FunctionAttrs.cpp revision 7d2f2496c1d263eecdc104fd72e847a31d8695b9
1//===- FunctionAttrs.cpp - Pass which marks functions readnone or readonly ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a simple interprocedural pass which walks the
11// call-graph, looking for functions which do not access or only read
12// non-local memory, and marking them readnone/readonly.  In addition,
13// it marks function arguments (of pointer type) 'nocapture' if a call
14// to the function does not create any copies of the pointer value that
15// outlive the call.  This more or less means that the pointer is only
16// dereferenced, and not returned from the function or stored in a global.
17// This pass is implemented as a bottom-up traversal of the call-graph.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "functionattrs"
22#include "llvm/Transforms/IPO.h"
23#include "llvm/CallGraphSCCPass.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/CallGraph.h"
29#include "llvm/Analysis/CaptureTracking.h"
30#include "llvm/ADT/SCCIterator.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/UniqueVector.h"
34#include "llvm/Support/InstIterator.h"
35using namespace llvm;
36
37STATISTIC(NumReadNone, "Number of functions marked readnone");
38STATISTIC(NumReadOnly, "Number of functions marked readonly");
39STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
40STATISTIC(NumNoAlias, "Number of function returns marked noalias");
41
42namespace {
43  struct FunctionAttrs : public CallGraphSCCPass {
44    static char ID; // Pass identification, replacement for typeid
45    FunctionAttrs() : CallGraphSCCPass(ID), AA(0) {
46      initializeFunctionAttrsPass(*PassRegistry::getPassRegistry());
47    }
48
49    // runOnSCC - Analyze the SCC, performing the transformation if possible.
50    bool runOnSCC(CallGraphSCC &SCC);
51
52    // AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
53    bool AddReadAttrs(const CallGraphSCC &SCC);
54
55    // AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
56    bool AddNoCaptureAttrs(const CallGraphSCC &SCC);
57
58    // IsFunctionMallocLike - Does this function allocate new memory?
59    bool IsFunctionMallocLike(Function *F,
60                              SmallPtrSet<Function*, 8> &) const;
61
62    // AddNoAliasAttrs - Deduce noalias attributes for the SCC.
63    bool AddNoAliasAttrs(const CallGraphSCC &SCC);
64
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.setPreservesCFG();
67      AU.addRequired<AliasAnalysis>();
68      CallGraphSCCPass::getAnalysisUsage(AU);
69    }
70
71  private:
72    AliasAnalysis *AA;
73  };
74}
75
76char FunctionAttrs::ID = 0;
77INITIALIZE_PASS_BEGIN(FunctionAttrs, "functionattrs",
78                "Deduce function attributes", false, false)
79INITIALIZE_AG_DEPENDENCY(CallGraph)
80INITIALIZE_PASS_END(FunctionAttrs, "functionattrs",
81                "Deduce function attributes", false, false)
82
83Pass *llvm::createFunctionAttrsPass() { return new FunctionAttrs(); }
84
85
86/// AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
87bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
88  SmallPtrSet<Function*, 8> SCCNodes;
89
90  // Fill SCCNodes with the elements of the SCC.  Used for quickly
91  // looking up whether a given CallGraphNode is in this SCC.
92  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I)
93    SCCNodes.insert((*I)->getFunction());
94
95  // Check if any of the functions in the SCC read or write memory.  If they
96  // write memory then they can't be marked readnone or readonly.
97  bool ReadsMemory = false;
98  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
99    Function *F = (*I)->getFunction();
100
101    if (F == 0)
102      // External node - may write memory.  Just give up.
103      return false;
104
105    AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(F);
106    if (MRB == AliasAnalysis::DoesNotAccessMemory)
107      // Already perfect!
108      continue;
109
110    // Definitions with weak linkage may be overridden at linktime with
111    // something that writes memory, so treat them like declarations.
112    if (F->isDeclaration() || F->mayBeOverridden()) {
113      if (!AliasAnalysis::onlyReadsMemory(MRB))
114        // May write memory.  Just give up.
115        return false;
116
117      ReadsMemory = true;
118      continue;
119    }
120
121    // Scan the function body for instructions that may read or write memory.
