GlobalOpt.cpp revision 18a2e50a9bfe4ecde57dc3913a7bd98b954ec81a
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Analysis/MemoryBuiltins.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Support/CallSite.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/STLExtras.h"
39#include <algorithm>
40using namespace llvm;
41
42STATISTIC(NumMarked    , "Number of globals marked constant");
43STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
44STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
45STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
46STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
47STATISTIC(NumDeleted   , "Number of globals deleted");
48STATISTIC(NumFnDeleted , "Number of functions deleted");
49STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
50STATISTIC(NumLocalized , "Number of globals localized");
51STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
52STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
53STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
54STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
55STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
56STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
57STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
58
59namespace {
60  struct GlobalStatus;
61  struct GlobalOpt : public ModulePass {
62    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63    }
64    static char ID; // Pass identification, replacement for typeid
65    GlobalOpt() : ModulePass(ID) {
66      initializeGlobalOptPass(*PassRegistry::getPassRegistry());
67    }
68
69    bool runOnModule(Module &M);
70
71  private:
72    GlobalVariable *FindGlobalCtors(Module &M);
73    bool OptimizeFunctions(Module &M);
74    bool OptimizeGlobalVars(Module &M);
75    bool OptimizeGlobalAliases(Module &M);
76    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
77    bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
78    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
79                               const SmallPtrSet<const PHINode*, 16> &PHIUsers,
80                               const GlobalStatus &GS);
81    bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
82  };
83}
84
85char GlobalOpt::ID = 0;
86INITIALIZE_PASS(GlobalOpt, "globalopt",
87                "Global Variable Optimizer", false, false)
88
89ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
90
91namespace {
92
93/// GlobalStatus - As we analyze each global, keep track of some information
94/// about it.  If we find out that the address of the global is taken, none of
95/// this info will be accurate.
96struct GlobalStatus {
97  /// isCompared - True if the global's address is used in a comparison.
98  bool isCompared;
99
100  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
101  /// loaded it can be deleted.
102  bool isLoaded;
103
104  /// StoredType - Keep track of what stores to the global look like.
105  ///
106  enum StoredType {
107    /// NotStored - There is no store to this global.  It can thus be marked
108    /// constant.
109    NotStored,
110
111    /// isInitializerStored - This global is stored to, but the only thing
112    /// stored is the constant it was initialized with.  This is only tracked
113    /// for scalar globals.
114    isInitializerStored,
115
116    /// isStoredOnce - This global is stored to, but only its initializer and
117    /// one other value is ever stored to it.  If this global isStoredOnce, we
118    /// track the value stored to it in StoredOnceValue below.  This is only
119    /// tracked for scalar globals.
120    isStoredOnce,
121
122    /// isStored - This global is stored to by multiple values or something else
123    /// that we cannot track.
124    isStored
125  } StoredType;
126
127  /// StoredOnceValue - If only one value (besides the initializer constant) is
128  /// ever stored to this global, keep track of what value it is.
129  Value *StoredOnceValue;
130
131  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
132  /// null/false.  When the first accessing function is noticed, it is recorded.
133  /// When a second different accessing function is noticed,
134  /// HasMultipleAccessingFunctions is set to true.
135  const Function *AccessingFunction;
136  bool HasMultipleAccessingFunctions;
137
138  /// HasNonInstructionUser - Set to true if this global has a user that is not
139  /// an instruction (e.g. a constant expr or GV initializer).
140  bool HasNonInstructionUser;
141
142  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
143  bool HasPHIUser;
144
145  GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored),
146                   StoredOnceValue(0), AccessingFunction(0),
147                   HasMultipleAccessingFunctions(false), HasNonInstructionUser(false),
148                   HasPHIUser(false) {}
149};
150
151}
152
153// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
154// by constants itself.  Note that constants cannot be cyclic, so this test is
155// pretty easy to implement recursively.
156//
157static bool SafeToDestroyConstant(const Constant *C) {
158  if (isa<GlobalValue>(C)) return false;
159
160  for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
161       ++UI)
162    if (const Constant *CU = dyn_cast<Constant>(*UI)) {
163      if (!SafeToDestroyConstant(CU)) return false;
164    } else
165      return false;
166  return true;
167}
168
169
170/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
171/// structure.  If the global has its address taken, return true to indicate we
172/// can't do anything with it.
173///
174static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
175                          SmallPtrSet<const PHINode*, 16> &PHIUsers) {
176  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
177       ++UI) {
178    const User *U = *UI;
179    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
180      GS.HasNonInstructionUser = true;
181
182      // If the result of the constantexpr isn't pointer type, then we won't
183      // know to expect it in various places.  Just reject early.
184      if (!isa<PointerType>(CE->getType())) return true;
185
186      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
187    } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
188      if (!GS.HasMultipleAccessingFunctions) {
189        const Function *F = I->getParent()->getParent();
190        if (GS.AccessingFunction == 0)
191          GS.AccessingFunction = F;
192        else if (GS.AccessingFunction != F)
193          GS.HasMultipleAccessingFunctions = true;
194      }
195      if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
196        GS.isLoaded = true;
197        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
198      } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
199        // Don't allow a store OF the address, only stores TO the address.
200        if (SI->getOperand(0) == V) return true;
201
202        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
203
204        // If this is a direct store to the global (i.e., the global is a scalar
205        // value, not an aggregate), keep more specific information about
206        // stores.
207        if (GS.StoredType != GlobalStatus::isStored) {
208          if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
209                                                           SI->getOperand(1))) {
210            Value *StoredVal = SI->getOperand(0);
211            if (StoredVal == GV->getInitializer()) {
212              if (GS.StoredType < GlobalStatus::isInitializerStored)
213                GS.StoredType = GlobalStatus::isInitializerStored;
214            } else if (isa<LoadInst>(StoredVal) &&
215                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
216              if (GS.StoredType < GlobalStatus::isInitializerStored)
217                GS.StoredType = GlobalStatus::isInitializerStored;
218            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
219              GS.StoredType = GlobalStatus::isStoredOnce;
220              GS.StoredOnceValue = StoredVal;
221            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
222                       GS.StoredOnceValue == StoredVal) {
223              // noop.
224            } else {
225              GS.StoredType = GlobalStatus::isStored;
226            }
227          } else {
228            GS.StoredType = GlobalStatus::isStored;
229          }
230        }
231      } else if (isa<GetElementPtrInst>(I)) {
232        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
233      } else if (isa<SelectInst>(I)) {
234        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
235      } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
236        // PHI nodes we can check just like select or GEP instructions, but we
237        // have to be careful about infinite recursion.
238        if (PHIUsers.insert(PN))  // Not already visited.
239          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
240        GS.HasPHIUser = true;
241      } else if (isa<CmpInst>(I)) {
242        GS.isCompared = true;
243      } else if (isa<MemTransferInst>(I)) {
244        const MemTransferInst *MTI = cast<MemTransferInst>(I);
245        if (MTI->getArgOperand(0) == V)
246          GS.StoredType = GlobalStatus::isStored;
247        if (MTI->getArgOperand(1) == V)
248          GS.isLoaded = true;
249      } else if (isa<MemSetInst>(I)) {
250        assert(cast<MemSetInst>(I)->getArgOperand(0) == V &&
251               "Memset only takes one pointer!");
252        GS.StoredType = GlobalStatus::isStored;
253      } else {
254        return true;  // Any other non-load instruction might take address!
255      }
256    } else if (const Constant *C = dyn_cast<Constant>(U)) {
257      GS.HasNonInstructionUser = true;
258      // We might have a dead and dangling constant hanging off of here.
259      if (!SafeToDestroyConstant(C))
260        return true;
261    } else {
262      GS.HasNonInstructionUser = true;
263      // Otherwise must be some other user.
