn - Determines whether a call uses struct return
1688/// semantics.
1689static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1690  if (Outs.empty())
1691    return false;
1692
1693  return Outs[0].Flags.isSRet();
1694}
1695
1696/// ArgsAreStructReturn - Determines whether a function uses struct
1697/// return semantics.
1698static bool
1699ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1700  if (Ins.empty())
1701    return false;
1702
1703  return Ins[0].Flags.isSRet();
1704}
1705
1706/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1707/// by "Src" to address "Dst" with size and alignment information specified by
1708/// the specific parameter attribute. The copy will be passed as a byval
1709/// function parameter.
1710static SDValue
1711CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1712                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1713                          DebugLoc dl) {
1714  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1715
1716  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1717                       /*isVolatile*/false, /*AlwaysInline=*/true,
1718                       MachinePointerInfo(), MachinePointerInfo());
1719}
1720
1721/// IsTailCallConvention - Return true if the calling convention is one that
1722/// supports tail call optimization.
1723static bool IsTailCallConvention(CallingConv::ID CC) {
1724  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1725}
1726
1727bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1728  if (!CI->isTailCall())
1729    return false;
1730
1731  CallSite CS(CI);
1732  CallingConv::ID CalleeCC = CS.getCallingConv();
1733  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1734    return false;
1735
1736  return true;
1737}
1738
1739/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1740/// a tailcall target by changing its ABI.
1741static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1742                                   bool GuaranteedTailCallOpt) {
1743  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1744}
1745
1746SDValue
1747X86TargetLowering::LowerMemArgument(SDValue Chain,
1748                                    CallingConv::ID CallConv,
1749                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1750                                    DebugLoc dl, SelectionDAG &DAG,
1751                                    const CCValAssign &VA,
1752                                    MachineFrameInfo *MFI,
1753                                    unsigned i) const {
1754  // Create the nodes corresponding to a load from this parameter slot.
1755  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1756  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1757                              getTargetMachine().Options.GuaranteedTailCallOpt);
1758  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1759  EVT ValVT;
1760
1761  // If value is passed by pointer we have address passed instead of the value
1762  // itself.
1763  if (VA.getLocInfo() == CCValAssign::Indirect)
1764    ValVT = VA.getLocVT();
1765  else
1766    ValVT = VA.getValVT();
1767
1768  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1769  // changed with more analysis.
1770  // In case of tail call optimization mark all arguments mutable. Since they
1771  // could be overwritten by lowering of arguments in case of a tail call.
1772  if (Flags.isByVal()) {
1773    unsigned Bytes = Flags.getByValSize();
1774    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1775    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1776    return DAG.getFrameIndex(FI, getPointerTy());
1777  } else {
1778    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1779                                    VA.getLocMemOffset(), isImmutable);
1780    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1781    return DAG.getLoad(ValVT, dl, Chain, FIN,
1782                       MachinePointerInfo::getFixedStack(FI),
1783                       false, false, false, 0);
1784  }
1785}
1786
1787SDValue
1788X86TargetLowering::LowerFormalArguments(SDValue Chain,
1789                                        CallingConv::ID CallConv,
1790                                        bool isVarArg,
1791                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1792                                        DebugLoc dl,
1793                                        SelectionDAG &DAG,
1794                                        SmallVectorImpl<SDValue> &InVals)
1795                                          const {
1796  MachineFunction &MF = DAG.getMachineFunction();
1797  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1798
1799  const Function* Fn = MF.getFunction();
1800  if (Fn->hasExternalLinkage() &&
1801      Subtarget->isTargetCygMing() &&
1802      Fn->getName() == "main")
1803    FuncInfo->setForceFramePointer(true);
1804
1805  MachineFrameInfo *MFI = MF.getFrameInfo();
1806  bool Is64Bit = Subtarget->is64Bit();
1807  bool IsWin64 = Subtarget->isTargetWin64();
1808
1809  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1810         "Var args not supported with calling convention fastcc or ghc");
1811
1812  // Assign locations to all of the incoming arguments.
1813  SmallVector<CCValAssign, 16> ArgLocs;
1814  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1815                 ArgLocs, *DAG.getContext());
1816
1817  // Allocate shadow area for Win64
1818  if (IsWin64) {
1819    CCInfo.AllocateStack(32, 8);
1820  }
1821
1822  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1823
1824  unsigned LastVal = ~0U;
1825  SDValue ArgValue;
1826  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1827    CCValAssign &VA = ArgLocs[i];
1828    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1829    // places.
1830    assert(VA.getValNo() != LastVal &&
1831           "Don't support value assigned to multiple locs yet");
1832    (void)LastVal;
1833    LastVal = VA.getValNo();
1834
1835    if (VA.isRegLoc()) {
1836      EVT RegVT = VA.getLocVT();
1837      TargetRegisterClass *RC = NULL;
1838      if (RegVT == MVT::i32)
1839        RC = X86::GR32RegisterClass;
1840      else if (Is64Bit && RegVT == MVT::i64)
1841        RC = X86::GR64RegisterClass;
1842      else if (RegVT == MVT::f32)
1843        RC = X86::FR32RegisterClass;
1844      else if (RegVT == MVT::f64)
1845        RC = X86::FR64RegisterClass;
1846      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1847        RC = X86::VR256RegisterClass;
1848      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1849        RC = X86::VR128RegisterClass;
1850      else if (RegVT == MVT::x86mmx)
1851        RC = X86::VR64RegisterClass;
1852      else
1853        llvm_unreachable("Unknown argument type!");
1854
1855      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1856      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1857
1858      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1859      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1860      // right size.
1861      if (VA.getLocInfo() == CCValAssign::SExt)
1862        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1863                               DAG.getValueType(VA.getValVT()));
1864      else if (VA.getLocInfo() == CCValAssign::ZExt)
1865        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1866                               DAG.getValueType(VA.getValVT()));
1867      else if (VA.getLocInfo() == CCValAssign::BCvt)
1868        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1869
1870      if (VA.isExtInLoc()) {
1871        // Handle MMX values passed in XMM regs.
1872        if (RegVT.isVector()) {
1873          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1874                                 ArgValue);
1875        } else
1876          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1877      }
1878    } else {
1879      assert(VA.isMemLoc());
1880      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1881    }
1882
1883    // If value is passed via pointer - do a load.
1884    if (VA.getLocInfo() == CCValAssign::Indirect)
1885      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1886                             MachinePointerInfo(), false, false, false, 0);
1887
1888    InVals.push_back(ArgValue);
1889  }
1890
1891  // The x86-64 ABI for returning structs by value requires that we copy
1892  // the sret argument into %rax for the return. Save the argument into
1893  // a virtual register so that we can access it from the return points.
1894  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1895    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1896    unsigned Reg = FuncInfo->getSRetReturnReg();
1897    if (!Reg) {
1898      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1899      FuncInfo->setSRetReturnReg(Reg);
1900    }
1901    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1902    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1903  }
1904
1905  unsigned StackSize = CCInfo.getNextStackOffset();
1906  // Align stack specially for tail calls.
1907  if (FuncIsMadeTailCallSafe(CallConv,
1908                             MF.getTarget().Options.GuaranteedTailCallOpt))
1909    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1910
1911  // If the function takes variable number of arguments, make a frame index for
1912  // the start of the first vararg value... for expansion of llvm.va_start.
1913  if (isVarArg) {
1914    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1915                    CallConv != CallingConv::X86_ThisCall)) {
1916      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1917    }
1918    if (Is64Bit) {
1919      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1920
1921      // FIXME: We should really autogenerate these arrays
1922      static const unsigned GPR64ArgRegsWin64[] = {
1923        X86::RCX, X86::RDX, X86::R8,  X86::R9
1924      };
1925      static const unsigned GPR64ArgRegs64Bit[] = {
1926        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1927      };
1928      static const unsigned XMMArgRegs64Bit[] = {
1929        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1930        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1931      };
1932      const unsigned *GPR64ArgRegs;
1933      unsigned NumXMMRegs = 0;
1934
1935      if (IsWin64) {
1936        // The XMM registers which might contain var arg parameters are shadowed
1937        // in their paired GPR.  So we only need to save the GPR to their home
1938        // slots.
1939        TotalNumIntRegs = 4;
1940        GPR64ArgRegs = GPR64ArgRegsWin64;
1941      } else {
1942        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1943        GPR64ArgRegs = GPR64ArgRegs64Bit;
1944
1945        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1946                                                TotalNumXMMRegs);
1947      }
1948      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1949                                                       TotalNumIntRegs);
1950
1951      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1952      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1953             "SSE register cannot be used when SSE is disabled!");
1954      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1955               NoImplicitFloatOps) &&
1956             "SSE register cannot be used when SSE is disabled!");
1957      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1958          !Subtarget->hasSSE1())
1959        // Kernel mode asks for SSE to be disabled, so don't push them
1960        // on the stack.
1961        TotalNumXMMRegs = 0;
1962
1963      if (IsWin64) {
1964        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1965        // Get to the caller-allocated home save location.  Add 8 to account
1966        // for the return address.
1967        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1968        FuncInfo->setRegSaveFrameIndex(
1969          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1970        // Fixup to set vararg frame on shadow area (4 x i64).
1971        if (NumIntRegs < 4)
1972          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1973      } else {
1974        // For X86-64, if there are vararg parameters that are passed via
1975        // registers, then we must store them to their spots on the stack so
1976        // they may be loaded by deferencing the result of va_next.
1977        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1978        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1979        FuncInfo->setRegSaveFrameIndex(
1980          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1981                               false));
1982      }
1983
1984      // Store the integer parameter registers.
1985      SmallVector<SDValue, 8> MemOps;
1986      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1987                                        getPointerTy());
1988      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1989      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1990        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1991                                  DAG.getIntPtrConstant(Offset));
1992        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1993                                     X86::GR64RegisterClass);
1994        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1995        SDValue Store =
1996          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1997                       MachinePointerInfo::getFixedStack(
1998                         FuncInfo->getRegSaveFrameIndex(), Offset),
1999                       false, false, 0);
2000        MemOps.push_back(Store);
2001        Offset += 8;
2002      }
2003
2004      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2005        // Now store the XMM (fp + vector) parameter registers.
2006        SmallVector<SDValue, 11> SaveXMMOps;
2007        SaveXMMOps.push_back(Chain);
2008
2009        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2010        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2011        SaveXMMOps.push_back(ALVal);
2012
2013        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2014                               FuncInfo->getRegSaveFrameIndex()));
2015        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2016                               FuncInfo->getVarArgsFPOffset()));
2017
2018        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2019          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2020                                       X86::VR128RegisterClass);
2021          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2022          SaveXMMOps.push_back(Val);
2023        }
2024        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2025                                     MVT::Other,
2026                                     &SaveXMMOps[0], SaveXMMOps.size()));
2027      }
2028
2029      if (!MemOps.empty())
2030        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2031                            &MemOps[0], MemOps.size());
2032    }
2033  }
2034
2035  // Some CCs need callee pop.
2036  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2037                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2038    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2039  } else {
2040    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2041    // If this is an sret function, the return should pop the hidden pointer.
2042    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
2043      FuncInfo->setBytesToPopOnReturn(4);
2044  }
2045
2046  if (!Is64Bit) {
2047    // RegSaveFrameIndex is X86-64 only.
2048    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2049    if (CallConv == CallingConv::X86_FastCall ||
2050        CallConv == CallingConv::X86_ThisCall)
2051      // fastcc functions can't have varargs.
2052      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2053  }
2054
2055  FuncInfo->setArgumentStackSize(StackSize);
2056
2057  return Chain;
2058}
2059
2060SDValue
2061X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2062                                    SDValue StackPtr, SDValue Arg,
2063                                    DebugLoc dl, SelectionDAG &DAG,
2064                                    const CCValAssign &VA,
2065                                    ISD::ArgFlagsTy Flags) const {
2066  unsigned LocMemOffset = VA.getLocMemOffset();
2067  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2068  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2069  if (Flags.isByVal())
2070    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2071
2072  return DAG.getStore(Chain, dl, Arg, PtrOff,
2073                      MachinePointerInfo::getStack(LocMemOffset),
2074                      false, false, 0);
2075}
2076
2077/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2078/// optimization is performed and it is required.
2079SDValue
2080X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2081                                           SDValue &OutRetAddr, SDValue Chain,
2082                                           bool IsTailCall, bool Is64Bit,
2083                                           int FPDiff, DebugLoc dl) const {
2084  // Adjust the Return address stack slot.
2085  EVT VT = getPointerTy();
2086  OutRetAddr = getReturnAddressFrameIndex(DAG);
2087
2088  // Load the "old" Return address.
2089  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2090                           false, false, false, 0);
2091  return SDValue(OutRetAddr.getNode(), 1);
2092}
2093
2094/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2095/// optimization is performed and it is required (FPDiff!=0).
2096static SDValue
2097EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2098                         SDValue Chain, SDValue RetAddrFrIdx,
2099                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2100  // Store the return address to the appropriate stack slot.
2101  if (!FPDiff) return Chain;
2102  // Calculate the new stack slot for the return address.
2103  int SlotSize = Is64Bit ? 8 : 4;
2104  int NewReturnAddrFI =
2105    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2106  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2107  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2108  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2109                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2110                       false, false, 0);
2111  return Chain;
2112}
2113
2114SDValue
2115X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2116                             CallingConv::ID CallConv, bool isVarArg,
2117                             bool &isTailCall,
2118                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2119                             const SmallVectorImpl<SDValue> &OutVals,
2120                             const SmallVectorImpl<ISD::InputArg> &Ins,
2121                             DebugLoc dl, SelectionDAG &DAG,
2122                             SmallVectorImpl<SDValue> &InVals) const {
2123  MachineFunction &MF = DAG.getMachineFunction();
2124  bool Is64Bit        = Subtarget->is64Bit();
2125  bool IsWin64        = Subtarget->isTargetWin64();
2126  bool IsStructRet    = CallIsStructReturn(Outs);
2127  bool IsSibcall      = false;
2128
2129  if (isTailCall) {
2130    // Check if it's really possible to do a tail call.
2131    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2132                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2133                                                   Outs, OutVals, Ins, DAG);
2134
2135    // Sibcalls are automatically detected tailcalls which do not require
2136    // ABI changes.
2137    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2138      IsSibcall = true;
2139
2140    if (isTailCall)
2141      ++NumTailCalls;
2142  }
2143
2144  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2145         "Var args not supported with calling convention fastcc or ghc");
2146
2147  // Analyze operands of the call, assigning locations to each operand.
2148  SmallVector<CCValAssign, 16> ArgLocs;
2149  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2150                 ArgLocs, *DAG.getContext());
2151
2152  // Allocate shadow area for Win64
2153  if (IsWin64) {
2154    CCInfo.AllocateStack(32, 8);
2155  }
2156
2157  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2158
2159  // Get a count of how many bytes are to be pushed on the stack.
2160  unsigned NumBytes = CCInfo.getNextStackOffset();
2161  if (IsSibcall)
2162    // This is a sibcall. The memory operands are available in caller's
2163    // own caller's stack.
2164    NumBytes = 0;
2165  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2166           IsTailCallConvention(CallConv))
2167    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2168
2169  int FPDiff = 0;
2170  if (isTailCall && !IsSibcall) {
2171    // Lower arguments at fp - stackoffset + fpdiff.
2172    unsigned NumBytesCallerPushed =
2173      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2174    FPDiff = NumBytesCallerPushed - NumBytes;
2175
2176    // Set the delta of movement of the returnaddr stackslot.
2177    // But only set if delta is greater than previous delta.
2178    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2179      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2180  }
2181
2182  if (!IsSibcall)
2183    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2184
2185  SDValue RetAddrFrIdx;
2186  // Load return address for tail calls.
2187  if (isTailCall && FPDiff)
2188    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2189                                    Is64Bit, FPDiff, dl);
2190
2191  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2192  SmallVector<SDValue, 8> MemOpChains;
2193  SDValue StackPtr;
2194
2195  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2196  // of tail call optimization arguments are handle later.
2197  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2198    CCValAssign &VA = ArgLocs[i];
2199    EVT RegVT = VA.getLocVT();
2200    SDValue Arg = OutVals[i];
2201    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2202    bool isByVal = Flags.isByVal();
2203
2204    // Promote the value if needed.
2205    switch (VA.getLocInfo()) {
2206    default: llvm_unreachable("Unknown loc info!");
2207    case CCValAssign::Full: break;
2208    case CCValAssign::SExt:
2209      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2210      break;
2211    case CCValAssign::ZExt:
2212      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2213      break;
2214    case CCValAssign::AExt:
2215      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2216        // Special case: passing MMX values in XMM registers.
2217        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2218        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2219        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2220      } else
2221        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2222      break;
2223    case CCValAssign::BCvt:
2224      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2225      break;
2226    case CCValAssign::Indirect: {
2227      // Store the argument.
2228      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2229      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2230      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2231                           MachinePointerInfo::getFixedStack(FI),
2232                           false, false, 0);
2233      Arg = SpillSlot;
2234      break;
2235    }
2236    }
2237
2238    if (VA.isRegLoc()) {
2239      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2240      if (isVarArg && IsWin64) {
2241        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2242        // shadow reg if callee is a varargs function.
2243        unsigned ShadowReg = 0;
2244        switch (VA.getLocReg()) {
2245        case X86::XMM0: ShadowReg = X86::RCX; break;
2246        case X86::XMM1: ShadowReg = X86::RDX; break;
2247        case X86::XMM2: ShadowReg = X86::R8; break;
2248        case X86::XMM3: ShadowReg = X86::R9; break;
2249        }
2250        if (ShadowReg)
2251          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2252      }
2253    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2254      assert(VA.isMemLoc());
2255      if (StackPtr.getNode() == 0)
2256        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2257      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2258                                             dl, DAG, VA, Flags));
2259    }
2260  }
2261
2262  if (!MemOpChains.empty())
2263    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2264                        &MemOpChains[0], MemOpChains.size());
2265
2266  // Build a sequence of copy-to-reg nodes chained together with token chain
2267  // and flag operands which copy the outgoing args into registers.
2268  SDValue InFlag;
2269  // Tail call byval lowering might overwrite argument registers so in case of
2270  // tail call optimization the copies to registers are lowered later.
2271  if (!isTailCall)
2272    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2273      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2274                               RegsToPass[i].second, InFlag);
2275      InFlag = Chain.getValue(1);
2276    }
2277
2278  if (Subtarget->isPICStyleGOT()) {
2279    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2280    // GOT pointer.
2281    if (!isTailCall) {
2282      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2283                               DAG.getNode(X86ISD::GlobalBaseReg,
2284                                           DebugLoc(), getPointerTy()),
2285                               InFlag);
2286      InFlag = Chain.getValue(1);
2287    } else {
2288      // If we are tail calling and generating PIC/GOT style code load the
2289      // address of the callee into ECX. The value in ecx is used as target of
2290      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2291      // for tail calls on PIC/GOT architectures. Normally we would just put the
2292      // address of GOT into ebx and then call target@PLT. But for tail calls
2293      // ebx would be restored (since ebx is callee saved) before jumping to the
2294      // target@PLT.
2295
2296      // Note: The actual moving to ECX is done further down.
2297      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2298      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2299          !G->getGlobal()->hasProtectedVisibility())
2300        Callee = LowerGlobalAddress(Callee, DAG);
2301      else if (isa<ExternalSymbolSDNode>(Callee))
2302        Callee = LowerExternalSymbol(Callee, DAG);
2303    }
2304  }
2305
2306  if (Is64Bit && isVarArg && !IsWin64) {
2307    // From AMD64 ABI document:
2308    // For calls that may call functions that use varargs or stdargs
2309    // (prototype-less calls or calls to functions containing ellipsis (...) in
2310    // the declaration) %al is used as hidden argument to specify the number
2311    // of SSE registers used. The contents of %al do not need to match exactly
2312    // the number of registers, but must be an ubound on the number of SSE
2313    // registers used and is in the range 0 - 8 inclusive.
2314
2315    // Count the number of XMM registers allocated.
2316    static const unsigned XMMArgRegs[] = {
2317      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2318      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2319    };
2320    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2321    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2322           && "SSE registers cannot be used when SSE is disabled");
2323
2324    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2325                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2326    InFlag = Chain.getValue(1);
2327  }
2328
2329
2330  // For tail calls lower the arguments to the 'real' stack slot.
2331  if (isTailCall) {
2332    // Force all the incoming stack arguments to be loaded from the stack
2333    // before any new outgoing arguments are stored to the stack, because the
2334    // outgoing stack slots may alias the incoming argument stack slots, and
2335    // the alias isn't otherwise explicit. This is slightly more conservative
2336    // than necessary, because it means that each store effectively depends
2337    // on every argument instead of just those arguments it would clobber.
2338    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2339
2340    SmallVector<SDValue, 8> MemOpChains2;
2341    SDValue FIN;
2342    int FI = 0;
2343    // Do not flag preceding copytoreg stuff together with the following stuff.
2344    InFlag = SDValue();
2345    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2346      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2347        CCValAssign &VA = ArgLocs[i];
2348        if (VA.isRegLoc())
2349          continue;
2350        assert(VA.isMemLoc());
2351        SDValue Arg = OutVals[i];
2352        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2353        // Create frame index.
2354        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2355        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2356        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2357        FIN = DAG.getFrameIndex(FI, getPointerTy());
2358
2359        if (Flags.isByVal()) {
2360          // Copy relative to framepointer.
2361          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2362          if (StackPtr.getNode() == 0)
2363            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2364                                          getPointerTy());
2365          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2366
2367          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2368                                                           ArgChain,
2369                                                           Flags, DAG, dl));
2370        } else {
2371          // Store relative to framepointer.
2372          MemOpChains2.push_back(
2373            DAG.getStore(ArgChain, dl, Arg, FIN,
2374                         MachinePointerInfo::getFixedStack(FI),
2375                         false, false, 0));
2376        }
2377      }
2378    }
2379
2380    if (!MemOpChains2.empty())
2381      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2382                          &MemOpChains2[0], MemOpChains2.size());
2383
2384    // Copy arguments to their registers.
2385    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2386      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2387                               RegsToPass[i].second, InFlag);
2388      InFlag = Chain.getValue(1);
2389    }
2390    InFlag =SDValue();
2391
2392    // Store the return address to the appropriate stack slot.
2393    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2394                                     FPDiff, dl);
2395  }
2396
2397  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2398    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2399    // In the 64-bit large code model, we have to make all calls
2400    // through a register, since the call instruction's 32-bit
2401    // pc-relative offset may not be large enough to hold the whole
2402    // address.
2403  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2404    // If the callee is a GlobalAddress node (quite common, every direct call
2405    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2406    // it.
2407
2408    // We should use extra load for direct calls to dllimported functions in
2409    // non-JIT mode.
2410    const GlobalValue *GV = G->getGlobal();
2411    if (!GV->hasDLLImportLinkage()) {
2412      unsigned char OpFlags = 0;
2413      bool ExtraLoad = false;
2414      unsigned WrapperKind = ISD::DELETED_NODE;
2415
2416      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2417      // external symbols most go through the PLT in PIC mode.  If the symbol
2418      // has hidden or protected visibility, or if it is static or local, then
2419      // we don't need to use the PLT - we can directly call it.
2420      if (Subtarget->isTargetELF() &&
2421          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2422          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2423        OpFlags = X86II::MO_PLT;
2424      } else if (Subtarget->isPICStyleStubAny() &&
2425                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2426                 (!Subtarget->getTargetTriple().isMacOSX() ||
2427                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2428        // PC-relative references to external symbols should go through $stub,
2429        // unless we're building with the leopard linker or later, which
2430        // automatically synthesizes these stubs.
2431        OpFlags = X86II::MO_DARWIN_STUB;
2432      } else if (Subtarget->isPICStyleRIPRel() &&
2433                 isa<Function>(GV) &&
2434                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2435        // If the function is marked as non-lazy, generate an indirect call
2436        // which loads from the GOT directly. This avoids runtime overhead
2437        // at the cost of eager binding (and one extra byte of encoding).
2438        OpFlags = X86II::MO_GOTPCREL;
2439        WrapperKind = X86ISD::WrapperRIP;
2440        ExtraLoad = true;
2441      }
2442
2443      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2444                                          G->getOffset(), OpFlags);
2445
2446      // Add a wrapper if needed.
2447      if (WrapperKind != ISD::DELETED_NODE)
2448        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2449      // Add extra indirection if needed.
2450      if (ExtraLoad)
2451        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2452                             MachinePointerInfo::getGOT(),
2453                             false, false, false, 0);
2454    }
2455  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2456    unsigned char OpFlags = 0;
2457
2458    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2459    // external symbols should go through the PLT.
2460    if (Subtarget->isTargetELF() &&
2461        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2462      OpFlags = X86II::MO_PLT;
2463    } else if (Subtarget->isPICStyleStubAny() &&
2464               (!Subtarget->getTargetTriple().isMacOSX() ||
2465                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2466      // PC-relative references to external symbols should go through $stub,
2467      // unless we're building with the leopard linker or later, which
2468      // automatically synthesizes these stubs.
2469      OpFlags = X86II::MO_DARWIN_STUB;
2470    }
2471
2472    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2473                                         OpFlags);
2474  }
2475
2476  // Returns a chain & a flag for retval copy to use.
2477  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2478  SmallVector<SDValue, 8> Ops;
2479
2480  if (!IsSibcall && isTailCall) {
2481    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2482                           DAG.getIntPtrConstant(0, true), InFlag);
2483    InFlag = Chain.getValue(1);
2484  }
2485
2486  Ops.push_back(Chain);
2487  Ops.push_back(Callee);
2488
2489  if (isTailCall)
2490    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2491
2492  // Add argument registers to the end of the list so that they are known live
2493  // into the call.
2494  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2495    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2496                                  RegsToPass[i].second.getValueType()));
2497
2498  // Add an implicit use GOT pointer in EBX.
2499  if (!isTailCall && Subtarget->isPICStyleGOT())
2500    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2501
2502  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2503  if (Is64Bit && isVarArg && !IsWin64)
2504    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2505
2506  if (InFlag.getNode())
2507    Ops.push_back(InFlag);
2508
2509  if (isTailCall) {
2510    // We used to do:
2511    //// If this is the first return lowered for this function, add the regs
2512    //// to the liveout set for the function.
2513    // This isn't right, although it's probably harmless on x86; liveouts
2514    // should be computed from returns not tail calls.  Consider a void
2515    // function making a tail call to a function returning int.
2516    return DAG.getNode(X86ISD::TC_RETURN, dl,
2517                       NodeTys, &Ops[0], Ops.size());
2518  }
2519
2520  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2521  InFlag = Chain.getValue(1);
2522
2523  // Create the CALLSEQ_END node.
2524  unsigned NumBytesForCalleeToPush;
2525  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2526                       getTargetMachine().Options.GuaranteedTailCallOpt))
2527    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2528  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2529    // If this is a call to a struct-return function, the callee
2530    // pops the hidden struct pointer, so we have to push it back.
2531    // This is common for Darwin/X86, Linux & Mingw32 targets.
2532    NumBytesForCalleeToPush = 4;
2533  else
2534    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2535
2536  // Returns a flag for retval copy to use.
2537  if (!IsSibcall) {
2538    Chain = DAG.getCALLSEQ_END(Chain,
2539                               DAG.getIntPtrConstant(NumBytes, true),
2540                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2541                                                     true),
2542                               InFlag);
2543    InFlag = Chain.getValue(1);
2544  }
2545
2546  // Handle result values, copying them out of physregs into vregs that we
2547  // return.
2548  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2549                         Ins, dl, DAG, InVals);
2550}
2551
2552
2553//===----------------------------------------------------------------------===//
2554//                Fast Calling Convention (tail call) implementation
2555//===----------------------------------------------------------------------===//
2556
2557//  Like std call, callee cleans arguments, convention except that ECX is
2558//  reserved for storing the tail called function address. Only 2 registers are
2559//  free for argument passing (inreg). Tail call optimization is performed
2560//  provided:
2561//                * tailcallopt is enabled
2562//                * caller/callee are fastcc
2563//  On X86_64 architecture with GOT-style position independent code only local
2564//  (within module) calls are supported at the moment.
2565//  To keep the stack aligned according to platform abi the function
2566//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2567//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2568//  If a tail called function callee has more arguments than the caller the
2569//  caller needs to make sure that there is room to move the RETADDR to. This is
2570//  achieved by reserving an area the size of the argument delta right after the
2571//  original REtADDR, but before the saved framepointer or the spilled registers
2572//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2573//  stack layout:
2574//    arg1
2575//    arg2
2576//    RETADDR
2577//    [ new RETADDR
2578//      move area ]
2579//    (possible EBP)
2580//    ESI
2581//    EDI
2582//    local1 ..
2583
2584/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2585/// for a 16 byte align requirement.
2586unsigned
2587X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2588                                               SelectionDAG& DAG) const {
2589  MachineFunction &MF = DAG.getMachineFunction();
2590  const TargetMachine &TM = MF.getTarget();
2591  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2592  unsigned StackAlignment = TFI.getStackAlignment();
2593  uint64_t AlignMask = StackAlignment - 1;
2594  int64_t Offset = StackSize;
2595  uint64_t SlotSize = TD->getPointerSize();
2596  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2597    // Number smaller than 12 so just add the difference.
2598    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2599  } else {
2600    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2601    Offset = ((~AlignMask) & Offset) + StackAlignment +
2602      (StackAlignment-SlotSize);
2603  }
2604  return Offset;
2605}
2606
2607/// MatchingStackOffset - Return true if the given stack call argument is
2608/// already available in the same position (relatively) of the caller's
2609/// incoming argument stack.
2610static
2611bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2612                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2613                         const X86InstrInfo *TII) {
2614  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2615  int FI = INT_MAX;
2616  if (Arg.getOpcode() == ISD::CopyFromReg) {
2617    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2618    if (!TargetRegisterInfo::isVirtualRegister(VR))
2619      return false;
2620    MachineInstr *Def = MRI->getVRegDef(VR);
2621    if (!Def)
2622      return false;
2623    if (!Flags.isByVal()) {
2624      if (!TII->isLoadFromStackSlot(Def, FI))
2625        return false;
2626    } else {
2627      unsigned Opcode = Def->getOpcode();
2628      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2629          Def->getOperand(1).isFI()) {
2630        FI = Def->getOperand(1).getIndex();
2631        Bytes = Flags.getByValSize();
2632      } else
2633        return false;
2634    }
2635  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2636    if (Flags.isByVal())
2637      // ByVal argument is passed in as a pointer but it's now being
2638      // dereferenced. e.g.
2639      // define @foo(%struct.X* %A) {
2640      //   tail call @bar(%struct.X* byval %A)
2641      // }
2642      return false;
2643    SDValue Ptr = Ld->getBasePtr();
2644    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2645    if (!FINode)
2646      return false;
2647    FI = FINode->getIndex();
2648  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2649    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2650    FI = FINode->getIndex();
2651    Bytes = Flags.getByValSize();
2652  } else
2653    return false;
2654
2655  assert(FI != INT_MAX);
2656  if (!MFI->isFixedObjectIndex(FI))
2657    return false;
2658  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2659}
2660
2661/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2662/// for tail call optimization. Targets which want to do tail call
2663/// optimization should implement this function.
2664bool
2665X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2666                                                     CallingConv::ID CalleeCC,
2667                                                     bool isVarArg,
2668                                                     bool isCalleeStructRet,
2669                                                     bool isCallerStructRet,
2670                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2671                                    const SmallVectorImpl<SDValue> &OutVals,
2672                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2673                                                     SelectionDAG& DAG) const {
2674  if (!IsTailCallConvention(CalleeCC) &&
2675      CalleeCC != CallingConv::C)
2676    return false;
2677
2678  // If -tailcallopt is specified, make fastcc functions tail-callable.
2679  const MachineFunction &MF = DAG.getMachineFunction();
2680  const Function *CallerF = DAG.getMachineFunction().getFunction();
2681  CallingConv::ID CallerCC = CallerF->getCallingConv();
2682  bool CCMatch = CallerCC == CalleeCC;
2683
2684  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2685    if (IsTailCallConvention(CalleeCC) && CCMatch)
2686      return true;
2687    return false;
2688  }
2689
2690  // Look for obvious safe cases to perform tail call optimization that do not
2691  // require ABI changes. This is what gcc calls sibcall.
2692
2693  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2694  // emit a special epilogue.
2695  if (RegInfo->needsStackRealignment(MF))
2696    return false;
2697
2698  // Also avoid sibcall optimization if either caller or callee uses struct
2699  // return semantics.
2700  if (isCalleeStructRet || isCallerStructRet)
2701    return false;
2702
2703  // An stdcall caller is expected to clean up its arguments; the callee
2704  // isn't going to do that.
2705  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2706    return false;
2707
2708  // Do not sibcall optimize vararg calls unless all arguments are passed via
2709  // registers.
2710  if (isVarArg && !Outs.empty()) {
2711
2712    // Optimizing for varargs on Win64 is unlikely to be safe without
2713    // additional testing.
2714    if (Subtarget->isTargetWin64())
2715      return false;
2716
2717    SmallVector<CCValAssign, 16> ArgLocs;
2718    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2719		   getTargetMachine(), ArgLocs, *DAG.getContext());
2720
2721    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2722    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2723      if (!ArgLocs[i].isRegLoc())
2724        return false;
2725  }
2726
2727  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2728  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2729  // this into a sibcall.
2730  bool Unused = false;
2731  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2732    if (!Ins[i].Used) {
2733      Unused = true;
2734      break;
2735    }
2736  }
2737  if (Unused) {
2738    SmallVector<CCValAssign, 16> RVLocs;
2739    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2740		   getTargetMachine(), RVLocs, *DAG.getContext());
2741    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2742    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2743      CCValAssign &VA = RVLocs[i];
2744      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2745        return false;
2746    }
2747  }
2748
2749  // If the calling conventions do not match, then we'd better make sure the
2750  // results are returned in the same way as what the caller expects.
2751  if (!CCMatch) {
2752    SmallVector<CCValAssign, 16> RVLocs1;
2753    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2754		    getTargetMachine(), RVLocs1, *DAG.getContext());
2755    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2756
2757    SmallVector<CCValAssign, 16> RVLocs2;
2758    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2759		    getTargetMachine(), RVLocs2, *DAG.getContext());
2760    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2761
2762    if (RVLocs1.size() != RVLocs2.size())
2763      return false;
2764    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2765      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2766        return false;
2767      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2768        return false;
2769      if (RVLocs1[i].isRegLoc()) {
2770        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2771          return false;
2772      } else {
2773        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2774          return false;
2775      }
2776    }
2777  }
2778
2779  // If the callee takes no arguments then go on to check the results of the
2780  // call.
2781  if (!Outs.empty()) {
2782    // Check if stack adjustment is needed. For now, do not do this if any
2783    // argument is passed on the stack.
2784    SmallVector<CCValAssign, 16> ArgLocs;
2785    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2786		   getTargetMachine(), ArgLocs, *DAG.getContext());
2787
2788    // Allocate shadow area for Win64
2789    if (Subtarget->isTargetWin64()) {
2790      CCInfo.AllocateStack(32, 8);
2791    }
2792
2793    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2794    if (CCInfo.getNextStackOffset()) {
2795      MachineFunction &MF = DAG.getMachineFunction();
2796      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2797        return false;
2798
2799      // Check if the arguments are already laid out in the right way as
2800      // the caller's fixed stack objects.
2801      MachineFrameInfo *MFI = MF.getFrameInfo();
2802      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2803      const X86InstrInfo *TII =
2804        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2805      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2806        CCValAssign &VA = ArgLocs[i];
2807        SDValue Arg = OutVals[i];
2808        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2809        if (VA.getLocInfo() == CCValAssign::Indirect)
2810          return false;
2811        if (!VA.isRegLoc()) {
2812          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2813                                   MFI, MRI, TII))
2814            return false;
2815        }
2816      }
2817    }
2818
2819    // If the tailcall address may be in a register, then make sure it's
2820    // possible to register allocate for it. In 32-bit, the call address can
2821    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2822    // callee-saved registers are restored. These happen to be the same
2823    // registers used to pass 'inreg' arguments so watch out for those.
2824    if (!Subtarget->is64Bit() &&
2825        !isa<GlobalAddressSDNode>(Callee) &&
2826        !isa<ExternalSymbolSDNode>(Callee)) {
2827      unsigned NumInRegs = 0;
2828      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2829        CCValAssign &VA = ArgLocs[i];
2830        if (!VA.isRegLoc())
2831          continue;
2832        unsigned Reg = VA.getLocReg();
2833        switch (Reg) {
2834        default: break;
2835        case X86::EAX: case X86::EDX: case X86::ECX:
2836          if (++NumInRegs == 3)
2837            return false;
2838          break;
2839        }
2840      }
2841    }
2842  }
2843
2844  return true;
2845}
2846
2847FastISel *
2848X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2849  return X86::createFastISel(funcInfo);
2850}
2851
2852
2853//===----------------------------------------------------------------------===//
2854//                           Other Lowering Hooks
2855//===----------------------------------------------------------------------===//
2856
2857static bool MayFoldLoad(SDValue Op) {
2858  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2859}
2860
2861static bool MayFoldIntoStore(SDValue Op) {
2862  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2863}
2864
2865static bool isTargetShuffle(unsigned Opcode) {
2866  switch(Opcode) {
2867  default: return false;
2868  case X86ISD::PSHUFD:
2869  case X86ISD::PSHUFHW:
2870  case X86ISD::PSHUFLW:
2871  case X86ISD::SHUFP:
2872  case X86ISD::PALIGN:
2873  case X86ISD::MOVLHPS:
2874  case X86ISD::MOVLHPD:
2875  case X86ISD::MOVHLPS:
2876  case X86ISD::MOVLPS:
2877  case X86ISD::MOVLPD:
2878  case X86ISD::MOVSHDUP:
2879  case X86ISD::MOVSLDUP:
2880  case X86ISD::MOVDDUP:
2881  case X86ISD::MOVSS:
2882  case X86ISD::MOVSD:
2883  case X86ISD::UNPCKL:
2884  case X86ISD::UNPCKH:
2885  case X86ISD::VPERMILP:
2886  case X86ISD::VPERM2X128:
2887    return true;
2888  }
2889  return false;
2890}
2891
2892static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2893                                               SDValue V1, SelectionDAG &DAG) {
2894  switch(Opc) {
2895  default: llvm_unreachable("Unknown x86 shuffle node");
2896  case X86ISD::MOVSHDUP:
2897  case X86ISD::MOVSLDUP:
2898  case X86ISD::MOVDDUP:
2899    return DAG.getNode(Opc, dl, VT, V1);
2900  }
2901
2902  return SDValue();
2903}
2904
2905static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2906                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2907  switch(Opc) {
2908  default: llvm_unreachable("Unknown x86 shuffle node");
2909  case X86ISD::PSHUFD:
2910  case X86ISD::PSHUFHW:
2911  case X86ISD::PSHUFLW:
2912  case X86ISD::VPERMILP:
2913    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2914  }
2915
2916  return SDValue();
2917}
2918
2919static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2920               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2921  switch(Opc) {
2922  default: llvm_unreachable("Unknown x86 shuffle node");
2923  case X86ISD::PALIGN:
2924  case X86ISD::SHUFP:
2925  case X86ISD::VPERM2X128:
2926    return DAG.getNode(Opc, dl, VT, V1, V2,
2927                       DAG.getConstant(TargetMask, MVT::i8));
2928  }
2929  return SDValue();
2930}
2931
2932static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2933                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2934  switch(Opc) {
2935  default: llvm_unreachable("Unknown x86 shuffle node");
2936  case X86ISD::MOVLHPS:
2937  case X86ISD::MOVLHPD:
2938  case X86ISD::MOVHLPS:
2939  case X86ISD::MOVLPS:
2940  case X86ISD::MOVLPD:
2941  case X86ISD::MOVSS:
2942  case X86ISD::MOVSD:
2943  case X86ISD::UNPCKL:
2944  case X86ISD::UNPCKH:
2945    return DAG.getNode(Opc, dl, VT, V1, V2);
2946  }
2947  return SDValue();
2948}
2949
2950SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2951  MachineFunction &MF = DAG.getMachineFunction();
2952  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2953  int ReturnAddrIndex = FuncInfo->getRAIndex();
2954
2955  if (ReturnAddrIndex == 0) {
2956    // Set up a frame object for the return address.
2957    uint64_t SlotSize = TD->getPointerSize();
2958    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2959                                                           false);
2960    FuncInfo->setRAIndex(ReturnAddrIndex);
2961  }
2962
2963  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2964}
2965
2966
2967bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2968                                       bool hasSymbolicDisplacement) {
2969  // Offset should fit into 32 bit immediate field.
2970  if (!isInt<32>(Offset))
2971    return false;
2972
2973  // If we don't have a symbolic displacement - we don't have any extra
2974  // restrictions.
2975  if (!hasSymbolicDisplacement)
2976    return true;
2977
2978  // FIXME: Some tweaks might be needed for medium code model.
2979  if (M != CodeModel::Small && M != CodeModel::Kernel)
2980    return false;
2981
2982  // For small code model we assume that latest object is 16MB before end of 31
2983  // bits boundary. We may also accept pretty large negative constants knowing
2984  // that all objects are in the positive half of address space.
2985  if (M == CodeModel::Small && Offset < 16*1024*1024)
2986    return true;
2987
2988  // For kernel code model we know that all object resist in the negative half
2989  // of 32bits address space. We may not accept negative offsets, since they may
2990  // be just off and we may accept pretty large positive ones.
2991  if (M == CodeModel::Kernel && Offset > 0)
2992    return true;
2993
2994  return false;
2995}
2996
2997/// isCalleePop - Determines whether the callee is required to pop its
2998/// own arguments. Callee pop is necessary to support tail calls.
2999bool X86::isCalleePop(CallingConv::ID CallingConv,
3000                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3001  if (IsVarArg)
3002    return false;
3003
3004  switch (CallingConv) {
3005  default:
3006    return false;
3007  case CallingConv::X86_StdCall:
3008    return !is64Bit;
3009  case CallingConv::X86_FastCall:
3010    return !is64Bit;
3011  case CallingConv::X86_ThisCall:
3012    return !is64Bit;
3013  case CallingConv::Fast:
3014    return TailCallOpt;
3015  case CallingConv::GHC:
3016    return TailCallOpt;
3017  }
3018}
3019
3020/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3021/// specific condition code, returning the condition code and the LHS/RHS of the
3022/// comparison to make.
3023static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3024                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3025  if (!isFP) {
3026    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3027      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3028        // X > -1   -> X == 0, jump !sign.
3029        RHS = DAG.getConstant(0, RHS.getValueType());
3030        return X86::COND_NS;
3031      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3032        // X < 0   -> X == 0, jump on sign.
3033        return X86::COND_S;
3034      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3035        // X < 1   -> X <= 0
3036        RHS = DAG.getConstant(0, RHS.getValueType());
3037        return X86::COND_LE;
3038      }
3039    }
3040
3041    switch (SetCCOpcode) {
3042    default: llvm_unreachable("Invalid integer condition!");
3043    case ISD::SETEQ:  return X86::COND_E;
3044    case ISD::SETGT:  return X86::COND_G;
3045    case ISD::SETGE:  return X86::COND_GE;
3046    case ISD::SETLT:  return X86::COND_L;
3047    case ISD::SETLE:  return X86::COND_LE;
3048    case ISD::SETNE:  return X86::COND_NE;
3049    case ISD::SETULT: return X86::COND_B;
3050    case ISD::SETUGT: return X86::COND_A;
3051    case ISD::SETULE: return X86::COND_BE;
3052    case ISD::SETUGE: return X86::COND_AE;
3053    }
3054  }
3055
3056  // First determine if it is required or is profitable to flip the operands.
3057
3058  // If LHS is a foldable load, but RHS is not, flip the condition.
3059  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3060      !ISD::isNON_EXTLoad(RHS.getNode())) {
3061    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3062    std::swap(LHS, RHS);
3063  }
3064
3065  switch (SetCCOpcode) {
3066  default: break;
3067  case ISD::SETOLT:
3068  case ISD::SETOLE:
3069  case ISD::SETUGT:
3070  case ISD::SETUGE:
3071    std::swap(LHS, RHS);
3072    break;
3073  }
3074
3075  // On a floating point condition, the flags are set as follows:
3076  // ZF  PF  CF   op
3077  //  0 | 0 | 0 | X > Y
3078  //  0 | 0 | 1 | X < Y
3079  //  1 | 0 | 0 | X == Y
3080  //  1 | 1 | 1 | unordered
3081  switch (SetCCOpcode) {
3082  default: llvm_unreachable("Condcode should be pre-legalized away");
3083  case ISD::SETUEQ:
3084  case ISD::SETEQ:   return X86::COND_E;
3085  case ISD::SETOLT:              // flipped
3086  case ISD::SETOGT:
3087  case ISD::SETGT:   return X86::COND_A;
3088  case ISD::SETOLE:              // flipped
3089  case ISD::SETOGE:
3090  case ISD::SETGE:   return X86::COND_AE;
3091  case ISD::SETUGT:              // flipped
3092  case ISD::SETULT:
3093  case ISD::SETLT:   return X86::COND_B;
3094  case ISD::SETUGE:              // flipped
3095  case ISD::SETULE:
3096  case ISD::SETLE:   return X86::COND_BE;
3097  case ISD::SETONE:
3098  case ISD::SETNE:   return X86::COND_NE;
3099  case ISD::SETUO:   return X86::COND_P;
3100  case ISD::SETO:    return X86::COND_NP;
3101  case ISD::SETOEQ:
3102  case ISD::SETUNE:  return X86::COND_INVALID;
3103  }
3104}
3105
3106/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3107/// code. Current x86 isa includes the following FP cmov instructions:
3108/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3109static bool hasFPCMov(unsigned X86CC) {
3110  switch (X86CC) {
3111  default:
3112    return false;
3113  case X86::COND_B:
3114  case X86::COND_BE:
3115  case X86::COND_E:
3116  case X86::COND_P:
3117  case X86::COND_A:
3118  case X86::COND_AE:
3119  case X86::COND_NE:
3120  case X86::COND_NP:
3121    return true;
3122  }
3123}
3124
3125/// isFPImmLegal - Returns true if the target can instruction select the
3126/// specified FP immediate natively. If false, the legalizer will
3127/// materialize the FP immediate as a load from a constant pool.
3128bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3129  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3130    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3131      return true;
3132  }
3133  return false;
3134}
3135
3136/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3137/// the specified range (L, H].
3138static bool isUndefOrInRange(int Val, int Low, int Hi) {
3139  return (Val < 0) || (Val >= Low && Val < Hi);
3140}
3141
3142/// isUndefOrInRange - Return true if every element in Mask, begining
3143/// from position Pos and ending in Pos+Size, falls within the specified
3144/// range (L, L+Pos]. or is undef.
3145static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3146                             int Pos, int Size, int Low, int Hi) {
3147  for (int i = Pos, e = Pos+Size; i != e; ++i)
3148    if (!isUndefOrInRange(Mask[i], Low, Hi))
3149      return false;
3150  return true;
3151}
3152
3153/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3154/// specified value.
3155static bool isUndefOrEqual(int Val, int CmpVal) {
3156  if (Val < 0 || Val == CmpVal)
3157    return true;
3158  return false;
3159}
3160
3161/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3162/// from position Pos and ending in Pos+Size, falls within the specified
3163/// sequential range (L, L+Pos]. or is undef.
3164static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3165                                       int Pos, int Size, int Low) {
3166  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3167    if (!isUndefOrEqual(Mask[i], Low))
3168      return false;
3169  return true;
3170}
3171
3172/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3173/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3174/// the second operand.
3175static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3176  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3177    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3178  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3179    return (Mask[0] < 2 && Mask[1] < 2);
3180  return false;
3181}
3182
3183bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3184  SmallVector<int, 8> M;
3185  N->getMask(M);
3186  return ::isPSHUFDMask(M, N->getValueType(0));
3187}
3188
3189/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3190/// is suitable for input to PSHUFHW.
3191static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3192  if (VT != MVT::v8i16)
3193    return false;
3194
3195  // Lower quadword copied in order or undef.
3196  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3197    return false;
3198
3199  // Upper quadword shuffled.
3200  for (unsigned i = 4; i != 8; ++i)
3201    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3202      return false;
3203
3204  return true;
3205}
3206
3207bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3208  SmallVector<int, 8> M;
3209  N->getMask(M);
3210  return ::isPSHUFHWMask(M, N->getValueType(0));
3211}
3212
3213/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3214/// is suitable for input to PSHUFLW.
3215static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3216  if (VT != MVT::v8i16)
3217    return false;
3218
3219  // Upper quadword copied in order.
3220  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3221    return false;
3222
3223  // Lower quadword shuffled.
3224  for (unsigned i = 0; i != 4; ++i)
3225    if (Mask[i] >= 4)
3226      return false;
3227
3228  return true;
3229}
3230
3231bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3232  SmallVector<int, 8> M;
3233  N->getMask(M);
3234  return ::isPSHUFLWMask(M, N->getValueType(0));
3235}
3236
3237/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3238/// is suitable for input to PALIGNR.
3239static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3240                          bool hasSSSE3) {
3241  int i, e = VT.getVectorNumElements();
3242  if (VT.getSizeInBits() != 128)
3243    return false;
3244
3245  // Do not handle v2i64 / v2f64 shuffles with palignr.
3246  if (e < 4 || !hasSSSE3)
3247    return false;
3248
3249  for (i = 0; i != e; ++i)
3250    if (Mask[i] >= 0)
3251      break;
3252
3253  // All undef, not a palignr.
3254  if (i == e)
3255    return false;
3256
3257  // Make sure we're shifting in the right direction.
3258  if (Mask[i] <= i)
3259    return false;
3260
3261  int s = Mask[i] - i;
3262
3263  // Check the rest of the elements to see if they are consecutive.
3264  for (++i; i != e; ++i) {
3265    int m = Mask[i];
3266    if (m >= 0 && m != s+i)
3267      return false;
3268  }
3269  return true;
3270}
3271
3272/// isVSHUFPYMask - Return true if the specified VECTOR_SHUFFLE operand
3273/// specifies a shuffle of elements that is suitable for input to 256-bit
3274/// VSHUFPSY.
3275static bool isVSHUFPYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3276                          bool HasAVX, bool Commuted = false) {
3277  int NumElems = VT.getVectorNumElements();
3278
3279  if (!HasAVX || VT.getSizeInBits() != 256)
3280    return false;
3281
3282  if (NumElems != 4 && NumElems != 8)
3283    return false;
3284
3285  // VSHUFPSY divides the resulting vector into 4 chunks.
3286  // The sources are also splitted into 4 chunks, and each destination
3287  // chunk must come from a different source chunk.
3288  //
3289  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3290  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3291  //
3292  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3293  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3294  //
3295  // VSHUFPDY divides the resulting vector into 4 chunks.
3296  // The sources are also splitted into 4 chunks, and each destination
3297  // chunk must come from a different source chunk.
3298  //
3299  //  SRC1 =>      X3       X2       X1       X0
3300  //  SRC2 =>      Y3       Y2       Y1       Y0
3301  //
3302  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3303  //
3304  unsigned QuarterSize = NumElems/4;
3305  unsigned HalfSize = QuarterSize*2;
3306  for (unsigned l = 0; l != 2; ++l) {
3307    unsigned LaneStart = l*HalfSize;
3308    for (unsigned s = 0; s != 2; ++s) {
3309      unsigned QuarterStart = s*QuarterSize;
3310      unsigned Src = (Commuted) ? (1-s) : s;
3311      unsigned SrcStart = Src*NumElems + LaneStart;
3312      for (unsigned i = 0; i != QuarterSize; ++i) {
3313        int Idx = Mask[i+QuarterStart+LaneStart];
3314        if (!isUndefOrInRange(Idx, SrcStart, SrcStart+HalfSize))
3315          return false;
3316        // For VSHUFPSY, the mask of the second half must be the same as the
3317        // first but with the appropriate offsets. This works in the same way as
3318        // VPERMILPS works with masks.
3319        if (NumElems == 4 || l == 0 || Mask[i+QuarterStart] < 0)
3320          continue;
3321        if (!isUndefOrEqual(Idx, Mask[i+QuarterStart]+LaneStart))
3322          return false;
3323      }
3324    }
3325  }
3326
3327  return true;
3328}
3329
3330/// getShuffleVSHUFPYImmediate - Return the appropriate immediate to shuffle
3331/// the specified VECTOR_MASK mask with VSHUFPSY/VSHUFPDY instructions.
