FunctionAttrs.cpp revision de2d8694e25a814696358e95141f4b1aa4d8847e
1//===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// This file implements interprocedural passes which walk the
12/// call-graph deducing and/or propagating function attributes.
13///
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/IPO/FunctionAttrs.h"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/ADT/SCCIterator.h"
19#include "llvm/ADT/SetVector.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/ADT/StringSwitch.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/AssumptionCache.h"
25#include "llvm/Analysis/BasicAliasAnalysis.h"
26#include "llvm/Analysis/CallGraph.h"
27#include "llvm/Analysis/CallGraphSCCPass.h"
28#include "llvm/Analysis/CaptureTracking.h"
29#include "llvm/Analysis/TargetLibraryInfo.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/InstIterator.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Analysis/TargetLibraryInfo.h"
38using namespace llvm;
39
40#define DEBUG_TYPE "functionattrs"
41
42STATISTIC(NumReadNone, "Number of functions marked readnone");
43STATISTIC(NumReadOnly, "Number of functions marked readonly");
44STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
45STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
46STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
47STATISTIC(NumNoAlias, "Number of function returns marked noalias");
48STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
49STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
50
51namespace {
52typedef SmallSetVector<Function *, 8> SCCNodeSet;
53}
54
55namespace {
56/// The three kinds of memory access relevant to 'readonly' and
57/// 'readnone' attributes.
58enum MemoryAccessKind {
59  MAK_ReadNone = 0,
60  MAK_ReadOnly = 1,
61  MAK_MayWrite = 2
62};
63}
64
65static MemoryAccessKind checkFunctionMemoryAccess(Function &F, AAResults &AAR,
66                                                  const SCCNodeSet &SCCNodes) {
67  FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
68  if (MRB == FMRB_DoesNotAccessMemory)
69    // Already perfect!
70    return MAK_ReadNone;
71
72  // Non-exact function definitions may not be selected at link time, and an
73  // alternative version that writes to memory may be selected.  See the comment
74  // on GlobalValue::isDefinitionExact for more details.
75  if (!F.hasExactDefinition()) {
76    if (AliasAnalysis::onlyReadsMemory(MRB))
77      return MAK_ReadOnly;
78
79    // Conservatively assume it writes to memory.
80    return MAK_MayWrite;
81  }
82
83  // Scan the function body for instructions that may read or write memory.
84  bool ReadsMemory = false;
85  for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
86    Instruction *I = &*II;
87
88    // Some instructions can be ignored even if they read or write memory.
89    // Detect these now, skipping to the next instruction if one is found.
90    CallSite CS(cast<Value>(I));
91    if (CS) {
92      // Ignore calls to functions in the same SCC, as long as the call sites
93      // don't have operand bundles.  Calls with operand bundles are allowed to
94      // have memory effects not described by the memory effects of the call
95      // target.
96      if (!CS.hasOperandBundles() && CS.getCalledFunction() &&
97          SCCNodes.count(CS.getCalledFunction()))
98        continue;
99      FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS);
100
101      // If the call doesn't access memory, we're done.
102      if (!(MRB & MRI_ModRef))
103        continue;
104
105      if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
106        // The call could access any memory. If that includes writes, give up.
107        if (MRB & MRI_Mod)
108          return MAK_MayWrite;
109        // If it reads, note it.
110        if (MRB & MRI_Ref)
111          ReadsMemory = true;
112        continue;
113      }
114
115      // Check whether all pointer arguments point to local memory, and
116      // ignore calls that only access local memory.
117      for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
118           CI != CE; ++CI) {
119        Value *Arg = *CI;
120        if (!Arg->getType()->isPtrOrPtrVectorTy())
121          continue;
122
123        AAMDNodes AAInfo;
124        I->getAAMetadata(AAInfo);
125        MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo);
126
127        // Skip accesses to local or constant memory as they don't impact the
128        // externally visible mod/ref behavior.
129        if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
130          continue;
131
132        if (MRB & MRI_Mod)
133          // Writes non-local memory.  Give up.
134          return MAK_MayWrite;
135        if (MRB & MRI_Ref)
136          // Ok, it reads non-local memory.
137          ReadsMemory = true;
138      }
139      continue;
140    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
141      // Ignore non-volatile loads from local memory. (Atomic is okay here.)
142      if (!LI->isVolatile()) {
143        MemoryLocation Loc = MemoryLocation::get(LI);
144        if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
145          continue;
146      }
147    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
148      // Ignore non-volatile stores to local memory. (Atomic is okay here.)
149      if (!SI->isVolatile()) {
150        MemoryLocation Loc = MemoryLocation::get(SI);
151        if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
152          continue;
153      }
154    } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
155      // Ignore vaargs on local memory.
156      MemoryLocation Loc = MemoryLocation::get(VI);
157      if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
158        continue;
159    }
160
161    // Any remaining instructions need to be taken seriously!  Check if they
162    // read or write memory.
163    if (I->mayWriteToMemory())
164      // Writes memory.  Just give up.