264      return true;
265    }
266  }
267
268  return false;
269}
270
271static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
272  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
273  if (!CI) return 0;
274  unsigned IdxV = CI->getZExtValue();
275
276  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
277    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
278  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
279    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
280  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
281    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
282  } else if (isa<ConstantAggregateZero>(Agg)) {
283    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
284      if (IdxV < STy->getNumElements())
285        return Constant::getNullValue(STy->getElementType(IdxV));
286    } else if (const SequentialType *STy =
287               dyn_cast<SequentialType>(Agg->getType())) {
288      return Constant::getNullValue(STy->getElementType());
289    }
290  } else if (isa<UndefValue>(Agg)) {
291    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
292      if (IdxV < STy->getNumElements())
293        return UndefValue::get(STy->getElementType(IdxV));
294    } else if (const SequentialType *STy =
295               dyn_cast<SequentialType>(Agg->getType())) {
296      return UndefValue::get(STy->getElementType());
297    }
298  }
299  return 0;
300}
301
302
303/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
304/// users of the global, cleaning up the obvious ones.  This is largely just a
305/// quick scan over the use list to clean up the easy and obvious cruft.  This
306/// returns true if it made a change.
307static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
308  bool Changed = false;
309  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
310    User *U = *UI++;
311
312    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
313      if (Init) {
314        // Replace the load with the initializer.
315        LI->replaceAllUsesWith(Init);
316        LI->eraseFromParent();
317        Changed = true;
318      }
319    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
320      // Store must be unreachable or storing Init into the global.
321      SI->eraseFromParent();
322      Changed = true;
323    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
324      if (CE->getOpcode() == Instruction::GetElementPtr) {
325        Constant *SubInit = 0;
326        if (Init)
327          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
328        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
329      } else if (CE->getOpcode() == Instruction::BitCast &&
330                 CE->getType()->isPointerTy()) {
331        // Pointer cast, delete any stores and memsets to the global.
332        Changed |= CleanupConstantGlobalUsers(CE, 0);
333      }
334
335      if (CE->use_empty()) {
336        CE->destroyConstant();
337        Changed = true;
338      }
339    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
340      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
341      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
342      // and will invalidate our notion of what Init is.
343      Constant *SubInit = 0;
344      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
345        ConstantExpr *CE =
346          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
347        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
348          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
349      }
350      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
351
352      if (GEP->use_empty()) {
353        GEP->eraseFromParent();
354        Changed = true;
355      }
356    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
357      if (MI->getRawDest() == V) {
358        MI->eraseFromParent();
359        Changed = true;
360      }
361
362    } else if (Constant *C = dyn_cast<Constant>(U)) {
363      // If we have a chain of dead constantexprs or other things dangling from
364      // us, and if they are all dead, nuke them without remorse.
365      if (SafeToDestroyConstant(C)) {
366        C->destroyConstant();
367        // This could have invalidated UI, start over from scratch.
368        CleanupConstantGlobalUsers(V, Init);
369        return true;
370      }
371    }
372  }
373  return Changed;
374}
375
376/// isSafeSROAElementUse - Return true if the specified instruction is a safe
377/// user of a derived expression from a global that we want to SROA.
378static bool isSafeSROAElementUse(Value *V) {
379  // We might have a dead and dangling constant hanging off of here.
380  if (Constant *C = dyn_cast<Constant>(V))
381    return SafeToDestroyConstant(C);
382
383  Instruction *I = dyn_cast<Instruction>(V);
384  if (!I) return false;
385
386  // Loads are ok.
387  if (isa<LoadInst>(I)) return true;
388
389  // Stores *to* the pointer are ok.
390  if (StoreInst *SI = dyn_cast<StoreInst>(I))
391    return SI->getOperand(0) != V;
392
393  // Otherwise, it must be a GEP.
394  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
395  if (GEPI == 0) return false;
396
397  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
398      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
399    return false;
400
401  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
402       I != E; ++I)
403    if (!isSafeSROAElementUse(*I))
404      return false;
405  return true;
406}
407
408
409/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
410/// Look at it and its uses and decide whether it is safe to SROA this global.
411///
412static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
413  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
414  if (!isa<GetElementPtrInst>(U) &&
415      (!isa<ConstantExpr>(U) ||
416       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
417    return false;
418
419  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
420  // don't like < 3 operand CE's, and we don't like non-constant integer
421  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
422  // value of C.
423  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
424      !cast<Constant>(U->getOperand(1))->isNullValue() ||
425      !isa<ConstantInt>(U->getOperand(2)))
426    return false;
427
428  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
429  ++GEPI;  // Skip over the pointer index.
430
431  // If this is a use of an array allocation, do a bit more checking for sanity.
432  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
433    uint64_t NumElements = AT->getNumElements();
434    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
435
436    // Check to make sure that index falls within the array.  If not,
437    // something funny is going on, so we won't do the optimization.
438    //
439    if (Idx->getZExtValue() >= NumElements)
440      return false;
441
442    // We cannot scalar repl this level of the array unless any array
443    // sub-indices are in-range constants.  In particular, consider:
444    // A[0][i].  We cannot know that the user isn't doing invalid things like
445    // allowing i to index an out-of-range subscript that accesses A[1].
446    //
447    // Scalar replacing *just* the outer index of the array is probably not
448    // going to be a win anyway, so just give up.
449    for (++GEPI; // Skip array index.
450         GEPI != E;
451         ++GEPI) {
452      uint64_t NumElements;
453      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
454        NumElements = SubArrayTy->getNumElements();
455      else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
456        NumElements = SubVectorTy->getNumElements();
457      else {
458        assert((*GEPI)->isStructTy() &&
459               "Indexed GEP type is not array, vector, or struct!");
460        continue;
461      }
462
463      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
464      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
465        return false;
466    }
467  }
468
469  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
470    if (!isSafeSROAElementUse(*I))
471      return false;
472  return true;
473}
474
475/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
476/// is safe for us to perform this transformation.
477///
478static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
479  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
480       UI != E; ++UI) {
481    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
482      return false;
483  }
484  return true;
485}
486
487
488/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
489/// variable.  This opens the door for other optimizations by exposing the
490/// behavior of the program in a more fine-grained way.  We have determined that
491/// this transformation is safe already.  We return the first global variable we
492/// insert so that the caller can reprocess it.
493static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
494  // Make sure this global only has simple uses that we can SRA.
495  if (!GlobalUsersSafeToSRA(GV))
496    return 0;
497
498  assert(GV->hasLocalLinkage() && !GV->isConstant());
499  Constant *Init = GV->getInitializer();
500  const Type *Ty = Init->getType();
501
502  std::vector<GlobalVariable*> NewGlobals;
503  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
504
505  // Get the alignment of the global, either explicit or target-specific.
506  unsigned StartAlignment = GV->getAlignment();
507  if (StartAlignment == 0)
508    StartAlignment = TD.getABITypeAlignment(GV->getType());
509
510  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
511    NewGlobals.reserve(STy->getNumElements());
512    const StructLayout &Layout = *TD.getStructLayout(STy);
513    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
514      Constant *In = getAggregateConstantElement(Init,
515                    ConstantInt::get(Type::getInt32Ty(STy->getContext()), i));
516      assert(In && "Couldn't get element of initializer?");
517      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
518                                               GlobalVariable::InternalLinkage,
519                                               In, GV->getName()+"."+Twine(i),
520                                               GV->isThreadLocal(),
521                                              GV->getType()->getAddressSpace());
522      Globals.insert(GV, NGV);
523      NewGlobals.push_back(NGV);
524
525      // Calculate the known alignment of the field.  If the original aggregate
526      // had 256 byte alignment for example, something might depend on that:
527      // propagate info to each field.
528      uint64_t FieldOffset = Layout.getElementOffset(i);
529      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
530      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
531        NGV->setAlignment(NewAlign);
532    }
533  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
534    unsigned NumElements = 0;
535    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
536      NumElements = ATy->getNumElements();
537    else
538      NumElements = cast<VectorType>(STy)->getNumElements();
539
540    if (NumElements > 16 && GV->hasNUsesOrMore(16))
541      return 0; // It's not worth it.