3332static unsigned getShuffleVSHUFPYImmediate(ShuffleVectorSDNode *SVOp) {
3333  EVT VT = SVOp->getValueType(0);
3334  unsigned NumElems = VT.getVectorNumElements();
3335
3336  assert(VT.getSizeInBits() == 256 && "Only supports 256-bit types");
3337  assert((NumElems == 4 || NumElems == 8) && "Only supports v4 and v8 types");
3338
3339  unsigned HalfSize = NumElems/2;
3340  unsigned Mul = (NumElems == 8) ? 2 : 1;
3341  unsigned Mask = 0;
3342  for (unsigned i = 0; i != NumElems; ++i) {
3343    int Elt = SVOp->getMaskElt(i);
3344    if (Elt < 0)
3345      continue;
3346    Elt %= HalfSize;
3347    unsigned Shamt = i;
3348    // For VSHUFPSY, the mask of the first half must be equal to the second one.
3349    if (NumElems == 8) Shamt %= HalfSize;
3350    Mask |= Elt << (Shamt*Mul);
3351  }
3352
3353  return Mask;
3354}
3355
3356/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3357/// the two vector operands have swapped position.
3358static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3359                                     unsigned NumElems) {
3360  for (unsigned i = 0; i != NumElems; ++i) {
3361    int idx = Mask[i];
3362    if (idx < 0)
3363      continue;
3364    else if (idx < (int)NumElems)
3365      Mask[i] = idx + NumElems;
3366    else
3367      Mask[i] = idx - NumElems;
3368  }
3369}
3370
3371/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3372/// specifies a shuffle of elements that is suitable for input to 128-bit
3373/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3374/// reverse of what x86 shuffles want.
3375static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT,
3376                        bool Commuted = false) {
3377  unsigned NumElems = VT.getVectorNumElements();
3378
3379  if (VT.getSizeInBits() != 128)
3380    return false;
3381
3382  if (NumElems != 2 && NumElems != 4)
3383    return false;
3384
3385  unsigned Half = NumElems / 2;
3386  unsigned SrcStart = Commuted ? NumElems : 0;
3387  for (unsigned i = 0; i != Half; ++i)
3388    if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
3389      return false;
3390  SrcStart = Commuted ? 0 : NumElems;
3391  for (unsigned i = Half; i != NumElems; ++i)
3392    if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
3393      return false;
3394
3395  return true;
3396}
3397
3398bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3399  SmallVector<int, 8> M;
3400  N->getMask(M);
3401  return ::isSHUFPMask(M, N->getValueType(0));
3402}
3403
3404/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3405/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3406bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3407  EVT VT = N->getValueType(0);
3408  unsigned NumElems = VT.getVectorNumElements();
3409
3410  if (VT.getSizeInBits() != 128)
3411    return false;
3412
3413  if (NumElems != 4)
3414    return false;
3415
3416  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3417  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3418         isUndefOrEqual(N->getMaskElt(1), 7) &&
3419         isUndefOrEqual(N->getMaskElt(2), 2) &&
3420         isUndefOrEqual(N->getMaskElt(3), 3);
3421}
3422
3423/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3424/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3425/// <2, 3, 2, 3>
3426bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3427  EVT VT = N->getValueType(0);
3428  unsigned NumElems = VT.getVectorNumElements();
3429
3430  if (VT.getSizeInBits() != 128)
3431    return false;
3432
3433  if (NumElems != 4)
3434    return false;
3435
3436  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3437         isUndefOrEqual(N->getMaskElt(1), 3) &&
3438         isUndefOrEqual(N->getMaskElt(2), 2) &&
3439         isUndefOrEqual(N->getMaskElt(3), 3);
3440}
3441
3442/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3443/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3444bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3445  EVT VT = N->getValueType(0);
3446
3447  if (VT.getSizeInBits() != 128)
3448    return false;
3449
3450  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3451
3452  if (NumElems != 2 && NumElems != 4)
3453    return false;
3454
3455  for (unsigned i = 0; i < NumElems/2; ++i)
3456    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3457      return false;
3458
3459  for (unsigned i = NumElems/2; i < NumElems; ++i)
3460    if (!isUndefOrEqual(N->getMaskElt(i), i))
3461      return false;
3462
3463  return true;
3464}
3465
3466/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3467/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3468bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3469  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3470
3471  if ((NumElems != 2 && NumElems != 4)
3472      || N->getValueType(0).getSizeInBits() > 128)
3473    return false;
3474
3475  for (unsigned i = 0; i < NumElems/2; ++i)
3476    if (!isUndefOrEqual(N->getMaskElt(i), i))
3477      return false;
3478
3479  for (unsigned i = 0; i < NumElems/2; ++i)
3480    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3481      return false;
3482
3483  return true;
3484}
3485
3486/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3487/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3488static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3489                         bool HasAVX2, bool V2IsSplat = false) {
3490  unsigned NumElts = VT.getVectorNumElements();
3491
3492  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3493         "Unsupported vector type for unpckh");
3494
3495  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3496      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3497    return false;
3498
3499  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3500  // independently on 128-bit lanes.
3501  unsigned NumLanes = VT.getSizeInBits()/128;
3502  unsigned NumLaneElts = NumElts/NumLanes;
3503
3504  for (unsigned l = 0; l != NumLanes; ++l) {
3505    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3506         i != (l+1)*NumLaneElts;
3507         i += 2, ++j) {
3508      int BitI  = Mask[i];
3509      int BitI1 = Mask[i+1];
3510      if (!isUndefOrEqual(BitI, j))
3511        return false;
3512      if (V2IsSplat) {
3513        if (!isUndefOrEqual(BitI1, NumElts))
3514          return false;
3515      } else {
3516        if (!isUndefOrEqual(BitI1, j + NumElts))
3517          return false;
3518      }
3519    }
3520  }
3521
3522  return true;
3523}
3524
3525bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3526  SmallVector<int, 8> M;
3527  N->getMask(M);
3528  return ::isUNPCKLMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3529}
3530
3531/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3532/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3533static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3534                         bool HasAVX2, bool V2IsSplat = false) {
3535  unsigned NumElts = VT.getVectorNumElements();
3536
3537  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3538         "Unsupported vector type for unpckh");
3539
3540  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3541      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3542    return false;
3543
3544  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3545  // independently on 128-bit lanes.
3546  unsigned NumLanes = VT.getSizeInBits()/128;
3547  unsigned NumLaneElts = NumElts/NumLanes;
3548
3549  for (unsigned l = 0; l != NumLanes; ++l) {
3550    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3551         i != (l+1)*NumLaneElts; i += 2, ++j) {
3552      int BitI  = Mask[i];
3553      int BitI1 = Mask[i+1];
3554      if (!isUndefOrEqual(BitI, j))
3555        return false;
3556      if (V2IsSplat) {
3557        if (isUndefOrEqual(BitI1, NumElts))
3558          return false;
3559      } else {
3560        if (!isUndefOrEqual(BitI1, j+NumElts))
3561          return false;
3562      }
3563    }
3564  }
3565  return true;
3566}
3567
3568bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3569  SmallVector<int, 8> M;
3570  N->getMask(M);
3571  return ::isUNPCKHMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3572}
3573
3574/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3575/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3576/// <0, 0, 1, 1>
3577static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3578                                  bool HasAVX2) {
3579  unsigned NumElts = VT.getVectorNumElements();
3580
3581  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3582         "Unsupported vector type for unpckh");
3583
3584  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3585      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3586    return false;
3587
3588  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3589  // FIXME: Need a better way to get rid of this, there's no latency difference
3590  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3591  // the former later. We should also remove the "_undef" special mask.
3592  if (NumElts == 4 && VT.getSizeInBits() == 256)
3593    return false;
3594
3595  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3596  // independently on 128-bit lanes.
3597  unsigned NumLanes = VT.getSizeInBits()/128;
3598  unsigned NumLaneElts = NumElts/NumLanes;
3599
3600  for (unsigned l = 0; l != NumLanes; ++l) {
3601    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3602         i != (l+1)*NumLaneElts;
3603         i += 2, ++j) {
3604      int BitI  = Mask[i];
3605      int BitI1 = Mask[i+1];
3606
3607      if (!isUndefOrEqual(BitI, j))
3608        return false;
3609      if (!isUndefOrEqual(BitI1, j))
3610        return false;
3611    }
3612  }
3613
3614  return true;
3615}
3616
3617bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3618  SmallVector<int, 8> M;
3619  N->getMask(M);
3620  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0), HasAVX2);
3621}
3622
3623/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3624/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3625/// <2, 2, 3, 3>
3626static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3627                                  bool HasAVX2) {
3628  unsigned NumElts = VT.getVectorNumElements();
3629
3630  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3631         "Unsupported vector type for unpckh");
3632
3633  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3634      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3635    return false;
3636
3637  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3638  // independently on 128-bit lanes.
3639  unsigned NumLanes = VT.getSizeInBits()/128;
3640  unsigned NumLaneElts = NumElts/NumLanes;
3641
3642  for (unsigned l = 0; l != NumLanes; ++l) {
3643    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3644         i != (l+1)*NumLaneElts; i += 2, ++j) {
3645      int BitI  = Mask[i];
3646      int BitI1 = Mask[i+1];
3647      if (!isUndefOrEqual(BitI, j))
3648        return false;
3649      if (!isUndefOrEqual(BitI1, j))
3650        return false;
3651    }
3652  }
3653  return true;
3654}
3655
3656bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3657  SmallVector<int, 8> M;
3658  N->getMask(M);
3659  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0), HasAVX2);
3660}
3661
3662/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3663/// specifies a shuffle of elements that is suitable for input to MOVSS,
3664/// MOVSD, and MOVD, i.e. setting the lowest element.
3665static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3666  if (VT.getVectorElementType().getSizeInBits() < 32)
3667    return false;
3668  if (VT.getSizeInBits() == 256)
3669    return false;
3670
3671  unsigned NumElts = VT.getVectorNumElements();
3672
3673  if (!isUndefOrEqual(Mask[0], NumElts))
3674    return false;
3675
3676  for (unsigned i = 1; i != NumElts; ++i)
3677    if (!isUndefOrEqual(Mask[i], i))
3678      return false;
3679
3680  return true;
3681}
3682
3683bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3684  SmallVector<int, 8> M;
3685  N->getMask(M);
3686  return ::isMOVLMask(M, N->getValueType(0));
3687}
3688
3689/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3690/// as permutations between 128-bit chunks or halves. As an example: this
3691/// shuffle bellow:
3692///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3693/// The first half comes from the second half of V1 and the second half from the
3694/// the second half of V2.
3695static bool isVPERM2X128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3696                             bool HasAVX) {
3697  if (!HasAVX || VT.getSizeInBits() != 256)
3698    return false;
3699
3700  // The shuffle result is divided into half A and half B. In total the two
3701  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3702  // B must come from C, D, E or F.
3703  unsigned HalfSize = VT.getVectorNumElements()/2;
3704  bool MatchA = false, MatchB = false;
3705
3706  // Check if A comes from one of C, D, E, F.
3707  for (unsigned Half = 0; Half != 4; ++Half) {
3708    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3709      MatchA = true;
3710      break;
3711    }
3712  }
3713
3714  // Check if B comes from one of C, D, E, F.
3715  for (unsigned Half = 0; Half != 4; ++Half) {
3716    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3717      MatchB = true;
3718      break;
3719    }
3720  }
3721
3722  return MatchA && MatchB;
3723}
3724
3725/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3726/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3727static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3728  EVT VT = SVOp->getValueType(0);
3729
3730  unsigned HalfSize = VT.getVectorNumElements()/2;
3731
3732  unsigned FstHalf = 0, SndHalf = 0;
3733  for (unsigned i = 0; i < HalfSize; ++i) {
3734    if (SVOp->getMaskElt(i) > 0) {
3735      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3736      break;
3737    }
3738  }
3739  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3740    if (SVOp->getMaskElt(i) > 0) {
3741      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3742      break;
3743    }
3744  }
3745
3746  return (FstHalf | (SndHalf << 4));
3747}
3748
3749/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3750/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3751/// Note that VPERMIL mask matching is different depending whether theunderlying
3752/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3753/// to the same elements of the low, but to the higher half of the source.
3754/// In VPERMILPD the two lanes could be shuffled independently of each other
3755/// with the same restriction that lanes can't be crossed.
3756static bool isVPERMILPMask(const SmallVectorImpl<int> &Mask, EVT VT,
3757                           bool HasAVX) {
3758  if (!HasAVX)
3759    return false;
3760
3761  unsigned NumElts = VT.getVectorNumElements();
3762  // Only match 256-bit with 32/64-bit types
3763  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3764    return false;
3765
3766  unsigned NumLanes = VT.getSizeInBits()/128;
3767  unsigned LaneSize = NumElts/NumLanes;
3768  for (unsigned l = 0; l != NumLanes; ++l) {
3769    unsigned LaneStart = l*LaneSize;
3770    for (unsigned i = 0; i != LaneSize; ++i) {
3771      if (!isUndefOrInRange(Mask[i+LaneStart], LaneStart, LaneStart+LaneSize))
3772        return false;
3773      if (NumElts == 4 || l == 0)
3774        continue;
3775      // VPERMILPS handling
3776      if (Mask[i] < 0)
3777        continue;
3778      if (!isUndefOrEqual(Mask[i+LaneStart], Mask[i]+LaneStart))
3779        return false;
3780    }
3781  }
3782
3783  return true;
3784}
3785
3786/// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
3787/// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
3788static unsigned getShuffleVPERMILPImmediate(ShuffleVectorSDNode *SVOp) {
3789  EVT VT = SVOp->getValueType(0);
3790
3791  unsigned NumElts = VT.getVectorNumElements();
3792  unsigned NumLanes = VT.getSizeInBits()/128;
3793  unsigned LaneSize = NumElts/NumLanes;
3794
3795  // Although the mask is equal for both lanes do it twice to get the cases
3796  // where a mask will match because the same mask element is undef on the
3797  // first half but valid on the second. This would get pathological cases
3798  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3799  unsigned Shift = (LaneSize == 4) ? 2 : 1;
3800  unsigned Mask = 0;
3801  for (unsigned i = 0; i != NumElts; ++i) {
3802    int MaskElt = SVOp->getMaskElt(i);
3803    if (MaskElt < 0)
3804      continue;
3805    MaskElt %= LaneSize;
3806    unsigned Shamt = i;
3807    // VPERMILPSY, the mask of the first half must be equal to the second one
3808    if (NumElts == 8) Shamt %= LaneSize;
3809    Mask |= MaskElt << (Shamt*Shift);
3810  }
3811
3812  return Mask;
3813}
3814
3815/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3816/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3817/// element of vector 2 and the other elements to come from vector 1 in order.
3818static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3819                               bool V2IsSplat = false, bool V2IsUndef = false) {
3820  unsigned NumOps = VT.getVectorNumElements();
3821  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3822    return false;
3823
3824  if (!isUndefOrEqual(Mask[0], 0))
3825    return false;
3826
3827  for (unsigned i = 1; i != NumOps; ++i)
3828    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3829          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3830          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3831      return false;
3832
3833  return true;
3834}
3835
3836static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3837                           bool V2IsUndef = false) {
3838  SmallVector<int, 8> M;
3839  N->getMask(M);
3840  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3841}
3842
3843/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3844/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3845/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3846bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3847                         const X86Subtarget *Subtarget) {
3848  if (!Subtarget->hasSSE3())
3849    return false;
3850
3851  // The second vector must be undef
3852  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3853    return false;
3854
3855  EVT VT = N->getValueType(0);
3856  unsigned NumElems = VT.getVectorNumElements();
3857
3858  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3859      (VT.getSizeInBits() == 256 && NumElems != 8))
3860    return false;
3861
3862  // "i+1" is the value the indexed mask element must have
3863  for (unsigned i = 0; i < NumElems; i += 2)
3864    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3865        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3866      return false;
3867
3868  return true;
3869}
3870
3871/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3872/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3873/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3874bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3875                         const X86Subtarget *Subtarget) {
3876  if (!Subtarget->hasSSE3())
3877    return false;
3878
3879  // The second vector must be undef
3880  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3881    return false;
3882
3883  EVT VT = N->getValueType(0);
3884  unsigned NumElems = VT.getVectorNumElements();
3885
3886  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3887      (VT.getSizeInBits() == 256 && NumElems != 8))
3888    return false;
3889
3890  // "i" is the value the indexed mask element must have
3891  for (unsigned i = 0; i != NumElems; i += 2)
3892    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3893        !isUndefOrEqual(N->getMaskElt(i+1), i))
3894      return false;
3895
3896  return true;
3897}
3898
3899/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3900/// specifies a shuffle of elements that is suitable for input to 256-bit
3901/// version of MOVDDUP.
3902static bool isMOVDDUPYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3903                           bool HasAVX) {
3904  unsigned NumElts = VT.getVectorNumElements();
3905
3906  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3907    return false;
3908
3909  for (unsigned i = 0; i != NumElts/2; ++i)
3910    if (!isUndefOrEqual(Mask[i], 0))
3911      return false;
3912  for (unsigned i = NumElts/2; i != NumElts; ++i)
3913    if (!isUndefOrEqual(Mask[i], NumElts/2))
3914      return false;
3915  return true;
3916}
3917
3918/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3919/// specifies a shuffle of elements that is suitable for input to 128-bit
3920/// version of MOVDDUP.
3921bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3922  EVT VT = N->getValueType(0);
3923
3924  if (VT.getSizeInBits() != 128)
3925    return false;
3926
3927  unsigned e = VT.getVectorNumElements() / 2;
3928  for (unsigned i = 0; i != e; ++i)
3929    if (!isUndefOrEqual(N->getMaskElt(i), i))
3930      return false;
3931  for (unsigned i = 0; i != e; ++i)
3932    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3933      return false;
3934  return true;
3935}
3936
3937/// isVEXTRACTF128Index - Return true if the specified
3938/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3939/// suitable for input to VEXTRACTF128.
3940bool X86::isVEXTRACTF128Index(SDNode *N) {
3941  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3942    return false;
3943
3944  // The index should be aligned on a 128-bit boundary.
3945  uint64_t Index =
3946    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3947
3948  unsigned VL = N->getValueType(0).getVectorNumElements();
3949  unsigned VBits = N->getValueType(0).getSizeInBits();
3950  unsigned ElSize = VBits / VL;
3951  bool Result = (Index * ElSize) % 128 == 0;
3952
3953  return Result;
3954}
3955
3956/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3957/// operand specifies a subvector insert that is suitable for input to
3958/// VINSERTF128.
3959bool X86::isVINSERTF128Index(SDNode *N) {
3960  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3961    return false;
3962
3963  // The index should be aligned on a 128-bit boundary.
3964  uint64_t Index =
3965    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3966
3967  unsigned VL = N->getValueType(0).getVectorNumElements();
3968  unsigned VBits = N->getValueType(0).getSizeInBits();
3969  unsigned ElSize = VBits / VL;
3970  bool Result = (Index * ElSize) % 128 == 0;
3971
3972  return Result;
3973}
3974
3975/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3976/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3977unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3978  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3979  unsigned NumOperands = SVOp->getValueType(0).getVectorNumElements();
3980
3981  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3982  unsigned Mask = 0;
3983  for (unsigned i = 0; i != NumOperands; ++i) {
3984    int Val = SVOp->getMaskElt(NumOperands-i-1);
3985    if (Val < 0) Val = 0;
3986    if (Val >= (int)NumOperands) Val -= NumOperands;
3987    Mask |= Val;
3988    if (i != NumOperands - 1)
3989      Mask <<= Shift;
3990  }
3991  return Mask;
3992}
3993
3994/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3995/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3996unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3997  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3998  unsigned Mask = 0;
3999  // 8 nodes, but we only care about the last 4.
4000  for (unsigned i = 7; i >= 4; --i) {
4001    int Val = SVOp->getMaskElt(i);
4002    if (Val >= 0)
4003      Mask |= (Val - 4);
4004    if (i != 4)
4005      Mask <<= 2;
4006  }
4007  return Mask;
4008}
4009
4010/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4011/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4012unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4013  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4014  unsigned Mask = 0;
4015  // 8 nodes, but we only care about the first 4.
4016  for (int i = 3; i >= 0; --i) {
4017    int Val = SVOp->getMaskElt(i);
4018    if (Val >= 0)
4019      Mask |= Val;
4020    if (i != 0)
4021      Mask <<= 2;
4022  }
4023  return Mask;
4024}
4025
4026/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4027/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4028static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4029  EVT VT = SVOp->getValueType(0);
4030  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4031  int Val = 0;
4032
4033  unsigned i, e;
4034  for (i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4035    Val = SVOp->getMaskElt(i);
4036    if (Val >= 0)
4037      break;
4038  }
4039  assert(Val - i > 0 && "PALIGNR imm should be positive");
4040  return (Val - i) * EltSize;
4041}
4042
4043/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4044/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4045/// instructions.
4046unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4047  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4048    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4049
4050  uint64_t Index =
4051    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4052
4053  EVT VecVT = N->getOperand(0).getValueType();
4054  EVT ElVT = VecVT.getVectorElementType();
4055
4056  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4057  return Index / NumElemsPerChunk;
4058}
4059
4060/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4061/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4062/// instructions.
4063unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4064  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4065    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4066
4067  uint64_t Index =
4068    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4069
4070  EVT VecVT = N->getValueType(0);
4071  EVT ElVT = VecVT.getVectorElementType();
4072
4073  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4074  return Index / NumElemsPerChunk;
4075}
4076
4077/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4078/// constant +0.0.
4079bool X86::isZeroNode(SDValue Elt) {
4080  return ((isa<ConstantSDNode>(Elt) &&
4081           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4082          (isa<ConstantFPSDNode>(Elt) &&
4083           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4084}
4085
4086/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4087/// their permute mask.
4088static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4089                                    SelectionDAG &DAG) {
4090  EVT VT = SVOp->getValueType(0);
4091  unsigned NumElems = VT.getVectorNumElements();
4092  SmallVector<int, 8> MaskVec;
4093
4094  for (unsigned i = 0; i != NumElems; ++i) {
4095    int idx = SVOp->getMaskElt(i);
4096    if (idx < 0)
4097      MaskVec.push_back(idx);
4098    else if (idx < (int)NumElems)
4099      MaskVec.push_back(idx + NumElems);
4100    else
4101      MaskVec.push_back(idx - NumElems);
4102  }
4103  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4104                              SVOp->getOperand(0), &MaskVec[0]);
4105}
4106
4107/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4108/// match movhlps. The lower half elements should come from upper half of
4109/// V1 (and in order), and the upper half elements should come from the upper
4110/// half of V2 (and in order).
4111static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4112  EVT VT = Op->getValueType(0);
4113  if (VT.getSizeInBits() != 128)
4114    return false;
4115  if (VT.getVectorNumElements() != 4)
4116    return false;
4117  for (unsigned i = 0, e = 2; i != e; ++i)
4118    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4119      return false;
4120  for (unsigned i = 2; i != 4; ++i)
4121    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4122      return false;
4123  return true;
4124}
4125
4126/// isScalarLoadToVector - Returns true if the node is a scalar load that
4127/// is promoted to a vector. It also returns the LoadSDNode by reference if
4128/// required.
4129static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4130  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4131    return false;
4132  N = N->getOperand(0).getNode();
4133  if (!ISD::isNON_EXTLoad(N))
4134    return false;
4135  if (LD)
4136    *LD = cast<LoadSDNode>(N);
4137  return true;
4138}
4139
4140// Test whether the given value is a vector value which will be legalized
4141// into a load.
4142static bool WillBeConstantPoolLoad(SDNode *N) {
4143  if (N->getOpcode() != ISD::BUILD_VECTOR)
4144    return false;
4145
4146  // Check for any non-constant elements.
4147  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4148    switch (N->getOperand(i).getNode()->getOpcode()) {
4149    case ISD::UNDEF:
4150    case ISD::ConstantFP:
4151    case ISD::Constant:
4152      break;
4153    default:
4154      return false;
4155    }
4156
4157  // Vectors of all-zeros and all-ones are materialized with special
4158  // instructions rather than being loaded.
4159  return !ISD::isBuildVectorAllZeros(N) &&
4160         !ISD::isBuildVectorAllOnes(N);
4161}
4162
4163/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4164/// match movlp{s|d}. The lower half elements should come from lower half of
4165/// V1 (and in order), and the upper half elements should come from the upper
4166/// half of V2 (and in order). And since V1 will become the source of the
4167/// MOVLP, it must be either a vector load or a scalar load to vector.
4168static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4169                               ShuffleVectorSDNode *Op) {
4170  EVT VT = Op->getValueType(0);
4171  if (VT.getSizeInBits() != 128)
4172    return false;
4173
4174  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4175    return false;
4176  // Is V2 is a vector load, don't do this transformation. We will try to use
4177  // load folding shufps op.
4178  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4179    return false;
4180
4181  unsigned NumElems = VT.getVectorNumElements();
4182
4183  if (NumElems != 2 && NumElems != 4)
4184    return false;
4185  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4186    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4187      return false;
4188  for (unsigned i = NumElems/2; i != NumElems; ++i)
4189    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4190      return false;
4191  return true;
4192}
4193
4194/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4195/// all the same.
4196static bool isSplatVector(SDNode *N) {
4197  if (N->getOpcode() != ISD::BUILD_VECTOR)
4198    return false;
4199
4200  SDValue SplatValue = N->getOperand(0);
4201  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4202    if (N->getOperand(i) != SplatValue)
4203      return false;
4204  return true;
4205}
4206
4207/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4208/// to an zero vector.
4209/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4210static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4211  SDValue V1 = N->getOperand(0);
4212  SDValue V2 = N->getOperand(1);
4213  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4214  for (unsigned i = 0; i != NumElems; ++i) {
4215    int Idx = N->getMaskElt(i);
4216    if (Idx >= (int)NumElems) {
4217      unsigned Opc = V2.getOpcode();
4218      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4219        continue;
4220      if (Opc != ISD::BUILD_VECTOR ||
4221          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4222        return false;
4223    } else if (Idx >= 0) {
4224      unsigned Opc = V1.getOpcode();
4225      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4226        continue;
4227      if (Opc != ISD::BUILD_VECTOR ||
4228          !X86::isZeroNode(V1.getOperand(Idx)))
4229        return false;
4230    }
4231  }
4232  return true;
4233}
4234
4235/// getZeroVector - Returns a vector of specified type with all zero elements.
4236///
4237static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
4238                             DebugLoc dl) {
4239  assert(VT.isVector() && "Expected a vector type");
4240
4241  // Always build SSE zero vectors as <4 x i32> bitcasted
4242  // to their dest type. This ensures they get CSE'd.
4243  SDValue Vec;
4244  if (VT.getSizeInBits() == 128) {  // SSE
4245    if (HasSSE2) {  // SSE2
4246      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4247      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4248    } else { // SSE1
4249      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4250      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4251    }
4252  } else if (VT.getSizeInBits() == 256) { // AVX
4253    // 256-bit logic and arithmetic instructions in AVX are
4254    // all floating-point, no support for integer ops. Default
4255    // to emitting fp zeroed vectors then.
4256    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4257    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4258    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4259  }
4260  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4261}
4262
4263/// getOnesVector - Returns a vector of specified type with all bits set.
4264/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4265/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4266/// Then bitcast to their original type, ensuring they get CSE'd.
4267static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4268                             DebugLoc dl) {
4269  assert(VT.isVector() && "Expected a vector type");
4270  assert((VT.is128BitVector() || VT.is256BitVector())
4271         && "Expected a 128-bit or 256-bit vector type");
4272
4273  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4274  SDValue Vec;
4275  if (VT.getSizeInBits() == 256) {
4276    if (HasAVX2) { // AVX2
4277      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4278      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4279    } else { // AVX
4280      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4281      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4282                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4283      Vec = Insert128BitVector(InsV, Vec,
4284                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4285    }
4286  } else {
4287    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4288  }
4289
4290  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4291}
4292
4293/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4294/// that point to V2 points to its first element.
4295static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4296  EVT VT = SVOp->getValueType(0);
4297  unsigned NumElems = VT.getVectorNumElements();
4298
4299  bool Changed = false;
4300  SmallVector<int, 8> MaskVec;
4301  SVOp->getMask(MaskVec);
4302
4303  for (unsigned i = 0; i != NumElems; ++i) {
4304    if (MaskVec[i] > (int)NumElems) {
4305      MaskVec[i] = NumElems;
4306      Changed = true;
4307    }
4308  }
4309  if (Changed)
4310    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4311                                SVOp->getOperand(1), &MaskVec[0]);
4312  return SDValue(SVOp, 0);
4313}
4314
4315/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4316/// operation of specified width.
4317static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4318                       SDValue V2) {
4319  unsigned NumElems = VT.getVectorNumElements();
4320  SmallVector<int, 8> Mask;
4321  Mask.push_back(NumElems);
4322  for (unsigned i = 1; i != NumElems; ++i)
4323    Mask.push_back(i);
4324  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4325}
4326
4327/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4328static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4329                          SDValue V2) {
4330  unsigned NumElems = VT.getVectorNumElements();
4331  SmallVector<int, 8> Mask;
4332  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4333    Mask.push_back(i);
4334    Mask.push_back(i + NumElems);
4335  }
4336  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4337}
4338
4339/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4340static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4341                          SDValue V2) {
4342  unsigned NumElems = VT.getVectorNumElements();
4343  unsigned Half = NumElems/2;
4344  SmallVector<int, 8> Mask;
4345  for (unsigned i = 0; i != Half; ++i) {
4346    Mask.push_back(i + Half);
4347    Mask.push_back(i + NumElems + Half);
4348  }
4349  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4350}
4351
4352// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4353// a generic shuffle instruction because the target has no such instructions.
4354// Generate shuffles which repeat i16 and i8 several times until they can be
4355// represented by v4f32 and then be manipulated by target suported shuffles.
4356static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4357  EVT VT = V.getValueType();
4358  int NumElems = VT.getVectorNumElements();
4359  DebugLoc dl = V.getDebugLoc();
4360
4361  while (NumElems > 4) {
4362    if (EltNo < NumElems/2) {
4363      V = getUnpackl(DAG, dl, VT, V, V);
4364    } else {
4365      V = getUnpackh(DAG, dl, VT, V, V);
4366      EltNo -= NumElems/2;
4367    }
4368    NumElems >>= 1;
4369  }
4370  return V;
4371}
4372
4373/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4374static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4375  EVT VT = V.getValueType();
4376  DebugLoc dl = V.getDebugLoc();
4377  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4378         && "Vector size not supported");
4379
4380  if (VT.getSizeInBits() == 128) {
4381    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4382    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4383    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4384                             &SplatMask[0]);
4385  } else {
4386    // To use VPERMILPS to splat scalars, the second half of indicies must
4387    // refer to the higher part, which is a duplication of the lower one,
4388    // because VPERMILPS can only handle in-lane permutations.
4389    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4390                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4391
4392    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4393    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4394                             &SplatMask[0]);
4395  }
4396
4397  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4398}
4399
4400/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4401static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4402  EVT SrcVT = SV->getValueType(0);
4403  SDValue V1 = SV->getOperand(0);
4404  DebugLoc dl = SV->getDebugLoc();
4405
4406  int EltNo = SV->getSplatIndex();
4407  int NumElems = SrcVT.getVectorNumElements();
4408  unsigned Size = SrcVT.getSizeInBits();
4409
4410  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4411          "Unknown how to promote splat for type");
4412
4413  // Extract the 128-bit part containing the splat element and update
4414  // the splat element index when it refers to the higher register.
4415  if (Size == 256) {
4416    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4417    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4418    if (Idx > 0)
4419      EltNo -= NumElems/2;
4420  }
4421
4422  // All i16 and i8 vector types can't be used directly by a generic shuffle
4423  // instruction because the target has no such instruction. Generate shuffles
4424  // which repeat i16 and i8 several times until they fit in i32, and then can
4425  // be manipulated by target suported shuffles.
4426  EVT EltVT = SrcVT.getVectorElementType();
4427  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4428    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4429
4430  // Recreate the 256-bit vector and place the same 128-bit vector
4431  // into the low and high part. This is necessary because we want
4432  // to use VPERM* to shuffle the vectors
4433  if (Size == 256) {
4434    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4435                         DAG.getConstant(0, MVT::i32), DAG, dl);
4436    V1 = Insert128BitVector(InsV, V1,
4437               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4438  }
4439
4440  return getLegalSplat(DAG, V1, EltNo);
4441}
4442
4443/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4444/// vector of zero or undef vector.  This produces a shuffle where the low
4445/// element of V2 is swizzled into the zero/undef vector, landing at element
4446/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4447static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4448                                           bool isZero, bool HasSSE2,
4449                                           SelectionDAG &DAG) {
4450  EVT VT = V2.getValueType();
4451  SDValue V1 = isZero
4452    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4453  unsigned NumElems = VT.getVectorNumElements();
4454  SmallVector<int, 16> MaskVec;
4455  for (unsigned i = 0; i != NumElems; ++i)
4456    // If this is the insertion idx, put the low elt of V2 here.
4457    MaskVec.push_back(i == Idx ? NumElems : i);
4458  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4459}
4460
4461/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4462/// element of the result of the vector shuffle.
4463static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4464                                   unsigned Depth) {
4465  if (Depth == 6)
4466    return SDValue();  // Limit search depth.
4467
4468  SDValue V = SDValue(N, 0);
4469  EVT VT = V.getValueType();
4470  unsigned Opcode = V.getOpcode();
4471
4472  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4473  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4474    Index = SV->getMaskElt(Index);
4475
4476    if (Index < 0)
4477      return DAG.getUNDEF(VT.getVectorElementType());
4478
4479    int NumElems = VT.getVectorNumElements();
4480    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4481    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4482  }
4483
4484  // Recurse into target specific vector shuffles to find scalars.
4485  if (isTargetShuffle(Opcode)) {
4486    int NumElems = VT.getVectorNumElements();
4487    SmallVector<unsigned, 16> ShuffleMask;
4488    SDValue ImmN;
4489
4490    switch(Opcode) {
4491    case X86ISD::SHUFP:
4492      ImmN = N->getOperand(N->getNumOperands()-1);
4493      DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4494                      ShuffleMask);
4495      break;
4496    case X86ISD::UNPCKH:
4497      DecodeUNPCKHMask(VT, ShuffleMask);
4498      break;
4499    case X86ISD::UNPCKL:
4500      DecodeUNPCKLMask(VT, ShuffleMask);
4501      break;
4502    case X86ISD::MOVHLPS:
4503      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4504      break;
4505    case X86ISD::MOVLHPS:
4506      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4507      break;
4508    case X86ISD::PSHUFD:
4509      ImmN = N->getOperand(N->getNumOperands()-1);
4510      DecodePSHUFMask(NumElems,
4511                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4512                      ShuffleMask);
4513      break;
4514    case X86ISD::PSHUFHW:
4515      ImmN = N->getOperand(N->getNumOperands()-1);
4516      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4517                        ShuffleMask);
4518      break;
4519    case X86ISD::PSHUFLW:
4520      ImmN = N->getOperand(N->getNumOperands()-1);
4521      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4522                        ShuffleMask);
4523      break;
4524    case X86ISD::MOVSS:
4525    case X86ISD::MOVSD: {
4526      // The index 0 always comes from the first element of the second source,
4527      // this is why MOVSS and MOVSD are used in the first place. The other
4528      // elements come from the other positions of the first source vector.
4529      unsigned OpNum = (Index == 0) ? 1 : 0;
4530      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4531                                 Depth+1);
4532    }
4533    case X86ISD::VPERMILP:
4534      ImmN = N->getOperand(N->getNumOperands()-1);
4535      DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4536                        ShuffleMask);
4537      break;
4538    case X86ISD::VPERM2X128:
4539      ImmN = N->getOperand(N->getNumOperands()-1);
4540      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4541                           ShuffleMask);
4542      break;
4543    case X86ISD::MOVDDUP:
4544    case X86ISD::MOVLHPD:
4545    case X86ISD::MOVLPD:
4546    case X86ISD::MOVLPS:
4547    case X86ISD::MOVSHDUP:
4548    case X86ISD::MOVSLDUP:
4549    case X86ISD::PALIGN:
4550      return SDValue(); // Not yet implemented.
4551    default:
4552      assert(0 && "unknown target shuffle node");
4553      return SDValue();
4554    }
4555
4556    Index = ShuffleMask[Index];
4557    if (Index < 0)
4558      return DAG.getUNDEF(VT.getVectorElementType());
4559
4560    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4561    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4562                               Depth+1);
4563  }
4564
4565  // Actual nodes that may contain scalar elements
4566  if (Opcode == ISD::BITCAST) {
4567    V = V.getOperand(0);
4568    EVT SrcVT = V.getValueType();
4569    unsigned NumElems = VT.getVectorNumElements();
4570
4571    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4572      return SDValue();
4573  }
4574
4575  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4576    return (Index == 0) ? V.getOperand(0)
4577                          : DAG.getUNDEF(VT.getVectorElementType());
4578
4579  if (V.getOpcode() == ISD::BUILD_VECTOR)
4580    return V.getOperand(Index);
4581
4582  return SDValue();
4583}
4584
4585/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4586/// shuffle operation which come from a consecutively from a zero. The
4587/// search can start in two different directions, from left or right.
4588static
4589unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4590                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4591  int i = 0;
4592
4593  while (i < NumElems) {
4594    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4595    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4596    if (!(Elt.getNode() &&
4597         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4598      break;
4599    ++i;
4600  }
4601
4602  return i;
4603}
4604
4605/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4606/// MaskE correspond consecutively to elements from one of the vector operands,
4607/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4608static
4609bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4610                              int OpIdx, int NumElems, unsigned &OpNum) {
4611  bool SeenV1 = false;
4612  bool SeenV2 = false;
4613
4614  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4615    int Idx = SVOp->getMaskElt(i);
4616    // Ignore undef indicies
4617    if (Idx < 0)
4618      continue;
4619
4620    if (Idx < NumElems)
4621      SeenV1 = true;
4622    else
4623      SeenV2 = true;
4624
4625    // Only accept consecutive elements from the same vector
4626    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4627      return false;
4628  }
4629
4630  OpNum = SeenV1 ? 0 : 1;
4631  return true;
4632}
4633
4634/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4635/// logical left shift of a vector.
4636static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4637                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4638  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4639  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4640              false /* check zeros from right */, DAG);
4641  unsigned OpSrc;
4642
4643  if (!NumZeros)
4644    return false;
4645
4646  // Considering the elements in the mask that are not consecutive zeros,
4647  // check if they consecutively come from only one of the source vectors.
4648  //
4649  //               V1 = {X, A, B, C}     0
4650  //                         \  \  \    /
4651  //   vector_shuffle V1, V2 <1, 2, 3, X>
4652  //
4653  if (!isShuffleMaskConsecutive(SVOp,
4654            0,                   // Mask Start Index
4655            NumElems-NumZeros-1, // Mask End Index
4656            NumZeros,            // Where to start looking in the src vector
4657            NumElems,            // Number of elements in vector
4658            OpSrc))              // Which source operand ?
4659    return false;
4660
4661  isLeft = false;
4662  ShAmt = NumZeros;
4663  ShVal = SVOp->getOperand(OpSrc);
4664  return true;
4665}
4666
4667/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4668/// logical left shift of a vector.
4669static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4670                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4671  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4672  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4673              true /* check zeros from left */, DAG);
4674  unsigned OpSrc;
4675
4676  if (!NumZeros)
4677    return false;
4678
4679  // Considering the elements in the mask that are not consecutive zeros,
4680  // check if they consecutively come from only one of the source vectors.
4681  //
4682  //                           0    { A, B, X, X } = V2
4683  //                          / \    /  /
4684  //   vector_shuffle V1, V2 <X, X, 4, 5>
4685  //
4686  if (!isShuffleMaskConsecutive(SVOp,
4687            NumZeros,     // Mask Start Index
4688            NumElems-1,   // Mask End Index
4689            0,            // Where to start looking in the src vector
4690            NumElems,     // Number of elements in vector
4691            OpSrc))       // Which source operand ?
4692    return false;
4693
4694  isLeft = true;
4695  ShAmt = NumZeros;
4696  ShVal = SVOp->getOperand(OpSrc);
4697  return true;
4698}
4699
4700/// isVectorShift - Returns true if the shuffle can be implemented as a
4701/// logical left or right shift of a vector.
4702static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4703                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4704  // Although the logic below support any bitwidth size, there are no
4705  // shift instructions which handle more than 128-bit vectors.
4706  if (SVOp->getValueType(0).getSizeInBits() > 128)
4707    return false;
4708
4709  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4710      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4711    return true;
4712
4713  return false;
4714}
4715
4716/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4717///
4718static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4719                                       unsigned NumNonZero, unsigned NumZero,
4720                                       SelectionDAG &DAG,
4721                                       const TargetLowering &TLI) {
4722  if (NumNonZero > 8)
4723    return SDValue();
4724
4725  DebugLoc dl = Op.getDebugLoc();
4726  SDValue V(0, 0);
4727  bool First = true;
4728  for (unsigned i = 0; i < 16; ++i) {
4729    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4730    if (ThisIsNonZero && First) {
4731      if (NumZero)
4732        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4733      else
4734        V = DAG.getUNDEF(MVT::v8i16);
4735      First = false;
4736    }
4737
4738    if ((i & 1) != 0) {
4739      SDValue ThisElt(0, 0), LastElt(0, 0);
4740      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4741      if (LastIsNonZero) {
4742        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4743                              MVT::i16, Op.getOperand(i-1));
4744      }
4745      if (ThisIsNonZero) {
4746        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4747        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4748                              ThisElt, DAG.getConstant(8, MVT::i8));
4749        if (LastIsNonZero)
4750          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4751      } else
4752        ThisElt = LastElt;
4753
4754      if (ThisElt.getNode())
4755        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4756                        DAG.getIntPtrConstant(i/2));
4757    }
4758  }
4759
4760  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4761}
4762
4763/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4764///
4765static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4766                                     unsigned NumNonZero, unsigned NumZero,
4767                                     SelectionDAG &DAG,
4768                                     const TargetLowering &TLI) {
4769  if (NumNonZero > 4)
4770    return SDValue();
4771
4772  DebugLoc dl = Op.getDebugLoc();
4773  SDValue V(0, 0);
4774  bool First = true;
4775  for (unsigned i = 0; i < 8; ++i) {
4776    bool isNonZero = (NonZeros & (1 << i)) != 0;
4777    if (isNonZero) {
4778      if (First) {
4779        if (NumZero)
4780          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4781        else
4782          V = DAG.getUNDEF(MVT::v8i16);
4783        First = false;
4784      }
4785      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4786                      MVT::v8i16, V, Op.getOperand(i),
4787                      DAG.getIntPtrConstant(i));
4788    }
4789  }
4790
4791  return V;
4792}
4793
4794/// getVShift - Return a vector logical shift node.
4795///
4796static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4797                         unsigned NumBits, SelectionDAG &DAG,
4798                         const TargetLowering &TLI, DebugLoc dl) {
4799  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4800  EVT ShVT = MVT::v2i64;
4801  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4802  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4803  return DAG.getNode(ISD::BITCAST, dl, VT,
4804                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4805                             DAG.getConstant(NumBits,
4806                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4807}
4808
4809SDValue
4810X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4811                                          SelectionDAG &DAG) const {
4812
4813  // Check if the scalar load can be widened into a vector load. And if
4814  // the address is "base + cst" see if the cst can be "absorbed" into
4815  // the shuffle mask.
4816  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4817    SDValue Ptr = LD->getBasePtr();
4818    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4819      return SDValue();
4820    EVT PVT = LD->getValueType(0);
4821    if (PVT != MVT::i32 && PVT != MVT::f32)
4822      return SDValue();
4823
4824    int FI = -1;
4825    int64_t Offset = 0;
4826    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4827      FI = FINode->getIndex();
4828      Offset = 0;
4829    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4830               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4831      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4832      Offset = Ptr.getConstantOperandVal(1);
4833      Ptr = Ptr.getOperand(0);
4834    } else {
4835      return SDValue();
4836    }
4837
4838    // FIXME: 256-bit vector instructions don't require a strict alignment,
4839    // improve this code to support it better.
4840    unsigned RequiredAlign = VT.getSizeInBits()/8;
4841    SDValue Chain = LD->getChain();
4842    // Make sure the stack object alignment is at least 16 or 32.
4843    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4844    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4845      if (MFI->isFixedObjectIndex(FI)) {
4846        // Can't change the alignment. FIXME: It's possible to compute
4847        // the exact stack offset and reference FI + adjust offset instead.
4848        // If someone *really* cares about this. That's the way to implement it.
4849        return SDValue();
4850      } else {
4851        MFI->setObjectAlignment(FI, RequiredAlign);
4852      }
4853    }
4854
4855    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4856    // Ptr + (Offset & ~15).
4857    if (Offset < 0)
4858      return SDValue();
4859    if ((Offset % RequiredAlign) & 3)
4860      return SDValue();
4861    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4862    if (StartOffset)
4863      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4864                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4865
4866    int EltNo = (Offset - StartOffset) >> 2;
4867    int NumElems = VT.getVectorNumElements();
4868
4869    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4870    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4871    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4872                             LD->getPointerInfo().getWithOffset(StartOffset),
4873                             false, false, false, 0);
4874
4875    // Canonicalize it to a v4i32 or v8i32 shuffle.
4876    SmallVector<int, 8> Mask;
4877    for (int i = 0; i < NumElems; ++i)
4878      Mask.push_back(EltNo);
4879
4880    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4881    return DAG.getNode(ISD::BITCAST, dl, NVT,
4882                       DAG.getVectorShuffle(CanonVT, dl, V1,
4883                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4884  }
4885
4886  return SDValue();
4887}
4888
4889/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4890/// vector of type 'VT', see if the elements can be replaced by a single large
4891/// load which has the same value as a build_vector whose operands are 'elts'.
4892///
4893/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4894///
4895/// FIXME: we'd also like to handle the case where the last elements are zero
4896/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4897/// There's even a handy isZeroNode for that purpose.
4898static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4899                                        DebugLoc &DL, SelectionDAG &DAG) {
4900  EVT EltVT = VT.getVectorElementType();
4901  unsigned NumElems = Elts.size();
4902
4903  LoadSDNode *LDBase = NULL;
4904  unsigned LastLoadedElt = -1U;
4905
4906  // For each element in the initializer, see if we've found a load or an undef.
4907  // If we don't find an initial load element, or later load elements are
4908  // non-consecutive, bail out.
4909  for (unsigned i = 0; i < NumElems; ++i) {
4910    SDValue Elt = Elts[i];
4911
4912    if (!Elt.getNode() ||
4913        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4914      return SDValue();
4915    if (!LDBase) {
4916      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4917        return SDValue();
4918      LDBase = cast<LoadSDNode>(Elt.getNode());
4919      LastLoadedElt = i;
4920      continue;
4921    }
4922    if (Elt.getOpcode() == ISD::UNDEF)
4923      continue;
4924
4925    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4926    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4927      return SDValue();
4928    LastLoadedElt = i;
4929  }
4930
4931  // If we have found an entire vector of loads and undefs, then return a large
4932  // load of the entire vector width starting at the base pointer.  If we found
4933  // consecutive loads for the low half, generate a vzext_load node.
4934  if (LastLoadedElt == NumElems - 1) {
4935    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4936      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4937                         LDBase->getPointerInfo(),
4938                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4939                         LDBase->isInvariant(), 0);
4940    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4941                       LDBase->getPointerInfo(),
4942                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4943                       LDBase->isInvariant(), LDBase->getAlignment());
4944  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4945             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4946    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4947    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4948    SDValue ResNode =
4949        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4950                                LDBase->getPointerInfo(),
4951                                LDBase->getAlignment(),
4952                                false/*isVolatile*/, true/*ReadMem*/,
4953                                false/*WriteMem*/);
4954    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4955  }
4956  return SDValue();
4957}
4958
4959/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4960/// a vbroadcast node. We support two patterns:
4961/// 1. A splat BUILD_VECTOR which uses a single scalar load.
4962/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4963/// a scalar load.
4964/// The scalar load node is returned when a pattern is found,
4965/// or SDValue() otherwise.
4966static SDValue isVectorBroadcast(SDValue &Op, const X86Subtarget *Subtarget) {
4967  if (!Subtarget->hasAVX())
4968    return SDValue();
4969
4970  EVT VT = Op.getValueType();
4971  SDValue V = Op;
4972
4973  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4974    V = V.getOperand(0);
4975
4976  //A suspected load to be broadcasted.
4977  SDValue Ld;
4978
4979  switch (V.getOpcode()) {
4980    default:
4981      // Unknown pattern found.
4982      return SDValue();
4983
4984    case ISD::BUILD_VECTOR: {
4985      // The BUILD_VECTOR node must be a splat.
4986      if (!isSplatVector(V.getNode()))
4987        return SDValue();
4988
4989      Ld = V.getOperand(0);
4990
4991      // The suspected load node has several users. Make sure that all
4992      // of its users are from the BUILD_VECTOR node.
4993      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4994        return SDValue();
4995      break;
4996    }
4997
4998    case ISD::VECTOR_SHUFFLE: {
4999      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5000
5001      // Shuffles must have a splat mask where the first element is
5002      // broadcasted.
5003      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5004        return SDValue();
5005
5006      SDValue Sc = Op.getOperand(0);
5007      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
5008        return SDValue();
5009
5010      Ld = Sc.getOperand(0);
5011
5012      // The scalar_to_vector node and the suspected
5013      // load node must have exactly one user.
5014      if (!Sc.hasOneUse() || !Ld.hasOneUse())
5015        return SDValue();
5016      break;
5017    }
5018  }
5019
5020  // The scalar source must be a normal load.
5021  if (!ISD::isNormalLoad(Ld.getNode()))
5022    return SDValue();
5023
5024  bool Is256 = VT.getSizeInBits() == 256;
5025  bool Is128 = VT.getSizeInBits() == 128;
5026  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5027
5028  // VBroadcast to YMM
5029  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5030    return Ld;
5031
5032  // VBroadcast to XMM
5033  if (Is128 && (ScalarSize == 32))
5034    return Ld;
5035
5036  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5037  // double since there is vbroadcastsd xmm
5038  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5039    // VBroadcast to YMM
5040    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
5041      return Ld;
5042
5043    // VBroadcast to XMM
5044    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
5045      return Ld;
5046  }
5047
5048  // Unsupported broadcast.
5049  return SDValue();
5050}
5051
5052SDValue
5053X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5054  DebugLoc dl = Op.getDebugLoc();
5055
5056  EVT VT = Op.getValueType();
5057  EVT ExtVT = VT.getVectorElementType();
5058  unsigned NumElems = Op.getNumOperands();
5059
5060  // Vectors containing all zeros can be matched by pxor and xorps later
5061  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5062    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5063    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5064    if (Op.getValueType() == MVT::v4i32 ||
5065        Op.getValueType() == MVT::v8i32)
5066      return Op;
5067
5068    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
5069  }
5070
5071  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5072  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5073  // vpcmpeqd on 256-bit vectors.
5074  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5075    if (Op.getValueType() == MVT::v4i32 ||
5076        (Op.getValueType() == MVT::v8i32 && Subtarget->hasAVX2()))
5077      return Op;
5078
5079    return getOnesVector(Op.getValueType(), Subtarget->hasAVX2(), DAG, dl);
5080  }
5081
5082  SDValue LD = isVectorBroadcast(Op, Subtarget);
5083  if (LD.getNode())
5084    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5085
5086  unsigned EVTBits = ExtVT.getSizeInBits();
5087
5088  unsigned NumZero  = 0;
5089  unsigned NumNonZero = 0;
5090  unsigned NonZeros = 0;
5091  bool IsAllConstants = true;
5092  SmallSet<SDValue, 8> Values;
5093  for (unsigned i = 0; i < NumElems; ++i) {
5094    SDValue Elt = Op.getOperand(i);
5095    if (Elt.getOpcode() == ISD::UNDEF)
5096      continue;
5097    Values.insert(Elt);
5098    if (Elt.getOpcode() != ISD::Constant &&
5099        Elt.getOpcode() != ISD::ConstantFP)
5100      IsAllConstants = false;
5101    if (X86::isZeroNode(Elt))
5102      NumZero++;
5103    else {
5104      NonZeros |= (1 << i);
5105      NumNonZero++;
5106    }
5107  }
5108
5109  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5110  if (NumNonZero == 0)
5111    return DAG.getUNDEF(VT);
5112
5113  // Special case for single non-zero, non-undef, element.