165      return MAK_MayWrite;
166
167    // If this instruction may read memory, remember that.
168    ReadsMemory |= I->mayReadFromMemory();
169  }
170
171  return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
172}
173
174/// Deduce readonly/readnone attributes for the SCC.
175template <typename AARGetterT>
176static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT AARGetter) {
177  // Check if any of the functions in the SCC read or write memory.  If they
178  // write memory then they can't be marked readnone or readonly.
179  bool ReadsMemory = false;
180  for (Function *F : SCCNodes) {
181    // Call the callable parameter to look up AA results for this function.
182    AAResults &AAR = AARGetter(*F);
183
184    switch (checkFunctionMemoryAccess(*F, AAR, SCCNodes)) {
185    case MAK_MayWrite:
186      return false;
187    case MAK_ReadOnly:
188      ReadsMemory = true;
189      break;
190    case MAK_ReadNone:
191      // Nothing to do!
192      break;
193    }
194  }
195
196  // Success!  Functions in this SCC do not access memory, or only read memory.
197  // Give them the appropriate attribute.
198  bool MadeChange = false;
199  for (Function *F : SCCNodes) {
200    if (F->doesNotAccessMemory())
201      // Already perfect!
202      continue;
203
204    if (F->onlyReadsMemory() && ReadsMemory)
205      // No change.
206      continue;
207
208    MadeChange = true;
209
210    // Clear out any existing attributes.
211    AttrBuilder B;
212    B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
213    F->removeAttributes(
214        AttributeSet::FunctionIndex,
215        AttributeSet::get(F->getContext(), AttributeSet::FunctionIndex, B));
216
217    // Add in the new attribute.
218    F->addAttribute(AttributeSet::FunctionIndex,
219                    ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
220
221    if (ReadsMemory)
222      ++NumReadOnly;
223    else
224      ++NumReadNone;
225  }
226
227  return MadeChange;
228}
229
230namespace {
231/// For a given pointer Argument, this retains a list of Arguments of functions
232/// in the same SCC that the pointer data flows into. We use this to build an
233/// SCC of the arguments.
234struct ArgumentGraphNode {
235  Argument *Definition;
236  SmallVector<ArgumentGraphNode *, 4> Uses;
237};
238
239class ArgumentGraph {
240  // We store pointers to ArgumentGraphNode objects, so it's important that
241  // that they not move around upon insert.
242  typedef std::map<Argument *, ArgumentGraphNode> ArgumentMapTy;
243
244  ArgumentMapTy ArgumentMap;
245
246  // There is no root node for the argument graph, in fact:
247  //   void f(int *x, int *y) { if (...) f(x, y); }
248  // is an example where the graph is disconnected. The SCCIterator requires a
249  // single entry point, so we maintain a fake ("synthetic") root node that
250  // uses every node. Because the graph is directed and nothing points into
251  // the root, it will not participate in any SCCs (except for its own).
252  ArgumentGraphNode SyntheticRoot;
253
254public:
255  ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
256
257  typedef SmallVectorImpl<ArgumentGraphNode *>::iterator iterator;
258
259  iterator begin() { return SyntheticRoot.Uses.begin(); }
260  iterator end() { return SyntheticRoot.Uses.end(); }
261  ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
262
263  ArgumentGraphNode *operator[](Argument *A) {
264    ArgumentGraphNode &Node = ArgumentMap[A];
265    Node.Definition = A;
266    SyntheticRoot.Uses.push_back(&Node);
267    return &Node;
268  }
269};
270
271/// This tracker checks whether callees are in the SCC, and if so it does not
272/// consider that a capture, instead adding it to the "Uses" list and
273/// continuing with the analysis.
274struct ArgumentUsesTracker : public CaptureTracker {
275  ArgumentUsesTracker(const SCCNodeSet &SCCNodes)
276      : Captured(false), SCCNodes(SCCNodes) {}
277
278  void tooManyUses() override { Captured = true; }
279
280  bool captured(const Use *U) override {
281    CallSite CS(U->getUser());
282    if (!CS.getInstruction()) {
283      Captured = true;
284      return true;
285    }
286
287    Function *F = CS.getCalledFunction();
288    if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
289      Captured = true;
290      return true;
291    }
292
293    // Note: the callee and the two successor blocks *follow* the argument
294    // operands.  This means there is no need to adjust UseIndex to account for
295    // these.
296
297    unsigned UseIndex =
298        std::distance(const_cast<const Use *>(CS.arg_begin()), U);
299
300    assert(UseIndex < CS.data_operands_size() &&
301           "Indirect function calls should have been filtered above!");
302
303    if (UseIndex >= CS.getNumArgOperands()) {
304      // Data operand, but not a argument operand -- must be a bundle operand
305      assert(CS.hasOperandBundles() && "Must be!");
306
307      // CaptureTracking told us that we're being captured by an operand bundle
308      // use.  In this case it does not matter if the callee is within our SCC
309      // or not -- we've been captured in some unknown way, and we have to be
310      // conservative.