542    NewGlobals.reserve(NumElements);
543
544    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
545    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
546    for (unsigned i = 0, e = NumElements; i != e; ++i) {
547      Constant *In = getAggregateConstantElement(Init,
548                    ConstantInt::get(Type::getInt32Ty(Init->getContext()), i));
549      assert(In && "Couldn't get element of initializer?");
550
551      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
552                                               GlobalVariable::InternalLinkage,
553                                               In, GV->getName()+"."+Twine(i),
554                                               GV->isThreadLocal(),
555                                              GV->getType()->getAddressSpace());
556      Globals.insert(GV, NGV);
557      NewGlobals.push_back(NGV);
558
559      // Calculate the known alignment of the field.  If the original aggregate
560      // had 256 byte alignment for example, something might depend on that:
561      // propagate info to each field.
562      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
563      if (NewAlign > EltAlign)
564        NGV->setAlignment(NewAlign);
565    }
566  }
567
568  if (NewGlobals.empty())
569    return 0;
570
571  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
572
573  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
574
575  // Loop over all of the uses of the global, replacing the constantexpr geps,
576  // with smaller constantexpr geps or direct references.
577  while (!GV->use_empty()) {
578    User *GEP = GV->use_back();
579    assert(((isa<ConstantExpr>(GEP) &&
580             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
581            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
582
583    // Ignore the 1th operand, which has to be zero or else the program is quite
584    // broken (undefined).  Get the 2nd operand, which is the structure or array
585    // index.
586    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
587    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
588
589    Value *NewPtr = NewGlobals[Val];
590
591    // Form a shorter GEP if needed.
592    if (GEP->getNumOperands() > 3) {
593      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
594        SmallVector<Constant*, 8> Idxs;
595        Idxs.push_back(NullInt);
596        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
597          Idxs.push_back(CE->getOperand(i));
598        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
599                                                &Idxs[0], Idxs.size());
600      } else {
601        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
602        SmallVector<Value*, 8> Idxs;
603        Idxs.push_back(NullInt);
604        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
605          Idxs.push_back(GEPI->getOperand(i));
606        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
607                                           GEPI->getName()+"."+Twine(Val),GEPI);
608      }
609    }
610    GEP->replaceAllUsesWith(NewPtr);
611
612    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
613      GEPI->eraseFromParent();
614    else
615      cast<ConstantExpr>(GEP)->destroyConstant();
616  }
617
618  // Delete the old global, now that it is dead.
619  Globals.erase(GV);
620  ++NumSRA;
621
622  // Loop over the new globals array deleting any globals that are obviously
623  // dead.  This can arise due to scalarization of a structure or an array that
624  // has elements that are dead.
625  unsigned FirstGlobal = 0;
626  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
627    if (NewGlobals[i]->use_empty()) {
628      Globals.erase(NewGlobals[i]);
629      if (FirstGlobal == i) ++FirstGlobal;
630    }
631
632  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
633}
634
635/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
636/// value will trap if the value is dynamically null.  PHIs keeps track of any
637/// phi nodes we've seen to avoid reprocessing them.
638static bool AllUsesOfValueWillTrapIfNull(const Value *V,
639                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
640  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
641       ++UI) {
642    const User *U = *UI;
643
644    if (isa<LoadInst>(U)) {
645      // Will trap.
646    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
647      if (SI->getOperand(0) == V) {
648        //cerr << "NONTRAPPING USE: " << *U;
649        return false;  // Storing the value.
650      }
651    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
652      if (CI->getCalledValue() != V) {
653        //cerr << "NONTRAPPING USE: " << *U;
654        return false;  // Not calling the ptr
655      }
656    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
657      if (II->getCalledValue() != V) {
658        //cerr << "NONTRAPPING USE: " << *U;
659        return false;  // Not calling the ptr
660      }
661    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
662      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
663    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
664      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
665    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
666      // If we've already seen this phi node, ignore it, it has already been
667      // checked.
668      if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
669        return false;
670    } else if (isa<ICmpInst>(U) &&
671               isa<ConstantPointerNull>(UI->getOperand(1))) {
672      // Ignore icmp X, null
673    } else {
674      //cerr << "NONTRAPPING USE: " << *U;
675      return false;
676    }
677  }
678  return true;
679}
680
681/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
682/// from GV will trap if the loaded value is null.  Note that this also permits
683/// comparisons of the loaded value against null, as a special case.
684static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
685  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
686       UI != E; ++UI) {
687    const User *U = *UI;
688
689    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
690      SmallPtrSet<const PHINode*, 8> PHIs;
691      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
692        return false;
693    } else if (isa<StoreInst>(U)) {
694      // Ignore stores to the global.
695    } else {
696      // We don't know or understand this user, bail out.
697      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
698      return false;
699    }
700  }
701  return true;
702}
703
704static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
705  bool Changed = false;
706  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
707    Instruction *I = cast<Instruction>(*UI++);
708    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
709      LI->setOperand(0, NewV);
710      Changed = true;
711    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
712      if (SI->getOperand(1) == V) {
713        SI->setOperand(1, NewV);
714        Changed = true;
715      }
716    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
717      CallSite CS(I);
718      if (CS.getCalledValue() == V) {
719        // Calling through the pointer!  Turn into a direct call, but be careful
720        // that the pointer is not also being passed as an argument.
721        CS.setCalledFunction(NewV);
722        Changed = true;
723        bool PassedAsArg = false;
724        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
725          if (CS.getArgument(i) == V) {
726            PassedAsArg = true;
727            CS.setArgument(i, NewV);
728          }
729
730        if (PassedAsArg) {
731          // Being passed as an argument also.  Be careful to not invalidate UI!
732          UI = V->use_begin();
733        }
734      }
735    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
736      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
737                                ConstantExpr::getCast(CI->getOpcode(),
738                                                      NewV, CI->getType()));
739      if (CI->use_empty()) {
740        Changed = true;
741        CI->eraseFromParent();
742      }
743    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
744      // Should handle GEP here.
745      SmallVector<Constant*, 8> Idxs;
746      Idxs.reserve(GEPI->getNumOperands()-1);
747      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
748           i != e; ++i)
749        if (Constant *C = dyn_cast<Constant>(*i))
750          Idxs.push_back(C);
751        else
752          break;
753      if (Idxs.size() == GEPI->getNumOperands()-1)
754        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
755                          ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
756                                                        Idxs.size()));
757      if (GEPI->use_empty()) {
758        Changed = true;
759        GEPI->eraseFromParent();
760      }
761    }
762  }
763
764  return Changed;
765}
766
767
768/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
769/// value stored into it.  If there are uses of the loaded value that would trap
770/// if the loaded value is dynamically null, then we know that they cannot be
771/// reachable with a null optimize away the load.
772static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
773  bool Changed = false;
774
775  // Keep track of whether we are able to remove all the uses of the global
776  // other than the store that defines it.
777  bool AllNonStoreUsesGone = true;
778
779  // Replace all uses of loads with uses of uses of the stored value.
780  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
781    User *GlobalUser = *GUI++;
782    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
783      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
784      // If we were able to delete all uses of the loads
785      if (LI->use_empty()) {
786        LI->eraseFromParent();
787        Changed = true;
788      } else {
789        AllNonStoreUsesGone = false;
790      }
791    } else if (isa<StoreInst>(GlobalUser)) {
792      // Ignore the store that stores "LV" to the global.
793      assert(GlobalUser->getOperand(1) == GV &&
794             "Must be storing *to* the global");
795    } else {
796      AllNonStoreUsesGone = false;
797
798      // If we get here we could have other crazy uses that are transitively
799      // loaded.
800      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
801              isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
802    }
803  }
804
805  if (Changed) {
806    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
807    ++NumGlobUses;
808  }
809
810  // If we nuked all of the loads, then none of the stores are needed either,
811  // nor is the global.