122    for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
123      Instruction *I = &*II;
124
125      // Some instructions can be ignored even if they read or write memory.
126      // Detect these now, skipping to the next instruction if one is found.
127      CallSite CS(cast<Value>(I));
128      if (CS) {
129        // Ignore calls to functions in the same SCC.
130        if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
131          continue;
132        AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(CS);
133        // If the call doesn't access arbitrary memory, we may be able to
134        // figure out something.
135        if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
136          // If the call does access argument pointees, check each argument.
137          if (AliasAnalysis::doesAccessArgPointees(MRB))
138            // Check whether all pointer arguments point to local memory, and
139            // ignore calls that only access local memory.
140            for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
141                 CI != CE; ++CI) {
142              Value *Arg = *CI;
143              if (Arg->getType()->isPointerTy()) {
144                AliasAnalysis::Location Loc(Arg,
145                                            AliasAnalysis::UnknownSize,
146                                            I->getMetadata(LLVMContext::MD_tbaa));
147                if (!AA->pointsToConstantMemory(Loc, /*OrLocal=*/true)) {
148                  if (MRB & AliasAnalysis::Mod)
149                    // Writes non-local memory.  Give up.
150                    return false;
151                  if (MRB & AliasAnalysis::Ref)
152                    // Ok, it reads non-local memory.
153                    ReadsMemory = true;
154                }
155              }
156            }
157          continue;
158        }
159        // The call could access any memory. If that includes writes, give up.
160        if (MRB & AliasAnalysis::Mod)
161          return false;
162        // If it reads, note it.
163        if (MRB & AliasAnalysis::Ref)
164          ReadsMemory = true;
165        continue;
166      } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
167        // Ignore non-volatile loads from local memory. (Atomic is okay here.)
168        if (!LI->isVolatile()) {
169          AliasAnalysis::Location Loc = AA->getLocation(LI);
170          if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
171            continue;
172        }
173      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
174        // Ignore non-volatile stores to local memory. (Atomic is okay here.)
175        if (!SI->isVolatile()) {
176          AliasAnalysis::Location Loc = AA->getLocation(SI);
177          if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
178            continue;
179        }
180      } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
181        // Ignore vaargs on local memory.
182        AliasAnalysis::Location Loc = AA->getLocation(VI);
183        if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
184          continue;
185      }
186
187      // Any remaining instructions need to be taken seriously!  Check if they
188      // read or write memory.
189      if (I->mayWriteToMemory())
190        // Writes memory.  Just give up.
191        return false;
192
193      // If this instruction may read memory, remember that.
194      ReadsMemory |= I->mayReadFromMemory();
195    }
196  }
197
198  // Success!  Functions in this SCC do not access memory, or only read memory.
199  // Give them the appropriate attribute.
200  bool MadeChange = false;
201  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
202    Function *F = (*I)->getFunction();
203
204    if (F->doesNotAccessMemory())
205      // Already perfect!
206      continue;
207
208    if (F->onlyReadsMemory() && ReadsMemory)
209      // No change.
210      continue;
211
212    MadeChange = true;
213
214    // Clear out any existing attributes.
215    Attributes::Builder B;
216    B.addAttribute(Attributes::ReadOnly)
217      .addAttribute(Attributes::ReadNone);
218    F->removeAttribute(~0, Attributes::get(B));
219
220    // Add in the new attribute.
221    B.clear();
222    B.addAttribute(ReadsMemory ? Attributes::ReadOnly : Attributes::ReadNone);
223    F->addAttribute(~0, Attributes::get(B));
224
225    if (ReadsMemory)
226      ++NumReadOnly;
227    else
228      ++NumReadNone;
229  }
230
231  return MadeChange;
232}
233
234namespace {
235  // For a given pointer Argument, this retains a list of Arguments of functions
236  // in the same SCC that the pointer data flows into. We use this to build an
237  // SCC of the arguments.
238  struct ArgumentGraphNode {
239    Argument *Definition;
240    SmallVector<ArgumentGraphNode*, 4> Uses;
241  };
242
243  class ArgumentGraph {
244    // We store pointers to ArgumentGraphNode objects, so it's important that
245    // that they not move around upon insert.