311      Captured = true;
312      return true;
313    }
314
315    if (UseIndex >= F->arg_size()) {
316      assert(F->isVarArg() && "More params than args in non-varargs call");
317      Captured = true;
318      return true;
319    }
320
321    Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
322    return false;
323  }
324
325  bool Captured; // True only if certainly captured (used outside our SCC).
326  SmallVector<Argument *, 4> Uses; // Uses within our SCC.
327
328  const SCCNodeSet &SCCNodes;
329};
330}
331
332namespace llvm {
333template <> struct GraphTraits<ArgumentGraphNode *> {
334  typedef ArgumentGraphNode NodeType;
335  typedef SmallVectorImpl<ArgumentGraphNode *>::iterator ChildIteratorType;
336
337  static inline NodeType *getEntryNode(NodeType *A) { return A; }
338  static inline ChildIteratorType child_begin(NodeType *N) {
339    return N->Uses.begin();
340  }
341  static inline ChildIteratorType child_end(NodeType *N) {
342    return N->Uses.end();
343  }
344};
345template <>
346struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
347  static NodeType *getEntryNode(ArgumentGraph *AG) {
348    return AG->getEntryNode();
349  }
350  static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
351    return AG->begin();
352  }
353  static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
354};
355}
356
357/// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
358static Attribute::AttrKind
359determinePointerReadAttrs(Argument *A,
360                          const SmallPtrSet<Argument *, 8> &SCCNodes) {
361
362  SmallVector<Use *, 32> Worklist;
363  SmallSet<Use *, 32> Visited;
364
365  // inalloca arguments are always clobbered by the call.
366  if (A->hasInAllocaAttr())
367    return Attribute::None;
368
369  bool IsRead = false;
370  // We don't need to track IsWritten. If A is written to, return immediately.
371
372  for (Use &U : A->uses()) {
373    Visited.insert(&U);
374    Worklist.push_back(&U);
375  }
376
377  while (!Worklist.empty()) {
378    Use *U = Worklist.pop_back_val();
379    Instruction *I = cast<Instruction>(U->getUser());
380
381    switch (I->getOpcode()) {
382    case Instruction::BitCast:
383    case Instruction::GetElementPtr:
384    case Instruction::PHI:
385    case Instruction::Select:
386    case Instruction::AddrSpaceCast:
387      // The original value is not read/written via this if the new value isn't.
388      for (Use &UU : I->uses())
389        if (Visited.insert(&UU).second)
390          Worklist.push_back(&UU);
391      break;
392
393    case Instruction::Call:
394    case Instruction::Invoke: {
395      bool Captures = true;
396
397      if (I->getType()->isVoidTy())
398        Captures = false;
399
400      auto AddUsersToWorklistIfCapturing = [&] {
401        if (Captures)
402          for (Use &UU : I->uses())
403            if (Visited.insert(&UU).second)
404              Worklist.push_back(&UU);
405      };
406
407      CallSite CS(I);
408      if (CS.doesNotAccessMemory()) {
409        AddUsersToWorklistIfCapturing();
410        continue;
411      }
412
413      Function *F = CS.getCalledFunction();
414      if (!F) {
415        if (CS.onlyReadsMemory()) {
416          IsRead = true;
417          AddUsersToWorklistIfCapturing();
418          continue;
419        }
420        return Attribute::None;
421      }
422
423      // Note: the callee and the two successor blocks *follow* the argument
424      // operands.  This means there is no need to adjust UseIndex to account
425      // for these.
426
427      unsigned UseIndex = std::distance(CS.arg_begin(), U);
428
429      // U cannot be the callee operand use: since we're exploring the
430      // transitive uses of an Argument, having such a use be a callee would
431      // imply the CallSite is an indirect call or invoke; and we'd take the
432      // early exit above.
433      assert(UseIndex < CS.data_operands_size() &&
434             "Data operand use expected!");
435
436      bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
437
438      if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
439        assert(F->isVarArg() && "More params than args in non-varargs call");
440        return Attribute::None;
441      }
442
443      Captures &= !CS.doesNotCapture(UseIndex);
444
445      // Since the optimizer (by design) cannot see the data flow corresponding
446      // to a operand bundle use, these cannot participate in the optimistic SCC
447      // analysis.  Instead, we model the operand bundle uses as arguments in
448      // call to a function external to the SCC.
449      if (!SCCNodes.count(&*std::next(F->arg_begin(), UseIndex)) ||
450          IsOperandBundleUse) {
451
452        // The accessors used on CallSite here do the right thing for calls and
453        // invokes with operand bundles.
454
455        if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
456          return Attribute::None;
457        if (!CS.doesNotAccessMemory(UseIndex))
458          IsRead = true;
459      }
460
461      AddUsersToWorklistIfCapturing();
462      break;
463    }
464
465    case Instruction::Load:
466      // A volatile load has side effects beyond what readonly can be relied
467      // upon.