812  if (AllNonStoreUsesGone) {
813    DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
814    CleanupConstantGlobalUsers(GV, 0);
815    if (GV->use_empty()) {
816      GV->eraseFromParent();
817      ++NumDeleted;
818    }
819    Changed = true;
820  }
821  return Changed;
822}
823
824/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
825/// instructions that are foldable.
826static void ConstantPropUsersOf(Value *V) {
827  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
828    if (Instruction *I = dyn_cast<Instruction>(*UI++))
829      if (Constant *NewC = ConstantFoldInstruction(I)) {
830        I->replaceAllUsesWith(NewC);
831
832        // Advance UI to the next non-I use to avoid invalidating it!
833        // Instructions could multiply use V.
834        while (UI != E && *UI == I)
835          ++UI;
836        I->eraseFromParent();
837      }
838}
839
840/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
841/// variable, and transforms the program as if it always contained the result of
842/// the specified malloc.  Because it is always the result of the specified
843/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
844/// malloc into a global, and any loads of GV as uses of the new global.
845static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
846                                                     CallInst *CI,
847                                                     const Type *AllocTy,
848                                                     ConstantInt *NElements,
849                                                     TargetData* TD) {
850  DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
851
852  const Type *GlobalType;
853  if (NElements->getZExtValue() == 1)
854    GlobalType = AllocTy;
855  else
856    // If we have an array allocation, the global variable is of an array.
857    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
858
859  // Create the new global variable.  The contents of the malloc'd memory is
860  // undefined, so initialize with an undef value.
861  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
862                                             GlobalType, false,
863                                             GlobalValue::InternalLinkage,
864                                             UndefValue::get(GlobalType),
865                                             GV->getName()+".body",
866                                             GV,
867                                             GV->isThreadLocal());
868
869  // If there are bitcast users of the malloc (which is typical, usually we have
870  // a malloc + bitcast) then replace them with uses of the new global.  Update
871  // other users to use the global as well.
872  BitCastInst *TheBC = 0;
873  while (!CI->use_empty()) {
874    Instruction *User = cast<Instruction>(CI->use_back());
875    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
876      if (BCI->getType() == NewGV->getType()) {
877        BCI->replaceAllUsesWith(NewGV);
878        BCI->eraseFromParent();
879      } else {
880        BCI->setOperand(0, NewGV);
881      }
882    } else {
883      if (TheBC == 0)
884        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
885      User->replaceUsesOfWith(CI, TheBC);
886    }
887  }
888
889  Constant *RepValue = NewGV;
890  if (NewGV->getType() != GV->getType()->getElementType())
891    RepValue = ConstantExpr::getBitCast(RepValue,
892                                        GV->getType()->getElementType());
893
894  // If there is a comparison against null, we will insert a global bool to
895  // keep track of whether the global was initialized yet or not.
896  GlobalVariable *InitBool =
897    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
898                       GlobalValue::InternalLinkage,
899                       ConstantInt::getFalse(GV->getContext()),
900                       GV->getName()+".init", GV->isThreadLocal());
901  bool InitBoolUsed = false;
902
903  // Loop over all uses of GV, processing them in turn.
904  while (!GV->use_empty()) {
905    if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
906      // The global is initialized when the store to it occurs.
907      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, SI);
908      SI->eraseFromParent();
909      continue;
910    }
911
912    LoadInst *LI = cast<LoadInst>(GV->use_back());
913    while (!LI->use_empty()) {
914      Use &LoadUse = LI->use_begin().getUse();
915      if (!isa<ICmpInst>(LoadUse.getUser())) {
916        LoadUse = RepValue;
917        continue;
918      }
919
920      ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
921      // Replace the cmp X, 0 with a use of the bool value.
922      Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
923      InitBoolUsed = true;
924      switch (ICI->getPredicate()) {
925      default: llvm_unreachable("Unknown ICmp Predicate!");
926      case ICmpInst::ICMP_ULT:
927      case ICmpInst::ICMP_SLT:   // X < null -> always false
928        LV = ConstantInt::getFalse(GV->getContext());
929        break;
930      case ICmpInst::ICMP_ULE:
931      case ICmpInst::ICMP_SLE:
932      case ICmpInst::ICMP_EQ:
933        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
934        break;
935      case ICmpInst::ICMP_NE:
936      case ICmpInst::ICMP_UGE:
937      case ICmpInst::ICMP_SGE:
938      case ICmpInst::ICMP_UGT:
939      case ICmpInst::ICMP_SGT:
940        break;  // no change.
941      }
942      ICI->replaceAllUsesWith(LV);
943      ICI->eraseFromParent();
944    }
945    LI->eraseFromParent();
946  }
947
948  // If the initialization boolean was used, insert it, otherwise delete it.
949  if (!InitBoolUsed) {
950    while (!InitBool->use_empty())  // Delete initializations
951      cast<StoreInst>(InitBool->use_back())->eraseFromParent();
952    delete InitBool;
953  } else
954    GV->getParent()->getGlobalList().insert(GV, InitBool);
955
956  // Now the GV is dead, nuke it and the malloc..
957  GV->eraseFromParent();
958  CI->eraseFromParent();
959
960  // To further other optimizations, loop over all users of NewGV and try to
961  // constant prop them.  This will promote GEP instructions with constant
962  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
963  ConstantPropUsersOf(NewGV);
964  if (RepValue != NewGV)
965    ConstantPropUsersOf(RepValue);
966
967  return NewGV;
968}
969
970/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
971/// to make sure that there are no complex uses of V.  We permit simple things
972/// like dereferencing the pointer, but not storing through the address, unless
973/// it is to the specified global.
974static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
975                                                      const GlobalVariable *GV,
976                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
977  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
978       UI != E; ++UI) {
979    const Instruction *Inst = cast<Instruction>(*UI);
980
981    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
982      continue; // Fine, ignore.
983    }
984
985    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
986      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
987        return false;  // Storing the pointer itself... bad.
988      continue; // Otherwise, storing through it, or storing into GV... fine.
989    }
990
991    // Must index into the array and into the struct.
992    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
993      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
994        return false;
995      continue;
996    }
997
998    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
999      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1000      // cycles.
1001      if (PHIs.insert(PN))
1002        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1003          return false;
1004      continue;
1005    }
1006
1007    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1008      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1009        return false;
1010      continue;
1011    }
1012
1013    return false;
1014  }
1015  return true;
1016}
1017
1018/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1019/// somewhere.  Transform all uses of the allocation into loads from the
1020/// global and uses of the resultant pointer.  Further, delete the store into
1021/// GV.  This assumes that these value pass the
1022/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1023static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1024                                          GlobalVariable *GV) {
1025  while (!Alloc->use_empty()) {
1026    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1027    Instruction *InsertPt = U;
1028    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1029      // If this is the store of the allocation into the global, remove it.
1030      if (SI->getOperand(1) == GV) {
1031        SI->eraseFromParent();
1032        continue;
1033      }
1034    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1035      // Insert the load in the corresponding predecessor, not right before the
1036      // PHI.
1037      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1038    } else if (isa<BitCastInst>(U)) {
1039      // Must be bitcast between the malloc and store to initialize the global.
1040      ReplaceUsesOfMallocWithGlobal(U, GV);
1041      U->eraseFromParent();
1042      continue;
1043    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1044      // If this is a "GEP bitcast" and the user is a store to the global, then
1045      // just process it as a bitcast.
1046      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1047        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1048          if (SI->getOperand(1) == GV) {
1049            // Must be bitcast GEP between the malloc and store to initialize
1050            // the global.
1051            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1052            GEPI->eraseFromParent();
1053            continue;
1054          }
1055    }
1056
1057    // Insert a load from the global, and use it instead of the malloc.
1058    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1059    U->replaceUsesOfWith(Alloc, NL);
1060  }
1061}
1062
1063/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1064/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1065/// that index through the array and struct field, icmps of null, and PHIs.