246    typedef std::map<Argument*, ArgumentGraphNode> ArgumentMapTy;
247
248    ArgumentMapTy ArgumentMap;
249
250    // There is no root node for the argument graph, in fact:
251    //   void f(int *x, int *y) { if (...) f(x, y); }
252    // is an example where the graph is disconnected. The SCCIterator requires a
253    // single entry point, so we maintain a fake ("synthetic") root node that
254    // uses every node. Because the graph is directed and nothing points into
255    // the root, it will not participate in any SCCs (except for its own).
256    ArgumentGraphNode SyntheticRoot;
257
258  public:
259    ArgumentGraph() { SyntheticRoot.Definition = 0; }
260
261    typedef SmallVectorImpl<ArgumentGraphNode*>::iterator iterator;
262
263    iterator begin() { return SyntheticRoot.Uses.begin(); }
264    iterator end() { return SyntheticRoot.Uses.end(); }
265    ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
266
267    ArgumentGraphNode *operator[](Argument *A) {
268      ArgumentGraphNode &Node = ArgumentMap[A];
269      Node.Definition = A;
270      SyntheticRoot.Uses.push_back(&Node);
271      return &Node;
272    }
273  };
274
275  // This tracker checks whether callees are in the SCC, and if so it does not
276  // consider that a capture, instead adding it to the "Uses" list and
277  // continuing with the analysis.
278  struct ArgumentUsesTracker : public CaptureTracker {
279    ArgumentUsesTracker(const SmallPtrSet<Function*, 8> &SCCNodes)
280      : Captured(false), SCCNodes(SCCNodes) {}
281
282    void tooManyUses() { Captured = true; }
283
284    bool captured(Use *U) {
285      CallSite CS(U->getUser());
286      if (!CS.getInstruction()) { Captured = true; return true; }
287
288      Function *F = CS.getCalledFunction();
289      if (!F || !SCCNodes.count(F)) { Captured = true; return true; }
290
291      Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
292      for (CallSite::arg_iterator PI = CS.arg_begin(), PE = CS.arg_end();
293           PI != PE; ++PI, ++AI) {
294        if (AI == AE) {
295          assert(F->isVarArg() && "More params than args in non-varargs call");
296          Captured = true;
297          return true;
298        }
299        if (PI == U) {
300          Uses.push_back(AI);
301          break;
302        }
303      }
304      assert(!Uses.empty() && "Capturing call-site captured nothing?");
305      return false;
306    }
307
308    bool Captured;  // True only if certainly captured (used outside our SCC).
309    SmallVector<Argument*, 4> Uses;  // Uses within our SCC.
310
311    const SmallPtrSet<Function*, 8> &SCCNodes;
312  };
313}
314
315namespace llvm {
316  template<> struct GraphTraits<ArgumentGraphNode*> {
317    typedef ArgumentGraphNode NodeType;
318    typedef SmallVectorImpl<ArgumentGraphNode*>::iterator ChildIteratorType;
319
320    static inline NodeType *getEntryNode(NodeType *A) { return A; }
321    static inline ChildIteratorType child_begin(NodeType *N) {
322      return N->Uses.begin();
323    }
324    static inline ChildIteratorType child_end(NodeType *N) {
325      return N->Uses.end();
326    }
327  };
328  template<> struct GraphTraits<ArgumentGraph*>
329    : public GraphTraits<ArgumentGraphNode*> {
330    static NodeType *getEntryNode(ArgumentGraph *AG) {
331      return AG->getEntryNode();
332    }
333    static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
334      return AG->begin();
335    }
336    static ChildIteratorType nodes_end(ArgumentGraph *AG) {
337      return AG->end();
338    }
339  };
340}
341
342/// AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
343bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
344  bool Changed = false;
345
346  SmallPtrSet<Function*, 8> SCCNodes;
347
348  // Fill SCCNodes with the elements of the SCC.  Used for quickly
349  // looking up whether a given CallGraphNode is in this SCC.
350  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
351    Function *F = (*I)->getFunction();
352    if (F && !F->isDeclaration() && !F->mayBeOverridden())
353      SCCNodes.insert(F);
354  }
355
356  ArgumentGraph AG;
357
358  Attributes::Builder B;
359  B.addAttribute(Attributes::NoCapture);
360
361  // Check each function in turn, determining which pointer arguments are not
362  // captured.