468      if (cast<LoadInst>(I)->isVolatile())
469        return Attribute::None;
470
471      IsRead = true;
472      break;
473
474    case Instruction::ICmp:
475    case Instruction::Ret:
476      break;
477
478    default:
479      return Attribute::None;
480    }
481  }
482
483  return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
484}
485
486/// Deduce nocapture attributes for the SCC.
487static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
488  bool Changed = false;
489
490  ArgumentGraph AG;
491
492  AttrBuilder B;
493  B.addAttribute(Attribute::NoCapture);
494
495  // Check each function in turn, determining which pointer arguments are not
496  // captured.
497  for (Function *F : SCCNodes) {
498    // We can infer and propagate function attributes only when we know that the
499    // definition we'll get at link time is *exactly* the definition we see now.
500    // For more details, see GlobalValue::mayBeDerefined.
501    if (!F->hasExactDefinition())
502      continue;
503
504    // Functions that are readonly (or readnone) and nounwind and don't return
505    // a value can't capture arguments. Don't analyze them.
506    if (F->onlyReadsMemory() && F->doesNotThrow() &&
507        F->getReturnType()->isVoidTy()) {
508      for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
509           ++A) {
510        if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
511          A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
512          ++NumNoCapture;
513          Changed = true;
514        }
515      }
516      continue;
517    }
518
519    for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
520         ++A) {
521      if (!A->getType()->isPointerTy())
522        continue;
523      bool HasNonLocalUses = false;
524      if (!A->hasNoCaptureAttr()) {
525        ArgumentUsesTracker Tracker(SCCNodes);
526        PointerMayBeCaptured(&*A, &Tracker);
527        if (!Tracker.Captured) {
528          if (Tracker.Uses.empty()) {
529            // If it's trivially not captured, mark it nocapture now.
530            A->addAttr(
531                AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
532            ++NumNoCapture;
533            Changed = true;
534          } else {
535            // If it's not trivially captured and not trivially not captured,
536            // then it must be calling into another function in our SCC. Save
537            // its particulars for Argument-SCC analysis later.
538            ArgumentGraphNode *Node = AG[&*A];
539            for (Argument *Use : Tracker.Uses) {
540              Node->Uses.push_back(AG[Use]);
541              if (Use != &*A)
542                HasNonLocalUses = true;
543            }
544          }
545        }
546        // Otherwise, it's captured. Don't bother doing SCC analysis on it.
547      }
548      if (!HasNonLocalUses && !A->onlyReadsMemory()) {
549        // Can we determine that it's readonly/readnone without doing an SCC?
550        // Note that we don't allow any calls at all here, or else our result
551        // will be dependent on the iteration order through the functions in the
552        // SCC.
553        SmallPtrSet<Argument *, 8> Self;
554        Self.insert(&*A);
555        Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
556        if (R != Attribute::None) {
557          AttrBuilder B;
558          B.addAttribute(R);
559          A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
560          Changed = true;
561          R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
562        }
563      }
564    }
565  }
566
567  // The graph we've collected is partial because we stopped scanning for
568  // argument uses once we solved the argument trivially. These partial nodes
569  // show up as ArgumentGraphNode objects with an empty Uses list, and for
570  // these nodes the final decision about whether they capture has already been
571  // made.  If the definition doesn't have a 'nocapture' attribute by now, it
572  // captures.
573
574  for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
575    const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
576    if (ArgumentSCC.size() == 1) {
577      if (!ArgumentSCC[0]->Definition)
578        continue; // synthetic root node
579
580      // eg. "void f(int* x) { if (...) f(x); }"
581      if (ArgumentSCC[0]->Uses.size() == 1 &&
582          ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
583        Argument *A = ArgumentSCC[0]->Definition;
584        A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
585        ++NumNoCapture;
586        Changed = true;
587      }
588      continue;
589    }
590
591    bool SCCCaptured = false;
592    for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
593         I != E && !SCCCaptured; ++I) {
594      ArgumentGraphNode *Node = *I;
595      if (Node->Uses.empty()) {
596        if (!Node->Definition->hasNoCaptureAttr())
597          SCCCaptured = true;
598      }
599    }
600    if (SCCCaptured)
601      continue;
602
603    SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
604    // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
605    // quickly looking up whether a given Argument is in this ArgumentSCC.
606    for (ArgumentGraphNode *I : ArgumentSCC) {
607      ArgumentSCCNodes.insert(I->Definition);
608    }
609
610    for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
611         I != E && !SCCCaptured; ++I) {
612      ArgumentGraphNode *N = *I;
613      for (ArgumentGraphNode *Use : N->Uses) {
614        Argument *A = Use->Definition;
615        if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
616          continue;
617        SCCCaptured = true;
618        break;
619      }
620    }
621    if (SCCCaptured)
622      continue;
623
624    for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
625      Argument *A = ArgumentSCC[i]->Definition;
626      A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
627      ++NumNoCapture;
628      Changed = true;
629    }
630
631    // We also want to compute readonly/readnone. With a small number of false
632    // negatives, we can assume that any pointer which is captured isn't going
633    // to be provably readonly or readnone, since by definition we can't
634    // analyze all uses of a captured pointer.