1066static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1067                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1068                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1069  // We permit two users of the load: setcc comparing against the null
1070  // pointer, and a getelementptr of a specific form.
1071  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
1072       ++UI) {
1073    const Instruction *User = cast<Instruction>(*UI);
1074
1075    // Comparison against null is ok.
1076    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1077      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1078        return false;
1079      continue;
1080    }
1081
1082    // getelementptr is also ok, but only a simple form.
1083    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1084      // Must index into the array and into the struct.
1085      if (GEPI->getNumOperands() < 3)
1086        return false;
1087
1088      // Otherwise the GEP is ok.
1089      continue;
1090    }
1091
1092    if (const PHINode *PN = dyn_cast<PHINode>(User)) {
1093      if (!LoadUsingPHIsPerLoad.insert(PN))
1094        // This means some phi nodes are dependent on each other.
1095        // Avoid infinite looping!
1096        return false;
1097      if (!LoadUsingPHIs.insert(PN))
1098        // If we have already analyzed this PHI, then it is safe.
1099        continue;
1100
1101      // Make sure all uses of the PHI are simple enough to transform.
1102      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1103                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1104        return false;
1105
1106      continue;
1107    }
1108
1109    // Otherwise we don't know what this is, not ok.
1110    return false;
1111  }
1112
1113  return true;
1114}
1115
1116
1117/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1118/// GV are simple enough to perform HeapSRA, return true.
1119static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1120                                                    Instruction *StoredVal) {
1121  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1122  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1123  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1124       UI != E; ++UI)
1125    if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1126      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1127                                          LoadUsingPHIsPerLoad))
1128        return false;
1129      LoadUsingPHIsPerLoad.clear();
1130    }
1131
1132  // If we reach here, we know that all uses of the loads and transitive uses
1133  // (through PHI nodes) are simple enough to transform.  However, we don't know
1134  // that all inputs the to the PHI nodes are in the same equivalence sets.
1135  // Check to verify that all operands of the PHIs are either PHIS that can be
1136  // transformed, loads from GV, or MI itself.
1137  for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1138       , E = LoadUsingPHIs.end(); I != E; ++I) {
1139    const PHINode *PN = *I;
1140    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1141      Value *InVal = PN->getIncomingValue(op);
1142
1143      // PHI of the stored value itself is ok.
1144      if (InVal == StoredVal) continue;
1145
1146      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1147        // One of the PHIs in our set is (optimistically) ok.
1148        if (LoadUsingPHIs.count(InPN))
1149          continue;
1150        return false;
1151      }
1152
1153      // Load from GV is ok.
1154      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1155        if (LI->getOperand(0) == GV)
1156          continue;
1157
1158      // UNDEF? NULL?
1159
1160      // Anything else is rejected.
1161      return false;
1162    }
1163  }
1164
1165  return true;
1166}
1167
1168static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1169               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1170                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1171  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1172
1173  if (FieldNo >= FieldVals.size())
1174    FieldVals.resize(FieldNo+1);
1175
1176  // If we already have this value, just reuse the previously scalarized
1177  // version.
1178  if (Value *FieldVal = FieldVals[FieldNo])
1179    return FieldVal;
1180
1181  // Depending on what instruction this is, we have several cases.
1182  Value *Result;
1183  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1184    // This is a scalarized version of the load from the global.  Just create
1185    // a new Load of the scalarized global.
1186    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1187                                           InsertedScalarizedValues,
1188                                           PHIsToRewrite),
1189                          LI->getName()+".f"+Twine(FieldNo), LI);
1190  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1191    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1192    // field.
1193    const StructType *ST =
1194      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1195
1196    PHINode *NewPN =
1197     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1198                     PN->getNumIncomingValues(),
1199                     PN->getName()+".f"+Twine(FieldNo), PN);
1200    Result = NewPN;
1201    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1202  } else {
1203    llvm_unreachable("Unknown usable value");
1204    Result = 0;
1205  }
1206
1207  return FieldVals[FieldNo] = Result;
1208}
1209
1210/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1211/// the load, rewrite the derived value to use the HeapSRoA'd load.
1212static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1213             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1214                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1215  // If this is a comparison against null, handle it.
1216  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1217    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1218    // If we have a setcc of the loaded pointer, we can use a setcc of any
1219    // field.
1220    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1221                                   InsertedScalarizedValues, PHIsToRewrite);
1222
1223    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1224                              Constant::getNullValue(NPtr->getType()),
1225                              SCI->getName());
1226    SCI->replaceAllUsesWith(New);
1227    SCI->eraseFromParent();
1228    return;
1229  }
1230
1231  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1232  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1233    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1234           && "Unexpected GEPI!");
1235
1236    // Load the pointer for this field.
1237    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1238    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1239                                     InsertedScalarizedValues, PHIsToRewrite);
1240
1241    // Create the new GEP idx vector.
1242    SmallVector<Value*, 8> GEPIdx;
1243    GEPIdx.push_back(GEPI->getOperand(1));
1244    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1245
1246    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1247                                             GEPIdx.begin(), GEPIdx.end(),
1248                                             GEPI->getName(), GEPI);
1249    GEPI->replaceAllUsesWith(NGEPI);
1250    GEPI->eraseFromParent();
1251    return;
1252  }
1253
1254  // Recursively transform the users of PHI nodes.  This will lazily create the
1255  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1256  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1257  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1258  // already been seen first by another load, so its uses have already been
1259  // processed.
1260  PHINode *PN = cast<PHINode>(LoadUser);
1261  bool Inserted;
1262  DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1263  tie(InsertPos, Inserted) =
1264    InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1265  if (!Inserted) return;
1266
1267  // If this is the first time we've seen this PHI, recursively process all
1268  // users.
1269  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1270    Instruction *User = cast<Instruction>(*UI++);
1271    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1272  }
1273}
1274
1275/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1276/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1277/// use FieldGlobals instead.  All uses of loaded values satisfy
1278/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1279static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1280               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1281                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1282  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1283       UI != E; ) {
1284    Instruction *User = cast<Instruction>(*UI++);
1285    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1286  }
1287
1288  if (Load->use_empty()) {
1289    Load->eraseFromParent();
1290    InsertedScalarizedValues.erase(Load);
1291  }
1292}
1293
1294/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1295/// it up into multiple allocations of arrays of the fields.
1296static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1297                                            Value* NElems, TargetData *TD) {
1298  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1299  const Type* MAT = getMallocAllocatedType(CI);
1300  const StructType *STy = cast<StructType>(MAT);
1301
1302  // There is guaranteed to be at least one use of the malloc (storing
1303  // it into GV).  If there are other uses, change them to be uses of
1304  // the global to simplify later code.  This also deletes the store
1305  // into GV.
1306  ReplaceUsesOfMallocWithGlobal(CI, GV);
1307
1308  // Okay, at this point, there are no users of the malloc.  Insert N
1309  // new mallocs at the same place as CI, and N globals.
1310  std::vector<Value*> FieldGlobals;
1311  std::vector<Value*> FieldMallocs;
1312
1313  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1314    const Type *FieldTy = STy->getElementType(FieldNo);
1315    const PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1316
1317    GlobalVariable *NGV =
1318      new GlobalVariable(*GV->getParent(),
1319                         PFieldTy, false, GlobalValue::InternalLinkage,
1320                         Constant::getNullValue(PFieldTy),
1321                         GV->getName() + ".f" + Twine(FieldNo), GV,
1322                         GV->isThreadLocal());
1323    FieldGlobals.push_back(NGV);
1324
1325    unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1326    if (const StructType *ST = dyn_cast<StructType>(FieldTy))
1327      TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1328    const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1329    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1330                                        ConstantInt::get(IntPtrTy, TypeSize),
1331                                        NElems, 0,
1332                                        CI->getName() + ".f" + Twine(FieldNo));
1333    FieldMallocs.push_back(NMI);
1334    new StoreInst(NMI, NGV, CI);
1335  }
1336
1337  // The tricky aspect of this transformation is handling the case when malloc
1338  // fails.  In the original code, malloc failing would set the result pointer
1339  // of malloc to null.  In this case, some mallocs could succeed and others
1340  // could fail.  As such, we emit code that looks like this:
1341  //    F0 = malloc(field0)
1342  //    F1 = malloc(field1)
1343  //    F2 = malloc(field2)
1344  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1345  //      if (F0) { free(F0); F0 = 0; }
1346  //      if (F1) { free(F1); F1 = 0; }
1347  //      if (F2) { free(F2); F2 = 0; }
1348  //    }
1349  // The malloc can also fail if its argument is too large.