363  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
364    Function *F = (*I)->getFunction();
365
366    if (F == 0)
367      // External node - only a problem for arguments that we pass to it.
368      continue;
369
370    // Definitions with weak linkage may be overridden at linktime with
371    // something that captures pointers, so treat them like declarations.
372    if (F->isDeclaration() || F->mayBeOverridden())
373      continue;
374
375    // Functions that are readonly (or readnone) and nounwind and don't return
376    // a value can't capture arguments. Don't analyze them.
377    if (F->onlyReadsMemory() && F->doesNotThrow() &&
378        F->getReturnType()->isVoidTy()) {
379      for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end();
380           A != E; ++A) {
381        if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
382          A->addAttr(Attributes::get(B));
383          ++NumNoCapture;
384          Changed = true;
385        }
386      }
387      continue;
388    }
389
390    for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A!=E; ++A)
391      if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
392        ArgumentUsesTracker Tracker(SCCNodes);
393        PointerMayBeCaptured(A, &Tracker);
394        if (!Tracker.Captured) {
395          if (Tracker.Uses.empty()) {
396            // If it's trivially not captured, mark it nocapture now.
397            A->addAttr(Attributes::get(B));
398            ++NumNoCapture;
399            Changed = true;
400          } else {
401            // If it's not trivially captured and not trivially not captured,
402            // then it must be calling into another function in our SCC. Save
403            // its particulars for Argument-SCC analysis later.
404            ArgumentGraphNode *Node = AG[A];
405            for (SmallVectorImpl<Argument*>::iterator UI = Tracker.Uses.begin(),
406                   UE = Tracker.Uses.end(); UI != UE; ++UI)
407              Node->Uses.push_back(AG[*UI]);
408          }
409        }
410        // Otherwise, it's captured. Don't bother doing SCC analysis on it.
411      }
412  }
413
414  // The graph we've collected is partial because we stopped scanning for
415  // argument uses once we solved the argument trivially. These partial nodes
416  // show up as ArgumentGraphNode objects with an empty Uses list, and for
417  // these nodes the final decision about whether they capture has already been
418  // made.  If the definition doesn't have a 'nocapture' attribute by now, it
419  // captures.
420
421  for (scc_iterator<ArgumentGraph*> I = scc_begin(&AG), E = scc_end(&AG);
422       I != E; ++I) {
423    std::vector<ArgumentGraphNode*> &ArgumentSCC = *I;
424    if (ArgumentSCC.size() == 1) {
425      if (!ArgumentSCC[0]->Definition) continue;  // synthetic root node
426
427      // eg. "void f(int* x) { if (...) f(x); }"
428      if (ArgumentSCC[0]->Uses.size() == 1 &&
429          ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
430        ArgumentSCC[0]->Definition->addAttr(Attributes::get(B));
431        ++NumNoCapture;
432        Changed = true;
433      }
434      continue;
435    }
436
437    bool SCCCaptured = false;
438    for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
439           E = ArgumentSCC.end(); I != E && !SCCCaptured; ++I) {
440      ArgumentGraphNode *Node = *I;
441      if (Node->Uses.empty()) {
442        if (!Node->Definition->hasNoCaptureAttr())
443          SCCCaptured = true;
444      }
445    }
446    if (SCCCaptured) continue;
447
448    SmallPtrSet<Argument*, 8> ArgumentSCCNodes;
449    // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
450    // quickly looking up whether a given Argument is in this ArgumentSCC.
451    for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
452           E = ArgumentSCC.end(); I != E; ++I) {
453      ArgumentSCCNodes.insert((*I)->Definition);
454    }
455
456    for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
457           E = ArgumentSCC.end(); I != E && !SCCCaptured; ++I) {
458      ArgumentGraphNode *N = *I;
459      for (SmallVectorImpl<ArgumentGraphNode*>::iterator UI = N->Uses.begin(),
460             UE = N->Uses.end(); UI != UE; ++UI) {
461        Argument *A = (*UI)->Definition;
462        if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
463          continue;
464        SCCCaptured = true;
465        break;
466      }
467    }
468    if (SCCCaptured) continue;
469
470    for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
471      Argument *A = ArgumentSCC[i]->Definition;
472      A->addAttr(Attributes::get(B));
473      ++NumNoCapture;
474      Changed = true;
475    }
476  }
477
478  return Changed;
479}
480
481/// IsFunctionMallocLike - A function is malloc-like if it returns either null
482/// or a pointer that doesn't alias any other pointer visible to the caller.