5114  if (NumNonZero == 1) {
5115    unsigned Idx = CountTrailingZeros_32(NonZeros);
5116    SDValue Item = Op.getOperand(Idx);
5117
5118    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5119    // the value are obviously zero, truncate the value to i32 and do the
5120    // insertion that way.  Only do this if the value is non-constant or if the
5121    // value is a constant being inserted into element 0.  It is cheaper to do
5122    // a constant pool load than it is to do a movd + shuffle.
5123    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5124        (!IsAllConstants || Idx == 0)) {
5125      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5126        // Handle SSE only.
5127        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5128        EVT VecVT = MVT::v4i32;
5129        unsigned VecElts = 4;
5130
5131        // Truncate the value (which may itself be a constant) to i32, and
5132        // convert it to a vector with movd (S2V+shuffle to zero extend).
5133        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5134        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5135        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5136                                           Subtarget->hasSSE2(), DAG);
5137
5138        // Now we have our 32-bit value zero extended in the low element of
5139        // a vector.  If Idx != 0, swizzle it into place.
5140        if (Idx != 0) {
5141          SmallVector<int, 4> Mask;
5142          Mask.push_back(Idx);
5143          for (unsigned i = 1; i != VecElts; ++i)
5144            Mask.push_back(i);
5145          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5146                                      DAG.getUNDEF(Item.getValueType()),
5147                                      &Mask[0]);
5148        }
5149        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5150      }
5151    }
5152
5153    // If we have a constant or non-constant insertion into the low element of
5154    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5155    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5156    // depending on what the source datatype is.
5157    if (Idx == 0) {
5158      if (NumZero == 0)
5159        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5160
5161      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5162          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5163        if (VT.getSizeInBits() == 256) {
5164          EVT VT128 = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems / 2);
5165          Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Item);
5166          SDValue ZeroVec = getZeroVector(VT, true, DAG, dl);
5167          return Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5168                              DAG, dl);
5169        }
5170        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5171        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5172        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5173        return getShuffleVectorZeroOrUndef(Item, 0, true,
5174                                           Subtarget->hasSSE2(), DAG);
5175      }
5176
5177      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5178        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5179        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5180        if (VT.getSizeInBits() == 256) {
5181          SDValue ZeroVec = getZeroVector(MVT::v8i32, true, DAG, dl);
5182          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5183                                    DAG, dl);
5184        } else {
5185          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5186          Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5187                                             Subtarget->hasSSE2(), DAG);
5188        }
5189        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5190      }
5191    }
5192
5193    // Is it a vector logical left shift?
5194    if (NumElems == 2 && Idx == 1 &&
5195        X86::isZeroNode(Op.getOperand(0)) &&
5196        !X86::isZeroNode(Op.getOperand(1))) {
5197      unsigned NumBits = VT.getSizeInBits();
5198      return getVShift(true, VT,
5199                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5200                                   VT, Op.getOperand(1)),
5201                       NumBits/2, DAG, *this, dl);
5202    }
5203
5204    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5205      return SDValue();
5206
5207    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5208    // is a non-constant being inserted into an element other than the low one,
5209    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5210    // movd/movss) to move this into the low element, then shuffle it into
5211    // place.
5212    if (EVTBits == 32) {
5213      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5214
5215      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5216      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5217                                         Subtarget->hasSSE2(), DAG);
5218      SmallVector<int, 8> MaskVec;
5219      for (unsigned i = 0; i < NumElems; i++)
5220        MaskVec.push_back(i == Idx ? 0 : 1);
5221      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5222    }
5223  }
5224
5225  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5226  if (Values.size() == 1) {
5227    if (EVTBits == 32) {
5228      // Instead of a shuffle like this:
5229      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5230      // Check if it's possible to issue this instead.
5231      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5232      unsigned Idx = CountTrailingZeros_32(NonZeros);
5233      SDValue Item = Op.getOperand(Idx);
5234      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5235        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5236    }
5237    return SDValue();
5238  }
5239
5240  // A vector full of immediates; various special cases are already
5241  // handled, so this is best done with a single constant-pool load.
5242  if (IsAllConstants)
5243    return SDValue();
5244
5245  // For AVX-length vectors, build the individual 128-bit pieces and use
5246  // shuffles to put them in place.
5247  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5248    SmallVector<SDValue, 32> V;
5249    for (unsigned i = 0; i < NumElems; ++i)
5250      V.push_back(Op.getOperand(i));
5251
5252    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5253
5254    // Build both the lower and upper subvector.
5255    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5256    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5257                                NumElems/2);
5258
5259    // Recreate the wider vector with the lower and upper part.
5260    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5261                                DAG.getConstant(0, MVT::i32), DAG, dl);
5262    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5263                              DAG, dl);
5264  }
5265
5266  // Let legalizer expand 2-wide build_vectors.
5267  if (EVTBits == 64) {
5268    if (NumNonZero == 1) {
5269      // One half is zero or undef.
5270      unsigned Idx = CountTrailingZeros_32(NonZeros);
5271      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5272                                 Op.getOperand(Idx));
5273      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5274                                         Subtarget->hasSSE2(), DAG);
5275    }
5276    return SDValue();
5277  }
5278
5279  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5280  if (EVTBits == 8 && NumElems == 16) {
5281    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5282                                        *this);
5283    if (V.getNode()) return V;
5284  }
5285
5286  if (EVTBits == 16 && NumElems == 8) {
5287    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5288                                      *this);
5289    if (V.getNode()) return V;
5290  }
5291
5292  // If element VT is == 32 bits, turn it into a number of shuffles.
5293  SmallVector<SDValue, 8> V;
5294  V.resize(NumElems);
5295  if (NumElems == 4 && NumZero > 0) {
5296    for (unsigned i = 0; i < 4; ++i) {
5297      bool isZero = !(NonZeros & (1 << i));
5298      if (isZero)
5299        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5300      else
5301        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5302    }
5303
5304    for (unsigned i = 0; i < 2; ++i) {
5305      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5306        default: break;
5307        case 0:
5308          V[i] = V[i*2];  // Must be a zero vector.
5309          break;
5310        case 1:
5311          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5312          break;
5313        case 2:
5314          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5315          break;
5316        case 3:
5317          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5318          break;
5319      }
5320    }
5321
5322    SmallVector<int, 8> MaskVec;
5323    bool Reverse = (NonZeros & 0x3) == 2;
5324    for (unsigned i = 0; i < 2; ++i)
5325      MaskVec.push_back(Reverse ? 1-i : i);
5326    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5327    for (unsigned i = 0; i < 2; ++i)
5328      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5329    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5330  }
5331
5332  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5333    // Check for a build vector of consecutive loads.
5334    for (unsigned i = 0; i < NumElems; ++i)
5335      V[i] = Op.getOperand(i);
5336
5337    // Check for elements which are consecutive loads.
5338    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5339    if (LD.getNode())
5340      return LD;
5341
5342    // For SSE 4.1, use insertps to put the high elements into the low element.
5343    if (getSubtarget()->hasSSE41()) {
5344      SDValue Result;
5345      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5346        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5347      else
5348        Result = DAG.getUNDEF(VT);
5349
5350      for (unsigned i = 1; i < NumElems; ++i) {
5351        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5352        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5353                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5354      }
5355      return Result;
5356    }
5357
5358    // Otherwise, expand into a number of unpckl*, start by extending each of
5359    // our (non-undef) elements to the full vector width with the element in the
5360    // bottom slot of the vector (which generates no code for SSE).
5361    for (unsigned i = 0; i < NumElems; ++i) {
5362      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5363        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5364      else
5365        V[i] = DAG.getUNDEF(VT);
5366    }
5367
5368    // Next, we iteratively mix elements, e.g. for v4f32:
5369    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5370    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5371    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5372    unsigned EltStride = NumElems >> 1;
5373    while (EltStride != 0) {
5374      for (unsigned i = 0; i < EltStride; ++i) {
5375        // If V[i+EltStride] is undef and this is the first round of mixing,
5376        // then it is safe to just drop this shuffle: V[i] is already in the
5377        // right place, the one element (since it's the first round) being
5378        // inserted as undef can be dropped.  This isn't safe for successive
5379        // rounds because they will permute elements within both vectors.
5380        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5381            EltStride == NumElems/2)
5382          continue;
5383
5384        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5385      }
5386      EltStride >>= 1;
5387    }
5388    return V[0];
5389  }
5390  return SDValue();
5391}
5392
5393// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5394// them in a MMX register.  This is better than doing a stack convert.
5395static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5396  DebugLoc dl = Op.getDebugLoc();
5397  EVT ResVT = Op.getValueType();
5398
5399  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5400         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5401  int Mask[2];
5402  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5403  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5404  InVec = Op.getOperand(1);
5405  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5406    unsigned NumElts = ResVT.getVectorNumElements();
5407    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5408    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5409                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5410  } else {
5411    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5412    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5413    Mask[0] = 0; Mask[1] = 2;
5414    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5415  }
5416  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5417}
5418
5419// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5420// to create 256-bit vectors from two other 128-bit ones.
5421static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5422  DebugLoc dl = Op.getDebugLoc();
5423  EVT ResVT = Op.getValueType();
5424
5425  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5426
5427  SDValue V1 = Op.getOperand(0);
5428  SDValue V2 = Op.getOperand(1);
5429  unsigned NumElems = ResVT.getVectorNumElements();
5430
5431  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5432                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5433  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5434                            DAG, dl);
5435}
5436
5437SDValue
5438X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5439  EVT ResVT = Op.getValueType();
5440
5441  assert(Op.getNumOperands() == 2);
5442  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5443         "Unsupported CONCAT_VECTORS for value type");
5444
5445  // We support concatenate two MMX registers and place them in a MMX register.
5446  // This is better than doing a stack convert.
5447  if (ResVT.is128BitVector())
5448    return LowerMMXCONCAT_VECTORS(Op, DAG);
5449
5450  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5451  // from two other 128-bit ones.
5452  return LowerAVXCONCAT_VECTORS(Op, DAG);
5453}
5454
5455// v8i16 shuffles - Prefer shuffles in the following order:
5456// 1. [all]   pshuflw, pshufhw, optional move
5457// 2. [ssse3] 1 x pshufb
5458// 3. [ssse3] 2 x pshufb + 1 x por
5459// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5460SDValue
5461X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5462                                            SelectionDAG &DAG) const {
5463  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5464  SDValue V1 = SVOp->getOperand(0);
5465  SDValue V2 = SVOp->getOperand(1);
5466  DebugLoc dl = SVOp->getDebugLoc();
5467  SmallVector<int, 8> MaskVals;
5468
5469  // Determine if more than 1 of the words in each of the low and high quadwords
5470  // of the result come from the same quadword of one of the two inputs.  Undef
5471  // mask values count as coming from any quadword, for better codegen.
5472  unsigned LoQuad[] = { 0, 0, 0, 0 };
5473  unsigned HiQuad[] = { 0, 0, 0, 0 };
5474  BitVector InputQuads(4);
5475  for (unsigned i = 0; i < 8; ++i) {
5476    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5477    int EltIdx = SVOp->getMaskElt(i);
5478    MaskVals.push_back(EltIdx);
5479    if (EltIdx < 0) {
5480      ++Quad[0];
5481      ++Quad[1];
5482      ++Quad[2];
5483      ++Quad[3];
5484      continue;
5485    }
5486    ++Quad[EltIdx / 4];
5487    InputQuads.set(EltIdx / 4);
5488  }
5489
5490  int BestLoQuad = -1;
5491  unsigned MaxQuad = 1;
5492  for (unsigned i = 0; i < 4; ++i) {
5493    if (LoQuad[i] > MaxQuad) {
5494      BestLoQuad = i;
5495      MaxQuad = LoQuad[i];
5496    }
5497  }
5498
5499  int BestHiQuad = -1;
5500  MaxQuad = 1;
5501  for (unsigned i = 0; i < 4; ++i) {
5502    if (HiQuad[i] > MaxQuad) {
5503      BestHiQuad = i;
5504      MaxQuad = HiQuad[i];
5505    }
5506  }
5507
5508  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5509  // of the two input vectors, shuffle them into one input vector so only a
5510  // single pshufb instruction is necessary. If There are more than 2 input
5511  // quads, disable the next transformation since it does not help SSSE3.
5512  bool V1Used = InputQuads[0] || InputQuads[1];
5513  bool V2Used = InputQuads[2] || InputQuads[3];
5514  if (Subtarget->hasSSSE3()) {
5515    if (InputQuads.count() == 2 && V1Used && V2Used) {
5516      BestLoQuad = InputQuads.find_first();
5517      BestHiQuad = InputQuads.find_next(BestLoQuad);
5518    }
5519    if (InputQuads.count() > 2) {
5520      BestLoQuad = -1;
5521      BestHiQuad = -1;
5522    }
5523  }
5524
5525  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5526  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5527  // words from all 4 input quadwords.
5528  SDValue NewV;
5529  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5530    SmallVector<int, 8> MaskV;
5531    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5532    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5533    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5534                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5535                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5536    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5537
5538    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5539    // source words for the shuffle, to aid later transformations.
5540    bool AllWordsInNewV = true;
5541    bool InOrder[2] = { true, true };
5542    for (unsigned i = 0; i != 8; ++i) {
5543      int idx = MaskVals[i];
5544      if (idx != (int)i)
5545        InOrder[i/4] = false;
5546      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5547        continue;
5548      AllWordsInNewV = false;
5549      break;
5550    }
5551
5552    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5553    if (AllWordsInNewV) {
5554      for (int i = 0; i != 8; ++i) {
5555        int idx = MaskVals[i];
5556        if (idx < 0)
5557          continue;
5558        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5559        if ((idx != i) && idx < 4)
5560          pshufhw = false;
5561        if ((idx != i) && idx > 3)
5562          pshuflw = false;
5563      }
5564      V1 = NewV;
5565      V2Used = false;
5566      BestLoQuad = 0;
5567      BestHiQuad = 1;
5568    }
5569
5570    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5571    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5572    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5573      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5574      unsigned TargetMask = 0;
5575      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5576                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5577      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5578                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5579      V1 = NewV.getOperand(0);
5580      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5581    }
5582  }
5583
5584  // If we have SSSE3, and all words of the result are from 1 input vector,
5585  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5586  // is present, fall back to case 4.
5587  if (Subtarget->hasSSSE3()) {
5588    SmallVector<SDValue,16> pshufbMask;
5589
5590    // If we have elements from both input vectors, set the high bit of the
5591    // shuffle mask element to zero out elements that come from V2 in the V1
5592    // mask, and elements that come from V1 in the V2 mask, so that the two
5593    // results can be OR'd together.
5594    bool TwoInputs = V1Used && V2Used;
5595    for (unsigned i = 0; i != 8; ++i) {
5596      int EltIdx = MaskVals[i] * 2;
5597      if (TwoInputs && (EltIdx >= 16)) {
5598        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5599        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5600        continue;
5601      }
5602      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5603      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5604    }
5605    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5606    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5607                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5608                                 MVT::v16i8, &pshufbMask[0], 16));
5609    if (!TwoInputs)
5610      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5611
5612    // Calculate the shuffle mask for the second input, shuffle it, and
5613    // OR it with the first shuffled input.
5614    pshufbMask.clear();
5615    for (unsigned i = 0; i != 8; ++i) {
5616      int EltIdx = MaskVals[i] * 2;
5617      if (EltIdx < 16) {
5618        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5619        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5620        continue;
5621      }
5622      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5623      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5624    }
5625    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5626    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5627                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5628                                 MVT::v16i8, &pshufbMask[0], 16));
5629    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5630    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5631  }
5632
5633  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5634  // and update MaskVals with new element order.
5635  BitVector InOrder(8);
5636  if (BestLoQuad >= 0) {
5637    SmallVector<int, 8> MaskV;
5638    for (int i = 0; i != 4; ++i) {
5639      int idx = MaskVals[i];
5640      if (idx < 0) {
5641        MaskV.push_back(-1);
5642        InOrder.set(i);
5643      } else if ((idx / 4) == BestLoQuad) {
5644        MaskV.push_back(idx & 3);
5645        InOrder.set(i);
5646      } else {
5647        MaskV.push_back(-1);
5648      }
5649    }
5650    for (unsigned i = 4; i != 8; ++i)
5651      MaskV.push_back(i);
5652    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5653                                &MaskV[0]);
5654
5655    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5656      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5657                               NewV.getOperand(0),
5658                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5659                               DAG);
5660  }
5661
5662  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5663  // and update MaskVals with the new element order.
5664  if (BestHiQuad >= 0) {
5665    SmallVector<int, 8> MaskV;
5666    for (unsigned i = 0; i != 4; ++i)
5667      MaskV.push_back(i);
5668    for (unsigned i = 4; i != 8; ++i) {
5669      int idx = MaskVals[i];
5670      if (idx < 0) {
5671        MaskV.push_back(-1);
5672        InOrder.set(i);
5673      } else if ((idx / 4) == BestHiQuad) {
5674        MaskV.push_back((idx & 3) + 4);
5675        InOrder.set(i);
5676      } else {
5677        MaskV.push_back(-1);
5678      }
5679    }
5680    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5681                                &MaskV[0]);
5682
5683    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5684      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5685                              NewV.getOperand(0),
5686                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5687                              DAG);
5688  }
5689
5690  // In case BestHi & BestLo were both -1, which means each quadword has a word
5691  // from each of the four input quadwords, calculate the InOrder bitvector now
5692  // before falling through to the insert/extract cleanup.
5693  if (BestLoQuad == -1 && BestHiQuad == -1) {
5694    NewV = V1;
5695    for (int i = 0; i != 8; ++i)
5696      if (MaskVals[i] < 0 || MaskVals[i] == i)
5697        InOrder.set(i);
5698  }
5699
5700  // The other elements are put in the right place using pextrw and pinsrw.
5701  for (unsigned i = 0; i != 8; ++i) {
5702    if (InOrder[i])
5703      continue;
5704    int EltIdx = MaskVals[i];
5705    if (EltIdx < 0)
5706      continue;
5707    SDValue ExtOp = (EltIdx < 8)
5708    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5709                  DAG.getIntPtrConstant(EltIdx))
5710    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5711                  DAG.getIntPtrConstant(EltIdx - 8));
5712    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5713                       DAG.getIntPtrConstant(i));
5714  }
5715  return NewV;
5716}
5717
5718// v16i8 shuffles - Prefer shuffles in the following order:
5719// 1. [ssse3] 1 x pshufb
5720// 2. [ssse3] 2 x pshufb + 1 x por
5721// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5722static
5723SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5724                                 SelectionDAG &DAG,
5725                                 const X86TargetLowering &TLI) {
5726  SDValue V1 = SVOp->getOperand(0);
5727  SDValue V2 = SVOp->getOperand(1);
5728  DebugLoc dl = SVOp->getDebugLoc();
5729  SmallVector<int, 16> MaskVals;
5730  SVOp->getMask(MaskVals);
5731
5732  // If we have SSSE3, case 1 is generated when all result bytes come from
5733  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5734  // present, fall back to case 3.
5735  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5736  bool V1Only = true;
5737  bool V2Only = true;
5738  for (unsigned i = 0; i < 16; ++i) {
5739    int EltIdx = MaskVals[i];
5740    if (EltIdx < 0)
5741      continue;
5742    if (EltIdx < 16)
5743      V2Only = false;
5744    else
5745      V1Only = false;
5746  }
5747
5748  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5749  if (TLI.getSubtarget()->hasSSSE3()) {
5750    SmallVector<SDValue,16> pshufbMask;
5751
5752    // If all result elements are from one input vector, then only translate
5753    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5754    //
5755    // Otherwise, we have elements from both input vectors, and must zero out
5756    // elements that come from V2 in the first mask, and V1 in the second mask
5757    // so that we can OR them together.
5758    bool TwoInputs = !(V1Only || V2Only);
5759    for (unsigned i = 0; i != 16; ++i) {
5760      int EltIdx = MaskVals[i];
5761      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5762        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5763        continue;
5764      }
5765      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5766    }
5767    // If all the elements are from V2, assign it to V1 and return after
5768    // building the first pshufb.
5769    if (V2Only)
5770      V1 = V2;
5771    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5772                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5773                                 MVT::v16i8, &pshufbMask[0], 16));
5774    if (!TwoInputs)
5775      return V1;
5776
5777    // Calculate the shuffle mask for the second input, shuffle it, and
5778    // OR it with the first shuffled input.
5779    pshufbMask.clear();
5780    for (unsigned i = 0; i != 16; ++i) {
5781      int EltIdx = MaskVals[i];
5782      if (EltIdx < 16) {
5783        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5784        continue;
5785      }
5786      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5787    }
5788    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5789                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5790                                 MVT::v16i8, &pshufbMask[0], 16));
5791    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5792  }
5793
5794  // No SSSE3 - Calculate in place words and then fix all out of place words
5795  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5796  // the 16 different words that comprise the two doublequadword input vectors.
5797  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5798  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5799  SDValue NewV = V2Only ? V2 : V1;
5800  for (int i = 0; i != 8; ++i) {
5801    int Elt0 = MaskVals[i*2];
5802    int Elt1 = MaskVals[i*2+1];
5803
5804    // This word of the result is all undef, skip it.
5805    if (Elt0 < 0 && Elt1 < 0)
5806      continue;
5807
5808    // This word of the result is already in the correct place, skip it.
5809    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5810      continue;
5811    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5812      continue;
5813
5814    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5815    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5816    SDValue InsElt;
5817
5818    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5819    // using a single extract together, load it and store it.
5820    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5821      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5822                           DAG.getIntPtrConstant(Elt1 / 2));
5823      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5824                        DAG.getIntPtrConstant(i));
5825      continue;
5826    }
5827
5828    // If Elt1 is defined, extract it from the appropriate source.  If the
5829    // source byte is not also odd, shift the extracted word left 8 bits
5830    // otherwise clear the bottom 8 bits if we need to do an or.
5831    if (Elt1 >= 0) {
5832      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5833                           DAG.getIntPtrConstant(Elt1 / 2));
5834      if ((Elt1 & 1) == 0)
5835        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5836                             DAG.getConstant(8,
5837                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5838      else if (Elt0 >= 0)
5839        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5840                             DAG.getConstant(0xFF00, MVT::i16));
5841    }
5842    // If Elt0 is defined, extract it from the appropriate source.  If the
5843    // source byte is not also even, shift the extracted word right 8 bits. If
5844    // Elt1 was also defined, OR the extracted values together before
5845    // inserting them in the result.
5846    if (Elt0 >= 0) {
5847      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5848                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5849      if ((Elt0 & 1) != 0)
5850        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5851                              DAG.getConstant(8,
5852                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5853      else if (Elt1 >= 0)
5854        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5855                             DAG.getConstant(0x00FF, MVT::i16));
5856      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5857                         : InsElt0;
5858    }
5859    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5860                       DAG.getIntPtrConstant(i));
5861  }
5862  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5863}
5864
5865/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5866/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5867/// done when every pair / quad of shuffle mask elements point to elements in
5868/// the right sequence. e.g.
5869/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5870static
5871SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5872                                 SelectionDAG &DAG, DebugLoc dl) {
5873  EVT VT = SVOp->getValueType(0);
5874  SDValue V1 = SVOp->getOperand(0);
5875  SDValue V2 = SVOp->getOperand(1);
5876  unsigned NumElems = VT.getVectorNumElements();
5877  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5878  EVT NewVT;
5879  switch (VT.getSimpleVT().SimpleTy) {
5880  default: assert(false && "Unexpected!");
5881  case MVT::v4f32: NewVT = MVT::v2f64; break;
5882  case MVT::v4i32: NewVT = MVT::v2i64; break;
5883  case MVT::v8i16: NewVT = MVT::v4i32; break;
5884  case MVT::v16i8: NewVT = MVT::v4i32; break;
5885  }
5886
5887  int Scale = NumElems / NewWidth;
5888  SmallVector<int, 8> MaskVec;
5889  for (unsigned i = 0; i < NumElems; i += Scale) {
5890    int StartIdx = -1;
5891    for (int j = 0; j < Scale; ++j) {
5892      int EltIdx = SVOp->getMaskElt(i+j);
5893      if (EltIdx < 0)
5894        continue;
5895      if (StartIdx == -1)
5896        StartIdx = EltIdx - (EltIdx % Scale);
5897      if (EltIdx != StartIdx + j)
5898        return SDValue();
5899    }
5900    if (StartIdx == -1)
5901      MaskVec.push_back(-1);
5902    else
5903      MaskVec.push_back(StartIdx / Scale);
5904  }
5905
5906  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5907  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5908  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5909}
5910
5911/// getVZextMovL - Return a zero-extending vector move low node.
5912///
5913static SDValue getVZextMovL(EVT VT, EVT OpVT,
5914                            SDValue SrcOp, SelectionDAG &DAG,
5915                            const X86Subtarget *Subtarget, DebugLoc dl) {
5916  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5917    LoadSDNode *LD = NULL;
5918    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5919      LD = dyn_cast<LoadSDNode>(SrcOp);
5920    if (!LD) {
5921      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5922      // instead.
5923      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5924      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5925          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5926          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5927          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5928        // PR2108
5929        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5930        return DAG.getNode(ISD::BITCAST, dl, VT,
5931                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5932                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5933                                                   OpVT,
5934                                                   SrcOp.getOperand(0)
5935                                                          .getOperand(0))));
5936      }
5937    }
5938  }
5939
5940  return DAG.getNode(ISD::BITCAST, dl, VT,
5941                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5942                                 DAG.getNode(ISD::BITCAST, dl,
5943                                             OpVT, SrcOp)));
5944}
5945
5946/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5947/// shuffle node referes to only one lane in the sources.
5948static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5949  EVT VT = SVOp->getValueType(0);
5950  int NumElems = VT.getVectorNumElements();
5951  int HalfSize = NumElems/2;
5952  SmallVector<int, 16> M;
5953  SVOp->getMask(M);
5954  bool MatchA = false, MatchB = false;
5955
5956  for (int l = 0; l < NumElems*2; l += HalfSize) {
5957    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5958      MatchA = true;
5959      break;
5960    }
5961  }
5962
5963  for (int l = 0; l < NumElems*2; l += HalfSize) {
5964    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5965      MatchB = true;
5966      break;
5967    }
5968  }
5969
5970  return MatchA && MatchB;
5971}
5972
5973/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5974/// which could not be matched by any known target speficic shuffle
5975static SDValue
5976LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5977  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5978    // If each half of a vector shuffle node referes to only one lane in the
5979    // source vectors, extract each used 128-bit lane and shuffle them using
5980    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5981    // the work to the legalizer.
5982    DebugLoc dl = SVOp->getDebugLoc();
5983    EVT VT = SVOp->getValueType(0);
5984    int NumElems = VT.getVectorNumElements();
5985    int HalfSize = NumElems/2;
5986
5987    // Extract the reference for each half
5988    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5989    int FstVecOpNum = 0, SndVecOpNum = 0;
5990    for (int i = 0; i < HalfSize; ++i) {
5991      int Elt = SVOp->getMaskElt(i);
5992      if (SVOp->getMaskElt(i) < 0)
5993        continue;
5994      FstVecOpNum = Elt/NumElems;
5995      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5996      break;
5997    }
5998    for (int i = HalfSize; i < NumElems; ++i) {
5999      int Elt = SVOp->getMaskElt(i);
6000      if (SVOp->getMaskElt(i) < 0)
6001        continue;
6002      SndVecOpNum = Elt/NumElems;
6003      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
6004      break;
6005    }
6006
6007    // Extract the subvectors
6008    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
6009                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
6010    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
6011                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
6012
6013    // Generate 128-bit shuffles
6014    SmallVector<int, 16> MaskV1, MaskV2;
6015    for (int i = 0; i < HalfSize; ++i) {
6016      int Elt = SVOp->getMaskElt(i);
6017      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6018    }
6019    for (int i = HalfSize; i < NumElems; ++i) {
6020      int Elt = SVOp->getMaskElt(i);
6021      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6022    }
6023
6024    EVT NVT = V1.getValueType();
6025    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
6026    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
6027
6028    // Concatenate the result back
6029    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
6030                                   DAG.getConstant(0, MVT::i32), DAG, dl);
6031    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6032                              DAG, dl);
6033  }
6034
6035  return SDValue();
6036}
6037
6038/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6039/// 4 elements, and match them with several different shuffle types.
6040static SDValue
6041LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6042  SDValue V1 = SVOp->getOperand(0);
6043  SDValue V2 = SVOp->getOperand(1);
6044  DebugLoc dl = SVOp->getDebugLoc();
6045  EVT VT = SVOp->getValueType(0);
6046
6047  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6048
6049  SmallVector<std::pair<int, int>, 8> Locs;
6050  Locs.resize(4);
6051  SmallVector<int, 8> Mask1(4U, -1);
6052  SmallVector<int, 8> PermMask;
6053  SVOp->getMask(PermMask);
6054
6055  unsigned NumHi = 0;
6056  unsigned NumLo = 0;
6057  for (unsigned i = 0; i != 4; ++i) {
6058    int Idx = PermMask[i];
6059    if (Idx < 0) {
6060      Locs[i] = std::make_pair(-1, -1);
6061    } else {
6062      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6063      if (Idx < 4) {
6064        Locs[i] = std::make_pair(0, NumLo);
6065        Mask1[NumLo] = Idx;
6066        NumLo++;
6067      } else {
6068        Locs[i] = std::make_pair(1, NumHi);
6069        if (2+NumHi < 4)
6070          Mask1[2+NumHi] = Idx;
6071        NumHi++;
6072      }
6073    }
6074  }
6075
6076  if (NumLo <= 2 && NumHi <= 2) {
6077    // If no more than two elements come from either vector. This can be
6078    // implemented with two shuffles. First shuffle gather the elements.
6079    // The second shuffle, which takes the first shuffle as both of its
6080    // vector operands, put the elements into the right order.
6081    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6082
6083    SmallVector<int, 8> Mask2(4U, -1);
6084
6085    for (unsigned i = 0; i != 4; ++i) {
6086      if (Locs[i].first == -1)
6087        continue;
6088      else {
6089        unsigned Idx = (i < 2) ? 0 : 4;
6090        Idx += Locs[i].first * 2 + Locs[i].second;
6091        Mask2[i] = Idx;
6092      }
6093    }
6094
6095    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6096  } else if (NumLo == 3 || NumHi == 3) {
6097    // Otherwise, we must have three elements from one vector, call it X, and
6098    // one element from the other, call it Y.  First, use a shufps to build an
6099    // intermediate vector with the one element from Y and the element from X
6100    // that will be in the same half in the final destination (the indexes don't
6101    // matter). Then, use a shufps to build the final vector, taking the half
6102    // containing the element from Y from the intermediate, and the other half
6103    // from X.
6104    if (NumHi == 3) {
6105      // Normalize it so the 3 elements come from V1.
6106      CommuteVectorShuffleMask(PermMask, 4);
6107      std::swap(V1, V2);
6108    }
6109
6110    // Find the element from V2.
6111    unsigned HiIndex;
6112    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6113      int Val = PermMask[HiIndex];
6114      if (Val < 0)
6115        continue;
6116      if (Val >= 4)
6117        break;
6118    }
6119
6120    Mask1[0] = PermMask[HiIndex];
6121    Mask1[1] = -1;
6122    Mask1[2] = PermMask[HiIndex^1];
6123    Mask1[3] = -1;
6124    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6125
6126    if (HiIndex >= 2) {
6127      Mask1[0] = PermMask[0];
6128      Mask1[1] = PermMask[1];
6129      Mask1[2] = HiIndex & 1 ? 6 : 4;
6130      Mask1[3] = HiIndex & 1 ? 4 : 6;
6131      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6132    } else {
6133      Mask1[0] = HiIndex & 1 ? 2 : 0;
6134      Mask1[1] = HiIndex & 1 ? 0 : 2;
6135      Mask1[2] = PermMask[2];
6136      Mask1[3] = PermMask[3];
6137      if (Mask1[2] >= 0)
6138        Mask1[2] += 4;
6139      if (Mask1[3] >= 0)
6140        Mask1[3] += 4;
6141      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6142    }
6143  }
6144
6145  // Break it into (shuffle shuffle_hi, shuffle_lo).
6146  Locs.clear();
6147  Locs.resize(4);
6148  SmallVector<int,8> LoMask(4U, -1);
6149  SmallVector<int,8> HiMask(4U, -1);
6150
6151  SmallVector<int,8> *MaskPtr = &LoMask;
6152  unsigned MaskIdx = 0;
6153  unsigned LoIdx = 0;
6154  unsigned HiIdx = 2;
6155  for (unsigned i = 0; i != 4; ++i) {
6156    if (i == 2) {
6157      MaskPtr = &HiMask;
6158      MaskIdx = 1;
6159      LoIdx = 0;
6160      HiIdx = 2;
6161    }
6162    int Idx = PermMask[i];
6163    if (Idx < 0) {
6164      Locs[i] = std::make_pair(-1, -1);
6165    } else if (Idx < 4) {
6166      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6167      (*MaskPtr)[LoIdx] = Idx;
6168      LoIdx++;
6169    } else {
6170      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6171      (*MaskPtr)[HiIdx] = Idx;
6172      HiIdx++;
6173    }
6174  }
6175
6176  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6177  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6178  SmallVector<int, 8> MaskOps;
6179  for (unsigned i = 0; i != 4; ++i) {
6180    if (Locs[i].first == -1) {
6181      MaskOps.push_back(-1);
6182    } else {
6183      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6184      MaskOps.push_back(Idx);
6185    }
6186  }
6187  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6188}
6189
6190static bool MayFoldVectorLoad(SDValue V) {
6191  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6192    V = V.getOperand(0);
6193  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6194    V = V.getOperand(0);
6195  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6196      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6197    // BUILD_VECTOR (load), undef
6198    V = V.getOperand(0);
6199  if (MayFoldLoad(V))
6200    return true;
6201  return false;
6202}
6203
6204// FIXME: the version above should always be used. Since there's
6205// a bug where several vector shuffles can't be folded because the
6206// DAG is not updated during lowering and a node claims to have two
6207// uses while it only has one, use this version, and let isel match
6208// another instruction if the load really happens to have more than
6209// one use. Remove this version after this bug get fixed.
6210// rdar://8434668, PR8156
6211static bool RelaxedMayFoldVectorLoad(SDValue V) {
6212  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6213    V = V.getOperand(0);
6214  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6215    V = V.getOperand(0);
6216  if (ISD::isNormalLoad(V.getNode()))
6217    return true;
6218  return false;
6219}
6220
6221/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6222/// a vector extract, and if both can be later optimized into a single load.
6223/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6224/// here because otherwise a target specific shuffle node is going to be
6225/// emitted for this shuffle, and the optimization not done.
6226/// FIXME: This is probably not the best approach, but fix the problem
6227/// until the right path is decided.
6228static
6229bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6230                                         const TargetLowering &TLI) {
6231  EVT VT = V.getValueType();
6232  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6233
6234  // Be sure that the vector shuffle is present in a pattern like this:
6235  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6236  if (!V.hasOneUse())
6237    return false;
6238
6239  SDNode *N = *V.getNode()->use_begin();
6240  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6241    return false;
6242
6243  SDValue EltNo = N->getOperand(1);
6244  if (!isa<ConstantSDNode>(EltNo))
6245    return false;
6246
6247  // If the bit convert changed the number of elements, it is unsafe
6248  // to examine the mask.
6249  bool HasShuffleIntoBitcast = false;
6250  if (V.getOpcode() == ISD::BITCAST) {
6251    EVT SrcVT = V.getOperand(0).getValueType();
6252    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6253      return false;
6254    V = V.getOperand(0);
6255    HasShuffleIntoBitcast = true;
6256  }
6257
6258  // Select the input vector, guarding against out of range extract vector.
6259  unsigned NumElems = VT.getVectorNumElements();
6260  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6261  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6262  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6263
6264  // Skip one more bit_convert if necessary
6265  if (V.getOpcode() == ISD::BITCAST)
6266    V = V.getOperand(0);
6267
6268  if (!ISD::isNormalLoad(V.getNode()))
6269    return false;
6270
6271  // Is the original load suitable?
6272  LoadSDNode *LN0 = cast<LoadSDNode>(V);
6273
6274  if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
6275    return false;
6276
6277  if (!HasShuffleIntoBitcast)
6278    return true;
6279
6280  // If there's a bitcast before the shuffle, check if the load type and
6281  // alignment is valid.
6282  unsigned Align = LN0->getAlignment();
6283  unsigned NewAlign =
6284    TLI.getTargetData()->getABITypeAlignment(
6285                                  VT.getTypeForEVT(*DAG.getContext()));
6286
6287  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6288    return false;
6289
6290  return true;
6291}
6292
6293static
6294SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6295  EVT VT = Op.getValueType();
6296
6297  // Canonizalize to v2f64.
6298  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6299  return DAG.getNode(ISD::BITCAST, dl, VT,
6300                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6301                                          V1, DAG));
6302}
6303
6304static
6305SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6306                        bool HasSSE2) {
6307  SDValue V1 = Op.getOperand(0);
6308  SDValue V2 = Op.getOperand(1);
6309  EVT VT = Op.getValueType();
6310
6311  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6312
6313  if (HasSSE2 && VT == MVT::v2f64)
6314    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6315
6316  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6317  return DAG.getNode(ISD::BITCAST, dl, VT,
6318                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6319                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6320                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6321}
6322
6323static
6324SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6325  SDValue V1 = Op.getOperand(0);
6326  SDValue V2 = Op.getOperand(1);
6327  EVT VT = Op.getValueType();
6328
6329  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6330         "unsupported shuffle type");
6331
6332  if (V2.getOpcode() == ISD::UNDEF)
6333    V2 = V1;
6334
6335  // v4i32 or v4f32
6336  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6337}
6338
6339static
6340SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6341  SDValue V1 = Op.getOperand(0);
6342  SDValue V2 = Op.getOperand(1);
6343  EVT VT = Op.getValueType();
6344  unsigned NumElems = VT.getVectorNumElements();
6345
6346  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6347  // operand of these instructions is only memory, so check if there's a
6348  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6349  // same masks.
6350  bool CanFoldLoad = false;
6351
6352  // Trivial case, when V2 comes from a load.
6353  if (MayFoldVectorLoad(V2))
6354    CanFoldLoad = true;
6355
6356  // When V1 is a load, it can be folded later into a store in isel, example:
6357  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6358  //    turns into:
6359  //  (MOVLPSmr addr:$src1, VR128:$src2)
6360  // So, recognize this potential and also use MOVLPS or MOVLPD
6361  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6362    CanFoldLoad = true;
6363
6364  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6365  if (CanFoldLoad) {
6366    if (HasSSE2 && NumElems == 2)
6367      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6368
6369    if (NumElems == 4)
6370      // If we don't care about the second element, procede to use movss.
6371      if (SVOp->getMaskElt(1) != -1)
6372        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6373  }
6374
6375  // movl and movlp will both match v2i64, but v2i64 is never matched by
6376  // movl earlier because we make it strict to avoid messing with the movlp load
6377  // folding logic (see the code above getMOVLP call). Match it here then,
6378  // this is horrible, but will stay like this until we move all shuffle
6379  // matching to x86 specific nodes. Note that for the 1st condition all
6380  // types are matched with movsd.
6381  if (HasSSE2) {
6382    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6383    // as to remove this logic from here, as much as possible
6384    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6385      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6386    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6387  }
6388
6389  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6390
6391  // Invert the operand order and use SHUFPS to match it.
6392  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6393                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6394}
6395
6396static
6397SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6398                               const TargetLowering &TLI,
6399                               const X86Subtarget *Subtarget) {
6400  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6401  EVT VT = Op.getValueType();
6402  DebugLoc dl = Op.getDebugLoc();
6403  SDValue V1 = Op.getOperand(0);
6404  SDValue V2 = Op.getOperand(1);
6405
6406  if (isZeroShuffle(SVOp))
6407    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
6408
6409  // Handle splat operations
6410  if (SVOp->isSplat()) {
6411    unsigned NumElem = VT.getVectorNumElements();
6412    int Size = VT.getSizeInBits();
6413    // Special case, this is the only place now where it's allowed to return
6414    // a vector_shuffle operation without using a target specific node, because
6415    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6416    // this be moved to DAGCombine instead?
6417    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6418      return Op;
6419
6420    // Use vbroadcast whenever the splat comes from a foldable load
6421    SDValue LD = isVectorBroadcast(Op, Subtarget);
6422    if (LD.getNode())
6423      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6424
6425    // Handle splats by matching through known shuffle masks
6426    if ((Size == 128 && NumElem <= 4) ||
6427        (Size == 256 && NumElem < 8))
6428      return SDValue();
6429
6430    // All remaning splats are promoted to target supported vector shuffles.
6431    return PromoteSplat(SVOp, DAG);
6432  }
6433
6434  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6435  // do it!
6436  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6437    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6438    if (NewOp.getNode())
6439      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6440  } else if ((VT == MVT::v4i32 ||
6441             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6442    // FIXME: Figure out a cleaner way to do this.
6443    // Try to make use of movq to zero out the top part.
6444    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6445      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6446      if (NewOp.getNode()) {
6447        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6448          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6449                              DAG, Subtarget, dl);
6450      }
6451    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6452      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6453      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6454        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6455                            DAG, Subtarget, dl);
6456    }
6457  }
6458  return SDValue();
6459}
6460
6461SDValue
6462X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6463  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6464  SDValue V1 = Op.getOperand(0);
6465  SDValue V2 = Op.getOperand(1);
6466  EVT VT = Op.getValueType();
6467  DebugLoc dl = Op.getDebugLoc();
6468  unsigned NumElems = VT.getVectorNumElements();
6469  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6470  bool V1IsSplat = false;
6471  bool V2IsSplat = false;
6472  bool HasSSE2 = Subtarget->hasSSE2();
6473  bool HasAVX    = Subtarget->hasAVX();
6474  bool HasAVX2   = Subtarget->hasAVX2();
6475  MachineFunction &MF = DAG.getMachineFunction();
6476  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6477
6478  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6479
6480  assert(V1.getOpcode() != ISD::UNDEF && "Op 1 of shuffle should not be undef");
6481
6482  // Vector shuffle lowering takes 3 steps:
6483  //
6484  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6485  //    narrowing and commutation of operands should be handled.
6486  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6487  //    shuffle nodes.
6488  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6489  //    so the shuffle can be broken into other shuffles and the legalizer can
6490  //    try the lowering again.
6491  //
6492  // The general idea is that no vector_shuffle operation should be left to
6493  // be matched during isel, all of them must be converted to a target specific
6494  // node here.
6495
6496  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6497  // narrowing and commutation of operands should be handled. The actual code
6498  // doesn't include all of those, work in progress...
6499  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6500  if (NewOp.getNode())
6501    return NewOp;
6502
6503  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6504  // unpckh_undef). Only use pshufd if speed is more important than size.
6505  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp, HasAVX2))
6506    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6507  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp, HasAVX2))
6508    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6509
6510  if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3() &&
6511      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6512    return getMOVDDup(Op, dl, V1, DAG);
6513
6514  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6515    return getMOVHighToLow(Op, dl, DAG);
6516
6517  // Use to match splats
6518  if (HasSSE2 && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6519      (VT == MVT::v2f64 || VT == MVT::v2i64))
6520    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6521
6522  if (X86::isPSHUFDMask(SVOp)) {
6523    // The actual implementation will match the mask in the if above and then
6524    // during isel it can match several different instructions, not only pshufd
6525    // as its name says, sad but true, emulate the behavior for now...
6526    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6527        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6528
6529    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6530
6531    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6532      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6533
6534    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6535                                TargetMask, DAG);
6536  }
6537
6538  // Check if this can be converted into a logical shift.
6539  bool isLeft = false;
6540  unsigned ShAmt = 0;
6541  SDValue ShVal;
6542  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6543  if (isShift && ShVal.hasOneUse()) {
6544    // If the shifted value has multiple uses, it may be cheaper to use
6545    // v_set0 + movlhps or movhlps, etc.
6546    EVT EltVT = VT.getVectorElementType();
6547    ShAmt *= EltVT.getSizeInBits();
6548    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6549  }
6550
6551  if (X86::isMOVLMask(SVOp)) {
6552    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6553      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6554    if (!X86::isMOVLPMask(SVOp)) {
6555      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6556        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6557
6558      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6559        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6560    }
6561  }
6562
6563  // FIXME: fold these into legal mask.
6564  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6565    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6566
6567  if (X86::isMOVHLPSMask(SVOp))
6568    return getMOVHighToLow(Op, dl, DAG);
6569
6570  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6571    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6572
6573  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6574    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6575
6576  if (X86::isMOVLPMask(SVOp))
6577    return getMOVLP(Op, dl, DAG, HasSSE2);
6578
6579  if (ShouldXformToMOVHLPS(SVOp) ||
6580      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6581    return CommuteVectorShuffle(SVOp, DAG);
6582
6583  if (isShift) {
6584    // No better options. Use a vshl / vsrl.
6585    EVT EltVT = VT.getVectorElementType();
6586    ShAmt *= EltVT.getSizeInBits();
6587    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6588  }
6589
6590  bool Commuted = false;
6591  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6592  // 1,1,1,1 -> v8i16 though.
6593  V1IsSplat = isSplatVector(V1.getNode());
6594  V2IsSplat = isSplatVector(V2.getNode());
6595
6596  // Canonicalize the splat or undef, if present, to be on the RHS.
6597  if (V1IsSplat && !V2IsSplat) {
6598    Op = CommuteVectorShuffle(SVOp, DAG);
6599    SVOp = cast<ShuffleVectorSDNode>(Op);
6600    V1 = SVOp->getOperand(0);
6601    V2 = SVOp->getOperand(1);
6602    std::swap(V1IsSplat, V2IsSplat);
6603    Commuted = true;
6604  }
6605
6606  SmallVector<int, 32> M;
6607  SVOp->getMask(M);
6608
6609  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6610    // Shuffling low element of v1 into undef, just return v1.
6611    if (V2IsUndef)
6612      return V1;
6613    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6614    // the instruction selector will not match, so get a canonical MOVL with
6615    // swapped operands to undo the commute.
6616    return getMOVL(DAG, dl, VT, V2, V1);
6617  }
6618
6619  if (isUNPCKLMask(M, VT, HasAVX2))
6620    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6621
6622  if (isUNPCKHMask(M, VT, HasAVX2))
6623    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6624
6625  if (V2IsSplat) {
6626    // Normalize mask so all entries that point to V2 points to its first
6627    // element then try to match unpck{h|l} again. If match, return a
6628    // new vector_shuffle with the corrected mask.
6629    SDValue NewMask = NormalizeMask(SVOp, DAG);
6630    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6631    if (NSVOp != SVOp) {
6632      if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6633        return NewMask;
6634      } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6635        return NewMask;
6636      }
6637    }
6638  }
6639
6640  if (Commuted) {
6641    // Commute is back and try unpck* again.
6642    // FIXME: this seems wrong.
6643    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6644    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6645
6646    if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6647      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
6648
6649    if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6650      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
6651  }
6652
6653  // Normalize the node to match x86 shuffle ops if needed
6654  if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true) ||
6655                     isVSHUFPYMask(M, VT, HasAVX, /* Commuted */ true)))
6656    return CommuteVectorShuffle(SVOp, DAG);
6657
6658  // The checks below are all present in isShuffleMaskLegal, but they are
6659  // inlined here right now to enable us to directly emit target specific
6660  // nodes, and remove one by one until they don't return Op anymore.
6661
6662  if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3()))
6663    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6664                                getShufflePALIGNRImmediate(SVOp),
6665                                DAG);
6666
6667  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6668      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6669    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6670      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6671  }
6672
6673  if (isPSHUFHWMask(M, VT))
6674    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6675                                X86::getShufflePSHUFHWImmediate(SVOp),
6676                                DAG);
6677
6678  if (isPSHUFLWMask(M, VT))
6679    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6680                                X86::getShufflePSHUFLWImmediate(SVOp),
6681                                DAG);
6682
6683  if (isSHUFPMask(M, VT))
6684    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6685                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6686
6687  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6688    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6689  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6690    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6691
6692  //===--------------------------------------------------------------------===//
6693  // Generate target specific nodes for 128 or 256-bit shuffles only
6694  // supported in the AVX instruction set.
6695  //
6696
6697  // Handle VMOVDDUPY permutations
6698  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6699    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6700
6701  // Handle VPERMILPS/D* permutations
6702  if (isVPERMILPMask(M, VT, HasAVX))
6703    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6704                                getShuffleVPERMILPImmediate(SVOp), DAG);
6705
6706  // Handle VPERM2F128/VPERM2I128 permutations
6707  if (isVPERM2X128Mask(M, VT, HasAVX))
6708    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6709                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6710
6711  // Handle VSHUFPS/DY permutations
6712  if (isVSHUFPYMask(M, VT, HasAVX))
6713    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6714                                getShuffleVSHUFPYImmediate(SVOp), DAG);
6715
6716  //===--------------------------------------------------------------------===//
6717  // Since no target specific shuffle was selected for this generic one,
6718  // lower it into other known shuffles. FIXME: this isn't true yet, but
6719  // this is the plan.
6720  //
6721
6722  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6723  if (VT == MVT::v8i16) {
6724    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6725    if (NewOp.getNode())
6726      return NewOp;
6727  }
6728
6729  if (VT == MVT::v16i8) {
6730    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6731    if (NewOp.getNode())
6732      return NewOp;
6733  }
6734
6735  // Handle all 128-bit wide vectors with 4 elements, and match them with
6736  // several different shuffle types.
6737  if (NumElems == 4 && VT.getSizeInBits() == 128)
6738    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6739
6740  // Handle general 256-bit shuffles
6741  if (VT.is256BitVector())
6742    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6743
6744  return SDValue();
6745}
6746
6747SDValue
6748X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6749                                                SelectionDAG &DAG) const {
6750  EVT VT = Op.getValueType();
6751  DebugLoc dl = Op.getDebugLoc();
6752
6753  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6754    return SDValue();
6755
6756  if (VT.getSizeInBits() == 8) {
6757    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6758                                    Op.getOperand(0), Op.getOperand(1));
6759    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6760                                    DAG.getValueType(VT));
6761    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6762  } else if (VT.getSizeInBits() == 16) {
6763    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6764    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6765    if (Idx == 0)
6766      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6767                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6768                                     DAG.getNode(ISD::BITCAST, dl,
6769                                                 MVT::v4i32,
6770                                                 Op.getOperand(0)),
6771                                     Op.getOperand(1)));
6772    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6773                                    Op.getOperand(0), Op.getOperand(1));
6774    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6775                                    DAG.getValueType(VT));
6776    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6777  } else if (VT == MVT::f32) {
6778    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6779    // the result back to FR32 register. It's only worth matching if the
6780    // result has a single use which is a store or a bitcast to i32.  And in
6781    // the case of a store, it's not worth it if the index is a constant 0,
6782    // because a MOVSSmr can be used instead, which is smaller and faster.
6783    if (!Op.hasOneUse())
6784      return SDValue();
6785    SDNode *User = *Op.getNode()->use_begin();
6786    if ((User->getOpcode() != ISD::STORE ||
6787         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6788          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6789        (User->getOpcode() != ISD::BITCAST ||
6790         User->getValueType(0) != MVT::i32))
6791      return SDValue();
6792    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6793                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6794                                              Op.getOperand(0)),
6795                                              Op.getOperand(1));
6796    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6797  } else if (VT == MVT::i32 || VT == MVT::i64) {
6798    // ExtractPS/pextrq works with constant index.
6799    if (isa<ConstantSDNode>(Op.getOperand(1)))
6800      return Op;
6801  }
6802  return SDValue();
6803}
6804
6805
6806SDValue
6807X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6808                                           SelectionDAG &DAG) const {
6809  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6810    return SDValue();
6811
6812  SDValue Vec = Op.getOperand(0);
6813  EVT VecVT = Vec.getValueType();
6814
6815  // If this is a 256-bit vector result, first extract the 128-bit vector and
6816  // then extract the element from the 128-bit vector.