635    //
636    // The false negatives happen when the pointer is captured by a function
637    // that promises readonly/readnone behaviour on the pointer, then the
638    // pointer's lifetime ends before anything that writes to arbitrary memory.
639    // Also, a readonly/readnone pointer may be returned, but returning a
640    // pointer is capturing it.
641
642    Attribute::AttrKind ReadAttr = Attribute::ReadNone;
643    for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
644      Argument *A = ArgumentSCC[i]->Definition;
645      Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
646      if (K == Attribute::ReadNone)
647        continue;
648      if (K == Attribute::ReadOnly) {
649        ReadAttr = Attribute::ReadOnly;
650        continue;
651      }
652      ReadAttr = K;
653      break;
654    }
655
656    if (ReadAttr != Attribute::None) {
657      AttrBuilder B, R;
658      B.addAttribute(ReadAttr);
659      R.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
660      for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
661        Argument *A = ArgumentSCC[i]->Definition;
662        // Clear out existing readonly/readnone attributes
663        A->removeAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, R));
664        A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
665        ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
666        Changed = true;
667      }
668    }
669  }
670
671  return Changed;
672}
673
674/// Tests whether a function is "malloc-like".
675///
676/// A function is "malloc-like" if it returns either null or a pointer that
677/// doesn't alias any other pointer visible to the caller.
678static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
679  SmallSetVector<Value *, 8> FlowsToReturn;
680  for (BasicBlock &BB : *F)
681    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
682      FlowsToReturn.insert(Ret->getReturnValue());
683
684  for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
685    Value *RetVal = FlowsToReturn[i];
686
687    if (Constant *C = dyn_cast<Constant>(RetVal)) {
688      if (!C->isNullValue() && !isa<UndefValue>(C))
689        return false;
690
691      continue;
692    }
693
694    if (isa<Argument>(RetVal))
695      return false;
696
697    if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
698      switch (RVI->getOpcode()) {
699      // Extend the analysis by looking upwards.
700      case Instruction::BitCast:
701      case Instruction::GetElementPtr:
702      case Instruction::AddrSpaceCast:
703        FlowsToReturn.insert(RVI->getOperand(0));
704        continue;
705      case Instruction::Select: {
706        SelectInst *SI = cast<SelectInst>(RVI);
707        FlowsToReturn.insert(SI->getTrueValue());
708        FlowsToReturn.insert(SI->getFalseValue());
709        continue;
710      }
711      case Instruction::PHI: {
712        PHINode *PN = cast<PHINode>(RVI);
713        for (Value *IncValue : PN->incoming_values())
714          FlowsToReturn.insert(IncValue);
715        continue;
716      }
717
718      // Check whether the pointer came from an allocation.
719      case Instruction::Alloca:
720        break;
721      case Instruction::Call:
722      case Instruction::Invoke: {
723        CallSite CS(RVI);
724        if (CS.paramHasAttr(0, Attribute::NoAlias))
725          break;
726        if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
727          break;
728      } // fall-through
729      default:
730        return false; // Did not come from an allocation.
731      }
732
733    if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
734      return false;
735  }
736
737  return true;
738}
739
740/// Deduce noalias attributes for the SCC.
741static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
742  // Check each function in turn, determining which functions return noalias
743  // pointers.
744  for (Function *F : SCCNodes) {
745    // Already noalias.
746    if (F->doesNotAlias(0))
747      continue;
748
749    // We can infer and propagate function attributes only when we know that the
750    // definition we'll get at link time is *exactly* the definition we see now.
751    // For more details, see GlobalValue::mayBeDerefined.
752    if (!F->hasExactDefinition())
753      return false;
754
755    // We annotate noalias return values, which are only applicable to
756    // pointer types.
757    if (!F->getReturnType()->isPointerTy())
758      continue;
759
760    if (!isFunctionMallocLike(F, SCCNodes))
761      return false;
762  }
763
764  bool MadeChange = false;
765  for (Function *F : SCCNodes) {
766    if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
767      continue;
768
769    F->setDoesNotAlias(0);
770    ++NumNoAlias;
771    MadeChange = true;
772  }
773
774  return MadeChange;
775}
776
777/// Tests whether this function is known to not return null.
778///
779/// Requires that the function returns a pointer.
780///
781/// Returns true if it believes the function will not return a null, and sets
782/// \p Speculative based on whether the returned conclusion is a speculative
783/// conclusion due to SCC calls.
784static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
785                            bool &Speculative) {
786  assert(F->getReturnType()->isPointerTy() &&
787         "nonnull only meaningful on pointer types");
788  Speculative = false;
789
790  SmallSetVector<Value *, 8> FlowsToReturn;
791  for (BasicBlock &BB : *F)
792    if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
793      FlowsToReturn.insert(Ret->getReturnValue());
794
795  for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
796    Value *RetVal = FlowsToReturn[i];
797
798    // If this value is locally known to be non-null, we're good
799    if (isKnownNonNull(RetVal))
800      continue;
801
802    // Otherwise, we need to look upwards since we can't make any local
803    // conclusions.