483bool FunctionAttrs::IsFunctionMallocLike(Function *F,
484                              SmallPtrSet<Function*, 8> &SCCNodes) const {
485  UniqueVector<Value *> FlowsToReturn;
486  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
487    if (ReturnInst *Ret = dyn_cast<ReturnInst>(I->getTerminator()))
488      FlowsToReturn.insert(Ret->getReturnValue());
489
490  for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
491    Value *RetVal = FlowsToReturn[i+1];   // UniqueVector[0] is reserved.
492
493    if (Constant *C = dyn_cast<Constant>(RetVal)) {
494      if (!C->isNullValue() && !isa<UndefValue>(C))
495        return false;
496
497      continue;
498    }
499
500    if (isa<Argument>(RetVal))
501      return false;
502
503    if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
504      switch (RVI->getOpcode()) {
505        // Extend the analysis by looking upwards.
506        case Instruction::BitCast:
507        case Instruction::GetElementPtr:
508          FlowsToReturn.insert(RVI->getOperand(0));
509          continue;
510        case Instruction::Select: {
511          SelectInst *SI = cast<SelectInst>(RVI);
512          FlowsToReturn.insert(SI->getTrueValue());
513          FlowsToReturn.insert(SI->getFalseValue());
514          continue;
515        }
516        case Instruction::PHI: {
517          PHINode *PN = cast<PHINode>(RVI);
518          for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
519            FlowsToReturn.insert(PN->getIncomingValue(i));
520          continue;
521        }
522
523        // Check whether the pointer came from an allocation.
524        case Instruction::Alloca:
525          break;
526        case Instruction::Call:
527        case Instruction::Invoke: {
528          CallSite CS(RVI);
529          if (CS.paramHasAttr(0, Attributes::NoAlias))
530            break;
531          if (CS.getCalledFunction() &&
532              SCCNodes.count(CS.getCalledFunction()))
533            break;
534        } // fall-through
535        default:
536          return false;  // Did not come from an allocation.
537      }
538
539    if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
540      return false;
541  }
542
543  return true;
544}
545
546/// AddNoAliasAttrs - Deduce noalias attributes for the SCC.
547bool FunctionAttrs::AddNoAliasAttrs(const CallGraphSCC &SCC) {
548  SmallPtrSet<Function*, 8> SCCNodes;
549
550  // Fill SCCNodes with the elements of the SCC.  Used for quickly
551  // looking up whether a given CallGraphNode is in this SCC.
552  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I)
553    SCCNodes.insert((*I)->getFunction());
554
555  // Check each function in turn, determining which functions return noalias
556  // pointers.
557  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
558    Function *F = (*I)->getFunction();
559
560    if (F == 0)
561      // External node - skip it;
562      return false;
563
564    // Already noalias.
565    if (F->doesNotAlias(0))
566      continue;
567
568    // Definitions with weak linkage may be overridden at linktime, so
569    // treat them like declarations.
570    if (F->isDeclaration() || F->mayBeOverridden())
571      return false;
572
573    // We annotate noalias return values, which are only applicable to
574    // pointer types.
575    if (!F->getReturnType()->isPointerTy())
576      continue;
577
578    if (!IsFunctionMallocLike(F, SCCNodes))
579      return false;
580  }
581
582  bool MadeChange = false;
583  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
584    Function *F = (*I)->getFunction();
585    if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
586      continue;
587
588    F->setDoesNotAlias(0);
589    ++NumNoAlias;
590    MadeChange = true;
591  }
592
593  return MadeChange;
594}
595
596bool FunctionAttrs::runOnSCC(CallGraphSCC &SCC) {
597  AA = &getAnalysis<AliasAnalysis>();
598
599  bool Changed = AddReadAttrs(SCC);
600  Changed |= AddNoCaptureAttrs(SCC);
601  Changed |= AddNoAliasAttrs(SCC);
602  return Changed;
603}
604