6817  if (VecVT.getSizeInBits() == 256) {
6818    DebugLoc dl = Op.getNode()->getDebugLoc();
6819    unsigned NumElems = VecVT.getVectorNumElements();
6820    SDValue Idx = Op.getOperand(1);
6821    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6822
6823    // Get the 128-bit vector.
6824    bool Upper = IdxVal >= NumElems/2;
6825    Vec = Extract128BitVector(Vec,
6826                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6827
6828    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6829                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6830  }
6831
6832  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6833
6834  if (Subtarget->hasSSE41()) {
6835    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6836    if (Res.getNode())
6837      return Res;
6838  }
6839
6840  EVT VT = Op.getValueType();
6841  DebugLoc dl = Op.getDebugLoc();
6842  // TODO: handle v16i8.
6843  if (VT.getSizeInBits() == 16) {
6844    SDValue Vec = Op.getOperand(0);
6845    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6846    if (Idx == 0)
6847      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6848                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6849                                     DAG.getNode(ISD::BITCAST, dl,
6850                                                 MVT::v4i32, Vec),
6851                                     Op.getOperand(1)));
6852    // Transform it so it match pextrw which produces a 32-bit result.
6853    EVT EltVT = MVT::i32;
6854    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6855                                    Op.getOperand(0), Op.getOperand(1));
6856    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6857                                    DAG.getValueType(VT));
6858    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6859  } else if (VT.getSizeInBits() == 32) {
6860    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6861    if (Idx == 0)
6862      return Op;
6863
6864    // SHUFPS the element to the lowest double word, then movss.
6865    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6866    EVT VVT = Op.getOperand(0).getValueType();
6867    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6868                                       DAG.getUNDEF(VVT), Mask);
6869    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6870                       DAG.getIntPtrConstant(0));
6871  } else if (VT.getSizeInBits() == 64) {
6872    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6873    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6874    //        to match extract_elt for f64.
6875    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6876    if (Idx == 0)
6877      return Op;
6878
6879    // UNPCKHPD the element to the lowest double word, then movsd.
6880    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6881    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6882    int Mask[2] = { 1, -1 };
6883    EVT VVT = Op.getOperand(0).getValueType();
6884    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6885                                       DAG.getUNDEF(VVT), Mask);
6886    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6887                       DAG.getIntPtrConstant(0));
6888  }
6889
6890  return SDValue();
6891}
6892
6893SDValue
6894X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6895                                               SelectionDAG &DAG) const {
6896  EVT VT = Op.getValueType();
6897  EVT EltVT = VT.getVectorElementType();
6898  DebugLoc dl = Op.getDebugLoc();
6899
6900  SDValue N0 = Op.getOperand(0);
6901  SDValue N1 = Op.getOperand(1);
6902  SDValue N2 = Op.getOperand(2);
6903
6904  if (VT.getSizeInBits() == 256)
6905    return SDValue();
6906
6907  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6908      isa<ConstantSDNode>(N2)) {
6909    unsigned Opc;
6910    if (VT == MVT::v8i16)
6911      Opc = X86ISD::PINSRW;
6912    else if (VT == MVT::v16i8)
6913      Opc = X86ISD::PINSRB;
6914    else
6915      Opc = X86ISD::PINSRB;
6916
6917    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6918    // argument.
6919    if (N1.getValueType() != MVT::i32)
6920      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6921    if (N2.getValueType() != MVT::i32)
6922      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6923    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6924  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6925    // Bits [7:6] of the constant are the source select.  This will always be
6926    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6927    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6928    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6929    // Bits [5:4] of the constant are the destination select.  This is the
6930    //  value of the incoming immediate.
6931    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6932    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6933    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6934    // Create this as a scalar to vector..
6935    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6936    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6937  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6938             isa<ConstantSDNode>(N2)) {
6939    // PINSR* works with constant index.
6940    return Op;
6941  }
6942  return SDValue();
6943}
6944
6945SDValue
6946X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6947  EVT VT = Op.getValueType();
6948  EVT EltVT = VT.getVectorElementType();
6949
6950  DebugLoc dl = Op.getDebugLoc();
6951  SDValue N0 = Op.getOperand(0);
6952  SDValue N1 = Op.getOperand(1);
6953  SDValue N2 = Op.getOperand(2);
6954
6955  // If this is a 256-bit vector result, first extract the 128-bit vector,
6956  // insert the element into the extracted half and then place it back.
6957  if (VT.getSizeInBits() == 256) {
6958    if (!isa<ConstantSDNode>(N2))
6959      return SDValue();
6960
6961    // Get the desired 128-bit vector half.
6962    unsigned NumElems = VT.getVectorNumElements();
6963    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6964    bool Upper = IdxVal >= NumElems/2;
6965    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6966    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6967
6968    // Insert the element into the desired half.
6969    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6970                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6971
6972    // Insert the changed part back to the 256-bit vector
6973    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6974  }
6975
6976  if (Subtarget->hasSSE41())
6977    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6978
6979  if (EltVT == MVT::i8)
6980    return SDValue();
6981
6982  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6983    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6984    // as its second argument.
6985    if (N1.getValueType() != MVT::i32)
6986      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6987    if (N2.getValueType() != MVT::i32)
6988      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6989    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6990  }
6991  return SDValue();
6992}
6993
6994SDValue
6995X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6996  LLVMContext *Context = DAG.getContext();
6997  DebugLoc dl = Op.getDebugLoc();
6998  EVT OpVT = Op.getValueType();
6999
7000  // If this is a 256-bit vector result, first insert into a 128-bit
7001  // vector and then insert into the 256-bit vector.
7002  if (OpVT.getSizeInBits() > 128) {
7003    // Insert into a 128-bit vector.
7004    EVT VT128 = EVT::getVectorVT(*Context,
7005                                 OpVT.getVectorElementType(),
7006                                 OpVT.getVectorNumElements() / 2);
7007
7008    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7009
7010    // Insert the 128-bit vector.
7011    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7012                              DAG.getConstant(0, MVT::i32),
7013                              DAG, dl);
7014  }
7015
7016  if (Op.getValueType() == MVT::v1i64 &&
7017      Op.getOperand(0).getValueType() == MVT::i64)
7018    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7019
7020  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7021  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7022         "Expected an SSE type!");
7023  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7024                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7025}
7026
7027// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7028// a simple subregister reference or explicit instructions to grab
7029// upper bits of a vector.
7030SDValue
7031X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7032  if (Subtarget->hasAVX()) {
7033    DebugLoc dl = Op.getNode()->getDebugLoc();
7034    SDValue Vec = Op.getNode()->getOperand(0);
7035    SDValue Idx = Op.getNode()->getOperand(1);
7036
7037    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7038        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7039        return Extract128BitVector(Vec, Idx, DAG, dl);
7040    }
7041  }
7042  return SDValue();
7043}
7044
7045// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7046// simple superregister reference or explicit instructions to insert
7047// the upper bits of a vector.
7048SDValue
7049X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7050  if (Subtarget->hasAVX()) {
7051    DebugLoc dl = Op.getNode()->getDebugLoc();
7052    SDValue Vec = Op.getNode()->getOperand(0);
7053    SDValue SubVec = Op.getNode()->getOperand(1);
7054    SDValue Idx = Op.getNode()->getOperand(2);
7055
7056    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7057        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7058      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7059    }
7060  }
7061  return SDValue();
7062}
7063
7064// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7065// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7066// one of the above mentioned nodes. It has to be wrapped because otherwise
7067// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7068// be used to form addressing mode. These wrapped nodes will be selected
7069// into MOV32ri.
7070SDValue
7071X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7072  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7073
7074  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7075  // global base reg.
7076  unsigned char OpFlag = 0;
7077  unsigned WrapperKind = X86ISD::Wrapper;
7078  CodeModel::Model M = getTargetMachine().getCodeModel();
7079
7080  if (Subtarget->isPICStyleRIPRel() &&
7081      (M == CodeModel::Small || M == CodeModel::Kernel))
7082    WrapperKind = X86ISD::WrapperRIP;
7083  else if (Subtarget->isPICStyleGOT())
7084    OpFlag = X86II::MO_GOTOFF;
7085  else if (Subtarget->isPICStyleStubPIC())
7086    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7087
7088  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7089                                             CP->getAlignment(),
7090                                             CP->getOffset(), OpFlag);
7091  DebugLoc DL = CP->getDebugLoc();
7092  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7093  // With PIC, the address is actually $g + Offset.
7094  if (OpFlag) {
7095    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7096                         DAG.getNode(X86ISD::GlobalBaseReg,
7097                                     DebugLoc(), getPointerTy()),
7098                         Result);
7099  }
7100
7101  return Result;
7102}
7103
7104SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7105  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7106
7107  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7108  // global base reg.
7109  unsigned char OpFlag = 0;
7110  unsigned WrapperKind = X86ISD::Wrapper;
7111  CodeModel::Model M = getTargetMachine().getCodeModel();
7112
7113  if (Subtarget->isPICStyleRIPRel() &&
7114      (M == CodeModel::Small || M == CodeModel::Kernel))
7115    WrapperKind = X86ISD::WrapperRIP;
7116  else if (Subtarget->isPICStyleGOT())
7117    OpFlag = X86II::MO_GOTOFF;
7118  else if (Subtarget->isPICStyleStubPIC())
7119    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7120
7121  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7122                                          OpFlag);
7123  DebugLoc DL = JT->getDebugLoc();
7124  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7125
7126  // With PIC, the address is actually $g + Offset.
7127  if (OpFlag)
7128    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7129                         DAG.getNode(X86ISD::GlobalBaseReg,
7130                                     DebugLoc(), getPointerTy()),
7131                         Result);
7132
7133  return Result;
7134}
7135
7136SDValue
7137X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7138  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7139
7140  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7141  // global base reg.
7142  unsigned char OpFlag = 0;
7143  unsigned WrapperKind = X86ISD::Wrapper;
7144  CodeModel::Model M = getTargetMachine().getCodeModel();
7145
7146  if (Subtarget->isPICStyleRIPRel() &&
7147      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7148    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7149      OpFlag = X86II::MO_GOTPCREL;
7150    WrapperKind = X86ISD::WrapperRIP;
7151  } else if (Subtarget->isPICStyleGOT()) {
7152    OpFlag = X86II::MO_GOT;
7153  } else if (Subtarget->isPICStyleStubPIC()) {
7154    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7155  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7156    OpFlag = X86II::MO_DARWIN_NONLAZY;
7157  }
7158
7159  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7160
7161  DebugLoc DL = Op.getDebugLoc();
7162  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7163
7164
7165  // With PIC, the address is actually $g + Offset.
7166  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7167      !Subtarget->is64Bit()) {
7168    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7169                         DAG.getNode(X86ISD::GlobalBaseReg,
7170                                     DebugLoc(), getPointerTy()),
7171                         Result);
7172  }
7173
7174  // For symbols that require a load from a stub to get the address, emit the
7175  // load.
7176  if (isGlobalStubReference(OpFlag))
7177    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7178                         MachinePointerInfo::getGOT(), false, false, false, 0);
7179
7180  return Result;
7181}
7182
7183SDValue
7184X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7185  // Create the TargetBlockAddressAddress node.
7186  unsigned char OpFlags =
7187    Subtarget->ClassifyBlockAddressReference();
7188  CodeModel::Model M = getTargetMachine().getCodeModel();
7189  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7190  DebugLoc dl = Op.getDebugLoc();
7191  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7192                                       /*isTarget=*/true, OpFlags);
7193
7194  if (Subtarget->isPICStyleRIPRel() &&
7195      (M == CodeModel::Small || M == CodeModel::Kernel))
7196    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7197  else
7198    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7199
7200  // With PIC, the address is actually $g + Offset.
7201  if (isGlobalRelativeToPICBase(OpFlags)) {
7202    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7203                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7204                         Result);
7205  }
7206
7207  return Result;
7208}
7209
7210SDValue
7211X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7212                                      int64_t Offset,
7213                                      SelectionDAG &DAG) const {
7214  // Create the TargetGlobalAddress node, folding in the constant
7215  // offset if it is legal.
7216  unsigned char OpFlags =
7217    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7218  CodeModel::Model M = getTargetMachine().getCodeModel();
7219  SDValue Result;
7220  if (OpFlags == X86II::MO_NO_FLAG &&
7221      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7222    // A direct static reference to a global.
7223    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7224    Offset = 0;
7225  } else {
7226    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7227  }
7228
7229  if (Subtarget->isPICStyleRIPRel() &&
7230      (M == CodeModel::Small || M == CodeModel::Kernel))
7231    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7232  else
7233    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7234
7235  // With PIC, the address is actually $g + Offset.
7236  if (isGlobalRelativeToPICBase(OpFlags)) {
7237    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7238                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7239                         Result);
7240  }
7241
7242  // For globals that require a load from a stub to get the address, emit the
7243  // load.
7244  if (isGlobalStubReference(OpFlags))
7245    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7246                         MachinePointerInfo::getGOT(), false, false, false, 0);
7247
7248  // If there was a non-zero offset that we didn't fold, create an explicit
7249  // addition for it.
7250  if (Offset != 0)
7251    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7252                         DAG.getConstant(Offset, getPointerTy()));
7253
7254  return Result;
7255}
7256
7257SDValue
7258X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7259  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7260  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7261  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7262}
7263
7264static SDValue
7265GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7266           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7267           unsigned char OperandFlags) {
7268  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7269  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7270  DebugLoc dl = GA->getDebugLoc();
7271  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7272                                           GA->getValueType(0),
7273                                           GA->getOffset(),
7274                                           OperandFlags);
7275  if (InFlag) {
7276    SDValue Ops[] = { Chain,  TGA, *InFlag };
7277    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7278  } else {
7279    SDValue Ops[]  = { Chain, TGA };
7280    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7281  }
7282
7283  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7284  MFI->setAdjustsStack(true);
7285
7286  SDValue Flag = Chain.getValue(1);
7287  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7288}
7289
7290// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7291static SDValue
7292LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7293                                const EVT PtrVT) {
7294  SDValue InFlag;
7295  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7296  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7297                                     DAG.getNode(X86ISD::GlobalBaseReg,
7298                                                 DebugLoc(), PtrVT), InFlag);
7299  InFlag = Chain.getValue(1);
7300
7301  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7302}
7303
7304// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7305static SDValue
7306LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7307                                const EVT PtrVT) {
7308  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7309                    X86::RAX, X86II::MO_TLSGD);
7310}
7311
7312// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7313// "local exec" model.
7314static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7315                                   const EVT PtrVT, TLSModel::Model model,
7316                                   bool is64Bit) {
7317  DebugLoc dl = GA->getDebugLoc();
7318
7319  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7320  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7321                                                         is64Bit ? 257 : 256));
7322
7323  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7324                                      DAG.getIntPtrConstant(0),
7325                                      MachinePointerInfo(Ptr),
7326                                      false, false, false, 0);
7327
7328  unsigned char OperandFlags = 0;
7329  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7330  // initialexec.
7331  unsigned WrapperKind = X86ISD::Wrapper;
7332  if (model == TLSModel::LocalExec) {
7333    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7334  } else if (is64Bit) {
7335    assert(model == TLSModel::InitialExec);
7336    OperandFlags = X86II::MO_GOTTPOFF;
7337    WrapperKind = X86ISD::WrapperRIP;
7338  } else {
7339    assert(model == TLSModel::InitialExec);
7340    OperandFlags = X86II::MO_INDNTPOFF;
7341  }
7342
7343  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7344  // exec)
7345  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7346                                           GA->getValueType(0),
7347                                           GA->getOffset(), OperandFlags);
7348  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7349
7350  if (model == TLSModel::InitialExec)
7351    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7352                         MachinePointerInfo::getGOT(), false, false, false, 0);
7353
7354  // The address of the thread local variable is the add of the thread
7355  // pointer with the offset of the variable.
7356  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7357}
7358
7359SDValue
7360X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7361
7362  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7363  const GlobalValue *GV = GA->getGlobal();
7364
7365  if (Subtarget->isTargetELF()) {
7366    // TODO: implement the "local dynamic" model
7367    // TODO: implement the "initial exec"model for pic executables
7368
7369    // If GV is an alias then use the aliasee for determining
7370    // thread-localness.
7371    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7372      GV = GA->resolveAliasedGlobal(false);
7373
7374    TLSModel::Model model
7375      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7376
7377    switch (model) {
7378      case TLSModel::GeneralDynamic:
7379      case TLSModel::LocalDynamic: // not implemented
7380        if (Subtarget->is64Bit())
7381          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7382        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7383
7384      case TLSModel::InitialExec:
7385      case TLSModel::LocalExec:
7386        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7387                                   Subtarget->is64Bit());
7388    }
7389  } else if (Subtarget->isTargetDarwin()) {
7390    // Darwin only has one model of TLS.  Lower to that.
7391    unsigned char OpFlag = 0;
7392    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7393                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7394
7395    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7396    // global base reg.
7397    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7398                  !Subtarget->is64Bit();
7399    if (PIC32)
7400      OpFlag = X86II::MO_TLVP_PIC_BASE;
7401    else
7402      OpFlag = X86II::MO_TLVP;
7403    DebugLoc DL = Op.getDebugLoc();
7404    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7405                                                GA->getValueType(0),
7406                                                GA->getOffset(), OpFlag);
7407    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7408
7409    // With PIC32, the address is actually $g + Offset.
7410    if (PIC32)
7411      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7412                           DAG.getNode(X86ISD::GlobalBaseReg,
7413                                       DebugLoc(), getPointerTy()),
7414                           Offset);
7415
7416    // Lowering the machine isd will make sure everything is in the right
7417    // location.
7418    SDValue Chain = DAG.getEntryNode();
7419    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7420    SDValue Args[] = { Chain, Offset };
7421    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7422
7423    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7424    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7425    MFI->setAdjustsStack(true);
7426
7427    // And our return value (tls address) is in the standard call return value
7428    // location.
7429    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7430    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7431                              Chain.getValue(1));
7432  }
7433
7434  assert(false &&
7435         "TLS not implemented for this target.");
7436
7437  llvm_unreachable("Unreachable");
7438  return SDValue();
7439}
7440
7441
7442/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7443/// and take a 2 x i32 value to shift plus a shift amount.
7444SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7445  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7446  EVT VT = Op.getValueType();
7447  unsigned VTBits = VT.getSizeInBits();
7448  DebugLoc dl = Op.getDebugLoc();
7449  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7450  SDValue ShOpLo = Op.getOperand(0);
7451  SDValue ShOpHi = Op.getOperand(1);
7452  SDValue ShAmt  = Op.getOperand(2);
7453  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7454                                     DAG.getConstant(VTBits - 1, MVT::i8))
7455                       : DAG.getConstant(0, VT);
7456
7457  SDValue Tmp2, Tmp3;
7458  if (Op.getOpcode() == ISD::SHL_PARTS) {
7459    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7460    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7461  } else {
7462    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7463    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7464  }
7465
7466  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7467                                DAG.getConstant(VTBits, MVT::i8));
7468  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7469                             AndNode, DAG.getConstant(0, MVT::i8));
7470
7471  SDValue Hi, Lo;
7472  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7473  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7474  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7475
7476  if (Op.getOpcode() == ISD::SHL_PARTS) {
7477    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7478    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7479  } else {
7480    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7481    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7482  }
7483
7484  SDValue Ops[2] = { Lo, Hi };
7485  return DAG.getMergeValues(Ops, 2, dl);
7486}
7487
7488SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7489                                           SelectionDAG &DAG) const {
7490  EVT SrcVT = Op.getOperand(0).getValueType();
7491
7492  if (SrcVT.isVector())
7493    return SDValue();
7494
7495  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7496         "Unknown SINT_TO_FP to lower!");
7497
7498  // These are really Legal; return the operand so the caller accepts it as
7499  // Legal.
7500  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7501    return Op;
7502  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7503      Subtarget->is64Bit()) {
7504    return Op;
7505  }
7506
7507  DebugLoc dl = Op.getDebugLoc();
7508  unsigned Size = SrcVT.getSizeInBits()/8;
7509  MachineFunction &MF = DAG.getMachineFunction();
7510  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7511  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7512  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7513                               StackSlot,
7514                               MachinePointerInfo::getFixedStack(SSFI),
7515                               false, false, 0);
7516  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7517}
7518
7519SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7520                                     SDValue StackSlot,
7521                                     SelectionDAG &DAG) const {
7522  // Build the FILD
7523  DebugLoc DL = Op.getDebugLoc();
7524  SDVTList Tys;
7525  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7526  if (useSSE)
7527    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7528  else
7529    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7530
7531  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7532
7533  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7534  MachineMemOperand *MMO;
7535  if (FI) {
7536    int SSFI = FI->getIndex();
7537    MMO =
7538      DAG.getMachineFunction()
7539      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7540                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7541  } else {
7542    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7543    StackSlot = StackSlot.getOperand(1);
7544  }
7545  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7546  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7547                                           X86ISD::FILD, DL,
7548                                           Tys, Ops, array_lengthof(Ops),
7549                                           SrcVT, MMO);
7550
7551  if (useSSE) {
7552    Chain = Result.getValue(1);
7553    SDValue InFlag = Result.getValue(2);
7554
7555    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7556    // shouldn't be necessary except that RFP cannot be live across
7557    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7558    MachineFunction &MF = DAG.getMachineFunction();
7559    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7560    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7561    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7562    Tys = DAG.getVTList(MVT::Other);
7563    SDValue Ops[] = {
7564      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7565    };
7566    MachineMemOperand *MMO =
7567      DAG.getMachineFunction()
7568      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7569                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7570
7571    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7572                                    Ops, array_lengthof(Ops),
7573                                    Op.getValueType(), MMO);
7574    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7575                         MachinePointerInfo::getFixedStack(SSFI),
7576                         false, false, false, 0);
7577  }
7578
7579  return Result;
7580}
7581
7582// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7583SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7584                                               SelectionDAG &DAG) const {
7585  // This algorithm is not obvious. Here it is what we're trying to output:
7586  /*
7587     movq       %rax,  %xmm0
7588     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7589     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7590     #ifdef __SSE3__
7591       haddpd   %xmm0, %xmm0
7592     #else
7593       pshufd   $0x4e, %xmm0, %xmm1
7594       addpd    %xmm1, %xmm0
7595     #endif
7596  */
7597
7598  DebugLoc dl = Op.getDebugLoc();
7599  LLVMContext *Context = DAG.getContext();
7600
7601  // Build some magic constants.
7602  SmallVector<Constant*,4> CV0;
7603  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7604  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7605  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7606  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7607  Constant *C0 = ConstantVector::get(CV0);
7608  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7609
7610  SmallVector<Constant*,2> CV1;
7611  CV1.push_back(
7612    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7613  CV1.push_back(
7614    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7615  Constant *C1 = ConstantVector::get(CV1);
7616  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7617
7618  // Load the 64-bit value into an XMM register.
7619  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7620                            Op.getOperand(0));
7621  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7622                              MachinePointerInfo::getConstantPool(),
7623                              false, false, false, 16);
7624  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7625                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7626                              CLod0);
7627
7628  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7629                              MachinePointerInfo::getConstantPool(),
7630                              false, false, false, 16);
7631  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7632  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7633  SDValue Result;
7634
7635  if (Subtarget->hasSSE3()) {
7636    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7637    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7638  } else {
7639    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7640    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7641                                           S2F, 0x4E, DAG);
7642    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7643                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7644                         Sub);
7645  }
7646
7647  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7648                     DAG.getIntPtrConstant(0));
7649}
7650
7651// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7652SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7653                                               SelectionDAG &DAG) const {
7654  DebugLoc dl = Op.getDebugLoc();
7655  // FP constant to bias correct the final result.
7656  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7657                                   MVT::f64);
7658
7659  // Load the 32-bit value into an XMM register.
7660  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7661                             Op.getOperand(0));
7662
7663  // Zero out the upper parts of the register.
7664  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasSSE2(),
7665                                     DAG);
7666
7667  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7668                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7669                     DAG.getIntPtrConstant(0));
7670
7671  // Or the load with the bias.
7672  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7673                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7674                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7675                                                   MVT::v2f64, Load)),
7676                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7677                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7678                                                   MVT::v2f64, Bias)));
7679  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7680                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7681                   DAG.getIntPtrConstant(0));
7682
7683  // Subtract the bias.
7684  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7685
7686  // Handle final rounding.
7687  EVT DestVT = Op.getValueType();
7688
7689  if (DestVT.bitsLT(MVT::f64)) {
7690    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7691                       DAG.getIntPtrConstant(0));
7692  } else if (DestVT.bitsGT(MVT::f64)) {
7693    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7694  }
7695
7696  // Handle final rounding.
7697  return Sub;
7698}
7699
7700SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7701                                           SelectionDAG &DAG) const {
7702  SDValue N0 = Op.getOperand(0);
7703  DebugLoc dl = Op.getDebugLoc();
7704
7705  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7706  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7707  // the optimization here.
7708  if (DAG.SignBitIsZero(N0))
7709    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7710
7711  EVT SrcVT = N0.getValueType();
7712  EVT DstVT = Op.getValueType();
7713  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7714    return LowerUINT_TO_FP_i64(Op, DAG);
7715  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7716    return LowerUINT_TO_FP_i32(Op, DAG);
7717  else if (Subtarget->is64Bit() &&
7718           SrcVT == MVT::i64 && DstVT == MVT::f32)
7719    return SDValue();
7720
7721  // Make a 64-bit buffer, and use it to build an FILD.
7722  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7723  if (SrcVT == MVT::i32) {
7724    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7725    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7726                                     getPointerTy(), StackSlot, WordOff);
7727    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7728                                  StackSlot, MachinePointerInfo(),
7729                                  false, false, 0);
7730    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7731                                  OffsetSlot, MachinePointerInfo(),
7732                                  false, false, 0);
7733    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7734    return Fild;
7735  }
7736
7737  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7738  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7739                               StackSlot, MachinePointerInfo(),
7740                               false, false, 0);
7741  // For i64 source, we need to add the appropriate power of 2 if the input
7742  // was negative.  This is the same as the optimization in
7743  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7744  // we must be careful to do the computation in x87 extended precision, not
7745  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7746  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7747  MachineMemOperand *MMO =
7748    DAG.getMachineFunction()
7749    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7750                          MachineMemOperand::MOLoad, 8, 8);
7751
7752  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7753  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7754  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7755                                         MVT::i64, MMO);
7756
7757  APInt FF(32, 0x5F800000ULL);
7758
7759  // Check whether the sign bit is set.
7760  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7761                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7762                                 ISD::SETLT);
7763
7764  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7765  SDValue FudgePtr = DAG.getConstantPool(
7766                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7767                                         getPointerTy());
7768
7769  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7770  SDValue Zero = DAG.getIntPtrConstant(0);
7771  SDValue Four = DAG.getIntPtrConstant(4);
7772  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7773                               Zero, Four);
7774  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7775
7776  // Load the value out, extending it from f32 to f80.
7777  // FIXME: Avoid the extend by constructing the right constant pool?
7778  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7779                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7780                                 MVT::f32, false, false, 4);
7781  // Extend everything to 80 bits to force it to be done on x87.
7782  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7783  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7784}
7785
7786std::pair<SDValue,SDValue> X86TargetLowering::
7787FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7788  DebugLoc DL = Op.getDebugLoc();
7789
7790  EVT DstTy = Op.getValueType();
7791
7792  if (!IsSigned) {
7793    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7794    DstTy = MVT::i64;
7795  }
7796
7797  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7798         DstTy.getSimpleVT() >= MVT::i16 &&
7799         "Unknown FP_TO_SINT to lower!");
7800
7801  // These are really Legal.
7802  if (DstTy == MVT::i32 &&
7803      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7804    return std::make_pair(SDValue(), SDValue());
7805  if (Subtarget->is64Bit() &&
7806      DstTy == MVT::i64 &&
7807      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7808    return std::make_pair(SDValue(), SDValue());
7809
7810  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7811  // stack slot.
7812  MachineFunction &MF = DAG.getMachineFunction();
7813  unsigned MemSize = DstTy.getSizeInBits()/8;
7814  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7815  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7816
7817
7818
7819  unsigned Opc;
7820  switch (DstTy.getSimpleVT().SimpleTy) {
7821  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7822  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7823  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7824  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7825  }
7826
7827  SDValue Chain = DAG.getEntryNode();
7828  SDValue Value = Op.getOperand(0);
7829  EVT TheVT = Op.getOperand(0).getValueType();
7830  if (isScalarFPTypeInSSEReg(TheVT)) {
7831    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7832    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7833                         MachinePointerInfo::getFixedStack(SSFI),
7834                         false, false, 0);
7835    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7836    SDValue Ops[] = {
7837      Chain, StackSlot, DAG.getValueType(TheVT)
7838    };
7839
7840    MachineMemOperand *MMO =
7841      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7842                              MachineMemOperand::MOLoad, MemSize, MemSize);
7843    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7844                                    DstTy, MMO);
7845    Chain = Value.getValue(1);
7846    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7847    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7848  }
7849
7850  MachineMemOperand *MMO =
7851    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7852                            MachineMemOperand::MOStore, MemSize, MemSize);
7853
7854  // Build the FP_TO_INT*_IN_MEM
7855  SDValue Ops[] = { Chain, Value, StackSlot };
7856  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7857                                         Ops, 3, DstTy, MMO);
7858
7859  return std::make_pair(FIST, StackSlot);
7860}
7861
7862SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7863                                           SelectionDAG &DAG) const {
7864  if (Op.getValueType().isVector())
7865    return SDValue();
7866
7867  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7868  SDValue FIST = Vals.first, StackSlot = Vals.second;
7869  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7870  if (FIST.getNode() == 0) return Op;
7871
7872  // Load the result.
7873  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7874                     FIST, StackSlot, MachinePointerInfo(),
7875                     false, false, false, 0);
7876}
7877
7878SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7879                                           SelectionDAG &DAG) const {
7880  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7881  SDValue FIST = Vals.first, StackSlot = Vals.second;
7882  assert(FIST.getNode() && "Unexpected failure");
7883
7884  // Load the result.
7885  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7886                     FIST, StackSlot, MachinePointerInfo(),
7887                     false, false, false, 0);
7888}
7889
7890SDValue X86TargetLowering::LowerFABS(SDValue Op,
7891                                     SelectionDAG &DAG) const {
7892  LLVMContext *Context = DAG.getContext();
7893  DebugLoc dl = Op.getDebugLoc();
7894  EVT VT = Op.getValueType();
7895  EVT EltVT = VT;
7896  if (VT.isVector())
7897    EltVT = VT.getVectorElementType();
7898  SmallVector<Constant*,4> CV;
7899  if (EltVT == MVT::f64) {
7900    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7901    CV.assign(2, C);
7902  } else {
7903    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7904    CV.assign(4, C);
7905  }
7906  Constant *C = ConstantVector::get(CV);
7907  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7908  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7909                             MachinePointerInfo::getConstantPool(),
7910                             false, false, false, 16);
7911  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7912}
7913
7914SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7915  LLVMContext *Context = DAG.getContext();
7916  DebugLoc dl = Op.getDebugLoc();
7917  EVT VT = Op.getValueType();
7918  EVT EltVT = VT;
7919  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7920  if (VT.isVector()) {
7921    EltVT = VT.getVectorElementType();
7922    NumElts = VT.getVectorNumElements();
7923  }
7924  SmallVector<Constant*,8> CV;
7925  if (EltVT == MVT::f64) {
7926    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7927    CV.assign(NumElts, C);
7928  } else {
7929    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7930    CV.assign(NumElts, C);
7931  }
7932  Constant *C = ConstantVector::get(CV);
7933  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7934  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7935                             MachinePointerInfo::getConstantPool(),
7936                             false, false, false, 16);
7937  if (VT.isVector()) {
7938    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7939    return DAG.getNode(ISD::BITCAST, dl, VT,
7940                       DAG.getNode(ISD::XOR, dl, XORVT,
7941                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7942                                Op.getOperand(0)),
7943                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7944  } else {
7945    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7946  }
7947}
7948
7949SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7950  LLVMContext *Context = DAG.getContext();
7951  SDValue Op0 = Op.getOperand(0);
7952  SDValue Op1 = Op.getOperand(1);
7953  DebugLoc dl = Op.getDebugLoc();
7954  EVT VT = Op.getValueType();
7955  EVT SrcVT = Op1.getValueType();
7956
7957  // If second operand is smaller, extend it first.
7958  if (SrcVT.bitsLT(VT)) {
7959    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7960    SrcVT = VT;
7961  }
7962  // And if it is bigger, shrink it first.
7963  if (SrcVT.bitsGT(VT)) {
7964    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7965    SrcVT = VT;
7966  }
7967
7968  // At this point the operands and the result should have the same
7969  // type, and that won't be f80 since that is not custom lowered.
7970
7971  // First get the sign bit of second operand.
7972  SmallVector<Constant*,4> CV;
7973  if (SrcVT == MVT::f64) {
7974    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7975    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7976  } else {
7977    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7978    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7979    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7980    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7981  }
7982  Constant *C = ConstantVector::get(CV);
7983  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7984  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7985                              MachinePointerInfo::getConstantPool(),
7986                              false, false, false, 16);
7987  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7988
7989  // Shift sign bit right or left if the two operands have different types.
7990  if (SrcVT.bitsGT(VT)) {
7991    // Op0 is MVT::f32, Op1 is MVT::f64.
7992    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7993    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7994                          DAG.getConstant(32, MVT::i32));
7995    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7996    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7997                          DAG.getIntPtrConstant(0));
7998  }
7999
8000  // Clear first operand sign bit.
8001  CV.clear();
8002  if (VT == MVT::f64) {
8003    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8004    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8005  } else {
8006    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8007    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8008    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8009    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8010  }
8011  C = ConstantVector::get(CV);
8012  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8013  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8014                              MachinePointerInfo::getConstantPool(),
8015                              false, false, false, 16);
8016  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8017
8018  // Or the value with the sign bit.
8019  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8020}
8021
8022SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8023  SDValue N0 = Op.getOperand(0);
8024  DebugLoc dl = Op.getDebugLoc();
8025  EVT VT = Op.getValueType();
8026
8027  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8028  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8029                                  DAG.getConstant(1, VT));
8030  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8031}
8032
8033/// Emit nodes that will be selected as "test Op0,Op0", or something
8034/// equivalent.
8035SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8036                                    SelectionDAG &DAG) const {
8037  DebugLoc dl = Op.getDebugLoc();
8038
8039  // CF and OF aren't always set the way we want. Determine which
8040  // of these we need.
8041  bool NeedCF = false;
8042  bool NeedOF = false;
8043  switch (X86CC) {
8044  default: break;
8045  case X86::COND_A: case X86::COND_AE:
8046  case X86::COND_B: case X86::COND_BE:
8047    NeedCF = true;
8048    break;
8049  case X86::COND_G: case X86::COND_GE:
8050  case X86::COND_L: case X86::COND_LE:
8051  case X86::COND_O: case X86::COND_NO:
8052    NeedOF = true;
8053    break;
8054  }
8055
8056  // See if we can use the EFLAGS value from the operand instead of
8057  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8058  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8059  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8060    // Emit a CMP with 0, which is the TEST pattern.
8061    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8062                       DAG.getConstant(0, Op.getValueType()));
8063
8064  unsigned Opcode = 0;
8065  unsigned NumOperands = 0;
8066  switch (Op.getNode()->getOpcode()) {
8067  case ISD::ADD:
8068    // Due to an isel shortcoming, be conservative if this add is likely to be
8069    // selected as part of a load-modify-store instruction. When the root node
8070    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8071    // uses of other nodes in the match, such as the ADD in this case. This
8072    // leads to the ADD being left around and reselected, with the result being
8073    // two adds in the output.  Alas, even if none our users are stores, that
8074    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8075    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8076    // climbing the DAG back to the root, and it doesn't seem to be worth the
8077    // effort.
8078    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8079         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8080      if (UI->getOpcode() != ISD::CopyToReg &&
8081          UI->getOpcode() != ISD::SETCC &&
8082          UI->getOpcode() != ISD::STORE)
8083        goto default_case;
8084
8085    if (ConstantSDNode *C =
8086        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8087      // An add of one will be selected as an INC.
8088      if (C->getAPIntValue() == 1) {
8089        Opcode = X86ISD::INC;
8090        NumOperands = 1;
8091        break;
8092      }
8093
8094      // An add of negative one (subtract of one) will be selected as a DEC.
8095      if (C->getAPIntValue().isAllOnesValue()) {
8096        Opcode = X86ISD::DEC;
8097        NumOperands = 1;
8098        break;
8099      }
8100    }
8101
8102    // Otherwise use a regular EFLAGS-setting add.
8103    Opcode = X86ISD::ADD;
8104    NumOperands = 2;
8105    break;
8106  case ISD::AND: {
8107    // If the primary and result isn't used, don't bother using X86ISD::AND,
8108    // because a TEST instruction will be better.
8109    bool NonFlagUse = false;
8110    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8111           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8112      SDNode *User = *UI;
8113      unsigned UOpNo = UI.getOperandNo();
8114      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8115        // Look pass truncate.
8116        UOpNo = User->use_begin().getOperandNo();
8117        User = *User->use_begin();
8118      }
8119
8120      if (User->getOpcode() != ISD::BRCOND &&
8121          User->getOpcode() != ISD::SETCC &&
8122          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8123        NonFlagUse = true;
8124        break;
8125      }
8126    }
8127
8128    if (!NonFlagUse)
8129      break;
8130  }
8131    // FALL THROUGH
8132  case ISD::SUB:
8133  case ISD::OR:
8134  case ISD::XOR:
8135    // Due to the ISEL shortcoming noted above, be conservative if this op is
8136    // likely to be selected as part of a load-modify-store instruction.
8137    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8138           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8139      if (UI->getOpcode() == ISD::STORE)
8140        goto default_case;
8141
8142    // Otherwise use a regular EFLAGS-setting instruction.
8143    switch (Op.getNode()->getOpcode()) {
8144    default: llvm_unreachable("unexpected operator!");
8145    case ISD::SUB: Opcode = X86ISD::SUB; break;
8146    case ISD::OR:  Opcode = X86ISD::OR;  break;
8147    case ISD::XOR: Opcode = X86ISD::XOR; break;
8148    case ISD::AND: Opcode = X86ISD::AND; break;
8149    }
8150
8151    NumOperands = 2;
8152    break;
8153  case X86ISD::ADD:
8154  case X86ISD::SUB:
8155  case X86ISD::INC:
8156  case X86ISD::DEC:
8157  case X86ISD::OR:
8158  case X86ISD::XOR:
8159  case X86ISD::AND:
8160    return SDValue(Op.getNode(), 1);
8161  default:
8162  default_case:
8163    break;
8164  }
8165
8166  if (Opcode == 0)
8167    // Emit a CMP with 0, which is the TEST pattern.
8168    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8169                       DAG.getConstant(0, Op.getValueType()));
8170
8171  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8172  SmallVector<SDValue, 4> Ops;
8173  for (unsigned i = 0; i != NumOperands; ++i)
8174    Ops.push_back(Op.getOperand(i));
8175
8176  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8177  DAG.ReplaceAllUsesWith(Op, New);
8178  return SDValue(New.getNode(), 1);
8179}
8180
8181/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8182/// equivalent.
8183SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8184                                   SelectionDAG &DAG) const {
8185  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8186    if (C->getAPIntValue() == 0)
8187      return EmitTest(Op0, X86CC, DAG);
8188
8189  DebugLoc dl = Op0.getDebugLoc();
8190  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8191}
8192
8193/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8194/// if it's possible.
8195SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8196                                     DebugLoc dl, SelectionDAG &DAG) const {
8197  SDValue Op0 = And.getOperand(0);
8198  SDValue Op1 = And.getOperand(1);
8199  if (Op0.getOpcode() == ISD::TRUNCATE)
8200    Op0 = Op0.getOperand(0);
8201  if (Op1.getOpcode() == ISD::TRUNCATE)
8202    Op1 = Op1.getOperand(0);
8203
8204  SDValue LHS, RHS;
8205  if (Op1.getOpcode() == ISD::SHL)
8206    std::swap(Op0, Op1);
8207  if (Op0.getOpcode() == ISD::SHL) {
8208    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8209      if (And00C->getZExtValue() == 1) {
8210        // If we looked past a truncate, check that it's only truncating away
8211        // known zeros.
8212        unsigned BitWidth = Op0.getValueSizeInBits();
8213        unsigned AndBitWidth = And.getValueSizeInBits();
8214        if (BitWidth > AndBitWidth) {
8215          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8216          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8217          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8218            return SDValue();
8219        }
8220        LHS = Op1;
8221        RHS = Op0.getOperand(1);
8222      }
8223  } else if (Op1.getOpcode() == ISD::Constant) {
8224    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8225    uint64_t AndRHSVal = AndRHS->getZExtValue();
8226    SDValue AndLHS = Op0;
8227
8228    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8229      LHS = AndLHS.getOperand(0);
8230      RHS = AndLHS.getOperand(1);
8231    }
8232
8233    // Use BT if the immediate can't be encoded in a TEST instruction.
8234    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8235      LHS = AndLHS;
8236      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8237    }
8238  }
8239
8240  if (LHS.getNode()) {
8241    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8242    // instruction.  Since the shift amount is in-range-or-undefined, we know
8243    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8244    // the encoding for the i16 version is larger than the i32 version.
8245    // Also promote i16 to i32 for performance / code size reason.
8246    if (LHS.getValueType() == MVT::i8 ||
8247        LHS.getValueType() == MVT::i16)
8248      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8249
8250    // If the operand types disagree, extend the shift amount to match.  Since
8251    // BT ignores high bits (like shifts) we can use anyextend.
8252    if (LHS.getValueType() != RHS.getValueType())
8253      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8254
8255    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8256    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8257    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8258                       DAG.getConstant(Cond, MVT::i8), BT);
8259  }
8260
8261  return SDValue();
8262}
8263
8264SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8265
8266  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8267
8268  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8269  SDValue Op0 = Op.getOperand(0);
8270  SDValue Op1 = Op.getOperand(1);
8271  DebugLoc dl = Op.getDebugLoc();
8272  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8273
8274  // Optimize to BT if possible.
8275  // Lower (X & (1 << N)) == 0 to BT(X, N).
8276  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8277  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8278  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8279      Op1.getOpcode() == ISD::Constant &&
8280      cast<ConstantSDNode>(Op1)->isNullValue() &&
8281      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8282    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8283    if (NewSetCC.getNode())
8284      return NewSetCC;
8285  }
8286
8287  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8288  // these.
8289  if (Op1.getOpcode() == ISD::Constant &&
8290      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8291       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8292      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8293
8294    // If the input is a setcc, then reuse the input setcc or use a new one with
8295    // the inverted condition.
8296    if (Op0.getOpcode() == X86ISD::SETCC) {
8297      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8298      bool Invert = (CC == ISD::SETNE) ^
8299        cast<ConstantSDNode>(Op1)->isNullValue();
8300      if (!Invert) return Op0;
8301
8302      CCode = X86::GetOppositeBranchCondition(CCode);
8303      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8304                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8305    }
8306  }
8307
8308  bool isFP = Op1.getValueType().isFloatingPoint();
8309  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8310  if (X86CC == X86::COND_INVALID)
8311    return SDValue();
8312
8313  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8314  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8315                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8316}
8317
8318// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8319// ones, and then concatenate the result back.
8320static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8321  EVT VT = Op.getValueType();
8322
8323  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8324         "Unsupported value type for operation");
8325
8326  int NumElems = VT.getVectorNumElements();
8327  DebugLoc dl = Op.getDebugLoc();
8328  SDValue CC = Op.getOperand(2);
8329  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8330  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8331
8332  // Extract the LHS vectors
8333  SDValue LHS = Op.getOperand(0);
8334  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8335  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8336
8337  // Extract the RHS vectors
8338  SDValue RHS = Op.getOperand(1);
8339  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8340  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8341
8342  // Issue the operation on the smaller types and concatenate the result back
8343  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8344  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8345  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8346                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8347                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8348}
8349
8350
8351SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8352  SDValue Cond;
8353  SDValue Op0 = Op.getOperand(0);
8354  SDValue Op1 = Op.getOperand(1);
8355  SDValue CC = Op.getOperand(2);
8356  EVT VT = Op.getValueType();
8357  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8358  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8359  DebugLoc dl = Op.getDebugLoc();
8360
8361  if (isFP) {
8362    unsigned SSECC = 8;
8363    EVT EltVT = Op0.getValueType().getVectorElementType();
8364    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8365
8366    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8367    bool Swap = false;
8368
8369    // SSE Condition code mapping:
8370    //  0 - EQ
8371    //  1 - LT
8372    //  2 - LE
8373    //  3 - UNORD
8374    //  4 - NEQ
8375    //  5 - NLT
8376    //  6 - NLE
8377    //  7 - ORD
8378    switch (SetCCOpcode) {
8379    default: break;
8380    case ISD::SETOEQ:
8381    case ISD::SETEQ:  SSECC = 0; break;
8382    case ISD::SETOGT:
8383    case ISD::SETGT: Swap = true; // Fallthrough
8384    case ISD::SETLT:
8385    case ISD::SETOLT: SSECC = 1; break;
8386    case ISD::SETOGE:
8387    case ISD::SETGE: Swap = true; // Fallthrough
8388    case ISD::SETLE:
8389    case ISD::SETOLE: SSECC = 2; break;
8390    case ISD::SETUO:  SSECC = 3; break;
8391    case ISD::SETUNE:
8392    case ISD::SETNE:  SSECC = 4; break;
8393    case ISD::SETULE: Swap = true;
8394    case ISD::SETUGE: SSECC = 5; break;
8395    case ISD::SETULT: Swap = true;
8396    case ISD::SETUGT: SSECC = 6; break;
8397    case ISD::SETO:   SSECC = 7; break;
8398    }
8399    if (Swap)
8400      std::swap(Op0, Op1);
8401
8402    // In the two special cases we can't handle, emit two comparisons.
8403    if (SSECC == 8) {
8404      if (SetCCOpcode == ISD::SETUEQ) {
8405        SDValue UNORD, EQ;
8406        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8407        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8408        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8409      } else if (SetCCOpcode == ISD::SETONE) {
8410        SDValue ORD, NEQ;
8411        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8412        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8413        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8414      }
8415      llvm_unreachable("Illegal FP comparison");
8416    }
8417    // Handle all other FP comparisons here.
8418    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8419  }
8420
8421  // Break 256-bit integer vector compare into smaller ones.
8422  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8423    return Lower256IntVSETCC(Op, DAG);
8424
8425  // We are handling one of the integer comparisons here.  Since SSE only has
8426  // GT and EQ comparisons for integer, swapping operands and multiple
8427  // operations may be required for some comparisons.
8428  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8429  bool Swap = false, Invert = false, FlipSigns = false;
8430
8431  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
8432  default: break;
8433  case MVT::i8:   EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8434  case MVT::i16:  EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8435  case MVT::i32:  EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8436  case MVT::i64:  EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8437  }
8438
8439  switch (SetCCOpcode) {
8440  default: break;
8441  case ISD::SETNE:  Invert = true;
8442  case ISD::SETEQ:  Opc = EQOpc; break;
8443  case ISD::SETLT:  Swap = true;
8444  case ISD::SETGT:  Opc = GTOpc; break;
8445  case ISD::SETGE:  Swap = true;
8446  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8447  case ISD::SETULT: Swap = true;
8448  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8449  case ISD::SETUGE: Swap = true;
8450  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8451  }
8452  if (Swap)
8453    std::swap(Op0, Op1);
8454
8455  // Check that the operation in question is available (most are plain SSE2,
8456  // but PCMPGTQ and PCMPEQQ have different requirements).
8457  if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42())
8458    return SDValue();
8459  if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41())
8460    return SDValue();
8461
8462  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8463  // bits of the inputs before performing those operations.
8464  if (FlipSigns) {
8465    EVT EltVT = VT.getVectorElementType();
8466    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8467                                      EltVT);
8468    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8469    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8470                                    SignBits.size());
8471    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8472    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8473  }
8474
8475  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8476
8477  // If the logical-not of the result is required, perform that now.
8478  if (Invert)
8479    Result = DAG.getNOT(dl, Result, VT);
8480
8481  return Result;
8482}
8483
8484// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8485static bool isX86LogicalCmp(SDValue Op) {
8486  unsigned Opc = Op.getNode()->getOpcode();
8487  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8488    return true;
8489  if (Op.getResNo() == 1 &&
8490      (Opc == X86ISD::ADD ||
8491       Opc == X86ISD::SUB ||
8492       Opc == X86ISD::ADC ||
8493       Opc == X86ISD::SBB ||
8494       Opc == X86ISD::SMUL ||
8495       Opc == X86ISD::UMUL ||
8496       Opc == X86ISD::INC ||
8497       Opc == X86ISD::DEC ||
8498       Opc == X86ISD::OR ||
8499       Opc == X86ISD::XOR ||
8500       Opc == X86ISD::AND))
8501    return true;
8502
8503  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8504    return true;
8505
8506  return false;
8507}
8508
8509static bool isZero(SDValue V) {
8510  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8511  return C && C->isNullValue();
8512}
8513
8514static bool isAllOnes(SDValue V) {
8515  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8516  return C && C->isAllOnesValue();
8517}
8518
8519SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8520  bool addTest = true;
8521  SDValue Cond  = Op.getOperand(0);
8522  SDValue Op1 = Op.getOperand(1);
8523  SDValue Op2 = Op.getOperand(2);
8524  DebugLoc DL = Op.getDebugLoc();
8525  SDValue CC;
8526
8527  if (Cond.getOpcode() == ISD::SETCC) {
8528    SDValue NewCond = LowerSETCC(Cond, DAG);
8529    if (NewCond.getNode())
8530      Cond = NewCond;
8531  }
8532
8533  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8534  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8535  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8536  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8537  if (Cond.getOpcode() == X86ISD::SETCC &&
8538      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8539      isZero(Cond.getOperand(1).getOperand(1))) {
8540    SDValue Cmp = Cond.getOperand(1);
8541
8542    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8543
8544    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8545        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8546      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8547
8548      SDValue CmpOp0 = Cmp.getOperand(0);
8549      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8550                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8551
8552      SDValue Res =   // Res = 0 or -1.
8553        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8554                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8555
8556      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8557        Res = DAG.getNOT(DL, Res, Res.getValueType());
8558
8559      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8560      if (N2C == 0 || !N2C->isNullValue())
8561        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8562      return Res;
8563    }
8564  }
8565
8566  // Look past (and (setcc_carry (cmp ...)), 1).
8567  if (Cond.getOpcode() == ISD::AND &&
8568      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8569    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8570    if (C && C->getAPIntValue() == 1)
8571      Cond = Cond.getOperand(0);
8572  }
8573
8574  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8575  // setting operand in place of the X86ISD::SETCC.
8576  unsigned CondOpcode = Cond.getOpcode();
8577  if (CondOpcode == X86ISD::SETCC ||
8578      CondOpcode == X86ISD::SETCC_CARRY) {
8579    CC = Cond.getOperand(0);
8580
8581    SDValue Cmp = Cond.getOperand(1);
8582    unsigned Opc = Cmp.getOpcode();
8583    EVT VT = Op.getValueType();
8584
8585    bool IllegalFPCMov = false;
8586    if (VT.isFloatingPoint() && !VT.isVector() &&
8587        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8588      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8589
8590    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8591        Opc == X86ISD::BT) { // FIXME
8592      Cond = Cmp;
8593      addTest = false;
8594    }
8595  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8596             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8597             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8598              Cond.getOperand(0).getValueType() != MVT::i8)) {
8599    SDValue LHS = Cond.getOperand(0);
8600    SDValue RHS = Cond.getOperand(1);
8601    unsigned X86Opcode;
8602    unsigned X86Cond;
8603    SDVTList VTs;
8604    switch (CondOpcode) {
8605    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8606    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8607    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8608    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8609    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8610    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8611    default: llvm_unreachable("unexpected overflowing operator");
8612    }
8613    if (CondOpcode == ISD::UMULO)
8614      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8615                          MVT::i32);
8616    else
8617      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8618
8619    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8620
8621    if (CondOpcode == ISD::UMULO)
8622      Cond = X86Op.getValue(2);
8623    else
8624      Cond = X86Op.getValue(1);
8625
8626    CC = DAG.getConstant(X86Cond, MVT::i8);
8627    addTest = false;
8628  }
8629
8630  if (addTest) {
8631    // Look pass the truncate.