804    Instruction *RVI = dyn_cast<Instruction>(RetVal);
805    if (!RVI)
806      return false;
807    switch (RVI->getOpcode()) {
808    // Extend the analysis by looking upwards.
809    case Instruction::BitCast:
810    case Instruction::GetElementPtr:
811    case Instruction::AddrSpaceCast:
812      FlowsToReturn.insert(RVI->getOperand(0));
813      continue;
814    case Instruction::Select: {
815      SelectInst *SI = cast<SelectInst>(RVI);
816      FlowsToReturn.insert(SI->getTrueValue());
817      FlowsToReturn.insert(SI->getFalseValue());
818      continue;
819    }
820    case Instruction::PHI: {
821      PHINode *PN = cast<PHINode>(RVI);
822      for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
823        FlowsToReturn.insert(PN->getIncomingValue(i));
824      continue;
825    }
826    case Instruction::Call:
827    case Instruction::Invoke: {
828      CallSite CS(RVI);
829      Function *Callee = CS.getCalledFunction();
830      // A call to a node within the SCC is assumed to return null until
831      // proven otherwise
832      if (Callee && SCCNodes.count(Callee)) {
833        Speculative = true;
834        continue;
835      }
836      return false;
837    }
838    default:
839      return false; // Unknown source, may be null
840    };
841    llvm_unreachable("should have either continued or returned");
842  }
843
844  return true;
845}
846
847/// Deduce nonnull attributes for the SCC.
848static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
849  // Speculative that all functions in the SCC return only nonnull
850  // pointers.  We may refute this as we analyze functions.
851  bool SCCReturnsNonNull = true;
852
853  bool MadeChange = false;
854
855  // Check each function in turn, determining which functions return nonnull
856  // pointers.
857  for (Function *F : SCCNodes) {
858    // Already nonnull.
859    if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
860                                        Attribute::NonNull))
861      continue;
862
863    // We can infer and propagate function attributes only when we know that the
864    // definition we'll get at link time is *exactly* the definition we see now.
865    // For more details, see GlobalValue::mayBeDerefined.
866    if (!F->hasExactDefinition())
867      return false;
868
869    // We annotate nonnull return values, which are only applicable to
870    // pointer types.
871    if (!F->getReturnType()->isPointerTy())
872      continue;
873
874    bool Speculative = false;
875    if (isReturnNonNull(F, SCCNodes, Speculative)) {
876      if (!Speculative) {
877        // Mark the function eagerly since we may discover a function
878        // which prevents us from speculating about the entire SCC
879        DEBUG(dbgs() << "Eagerly marking " << F->getName() << " as nonnull\n");
880        F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
881        ++NumNonNullReturn;
882        MadeChange = true;
883      }
884      continue;
885    }
886    // At least one function returns something which could be null, can't
887    // speculate any more.
888    SCCReturnsNonNull = false;
889  }
890
891  if (SCCReturnsNonNull) {
892    for (Function *F : SCCNodes) {
893      if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
894                                          Attribute::NonNull) ||
895          !F->getReturnType()->isPointerTy())
896        continue;
897
898      DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
899      F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
900      ++NumNonNullReturn;
901      MadeChange = true;
902    }
903  }
904
905  return MadeChange;
906}
907
908/// Remove the convergent attribute from all functions in the SCC if every
909/// callsite within the SCC is not convergent (except for calls to functions
910/// within the SCC).  Returns true if changes were made.
911static bool removeConvergentAttrs(const SCCNodeSet &SCCNodes) {
912  // For every function in SCC, ensure that either
913  //  * it is not convergent, or
914  //  * we can remove its convergent attribute.
915  bool HasConvergentFn = false;
916  for (Function *F : SCCNodes) {
917    if (!F->isConvergent()) continue;
918    HasConvergentFn = true;
919
920    // Can't remove convergent from function declarations.
921    if (F->isDeclaration()) return false;
922
923    // Can't remove convergent if any of our functions has a convergent call to a
924    // function not in the SCC.
925    for (Instruction &I : instructions(*F)) {
926      CallSite CS(&I);
927      // Bail if CS is a convergent call to a function not in the SCC.
928      if (CS && CS.isConvergent() &&
929          SCCNodes.count(CS.getCalledFunction()) == 0)
930        return false;
931    }
932  }
933
934  // If the SCC doesn't have any convergent functions, we have nothing to do.
935  if (!HasConvergentFn) return false;
936
937  // If we got here, all of the calls the SCC makes to functions not in the SCC
938  // are non-convergent.  Therefore all of the SCC's functions can also be made
939  // non-convergent.  We'll remove the attr from the callsites in
940  // InstCombineCalls.