1350  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1351  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1352                                  ConstantZero, "isneg");
1353  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1354    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1355                             Constant::getNullValue(FieldMallocs[i]->getType()),
1356                               "isnull");
1357    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1358  }
1359
1360  // Split the basic block at the old malloc.
1361  BasicBlock *OrigBB = CI->getParent();
1362  BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1363
1364  // Create the block to check the first condition.  Put all these blocks at the
1365  // end of the function as they are unlikely to be executed.
1366  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1367                                                "malloc_ret_null",
1368                                                OrigBB->getParent());
1369
1370  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1371  // branch on RunningOr.
1372  OrigBB->getTerminator()->eraseFromParent();
1373  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1374
1375  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1376  // pointer, because some may be null while others are not.
1377  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1378    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1379    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1380                              Constant::getNullValue(GVVal->getType()),
1381                              "tmp");
1382    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1383                                               OrigBB->getParent());
1384    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1385                                               OrigBB->getParent());
1386    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1387                                         Cmp, NullPtrBlock);
1388
1389    // Fill in FreeBlock.
1390    CallInst::CreateFree(GVVal, BI);
1391    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1392                  FreeBlock);
1393    BranchInst::Create(NextBlock, FreeBlock);
1394
1395    NullPtrBlock = NextBlock;
1396  }
1397
1398  BranchInst::Create(ContBB, NullPtrBlock);
1399
1400  // CI is no longer needed, remove it.
1401  CI->eraseFromParent();
1402
1403  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1404  /// update all uses of the load, keep track of what scalarized loads are
1405  /// inserted for a given load.
1406  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1407  InsertedScalarizedValues[GV] = FieldGlobals;
1408
1409  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1410
1411  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1412  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1413  // of the per-field globals instead.
1414  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1415    Instruction *User = cast<Instruction>(*UI++);
1416
1417    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1418      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1419      continue;
1420    }
1421
1422    // Must be a store of null.
1423    StoreInst *SI = cast<StoreInst>(User);
1424    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1425           "Unexpected heap-sra user!");
1426
1427    // Insert a store of null into each global.
1428    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1429      const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1430      Constant *Null = Constant::getNullValue(PT->getElementType());
1431      new StoreInst(Null, FieldGlobals[i], SI);
1432    }
1433    // Erase the original store.
1434    SI->eraseFromParent();
1435  }
1436
1437  // While we have PHIs that are interesting to rewrite, do it.
1438  while (!PHIsToRewrite.empty()) {
1439    PHINode *PN = PHIsToRewrite.back().first;
1440    unsigned FieldNo = PHIsToRewrite.back().second;
1441    PHIsToRewrite.pop_back();
1442    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1443    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1444
1445    // Add all the incoming values.  This can materialize more phis.
1446    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1447      Value *InVal = PN->getIncomingValue(i);
1448      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1449                               PHIsToRewrite);
1450      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1451    }
1452  }
1453
1454  // Drop all inter-phi links and any loads that made it this far.
1455  for (DenseMap<Value*, std::vector<Value*> >::iterator
1456       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1457       I != E; ++I) {
1458    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1459      PN->dropAllReferences();
1460    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1461      LI->dropAllReferences();
1462  }
1463
1464  // Delete all the phis and loads now that inter-references are dead.
1465  for (DenseMap<Value*, std::vector<Value*> >::iterator
1466       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1467       I != E; ++I) {
1468    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1469      PN->eraseFromParent();
1470    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1471      LI->eraseFromParent();
1472  }
1473
1474  // The old global is now dead, remove it.
1475  GV->eraseFromParent();
1476
1477  ++NumHeapSRA;
1478  return cast<GlobalVariable>(FieldGlobals[0]);
1479}
1480
1481/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1482/// pointer global variable with a single value stored it that is a malloc or
1483/// cast of malloc.
1484static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1485                                               CallInst *CI,
1486                                               const Type *AllocTy,
1487                                               Module::global_iterator &GVI,
1488                                               TargetData *TD) {
1489  if (!TD)
1490    return false;
1491
1492  // If this is a malloc of an abstract type, don't touch it.
1493  if (!AllocTy->isSized())
1494    return false;
1495
1496  // We can't optimize this global unless all uses of it are *known* to be
1497  // of the malloc value, not of the null initializer value (consider a use
1498  // that compares the global's value against zero to see if the malloc has
1499  // been reached).  To do this, we check to see if all uses of the global
1500  // would trap if the global were null: this proves that they must all
1501  // happen after the malloc.
1502  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1503    return false;
1504
1505  // We can't optimize this if the malloc itself is used in a complex way,
1506  // for example, being stored into multiple globals.  This allows the
1507  // malloc to be stored into the specified global, loaded setcc'd, and
1508  // GEP'd.  These are all things we could transform to using the global
1509  // for.
1510  SmallPtrSet<const PHINode*, 8> PHIs;
1511  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1512    return false;
1513
1514  // If we have a global that is only initialized with a fixed size malloc,
1515  // transform the program to use global memory instead of malloc'd memory.
1516  // This eliminates dynamic allocation, avoids an indirection accessing the
1517  // data, and exposes the resultant global to further GlobalOpt.
1518  // We cannot optimize the malloc if we cannot determine malloc array size.
1519  Value *NElems = getMallocArraySize(CI, TD, true);
1520  if (!NElems)
1521    return false;
1522
1523  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1524    // Restrict this transformation to only working on small allocations
1525    // (2048 bytes currently), as we don't want to introduce a 16M global or
1526    // something.
1527    if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1528      GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD);
1529      return true;
1530    }
1531
1532  // If the allocation is an array of structures, consider transforming this
1533  // into multiple malloc'd arrays, one for each field.  This is basically
1534  // SRoA for malloc'd memory.
1535
1536  // If this is an allocation of a fixed size array of structs, analyze as a
1537  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1538  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1539    if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1540      AllocTy = AT->getElementType();
1541
1542  const StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1543  if (!AllocSTy)
1544    return false;
1545
1546  // This the structure has an unreasonable number of fields, leave it
1547  // alone.
1548  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1549      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1550
1551    // If this is a fixed size array, transform the Malloc to be an alloc of
1552    // structs.  malloc [100 x struct],1 -> malloc struct, 100
1553    if (const ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
1554      const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1555      unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1556      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1557      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1558      Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1559                                                   AllocSize, NumElements,
1560                                                   0, CI->getName());
1561      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1562      CI->replaceAllUsesWith(Cast);
1563      CI->eraseFromParent();
1564      CI = dyn_cast<BitCastInst>(Malloc) ?
1565        extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc);
1566    }
1567
1568    GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD);
1569    return true;
1570  }
1571
1572  return false;
1573}
1574
1575// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1576// that only one value (besides its initializer) is ever stored to the global.
1577static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1578                                     Module::global_iterator &GVI,
1579                                     TargetData *TD) {
1580  // Ignore no-op GEPs and bitcasts.
1581  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1582
1583  // If we are dealing with a pointer global that is initialized to null and
1584  // only has one (non-null) value stored into it, then we can optimize any
1585  // users of the loaded value (often calls and loads) that would trap if the
1586  // value was null.