8632    if (Cond.getOpcode() == ISD::TRUNCATE)
8633      Cond = Cond.getOperand(0);
8634
8635    // We know the result of AND is compared against zero. Try to match
8636    // it to BT.
8637    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8638      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8639      if (NewSetCC.getNode()) {
8640        CC = NewSetCC.getOperand(0);
8641        Cond = NewSetCC.getOperand(1);
8642        addTest = false;
8643      }
8644    }
8645  }
8646
8647  if (addTest) {
8648    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8649    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8650  }
8651
8652  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8653  // a <  b ?  0 : -1 -> RES = setcc_carry
8654  // a >= b ? -1 :  0 -> RES = setcc_carry
8655  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8656  if (Cond.getOpcode() == X86ISD::CMP) {
8657    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8658
8659    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8660        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8661      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8662                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8663      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8664        return DAG.getNOT(DL, Res, Res.getValueType());
8665      return Res;
8666    }
8667  }
8668
8669  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8670  // condition is true.
8671  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8672  SDValue Ops[] = { Op2, Op1, CC, Cond };
8673  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8674}
8675
8676// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8677// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8678// from the AND / OR.
8679static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8680  Opc = Op.getOpcode();
8681  if (Opc != ISD::OR && Opc != ISD::AND)
8682    return false;
8683  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8684          Op.getOperand(0).hasOneUse() &&
8685          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8686          Op.getOperand(1).hasOneUse());
8687}
8688
8689// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8690// 1 and that the SETCC node has a single use.
8691static bool isXor1OfSetCC(SDValue Op) {
8692  if (Op.getOpcode() != ISD::XOR)
8693    return false;
8694  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8695  if (N1C && N1C->getAPIntValue() == 1) {
8696    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8697      Op.getOperand(0).hasOneUse();
8698  }
8699  return false;
8700}
8701
8702SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8703  bool addTest = true;
8704  SDValue Chain = Op.getOperand(0);
8705  SDValue Cond  = Op.getOperand(1);
8706  SDValue Dest  = Op.getOperand(2);
8707  DebugLoc dl = Op.getDebugLoc();
8708  SDValue CC;
8709  bool Inverted = false;
8710
8711  if (Cond.getOpcode() == ISD::SETCC) {
8712    // Check for setcc([su]{add,sub,mul}o == 0).
8713    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8714        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8715        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8716        Cond.getOperand(0).getResNo() == 1 &&
8717        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8718         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8719         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8720         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8721         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8722         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8723      Inverted = true;
8724      Cond = Cond.getOperand(0);
8725    } else {
8726      SDValue NewCond = LowerSETCC(Cond, DAG);
8727      if (NewCond.getNode())
8728        Cond = NewCond;
8729    }
8730  }
8731#if 0
8732  // FIXME: LowerXALUO doesn't handle these!!
8733  else if (Cond.getOpcode() == X86ISD::ADD  ||
8734           Cond.getOpcode() == X86ISD::SUB  ||
8735           Cond.getOpcode() == X86ISD::SMUL ||
8736           Cond.getOpcode() == X86ISD::UMUL)
8737    Cond = LowerXALUO(Cond, DAG);
8738#endif
8739
8740  // Look pass (and (setcc_carry (cmp ...)), 1).
8741  if (Cond.getOpcode() == ISD::AND &&
8742      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8743    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8744    if (C && C->getAPIntValue() == 1)
8745      Cond = Cond.getOperand(0);
8746  }
8747
8748  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8749  // setting operand in place of the X86ISD::SETCC.
8750  unsigned CondOpcode = Cond.getOpcode();
8751  if (CondOpcode == X86ISD::SETCC ||
8752      CondOpcode == X86ISD::SETCC_CARRY) {
8753    CC = Cond.getOperand(0);
8754
8755    SDValue Cmp = Cond.getOperand(1);
8756    unsigned Opc = Cmp.getOpcode();
8757    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8758    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8759      Cond = Cmp;
8760      addTest = false;
8761    } else {
8762      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8763      default: break;
8764      case X86::COND_O:
8765      case X86::COND_B:
8766        // These can only come from an arithmetic instruction with overflow,
8767        // e.g. SADDO, UADDO.
8768        Cond = Cond.getNode()->getOperand(1);
8769        addTest = false;
8770        break;
8771      }
8772    }
8773  }
8774  CondOpcode = Cond.getOpcode();
8775  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8776      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8777      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8778       Cond.getOperand(0).getValueType() != MVT::i8)) {
8779    SDValue LHS = Cond.getOperand(0);
8780    SDValue RHS = Cond.getOperand(1);
8781    unsigned X86Opcode;
8782    unsigned X86Cond;
8783    SDVTList VTs;
8784    switch (CondOpcode) {
8785    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8786    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8787    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8788    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8789    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8790    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8791    default: llvm_unreachable("unexpected overflowing operator");
8792    }
8793    if (Inverted)
8794      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8795    if (CondOpcode == ISD::UMULO)
8796      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8797                          MVT::i32);
8798    else
8799      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8800
8801    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8802
8803    if (CondOpcode == ISD::UMULO)
8804      Cond = X86Op.getValue(2);
8805    else
8806      Cond = X86Op.getValue(1);
8807
8808    CC = DAG.getConstant(X86Cond, MVT::i8);
8809    addTest = false;
8810  } else {
8811    unsigned CondOpc;
8812    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8813      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8814      if (CondOpc == ISD::OR) {
8815        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8816        // two branches instead of an explicit OR instruction with a
8817        // separate test.
8818        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8819            isX86LogicalCmp(Cmp)) {
8820          CC = Cond.getOperand(0).getOperand(0);
8821          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8822                              Chain, Dest, CC, Cmp);
8823          CC = Cond.getOperand(1).getOperand(0);
8824          Cond = Cmp;
8825          addTest = false;
8826        }
8827      } else { // ISD::AND
8828        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8829        // two branches instead of an explicit AND instruction with a
8830        // separate test. However, we only do this if this block doesn't
8831        // have a fall-through edge, because this requires an explicit
8832        // jmp when the condition is false.
8833        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8834            isX86LogicalCmp(Cmp) &&
8835            Op.getNode()->hasOneUse()) {
8836          X86::CondCode CCode =
8837            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8838          CCode = X86::GetOppositeBranchCondition(CCode);
8839          CC = DAG.getConstant(CCode, MVT::i8);
8840          SDNode *User = *Op.getNode()->use_begin();
8841          // Look for an unconditional branch following this conditional branch.
8842          // We need this because we need to reverse the successors in order
8843          // to implement FCMP_OEQ.
8844          if (User->getOpcode() == ISD::BR) {
8845            SDValue FalseBB = User->getOperand(1);
8846            SDNode *NewBR =
8847              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8848            assert(NewBR == User);
8849            (void)NewBR;
8850            Dest = FalseBB;
8851
8852            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8853                                Chain, Dest, CC, Cmp);
8854            X86::CondCode CCode =
8855              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8856            CCode = X86::GetOppositeBranchCondition(CCode);
8857            CC = DAG.getConstant(CCode, MVT::i8);
8858            Cond = Cmp;
8859            addTest = false;
8860          }
8861        }
8862      }
8863    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8864      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8865      // It should be transformed during dag combiner except when the condition
8866      // is set by a arithmetics with overflow node.
8867      X86::CondCode CCode =
8868        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8869      CCode = X86::GetOppositeBranchCondition(CCode);
8870      CC = DAG.getConstant(CCode, MVT::i8);
8871      Cond = Cond.getOperand(0).getOperand(1);
8872      addTest = false;
8873    } else if (Cond.getOpcode() == ISD::SETCC &&
8874               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8875      // For FCMP_OEQ, we can emit
8876      // two branches instead of an explicit AND instruction with a
8877      // separate test. However, we only do this if this block doesn't
8878      // have a fall-through edge, because this requires an explicit
8879      // jmp when the condition is false.
8880      if (Op.getNode()->hasOneUse()) {
8881        SDNode *User = *Op.getNode()->use_begin();
8882        // Look for an unconditional branch following this conditional branch.
8883        // We need this because we need to reverse the successors in order
8884        // to implement FCMP_OEQ.
8885        if (User->getOpcode() == ISD::BR) {
8886          SDValue FalseBB = User->getOperand(1);
8887          SDNode *NewBR =
8888            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8889          assert(NewBR == User);
8890          (void)NewBR;
8891          Dest = FalseBB;
8892
8893          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8894                                    Cond.getOperand(0), Cond.getOperand(1));
8895          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8896          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8897                              Chain, Dest, CC, Cmp);
8898          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8899          Cond = Cmp;
8900          addTest = false;
8901        }
8902      }
8903    } else if (Cond.getOpcode() == ISD::SETCC &&
8904               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8905      // For FCMP_UNE, we can emit
8906      // two branches instead of an explicit AND instruction with a
8907      // separate test. However, we only do this if this block doesn't
8908      // have a fall-through edge, because this requires an explicit
8909      // jmp when the condition is false.
8910      if (Op.getNode()->hasOneUse()) {
8911        SDNode *User = *Op.getNode()->use_begin();
8912        // Look for an unconditional branch following this conditional branch.
8913        // We need this because we need to reverse the successors in order
8914        // to implement FCMP_UNE.
8915        if (User->getOpcode() == ISD::BR) {
8916          SDValue FalseBB = User->getOperand(1);
8917          SDNode *NewBR =
8918            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8919          assert(NewBR == User);
8920          (void)NewBR;
8921
8922          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8923                                    Cond.getOperand(0), Cond.getOperand(1));
8924          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8925          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8926                              Chain, Dest, CC, Cmp);
8927          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8928          Cond = Cmp;
8929          addTest = false;
8930          Dest = FalseBB;
8931        }
8932      }
8933    }
8934  }
8935
8936  if (addTest) {
8937    // Look pass the truncate.
8938    if (Cond.getOpcode() == ISD::TRUNCATE)
8939      Cond = Cond.getOperand(0);
8940
8941    // We know the result of AND is compared against zero. Try to match
8942    // it to BT.
8943    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8944      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8945      if (NewSetCC.getNode()) {
8946        CC = NewSetCC.getOperand(0);
8947        Cond = NewSetCC.getOperand(1);
8948        addTest = false;
8949      }
8950    }
8951  }
8952
8953  if (addTest) {
8954    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8955    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8956  }
8957  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8958                     Chain, Dest, CC, Cond);
8959}
8960
8961
8962// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8963// Calls to _alloca is needed to probe the stack when allocating more than 4k
8964// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8965// that the guard pages used by the OS virtual memory manager are allocated in
8966// correct sequence.
8967SDValue
8968X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8969                                           SelectionDAG &DAG) const {
8970  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8971          getTargetMachine().Options.EnableSegmentedStacks) &&
8972         "This should be used only on Windows targets or when segmented stacks "
8973         "are being used");
8974  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8975  DebugLoc dl = Op.getDebugLoc();
8976
8977  // Get the inputs.
8978  SDValue Chain = Op.getOperand(0);
8979  SDValue Size  = Op.getOperand(1);
8980  // FIXME: Ensure alignment here
8981
8982  bool Is64Bit = Subtarget->is64Bit();
8983  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8984
8985  if (getTargetMachine().Options.EnableSegmentedStacks) {
8986    MachineFunction &MF = DAG.getMachineFunction();
8987    MachineRegisterInfo &MRI = MF.getRegInfo();
8988
8989    if (Is64Bit) {
8990      // The 64 bit implementation of segmented stacks needs to clobber both r10
8991      // r11. This makes it impossible to use it along with nested parameters.
8992      const Function *F = MF.getFunction();
8993
8994      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8995           I != E; I++)
8996        if (I->hasNestAttr())
8997          report_fatal_error("Cannot use segmented stacks with functions that "
8998                             "have nested arguments.");
8999    }
9000
9001    const TargetRegisterClass *AddrRegClass =
9002      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9003    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9004    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9005    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9006                                DAG.getRegister(Vreg, SPTy));
9007    SDValue Ops1[2] = { Value, Chain };
9008    return DAG.getMergeValues(Ops1, 2, dl);
9009  } else {
9010    SDValue Flag;
9011    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9012
9013    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9014    Flag = Chain.getValue(1);
9015    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9016
9017    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9018    Flag = Chain.getValue(1);
9019
9020    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9021
9022    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9023    return DAG.getMergeValues(Ops1, 2, dl);
9024  }
9025}
9026
9027SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9028  MachineFunction &MF = DAG.getMachineFunction();
9029  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9030
9031  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9032  DebugLoc DL = Op.getDebugLoc();
9033
9034  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9035    // vastart just stores the address of the VarArgsFrameIndex slot into the
9036    // memory location argument.
9037    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9038                                   getPointerTy());
9039    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9040                        MachinePointerInfo(SV), false, false, 0);
9041  }
9042
9043  // __va_list_tag:
9044  //   gp_offset         (0 - 6 * 8)
9045  //   fp_offset         (48 - 48 + 8 * 16)
9046  //   overflow_arg_area (point to parameters coming in memory).
9047  //   reg_save_area
9048  SmallVector<SDValue, 8> MemOps;
9049  SDValue FIN = Op.getOperand(1);
9050  // Store gp_offset
9051  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9052                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9053                                               MVT::i32),
9054                               FIN, MachinePointerInfo(SV), false, false, 0);
9055  MemOps.push_back(Store);
9056
9057  // Store fp_offset
9058  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9059                    FIN, DAG.getIntPtrConstant(4));
9060  Store = DAG.getStore(Op.getOperand(0), DL,
9061                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9062                                       MVT::i32),
9063                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9064  MemOps.push_back(Store);
9065
9066  // Store ptr to overflow_arg_area
9067  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9068                    FIN, DAG.getIntPtrConstant(4));
9069  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9070                                    getPointerTy());
9071  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9072                       MachinePointerInfo(SV, 8),
9073                       false, false, 0);
9074  MemOps.push_back(Store);
9075
9076  // Store ptr to reg_save_area.
9077  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9078                    FIN, DAG.getIntPtrConstant(8));
9079  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9080                                    getPointerTy());
9081  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9082                       MachinePointerInfo(SV, 16), false, false, 0);
9083  MemOps.push_back(Store);
9084  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9085                     &MemOps[0], MemOps.size());
9086}
9087
9088SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9089  assert(Subtarget->is64Bit() &&
9090         "LowerVAARG only handles 64-bit va_arg!");
9091  assert((Subtarget->isTargetLinux() ||
9092          Subtarget->isTargetDarwin()) &&
9093          "Unhandled target in LowerVAARG");
9094  assert(Op.getNode()->getNumOperands() == 4);
9095  SDValue Chain = Op.getOperand(0);
9096  SDValue SrcPtr = Op.getOperand(1);
9097  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9098  unsigned Align = Op.getConstantOperandVal(3);
9099  DebugLoc dl = Op.getDebugLoc();
9100
9101  EVT ArgVT = Op.getNode()->getValueType(0);
9102  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9103  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9104  uint8_t ArgMode;
9105
9106  // Decide which area this value should be read from.
9107  // TODO: Implement the AMD64 ABI in its entirety. This simple
9108  // selection mechanism works only for the basic types.
9109  if (ArgVT == MVT::f80) {
9110    llvm_unreachable("va_arg for f80 not yet implemented");
9111  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9112    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9113  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9114    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9115  } else {
9116    llvm_unreachable("Unhandled argument type in LowerVAARG");
9117  }
9118
9119  if (ArgMode == 2) {
9120    // Sanity Check: Make sure using fp_offset makes sense.
9121    assert(!getTargetMachine().Options.UseSoftFloat &&
9122           !(DAG.getMachineFunction()
9123                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9124           Subtarget->hasSSE1());
9125  }
9126
9127  // Insert VAARG_64 node into the DAG
9128  // VAARG_64 returns two values: Variable Argument Address, Chain
9129  SmallVector<SDValue, 11> InstOps;
9130  InstOps.push_back(Chain);
9131  InstOps.push_back(SrcPtr);
9132  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9133  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9134  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9135  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9136  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9137                                          VTs, &InstOps[0], InstOps.size(),
9138                                          MVT::i64,
9139                                          MachinePointerInfo(SV),
9140                                          /*Align=*/0,
9141                                          /*Volatile=*/false,
9142                                          /*ReadMem=*/true,
9143                                          /*WriteMem=*/true);
9144  Chain = VAARG.getValue(1);
9145
9146  // Load the next argument and return it
9147  return DAG.getLoad(ArgVT, dl,
9148                     Chain,
9149                     VAARG,
9150                     MachinePointerInfo(),
9151                     false, false, false, 0);
9152}
9153
9154SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9155  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9156  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9157  SDValue Chain = Op.getOperand(0);
9158  SDValue DstPtr = Op.getOperand(1);
9159  SDValue SrcPtr = Op.getOperand(2);
9160  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9161  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9162  DebugLoc DL = Op.getDebugLoc();
9163
9164  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9165                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9166                       false,
9167                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9168}
9169
9170SDValue
9171X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9172  DebugLoc dl = Op.getDebugLoc();
9173  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9174  switch (IntNo) {
9175  default: return SDValue();    // Don't custom lower most intrinsics.
9176  // Comparison intrinsics.
9177  case Intrinsic::x86_sse_comieq_ss:
9178  case Intrinsic::x86_sse_comilt_ss:
9179  case Intrinsic::x86_sse_comile_ss:
9180  case Intrinsic::x86_sse_comigt_ss:
9181  case Intrinsic::x86_sse_comige_ss:
9182  case Intrinsic::x86_sse_comineq_ss:
9183  case Intrinsic::x86_sse_ucomieq_ss:
9184  case Intrinsic::x86_sse_ucomilt_ss:
9185  case Intrinsic::x86_sse_ucomile_ss:
9186  case Intrinsic::x86_sse_ucomigt_ss:
9187  case Intrinsic::x86_sse_ucomige_ss:
9188  case Intrinsic::x86_sse_ucomineq_ss:
9189  case Intrinsic::x86_sse2_comieq_sd:
9190  case Intrinsic::x86_sse2_comilt_sd:
9191  case Intrinsic::x86_sse2_comile_sd:
9192  case Intrinsic::x86_sse2_comigt_sd:
9193  case Intrinsic::x86_sse2_comige_sd:
9194  case Intrinsic::x86_sse2_comineq_sd:
9195  case Intrinsic::x86_sse2_ucomieq_sd:
9196  case Intrinsic::x86_sse2_ucomilt_sd:
9197  case Intrinsic::x86_sse2_ucomile_sd:
9198  case Intrinsic::x86_sse2_ucomigt_sd:
9199  case Intrinsic::x86_sse2_ucomige_sd:
9200  case Intrinsic::x86_sse2_ucomineq_sd: {
9201    unsigned Opc = 0;
9202    ISD::CondCode CC = ISD::SETCC_INVALID;
9203    switch (IntNo) {
9204    default: break;
9205    case Intrinsic::x86_sse_comieq_ss:
9206    case Intrinsic::x86_sse2_comieq_sd:
9207      Opc = X86ISD::COMI;
9208      CC = ISD::SETEQ;
9209      break;
9210    case Intrinsic::x86_sse_comilt_ss:
9211    case Intrinsic::x86_sse2_comilt_sd:
9212      Opc = X86ISD::COMI;
9213      CC = ISD::SETLT;
9214      break;
9215    case Intrinsic::x86_sse_comile_ss:
9216    case Intrinsic::x86_sse2_comile_sd:
9217      Opc = X86ISD::COMI;
9218      CC = ISD::SETLE;
9219      break;
9220    case Intrinsic::x86_sse_comigt_ss:
9221    case Intrinsic::x86_sse2_comigt_sd:
9222      Opc = X86ISD::COMI;
9223      CC = ISD::SETGT;
9224      break;
9225    case Intrinsic::x86_sse_comige_ss:
9226    case Intrinsic::x86_sse2_comige_sd:
9227      Opc = X86ISD::COMI;
9228      CC = ISD::SETGE;
9229      break;
9230    case Intrinsic::x86_sse_comineq_ss:
9231    case Intrinsic::x86_sse2_comineq_sd:
9232      Opc = X86ISD::COMI;
9233      CC = ISD::SETNE;
9234      break;
9235    case Intrinsic::x86_sse_ucomieq_ss:
9236    case Intrinsic::x86_sse2_ucomieq_sd:
9237      Opc = X86ISD::UCOMI;
9238      CC = ISD::SETEQ;
9239      break;
9240    case Intrinsic::x86_sse_ucomilt_ss:
9241    case Intrinsic::x86_sse2_ucomilt_sd:
9242      Opc = X86ISD::UCOMI;
9243      CC = ISD::SETLT;
9244      break;
9245    case Intrinsic::x86_sse_ucomile_ss:
9246    case Intrinsic::x86_sse2_ucomile_sd:
9247      Opc = X86ISD::UCOMI;
9248      CC = ISD::SETLE;
9249      break;
9250    case Intrinsic::x86_sse_ucomigt_ss:
9251    case Intrinsic::x86_sse2_ucomigt_sd:
9252      Opc = X86ISD::UCOMI;
9253      CC = ISD::SETGT;
9254      break;
9255    case Intrinsic::x86_sse_ucomige_ss:
9256    case Intrinsic::x86_sse2_ucomige_sd:
9257      Opc = X86ISD::UCOMI;
9258      CC = ISD::SETGE;
9259      break;
9260    case Intrinsic::x86_sse_ucomineq_ss:
9261    case Intrinsic::x86_sse2_ucomineq_sd:
9262      Opc = X86ISD::UCOMI;
9263      CC = ISD::SETNE;
9264      break;
9265    }
9266
9267    SDValue LHS = Op.getOperand(1);
9268    SDValue RHS = Op.getOperand(2);
9269    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9270    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9271    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9272    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9273                                DAG.getConstant(X86CC, MVT::i8), Cond);
9274    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9275  }
9276  // Arithmetic intrinsics.
9277  case Intrinsic::x86_sse3_hadd_ps:
9278  case Intrinsic::x86_sse3_hadd_pd:
9279  case Intrinsic::x86_avx_hadd_ps_256:
9280  case Intrinsic::x86_avx_hadd_pd_256:
9281    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9282                       Op.getOperand(1), Op.getOperand(2));
9283  case Intrinsic::x86_sse3_hsub_ps:
9284  case Intrinsic::x86_sse3_hsub_pd:
9285  case Intrinsic::x86_avx_hsub_ps_256:
9286  case Intrinsic::x86_avx_hsub_pd_256:
9287    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9288                       Op.getOperand(1), Op.getOperand(2));
9289  case Intrinsic::x86_avx2_psllv_d:
9290  case Intrinsic::x86_avx2_psllv_q:
9291  case Intrinsic::x86_avx2_psllv_d_256:
9292  case Intrinsic::x86_avx2_psllv_q_256:
9293    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9294                      Op.getOperand(1), Op.getOperand(2));
9295  case Intrinsic::x86_avx2_psrlv_d:
9296  case Intrinsic::x86_avx2_psrlv_q:
9297  case Intrinsic::x86_avx2_psrlv_d_256:
9298  case Intrinsic::x86_avx2_psrlv_q_256:
9299    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9300                      Op.getOperand(1), Op.getOperand(2));
9301  case Intrinsic::x86_avx2_psrav_d:
9302  case Intrinsic::x86_avx2_psrav_d_256:
9303    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9304                      Op.getOperand(1), Op.getOperand(2));
9305
9306  // ptest and testp intrinsics. The intrinsic these come from are designed to
9307  // return an integer value, not just an instruction so lower it to the ptest
9308  // or testp pattern and a setcc for the result.
9309  case Intrinsic::x86_sse41_ptestz:
9310  case Intrinsic::x86_sse41_ptestc:
9311  case Intrinsic::x86_sse41_ptestnzc:
9312  case Intrinsic::x86_avx_ptestz_256:
9313  case Intrinsic::x86_avx_ptestc_256:
9314  case Intrinsic::x86_avx_ptestnzc_256:
9315  case Intrinsic::x86_avx_vtestz_ps:
9316  case Intrinsic::x86_avx_vtestc_ps:
9317  case Intrinsic::x86_avx_vtestnzc_ps:
9318  case Intrinsic::x86_avx_vtestz_pd:
9319  case Intrinsic::x86_avx_vtestc_pd:
9320  case Intrinsic::x86_avx_vtestnzc_pd:
9321  case Intrinsic::x86_avx_vtestz_ps_256:
9322  case Intrinsic::x86_avx_vtestc_ps_256:
9323  case Intrinsic::x86_avx_vtestnzc_ps_256:
9324  case Intrinsic::x86_avx_vtestz_pd_256:
9325  case Intrinsic::x86_avx_vtestc_pd_256:
9326  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9327    bool IsTestPacked = false;
9328    unsigned X86CC = 0;
9329    switch (IntNo) {
9330    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9331    case Intrinsic::x86_avx_vtestz_ps:
9332    case Intrinsic::x86_avx_vtestz_pd:
9333    case Intrinsic::x86_avx_vtestz_ps_256:
9334    case Intrinsic::x86_avx_vtestz_pd_256:
9335      IsTestPacked = true; // Fallthrough
9336    case Intrinsic::x86_sse41_ptestz:
9337    case Intrinsic::x86_avx_ptestz_256:
9338      // ZF = 1
9339      X86CC = X86::COND_E;
9340      break;
9341    case Intrinsic::x86_avx_vtestc_ps:
9342    case Intrinsic::x86_avx_vtestc_pd:
9343    case Intrinsic::x86_avx_vtestc_ps_256:
9344    case Intrinsic::x86_avx_vtestc_pd_256:
9345      IsTestPacked = true; // Fallthrough
9346    case Intrinsic::x86_sse41_ptestc:
9347    case Intrinsic::x86_avx_ptestc_256:
9348      // CF = 1
9349      X86CC = X86::COND_B;
9350      break;
9351    case Intrinsic::x86_avx_vtestnzc_ps:
9352    case Intrinsic::x86_avx_vtestnzc_pd:
9353    case Intrinsic::x86_avx_vtestnzc_ps_256:
9354    case Intrinsic::x86_avx_vtestnzc_pd_256:
9355      IsTestPacked = true; // Fallthrough
9356    case Intrinsic::x86_sse41_ptestnzc:
9357    case Intrinsic::x86_avx_ptestnzc_256:
9358      // ZF and CF = 0
9359      X86CC = X86::COND_A;
9360      break;
9361    }
9362
9363    SDValue LHS = Op.getOperand(1);
9364    SDValue RHS = Op.getOperand(2);
9365    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9366    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9367    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9368    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9369    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9370  }
9371
9372  // Fix vector shift instructions where the last operand is a non-immediate
9373  // i32 value.
9374  case Intrinsic::x86_avx2_pslli_w:
9375  case Intrinsic::x86_avx2_pslli_d:
9376  case Intrinsic::x86_avx2_pslli_q:
9377  case Intrinsic::x86_avx2_psrli_w:
9378  case Intrinsic::x86_avx2_psrli_d:
9379  case Intrinsic::x86_avx2_psrli_q:
9380  case Intrinsic::x86_avx2_psrai_w:
9381  case Intrinsic::x86_avx2_psrai_d:
9382  case Intrinsic::x86_sse2_pslli_w:
9383  case Intrinsic::x86_sse2_pslli_d:
9384  case Intrinsic::x86_sse2_pslli_q:
9385  case Intrinsic::x86_sse2_psrli_w:
9386  case Intrinsic::x86_sse2_psrli_d:
9387  case Intrinsic::x86_sse2_psrli_q:
9388  case Intrinsic::x86_sse2_psrai_w:
9389  case Intrinsic::x86_sse2_psrai_d:
9390  case Intrinsic::x86_mmx_pslli_w:
9391  case Intrinsic::x86_mmx_pslli_d:
9392  case Intrinsic::x86_mmx_pslli_q:
9393  case Intrinsic::x86_mmx_psrli_w:
9394  case Intrinsic::x86_mmx_psrli_d:
9395  case Intrinsic::x86_mmx_psrli_q:
9396  case Intrinsic::x86_mmx_psrai_w:
9397  case Intrinsic::x86_mmx_psrai_d: {
9398    SDValue ShAmt = Op.getOperand(2);
9399    if (isa<ConstantSDNode>(ShAmt))
9400      return SDValue();
9401
9402    unsigned NewIntNo = 0;
9403    EVT ShAmtVT = MVT::v4i32;
9404    switch (IntNo) {
9405    case Intrinsic::x86_sse2_pslli_w:
9406      NewIntNo = Intrinsic::x86_sse2_psll_w;
9407      break;
9408    case Intrinsic::x86_sse2_pslli_d:
9409      NewIntNo = Intrinsic::x86_sse2_psll_d;
9410      break;
9411    case Intrinsic::x86_sse2_pslli_q:
9412      NewIntNo = Intrinsic::x86_sse2_psll_q;
9413      break;
9414    case Intrinsic::x86_sse2_psrli_w:
9415      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9416      break;
9417    case Intrinsic::x86_sse2_psrli_d:
9418      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9419      break;
9420    case Intrinsic::x86_sse2_psrli_q:
9421      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9422      break;
9423    case Intrinsic::x86_sse2_psrai_w:
9424      NewIntNo = Intrinsic::x86_sse2_psra_w;
9425      break;
9426    case Intrinsic::x86_sse2_psrai_d:
9427      NewIntNo = Intrinsic::x86_sse2_psra_d;
9428      break;
9429    case Intrinsic::x86_avx2_pslli_w:
9430      NewIntNo = Intrinsic::x86_avx2_psll_w;
9431      break;
9432    case Intrinsic::x86_avx2_pslli_d:
9433      NewIntNo = Intrinsic::x86_avx2_psll_d;
9434      break;
9435    case Intrinsic::x86_avx2_pslli_q:
9436      NewIntNo = Intrinsic::x86_avx2_psll_q;
9437      break;
9438    case Intrinsic::x86_avx2_psrli_w:
9439      NewIntNo = Intrinsic::x86_avx2_psrl_w;
9440      break;
9441    case Intrinsic::x86_avx2_psrli_d:
9442      NewIntNo = Intrinsic::x86_avx2_psrl_d;
9443      break;
9444    case Intrinsic::x86_avx2_psrli_q:
9445      NewIntNo = Intrinsic::x86_avx2_psrl_q;
9446      break;
9447    case Intrinsic::x86_avx2_psrai_w:
9448      NewIntNo = Intrinsic::x86_avx2_psra_w;
9449      break;
9450    case Intrinsic::x86_avx2_psrai_d:
9451      NewIntNo = Intrinsic::x86_avx2_psra_d;
9452      break;
9453    default: {
9454      ShAmtVT = MVT::v2i32;
9455      switch (IntNo) {
9456      case Intrinsic::x86_mmx_pslli_w:
9457        NewIntNo = Intrinsic::x86_mmx_psll_w;
9458        break;
9459      case Intrinsic::x86_mmx_pslli_d:
9460        NewIntNo = Intrinsic::x86_mmx_psll_d;
9461        break;
9462      case Intrinsic::x86_mmx_pslli_q:
9463        NewIntNo = Intrinsic::x86_mmx_psll_q;
9464        break;
9465      case Intrinsic::x86_mmx_psrli_w:
9466        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9467        break;
9468      case Intrinsic::x86_mmx_psrli_d:
9469        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9470        break;
9471      case Intrinsic::x86_mmx_psrli_q:
9472        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9473        break;
9474      case Intrinsic::x86_mmx_psrai_w:
9475        NewIntNo = Intrinsic::x86_mmx_psra_w;
9476        break;
9477      case Intrinsic::x86_mmx_psrai_d:
9478        NewIntNo = Intrinsic::x86_mmx_psra_d;
9479        break;
9480      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9481      }
9482      break;
9483    }
9484    }
9485
9486    // The vector shift intrinsics with scalars uses 32b shift amounts but
9487    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9488    // to be zero.
9489    SDValue ShOps[4];
9490    ShOps[0] = ShAmt;
9491    ShOps[1] = DAG.getConstant(0, MVT::i32);
9492    if (ShAmtVT == MVT::v4i32) {
9493      ShOps[2] = DAG.getUNDEF(MVT::i32);
9494      ShOps[3] = DAG.getUNDEF(MVT::i32);
9495      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9496    } else {
9497      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9498// FIXME this must be lowered to get rid of the invalid type.
9499    }
9500
9501    EVT VT = Op.getValueType();
9502    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9503    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9504                       DAG.getConstant(NewIntNo, MVT::i32),
9505                       Op.getOperand(1), ShAmt);
9506  }
9507  }
9508}
9509
9510SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9511                                           SelectionDAG &DAG) const {
9512  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9513  MFI->setReturnAddressIsTaken(true);
9514
9515  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9516  DebugLoc dl = Op.getDebugLoc();
9517
9518  if (Depth > 0) {
9519    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9520    SDValue Offset =
9521      DAG.getConstant(TD->getPointerSize(),
9522                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9523    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9524                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9525                                   FrameAddr, Offset),
9526                       MachinePointerInfo(), false, false, false, 0);
9527  }
9528
9529  // Just load the return address.
9530  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9531  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9532                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9533}
9534
9535SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9536  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9537  MFI->setFrameAddressIsTaken(true);
9538
9539  EVT VT = Op.getValueType();
9540  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9541  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9542  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9543  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9544  while (Depth--)
9545    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9546                            MachinePointerInfo(),
9547                            false, false, false, 0);
9548  return FrameAddr;
9549}
9550
9551SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9552                                                     SelectionDAG &DAG) const {
9553  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9554}
9555
9556SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9557  MachineFunction &MF = DAG.getMachineFunction();
9558  SDValue Chain     = Op.getOperand(0);
9559  SDValue Offset    = Op.getOperand(1);
9560  SDValue Handler   = Op.getOperand(2);
9561  DebugLoc dl       = Op.getDebugLoc();
9562
9563  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9564                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9565                                     getPointerTy());
9566  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9567
9568  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9569                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9570  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9571  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9572                       false, false, 0);
9573  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9574  MF.getRegInfo().addLiveOut(StoreAddrReg);
9575
9576  return DAG.getNode(X86ISD::EH_RETURN, dl,
9577                     MVT::Other,
9578                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9579}
9580
9581SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9582                                                  SelectionDAG &DAG) const {
9583  return Op.getOperand(0);
9584}
9585
9586SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9587                                                SelectionDAG &DAG) const {
9588  SDValue Root = Op.getOperand(0);
9589  SDValue Trmp = Op.getOperand(1); // trampoline
9590  SDValue FPtr = Op.getOperand(2); // nested function
9591  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9592  DebugLoc dl  = Op.getDebugLoc();
9593
9594  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9595
9596  if (Subtarget->is64Bit()) {
9597    SDValue OutChains[6];
9598
9599    // Large code-model.
9600    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9601    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9602
9603    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9604    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9605
9606    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9607
9608    // Load the pointer to the nested function into R11.
9609    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9610    SDValue Addr = Trmp;
9611    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9612                                Addr, MachinePointerInfo(TrmpAddr),
9613                                false, false, 0);
9614
9615    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9616                       DAG.getConstant(2, MVT::i64));
9617    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9618                                MachinePointerInfo(TrmpAddr, 2),
9619                                false, false, 2);
9620
9621    // Load the 'nest' parameter value into R10.
9622    // R10 is specified in X86CallingConv.td
9623    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9624    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9625                       DAG.getConstant(10, MVT::i64));
9626    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9627                                Addr, MachinePointerInfo(TrmpAddr, 10),
9628                                false, false, 0);
9629
9630    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9631                       DAG.getConstant(12, MVT::i64));
9632    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9633                                MachinePointerInfo(TrmpAddr, 12),
9634                                false, false, 2);
9635
9636    // Jump to the nested function.
9637    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9638    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9639                       DAG.getConstant(20, MVT::i64));
9640    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9641                                Addr, MachinePointerInfo(TrmpAddr, 20),
9642                                false, false, 0);
9643
9644    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9645    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9646                       DAG.getConstant(22, MVT::i64));
9647    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9648                                MachinePointerInfo(TrmpAddr, 22),
9649                                false, false, 0);
9650
9651    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9652  } else {
9653    const Function *Func =
9654      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9655    CallingConv::ID CC = Func->getCallingConv();
9656    unsigned NestReg;
9657
9658    switch (CC) {
9659    default:
9660      llvm_unreachable("Unsupported calling convention");
9661    case CallingConv::C:
9662    case CallingConv::X86_StdCall: {
9663      // Pass 'nest' parameter in ECX.
9664      // Must be kept in sync with X86CallingConv.td
9665      NestReg = X86::ECX;
9666
9667      // Check that ECX wasn't needed by an 'inreg' parameter.
9668      FunctionType *FTy = Func->getFunctionType();
9669      const AttrListPtr &Attrs = Func->getAttributes();
9670
9671      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9672        unsigned InRegCount = 0;
9673        unsigned Idx = 1;
9674
9675        for (FunctionType::param_iterator I = FTy->param_begin(),
9676             E = FTy->param_end(); I != E; ++I, ++Idx)
9677          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9678            // FIXME: should only count parameters that are lowered to integers.
9679            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9680
9681        if (InRegCount > 2) {
9682          report_fatal_error("Nest register in use - reduce number of inreg"
9683                             " parameters!");
9684        }
9685      }
9686      break;
9687    }
9688    case CallingConv::X86_FastCall:
9689    case CallingConv::X86_ThisCall:
9690    case CallingConv::Fast:
9691      // Pass 'nest' parameter in EAX.
9692      // Must be kept in sync with X86CallingConv.td
9693      NestReg = X86::EAX;
9694      break;
9695    }
9696
9697    SDValue OutChains[4];
9698    SDValue Addr, Disp;
9699
9700    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9701                       DAG.getConstant(10, MVT::i32));
9702    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9703
9704    // This is storing the opcode for MOV32ri.
9705    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9706    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9707    OutChains[0] = DAG.getStore(Root, dl,
9708                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9709                                Trmp, MachinePointerInfo(TrmpAddr),
9710                                false, false, 0);
9711
9712    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9713                       DAG.getConstant(1, MVT::i32));
9714    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9715                                MachinePointerInfo(TrmpAddr, 1),
9716                                false, false, 1);
9717
9718    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9719    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9720                       DAG.getConstant(5, MVT::i32));
9721    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9722                                MachinePointerInfo(TrmpAddr, 5),
9723                                false, false, 1);
9724
9725    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9726                       DAG.getConstant(6, MVT::i32));
9727    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9728                                MachinePointerInfo(TrmpAddr, 6),
9729                                false, false, 1);
9730
9731    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9732  }
9733}
9734
9735SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9736                                            SelectionDAG &DAG) const {
9737  /*
9738   The rounding mode is in bits 11:10 of FPSR, and has the following
9739   settings:
9740     00 Round to nearest
9741     01 Round to -inf
9742     10 Round to +inf
9743     11 Round to 0
9744
9745  FLT_ROUNDS, on the other hand, expects the following:
9746    -1 Undefined
9747     0 Round to 0
9748     1 Round to nearest
9749     2 Round to +inf
9750     3 Round to -inf
9751
9752  To perform the conversion, we do:
9753    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9754  */
9755
9756  MachineFunction &MF = DAG.getMachineFunction();
9757  const TargetMachine &TM = MF.getTarget();
9758  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9759  unsigned StackAlignment = TFI.getStackAlignment();
9760  EVT VT = Op.getValueType();
9761  DebugLoc DL = Op.getDebugLoc();
9762
9763  // Save FP Control Word to stack slot
9764  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9765  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9766
9767
9768  MachineMemOperand *MMO =
9769   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9770                           MachineMemOperand::MOStore, 2, 2);
9771
9772  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9773  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9774                                          DAG.getVTList(MVT::Other),
9775                                          Ops, 2, MVT::i16, MMO);
9776
9777  // Load FP Control Word from stack slot
9778  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9779                            MachinePointerInfo(), false, false, false, 0);
9780
9781  // Transform as necessary
9782  SDValue CWD1 =
9783    DAG.getNode(ISD::SRL, DL, MVT::i16,
9784                DAG.getNode(ISD::AND, DL, MVT::i16,
9785                            CWD, DAG.getConstant(0x800, MVT::i16)),
9786                DAG.getConstant(11, MVT::i8));
9787  SDValue CWD2 =
9788    DAG.getNode(ISD::SRL, DL, MVT::i16,
9789                DAG.getNode(ISD::AND, DL, MVT::i16,
9790                            CWD, DAG.getConstant(0x400, MVT::i16)),
9791                DAG.getConstant(9, MVT::i8));
9792
9793  SDValue RetVal =
9794    DAG.getNode(ISD::AND, DL, MVT::i16,
9795                DAG.getNode(ISD::ADD, DL, MVT::i16,
9796                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9797                            DAG.getConstant(1, MVT::i16)),
9798                DAG.getConstant(3, MVT::i16));
9799
9800
9801  return DAG.getNode((VT.getSizeInBits() < 16 ?
9802                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9803}
9804
9805SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9806  EVT VT = Op.getValueType();
9807  EVT OpVT = VT;
9808  unsigned NumBits = VT.getSizeInBits();
9809  DebugLoc dl = Op.getDebugLoc();
9810
9811  Op = Op.getOperand(0);
9812  if (VT == MVT::i8) {
9813    // Zero extend to i32 since there is not an i8 bsr.
9814    OpVT = MVT::i32;
9815    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9816  }
9817
9818  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9819  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9820  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9821
9822  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9823  SDValue Ops[] = {
9824    Op,
9825    DAG.getConstant(NumBits+NumBits-1, OpVT),
9826    DAG.getConstant(X86::COND_E, MVT::i8),
9827    Op.getValue(1)
9828  };
9829  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9830
9831  // Finally xor with NumBits-1.
9832  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9833
9834  if (VT == MVT::i8)
9835    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9836  return Op;
9837}
9838
9839SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
9840                                                SelectionDAG &DAG) const {
9841  EVT VT = Op.getValueType();
9842  EVT OpVT = VT;
9843  unsigned NumBits = VT.getSizeInBits();
9844  DebugLoc dl = Op.getDebugLoc();
9845
9846  Op = Op.getOperand(0);
9847  if (VT == MVT::i8) {
9848    // Zero extend to i32 since there is not an i8 bsr.
9849    OpVT = MVT::i32;
9850    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9851  }
9852
9853  // Issue a bsr (scan bits in reverse).
9854  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9855  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9856
9857  // And xor with NumBits-1.
9858  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9859
9860  if (VT == MVT::i8)
9861    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9862  return Op;
9863}
9864
9865SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9866  EVT VT = Op.getValueType();
9867  unsigned NumBits = VT.getSizeInBits();
9868  DebugLoc dl = Op.getDebugLoc();
9869  Op = Op.getOperand(0);
9870
9871  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9872  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9873  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9874
9875  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9876  SDValue Ops[] = {
9877    Op,
9878    DAG.getConstant(NumBits, VT),
9879    DAG.getConstant(X86::COND_E, MVT::i8),
9880    Op.getValue(1)
9881  };
9882  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
9883}
9884
9885// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9886// ones, and then concatenate the result back.
9887static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9888  EVT VT = Op.getValueType();
9889
9890  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9891         "Unsupported value type for operation");
9892
9893  int NumElems = VT.getVectorNumElements();
9894  DebugLoc dl = Op.getDebugLoc();
9895  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9896  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9897
9898  // Extract the LHS vectors
9899  SDValue LHS = Op.getOperand(0);
9900  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9901  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9902
9903  // Extract the RHS vectors
9904  SDValue RHS = Op.getOperand(1);
9905  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9906  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9907
9908  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9909  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9910
9911  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9912                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9913                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9914}
9915
9916SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9917  assert(Op.getValueType().getSizeInBits() == 256 &&
9918         Op.getValueType().isInteger() &&
9919         "Only handle AVX 256-bit vector integer operation");
9920  return Lower256IntArith(Op, DAG);
9921}
9922
9923SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9924  assert(Op.getValueType().getSizeInBits() == 256 &&
9925         Op.getValueType().isInteger() &&
9926         "Only handle AVX 256-bit vector integer operation");
9927  return Lower256IntArith(Op, DAG);
9928}
9929
9930SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9931  EVT VT = Op.getValueType();
9932
9933  // Decompose 256-bit ops into smaller 128-bit ops.
9934  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
9935    return Lower256IntArith(Op, DAG);
9936
9937  DebugLoc dl = Op.getDebugLoc();
9938
9939  SDValue A = Op.getOperand(0);
9940  SDValue B = Op.getOperand(1);
9941
9942  if (VT == MVT::v4i64) {
9943    assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
9944
9945    //  ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
9946    //  ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
9947    //  ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
9948    //  ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
9949    //  ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
9950    //
9951    //  AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
9952    //  AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
9953    //  return AloBlo + AloBhi + AhiBlo;
9954
9955    SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9956                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9957                         A, DAG.getConstant(32, MVT::i32));
9958    SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9959                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9960                         B, DAG.getConstant(32, MVT::i32));
9961    SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9962                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9963                         A, B);
9964    SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9965                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9966                         A, Bhi);
9967    SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9968                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9969                         Ahi, B);
9970    AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9971                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9972                         AloBhi, DAG.getConstant(32, MVT::i32));
9973    AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9974                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9975                         AhiBlo, DAG.getConstant(32, MVT::i32));
9976    SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9977    Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9978    return Res;
9979  }
9980
9981  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9982
9983  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9984  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9985  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9986  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9987  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9988  //
9989  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9990  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9991  //  return AloBlo + AloBhi + AhiBlo;
9992
9993  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9994                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9995                       A, DAG.getConstant(32, MVT::i32));
9996  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9997                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9998                       B, DAG.getConstant(32, MVT::i32));
9999  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10000                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10001                       A, B);
10002  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10003                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10004                       A, Bhi);
10005  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10006                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10007                       Ahi, B);
10008  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10009                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10010                       AloBhi, DAG.getConstant(32, MVT::i32));
10011  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10012                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10013                       AhiBlo, DAG.getConstant(32, MVT::i32));
10014  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10015  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10016  return Res;
10017}
10018
10019SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10020
10021  EVT VT = Op.getValueType();
10022  DebugLoc dl = Op.getDebugLoc();
10023  SDValue R = Op.getOperand(0);
10024  SDValue Amt = Op.getOperand(1);
10025  LLVMContext *Context = DAG.getContext();
10026
10027  if (!Subtarget->hasSSE2())
10028    return SDValue();
10029
10030  // Optimize shl/srl/sra with constant shift amount.
10031  if (isSplatVector(Amt.getNode())) {
10032    SDValue SclrAmt = Amt->getOperand(0);
10033    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10034      uint64_t ShiftAmt = C->getZExtValue();
10035
10036      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SHL) {
10037        // Make a large shift.
10038        SDValue SHL =
10039          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10040                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10041                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10042        // Zero out the rightmost bits.
10043        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10044                                                       MVT::i8));
10045        return DAG.getNode(ISD::AND, dl, VT, SHL,
10046                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10047      }
10048
10049      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
10050       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10051                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10052                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10053
10054      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
10055       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10056                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10057                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10058
10059      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
10060       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10061                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10062                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10063
10064      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRL) {
10065        // Make a large shift.
10066        SDValue SRL =
10067          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10068                      DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10069                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10070        // Zero out the leftmost bits.
10071        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10072                                                       MVT::i8));
10073        return DAG.getNode(ISD::AND, dl, VT, SRL,
10074                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10075      }
10076
10077      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
10078       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10079                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10080                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10081
10082      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
10083       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10084                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10085                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10086
10087      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
10088       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10089                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10090                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10091
10092      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
10093       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10094                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10095                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10096
10097      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
10098       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10099                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10100                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10101
10102      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRA) {
10103        if (ShiftAmt == 7) {
10104          // R s>> 7  ===  R s< 0
10105          SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
10106          return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10107        }
10108
10109        // R s>> a === ((R u>> a) ^ m) - m
10110        SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10111        SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10112                                                       MVT::i8));
10113        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10114        Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10115        Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10116        return Res;
10117      }
10118
10119      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10120        if (Op.getOpcode() == ISD::SHL) {
10121          // Make a large shift.
10122          SDValue SHL =
10123            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10124                        DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
10125                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10126          // Zero out the rightmost bits.
10127          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10128                                                         MVT::i8));
10129          return DAG.getNode(ISD::AND, dl, VT, SHL,
10130                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10131        }
10132        if (Op.getOpcode() == ISD::SRL) {
10133          // Make a large shift.
10134          SDValue SRL =
10135            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10136                        DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
10137                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10138          // Zero out the leftmost bits.
10139          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10140                                                         MVT::i8));
10141          return DAG.getNode(ISD::AND, dl, VT, SRL,
10142                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10143        }
10144        if (Op.getOpcode() == ISD::SRA) {
10145          if (ShiftAmt == 7) {
10146            // R s>> 7  ===  R s< 0
10147            SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
10148            return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10149          }
10150
10151          // R s>> a === ((R u>> a) ^ m) - m
10152          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10153          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10154                                                         MVT::i8));
10155          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10156          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10157          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10158          return Res;
10159        }
10160      }
10161    }
10162  }
10163
10164  // Lower SHL with variable shift amount.
10165  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10166    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10167                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10168                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
10169
10170    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10171
10172    std::vector<Constant*> CV(4, CI);
10173    Constant *C = ConstantVector::get(CV);
10174    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10175    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10176                                 MachinePointerInfo::getConstantPool(),
10177                                 false, false, false, 16);
10178
10179    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10180    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10181    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10182    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10183  }
10184  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10185    assert((Subtarget->hasSSE2() || Subtarget->hasAVX()) &&
10186            "Need SSE2 for pslli/pcmpeq.");
10187
10188    // a = a << 5;
10189    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10190                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10191                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
10192
10193    // Turn 'a' into a mask suitable for VSELECT
10194    SDValue VSelM = DAG.getConstant(0x80, VT);
10195    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10196    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10197                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10198                        OpVSel, VSelM);
10199
10200    SDValue CM1 = DAG.getConstant(0x0f, VT);
10201    SDValue CM2 = DAG.getConstant(0x3f, VT);
10202
10203    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10204    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10205    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10206                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10207                    DAG.getConstant(4, MVT::i32));
10208    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10209
10210    // a += a
10211    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10212    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10213    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10214                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10215                        OpVSel, VSelM);
10216
10217    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10218    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10219    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10220                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10221                    DAG.getConstant(2, MVT::i32));
10222    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10223
10224    // a += a
10225    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10226    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10227    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10228                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10229                        OpVSel, VSelM);
10230
10231    // return VSELECT(r, r+r, a);
10232    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10233                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10234    return R;
10235  }
10236
10237  // Decompose 256-bit shifts into smaller 128-bit shifts.
10238  if (VT.getSizeInBits() == 256) {
10239    int NumElems = VT.getVectorNumElements();
10240    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10241    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10242
10243    // Extract the two vectors
10244    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10245    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10246                                     DAG, dl);
10247
10248    // Recreate the shift amount vectors
10249    SDValue Amt1, Amt2;
10250    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10251      // Constant shift amount
10252      SmallVector<SDValue, 4> Amt1Csts;
10253      SmallVector<SDValue, 4> Amt2Csts;
10254      for (int i = 0; i < NumElems/2; ++i)
10255        Amt1Csts.push_back(Amt->getOperand(i));
10256      for (int i = NumElems/2; i < NumElems; ++i)
10257        Amt2Csts.push_back(Amt->getOperand(i));
10258
10259      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10260                                 &Amt1Csts[0], NumElems/2);
10261      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10262                                 &Amt2Csts[0], NumElems/2);
10263    } else {
10264      // Variable shift amount
10265      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10266      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10267                                 DAG, dl);
10268    }
10269
10270    // Issue new vector shifts for the smaller types
10271    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10272    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10273
10274    // Concatenate the result back
10275    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10276  }
10277
10278  return SDValue();
10279}
10280
10281SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10282  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10283  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10284  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10285  // has only one use.
10286  SDNode *N = Op.getNode();
10287  SDValue LHS = N->getOperand(0);
10288  SDValue RHS = N->getOperand(1);
10289  unsigned BaseOp = 0;
10290  unsigned Cond = 0;
10291  DebugLoc DL = Op.getDebugLoc();
10292  switch (Op.getOpcode()) {
10293  default: llvm_unreachable("Unknown ovf instruction!");
10294  case ISD::SADDO:
10295    // A subtract of one will be selected as a INC. Note that INC doesn't
10296    // set CF, so we can't do this for UADDO.