941  for (Function *F : SCCNodes) {
942    if (!F->isConvergent()) continue;
943
944    DEBUG(dbgs() << "Removing convergent attr from fn " << F->getName()
945                 << "\n");
946    F->setNotConvergent();
947  }
948  return true;
949}
950
951static bool setDoesNotRecurse(Function &F) {
952  if (F.doesNotRecurse())
953    return false;
954  F.setDoesNotRecurse();
955  ++NumNoRecurse;
956  return true;
957}
958
959static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
960  // Try and identify functions that do not recurse.
961
962  // If the SCC contains multiple nodes we know for sure there is recursion.
963  if (SCCNodes.size() != 1)
964    return false;
965
966  Function *F = *SCCNodes.begin();
967  if (!F || F->isDeclaration() || F->doesNotRecurse())
968    return false;
969
970  // If all of the calls in F are identifiable and are to norecurse functions, F
971  // is norecurse. This check also detects self-recursion as F is not currently
972  // marked norecurse, so any called from F to F will not be marked norecurse.
973  for (Instruction &I : instructions(*F))
974    if (auto CS = CallSite(&I)) {
975      Function *Callee = CS.getCalledFunction();
976      if (!Callee || Callee == F || !Callee->doesNotRecurse())
977        // Function calls a potentially recursive function.
978        return false;
979    }
980
981  // Every call was to a non-recursive function other than this function, and
982  // we have no indirect recursion as the SCC size is one. This function cannot
983  // recurse.
984  return setDoesNotRecurse(*F);
985}
986
987PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
988                                                  CGSCCAnalysisManager &AM) {
989  FunctionAnalysisManager &FAM =
990      AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C).getManager();
991
992  // We pass a lambda into functions to wire them up to the analysis manager
993  // for getting function analyses.
994  auto AARGetter = [&](Function &F) -> AAResults & {
995    return FAM.getResult<AAManager>(F);
996  };
997
998  // Fill SCCNodes with the elements of the SCC. Also track whether there are
999  // any external or opt-none nodes that will prevent us from optimizing any
1000  // part of the SCC.
1001  SCCNodeSet SCCNodes;
1002  bool HasUnknownCall = false;
1003  for (LazyCallGraph::Node &N : C) {
1004    Function &F = N.getFunction();
1005    if (F.hasFnAttribute(Attribute::OptimizeNone)) {
1006      // Treat any function we're trying not to optimize as if it were an
1007      // indirect call and omit it from the node set used below.
1008      HasUnknownCall = true;
1009      continue;
1010    }
1011    // Track whether any functions in this SCC have an unknown call edge.
1012    // Note: if this is ever a performance hit, we can common it with
1013    // subsequent routines which also do scans over the instructions of the
1014    // function.
1015    if (!HasUnknownCall)
1016      for (Instruction &I : instructions(F))
1017        if (auto CS = CallSite(&I))
1018          if (!CS.getCalledFunction()) {
1019            HasUnknownCall = true;
1020            break;
1021          }
1022
1023    SCCNodes.insert(&F);
1024  }
1025
1026  bool Changed = false;
1027  Changed |= addReadAttrs(SCCNodes, AARGetter);
1028  Changed |= addArgumentAttrs(SCCNodes);
1029
1030  // If we have no external nodes participating in the SCC, we can deduce some
1031  // more precise attributes as well.
1032  if (!HasUnknownCall) {
1033    Changed |= addNoAliasAttrs(SCCNodes);
1034    Changed |= addNonNullAttrs(SCCNodes);
1035    Changed |= removeConvergentAttrs(SCCNodes);
1036    Changed |= addNoRecurseAttrs(SCCNodes);
1037  }
1038
1039  return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1040}
1041
1042namespace {
1043struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1044  static char ID; // Pass identification, replacement for typeid
1045  PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1046    initializePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
1047  }
1048
1049  bool runOnSCC(CallGraphSCC &SCC) override;
1050
1051  void getAnalysisUsage(AnalysisUsage &AU) const override {
1052    AU.setPreservesCFG();
1053    AU.addRequired<AssumptionCacheTracker>();
1054    getAAResultsAnalysisUsage(AU);
1055    CallGraphSCCPass::getAnalysisUsage(AU);
1056  }
1057};
1058}
1059
1060char PostOrderFunctionAttrsLegacyPass::ID = 0;
1061INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1062                      "Deduce function attributes", false, false)
1063INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1064INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1065INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1066                    "Deduce function attributes", false, false)
1067
1068Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { return new PostOrderFunctionAttrsLegacyPass(); }
1069
1070template <typename AARGetterT>
1071static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
1072  bool Changed = false;
1073
1074  // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1075  // whether a given CallGraphNode is in this SCC. Also track whether there are
1076  // any external or opt-none nodes that will prevent us from optimizing any
1077  // part of the SCC.
1078  SCCNodeSet SCCNodes;
1079  bool ExternalNode = false;
1080  for (CallGraphNode *I : SCC) {
1081    Function *F = I->getFunction();
1082    if (!F || F->hasFnAttribute(Attribute::OptimizeNone)) {
1083      // External node or function we're trying not to optimize - we both avoid
1084      // transform them and avoid leveraging information they provide.