1587  if (GV->getInitializer()->getType()->isPointerTy() &&
1588      GV->getInitializer()->isNullValue()) {
1589    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1590      if (GV->getInitializer()->getType() != SOVC->getType())
1591        SOVC =
1592         ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1593
1594      // Optimize away any trapping uses of the loaded value.
1595      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1596        return true;
1597    } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
1598      const Type* MallocType = getMallocAllocatedType(CI);
1599      if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1600                                                           GVI, TD))
1601        return true;
1602    }
1603  }
1604
1605  return false;
1606}
1607
1608/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1609/// two values ever stored into GV are its initializer and OtherVal.  See if we
1610/// can shrink the global into a boolean and select between the two values
1611/// whenever it is used.  This exposes the values to other scalar optimizations.
1612static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1613  const Type *GVElType = GV->getType()->getElementType();
1614
1615  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1616  // an FP value, pointer or vector, don't do this optimization because a select
1617  // between them is very expensive and unlikely to lead to later
1618  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1619  // where v1 and v2 both require constant pool loads, a big loss.
1620  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1621      GVElType->isFloatingPointTy() ||
1622      GVElType->isPointerTy() || GVElType->isVectorTy())
1623    return false;
1624
1625  // Walk the use list of the global seeing if all the uses are load or store.
1626  // If there is anything else, bail out.
1627  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
1628    User *U = *I;
1629    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1630      return false;
1631  }
1632
1633  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
1634
1635  // Create the new global, initializing it to false.
1636  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1637                                             false,
1638                                             GlobalValue::InternalLinkage,
1639                                        ConstantInt::getFalse(GV->getContext()),
1640                                             GV->getName()+".b",
1641                                             GV->isThreadLocal());
1642  GV->getParent()->getGlobalList().insert(GV, NewGV);
1643
1644  Constant *InitVal = GV->getInitializer();
1645  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1646         "No reason to shrink to bool!");
1647
1648  // If initialized to zero and storing one into the global, we can use a cast
1649  // instead of a select to synthesize the desired value.
1650  bool IsOneZero = false;
1651  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1652    IsOneZero = InitVal->isNullValue() && CI->isOne();
1653
1654  while (!GV->use_empty()) {
1655    Instruction *UI = cast<Instruction>(GV->use_back());
1656    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1657      // Change the store into a boolean store.
1658      bool StoringOther = SI->getOperand(0) == OtherVal;
1659      // Only do this if we weren't storing a loaded value.
1660      Value *StoreVal;
1661      if (StoringOther || SI->getOperand(0) == InitVal)
1662        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1663                                    StoringOther);
1664      else {
1665        // Otherwise, we are storing a previously loaded copy.  To do this,
1666        // change the copy from copying the original value to just copying the
1667        // bool.
1668        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1669
1670        // If we've already replaced the input, StoredVal will be a cast or
1671        // select instruction.  If not, it will be a load of the original
1672        // global.
1673        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1674          assert(LI->getOperand(0) == GV && "Not a copy!");
1675          // Insert a new load, to preserve the saved value.
1676          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1677        } else {
1678          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1679                 "This is not a form that we understand!");
1680          StoreVal = StoredVal->getOperand(0);
1681          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1682        }
1683      }
1684      new StoreInst(StoreVal, NewGV, SI);
1685    } else {
1686      // Change the load into a load of bool then a select.
1687      LoadInst *LI = cast<LoadInst>(UI);
1688      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1689      Value *NSI;
1690      if (IsOneZero)
1691        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1692      else
1693        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1694      NSI->takeName(LI);
1695      LI->replaceAllUsesWith(NSI);
1696    }
1697    UI->eraseFromParent();
1698  }
1699
1700  GV->eraseFromParent();
1701  return true;
1702}
1703
1704
1705/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1706/// it if possible.  If we make a change, return true.
1707bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
1708                              Module::global_iterator &GVI) {
1709  if (!GV->hasLocalLinkage())
1710    return false;
1711
1712  // Do more involved optimizations if the global is internal.
1713  GV->removeDeadConstantUsers();
1714
1715  if (GV->use_empty()) {
1716    DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1717    GV->eraseFromParent();
1718    ++NumDeleted;
1719    return true;
1720  }
1721
1722  SmallPtrSet<const PHINode*, 16> PHIUsers;
1723  GlobalStatus GS;
1724
1725  if (AnalyzeGlobal(GV, GS, PHIUsers))
1726    return false;
1727
1728  if (!GS.isCompared && !GV->hasUnnamedAddr()) {
1729    GV->setUnnamedAddr(true);
1730    NumUnnamed++;
1731  }
1732
1733  if (GV->isConstant() || !GV->hasInitializer())
1734    return false;
1735
1736  return ProcessInternalGlobal(GV, GVI, PHIUsers, GS);
1737}
1738
1739/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1740/// it if possible.  If we make a change, return true.
1741bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1742                                      Module::global_iterator &GVI,
1743                                      const SmallPtrSet<const PHINode*, 16> &PHIUsers,
1744                                      const GlobalStatus &GS) {
1745  // If this is a first class global and has only one accessing function
1746  // and this function is main (which we know is not recursive we can make
1747  // this global a local variable) we replace the global with a local alloca
1748  // in this function.
1749  //
1750  // NOTE: It doesn't make sense to promote non single-value types since we
1751  // are just replacing static memory to stack memory.
1752  //
1753  // If the global is in different address space, don't bring it to stack.
1754  if (!GS.HasMultipleAccessingFunctions &&
1755      GS.AccessingFunction && !GS.HasNonInstructionUser &&
1756      GV->getType()->getElementType()->isSingleValueType() &&
1757      GS.AccessingFunction->getName() == "main" &&
1758      GS.AccessingFunction->hasExternalLinkage() &&
1759      GV->getType()->getAddressSpace() == 0) {
1760    DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1761    Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1762                                                   ->getEntryBlock().begin());
1763    const Type* ElemTy = GV->getType()->getElementType();
1764    // FIXME: Pass Global's alignment when globals have alignment
1765    AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1766    if (!isa<UndefValue>(GV->getInitializer()))
1767      new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1768
1769    GV->replaceAllUsesWith(Alloca);
1770    GV->eraseFromParent();
1771    ++NumLocalized;
1772    return true;
1773  }
1774
1775  // If the global is never loaded (but may be stored to), it is dead.
1776  // Delete it now.
1777  if (!GS.isLoaded) {
1778    DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1779
1780    // Delete any stores we can find to the global.  We may not be able to
1781    // make it completely dead though.
1782    bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1783
1784    // If the global is dead now, delete it.
1785    if (GV->use_empty()) {
1786      GV->eraseFromParent();
1787      ++NumDeleted;
1788      Changed = true;
1789    }
1790    return Changed;
1791
1792  } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1793    DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
1794    GV->setConstant(true);
1795
1796    // Clean up any obviously simplifiable users now.
1797    CleanupConstantGlobalUsers(GV, GV->getInitializer());
1798
1799    // If the global is dead now, just nuke it.
1800    if (GV->use_empty()) {
1801      DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1802            << "all users and delete global!\n");
1803      GV->eraseFromParent();
1804      ++NumDeleted;
1805    }
1806
1807    ++NumMarked;
1808    return true;
1809  } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1810    if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1811      if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
1812        GVI = FirstNewGV;  // Don't skip the newly produced globals!
1813        return true;
1814      }
1815  } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1816    // If the initial value for the global was an undef value, and if only
1817    // one other value was stored into it, we can just change the
1818    // initializer to be the stored value, then delete all stores to the
1819    // global.  This allows us to mark it constant.
1820    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1821      if (isa<UndefValue>(GV->getInitializer())) {
1822        // Change the initial value here.
1823        GV->setInitializer(SOVConstant);
1824
1825        // Clean up any obviously simplifiable users now.