10297    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10298      if (C->isOne()) {
10299        BaseOp = X86ISD::INC;
10300        Cond = X86::COND_O;
10301        break;
10302      }
10303    BaseOp = X86ISD::ADD;
10304    Cond = X86::COND_O;
10305    break;
10306  case ISD::UADDO:
10307    BaseOp = X86ISD::ADD;
10308    Cond = X86::COND_B;
10309    break;
10310  case ISD::SSUBO:
10311    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10312    // set CF, so we can't do this for USUBO.
10313    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10314      if (C->isOne()) {
10315        BaseOp = X86ISD::DEC;
10316        Cond = X86::COND_O;
10317        break;
10318      }
10319    BaseOp = X86ISD::SUB;
10320    Cond = X86::COND_O;
10321    break;
10322  case ISD::USUBO:
10323    BaseOp = X86ISD::SUB;
10324    Cond = X86::COND_B;
10325    break;
10326  case ISD::SMULO:
10327    BaseOp = X86ISD::SMUL;
10328    Cond = X86::COND_O;
10329    break;
10330  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10331    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10332                                 MVT::i32);
10333    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10334
10335    SDValue SetCC =
10336      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10337                  DAG.getConstant(X86::COND_O, MVT::i32),
10338                  SDValue(Sum.getNode(), 2));
10339
10340    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10341  }
10342  }
10343
10344  // Also sets EFLAGS.
10345  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10346  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10347
10348  SDValue SetCC =
10349    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10350                DAG.getConstant(Cond, MVT::i32),
10351                SDValue(Sum.getNode(), 1));
10352
10353  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10354}
10355
10356SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10357                                                  SelectionDAG &DAG) const {
10358  DebugLoc dl = Op.getDebugLoc();
10359  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10360  EVT VT = Op.getValueType();
10361
10362  if (Subtarget->hasSSE2() && VT.isVector()) {
10363    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10364                        ExtraVT.getScalarType().getSizeInBits();
10365    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10366
10367    unsigned SHLIntrinsicsID = 0;
10368    unsigned SRAIntrinsicsID = 0;
10369    switch (VT.getSimpleVT().SimpleTy) {
10370      default:
10371        return SDValue();
10372      case MVT::v4i32:
10373        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10374        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10375        break;
10376      case MVT::v8i16:
10377        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10378        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10379        break;
10380      case MVT::v8i32:
10381      case MVT::v16i16:
10382        if (!Subtarget->hasAVX())
10383          return SDValue();
10384        if (!Subtarget->hasAVX2()) {
10385          // needs to be split
10386          int NumElems = VT.getVectorNumElements();
10387          SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10388          SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10389
10390          // Extract the LHS vectors
10391          SDValue LHS = Op.getOperand(0);
10392          SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10393          SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10394
10395          MVT EltVT = VT.getVectorElementType().getSimpleVT();
10396          EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10397
10398          EVT ExtraEltVT = ExtraVT.getVectorElementType();
10399          int ExtraNumElems = ExtraVT.getVectorNumElements();
10400          ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10401                                     ExtraNumElems/2);
10402          SDValue Extra = DAG.getValueType(ExtraVT);
10403
10404          LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10405          LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10406
10407          return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10408        }
10409        if (VT == MVT::v8i32) {
10410          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_d;
10411          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_d;
10412        } else {
10413          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_w;
10414          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_w;
10415        }
10416    }
10417
10418    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10419                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10420                         Op.getOperand(0), ShAmt);
10421
10422    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10423                       DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10424                       Tmp1, ShAmt);
10425  }
10426
10427  return SDValue();
10428}
10429
10430
10431SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10432  DebugLoc dl = Op.getDebugLoc();
10433
10434  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10435  // There isn't any reason to disable it if the target processor supports it.
10436  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10437    SDValue Chain = Op.getOperand(0);
10438    SDValue Zero = DAG.getConstant(0, MVT::i32);
10439    SDValue Ops[] = {
10440      DAG.getRegister(X86::ESP, MVT::i32), // Base
10441      DAG.getTargetConstant(1, MVT::i8),   // Scale
10442      DAG.getRegister(0, MVT::i32),        // Index
10443      DAG.getTargetConstant(0, MVT::i32),  // Disp
10444      DAG.getRegister(0, MVT::i32),        // Segment.
10445      Zero,
10446      Chain
10447    };
10448    SDNode *Res =
10449      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10450                          array_lengthof(Ops));
10451    return SDValue(Res, 0);
10452  }
10453
10454  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10455  if (!isDev)
10456    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10457
10458  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10459  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10460  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10461  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10462
10463  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10464  if (!Op1 && !Op2 && !Op3 && Op4)
10465    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10466
10467  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10468  if (Op1 && !Op2 && !Op3 && !Op4)
10469    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10470
10471  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10472  //           (MFENCE)>;
10473  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10474}
10475
10476SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10477                                             SelectionDAG &DAG) const {
10478  DebugLoc dl = Op.getDebugLoc();
10479  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10480    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10481  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10482    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10483
10484  // The only fence that needs an instruction is a sequentially-consistent
10485  // cross-thread fence.
10486  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10487    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10488    // no-sse2). There isn't any reason to disable it if the target processor
10489    // supports it.
10490    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10491      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10492
10493    SDValue Chain = Op.getOperand(0);
10494    SDValue Zero = DAG.getConstant(0, MVT::i32);
10495    SDValue Ops[] = {
10496      DAG.getRegister(X86::ESP, MVT::i32), // Base
10497      DAG.getTargetConstant(1, MVT::i8),   // Scale
10498      DAG.getRegister(0, MVT::i32),        // Index
10499      DAG.getTargetConstant(0, MVT::i32),  // Disp
10500      DAG.getRegister(0, MVT::i32),        // Segment.
10501      Zero,
10502      Chain
10503    };
10504    SDNode *Res =
10505      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10506                         array_lengthof(Ops));
10507    return SDValue(Res, 0);
10508  }
10509
10510  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10511  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10512}
10513
10514
10515SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10516  EVT T = Op.getValueType();
10517  DebugLoc DL = Op.getDebugLoc();
10518  unsigned Reg = 0;
10519  unsigned size = 0;
10520  switch(T.getSimpleVT().SimpleTy) {
10521  default:
10522    assert(false && "Invalid value type!");
10523  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10524  case MVT::i16: Reg = X86::AX;  size = 2; break;
10525  case MVT::i32: Reg = X86::EAX; size = 4; break;
10526  case MVT::i64:
10527    assert(Subtarget->is64Bit() && "Node not type legal!");
10528    Reg = X86::RAX; size = 8;
10529    break;
10530  }
10531  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10532                                    Op.getOperand(2), SDValue());
10533  SDValue Ops[] = { cpIn.getValue(0),
10534                    Op.getOperand(1),
10535                    Op.getOperand(3),
10536                    DAG.getTargetConstant(size, MVT::i8),
10537                    cpIn.getValue(1) };
10538  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10539  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10540  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10541                                           Ops, 5, T, MMO);
10542  SDValue cpOut =
10543    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10544  return cpOut;
10545}
10546
10547SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10548                                                 SelectionDAG &DAG) const {
10549  assert(Subtarget->is64Bit() && "Result not type legalized?");
10550  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10551  SDValue TheChain = Op.getOperand(0);
10552  DebugLoc dl = Op.getDebugLoc();
10553  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10554  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10555  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10556                                   rax.getValue(2));
10557  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10558                            DAG.getConstant(32, MVT::i8));
10559  SDValue Ops[] = {
10560    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10561    rdx.getValue(1)
10562  };
10563  return DAG.getMergeValues(Ops, 2, dl);
10564}
10565
10566SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10567                                            SelectionDAG &DAG) const {
10568  EVT SrcVT = Op.getOperand(0).getValueType();
10569  EVT DstVT = Op.getValueType();
10570  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10571         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10572  assert((DstVT == MVT::i64 ||
10573          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10574         "Unexpected custom BITCAST");
10575  // i64 <=> MMX conversions are Legal.
10576  if (SrcVT==MVT::i64 && DstVT.isVector())
10577    return Op;
10578  if (DstVT==MVT::i64 && SrcVT.isVector())
10579    return Op;
10580  // MMX <=> MMX conversions are Legal.
10581  if (SrcVT.isVector() && DstVT.isVector())
10582    return Op;
10583  // All other conversions need to be expanded.
10584  return SDValue();
10585}
10586
10587SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10588  SDNode *Node = Op.getNode();
10589  DebugLoc dl = Node->getDebugLoc();
10590  EVT T = Node->getValueType(0);
10591  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10592                              DAG.getConstant(0, T), Node->getOperand(2));
10593  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10594                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10595                       Node->getOperand(0),
10596                       Node->getOperand(1), negOp,
10597                       cast<AtomicSDNode>(Node)->getSrcValue(),
10598                       cast<AtomicSDNode>(Node)->getAlignment(),
10599                       cast<AtomicSDNode>(Node)->getOrdering(),
10600                       cast<AtomicSDNode>(Node)->getSynchScope());
10601}
10602
10603static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10604  SDNode *Node = Op.getNode();
10605  DebugLoc dl = Node->getDebugLoc();
10606  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10607
10608  // Convert seq_cst store -> xchg
10609  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10610  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10611  //        (The only way to get a 16-byte store is cmpxchg16b)
10612  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10613  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10614      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10615    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10616                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10617                                 Node->getOperand(0),
10618                                 Node->getOperand(1), Node->getOperand(2),
10619                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10620                                 cast<AtomicSDNode>(Node)->getOrdering(),
10621                                 cast<AtomicSDNode>(Node)->getSynchScope());
10622    return Swap.getValue(1);
10623  }
10624  // Other atomic stores have a simple pattern.
10625  return Op;
10626}
10627
10628static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10629  EVT VT = Op.getNode()->getValueType(0);
10630
10631  // Let legalize expand this if it isn't a legal type yet.
10632  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10633    return SDValue();
10634
10635  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10636
10637  unsigned Opc;
10638  bool ExtraOp = false;
10639  switch (Op.getOpcode()) {
10640  default: assert(0 && "Invalid code");
10641  case ISD::ADDC: Opc = X86ISD::ADD; break;
10642  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10643  case ISD::SUBC: Opc = X86ISD::SUB; break;
10644  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10645  }
10646
10647  if (!ExtraOp)
10648    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10649                       Op.getOperand(1));
10650  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10651                     Op.getOperand(1), Op.getOperand(2));
10652}
10653
10654/// LowerOperation - Provide custom lowering hooks for some operations.
10655///
10656SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10657  switch (Op.getOpcode()) {
10658  default: llvm_unreachable("Should not custom lower this!");
10659  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10660  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10661  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10662  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10663  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10664  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10665  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10666  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10667  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10668  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10669  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10670  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10671  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10672  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10673  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10674  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10675  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10676  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10677  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10678  case ISD::SHL_PARTS:
10679  case ISD::SRA_PARTS:
10680  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10681  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10682  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10683  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10684  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10685  case ISD::FABS:               return LowerFABS(Op, DAG);
10686  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10687  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10688  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10689  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10690  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10691  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10692  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10693  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10694  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10695  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10696  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10697  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10698  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10699  case ISD::FRAME_TO_ARGS_OFFSET:
10700                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10701  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10702  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10703  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10704  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10705  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10706  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10707  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10708  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10709  case ISD::MUL:                return LowerMUL(Op, DAG);
10710  case ISD::SRA:
10711  case ISD::SRL:
10712  case ISD::SHL:                return LowerShift(Op, DAG);
10713  case ISD::SADDO:
10714  case ISD::UADDO:
10715  case ISD::SSUBO:
10716  case ISD::USUBO:
10717  case ISD::SMULO:
10718  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10719  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10720  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10721  case ISD::ADDC:
10722  case ISD::ADDE:
10723  case ISD::SUBC:
10724  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10725  case ISD::ADD:                return LowerADD(Op, DAG);
10726  case ISD::SUB:                return LowerSUB(Op, DAG);
10727  }
10728}
10729
10730static void ReplaceATOMIC_LOAD(SDNode *Node,
10731                                  SmallVectorImpl<SDValue> &Results,
10732                                  SelectionDAG &DAG) {
10733  DebugLoc dl = Node->getDebugLoc();
10734  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10735
10736  // Convert wide load -> cmpxchg8b/cmpxchg16b
10737  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10738  //        (The only way to get a 16-byte load is cmpxchg16b)
10739  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10740  SDValue Zero = DAG.getConstant(0, VT);
10741  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10742                               Node->getOperand(0),
10743                               Node->getOperand(1), Zero, Zero,
10744                               cast<AtomicSDNode>(Node)->getMemOperand(),
10745                               cast<AtomicSDNode>(Node)->getOrdering(),
10746                               cast<AtomicSDNode>(Node)->getSynchScope());
10747  Results.push_back(Swap.getValue(0));
10748  Results.push_back(Swap.getValue(1));
10749}
10750
10751void X86TargetLowering::
10752ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10753                        SelectionDAG &DAG, unsigned NewOp) const {
10754  DebugLoc dl = Node->getDebugLoc();
10755  assert (Node->getValueType(0) == MVT::i64 &&
10756          "Only know how to expand i64 atomics");
10757
10758  SDValue Chain = Node->getOperand(0);
10759  SDValue In1 = Node->getOperand(1);
10760  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10761                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10762  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10763                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10764  SDValue Ops[] = { Chain, In1, In2L, In2H };
10765  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10766  SDValue Result =
10767    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10768                            cast<MemSDNode>(Node)->getMemOperand());
10769  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10770  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10771  Results.push_back(Result.getValue(2));
10772}
10773
10774/// ReplaceNodeResults - Replace a node with an illegal result type
10775/// with a new node built out of custom code.
10776void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10777                                           SmallVectorImpl<SDValue>&Results,
10778                                           SelectionDAG &DAG) const {
10779  DebugLoc dl = N->getDebugLoc();
10780  switch (N->getOpcode()) {
10781  default:
10782    assert(false && "Do not know how to custom type legalize this operation!");
10783    return;
10784  case ISD::SIGN_EXTEND_INREG:
10785  case ISD::ADDC:
10786  case ISD::ADDE:
10787  case ISD::SUBC:
10788  case ISD::SUBE:
10789    // We don't want to expand or promote these.
10790    return;
10791  case ISD::FP_TO_SINT: {
10792    std::pair<SDValue,SDValue> Vals =
10793        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10794    SDValue FIST = Vals.first, StackSlot = Vals.second;
10795    if (FIST.getNode() != 0) {
10796      EVT VT = N->getValueType(0);
10797      // Return a load from the stack slot.
10798      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10799                                    MachinePointerInfo(),
10800                                    false, false, false, 0));
10801    }
10802    return;
10803  }
10804  case ISD::READCYCLECOUNTER: {
10805    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10806    SDValue TheChain = N->getOperand(0);
10807    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10808    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10809                                     rd.getValue(1));
10810    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10811                                     eax.getValue(2));
10812    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10813    SDValue Ops[] = { eax, edx };
10814    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10815    Results.push_back(edx.getValue(1));
10816    return;
10817  }
10818  case ISD::ATOMIC_CMP_SWAP: {
10819    EVT T = N->getValueType(0);
10820    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10821    bool Regs64bit = T == MVT::i128;
10822    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10823    SDValue cpInL, cpInH;
10824    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10825                        DAG.getConstant(0, HalfT));
10826    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10827                        DAG.getConstant(1, HalfT));
10828    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10829                             Regs64bit ? X86::RAX : X86::EAX,
10830                             cpInL, SDValue());
10831    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10832                             Regs64bit ? X86::RDX : X86::EDX,
10833                             cpInH, cpInL.getValue(1));
10834    SDValue swapInL, swapInH;
10835    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10836                          DAG.getConstant(0, HalfT));
10837    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10838                          DAG.getConstant(1, HalfT));
10839    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10840                               Regs64bit ? X86::RBX : X86::EBX,
10841                               swapInL, cpInH.getValue(1));
10842    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10843                               Regs64bit ? X86::RCX : X86::ECX,
10844                               swapInH, swapInL.getValue(1));
10845    SDValue Ops[] = { swapInH.getValue(0),
10846                      N->getOperand(1),
10847                      swapInH.getValue(1) };
10848    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10849    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10850    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10851                                  X86ISD::LCMPXCHG8_DAG;
10852    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10853                                             Ops, 3, T, MMO);
10854    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10855                                        Regs64bit ? X86::RAX : X86::EAX,
10856                                        HalfT, Result.getValue(1));
10857    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10858                                        Regs64bit ? X86::RDX : X86::EDX,
10859                                        HalfT, cpOutL.getValue(2));
10860    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10861    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10862    Results.push_back(cpOutH.getValue(1));
10863    return;
10864  }
10865  case ISD::ATOMIC_LOAD_ADD:
10866    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10867    return;
10868  case ISD::ATOMIC_LOAD_AND:
10869    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10870    return;
10871  case ISD::ATOMIC_LOAD_NAND:
10872    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10873    return;
10874  case ISD::ATOMIC_LOAD_OR:
10875    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10876    return;
10877  case ISD::ATOMIC_LOAD_SUB:
10878    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10879    return;
10880  case ISD::ATOMIC_LOAD_XOR:
10881    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10882    return;
10883  case ISD::ATOMIC_SWAP:
10884    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10885    return;
10886  case ISD::ATOMIC_LOAD:
10887    ReplaceATOMIC_LOAD(N, Results, DAG);
10888  }
10889}
10890
10891const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10892  switch (Opcode) {
10893  default: return NULL;
10894  case X86ISD::BSF:                return "X86ISD::BSF";
10895  case X86ISD::BSR:                return "X86ISD::BSR";
10896  case X86ISD::SHLD:               return "X86ISD::SHLD";
10897  case X86ISD::SHRD:               return "X86ISD::SHRD";
10898  case X86ISD::FAND:               return "X86ISD::FAND";
10899  case X86ISD::FOR:                return "X86ISD::FOR";
10900  case X86ISD::FXOR:               return "X86ISD::FXOR";
10901  case X86ISD::FSRL:               return "X86ISD::FSRL";
10902  case X86ISD::FILD:               return "X86ISD::FILD";
10903  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10904  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10905  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10906  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10907  case X86ISD::FLD:                return "X86ISD::FLD";
10908  case X86ISD::FST:                return "X86ISD::FST";
10909  case X86ISD::CALL:               return "X86ISD::CALL";
10910  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10911  case X86ISD::BT:                 return "X86ISD::BT";
10912  case X86ISD::CMP:                return "X86ISD::CMP";
10913  case X86ISD::COMI:               return "X86ISD::COMI";
10914  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10915  case X86ISD::SETCC:              return "X86ISD::SETCC";
10916  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10917  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10918  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10919  case X86ISD::CMOV:               return "X86ISD::CMOV";
10920  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10921  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10922  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10923  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10924  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10925  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10926  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10927  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10928  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10929  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10930  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10931  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10932  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10933  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10934  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
10935  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
10936  case X86ISD::HADD:               return "X86ISD::HADD";
10937  case X86ISD::HSUB:               return "X86ISD::HSUB";
10938  case X86ISD::FHADD:              return "X86ISD::FHADD";
10939  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
10940  case X86ISD::FMAX:               return "X86ISD::FMAX";
10941  case X86ISD::FMIN:               return "X86ISD::FMIN";
10942  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10943  case X86ISD::FRCP:               return "X86ISD::FRCP";
10944  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10945  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10946  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10947  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10948  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10949  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10950  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10951  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10952  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10953  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10954  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10955  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10956  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10957  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10958  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10959  case X86ISD::VSHL:               return "X86ISD::VSHL";
10960  case X86ISD::VSRL:               return "X86ISD::VSRL";
10961  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10962  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10963  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10964  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10965  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10966  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10967  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10968  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10969  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10970  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10971  case X86ISD::ADD:                return "X86ISD::ADD";
10972  case X86ISD::SUB:                return "X86ISD::SUB";
10973  case X86ISD::ADC:                return "X86ISD::ADC";
10974  case X86ISD::SBB:                return "X86ISD::SBB";
10975  case X86ISD::SMUL:               return "X86ISD::SMUL";
10976  case X86ISD::UMUL:               return "X86ISD::UMUL";
10977  case X86ISD::INC:                return "X86ISD::INC";
10978  case X86ISD::DEC:                return "X86ISD::DEC";
10979  case X86ISD::OR:                 return "X86ISD::OR";
10980  case X86ISD::XOR:                return "X86ISD::XOR";
10981  case X86ISD::AND:                return "X86ISD::AND";
10982  case X86ISD::ANDN:               return "X86ISD::ANDN";
10983  case X86ISD::BLSI:               return "X86ISD::BLSI";
10984  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
10985  case X86ISD::BLSR:               return "X86ISD::BLSR";
10986  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10987  case X86ISD::PTEST:              return "X86ISD::PTEST";
10988  case X86ISD::TESTP:              return "X86ISD::TESTP";
10989  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10990  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10991  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10992  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10993  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10994  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10995  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
10996  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10997  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10998  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10999  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11000  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11001  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11002  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11003  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11004  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
11005  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
11006  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11007  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11008  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11009  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11010  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11011  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11012  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11013  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11014  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11015  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11016  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11017  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11018  }
11019}
11020
11021// isLegalAddressingMode - Return true if the addressing mode represented
11022// by AM is legal for this target, for a load/store of the specified type.
11023bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11024                                              Type *Ty) const {
11025  // X86 supports extremely general addressing modes.
11026  CodeModel::Model M = getTargetMachine().getCodeModel();
11027  Reloc::Model R = getTargetMachine().getRelocationModel();
11028
11029  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11030  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11031    return false;
11032
11033  if (AM.BaseGV) {
11034    unsigned GVFlags =
11035      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11036
11037    // If a reference to this global requires an extra load, we can't fold it.
11038    if (isGlobalStubReference(GVFlags))
11039      return false;
11040
11041    // If BaseGV requires a register for the PIC base, we cannot also have a
11042    // BaseReg specified.
11043    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11044      return false;
11045
11046    // If lower 4G is not available, then we must use rip-relative addressing.
11047    if ((M != CodeModel::Small || R != Reloc::Static) &&
11048        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11049      return false;
11050  }
11051
11052  switch (AM.Scale) {
11053  case 0:
11054  case 1:
11055  case 2:
11056  case 4:
11057  case 8:
11058    // These scales always work.
11059    break;
11060  case 3:
11061  case 5:
11062  case 9:
11063    // These scales are formed with basereg+scalereg.  Only accept if there is
11064    // no basereg yet.
11065    if (AM.HasBaseReg)
11066      return false;
11067    break;
11068  default:  // Other stuff never works.
11069    return false;
11070  }
11071
11072  return true;
11073}
11074
11075
11076bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11077  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11078    return false;
11079  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11080  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11081  if (NumBits1 <= NumBits2)
11082    return false;
11083  return true;
11084}
11085
11086bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11087  if (!VT1.isInteger() || !VT2.isInteger())
11088    return false;
11089  unsigned NumBits1 = VT1.getSizeInBits();
11090  unsigned NumBits2 = VT2.getSizeInBits();
11091  if (NumBits1 <= NumBits2)
11092    return false;
11093  return true;
11094}
11095
11096bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11097  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11098  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11099}
11100
11101bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11102  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11103  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11104}
11105
11106bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11107  // i16 instructions are longer (0x66 prefix) and potentially slower.
11108  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11109}
11110
11111/// isShuffleMaskLegal - Targets can use this to indicate that they only
11112/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11113/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11114/// are assumed to be legal.
11115bool
11116X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11117                                      EVT VT) const {
11118  // Very little shuffling can be done for 64-bit vectors right now.
11119  if (VT.getSizeInBits() == 64)
11120    return false;
11121
11122  // FIXME: pshufb, blends, shifts.
11123  return (VT.getVectorNumElements() == 2 ||
11124          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11125          isMOVLMask(M, VT) ||
11126          isSHUFPMask(M, VT) ||
11127          isPSHUFDMask(M, VT) ||
11128          isPSHUFHWMask(M, VT) ||
11129          isPSHUFLWMask(M, VT) ||
11130          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
11131          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11132          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11133          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11134          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11135}
11136
11137bool
11138X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11139                                          EVT VT) const {
11140  unsigned NumElts = VT.getVectorNumElements();
11141  // FIXME: This collection of masks seems suspect.
11142  if (NumElts == 2)
11143    return true;
11144  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11145    return (isMOVLMask(Mask, VT)  ||
11146            isCommutedMOVLMask(Mask, VT, true) ||
11147            isSHUFPMask(Mask, VT) ||
11148            isSHUFPMask(Mask, VT, /* Commuted */ true));
11149  }
11150  return false;
11151}
11152
11153//===----------------------------------------------------------------------===//
11154//                           X86 Scheduler Hooks
11155//===----------------------------------------------------------------------===//
11156
11157// private utility function
11158MachineBasicBlock *
11159X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11160                                                       MachineBasicBlock *MBB,
11161                                                       unsigned regOpc,
11162                                                       unsigned immOpc,
11163                                                       unsigned LoadOpc,
11164                                                       unsigned CXchgOpc,
11165                                                       unsigned notOpc,
11166                                                       unsigned EAXreg,
11167                                                       TargetRegisterClass *RC,
11168                                                       bool invSrc) const {
11169  // For the atomic bitwise operator, we generate
11170  //   thisMBB:
11171  //   newMBB:
11172  //     ld  t1 = [bitinstr.addr]
11173  //     op  t2 = t1, [bitinstr.val]
11174  //     mov EAX = t1
11175  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11176  //     bz  newMBB
11177  //     fallthrough -->nextMBB
11178  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11179  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11180  MachineFunction::iterator MBBIter = MBB;
11181  ++MBBIter;
11182
11183  /// First build the CFG
11184  MachineFunction *F = MBB->getParent();
11185  MachineBasicBlock *thisMBB = MBB;
11186  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11187  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11188  F->insert(MBBIter, newMBB);
11189  F->insert(MBBIter, nextMBB);
11190
11191  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11192  nextMBB->splice(nextMBB->begin(), thisMBB,
11193                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11194                  thisMBB->end());
11195  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11196
11197  // Update thisMBB to fall through to newMBB
11198  thisMBB->addSuccessor(newMBB);
11199
11200  // newMBB jumps to itself and fall through to nextMBB
11201  newMBB->addSuccessor(nextMBB);
11202  newMBB->addSuccessor(newMBB);
11203
11204  // Insert instructions into newMBB based on incoming instruction
11205  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11206         "unexpected number of operands");
11207  DebugLoc dl = bInstr->getDebugLoc();
11208  MachineOperand& destOper = bInstr->getOperand(0);
11209  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11210  int numArgs = bInstr->getNumOperands() - 1;
11211  for (int i=0; i < numArgs; ++i)
11212    argOpers[i] = &bInstr->getOperand(i+1);
11213
11214  // x86 address has 4 operands: base, index, scale, and displacement
11215  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11216  int valArgIndx = lastAddrIndx + 1;
11217
11218  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11219  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11220  for (int i=0; i <= lastAddrIndx; ++i)
11221    (*MIB).addOperand(*argOpers[i]);
11222
11223  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11224  if (invSrc) {
11225    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11226  }
11227  else
11228    tt = t1;
11229
11230  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11231  assert((argOpers[valArgIndx]->isReg() ||
11232          argOpers[valArgIndx]->isImm()) &&
11233         "invalid operand");
11234  if (argOpers[valArgIndx]->isReg())
11235    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11236  else
11237    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11238  MIB.addReg(tt);
11239  (*MIB).addOperand(*argOpers[valArgIndx]);
11240
11241  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11242  MIB.addReg(t1);
11243
11244  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11245  for (int i=0; i <= lastAddrIndx; ++i)
11246    (*MIB).addOperand(*argOpers[i]);
11247  MIB.addReg(t2);
11248  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11249  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11250                    bInstr->memoperands_end());
11251
11252  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11253  MIB.addReg(EAXreg);
11254
11255  // insert branch
11256  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11257
11258  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11259  return nextMBB;
11260}
11261
11262// private utility function:  64 bit atomics on 32 bit host.
11263MachineBasicBlock *
11264X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11265                                                       MachineBasicBlock *MBB,
11266                                                       unsigned regOpcL,
11267                                                       unsigned regOpcH,
11268                                                       unsigned immOpcL,
11269                                                       unsigned immOpcH,
11270                                                       bool invSrc) const {
11271  // For the atomic bitwise operator, we generate
11272  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11273  //     ld t1,t2 = [bitinstr.addr]
11274  //   newMBB:
11275  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11276  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11277  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11278  //     mov ECX, EBX <- t5, t6
11279  //     mov EAX, EDX <- t1, t2
11280  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11281  //     mov t3, t4 <- EAX, EDX
11282  //     bz  newMBB
11283  //     result in out1, out2
11284  //     fallthrough -->nextMBB
11285
11286  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11287  const unsigned LoadOpc = X86::MOV32rm;
11288  const unsigned NotOpc = X86::NOT32r;
11289  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11290  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11291  MachineFunction::iterator MBBIter = MBB;
11292  ++MBBIter;
11293
11294  /// First build the CFG
11295  MachineFunction *F = MBB->getParent();
11296  MachineBasicBlock *thisMBB = MBB;
11297  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11298  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11299  F->insert(MBBIter, newMBB);
11300  F->insert(MBBIter, nextMBB);
11301
11302  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11303  nextMBB->splice(nextMBB->begin(), thisMBB,
11304                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11305                  thisMBB->end());
11306  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11307
11308  // Update thisMBB to fall through to newMBB
11309  thisMBB->addSuccessor(newMBB);
11310
11311  // newMBB jumps to itself and fall through to nextMBB
11312  newMBB->addSuccessor(nextMBB);
11313  newMBB->addSuccessor(newMBB);
11314
11315  DebugLoc dl = bInstr->getDebugLoc();
11316  // Insert instructions into newMBB based on incoming instruction
11317  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11318  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11319         "unexpected number of operands");
11320  MachineOperand& dest1Oper = bInstr->getOperand(0);
11321  MachineOperand& dest2Oper = bInstr->getOperand(1);
11322  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11323  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11324    argOpers[i] = &bInstr->getOperand(i+2);
11325
11326    // We use some of the operands multiple times, so conservatively just
11327    // clear any kill flags that might be present.
11328    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11329      argOpers[i]->setIsKill(false);
11330  }
11331
11332  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11333  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11334
11335  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11336  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11337  for (int i=0; i <= lastAddrIndx; ++i)
11338    (*MIB).addOperand(*argOpers[i]);
11339  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11340  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11341  // add 4 to displacement.
11342  for (int i=0; i <= lastAddrIndx-2; ++i)
11343    (*MIB).addOperand(*argOpers[i]);
11344  MachineOperand newOp3 = *(argOpers[3]);
11345  if (newOp3.isImm())
11346    newOp3.setImm(newOp3.getImm()+4);
11347  else
11348    newOp3.setOffset(newOp3.getOffset()+4);
11349  (*MIB).addOperand(newOp3);
11350  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11351
11352  // t3/4 are defined later, at the bottom of the loop
11353  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11354  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11355  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11356    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11357  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11358    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11359
11360  // The subsequent operations should be using the destination registers of
11361  //the PHI instructions.
11362  if (invSrc) {
11363    t1 = F->getRegInfo().createVirtualRegister(RC);
11364    t2 = F->getRegInfo().createVirtualRegister(RC);
11365    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11366    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11367  } else {
11368    t1 = dest1Oper.getReg();
11369    t2 = dest2Oper.getReg();
11370  }
11371
11372  int valArgIndx = lastAddrIndx + 1;
11373  assert((argOpers[valArgIndx]->isReg() ||
11374          argOpers[valArgIndx]->isImm()) &&
11375         "invalid operand");
11376  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11377  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11378  if (argOpers[valArgIndx]->isReg())
11379    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11380  else
11381    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11382  if (regOpcL != X86::MOV32rr)
11383    MIB.addReg(t1);
11384  (*MIB).addOperand(*argOpers[valArgIndx]);
11385  assert(argOpers[valArgIndx + 1]->isReg() ==
11386         argOpers[valArgIndx]->isReg());
11387  assert(argOpers[valArgIndx + 1]->isImm() ==
11388         argOpers[valArgIndx]->isImm());
11389  if (argOpers[valArgIndx + 1]->isReg())
11390    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11391  else
11392    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11393  if (regOpcH != X86::MOV32rr)
11394    MIB.addReg(t2);
11395  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11396
11397  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11398  MIB.addReg(t1);
11399  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11400  MIB.addReg(t2);
11401
11402  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11403  MIB.addReg(t5);
11404  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11405  MIB.addReg(t6);
11406
11407  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11408  for (int i=0; i <= lastAddrIndx; ++i)
11409    (*MIB).addOperand(*argOpers[i]);
11410
11411  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11412  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11413                    bInstr->memoperands_end());
11414
11415  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11416  MIB.addReg(X86::EAX);
11417  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11418  MIB.addReg(X86::EDX);
11419
11420  // insert branch
11421  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11422
11423  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11424  return nextMBB;
11425}
11426
11427// private utility function
11428MachineBasicBlock *
11429X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11430                                                      MachineBasicBlock *MBB,
11431                                                      unsigned cmovOpc) const {
11432  // For the atomic min/max operator, we generate
11433  //   thisMBB:
11434  //   newMBB:
11435  //     ld t1 = [min/max.addr]
11436  //     mov t2 = [min/max.val]
11437  //     cmp  t1, t2
11438  //     cmov[cond] t2 = t1
11439  //     mov EAX = t1
11440  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11441  //     bz   newMBB
11442  //     fallthrough -->nextMBB
11443  //
11444  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11445  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11446  MachineFunction::iterator MBBIter = MBB;
11447  ++MBBIter;
11448
11449  /// First build the CFG
11450  MachineFunction *F = MBB->getParent();
11451  MachineBasicBlock *thisMBB = MBB;
11452  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11453  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11454  F->insert(MBBIter, newMBB);
11455  F->insert(MBBIter, nextMBB);
11456
11457  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11458  nextMBB->splice(nextMBB->begin(), thisMBB,
11459                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11460                  thisMBB->end());
11461  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11462
11463  // Update thisMBB to fall through to newMBB
11464  thisMBB->addSuccessor(newMBB);
11465
11466  // newMBB jumps to newMBB and fall through to nextMBB
11467  newMBB->addSuccessor(nextMBB);
11468  newMBB->addSuccessor(newMBB);
11469
11470  DebugLoc dl = mInstr->getDebugLoc();
11471  // Insert instructions into newMBB based on incoming instruction
11472  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11473         "unexpected number of operands");
11474  MachineOperand& destOper = mInstr->getOperand(0);
11475  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11476  int numArgs = mInstr->getNumOperands() - 1;
11477  for (int i=0; i < numArgs; ++i)
11478    argOpers[i] = &mInstr->getOperand(i+1);
11479
11480  // x86 address has 4 operands: base, index, scale, and displacement
11481  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11482  int valArgIndx = lastAddrIndx + 1;
11483
11484  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11485  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11486  for (int i=0; i <= lastAddrIndx; ++i)
11487    (*MIB).addOperand(*argOpers[i]);
11488
11489  // We only support register and immediate values
11490  assert((argOpers[valArgIndx]->isReg() ||
11491          argOpers[valArgIndx]->isImm()) &&
11492         "invalid operand");
11493
11494  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11495  if (argOpers[valArgIndx]->isReg())
11496    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11497  else
11498    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11499  (*MIB).addOperand(*argOpers[valArgIndx]);
11500
11501  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11502  MIB.addReg(t1);
11503
11504  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11505  MIB.addReg(t1);
11506  MIB.addReg(t2);
11507
11508  // Generate movc
11509  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11510  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11511  MIB.addReg(t2);
11512  MIB.addReg(t1);
11513
11514  // Cmp and exchange if none has modified the memory location
11515  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11516  for (int i=0; i <= lastAddrIndx; ++i)
11517    (*MIB).addOperand(*argOpers[i]);
11518  MIB.addReg(t3);
11519  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11520  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11521                    mInstr->memoperands_end());
11522
11523  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11524  MIB.addReg(X86::EAX);
11525
11526  // insert branch
11527  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11528
11529  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11530  return nextMBB;
11531}
11532
11533// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11534// or XMM0_V32I8 in AVX all of this code can be replaced with that
11535// in the .td file.
11536MachineBasicBlock *
11537X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11538                            unsigned numArgs, bool memArg) const {
11539  assert(Subtarget->hasSSE42() &&
11540         "Target must have SSE4.2 or AVX features enabled");
11541
11542  DebugLoc dl = MI->getDebugLoc();
11543  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11544  unsigned Opc;
11545  if (!Subtarget->hasAVX()) {
11546    if (memArg)
11547      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11548    else
11549      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11550  } else {
11551    if (memArg)
11552      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11553    else
11554      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11555  }
11556
11557  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11558  for (unsigned i = 0; i < numArgs; ++i) {
11559    MachineOperand &Op = MI->getOperand(i+1);
11560    if (!(Op.isReg() && Op.isImplicit()))
11561      MIB.addOperand(Op);
11562  }
11563  BuildMI(*BB, MI, dl,
11564    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11565             MI->getOperand(0).getReg())
11566    .addReg(X86::XMM0);
11567
11568  MI->eraseFromParent();
11569  return BB;
11570}
11571
11572MachineBasicBlock *
11573X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11574  DebugLoc dl = MI->getDebugLoc();
11575  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11576
11577  // Address into RAX/EAX, other two args into ECX, EDX.
11578  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11579  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11580  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11581  for (int i = 0; i < X86::AddrNumOperands; ++i)
11582    MIB.addOperand(MI->getOperand(i));
11583
11584  unsigned ValOps = X86::AddrNumOperands;
11585  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11586    .addReg(MI->getOperand(ValOps).getReg());
11587  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11588    .addReg(MI->getOperand(ValOps+1).getReg());
11589
11590  // The instruction doesn't actually take any operands though.
11591  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11592
11593  MI->eraseFromParent(); // The pseudo is gone now.
11594  return BB;
11595}
11596
11597MachineBasicBlock *
11598X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11599  DebugLoc dl = MI->getDebugLoc();
11600  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11601
11602  // First arg in ECX, the second in EAX.
11603  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11604    .addReg(MI->getOperand(0).getReg());
11605  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11606    .addReg(MI->getOperand(1).getReg());
11607
11608  // The instruction doesn't actually take any operands though.
11609  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11610
11611  MI->eraseFromParent(); // The pseudo is gone now.
11612  return BB;
11613}
11614
11615MachineBasicBlock *
11616X86TargetLowering::EmitVAARG64WithCustomInserter(
11617                   MachineInstr *MI,
11618                   MachineBasicBlock *MBB) const {
11619  // Emit va_arg instruction on X86-64.
11620
11621  // Operands to this pseudo-instruction:
11622  // 0  ) Output        : destination address (reg)
11623  // 1-5) Input         : va_list address (addr, i64mem)
11624  // 6  ) ArgSize       : Size (in bytes) of vararg type
11625  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11626  // 8  ) Align         : Alignment of type
11627  // 9  ) EFLAGS (implicit-def)
11628
11629  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11630  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11631
11632  unsigned DestReg = MI->getOperand(0).getReg();
11633  MachineOperand &Base = MI->getOperand(1);
11634  MachineOperand &Scale = MI->getOperand(2);
11635  MachineOperand &Index = MI->getOperand(3);
11636  MachineOperand &Disp = MI->getOperand(4);
11637  MachineOperand &Segment = MI->getOperand(5);
11638  unsigned ArgSize = MI->getOperand(6).getImm();
11639  unsigned ArgMode = MI->getOperand(7).getImm();
11640  unsigned Align = MI->getOperand(8).getImm();
11641
11642  // Memory Reference
11643  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11644  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11645  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11646
11647  // Machine Information
11648  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11649  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11650  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11651  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11652  DebugLoc DL = MI->getDebugLoc();
11653
11654  // struct va_list {
11655  //   i32   gp_offset
11656  //   i32   fp_offset
11657  //   i64   overflow_area (address)
11658  //   i64   reg_save_area (address)
11659  // }
11660  // sizeof(va_list) = 24
11661  // alignment(va_list) = 8
11662
11663  unsigned TotalNumIntRegs = 6;
11664  unsigned TotalNumXMMRegs = 8;
11665  bool UseGPOffset = (ArgMode == 1);
11666  bool UseFPOffset = (ArgMode == 2);
11667  unsigned MaxOffset = TotalNumIntRegs * 8 +
11668                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11669
11670  /* Align ArgSize to a multiple of 8 */
11671  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11672  bool NeedsAlign = (Align > 8);
11673
11674  MachineBasicBlock *thisMBB = MBB;
11675  MachineBasicBlock *overflowMBB;
11676  MachineBasicBlock *offsetMBB;
11677  MachineBasicBlock *endMBB;
11678
11679  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11680  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11681  unsigned OffsetReg = 0;
11682
11683  if (!UseGPOffset && !UseFPOffset) {
11684    // If we only pull from the overflow region, we don't create a branch.
11685    // We don't need to alter control flow.
11686    OffsetDestReg = 0; // unused
11687    OverflowDestReg = DestReg;
11688
11689    offsetMBB = NULL;
11690    overflowMBB = thisMBB;
11691    endMBB = thisMBB;
11692  } else {
11693    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11694    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11695    // If not, pull from overflow_area. (branch to overflowMBB)
11696    //
11697    //       thisMBB
11698    //         |     .
11699    //         |        .
11700    //     offsetMBB   overflowMBB
11701    //         |        .
11702    //         |     .
11703    //        endMBB
11704
11705    // Registers for the PHI in endMBB
11706    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11707    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11708
11709    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11710    MachineFunction *MF = MBB->getParent();
11711    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11712    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11713    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11714
11715    MachineFunction::iterator MBBIter = MBB;
11716    ++MBBIter;
11717
11718    // Insert the new basic blocks
11719    MF->insert(MBBIter, offsetMBB);
11720    MF->insert(MBBIter, overflowMBB);
11721    MF->insert(MBBIter, endMBB);
11722
11723    // Transfer the remainder of MBB and its successor edges to endMBB.
11724    endMBB->splice(endMBB->begin(), thisMBB,
11725                    llvm::next(MachineBasicBlock::iterator(MI)),
11726                    thisMBB->end());
11727    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11728
11729    // Make offsetMBB and overflowMBB successors of thisMBB
11730    thisMBB->addSuccessor(offsetMBB);
11731    thisMBB->addSuccessor(overflowMBB);
11732
11733    // endMBB is a successor of both offsetMBB and overflowMBB
11734    offsetMBB->addSuccessor(endMBB);
11735    overflowMBB->addSuccessor(endMBB);
11736
11737    // Load the offset value into a register
11738    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11739    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11740      .addOperand(Base)
11741      .addOperand(Scale)
11742      .addOperand(Index)
11743      .addDisp(Disp, UseFPOffset ? 4 : 0)
11744      .addOperand(Segment)
11745      .setMemRefs(MMOBegin, MMOEnd);
11746
11747    // Check if there is enough room left to pull this argument.
11748    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11749      .addReg(OffsetReg)
11750      .addImm(MaxOffset + 8 - ArgSizeA8);
11751
11752    // Branch to "overflowMBB" if offset >= max
11753    // Fall through to "offsetMBB" otherwise
11754    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11755      .addMBB(overflowMBB);
11756  }
11757
11758  // In offsetMBB, emit code to use the reg_save_area.
11759  if (offsetMBB) {
11760    assert(OffsetReg != 0);
11761
11762    // Read the reg_save_area address.
11763    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11764    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11765      .addOperand(Base)
11766      .addOperand(Scale)
11767      .addOperand(Index)
11768      .addDisp(Disp, 16)
11769      .addOperand(Segment)
11770      .setMemRefs(MMOBegin, MMOEnd);
11771
11772    // Zero-extend the offset
11773    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11774      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11775        .addImm(0)
11776        .addReg(OffsetReg)
11777        .addImm(X86::sub_32bit);
11778
11779    // Add the offset to the reg_save_area to get the final address.
11780    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11781      .addReg(OffsetReg64)
11782      .addReg(RegSaveReg);
11783
11784    // Compute the offset for the next argument
11785    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11786    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11787      .addReg(OffsetReg)
11788      .addImm(UseFPOffset ? 16 : 8);
11789
11790    // Store it back into the va_list.
11791    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11792      .addOperand(Base)
11793      .addOperand(Scale)
11794      .addOperand(Index)
11795      .addDisp(Disp, UseFPOffset ? 4 : 0)
11796      .addOperand(Segment)
11797      .addReg(NextOffsetReg)
11798      .setMemRefs(MMOBegin, MMOEnd);
11799
11800    // Jump to endMBB
11801    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11802      .addMBB(endMBB);
11803  }
11804
11805  //
11806  // Emit code to use overflow area
11807  //
11808
11809  // Load the overflow_area address into a register.
11810  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11811  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11812    .addOperand(Base)
11813    .addOperand(Scale)
11814    .addOperand(Index)
11815    .addDisp(Disp, 8)
11816    .addOperand(Segment)
11817    .setMemRefs(MMOBegin, MMOEnd);
11818
11819  // If we need to align it, do so. Otherwise, just copy the address
11820  // to OverflowDestReg.
11821  if (NeedsAlign) {
11822    // Align the overflow address
11823    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11824    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11825
11826    // aligned_addr = (addr + (align-1)) & ~(align-1)
11827    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11828      .addReg(OverflowAddrReg)
11829      .addImm(Align-1);
11830
11831    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11832      .addReg(TmpReg)
11833      .addImm(~(uint64_t)(Align-1));
11834  } else {
11835    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11836      .addReg(OverflowAddrReg);
11837  }
11838
11839  // Compute the next overflow address after this argument.
11840  // (the overflow address should be kept 8-byte aligned)
11841  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11842  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11843    .addReg(OverflowDestReg)
11844    .addImm(ArgSizeA8);
11845
11846  // Store the new overflow address.
11847  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11848    .addOperand(Base)
11849    .addOperand(Scale)
11850    .addOperand(Index)
11851    .addDisp(Disp, 8)
11852    .addOperand(Segment)
11853    .addReg(NextAddrReg)
11854    .setMemRefs(MMOBegin, MMOEnd);
11855
11856  // If we branched, emit the PHI to the front of endMBB.
11857  if (offsetMBB) {
11858    BuildMI(*endMBB, endMBB->begin(), DL,
11859            TII->get(X86::PHI), DestReg)
11860      .addReg(OffsetDestReg).addMBB(offsetMBB)
11861      .addReg(OverflowDestReg).addMBB(overflowMBB);
11862  }
11863
11864  // Erase the pseudo instruction
11865  MI->eraseFromParent();
11866
11867  return endMBB;
11868}
11869
11870MachineBasicBlock *
11871X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11872                                                 MachineInstr *MI,
11873                                                 MachineBasicBlock *MBB) const {
11874  // Emit code to save XMM registers to the stack. The ABI says that the
11875  // number of registers to save is given in %al, so it's theoretically
11876  // possible to do an indirect jump trick to avoid saving all of them,
11877  // however this code takes a simpler approach and just executes all
11878  // of the stores if %al is non-zero. It's less code, and it's probably
11879  // easier on the hardware branch predictor, and stores aren't all that
11880  // expensive anyway.
11881
11882  // Create the new basic blocks. One block contains all the XMM stores,
11883  // and one block is the final destination regardless of whether any
11884  // stores were performed.
11885  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11886  MachineFunction *F = MBB->getParent();
11887  MachineFunction::iterator MBBIter = MBB;
11888  ++MBBIter;
11889  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11890  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11891  F->insert(MBBIter, XMMSaveMBB);
11892  F->insert(MBBIter, EndMBB);
11893
11894  // Transfer the remainder of MBB and its successor edges to EndMBB.
11895  EndMBB->splice(EndMBB->begin(), MBB,
11896                 llvm::next(MachineBasicBlock::iterator(MI)),
11897                 MBB->end());
11898  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11899
11900  // The original block will now fall through to the XMM save block.
11901  MBB->addSuccessor(XMMSaveMBB);
11902  // The XMMSaveMBB will fall through to the end block.
11903  XMMSaveMBB->addSuccessor(EndMBB);
11904
11905  // Now add the instructions.
11906  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11907  DebugLoc DL = MI->getDebugLoc();
11908
11909  unsigned CountReg = MI->getOperand(0).getReg();
11910  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11911  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11912
11913  if (!Subtarget->isTargetWin64()) {
11914    // If %al is 0, branch around the XMM save block.
11915    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11916    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11917    MBB->addSuccessor(EndMBB);
11918  }
11919
11920  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11921  // In the XMM save block, save all the XMM argument registers.
11922  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11923    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11924    MachineMemOperand *MMO =
11925      F->getMachineMemOperand(
11926          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11927        MachineMemOperand::MOStore,
11928        /*Size=*/16, /*Align=*/16);
11929    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11930      .addFrameIndex(RegSaveFrameIndex)
11931      .addImm(/*Scale=*/1)
11932      .addReg(/*IndexReg=*/0)
11933      .addImm(/*Disp=*/Offset)
11934      .addReg(/*Segment=*/0)
11935      .addReg(MI->getOperand(i).getReg())
11936      .addMemOperand(MMO);
11937  }
11938
11939  MI->eraseFromParent();   // The pseudo instruction is gone now.
11940
11941  return EndMBB;
11942}
11943
11944MachineBasicBlock *
11945X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11946                                     MachineBasicBlock *BB) const {
11947  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11948  DebugLoc DL = MI->getDebugLoc();
11949
11950  // To "insert" a SELECT_CC instruction, we actually have to insert the
11951  // diamond control-flow pattern.  The incoming instruction knows the
11952  // destination vreg to set, the condition code register to branch on, the
11953  // true/false values to select between, and a branch opcode to use.
11954  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11955  MachineFunction::iterator It = BB;
11956  ++It;
11957
11958  //  thisMBB:
11959  //  ...
11960  //   TrueVal = ...
11961  //   cmpTY ccX, r1, r2
11962  //   bCC copy1MBB
11963  //   fallthrough --> copy0MBB
11964  MachineBasicBlock *thisMBB = BB;
11965  MachineFunction *F = BB->getParent();
11966  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11967  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11968  F->insert(It, copy0MBB);
11969  F->insert(It, sinkMBB);
11970
11971  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11972  // live into the sink and copy blocks.
11973  if (!MI->killsRegister(X86::EFLAGS)) {
11974    copy0MBB->addLiveIn(X86::EFLAGS);
11975    sinkMBB->addLiveIn(X86::EFLAGS);
11976  }
11977
11978  // Transfer the remainder of BB and its successor edges to sinkMBB.
11979  sinkMBB->splice(sinkMBB->begin(), BB,
11980                  llvm::next(MachineBasicBlock::iterator(MI)),
11981                  BB->end());
11982  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11983
11984  // Add the true and fallthrough blocks as its successors.
11985  BB->addSuccessor(copy0MBB);
11986  BB->addSuccessor(sinkMBB);
11987
11988  // Create the conditional branch instruction.
11989  unsigned Opc =
11990    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11991  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11992
11993  //  copy0MBB:
11994  //   %FalseValue = ...
11995  //   # fallthrough to sinkMBB
11996  copy0MBB->addSuccessor(sinkMBB);
11997
11998  //  sinkMBB:
11999  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12000  //  ...
12001  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12002          TII->get(X86::PHI), MI->getOperand(0).getReg())
12003    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12004    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12005
12006  MI->eraseFromParent();   // The pseudo instruction is gone now.
12007  return sinkMBB;
12008}
12009
12010MachineBasicBlock *
12011X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12012                                        bool Is64Bit) const {
12013  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12014  DebugLoc DL = MI->getDebugLoc();
12015  MachineFunction *MF = BB->getParent();
12016  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12017
12018  assert(getTargetMachine().Options.EnableSegmentedStacks);
12019
12020  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12021  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12022
12023  // BB:
12024  //  ... [Till the alloca]
12025  // If stacklet is not large enough, jump to mallocMBB
12026  //
12027  // bumpMBB:
12028  //  Allocate by subtracting from RSP
12029  //  Jump to continueMBB
12030  //
12031  // mallocMBB:
12032  //  Allocate by call to runtime
12033  //
12034  // continueMBB:
12035  //  ...