1085      ExternalNode = true;
1086      continue;
1087    }
1088
1089    SCCNodes.insert(F);
1090  }
1091
1092  Changed |= addReadAttrs(SCCNodes, AARGetter);
1093  Changed |= addArgumentAttrs(SCCNodes);
1094
1095  // If we have no external nodes participating in the SCC, we can deduce some
1096  // more precise attributes as well.
1097  if (!ExternalNode) {
1098    Changed |= addNoAliasAttrs(SCCNodes);
1099    Changed |= addNonNullAttrs(SCCNodes);
1100    Changed |= removeConvergentAttrs(SCCNodes);
1101    Changed |= addNoRecurseAttrs(SCCNodes);
1102  }
1103
1104  return Changed;
1105}
1106
1107bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1108  if (skipSCC(SCC))
1109    return false;
1110
1111  // We compute dedicated AA results for each function in the SCC as needed. We
1112  // use a lambda referencing external objects so that they live long enough to
1113  // be queried, but we re-use them each time.
1114  Optional<BasicAAResult> BAR;
1115  Optional<AAResults> AAR;
1116  auto AARGetter = [&](Function &F) -> AAResults & {
1117    BAR.emplace(createLegacyPMBasicAAResult(*this, F));
1118    AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
1119    return *AAR;
1120  };
1121
1122  return runImpl(SCC, AARGetter);
1123}
1124
1125namespace {
1126struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
1127  static char ID; // Pass identification, replacement for typeid
1128  ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
1129    initializeReversePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
1130  }
1131
1132  bool runOnModule(Module &M) override;
1133
1134  void getAnalysisUsage(AnalysisUsage &AU) const override {
1135    AU.setPreservesCFG();
1136    AU.addRequired<CallGraphWrapperPass>();
1137    AU.addPreserved<CallGraphWrapperPass>();
1138  }
1139};
1140}
1141
1142char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
1143INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1144                      "Deduce function attributes in RPO", false, false)
1145INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1146INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1147                    "Deduce function attributes in RPO", false, false)
1148
1149Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1150  return new ReversePostOrderFunctionAttrsLegacyPass();
1151}
1152
1153static bool addNoRecurseAttrsTopDown(Function &F) {
1154  // We check the preconditions for the function prior to calling this to avoid
1155  // the cost of building up a reversible post-order list. We assert them here
1156  // to make sure none of the invariants this relies on were violated.
1157  assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1158  assert(!F.doesNotRecurse() &&
1159         "This function has already been deduced as norecurs!");
1160  assert(F.hasInternalLinkage() &&
1161         "Can only do top-down deduction for internal linkage functions!");
1162
1163  // If F is internal and all of its uses are calls from a non-recursive
1164  // functions, then none of its calls could in fact recurse without going
1165  // through a function marked norecurse, and so we can mark this function too
1166  // as norecurse. Note that the uses must actually be calls -- otherwise
1167  // a pointer to this function could be returned from a norecurse function but
1168  // this function could be recursively (indirectly) called. Note that this
1169  // also detects if F is directly recursive as F is not yet marked as
1170  // a norecurse function.
1171  for (auto *U : F.users()) {
1172    auto *I = dyn_cast<Instruction>(U);
1173    if (!I)
1174      return false;
1175    CallSite CS(I);
1176    if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
1177      return false;
1178  }
1179  return setDoesNotRecurse(F);
1180}
1181
1182static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
1183  // We only have a post-order SCC traversal (because SCCs are inherently
1184  // discovered in post-order), so we accumulate them in a vector and then walk
1185  // it in reverse. This is simpler than using the RPO iterator infrastructure
1186  // because we need to combine SCC detection and the PO walk of the call
1187  // graph. We can also cheat egregiously because we're primarily interested in
1188  // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1189  // with multiple functions in them will clearly be recursive.
1190  SmallVector<Function *, 16> Worklist;
1191  for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1192    if (I->size() != 1)
1193      continue;
1194
1195    Function *F = I->front()->getFunction();
1196    if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1197        F->hasInternalLinkage())
1198      Worklist.push_back(F);
1199  }
1200
1201  bool Changed = false;
1202  for (auto *F : reverse(Worklist))
1203    Changed |= addNoRecurseAttrsTopDown(*F);
1204
1205  return Changed;
1206}
1207
1208bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
1209  if (skipModule(M))
1210    return false;
1211
1212  auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1213
1214  return deduceFunctionAttributeInRPO(M, CG);
1215}
1216
1217PreservedAnalyses
1218ReversePostOrderFunctionAttrsPass::run(Module &M, AnalysisManager<Module> &AM) {
1219  auto &CG = AM.getResult<CallGraphAnalysis>(M);
1220
1221  bool Changed = deduceFunctionAttributeInRPO(M, CG);
1222  if (!Changed)
1223    return PreservedAnalyses::all();
1224  PreservedAnalyses PA;
1225  PA.preserve<CallGraphAnalysis>();
1226  return PA;
1227}
1228