12036  //  [rest of original BB]
12037  //
12038
12039  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12040  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12041  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12042
12043  MachineRegisterInfo &MRI = MF->getRegInfo();
12044  const TargetRegisterClass *AddrRegClass =
12045    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12046
12047  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12048    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12049    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12050    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12051    sizeVReg = MI->getOperand(1).getReg(),
12052    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12053
12054  MachineFunction::iterator MBBIter = BB;
12055  ++MBBIter;
12056
12057  MF->insert(MBBIter, bumpMBB);
12058  MF->insert(MBBIter, mallocMBB);
12059  MF->insert(MBBIter, continueMBB);
12060
12061  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12062                      (MachineBasicBlock::iterator(MI)), BB->end());
12063  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12064
12065  // Add code to the main basic block to check if the stack limit has been hit,
12066  // and if so, jump to mallocMBB otherwise to bumpMBB.
12067  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12068  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12069    .addReg(tmpSPVReg).addReg(sizeVReg);
12070  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12071    .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12072    .addReg(SPLimitVReg);
12073  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12074
12075  // bumpMBB simply decreases the stack pointer, since we know the current
12076  // stacklet has enough space.
12077  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12078    .addReg(SPLimitVReg);
12079  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12080    .addReg(SPLimitVReg);
12081  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12082
12083  // Calls into a routine in libgcc to allocate more space from the heap.
12084  if (Is64Bit) {
12085    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12086      .addReg(sizeVReg);
12087    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12088    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12089  } else {
12090    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12091      .addImm(12);
12092    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12093    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12094      .addExternalSymbol("__morestack_allocate_stack_space");
12095  }
12096
12097  if (!Is64Bit)
12098    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12099      .addImm(16);
12100
12101  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12102    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12103  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12104
12105  // Set up the CFG correctly.
12106  BB->addSuccessor(bumpMBB);
12107  BB->addSuccessor(mallocMBB);
12108  mallocMBB->addSuccessor(continueMBB);
12109  bumpMBB->addSuccessor(continueMBB);
12110
12111  // Take care of the PHI nodes.
12112  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12113          MI->getOperand(0).getReg())
12114    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12115    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12116
12117  // Delete the original pseudo instruction.
12118  MI->eraseFromParent();
12119
12120  // And we're done.
12121  return continueMBB;
12122}
12123
12124MachineBasicBlock *
12125X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12126                                          MachineBasicBlock *BB) const {
12127  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12128  DebugLoc DL = MI->getDebugLoc();
12129
12130  assert(!Subtarget->isTargetEnvMacho());
12131
12132  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12133  // non-trivial part is impdef of ESP.
12134
12135  if (Subtarget->isTargetWin64()) {
12136    if (Subtarget->isTargetCygMing()) {
12137      // ___chkstk(Mingw64):
12138      // Clobbers R10, R11, RAX and EFLAGS.
12139      // Updates RSP.
12140      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12141        .addExternalSymbol("___chkstk")
12142        .addReg(X86::RAX, RegState::Implicit)
12143        .addReg(X86::RSP, RegState::Implicit)
12144        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12145        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12146        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12147    } else {
12148      // __chkstk(MSVCRT): does not update stack pointer.
12149      // Clobbers R10, R11 and EFLAGS.
12150      // FIXME: RAX(allocated size) might be reused and not killed.
12151      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12152        .addExternalSymbol("__chkstk")
12153        .addReg(X86::RAX, RegState::Implicit)
12154        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12155      // RAX has the offset to subtracted from RSP.
12156      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12157        .addReg(X86::RSP)
12158        .addReg(X86::RAX);
12159    }
12160  } else {
12161    const char *StackProbeSymbol =
12162      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12163
12164    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12165      .addExternalSymbol(StackProbeSymbol)
12166      .addReg(X86::EAX, RegState::Implicit)
12167      .addReg(X86::ESP, RegState::Implicit)
12168      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12169      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12170      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12171  }
12172
12173  MI->eraseFromParent();   // The pseudo instruction is gone now.
12174  return BB;
12175}
12176
12177MachineBasicBlock *
12178X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12179                                      MachineBasicBlock *BB) const {
12180  // This is pretty easy.  We're taking the value that we received from
12181  // our load from the relocation, sticking it in either RDI (x86-64)
12182  // or EAX and doing an indirect call.  The return value will then
12183  // be in the normal return register.
12184  const X86InstrInfo *TII
12185    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12186  DebugLoc DL = MI->getDebugLoc();
12187  MachineFunction *F = BB->getParent();
12188
12189  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12190  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12191
12192  if (Subtarget->is64Bit()) {
12193    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12194                                      TII->get(X86::MOV64rm), X86::RDI)
12195    .addReg(X86::RIP)
12196    .addImm(0).addReg(0)
12197    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12198                      MI->getOperand(3).getTargetFlags())
12199    .addReg(0);
12200    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12201    addDirectMem(MIB, X86::RDI);
12202  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12203    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12204                                      TII->get(X86::MOV32rm), X86::EAX)
12205    .addReg(0)
12206    .addImm(0).addReg(0)
12207    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12208                      MI->getOperand(3).getTargetFlags())
12209    .addReg(0);
12210    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12211    addDirectMem(MIB, X86::EAX);
12212  } else {
12213    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12214                                      TII->get(X86::MOV32rm), X86::EAX)
12215    .addReg(TII->getGlobalBaseReg(F))
12216    .addImm(0).addReg(0)
12217    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12218                      MI->getOperand(3).getTargetFlags())
12219    .addReg(0);
12220    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12221    addDirectMem(MIB, X86::EAX);
12222  }
12223
12224  MI->eraseFromParent(); // The pseudo instruction is gone now.
12225  return BB;
12226}
12227
12228MachineBasicBlock *
12229X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12230                                               MachineBasicBlock *BB) const {
12231  switch (MI->getOpcode()) {
12232  default: assert(0 && "Unexpected instr type to insert");
12233  case X86::TAILJMPd64:
12234  case X86::TAILJMPr64:
12235  case X86::TAILJMPm64:
12236    assert(0 && "TAILJMP64 would not be touched here.");
12237  case X86::TCRETURNdi64:
12238  case X86::TCRETURNri64:
12239  case X86::TCRETURNmi64:
12240    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12241    // On AMD64, additional defs should be added before register allocation.
12242    if (!Subtarget->isTargetWin64()) {
12243      MI->addRegisterDefined(X86::RSI);
12244      MI->addRegisterDefined(X86::RDI);
12245      MI->addRegisterDefined(X86::XMM6);
12246      MI->addRegisterDefined(X86::XMM7);
12247      MI->addRegisterDefined(X86::XMM8);
12248      MI->addRegisterDefined(X86::XMM9);
12249      MI->addRegisterDefined(X86::XMM10);
12250      MI->addRegisterDefined(X86::XMM11);
12251      MI->addRegisterDefined(X86::XMM12);
12252      MI->addRegisterDefined(X86::XMM13);
12253      MI->addRegisterDefined(X86::XMM14);
12254      MI->addRegisterDefined(X86::XMM15);
12255    }
12256    return BB;
12257  case X86::WIN_ALLOCA:
12258    return EmitLoweredWinAlloca(MI, BB);
12259  case X86::SEG_ALLOCA_32:
12260    return EmitLoweredSegAlloca(MI, BB, false);
12261  case X86::SEG_ALLOCA_64:
12262    return EmitLoweredSegAlloca(MI, BB, true);
12263  case X86::TLSCall_32:
12264  case X86::TLSCall_64:
12265    return EmitLoweredTLSCall(MI, BB);
12266  case X86::CMOV_GR8:
12267  case X86::CMOV_FR32:
12268  case X86::CMOV_FR64:
12269  case X86::CMOV_V4F32:
12270  case X86::CMOV_V2F64:
12271  case X86::CMOV_V2I64:
12272  case X86::CMOV_V8F32:
12273  case X86::CMOV_V4F64:
12274  case X86::CMOV_V4I64:
12275  case X86::CMOV_GR16:
12276  case X86::CMOV_GR32:
12277  case X86::CMOV_RFP32:
12278  case X86::CMOV_RFP64:
12279  case X86::CMOV_RFP80:
12280    return EmitLoweredSelect(MI, BB);
12281
12282  case X86::FP32_TO_INT16_IN_MEM:
12283  case X86::FP32_TO_INT32_IN_MEM:
12284  case X86::FP32_TO_INT64_IN_MEM:
12285  case X86::FP64_TO_INT16_IN_MEM:
12286  case X86::FP64_TO_INT32_IN_MEM:
12287  case X86::FP64_TO_INT64_IN_MEM:
12288  case X86::FP80_TO_INT16_IN_MEM:
12289  case X86::FP80_TO_INT32_IN_MEM:
12290  case X86::FP80_TO_INT64_IN_MEM: {
12291    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12292    DebugLoc DL = MI->getDebugLoc();
12293
12294    // Change the floating point control register to use "round towards zero"
12295    // mode when truncating to an integer value.
12296    MachineFunction *F = BB->getParent();
12297    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12298    addFrameReference(BuildMI(*BB, MI, DL,
12299                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12300
12301    // Load the old value of the high byte of the control word...
12302    unsigned OldCW =
12303      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12304    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12305                      CWFrameIdx);
12306
12307    // Set the high part to be round to zero...
12308    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12309      .addImm(0xC7F);
12310
12311    // Reload the modified control word now...
12312    addFrameReference(BuildMI(*BB, MI, DL,
12313                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12314
12315    // Restore the memory image of control word to original value
12316    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12317      .addReg(OldCW);
12318
12319    // Get the X86 opcode to use.
12320    unsigned Opc;
12321    switch (MI->getOpcode()) {
12322    default: llvm_unreachable("illegal opcode!");
12323    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12324    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12325    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12326    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12327    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12328    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12329    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12330    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12331    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12332    }
12333
12334    X86AddressMode AM;
12335    MachineOperand &Op = MI->getOperand(0);
12336    if (Op.isReg()) {
12337      AM.BaseType = X86AddressMode::RegBase;
12338      AM.Base.Reg = Op.getReg();
12339    } else {
12340      AM.BaseType = X86AddressMode::FrameIndexBase;
12341      AM.Base.FrameIndex = Op.getIndex();
12342    }
12343    Op = MI->getOperand(1);
12344    if (Op.isImm())
12345      AM.Scale = Op.getImm();
12346    Op = MI->getOperand(2);
12347    if (Op.isImm())
12348      AM.IndexReg = Op.getImm();
12349    Op = MI->getOperand(3);
12350    if (Op.isGlobal()) {
12351      AM.GV = Op.getGlobal();
12352    } else {
12353      AM.Disp = Op.getImm();
12354    }
12355    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12356                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12357
12358    // Reload the original control word now.
12359    addFrameReference(BuildMI(*BB, MI, DL,
12360                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12361
12362    MI->eraseFromParent();   // The pseudo instruction is gone now.
12363    return BB;
12364  }
12365    // String/text processing lowering.
12366  case X86::PCMPISTRM128REG:
12367  case X86::VPCMPISTRM128REG:
12368    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12369  case X86::PCMPISTRM128MEM:
12370  case X86::VPCMPISTRM128MEM:
12371    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12372  case X86::PCMPESTRM128REG:
12373  case X86::VPCMPESTRM128REG:
12374    return EmitPCMP(MI, BB, 5, false /* in mem */);
12375  case X86::PCMPESTRM128MEM:
12376  case X86::VPCMPESTRM128MEM:
12377    return EmitPCMP(MI, BB, 5, true /* in mem */);
12378
12379    // Thread synchronization.
12380  case X86::MONITOR:
12381    return EmitMonitor(MI, BB);
12382  case X86::MWAIT:
12383    return EmitMwait(MI, BB);
12384
12385    // Atomic Lowering.
12386  case X86::ATOMAND32:
12387    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12388                                               X86::AND32ri, X86::MOV32rm,
12389                                               X86::LCMPXCHG32,
12390                                               X86::NOT32r, X86::EAX,
12391                                               X86::GR32RegisterClass);
12392  case X86::ATOMOR32:
12393    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12394                                               X86::OR32ri, X86::MOV32rm,
12395                                               X86::LCMPXCHG32,
12396                                               X86::NOT32r, X86::EAX,
12397                                               X86::GR32RegisterClass);
12398  case X86::ATOMXOR32:
12399    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12400                                               X86::XOR32ri, X86::MOV32rm,
12401                                               X86::LCMPXCHG32,
12402                                               X86::NOT32r, X86::EAX,
12403                                               X86::GR32RegisterClass);
12404  case X86::ATOMNAND32:
12405    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12406                                               X86::AND32ri, X86::MOV32rm,
12407                                               X86::LCMPXCHG32,
12408                                               X86::NOT32r, X86::EAX,
12409                                               X86::GR32RegisterClass, true);
12410  case X86::ATOMMIN32:
12411    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12412  case X86::ATOMMAX32:
12413    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12414  case X86::ATOMUMIN32:
12415    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12416  case X86::ATOMUMAX32:
12417    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12418
12419  case X86::ATOMAND16:
12420    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12421                                               X86::AND16ri, X86::MOV16rm,
12422                                               X86::LCMPXCHG16,
12423                                               X86::NOT16r, X86::AX,
12424                                               X86::GR16RegisterClass);
12425  case X86::ATOMOR16:
12426    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12427                                               X86::OR16ri, X86::MOV16rm,
12428                                               X86::LCMPXCHG16,
12429                                               X86::NOT16r, X86::AX,
12430                                               X86::GR16RegisterClass);
12431  case X86::ATOMXOR16:
12432    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12433                                               X86::XOR16ri, X86::MOV16rm,
12434                                               X86::LCMPXCHG16,
12435                                               X86::NOT16r, X86::AX,
12436                                               X86::GR16RegisterClass);
12437  case X86::ATOMNAND16:
12438    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12439                                               X86::AND16ri, X86::MOV16rm,
12440                                               X86::LCMPXCHG16,
12441                                               X86::NOT16r, X86::AX,
12442                                               X86::GR16RegisterClass, true);
12443  case X86::ATOMMIN16:
12444    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12445  case X86::ATOMMAX16:
12446    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12447  case X86::ATOMUMIN16:
12448    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12449  case X86::ATOMUMAX16:
12450    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12451
12452  case X86::ATOMAND8:
12453    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12454                                               X86::AND8ri, X86::MOV8rm,
12455                                               X86::LCMPXCHG8,
12456                                               X86::NOT8r, X86::AL,
12457                                               X86::GR8RegisterClass);
12458  case X86::ATOMOR8:
12459    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12460                                               X86::OR8ri, X86::MOV8rm,
12461                                               X86::LCMPXCHG8,
12462                                               X86::NOT8r, X86::AL,
12463                                               X86::GR8RegisterClass);
12464  case X86::ATOMXOR8:
12465    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12466                                               X86::XOR8ri, X86::MOV8rm,
12467                                               X86::LCMPXCHG8,
12468                                               X86::NOT8r, X86::AL,
12469                                               X86::GR8RegisterClass);
12470  case X86::ATOMNAND8:
12471    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12472                                               X86::AND8ri, X86::MOV8rm,
12473                                               X86::LCMPXCHG8,
12474                                               X86::NOT8r, X86::AL,
12475                                               X86::GR8RegisterClass, true);
12476  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12477  // This group is for 64-bit host.
12478  case X86::ATOMAND64:
12479    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12480                                               X86::AND64ri32, X86::MOV64rm,
12481                                               X86::LCMPXCHG64,
12482                                               X86::NOT64r, X86::RAX,
12483                                               X86::GR64RegisterClass);
12484  case X86::ATOMOR64:
12485    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12486                                               X86::OR64ri32, X86::MOV64rm,
12487                                               X86::LCMPXCHG64,
12488                                               X86::NOT64r, X86::RAX,
12489                                               X86::GR64RegisterClass);
12490  case X86::ATOMXOR64:
12491    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12492                                               X86::XOR64ri32, X86::MOV64rm,
12493                                               X86::LCMPXCHG64,
12494                                               X86::NOT64r, X86::RAX,
12495                                               X86::GR64RegisterClass);
12496  case X86::ATOMNAND64:
12497    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12498                                               X86::AND64ri32, X86::MOV64rm,
12499                                               X86::LCMPXCHG64,
12500                                               X86::NOT64r, X86::RAX,
12501                                               X86::GR64RegisterClass, true);
12502  case X86::ATOMMIN64:
12503    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12504  case X86::ATOMMAX64:
12505    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12506  case X86::ATOMUMIN64:
12507    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12508  case X86::ATOMUMAX64:
12509    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12510
12511  // This group does 64-bit operations on a 32-bit host.
12512  case X86::ATOMAND6432:
12513    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12514                                               X86::AND32rr, X86::AND32rr,
12515                                               X86::AND32ri, X86::AND32ri,
12516                                               false);
12517  case X86::ATOMOR6432:
12518    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12519                                               X86::OR32rr, X86::OR32rr,
12520                                               X86::OR32ri, X86::OR32ri,
12521                                               false);
12522  case X86::ATOMXOR6432:
12523    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12524                                               X86::XOR32rr, X86::XOR32rr,
12525                                               X86::XOR32ri, X86::XOR32ri,
12526                                               false);
12527  case X86::ATOMNAND6432:
12528    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12529                                               X86::AND32rr, X86::AND32rr,
12530                                               X86::AND32ri, X86::AND32ri,
12531                                               true);
12532  case X86::ATOMADD6432:
12533    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12534                                               X86::ADD32rr, X86::ADC32rr,
12535                                               X86::ADD32ri, X86::ADC32ri,
12536                                               false);
12537  case X86::ATOMSUB6432:
12538    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12539                                               X86::SUB32rr, X86::SBB32rr,
12540                                               X86::SUB32ri, X86::SBB32ri,
12541                                               false);
12542  case X86::ATOMSWAP6432:
12543    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12544                                               X86::MOV32rr, X86::MOV32rr,
12545                                               X86::MOV32ri, X86::MOV32ri,
12546                                               false);
12547  case X86::VASTART_SAVE_XMM_REGS:
12548    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12549
12550  case X86::VAARG_64:
12551    return EmitVAARG64WithCustomInserter(MI, BB);
12552  }
12553}
12554
12555//===----------------------------------------------------------------------===//
12556//                           X86 Optimization Hooks
12557//===----------------------------------------------------------------------===//
12558
12559void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12560                                                       const APInt &Mask,
12561                                                       APInt &KnownZero,
12562                                                       APInt &KnownOne,
12563                                                       const SelectionDAG &DAG,
12564                                                       unsigned Depth) const {
12565  unsigned Opc = Op.getOpcode();
12566  assert((Opc >= ISD::BUILTIN_OP_END ||
12567          Opc == ISD::INTRINSIC_WO_CHAIN ||
12568          Opc == ISD::INTRINSIC_W_CHAIN ||
12569          Opc == ISD::INTRINSIC_VOID) &&
12570         "Should use MaskedValueIsZero if you don't know whether Op"
12571         " is a target node!");
12572
12573  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12574  switch (Opc) {
12575  default: break;
12576  case X86ISD::ADD:
12577  case X86ISD::SUB:
12578  case X86ISD::ADC:
12579  case X86ISD::SBB:
12580  case X86ISD::SMUL:
12581  case X86ISD::UMUL:
12582  case X86ISD::INC:
12583  case X86ISD::DEC:
12584  case X86ISD::OR:
12585  case X86ISD::XOR:
12586  case X86ISD::AND:
12587    // These nodes' second result is a boolean.
12588    if (Op.getResNo() == 0)
12589      break;
12590    // Fallthrough
12591  case X86ISD::SETCC:
12592    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12593                                       Mask.getBitWidth() - 1);
12594    break;
12595  case ISD::INTRINSIC_WO_CHAIN: {
12596    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12597    unsigned NumLoBits = 0;
12598    switch (IntId) {
12599    default: break;
12600    case Intrinsic::x86_sse_movmsk_ps:
12601    case Intrinsic::x86_avx_movmsk_ps_256:
12602    case Intrinsic::x86_sse2_movmsk_pd:
12603    case Intrinsic::x86_avx_movmsk_pd_256:
12604    case Intrinsic::x86_mmx_pmovmskb:
12605    case Intrinsic::x86_sse2_pmovmskb_128:
12606    case Intrinsic::x86_avx2_pmovmskb: {
12607      // High bits of movmskp{s|d}, pmovmskb are known zero.
12608      switch (IntId) {
12609        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12610        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12611        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12612        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12613        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12614        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12615        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12616      }
12617      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12618                                        Mask.getBitWidth() - NumLoBits);
12619      break;
12620    }
12621    }
12622    break;
12623  }
12624  }
12625}
12626
12627unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12628                                                         unsigned Depth) const {
12629  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12630  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12631    return Op.getValueType().getScalarType().getSizeInBits();
12632
12633  // Fallback case.
12634  return 1;
12635}
12636
12637/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12638/// node is a GlobalAddress + offset.
12639bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12640                                       const GlobalValue* &GA,
12641                                       int64_t &Offset) const {
12642  if (N->getOpcode() == X86ISD::Wrapper) {
12643    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12644      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12645      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12646      return true;
12647    }
12648  }
12649  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12650}
12651
12652/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12653/// same as extracting the high 128-bit part of 256-bit vector and then
12654/// inserting the result into the low part of a new 256-bit vector
12655static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12656  EVT VT = SVOp->getValueType(0);
12657  int NumElems = VT.getVectorNumElements();
12658
12659  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12660  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12661    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12662        SVOp->getMaskElt(j) >= 0)
12663      return false;
12664
12665  return true;
12666}
12667
12668/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12669/// same as extracting the low 128-bit part of 256-bit vector and then
12670/// inserting the result into the high part of a new 256-bit vector
12671static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12672  EVT VT = SVOp->getValueType(0);
12673  int NumElems = VT.getVectorNumElements();
12674
12675  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12676  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12677    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12678        SVOp->getMaskElt(j) >= 0)
12679      return false;
12680
12681  return true;
12682}
12683
12684/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12685static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12686                                        TargetLowering::DAGCombinerInfo &DCI) {
12687  DebugLoc dl = N->getDebugLoc();
12688  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12689  SDValue V1 = SVOp->getOperand(0);
12690  SDValue V2 = SVOp->getOperand(1);
12691  EVT VT = SVOp->getValueType(0);
12692  int NumElems = VT.getVectorNumElements();
12693
12694  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12695      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12696    //
12697    //                   0,0,0,...
12698    //                      |
12699    //    V      UNDEF    BUILD_VECTOR    UNDEF
12700    //     \      /           \           /
12701    //  CONCAT_VECTOR         CONCAT_VECTOR
12702    //         \                  /
12703    //          \                /
12704    //          RESULT: V + zero extended
12705    //
12706    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12707        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12708        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12709      return SDValue();
12710
12711    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12712      return SDValue();
12713
12714    // To match the shuffle mask, the first half of the mask should
12715    // be exactly the first vector, and all the rest a splat with the
12716    // first element of the second one.
12717    for (int i = 0; i < NumElems/2; ++i)
12718      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12719          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12720        return SDValue();
12721
12722    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12723    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12724      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12725      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12726      SDValue ResNode =
12727        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12728                                Ld->getMemoryVT(),
12729                                Ld->getPointerInfo(),
12730                                Ld->getAlignment(),
12731                                false/*isVolatile*/, true/*ReadMem*/,
12732                                false/*WriteMem*/);
12733      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12734    }
12735
12736    // Emit a zeroed vector and insert the desired subvector on its
12737    // first half.
12738    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
12739    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12740                         DAG.getConstant(0, MVT::i32), DAG, dl);
12741    return DCI.CombineTo(N, InsV);
12742  }
12743
12744  //===--------------------------------------------------------------------===//
12745  // Combine some shuffles into subvector extracts and inserts:
12746  //
12747
12748  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12749  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12750    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12751                                    DAG, dl);
12752    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12753                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12754    return DCI.CombineTo(N, InsV);
12755  }
12756
12757  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12758  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12759    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12760    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12761                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12762    return DCI.CombineTo(N, InsV);
12763  }
12764
12765  return SDValue();
12766}
12767
12768/// PerformShuffleCombine - Performs several different shuffle combines.
12769static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12770                                     TargetLowering::DAGCombinerInfo &DCI,
12771                                     const X86Subtarget *Subtarget) {
12772  DebugLoc dl = N->getDebugLoc();
12773  EVT VT = N->getValueType(0);
12774
12775  // Don't create instructions with illegal types after legalize types has run.
12776  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12777  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12778    return SDValue();
12779
12780  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12781  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12782      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12783    return PerformShuffleCombine256(N, DAG, DCI);
12784
12785  // Only handle 128 wide vector from here on.
12786  if (VT.getSizeInBits() != 128)
12787    return SDValue();
12788
12789  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12790  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12791  // consecutive, non-overlapping, and in the right order.
12792  SmallVector<SDValue, 16> Elts;
12793  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12794    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12795
12796  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12797}
12798
12799/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12800/// generation and convert it from being a bunch of shuffles and extracts
12801/// to a simple store and scalar loads to extract the elements.
12802static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12803                                                const TargetLowering &TLI) {
12804  SDValue InputVector = N->getOperand(0);
12805
12806  // Only operate on vectors of 4 elements, where the alternative shuffling
12807  // gets to be more expensive.
12808  if (InputVector.getValueType() != MVT::v4i32)
12809    return SDValue();
12810
12811  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12812  // single use which is a sign-extend or zero-extend, and all elements are
12813  // used.
12814  SmallVector<SDNode *, 4> Uses;
12815  unsigned ExtractedElements = 0;
12816  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12817       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12818    if (UI.getUse().getResNo() != InputVector.getResNo())
12819      return SDValue();
12820
12821    SDNode *Extract = *UI;
12822    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12823      return SDValue();
12824
12825    if (Extract->getValueType(0) != MVT::i32)
12826      return SDValue();
12827    if (!Extract->hasOneUse())
12828      return SDValue();
12829    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12830        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12831      return SDValue();
12832    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12833      return SDValue();
12834
12835    // Record which element was extracted.
12836    ExtractedElements |=
12837      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12838
12839    Uses.push_back(Extract);
12840  }
12841
12842  // If not all the elements were used, this may not be worthwhile.
12843  if (ExtractedElements != 15)
12844    return SDValue();
12845
12846  // Ok, we've now decided to do the transformation.
12847  DebugLoc dl = InputVector.getDebugLoc();
12848
12849  // Store the value to a temporary stack slot.
12850  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12851  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12852                            MachinePointerInfo(), false, false, 0);
12853
12854  // Replace each use (extract) with a load of the appropriate element.
12855  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12856       UE = Uses.end(); UI != UE; ++UI) {
12857    SDNode *Extract = *UI;
12858
12859    // cOMpute the element's address.
12860    SDValue Idx = Extract->getOperand(1);
12861    unsigned EltSize =
12862        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12863    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12864    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12865
12866    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12867                                     StackPtr, OffsetVal);
12868
12869    // Load the scalar.
12870    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12871                                     ScalarAddr, MachinePointerInfo(),
12872                                     false, false, false, 0);
12873
12874    // Replace the exact with the load.
12875    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12876  }
12877
12878  // The replacement was made in place; don't return anything.
12879  return SDValue();
12880}
12881
12882/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12883/// nodes.
12884static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12885                                    const X86Subtarget *Subtarget) {
12886  DebugLoc DL = N->getDebugLoc();
12887  SDValue Cond = N->getOperand(0);
12888  // Get the LHS/RHS of the select.
12889  SDValue LHS = N->getOperand(1);
12890  SDValue RHS = N->getOperand(2);
12891  EVT VT = LHS.getValueType();
12892
12893  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12894  // instructions match the semantics of the common C idiom x<y?x:y but not
12895  // x<=y?x:y, because of how they handle negative zero (which can be
12896  // ignored in unsafe-math mode).
12897  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12898      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12899      (Subtarget->hasSSE2() ||
12900       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12901    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12902
12903    unsigned Opcode = 0;
12904    // Check for x CC y ? x : y.
12905    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12906        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12907      switch (CC) {
12908      default: break;
12909      case ISD::SETULT:
12910        // Converting this to a min would handle NaNs incorrectly, and swapping
12911        // the operands would cause it to handle comparisons between positive
12912        // and negative zero incorrectly.
12913        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12914          if (!DAG.getTarget().Options.UnsafeFPMath &&
12915              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12916            break;
12917          std::swap(LHS, RHS);
12918        }
12919        Opcode = X86ISD::FMIN;
12920        break;
12921      case ISD::SETOLE:
12922        // Converting this to a min would handle comparisons between positive
12923        // and negative zero incorrectly.
12924        if (!DAG.getTarget().Options.UnsafeFPMath &&
12925            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12926          break;
12927        Opcode = X86ISD::FMIN;
12928        break;
12929      case ISD::SETULE:
12930        // Converting this to a min would handle both negative zeros and NaNs
12931        // incorrectly, but we can swap the operands to fix both.
12932        std::swap(LHS, RHS);
12933      case ISD::SETOLT:
12934      case ISD::SETLT:
12935      case ISD::SETLE:
12936        Opcode = X86ISD::FMIN;
12937        break;
12938
12939      case ISD::SETOGE:
12940        // Converting this to a max would handle comparisons between positive
12941        // and negative zero incorrectly.
12942        if (!DAG.getTarget().Options.UnsafeFPMath &&
12943            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12944          break;
12945        Opcode = X86ISD::FMAX;
12946        break;
12947      case ISD::SETUGT:
12948        // Converting this to a max would handle NaNs incorrectly, and swapping
12949        // the operands would cause it to handle comparisons between positive
12950        // and negative zero incorrectly.
12951        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12952          if (!DAG.getTarget().Options.UnsafeFPMath &&
12953              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12954            break;
12955          std::swap(LHS, RHS);
12956        }
12957        Opcode = X86ISD::FMAX;
12958        break;
12959      case ISD::SETUGE:
12960        // Converting this to a max would handle both negative zeros and NaNs
12961        // incorrectly, but we can swap the operands to fix both.
12962        std::swap(LHS, RHS);
12963      case ISD::SETOGT:
12964      case ISD::SETGT:
12965      case ISD::SETGE:
12966        Opcode = X86ISD::FMAX;
12967        break;
12968      }
12969    // Check for x CC y ? y : x -- a min/max with reversed arms.
12970    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12971               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12972      switch (CC) {
12973      default: break;
12974      case ISD::SETOGE:
12975        // Converting this to a min would handle comparisons between positive
12976        // and negative zero incorrectly, and swapping the operands would
12977        // cause it to handle NaNs incorrectly.
12978        if (!DAG.getTarget().Options.UnsafeFPMath &&
12979            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12980          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12981            break;
12982          std::swap(LHS, RHS);
12983        }
12984        Opcode = X86ISD::FMIN;
12985        break;
12986      case ISD::SETUGT:
12987        // Converting this to a min would handle NaNs incorrectly.
12988        if (!DAG.getTarget().Options.UnsafeFPMath &&
12989            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12990          break;
12991        Opcode = X86ISD::FMIN;
12992        break;
12993      case ISD::SETUGE:
12994        // Converting this to a min would handle both negative zeros and NaNs
12995        // incorrectly, but we can swap the operands to fix both.
12996        std::swap(LHS, RHS);
12997      case ISD::SETOGT:
12998      case ISD::SETGT:
12999      case ISD::SETGE:
13000        Opcode = X86ISD::FMIN;
13001        break;
13002
13003      case ISD::SETULT:
13004        // Converting this to a max would handle NaNs incorrectly.
13005        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13006          break;
13007        Opcode = X86ISD::FMAX;
13008        break;
13009      case ISD::SETOLE:
13010        // Converting this to a max would handle comparisons between positive
13011        // and negative zero incorrectly, and swapping the operands would
13012        // cause it to handle NaNs incorrectly.
13013        if (!DAG.getTarget().Options.UnsafeFPMath &&
13014            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13015          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13016            break;
13017          std::swap(LHS, RHS);
13018        }
13019        Opcode = X86ISD::FMAX;
13020        break;
13021      case ISD::SETULE:
13022        // Converting this to a max would handle both negative zeros and NaNs
13023        // incorrectly, but we can swap the operands to fix both.
13024        std::swap(LHS, RHS);
13025      case ISD::SETOLT:
13026      case ISD::SETLT:
13027      case ISD::SETLE:
13028        Opcode = X86ISD::FMAX;
13029        break;
13030      }
13031    }
13032
13033    if (Opcode)
13034      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13035  }
13036
13037  // If this is a select between two integer constants, try to do some
13038  // optimizations.
13039  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13040    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13041      // Don't do this for crazy integer types.
13042      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13043        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13044        // so that TrueC (the true value) is larger than FalseC.
13045        bool NeedsCondInvert = false;
13046
13047        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13048            // Efficiently invertible.
13049            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13050             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13051              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13052          NeedsCondInvert = true;
13053          std::swap(TrueC, FalseC);
13054        }
13055
13056        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13057        if (FalseC->getAPIntValue() == 0 &&
13058            TrueC->getAPIntValue().isPowerOf2()) {
13059          if (NeedsCondInvert) // Invert the condition if needed.
13060            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13061                               DAG.getConstant(1, Cond.getValueType()));
13062
13063          // Zero extend the condition if needed.
13064          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13065
13066          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13067          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13068                             DAG.getConstant(ShAmt, MVT::i8));
13069        }
13070
13071        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13072        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13073          if (NeedsCondInvert) // Invert the condition if needed.
13074            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13075                               DAG.getConstant(1, Cond.getValueType()));
13076
13077          // Zero extend the condition if needed.
13078          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13079                             FalseC->getValueType(0), Cond);
13080          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13081                             SDValue(FalseC, 0));
13082        }
13083
13084        // Optimize cases that will turn into an LEA instruction.  This requires
13085        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13086        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13087          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13088          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13089
13090          bool isFastMultiplier = false;
13091          if (Diff < 10) {
13092            switch ((unsigned char)Diff) {
13093              default: break;
13094              case 1:  // result = add base, cond
13095              case 2:  // result = lea base(    , cond*2)
13096              case 3:  // result = lea base(cond, cond*2)
13097              case 4:  // result = lea base(    , cond*4)
13098              case 5:  // result = lea base(cond, cond*4)
13099              case 8:  // result = lea base(    , cond*8)
13100              case 9:  // result = lea base(cond, cond*8)
13101                isFastMultiplier = true;
13102                break;
13103            }
13104          }
13105
13106          if (isFastMultiplier) {
13107            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13108            if (NeedsCondInvert) // Invert the condition if needed.
13109              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13110                                 DAG.getConstant(1, Cond.getValueType()));
13111
13112            // Zero extend the condition if needed.
13113            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13114                               Cond);
13115            // Scale the condition by the difference.
13116            if (Diff != 1)
13117              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13118                                 DAG.getConstant(Diff, Cond.getValueType()));
13119
13120            // Add the base if non-zero.
13121            if (FalseC->getAPIntValue() != 0)
13122              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13123                                 SDValue(FalseC, 0));
13124            return Cond;
13125          }
13126        }
13127      }
13128  }
13129
13130  // Canonicalize max and min:
13131  // (x > y) ? x : y -> (x >= y) ? x : y
13132  // (x < y) ? x : y -> (x <= y) ? x : y
13133  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13134  // the need for an extra compare
13135  // against zero. e.g.
13136  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13137  // subl   %esi, %edi
13138  // testl  %edi, %edi
13139  // movl   $0, %eax
13140  // cmovgl %edi, %eax
13141  // =>
13142  // xorl   %eax, %eax
13143  // subl   %esi, $edi
13144  // cmovsl %eax, %edi
13145  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13146      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13147      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13148    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13149    switch (CC) {
13150    default: break;
13151    case ISD::SETLT:
13152    case ISD::SETGT: {
13153      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13154      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13155                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13156      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13157    }
13158    }
13159  }
13160
13161  return SDValue();
13162}
13163
13164/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13165static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13166                                  TargetLowering::DAGCombinerInfo &DCI) {
13167  DebugLoc DL = N->getDebugLoc();
13168
13169  // If the flag operand isn't dead, don't touch this CMOV.
13170  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13171    return SDValue();
13172
13173  SDValue FalseOp = N->getOperand(0);
13174  SDValue TrueOp = N->getOperand(1);
13175  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13176  SDValue Cond = N->getOperand(3);
13177  if (CC == X86::COND_E || CC == X86::COND_NE) {
13178    switch (Cond.getOpcode()) {
13179    default: break;
13180    case X86ISD::BSR:
13181    case X86ISD::BSF:
13182      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13183      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13184        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13185    }
13186  }
13187
13188  // If this is a select between two integer constants, try to do some
13189  // optimizations.  Note that the operands are ordered the opposite of SELECT
13190  // operands.
13191  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13192    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13193      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13194      // larger than FalseC (the false value).
13195      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13196        CC = X86::GetOppositeBranchCondition(CC);
13197        std::swap(TrueC, FalseC);
13198      }
13199
13200      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13201      // This is efficient for any integer data type (including i8/i16) and
13202      // shift amount.
13203      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13204        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13205                           DAG.getConstant(CC, MVT::i8), Cond);
13206
13207        // Zero extend the condition if needed.
13208        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13209
13210        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13211        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13212                           DAG.getConstant(ShAmt, MVT::i8));
13213        if (N->getNumValues() == 2)  // Dead flag value?
13214          return DCI.CombineTo(N, Cond, SDValue());
13215        return Cond;
13216      }
13217
13218      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13219      // for any integer data type, including i8/i16.
13220      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13221        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13222                           DAG.getConstant(CC, MVT::i8), Cond);
13223
13224        // Zero extend the condition if needed.
13225        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13226                           FalseC->getValueType(0), Cond);
13227        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13228                           SDValue(FalseC, 0));
13229
13230        if (N->getNumValues() == 2)  // Dead flag value?
13231          return DCI.CombineTo(N, Cond, SDValue());
13232        return Cond;
13233      }
13234
13235      // Optimize cases that will turn into an LEA instruction.  This requires
13236      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13237      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13238        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13239        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13240
13241        bool isFastMultiplier = false;
13242        if (Diff < 10) {
13243          switch ((unsigned char)Diff) {
13244          default: break;
13245          case 1:  // result = add base, cond
13246          case 2:  // result = lea base(    , cond*2)
13247          case 3:  // result = lea base(cond, cond*2)
13248          case 4:  // result = lea base(    , cond*4)
13249          case 5:  // result = lea base(cond, cond*4)
13250          case 8:  // result = lea base(    , cond*8)
13251          case 9:  // result = lea base(cond, cond*8)
13252            isFastMultiplier = true;
13253            break;
13254          }
13255        }
13256
13257        if (isFastMultiplier) {
13258          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13259          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13260                             DAG.getConstant(CC, MVT::i8), Cond);
13261          // Zero extend the condition if needed.
13262          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13263                             Cond);
13264          // Scale the condition by the difference.
13265          if (Diff != 1)
13266            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13267                               DAG.getConstant(Diff, Cond.getValueType()));
13268
13269          // Add the base if non-zero.
13270          if (FalseC->getAPIntValue() != 0)
13271            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13272                               SDValue(FalseC, 0));
13273          if (N->getNumValues() == 2)  // Dead flag value?
13274            return DCI.CombineTo(N, Cond, SDValue());
13275          return Cond;
13276        }
13277      }
13278    }
13279  }
13280  return SDValue();
13281}
13282
13283
13284/// PerformMulCombine - Optimize a single multiply with constant into two
13285/// in order to implement it with two cheaper instructions, e.g.
13286/// LEA + SHL, LEA + LEA.
13287static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13288                                 TargetLowering::DAGCombinerInfo &DCI) {
13289  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13290    return SDValue();
13291
13292  EVT VT = N->getValueType(0);
13293  if (VT != MVT::i64)
13294    return SDValue();
13295
13296  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13297  if (!C)
13298    return SDValue();
13299  uint64_t MulAmt = C->getZExtValue();
13300  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13301    return SDValue();
13302
13303  uint64_t MulAmt1 = 0;
13304  uint64_t MulAmt2 = 0;
13305  if ((MulAmt % 9) == 0) {
13306    MulAmt1 = 9;
13307    MulAmt2 = MulAmt / 9;
13308  } else if ((MulAmt % 5) == 0) {
13309    MulAmt1 = 5;
13310    MulAmt2 = MulAmt / 5;
13311  } else if ((MulAmt % 3) == 0) {
13312    MulAmt1 = 3;
13313    MulAmt2 = MulAmt / 3;
13314  }
13315  if (MulAmt2 &&
13316      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13317    DebugLoc DL = N->getDebugLoc();
13318
13319    if (isPowerOf2_64(MulAmt2) &&
13320        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13321      // If second multiplifer is pow2, issue it first. We want the multiply by
13322      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13323      // is an add.
13324      std::swap(MulAmt1, MulAmt2);
13325
13326    SDValue NewMul;
13327    if (isPowerOf2_64(MulAmt1))
13328      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13329                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13330    else
13331      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13332                           DAG.getConstant(MulAmt1, VT));
13333
13334    if (isPowerOf2_64(MulAmt2))
13335      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13336                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13337    else
13338      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13339                           DAG.getConstant(MulAmt2, VT));
13340
13341    // Do not add new nodes to DAG combiner worklist.
13342    DCI.CombineTo(N, NewMul, false);
13343  }
13344  return SDValue();
13345}
13346
13347static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13348  SDValue N0 = N->getOperand(0);
13349  SDValue N1 = N->getOperand(1);
13350  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13351  EVT VT = N0.getValueType();
13352
13353  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13354  // since the result of setcc_c is all zero's or all ones.
13355  if (VT.isInteger() && !VT.isVector() &&
13356      N1C && N0.getOpcode() == ISD::AND &&
13357      N0.getOperand(1).getOpcode() == ISD::Constant) {
13358    SDValue N00 = N0.getOperand(0);
13359    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13360        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13361          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13362         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13363      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13364      APInt ShAmt = N1C->getAPIntValue();
13365      Mask = Mask.shl(ShAmt);
13366      if (Mask != 0)
13367        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13368                           N00, DAG.getConstant(Mask, VT));
13369    }
13370  }
13371
13372
13373  // Hardware support for vector shifts is sparse which makes us scalarize the
13374  // vector operations in many cases. Also, on sandybridge ADD is faster than
13375  // shl.
13376  // (shl V, 1) -> add V,V
13377  if (isSplatVector(N1.getNode())) {
13378    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13379    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13380    // We shift all of the values by one. In many cases we do not have
13381    // hardware support for this operation. This is better expressed as an ADD
13382    // of two values.
13383    if (N1C && (1 == N1C->getZExtValue())) {
13384      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13385    }
13386  }
13387
13388  return SDValue();
13389}
13390
13391/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13392///                       when possible.
13393static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13394                                   const X86Subtarget *Subtarget) {
13395  EVT VT = N->getValueType(0);
13396  if (N->getOpcode() == ISD::SHL) {
13397    SDValue V = PerformSHLCombine(N, DAG);
13398    if (V.getNode()) return V;
13399  }
13400
13401  // On X86 with SSE2 support, we can transform this to a vector shift if
13402  // all elements are shifted by the same amount.  We can't do this in legalize
13403  // because the a constant vector is typically transformed to a constant pool
13404  // so we have no knowledge of the shift amount.
13405  if (!Subtarget->hasSSE2())
13406    return SDValue();
13407
13408  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13409      (!Subtarget->hasAVX2() ||
13410       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13411    return SDValue();
13412
13413  SDValue ShAmtOp = N->getOperand(1);
13414  EVT EltVT = VT.getVectorElementType();
13415  DebugLoc DL = N->getDebugLoc();
13416  SDValue BaseShAmt = SDValue();
13417  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13418    unsigned NumElts = VT.getVectorNumElements();
13419    unsigned i = 0;
13420    for (; i != NumElts; ++i) {
13421      SDValue Arg = ShAmtOp.getOperand(i);
13422      if (Arg.getOpcode() == ISD::UNDEF) continue;
13423      BaseShAmt = Arg;
13424      break;
13425    }
13426    for (; i != NumElts; ++i) {
13427      SDValue Arg = ShAmtOp.getOperand(i);
13428      if (Arg.getOpcode() == ISD::UNDEF) continue;
13429      if (Arg != BaseShAmt) {
13430        return SDValue();
13431      }
13432    }
13433  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13434             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13435    SDValue InVec = ShAmtOp.getOperand(0);
13436    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13437      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13438      unsigned i = 0;
13439      for (; i != NumElts; ++i) {
13440        SDValue Arg = InVec.getOperand(i);
13441        if (Arg.getOpcode() == ISD::UNDEF) continue;
13442        BaseShAmt = Arg;
13443        break;
13444      }
13445    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13446       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13447         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13448         if (C->getZExtValue() == SplatIdx)
13449           BaseShAmt = InVec.getOperand(1);
13450       }
13451    }
13452    if (BaseShAmt.getNode() == 0)
13453      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13454                              DAG.getIntPtrConstant(0));
13455  } else
13456    return SDValue();
13457
13458  // The shift amount is an i32.
13459  if (EltVT.bitsGT(MVT::i32))
13460    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13461  else if (EltVT.bitsLT(MVT::i32))
13462    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13463
13464  // The shift amount is identical so we can do a vector shift.
13465  SDValue  ValOp = N->getOperand(0);
13466  switch (N->getOpcode()) {
13467  default:
13468    llvm_unreachable("Unknown shift opcode!");
13469    break;
13470  case ISD::SHL:
13471    if (VT == MVT::v2i64)
13472      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13473                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13474                         ValOp, BaseShAmt);
13475    if (VT == MVT::v4i32)
13476      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13477                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13478                         ValOp, BaseShAmt);
13479    if (VT == MVT::v8i16)
13480      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13481                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13482                         ValOp, BaseShAmt);
13483    if (VT == MVT::v4i64)
13484      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13485                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
13486                         ValOp, BaseShAmt);
13487    if (VT == MVT::v8i32)
13488      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13489                         DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
13490                         ValOp, BaseShAmt);
13491    if (VT == MVT::v16i16)
13492      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13493                         DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
13494                         ValOp, BaseShAmt);
13495    break;
13496  case ISD::SRA:
13497    if (VT == MVT::v4i32)
13498      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13499                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13500                         ValOp, BaseShAmt);
13501    if (VT == MVT::v8i16)
13502      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13503                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13504                         ValOp, BaseShAmt);
13505    if (VT == MVT::v8i32)
13506      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13507                         DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
13508                         ValOp, BaseShAmt);
13509    if (VT == MVT::v16i16)
13510      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13511                         DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
13512                         ValOp, BaseShAmt);
13513    break;
13514  case ISD::SRL:
13515    if (VT == MVT::v2i64)
13516      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13517                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13518                         ValOp, BaseShAmt);
13519    if (VT == MVT::v4i32)
13520      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13521                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13522                         ValOp, BaseShAmt);
13523    if (VT ==  MVT::v8i16)
13524      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13525                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13526                         ValOp, BaseShAmt);
13527    if (VT == MVT::v4i64)
13528      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13529                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
13530                         ValOp, BaseShAmt);
13531    if (VT == MVT::v8i32)
13532      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13533                         DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
13534                         ValOp, BaseShAmt);
13535    if (VT ==  MVT::v16i16)
13536      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13537                         DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
13538                         ValOp, BaseShAmt);
13539    break;
13540  }
13541  return SDValue();
13542}
13543
13544
13545// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13546// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13547// and friends.  Likewise for OR -> CMPNEQSS.
13548static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13549                            TargetLowering::DAGCombinerInfo &DCI,
13550                            const X86Subtarget *Subtarget) {
13551  unsigned opcode;
13552
13553  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13554  // we're requiring SSE2 for both.
13555  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13556    SDValue N0 = N->getOperand(0);
13557    SDValue N1 = N->getOperand(1);
13558    SDValue CMP0 = N0->getOperand(1);
13559    SDValue CMP1 = N1->getOperand(1);
13560    DebugLoc DL = N->getDebugLoc();
13561
13562    // The SETCCs should both refer to the same CMP.
13563    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13564      return SDValue();
13565
13566    SDValue CMP00 = CMP0->getOperand(0);
13567    SDValue CMP01 = CMP0->getOperand(1);
13568    EVT     VT    = CMP00.getValueType();
13569
13570    if (VT == MVT::f32 || VT == MVT::f64) {
13571      bool ExpectingFlags = false;
13572      // Check for any users that want flags:
13573      for (SDNode::use_iterator UI = N->use_begin(),
13574             UE = N->use_end();
13575           !ExpectingFlags && UI != UE; ++UI)
13576        switch (UI->getOpcode()) {
13577        default:
13578        case ISD::BR_CC:
13579        case ISD::BRCOND:
13580        case ISD::SELECT:
13581          ExpectingFlags = true;
13582          break;
13583        case ISD::CopyToReg:
13584        case ISD::SIGN_EXTEND:
13585        case ISD::ZERO_EXTEND:
13586        case ISD::ANY_EXTEND:
13587          break;
13588        }
13589
13590      if (!ExpectingFlags) {
13591        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13592        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13593
13594        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13595          X86::CondCode tmp = cc0;
13596          cc0 = cc1;
13597          cc1 = tmp;
13598        }
13599
13600        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13601            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13602          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13603          X86ISD::NodeType NTOperator = is64BitFP ?
13604            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13605          // FIXME: need symbolic constants for these magic numbers.
13606          // See X86ATTInstPrinter.cpp:printSSECC().
13607          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13608          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13609                                              DAG.getConstant(x86cc, MVT::i8));
13610          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13611                                              OnesOrZeroesF);
13612          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13613                                      DAG.getConstant(1, MVT::i32));
13614          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13615          return OneBitOfTruth;
13616        }
13617      }
13618    }
13619  }
13620  return SDValue();
13621}
13622
13623/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13624/// so it can be folded inside ANDNP.
13625static bool CanFoldXORWithAllOnes(const SDNode *N) {
13626  EVT VT = N->getValueType(0);
13627
13628  // Match direct AllOnes for 128 and 256-bit vectors
13629  if (ISD::isBuildVectorAllOnes(N))
13630    return true;
13631
13632  // Look through a bit convert.
13633  if (N->getOpcode() == ISD::BITCAST)
13634    N = N->getOperand(0).getNode();
13635
13636  // Sometimes the operand may come from a insert_subvector building a 256-bit
13637  // allones vector
13638  if (VT.getSizeInBits() == 256 &&
13639      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13640    SDValue V1 = N->getOperand(0);
13641    SDValue V2 = N->getOperand(1);
13642
13643    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13644        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13645        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13646        ISD::isBuildVectorAllOnes(V2.getNode()))
13647      return true;
13648  }
13649
13650  return false;
13651}
13652
13653static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13654                                 TargetLowering::DAGCombinerInfo &DCI,
13655                                 const X86Subtarget *Subtarget) {
13656  if (DCI.isBeforeLegalizeOps())
13657    return SDValue();
13658
13659  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13660  if (R.getNode())
13661    return R;
13662
13663  EVT VT = N->getValueType(0);
13664
13665  // Create ANDN, BLSI, and BLSR instructions
13666  // BLSI is X & (-X)
13667  // BLSR is X & (X-1)
13668  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13669    SDValue N0 = N->getOperand(0);
13670    SDValue N1 = N->getOperand(1);
13671    DebugLoc DL = N->getDebugLoc();
13672
13673    // Check LHS for not
13674    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13675      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13676    // Check RHS for not
13677    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13678      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13679
13680    // Check LHS for neg
13681    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13682        isZero(N0.getOperand(0)))
13683      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13684
13685    // Check RHS for neg
13686    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13687        isZero(N1.getOperand(0)))
13688      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13689
13690    // Check LHS for X-1
13691    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13692        isAllOnes(N0.getOperand(1)))
13693      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13694
13695    // Check RHS for X-1
13696    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13697        isAllOnes(N1.getOperand(1)))
13698      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13699
13700    return SDValue();
13701  }
13702
13703  // Want to form ANDNP nodes:
13704  // 1) In the hopes of then easily combining them with OR and AND nodes
13705  //    to form PBLEND/PSIGN.
13706  // 2) To match ANDN packed intrinsics
13707  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13708    return SDValue();
13709
13710  SDValue N0 = N->getOperand(0);
13711  SDValue N1 = N->getOperand(1);
13712  DebugLoc DL = N->getDebugLoc();
13713
13714  // Check LHS for vnot
13715  if (N0.getOpcode() == ISD::XOR &&
13716      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13717      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13718    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13719
13720  // Check RHS for vnot
13721  if (N1.getOpcode() == ISD::XOR &&
13722      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13723      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13724    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13725
13726  return SDValue();
13727}
13728
13729static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13730                                TargetLowering::DAGCombinerInfo &DCI,
13731                                const X86Subtarget *Subtarget) {
13732  if (DCI.isBeforeLegalizeOps())
13733    return SDValue();
13734
13735  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13736  if (R.getNode())
13737    return R;
13738
13739  EVT VT = N->getValueType(0);
13740
13741  SDValue N0 = N->getOperand(0);
13742  SDValue N1 = N->getOperand(1);
13743
13744  // look for psign/blend
13745  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13746    if (!Subtarget->hasSSSE3() ||
13747        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13748      return SDValue();
13749
13750    // Canonicalize pandn to RHS
13751    if (N0.getOpcode() == X86ISD::ANDNP)
13752      std::swap(N0, N1);
13753    // or (and (m, x), (pandn m, y))
13754    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13755      SDValue Mask = N1.getOperand(0);
13756      SDValue X    = N1.getOperand(1);
13757      SDValue Y;
13758      if (N0.getOperand(0) == Mask)
13759        Y = N0.getOperand(1);
13760      if (N0.getOperand(1) == Mask)
13761        Y = N0.getOperand(0);
13762
13763      // Check to see if the mask appeared in both the AND and ANDNP and
13764      if (!Y.getNode())
13765        return SDValue();
13766
13767      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13768      if (Mask.getOpcode() != ISD::BITCAST ||
13769          X.getOpcode() != ISD::BITCAST ||
13770          Y.getOpcode() != ISD::BITCAST)
13771        return SDValue();
13772
13773      // Look through mask bitcast.
13774      Mask = Mask.getOperand(0);
13775      EVT MaskVT = Mask.getValueType();
13776
13777      // Validate that the Mask operand is a vector sra node.  The sra node
13778      // will be an intrinsic.
13779      if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13780        return SDValue();
13781
13782      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13783      // there is no psrai.b
13784      switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13785      case Intrinsic::x86_sse2_psrai_w:
13786      case Intrinsic::x86_sse2_psrai_d:
13787      case Intrinsic::x86_avx2_psrai_w:
13788      case Intrinsic::x86_avx2_psrai_d:
13789        break;
13790      default: return SDValue();
13791      }
13792
13793      // Check that the SRA is all signbits.
13794      SDValue SraC = Mask.getOperand(2);
13795      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13796      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13797      if ((SraAmt + 1) != EltBits)
13798        return SDValue();
13799
13800      DebugLoc DL = N->getDebugLoc();
13801
13802      // Now we know we at least have a plendvb with the mask val.  See if
13803      // we can form a psignb/w/d.
13804      // psign = x.type == y.type == mask.type && y = sub(0, x);
13805      X = X.getOperand(0);
13806      Y = Y.getOperand(0);
13807      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13808          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13809          X.getValueType() == MaskVT && X.getValueType() == Y.getValueType() &&
13810          (EltBits == 8 || EltBits == 16 || EltBits == 32)) {
13811        SDValue Sign = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X,
13812                                   Mask.getOperand(1));
13813        return DAG.getNode(ISD::BITCAST, DL, VT, Sign);
13814      }
13815      // PBLENDVB only available on SSE 4.1
13816      if (!Subtarget->hasSSE41())
13817        return SDValue();
13818
13819      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13820
13821      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13822      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13823      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13824      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13825      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13826    }
13827  }
13828
13829  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13830    return SDValue();
13831
13832  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13833  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13834    std::swap(N0, N1);
13835  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13836    return SDValue();
13837  if (!N0.hasOneUse() || !N1.hasOneUse())
13838    return SDValue();
13839
13840  SDValue ShAmt0 = N0.getOperand(1);
13841  if (ShAmt0.getValueType() != MVT::i8)
13842    return SDValue();
13843  SDValue ShAmt1 = N1.getOperand(1);
13844  if (ShAmt1.getValueType() != MVT::i8)
13845    return SDValue();
13846  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13847    ShAmt0 = ShAmt0.getOperand(0);
13848  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13849    ShAmt1 = ShAmt1.getOperand(0);
13850
13851  DebugLoc DL = N->getDebugLoc();
13852  unsigned Opc = X86ISD::SHLD;
13853  SDValue Op0 = N0.getOperand(0);
13854  SDValue Op1 = N1.getOperand(0);
13855  if (ShAmt0.getOpcode() == ISD::SUB) {
13856    Opc = X86ISD::SHRD;
13857    std::swap(Op0, Op1);
13858    std::swap(ShAmt0, ShAmt1);
13859  }
13860
13861  unsigned Bits = VT.getSizeInBits();
13862  if (ShAmt1.getOpcode() == ISD::SUB) {
13863    SDValue Sum = ShAmt1.getOperand(0);
13864    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13865      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13866      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13867        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13868      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13869        return DAG.getNode(Opc, DL, VT,
13870                           Op0, Op1,
13871                           DAG.getNode(ISD::TRUNCATE, DL,
13872                                       MVT::i8, ShAmt0));
13873    }
13874  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13875    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13876    if (ShAmt0C &&
13877        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13878      return DAG.getNode(Opc, DL, VT,
13879                         N0.getOperand(0), N1.getOperand(0),
13880                         DAG.getNode(ISD::TRUNCATE, DL,
13881                                       MVT::i8, ShAmt0));
13882  }
13883
13884  return SDValue();
13885}
13886
13887// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
13888static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13889                                 TargetLowering::DAGCombinerInfo &DCI,
13890                                 const X86Subtarget *Subtarget) {
13891  if (DCI.isBeforeLegalizeOps())
13892    return SDValue();
13893
13894  EVT VT = N->getValueType(0);
13895
13896  if (VT != MVT::i32 && VT != MVT::i64)
13897    return SDValue();
13898
13899  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
13900
13901  // Create BLSMSK instructions by finding X ^ (X-1)
13902  SDValue N0 = N->getOperand(0);
13903  SDValue N1 = N->getOperand(1);
13904  DebugLoc DL = N->getDebugLoc();
13905
13906  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13907      isAllOnes(N0.getOperand(1)))
13908    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
13909
13910  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13911      isAllOnes(N1.getOperand(1)))
13912    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
13913
13914  return SDValue();
13915}
13916
13917/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13918static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13919                                   const X86Subtarget *Subtarget) {
13920  LoadSDNode *Ld = cast<LoadSDNode>(N);
13921  EVT RegVT = Ld->getValueType(0);
13922  EVT MemVT = Ld->getMemoryVT();
13923  DebugLoc dl = Ld->getDebugLoc();
13924  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13925
13926  ISD::LoadExtType Ext = Ld->getExtensionType();
13927
13928  // If this is a vector EXT Load then attempt to optimize it using a
13929  // shuffle. We need SSE4 for the shuffles.
13930  // TODO: It is possible to support ZExt by zeroing the undef values
13931  // during the shuffle phase or after the shuffle.
13932  if (RegVT.isVector() && RegVT.isInteger() &&
13933      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13934    assert(MemVT != RegVT && "Cannot extend to the same type");
13935    assert(MemVT.isVector() && "Must load a vector from memory");
13936
13937    unsigned NumElems = RegVT.getVectorNumElements();
13938    unsigned RegSz = RegVT.getSizeInBits();
13939    unsigned MemSz = MemVT.getSizeInBits();
13940    assert(RegSz > MemSz && "Register size must be greater than the mem size");
13941    // All sizes must be a power of two
13942    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13943
13944    // Attempt to load the original value using a single load op.
13945    // Find a scalar type which is equal to the loaded word size.
13946    MVT SclrLoadTy = MVT::i8;
13947    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13948         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13949      MVT Tp = (MVT::SimpleValueType)tp;
13950      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
13951        SclrLoadTy = Tp;
13952        break;
13953      }
13954    }
13955
13956    // Proceed if a load word is found.
13957    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13958
13959    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13960      RegSz/SclrLoadTy.getSizeInBits());
13961
13962    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13963                                  RegSz/MemVT.getScalarType().getSizeInBits());
13964    // Can't shuffle using an illegal type.
13965    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13966
13967    // Perform a single load.
13968    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13969                                  Ld->getBasePtr(),
13970                                  Ld->getPointerInfo(), Ld->isVolatile(),
13971                                  Ld->isNonTemporal(), Ld->isInvariant(),
13972                                  Ld->getAlignment());
13973
13974    // Insert the word loaded into a vector.
13975    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13976      LoadUnitVecVT, ScalarLoad);
13977
13978    // Bitcast the loaded value to a vector of the original element type, in
13979    // the size of the target vector type.
13980    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
13981                                    ScalarInVector);
13982    unsigned SizeRatio = RegSz/MemSz;
13983
13984    // Redistribute the loaded elements into the different locations.
13985    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13986    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
13987
13988    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13989                                DAG.getUNDEF(SlicedVec.getValueType()),
13990                                ShuffleVec.data());
13991
13992    // Bitcast to the requested type.
13993    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13994    // Replace the original load with the new sequence
13995    // and return the new chain.
13996    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
13997    return SDValue(ScalarLoad.getNode(), 1);
13998  }
13999
14000  return SDValue();
14001}
14002
14003/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14004static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14005                                   const X86Subtarget *Subtarget) {
14006  StoreSDNode *St = cast<StoreSDNode>(N);
14007  EVT VT = St->getValue().getValueType();
14008  EVT StVT = St->getMemoryVT();
14009  DebugLoc dl = St->getDebugLoc();
14010  SDValue StoredVal = St->getOperand(1);
14011  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14012
14013  // If we are saving a concatenation of two XMM registers, perform two stores.
14014  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14015  // 128-bit ones. If in the future the cost becomes only one memory access the
14016  // first version would be better.
14017  if (VT.getSizeInBits() == 256 &&
14018    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14019    StoredVal.getNumOperands() == 2) {
14020
14021    SDValue Value0 = StoredVal.getOperand(0);
14022    SDValue Value1 = StoredVal.getOperand(1);
14023
14024    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14025    SDValue Ptr0 = St->getBasePtr();
14026    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14027
14028    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14029                                St->getPointerInfo(), St->isVolatile(),
14030                                St->isNonTemporal(), St->getAlignment());
14031    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14032                                St->getPointerInfo(), St->isVolatile(),
14033                                St->isNonTemporal(), St->getAlignment());
14034    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14035  }
14036
14037  // Optimize trunc store (of multiple scalars) to shuffle and store.
14038  // First, pack all of the elements in one place. Next, store to memory
14039  // in fewer chunks.
14040  if (St->isTruncatingStore() && VT.isVector()) {
14041    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14042    unsigned NumElems = VT.getVectorNumElements();
14043    assert(StVT != VT && "Cannot truncate to the same type");
14044    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14045    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14046
14047    // From, To sizes and ElemCount must be pow of two
14048    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14049    // We are going to use the original vector elt for storing.
14050    // Accumulated smaller vector elements must be a multiple of the store size.
14051    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14052
14053    unsigned SizeRatio  = FromSz / ToSz;
14054
14055    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14056
14057    // Create a type on which we perform the shuffle
14058    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14059            StVT.getScalarType(), NumElems*SizeRatio);
14060
14061    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14062
14063    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14064    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14065    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14066
14067    // Can't shuffle using an illegal type
14068    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14069
14070    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14071                                DAG.getUNDEF(WideVec.getValueType()),
14072                                ShuffleVec.data());
14073    // At this point all of the data is stored at the bottom of the
14074    // register. We now need to save it to mem.
14075
14076    // Find the largest store unit
14077    MVT StoreType = MVT::i8;
14078    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14079         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14080      MVT Tp = (MVT::SimpleValueType)tp;
14081      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14082        StoreType = Tp;
14083    }
14084
14085    // Bitcast the original vector into a vector of store-size units
14086    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14087            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14088    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14089    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14090    SmallVector<SDValue, 8> Chains;
14091    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14092                                        TLI.getPointerTy());
14093    SDValue Ptr = St->getBasePtr();
14094
14095    // Perform one or more big stores into memory.
14096    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14097      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14098                                   StoreType, ShuffWide,
14099                                   DAG.getIntPtrConstant(i));
14100      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14101                                St->getPointerInfo(), St->isVolatile(),
14102                                St->isNonTemporal(), St->getAlignment());
14103      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14104      Chains.push_back(Ch);
14105    }
14106
14107    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14108                               Chains.size());
14109  }
14110
14111
14112  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14113  // the FP state in cases where an emms may be missing.
14114  // A preferable solution to the general problem is to figure out the right
14115  // places to insert EMMS.  This qualifies as a quick hack.
14116
14117  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14118  if (VT.getSizeInBits() != 64)
14119    return SDValue();
14120
14121  const Function *F = DAG.getMachineFunction().getFunction();
14122  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14123  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14124                     && Subtarget->hasSSE2();
14125  if ((VT.isVector() ||
14126       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14127      isa<LoadSDNode>(St->getValue()) &&
14128      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14129      St->getChain().hasOneUse() && !St->isVolatile()) {
14130    SDNode* LdVal = St->getValue().getNode();
14131    LoadSDNode *Ld = 0;
14132    int TokenFactorIndex = -1;
14133    SmallVector<SDValue, 8> Ops;
14134    SDNode* ChainVal = St->getChain().getNode();
14135    // Must be a store of a load.  We currently handle two cases:  the load
14136    // is a direct child, and it's under an intervening TokenFactor.  It is
14137    // possible to dig deeper under nested TokenFactors.
14138    if (ChainVal == LdVal)
14139      Ld = cast<LoadSDNode>(St->getChain());
14140    else if (St->getValue().hasOneUse() &&
14141             ChainVal->getOpcode() == ISD::TokenFactor) {
14142      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14143        if (ChainVal->getOperand(i).getNode() == LdVal) {
14144          TokenFactorIndex = i;
14145          Ld = cast<LoadSDNode>(St->getValue());
14146        } else
14147          Ops.push_back(ChainVal->getOperand(i));
14148      }
14149    }
14150
14151    if (!Ld || !ISD::isNormalLoad(Ld))
14152      return SDValue();
14153
14154    // If this is not the MMX case, i.e. we are just turning i64 load/store
14155    // into f64 load/store, avoid the transformation if there are multiple
14156    // uses of the loaded value.
14157    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14158      return SDValue();
14159
14160    DebugLoc LdDL = Ld->getDebugLoc();
14161    DebugLoc StDL = N->getDebugLoc();
14162    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14163    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14164    // pair instead.
14165    if (Subtarget->is64Bit() || F64IsLegal) {
14166      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14167      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14168                                  Ld->getPointerInfo(), Ld->isVolatile(),
14169                                  Ld->isNonTemporal(), Ld->isInvariant(),
14170                                  Ld->getAlignment());
14171      SDValue NewChain = NewLd.getValue(1);
14172      if (TokenFactorIndex != -1) {
14173        Ops.push_back(NewChain);
14174        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14175                               Ops.size());
14176      }
14177      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14178                          St->getPointerInfo(),
14179                          St->isVolatile(), St->isNonTemporal(),
14180                          St->getAlignment());
14181    }
14182
14183    // Otherwise, lower to two pairs of 32-bit loads / stores.
14184    SDValue LoAddr = Ld->getBasePtr();
14185    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14186                                 DAG.getConstant(4, MVT::i32));
14187
14188    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14189                               Ld->getPointerInfo(),
14190                               Ld->isVolatile(), Ld->isNonTemporal(),
14191                               Ld->isInvariant(), Ld->getAlignment());
14192    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14193                               Ld->getPointerInfo().getWithOffset(4),
14194                               Ld->isVolatile(), Ld->isNonTemporal(),
14195                               Ld->isInvariant(),
14196                               MinAlign(Ld->getAlignment(), 4));
14197
14198    SDValue NewChain = LoLd.getValue(1);
14199    if (TokenFactorIndex != -1) {
14200      Ops.push_back(LoLd);
14201      Ops.push_back(HiLd);
14202      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14203                             Ops.size());
14204    }
14205
14206    LoAddr = St->getBasePtr();
14207    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14208                         DAG.getConstant(4, MVT::i32));
14209
14210    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14211                                St->getPointerInfo(),
14212                                St->isVolatile(), St->isNonTemporal(),
14213                                St->getAlignment());
14214    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14215                                St->getPointerInfo().getWithOffset(4),
14216                                St->isVolatile(),
14217                                St->isNonTemporal(),
14218                                MinAlign(St->getAlignment(), 4));
14219    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14220  }
14221  return SDValue();
14222}
14223
14224/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14225/// and return the operands for the horizontal operation in LHS and RHS.  A
14226/// horizontal operation performs the binary operation on successive elements
14227/// of its first operand, then on successive elements of its second operand,
14228/// returning the resulting values in a vector.  For example, if
14229///   A = < float a0, float a1, float a2, float a3 >
14230/// and
14231///   B = < float b0, float b1, float b2, float b3 >
14232/// then the result of doing a horizontal operation on A and B is
14233///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14234/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14235/// A horizontal-op B, for some already available A and B, and if so then LHS is
14236/// set to A, RHS to B, and the routine returns 'true'.
14237/// Note that the binary operation should have the property that if one of the
14238/// operands is UNDEF then the result is UNDEF.
14239static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14240  // Look for the following pattern: if
14241  //   A = < float a0, float a1, float a2, float a3 >
14242  //   B = < float b0, float b1, float b2, float b3 >
14243  // and
14244  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14245  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14246  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14247  // which is A horizontal-op B.
14248
14249  // At least one of the operands should be a vector shuffle.
14250  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14251      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14252    return false;
14253
14254  EVT VT = LHS.getValueType();
14255
14256  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14257         "Unsupported vector type for horizontal add/sub");
14258
14259  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14260  // operate independently on 128-bit lanes.
14261  unsigned NumElts = VT.getVectorNumElements();
14262  unsigned NumLanes = VT.getSizeInBits()/128;
14263  unsigned NumLaneElts = NumElts / NumLanes;
14264  assert((NumLaneElts % 2 == 0) &&
14265         "Vector type should have an even number of elements in each lane");
14266  unsigned HalfLaneElts = NumLaneElts/2;
14267
14268  // View LHS in the form
14269  //   LHS = VECTOR_SHUFFLE A, B, LMask
14270  // If LHS is not a shuffle then pretend it is the shuffle
14271  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14272  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14273  // type VT.
14274  SDValue A, B;
14275  SmallVector<int, 16> LMask(NumElts);
14276  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14277    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14278      A = LHS.getOperand(0);
14279    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14280      B = LHS.getOperand(1);
14281    cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
14282  } else {
14283    if (LHS.getOpcode() != ISD::UNDEF)
14284      A = LHS;
14285    for (unsigned i = 0; i != NumElts; ++i)
14286      LMask[i] = i;
14287  }
14288
14289  // Likewise, view RHS in the form
14290  //   RHS = VECTOR_SHUFFLE C, D, RMask
14291  SDValue C, D;
14292  SmallVector<int, 16> RMask(NumElts);
14293  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14294    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14295      C = RHS.getOperand(0);
14296    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14297      D = RHS.getOperand(1);
14298    cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
14299  } else {
14300    if (RHS.getOpcode() != ISD::UNDEF)
14301      C = RHS;
14302    for (unsigned i = 0; i != NumElts; ++i)
14303      RMask[i] = i;
14304  }
14305
14306  // Check that the shuffles are both shuffling the same vectors.
14307  if (!(A == C && B == D) && !(A == D && B == C))
14308    return false;
14309
14310  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14311  if (!A.getNode() && !B.getNode())
14312    return false;
14313
14314  // If A and B occur in reverse order in RHS, then "swap" them (which means
14315  // rewriting the mask).
14316  if (A != C)
14317    CommuteVectorShuffleMask(RMask, NumElts);
14318
14319  // At this point LHS and RHS are equivalent to
14320  //   LHS = VECTOR_SHUFFLE A, B, LMask
14321  //   RHS = VECTOR_SHUFFLE A, B, RMask
14322  // Check that the masks correspond to performing a horizontal operation.
14323  for (unsigned i = 0; i != NumElts; ++i) {
14324    int LIdx = LMask[i], RIdx = RMask[i];
14325
14326    // Ignore any UNDEF components.
14327    if (LIdx < 0 || RIdx < 0 ||
14328        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14329        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14330      continue;
14331
14332    // Check that successive elements are being operated on.  If not, this is
14333    // not a horizontal operation.
14334    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14335    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14336    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14337    if (!(LIdx == Index && RIdx == Index + 1) &&
14338        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14339      return false;
14340  }
14341
14342  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14343  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14344  return true;
14345}
14346
14347/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14348static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14349                                  const X86Subtarget *Subtarget) {
14350  EVT VT = N->getValueType(0);
14351  SDValue LHS = N->getOperand(0);
14352  SDValue RHS = N->getOperand(1);
14353
14354  // Try to synthesize horizontal adds from adds of shuffles.
14355  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14356       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14357      isHorizontalBinOp(LHS, RHS, true))
14358    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14359  return SDValue();
14360}
14361
14362/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14363static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14364                                  const X86Subtarget *Subtarget) {
14365  EVT VT = N->getValueType(0);
14366  SDValue LHS = N->getOperand(0);
14367  SDValue RHS = N->getOperand(1);
14368
14369  // Try to synthesize horizontal subs from subs of shuffles.
14370  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14371       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14372      isHorizontalBinOp(LHS, RHS, false))
14373    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14374  return SDValue();
14375}
14376
14377/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14378/// X86ISD::FXOR nodes.
14379static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14380  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14381  // F[X]OR(0.0, x) -> x
14382  // F[X]OR(x, 0.0) -> x
14383  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14384    if (C->getValueAPF().isPosZero())
14385      return N->getOperand(1);
14386  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14387    if (C->getValueAPF().isPosZero())
14388      return N->getOperand(0);
14389  return SDValue();
14390}
14391
14392/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14393static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14394  // FAND(0.0, x) -> 0.0
14395  // FAND(x, 0.0) -> 0.0
14396  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14397    if (C->getValueAPF().isPosZero())
14398      return N->getOperand(0);
14399  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14400    if (C->getValueAPF().isPosZero())
14401      return N->getOperand(1);
14402  return SDValue();
14403}
14404
14405static SDValue PerformBTCombine(SDNode *N,
14406                                SelectionDAG &DAG,
14407                                TargetLowering::DAGCombinerInfo &DCI) {
14408  // BT ignores high bits in the bit index operand.
14409  SDValue Op1 = N->getOperand(1);
14410  if (Op1.hasOneUse()) {
14411    unsigned BitWidth = Op1.getValueSizeInBits();
14412    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14413    APInt KnownZero, KnownOne;
14414    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14415                                          !DCI.isBeforeLegalizeOps());
14416    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14417    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14418        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14419      DCI.CommitTargetLoweringOpt(TLO);
14420  }
14421  return SDValue();
14422}
14423
14424static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14425  SDValue Op = N->getOperand(0);
14426  if (Op.getOpcode() == ISD::BITCAST)
14427    Op = Op.getOperand(0);
14428  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14429  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14430      VT.getVectorElementType().getSizeInBits() ==
14431      OpVT.getVectorElementType().getSizeInBits()) {
14432    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14433  }
14434  return SDValue();
14435}
14436
14437static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14438  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14439  //           (and (i32 x86isd::setcc_carry), 1)
14440  // This eliminates the zext. This transformation is necessary because
14441  // ISD::SETCC is always legalized to i8.
14442  DebugLoc dl = N->getDebugLoc();
14443  SDValue N0 = N->getOperand(0);
14444  EVT VT = N->getValueType(0);
14445  if (N0.getOpcode() == ISD::AND &&
14446      N0.hasOneUse() &&
14447      N0.getOperand(0).hasOneUse()) {
14448    SDValue N00 = N0.getOperand(0);
14449    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14450      return SDValue();
14451    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14452    if (!C || C->getZExtValue() != 1)
14453      return SDValue();
14454    return DAG.getNode(ISD::AND, dl, VT,
14455                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14456                                   N00.getOperand(0), N00.getOperand(1)),
14457                       DAG.getConstant(1, VT));
14458  }
14459
14460  return SDValue();
14461}
14462
14463// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14464static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14465  unsigned X86CC = N->getConstantOperandVal(0);
14466  SDValue EFLAG = N->getOperand(1);
14467  DebugLoc DL = N->getDebugLoc();
14468
14469  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14470  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14471  // cases.
14472  if (X86CC == X86::COND_B)
14473    return DAG.getNode(ISD::AND, DL, MVT::i8,
14474                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14475                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14476                       DAG.getConstant(1, MVT::i8));
14477
14478  return SDValue();
14479}
14480
14481static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14482                                        const X86TargetLowering *XTLI) {
14483  SDValue Op0 = N->getOperand(0);
14484  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14485  // a 32-bit target where SSE doesn't support i64->FP operations.
14486  if (Op0.getOpcode() == ISD::LOAD) {
14487    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14488    EVT VT = Ld->getValueType(0);
14489    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14490        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14491        !XTLI->getSubtarget()->is64Bit() &&
14492        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14493      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14494                                          Ld->getChain(), Op0, DAG);
14495      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14496      return FILDChain;
14497    }
14498  }
14499  return SDValue();
14500}
14501
14502// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14503static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14504                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14505  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14506  // the result is either zero or one (depending on the input carry bit).
14507  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14508  if (X86::isZeroNode(N->getOperand(0)) &&
14509      X86::isZeroNode(N->getOperand(1)) &&
14510      // We don't have a good way to replace an EFLAGS use, so only do this when
14511      // dead right now.
14512      SDValue(N, 1).use_empty()) {
14513    DebugLoc DL = N->getDebugLoc();
14514    EVT VT = N->getValueType(0);
14515    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14516    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14517                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14518                                           DAG.getConstant(X86::COND_B,MVT::i8),
14519                                           N->getOperand(2)),
14520                               DAG.getConstant(1, VT));
14521    return DCI.CombineTo(N, Res1, CarryOut);
14522  }
14523
14524  return SDValue();
14525}
14526
14527// fold (add Y, (sete  X, 0)) -> adc  0, Y
14528//      (add Y, (setne X, 0)) -> sbb -1, Y
14529//      (sub (sete  X, 0), Y) -> sbb  0, Y
14530//      (sub (setne X, 0), Y) -> adc -1, Y
14531static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14532  DebugLoc DL = N->getDebugLoc();
14533
14534  // Look through ZExts.
14535  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14536  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14537    return SDValue();
14538
14539  SDValue SetCC = Ext.getOperand(0);
14540  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14541    return SDValue();
14542
14543  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14544  if (CC != X86::COND_E && CC != X86::COND_NE)
14545    return SDValue();
14546
14547  SDValue Cmp = SetCC.getOperand(1);
14548  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14549      !X86::isZeroNode(Cmp.getOperand(1)) ||
14550      !Cmp.getOperand(0).getValueType().isInteger())
14551    return SDValue();
14552
14553  SDValue CmpOp0 = Cmp.getOperand(0);
14554  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14555                               DAG.getConstant(1, CmpOp0.getValueType()));
14556
14557  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14558  if (CC == X86::COND_NE)
14559    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14560                       DL, OtherVal.getValueType(), OtherVal,
14561                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14562  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14563                     DL, OtherVal.getValueType(), OtherVal,
14564                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14565}
14566
14567/// PerformADDCombine - Do target-specific dag combines on integer adds.
14568static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14569                                 const X86Subtarget *Subtarget) {
14570  EVT VT = N->getValueType(0);
14571  SDValue Op0 = N->getOperand(0);
14572  SDValue Op1 = N->getOperand(1);
14573
14574  // Try to synthesize horizontal adds from adds of shuffles.
14575  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14576       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || MVT::v8i32))) &&
14577      isHorizontalBinOp(Op0, Op1, true))
14578    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14579
14580  return OptimizeConditionalInDecrement(N, DAG);
14581}
14582
14583static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14584                                 const X86Subtarget *Subtarget) {
14585  SDValue Op0 = N->getOperand(0);
14586  SDValue Op1 = N->getOperand(1);
14587
14588  // X86 can't encode an immediate LHS of a sub. See if we can push the
14589  // negation into a preceding instruction.
14590  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14591    // If the RHS of the sub is a XOR with one use and a constant, invert the
14592    // immediate. Then add one to the LHS of the sub so we can turn
14593    // X-Y -> X+~Y+1, saving one register.
14594    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14595        isa<ConstantSDNode>(Op1.getOperand(1))) {
14596      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14597      EVT VT = Op0.getValueType();
14598      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14599                                   Op1.getOperand(0),
14600                                   DAG.getConstant(~XorC, VT));
14601      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14602                         DAG.getConstant(C->getAPIntValue()+1, VT));
14603    }
14604  }
14605
14606  // Try to synthesize horizontal adds from adds of shuffles.
14607  EVT VT = N->getValueType(0);
14608  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14609       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14610      isHorizontalBinOp(Op0, Op1, true))
14611    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14612
14613  return OptimizeConditionalInDecrement(N, DAG);
14614}
14615
14616SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14617                                             DAGCombinerInfo &DCI) const {
14618  SelectionDAG &DAG = DCI.DAG;
14619  switch (N->getOpcode()) {
14620  default: break;
14621  case ISD::EXTRACT_VECTOR_ELT:
14622    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14623  case ISD::VSELECT:
14624  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
14625  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14626  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14627  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14628  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14629  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14630  case ISD::SHL:
14631  case ISD::SRA:
14632  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14633  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14634  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14635  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14636  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14637  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14638  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14639  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14640  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14641  case X86ISD::FXOR:
14642  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14643  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14644  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14645  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14646  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
14647  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14648  case X86ISD::SHUFP:       // Handle all target specific shuffles
14649  case X86ISD::PALIGN:
14650  case X86ISD::UNPCKH:
14651  case X86ISD::UNPCKL:
14652  case X86ISD::MOVHLPS:
14653  case X86ISD::MOVLHPS:
14654  case X86ISD::PSHUFD:
14655  case X86ISD::PSHUFHW:
14656  case X86ISD::PSHUFLW:
14657  case X86ISD::MOVSS:
14658  case X86ISD::MOVSD:
14659  case X86ISD::VPERMILP:
14660  case X86ISD::VPERM2X128:
14661  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14662  }
14663
14664  return SDValue();
14665}
14666
14667/// isTypeDesirableForOp - Return true if the target has native support for
14668/// the specified value type and it is 'desirable' to use the type for the
14669/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14670/// instruction encodings are longer and some i16 instructions are slow.
14671bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14672  if (!isTypeLegal(VT))
14673    return false;
14674  if (VT != MVT::i16)
14675    return true;
14676
14677  switch (Opc) {
14678  default:
14679    return true;
14680  case ISD::LOAD:
14681  case ISD::SIGN_EXTEND:
14682  case ISD::ZERO_EXTEND:
14683  case ISD::ANY_EXTEND:
14684  case ISD::SHL:
14685  case ISD::SRL:
14686  case ISD::SUB:
14687  case ISD::ADD:
14688  case ISD::MUL:
14689  case ISD::AND:
14690  case ISD::OR:
14691  case ISD::XOR:
14692    return false;
14693  }
14694}
14695
14696/// IsDesirableToPromoteOp - This method query the target whether it is
14697/// beneficial for dag combiner to promote the specified node. If true, it
14698/// should return the desired promotion type by reference.
14699bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14700  EVT VT = Op.getValueType();
14701  if (VT != MVT::i16)
14702    return false;
14703
14704  bool Promote = false;
14705  bool Commute = false;
14706  switch (Op.getOpcode()) {
14707  default: break;
14708  case ISD::LOAD: {
14709    LoadSDNode *LD = cast<LoadSDNode>(Op);
14710    // If the non-extending load has a single use and it's not live out, then it
14711    // might be folded.
14712    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14713                                                     Op.hasOneUse()*/) {
14714      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14715             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14716        // The only case where we'd want to promote LOAD (rather then it being
14717        // promoted as an operand is when it's only use is liveout.
14718        if (UI->getOpcode() != ISD::CopyToReg)
14719          return false;
14720      }
14721    }
14722    Promote = true;
14723    break;
14724  }
14725  case ISD::SIGN_EXTEND:
14726  case ISD::ZERO_EXTEND:
14727  case ISD::ANY_EXTEND:
14728    Promote = true;
14729    break;
14730  case ISD::SHL:
14731  case ISD::SRL: {
14732    SDValue N0 = Op.getOperand(0);
14733    // Look out for (store (shl (load), x)).
14734    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14735      return false;
14736    Promote = true;
14737    break;
14738  }
14739  case ISD::ADD:
14740  case ISD::MUL:
14741  case ISD::AND:
14742  case ISD::OR:
14743  case ISD::XOR:
14744    Commute = true;
14745    // fallthrough
14746  case ISD::SUB: {
14747    SDValue N0 = Op.getOperand(0);
14748    SDValue N1 = Op.getOperand(1);
14749    if (!Commute && MayFoldLoad(N1))
14750      return false;
14751    // Avoid disabling potential load folding opportunities.
14752    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14753      return false;
14754    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14755      return false;
14756    Promote = true;
14757  }
14758  }
14759
14760  PVT = MVT::i32;
14761  return Promote;
14762}
14763
14764//===----------------------------------------------------------------------===//
14765//                           X86 Inline Assembly Support
14766//===----------------------------------------------------------------------===//
14767
14768namespace {
14769  // Helper to match a string separated by whitespace.
14770  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
14771    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
14772
14773    for (unsigned i = 0, e = args.size(); i != e; ++i) {
14774      StringRef piece(*args[i]);
14775      if (!s.startswith(piece)) // Check if the piece matches.
14776        return false;
14777
14778      s = s.substr(piece.size());
14779      StringRef::size_type pos = s.find_first_not_of(" \t");
14780      if (pos == 0) // We matched a prefix.
14781        return false;
14782
14783      s = s.substr(pos);
14784    }
14785
14786    return s.empty();
14787  }
14788  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
14789}
14790
14791bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14792  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14793
14794  std::string AsmStr = IA->getAsmString();
14795
14796  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14797  if (!Ty || Ty->getBitWidth() % 16 != 0)
14798    return false;
14799
14800  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14801  SmallVector<StringRef, 4> AsmPieces;
14802  SplitString(AsmStr, AsmPieces, ";\n");
14803
14804  switch (AsmPieces.size()) {
14805  default: return false;
14806  case 1:
14807    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14808    // we will turn this bswap into something that will be lowered to logical
14809    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
14810    // lower so don't worry about this.
14811    // bswap $0
14812    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
14813        matchAsm(AsmPieces[0], "bswapl", "$0") ||
14814        matchAsm(AsmPieces[0], "bswapq", "$0") ||
14815        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
14816        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
14817        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
14818      // No need to check constraints, nothing other than the equivalent of
14819      // "=r,0" would be valid here.
14820      return IntrinsicLowering::LowerToByteSwap(CI);
14821    }
14822
14823    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14824    if (CI->getType()->isIntegerTy(16) &&
14825        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14826        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
14827         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
14828      AsmPieces.clear();
14829      const std::string &ConstraintsStr = IA->getConstraintString();
14830      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14831      std::sort(AsmPieces.begin(), AsmPieces.end());
14832      if (AsmPieces.size() == 4 &&
14833          AsmPieces[0] == "~{cc}" &&
14834          AsmPieces[1] == "~{dirflag}" &&
14835          AsmPieces[2] == "~{flags}" &&
14836          AsmPieces[3] == "~{fpsr}")
14837      return IntrinsicLowering::LowerToByteSwap(CI);
14838    }
14839    break;
14840  case 3:
14841    if (CI->getType()->isIntegerTy(32) &&
14842        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14843        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
14844        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
14845        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
14846      AsmPieces.clear();
14847      const std::string &ConstraintsStr = IA->getConstraintString();
14848      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14849      std::sort(AsmPieces.begin(), AsmPieces.end());
14850      if (AsmPieces.size() == 4 &&
14851          AsmPieces[0] == "~{cc}" &&
14852          AsmPieces[1] == "~{dirflag}" &&
14853          AsmPieces[2] == "~{flags}" &&
14854          AsmPieces[3] == "~{fpsr}")
14855        return IntrinsicLowering::LowerToByteSwap(CI);
14856    }
14857
14858    if (CI->getType()->isIntegerTy(64)) {
14859      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14860      if (Constraints.size() >= 2 &&
14861          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14862          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14863        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14864        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
14865            matchAsm(AsmPieces[1], "bswap", "%edx") &&
14866            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
14867          return IntrinsicLowering::LowerToByteSwap(CI);
14868      }
14869    }
14870    break;
14871  }
14872  return false;
14873}
14874
14875
14876
14877/// getConstraintType - Given a constraint letter, return the type of
14878/// constraint it is for this target.
14879X86TargetLowering::ConstraintType
14880X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14881  if (Constraint.size() == 1) {
14882    switch (Constraint[0]) {
14883    case 'R':
14884    case 'q':
14885    case 'Q':
14886    case 'f':
14887    case 't':
14888    case 'u':
14889    case 'y':
14890    case 'x':
14891    case 'Y':
14892    case 'l':
14893      return C_RegisterClass;
14894    case 'a':
14895    case 'b':
14896    case 'c':
14897    case 'd':
14898    case 'S':
14899    case 'D':
14900    case 'A':
14901      return C_Register;
14902    case 'I':
14903    case 'J':
14904    case 'K':
14905    case 'L':
14906    case 'M':
14907    case 'N':
14908    case 'G':
14909    case 'C':
14910    case 'e':
14911    case 'Z':
14912      return C_Other;
14913    default:
14914      break;
14915    }
14916  }
14917  return TargetLowering::getConstraintType(Constraint);
14918}
14919
14920/// Examine constraint type and operand type and determine a weight value.
14921/// This object must already have been set up with the operand type
14922/// and the current alternative constraint selected.
14923TargetLowering::ConstraintWeight
14924  X86TargetLowering::getSingleConstraintMatchWeight(
14925    AsmOperandInfo &info, const char *constraint) const {
14926  ConstraintWeight weight = CW_Invalid;
14927  Value *CallOperandVal = info.CallOperandVal;
14928    // If we don't have a value, we can't do a match,
14929    // but allow it at the lowest weight.
14930  if (CallOperandVal == NULL)
14931    return CW_Default;
14932  Type *type = CallOperandVal->getType();
14933  // Look at the constraint type.
14934  switch (*constraint) {
14935  default:
14936    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14937  case 'R':
14938  case 'q':
14939  case 'Q':
14940  case 'a':
14941  case 'b':
14942  case 'c':
14943  case 'd':
14944  case 'S':
14945  case 'D':
14946  case 'A':
14947    if (CallOperandVal->getType()->isIntegerTy())
14948      weight = CW_SpecificReg;
14949    break;
14950  case 'f':
14951  case 't':
14952  case 'u':
14953      if (type->isFloatingPointTy())
14954        weight = CW_SpecificReg;
14955      break;
14956  case 'y':
14957      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14958        weight = CW_SpecificReg;
14959      break;
14960  case 'x':
14961  case 'Y':
14962    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
14963        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
14964      weight = CW_Register;
14965    break;
14966  case 'I':
14967    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14968      if (C->getZExtValue() <= 31)
14969        weight = CW_Constant;
14970    }
14971    break;
14972  case 'J':
14973    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14974      if (C->getZExtValue() <= 63)
14975        weight = CW_Constant;
14976    }
14977    break;
14978  case 'K':
14979    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14980      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14981        weight = CW_Constant;
14982    }
14983    break;
14984  case 'L':
14985    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14986      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14987        weight = CW_Constant;
14988    }
14989    break;
14990  case 'M':
14991    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14992      if (C->getZExtValue() <= 3)
14993        weight = CW_Constant;
14994    }
14995    break;
14996  case 'N':
14997    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14998      if (C->getZExtValue() <= 0xff)
14999        weight = CW_Constant;
15000    }
15001    break;
15002  case 'G':
15003  case 'C':
15004    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15005      weight = CW_Constant;
15006    }
15007    break;
15008  case 'e':
15009    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15010      if ((C->getSExtValue() >= -0x80000000LL) &&
15011          (C->getSExtValue() <= 0x7fffffffLL))
15012        weight = CW_Constant;
15013    }
15014    break;
15015  case 'Z':
15016    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15017      if (C->getZExtValue() <= 0xffffffff)
15018        weight = CW_Constant;
15019    }
15020    break;
15021  }
15022  return weight;
15023}
15024
15025/// LowerXConstraint - try to replace an X constraint, which matches anything,
15026/// with another that has more specific requirements based on the type of the
15027/// corresponding operand.
15028const char *X86TargetLowering::
15029LowerXConstraint(EVT ConstraintVT) const {
15030  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15031  // 'f' like normal targets.
15032  if (ConstraintVT.isFloatingPoint()) {
15033    if (Subtarget->hasSSE2())
15034      return "Y";
15035    if (Subtarget->hasSSE1())
15036      return "x";
15037  }
15038
15039  return TargetLowering::LowerXConstraint(ConstraintVT);
15040}
15041
15042/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15043/// vector.  If it is invalid, don't add anything to Ops.
15044void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15045                                                     std::string &Constraint,
15046                                                     std::vector<SDValue>&Ops,
15047                                                     SelectionDAG &DAG) const {
15048  SDValue Result(0, 0);
15049
15050  // Only support length 1 constraints for now.
15051  if (Constraint.length() > 1) return;
15052
15053  char ConstraintLetter = Constraint[0];
15054  switch (ConstraintLetter) {
15055  default: break;
15056  case 'I':
15057    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15058      if (C->getZExtValue() <= 31) {
15059        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15060        break;
15061      }
15062    }
15063    return;
15064  case 'J':
15065    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15066      if (C->getZExtValue() <= 63) {
15067        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15068        break;
15069      }
15070    }
15071    return;
15072  case 'K':
15073    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15074      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15075        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15076        break;
15077      }
15078    }
15079    return;
15080  case 'N':
15081    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15082      if (C->getZExtValue() <= 255) {
15083        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15084        break;
15085      }
15086    }
15087    return;
15088  case 'e': {
15089    // 32-bit signed value
15090    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15091      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15092                                           C->getSExtValue())) {
15093        // Widen to 64 bits here to get it sign extended.
15094        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15095        break;
15096      }
15097    // FIXME gcc accepts some relocatable values here too, but only in certain
15098    // memory models; it's complicated.
15099    }
15100    return;
15101  }
15102  case 'Z': {
15103    // 32-bit unsigned value
15104    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15105      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15106                                           C->getZExtValue())) {
15107        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15108        break;
15109      }
15110    }
15111    // FIXME gcc accepts some relocatable values here too, but only in certain
15112    // memory models; it's complicated.
15113    return;
15114  }
15115  case 'i': {
15116    // Literal immediates are always ok.
15117    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15118      // Widen to 64 bits here to get it sign extended.
15119      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15120      break;
15121    }
15122
15123    // In any sort of PIC mode addresses need to be computed at runtime by
15124    // adding in a register or some sort of table lookup.  These can't
15125    // be used as immediates.
15126    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15127      return;
15128
15129    // If we are in non-pic codegen mode, we allow the address of a global (with
15130    // an optional displacement) to be used with 'i'.
15131    GlobalAddressSDNode *GA = 0;
15132    int64_t Offset = 0;
15133
15134    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15135    while (1) {
15136      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15137        Offset += GA->getOffset();
15138        break;
15139      } else if (Op.getOpcode() == ISD::ADD) {
15140        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15141          Offset += C->getZExtValue();
15142          Op = Op.getOperand(0);
15143          continue;
15144        }
15145      } else if (Op.getOpcode() == ISD::SUB) {
15146        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15147          Offset += -C->getZExtValue();
15148          Op = Op.getOperand(0);
15149          continue;
15150        }
15151      }
15152
15153      // Otherwise, this isn't something we can handle, reject it.
15154      return;
15155    }
15156
15157    const GlobalValue *GV = GA->getGlobal();
15158    // If we require an extra load to get this address, as in PIC mode, we
15159    // can't accept it.
15160    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15161                                                        getTargetMachine())))
15162      return;
15163
15164    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15165                                        GA->getValueType(0), Offset);
15166    break;
15167  }
15168  }
15169
15170  if (Result.getNode()) {
15171    Ops.push_back(Result);
15172    return;
15173  }
15174  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15175}
15176
15177std::pair<unsigned, const TargetRegisterClass*>
15178X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15179                                                EVT VT) const {
15180  // First, see if this is a constraint that directly corresponds to an LLVM
15181  // register class.
15182  if (Constraint.size() == 1) {
15183    // GCC Constraint Letters
15184    switch (Constraint[0]) {
15185    default: break;
15186      // TODO: Slight differences here in allocation order and leaving
15187      // RIP in the class. Do they matter any more here than they do
15188      // in the normal allocation?
15189    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15190      if (Subtarget->is64Bit()) {
15191	if (VT == MVT::i32 || VT == MVT::f32)
15192	  return std::make_pair(0U, X86::GR32RegisterClass);
15193	else if (VT == MVT::i16)
15194	  return std::make_pair(0U, X86::GR16RegisterClass);
15195	else if (VT == MVT::i8 || VT == MVT::i1)
15196	  return std::make_pair(0U, X86::GR8RegisterClass);
15197	else if (VT == MVT::i64 || VT == MVT::f64)
15198	  return std::make_pair(0U, X86::GR64RegisterClass);
15199	break;
15200      }
15201      // 32-bit fallthrough
15202    case 'Q':   // Q_REGS
15203      if (VT == MVT::i32 || VT == MVT::f32)
15204	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15205      else if (VT == MVT::i16)
15206	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15207      else if (VT == MVT::i8 || VT == MVT::i1)
15208	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15209      else if (VT == MVT::i64)
15210	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15211      break;
15212    case 'r':   // GENERAL_REGS
15213    case 'l':   // INDEX_REGS
15214      if (VT == MVT::i8 || VT == MVT::i1)
15215        return std::make_pair(0U, X86::GR8RegisterClass);
15216      if (VT == MVT::i16)
15217        return std::make_pair(0U, X86::GR16RegisterClass);
15218      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15219        return std::make_pair(0U, X86::GR32RegisterClass);
15220      return std::make_pair(0U, X86::GR64RegisterClass);
15221    case 'R':   // LEGACY_REGS
15222      if (VT == MVT::i8 || VT == MVT::i1)
15223        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15224      if (VT == MVT::i16)
15225        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15226      if (VT == MVT::i32 || !Subtarget->is64Bit())
15227        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15228      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15229    case 'f':  // FP Stack registers.
15230      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15231      // value to the correct fpstack register class.
15232      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15233        return std::make_pair(0U, X86::RFP32RegisterClass);
15234      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15235        return std::make_pair(0U, X86::RFP64RegisterClass);
15236      return std::make_pair(0U, X86::RFP80RegisterClass);
15237    case 'y':   // MMX_REGS if MMX allowed.
15238      if (!Subtarget->hasMMX()) break;
15239      return std::make_pair(0U, X86::VR64RegisterClass);
15240    case 'Y':   // SSE_REGS if SSE2 allowed
15241      if (!Subtarget->hasSSE2()) break;
15242      // FALL THROUGH.
15243    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15244      if (!Subtarget->hasSSE1()) break;
15245
15246      switch (VT.getSimpleVT().SimpleTy) {
15247      default: break;
15248      // Scalar SSE types.
15249      case MVT::f32:
15250      case MVT::i32:
15251        return std::make_pair(0U, X86::FR32RegisterClass);
15252      case MVT::f64:
15253      case MVT::i64:
15254        return std::make_pair(0U, X86::FR64RegisterClass);
15255      // Vector types.
15256      case MVT::v16i8:
15257      case MVT::v8i16:
15258      case MVT::v4i32:
15259      case MVT::v2i64:
15260      case MVT::v4f32:
15261      case MVT::v2f64:
15262        return std::make_pair(0U, X86::VR128RegisterClass);
15263      // AVX types.
15264      case MVT::v32i8:
15265      case MVT::v16i16:
15266      case MVT::v8i32:
15267      case MVT::v4i64:
15268      case MVT::v8f32:
15269      case MVT::v4f64:
15270        return std::make_pair(0U, X86::VR256RegisterClass);
15271
15272      }
15273      break;
15274    }
15275  }
15276
15277  // Use the default implementation in TargetLowering to convert the register
15278  // constraint into a member of a register class.
15279  std::pair<unsigned, const TargetRegisterClass*> Res;
15280  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15281
15282  // Not found as a standard register?
15283  if (Res.second == 0) {
15284    // Map st(0) -> st(7) -> ST0
15285    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15286        tolower(Constraint[1]) == 's' &&
15287        tolower(Constraint[2]) == 't' &&
15288        Constraint[3] == '(' &&
15289        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15290        Constraint[5] == ')' &&
15291        Constraint[6] == '}') {
15292
15293      Res.first = X86::ST0+Constraint[4]-'0';
15294      Res.second = X86::RFP80RegisterClass;
15295      return Res;
15296    }
15297
15298    // GCC allows "st(0)" to be called just plain "st".
15299    if (StringRef("{st}").equals_lower(Constraint)) {
15300      Res.first = X86::ST0;
15301      Res.second = X86::RFP80RegisterClass;
15302      return Res;
15303    }
15304
15305    // flags -> EFLAGS
15306    if (StringRef("{flags}").equals_lower(Constraint)) {
15307      Res.first = X86::EFLAGS;
15308      Res.second = X86::CCRRegisterClass;
15309      return Res;
15310    }
15311
15312    // 'A' means EAX + EDX.
15313    if (Constraint == "A") {
15314      Res.first = X86::EAX;
15315      Res.second = X86::GR32_ADRegisterClass;
15316      return Res;
15317    }
15318    return Res;
15319  }
15320
15321  // Otherwise, check to see if this is a register class of the wrong value
15322  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15323  // turn into {ax},{dx}.
15324  if (Res.second->hasType(VT))
15325    return Res;   // Correct type already, nothing to do.
15326
15327  // All of the single-register GCC register classes map their values onto
15328  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15329  // really want an 8-bit or 32-bit register, map to the appropriate register
15330  // class and return the appropriate register.
15331  if (Res.second == X86::GR16RegisterClass) {
15332    if (VT == MVT::i8) {
15333      unsigned DestReg = 0;
15334      switch (Res.first) {
15335      default: break;
15336      case X86::AX: DestReg = X86::AL; break;
15337      case X86::DX: DestReg = X86::DL; break;
15338      case X86::CX: DestReg = X86::CL; break;
15339      case X86::BX: DestReg = X86::BL; break;
15340      }
15341      if (DestReg) {
15342        Res.first = DestReg;
15343        Res.second = X86::GR8RegisterClass;
15344      }
15345    } else if (VT == MVT::i32) {
15346      unsigned DestReg = 0;
15347      switch (Res.first) {
15348      default: break;
15349      case X86::AX: DestReg = X86::EAX; break;
15350      case X86::DX: DestReg = X86::EDX; break;
15351      case X86::CX: DestReg = X86::ECX; break;
15352      case X86::BX: DestReg = X86::EBX; break;
15353      case X86::SI: DestReg = X86::ESI; break;
15354      case X86::DI: DestReg = X86::EDI; break;
15355      case X86::BP: DestReg = X86::EBP; break;
15356      case X86::SP: DestReg = X86::ESP; break;
15357      }
15358      if (DestReg) {
15359        Res.first = DestReg;
15360        Res.second = X86::GR32RegisterClass;
15361      }
15362    } else if (VT == MVT::i64) {
15363      unsigned DestReg = 0;
15364      switch (Res.first) {
15365      default: break;
15366      case X86::AX: DestReg = X86::RAX; break;
15367      case X86::DX: DestReg = X86::RDX; break;
15368      case X86::CX: DestReg = X86::RCX; break;
15369      case X86::BX: DestReg = X86::RBX; break;
15370      case X86::SI: DestReg = X86::RSI; break;
15371      case X86::DI: DestReg = X86::RDI; break;
15372      case X86::BP: DestReg = X86::RBP; break;
15373      case X86::SP: DestReg = X86::RSP; break;
15374      }
15375      if (DestReg) {
15376        Res.first = DestReg;
15377        Res.second = X86::GR64RegisterClass;
15378      }
15379    }
15380  } else if (Res.second == X86::FR32RegisterClass ||
15381             Res.second == X86::FR64RegisterClass ||
15382             Res.second == X86::VR128RegisterClass) {
15383    // Handle references to XMM physical registers that got mapped into the
15384    // wrong class.  This can happen with constraints like {xmm0} where the
15385    // target independent register mapper will just pick the first match it can
15386    // find, ignoring the required type.
15387    if (VT == MVT::f32)
15388      Res.second = X86::FR32RegisterClass;
15389    else if (VT == MVT::f64)
15390      Res.second = X86::FR64RegisterClass;
15391    else if (X86::VR128RegisterClass->hasType(VT))
15392      Res.second = X86::VR128RegisterClass;
15393  }
15394
15395  return Res;
15396}
15397