1826        CleanupConstantGlobalUsers(GV, GV->getInitializer());
1827
1828        if (GV->use_empty()) {
1829          DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1830                << "simplify all users and delete global!\n");
1831          GV->eraseFromParent();
1832          ++NumDeleted;
1833        } else {
1834          GVI = GV;
1835        }
1836        ++NumSubstitute;
1837        return true;
1838      }
1839
1840    // Try to optimize globals based on the knowledge that only one value
1841    // (besides its initializer) is ever stored to the global.
1842    if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1843                                 getAnalysisIfAvailable<TargetData>()))
1844      return true;
1845
1846    // Otherwise, if the global was not a boolean, we can shrink it to be a
1847    // boolean.
1848    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1849      if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1850        ++NumShrunkToBool;
1851        return true;
1852      }
1853  }
1854
1855  return false;
1856}
1857
1858/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1859/// function, changing them to FastCC.
1860static void ChangeCalleesToFastCall(Function *F) {
1861  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1862    CallSite User(cast<Instruction>(*UI));
1863    User.setCallingConv(CallingConv::Fast);
1864  }
1865}
1866
1867static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1868  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1869    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1870      continue;
1871
1872    // There can be only one.
1873    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1874  }
1875
1876  return Attrs;
1877}
1878
1879static void RemoveNestAttribute(Function *F) {
1880  F->setAttributes(StripNest(F->getAttributes()));
1881  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1882    CallSite User(cast<Instruction>(*UI));
1883    User.setAttributes(StripNest(User.getAttributes()));
1884  }
1885}
1886
1887bool GlobalOpt::OptimizeFunctions(Module &M) {
1888  bool Changed = false;
1889  // Optimize functions.
1890  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1891    Function *F = FI++;
1892    // Functions without names cannot be referenced outside this module.
1893    if (!F->hasName() && !F->isDeclaration())
1894      F->setLinkage(GlobalValue::InternalLinkage);
1895    F->removeDeadConstantUsers();
1896    if (F->use_empty() && (F->hasLocalLinkage() || F->hasLinkOnceLinkage())) {
1897      F->eraseFromParent();
1898      Changed = true;
1899      ++NumFnDeleted;
1900    } else if (F->hasLocalLinkage()) {
1901      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1902          !F->hasAddressTaken()) {
1903        // If this function has C calling conventions, is not a varargs
1904        // function, and is only called directly, promote it to use the Fast
1905        // calling convention.
1906        F->setCallingConv(CallingConv::Fast);
1907        ChangeCalleesToFastCall(F);
1908        ++NumFastCallFns;
1909        Changed = true;
1910      }
1911
1912      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1913          !F->hasAddressTaken()) {
1914        // The function is not used by a trampoline intrinsic, so it is safe
1915        // to remove the 'nest' attribute.
1916        RemoveNestAttribute(F);
1917        ++NumNestRemoved;
1918        Changed = true;
1919      }
1920    }
1921  }
1922  return Changed;
1923}
1924
1925bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1926  bool Changed = false;
1927  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1928       GVI != E; ) {
1929    GlobalVariable *GV = GVI++;
1930    // Global variables without names cannot be referenced outside this module.
1931    if (!GV->hasName() && !GV->isDeclaration())
1932      GV->setLinkage(GlobalValue::InternalLinkage);
1933    // Simplify the initializer.
1934    if (GV->hasInitializer())
1935      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1936        TargetData *TD = getAnalysisIfAvailable<TargetData>();
1937        Constant *New = ConstantFoldConstantExpression(CE, TD);
1938        if (New && New != CE)
1939          GV->setInitializer(New);
1940      }
1941
1942    Changed |= ProcessGlobal(GV, GVI);
1943  }
1944  return Changed;
1945}
1946
1947/// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all
1948/// initializers have an init priority of 65535.
1949GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1950  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1951  if (GV == 0) return 0;
1952
1953  // Verify that the initializer is simple enough for us to handle. We are
1954  // only allowed to optimize the initializer if it is unique.
1955  if (!GV->hasUniqueInitializer()) return 0;
1956
1957  ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1958  if (!CA) return 0;
1959
1960  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1961    ConstantStruct *CS = dyn_cast<ConstantStruct>(*i);
1962    if (!CS) return 0;
1963
1964    if (isa<ConstantPointerNull>(CS->getOperand(1)))
1965      continue;
1966
1967    // Must have a function or null ptr.
1968    if (!isa<Function>(CS->getOperand(1)))
1969      return 0;
1970
1971    // Init priority must be standard.
1972    ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0));
1973    if (CI->getZExtValue() != 65535)
1974      return 0;
1975  }
1976
1977  return GV;
1978}
1979
1980/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1981/// return a list of the functions and null terminator as a vector.
1982static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1983  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1984  std::vector<Function*> Result;
1985  Result.reserve(CA->getNumOperands());
1986  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1987    ConstantStruct *CS = cast<ConstantStruct>(*i);
1988    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1989  }
1990  return Result;
1991}
1992
1993/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1994/// specified array, returning the new global to use.
1995static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1996                                          const std::vector<Function*> &Ctors) {
1997  // If we made a change, reassemble the initializer list.
1998  std::vector<Constant*> CSVals;
1999  CSVals.push_back(ConstantInt::get(Type::getInt32Ty(GCL->getContext()),65535));
2000  CSVals.push_back(0);
2001
2002  // Create the new init list.
2003  std::vector<Constant*> CAList;
2004  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
2005    if (Ctors[i]) {
2006      CSVals[1] = Ctors[i];
2007    } else {
2008      const Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
2009                                          false);
2010      const PointerType *PFTy = PointerType::getUnqual(FTy);
2011      CSVals[1] = Constant::getNullValue(PFTy);
2012      CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2013                                   2147483647);
2014    }
2015    CAList.push_back(ConstantStruct::get(GCL->getContext(), CSVals, false));
2016  }
2017
2018  // Create the array initializer.
2019  const Type *StructTy =
2020      cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
2021  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2022                                                   CAList.size()), CAList);
2023
2024  // If we didn't change the number of elements, don't create a new GV.
2025  if (CA->getType() == GCL->getInitializer()->getType()) {
2026    GCL->setInitializer(CA);
2027    return GCL;
2028  }
2029
2030  // Create the new global and insert it next to the existing list.
2031  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2032                                           GCL->getLinkage(), CA, "",
2033                                           GCL->isThreadLocal());
2034  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2035  NGV->takeName(GCL);
2036
2037  // Nuke the old list, replacing any uses with the new one.
2038  if (!GCL->use_empty()) {
2039    Constant *V = NGV;
2040    if (V->getType() != GCL->getType())
2041      V = ConstantExpr::getBitCast(V, GCL->getType());
2042    GCL->replaceAllUsesWith(V);
2043  }
2044  GCL->eraseFromParent();
2045
2046  if (Ctors.size())
2047    return NGV;
2048  else
2049    return 0;
2050}
2051
2052
2053static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues, Value *V) {
2054  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2055  Constant *R = ComputedValues[V];
2056  assert(R && "Reference to an uncomputed value!");
2057  return R;
2058}
2059
2060static inline bool
2061isSimpleEnoughValueToCommit(Constant *C,
2062                            SmallPtrSet<Constant*, 8> &SimpleConstants);
2063
2064
2065/// isSimpleEnoughValueToCommit - Return true if the specified constant can be
2066/// handled by the code generator.  We don't want to generate something like:
2067///   void *X = &X/42;
2068/// because the code generator doesn't have a relocation that can handle that.
2069///
2070/// This function should be called if C was not found (but just got inserted)
2071/// in SimpleConstants to avoid having to rescan the same constants all the
2072/// time.
2073static bool isSimpleEnoughValueToCommitHelper(Constant *C,
2074                                   SmallPtrSet<Constant*, 8> &SimpleConstants) {
2075  // Simple integer, undef, constant aggregate zero, global addresses, etc are
2076  // all supported.
2077  if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
2078      isa<GlobalValue>(C))
2079    return true;
2080
2081  // Aggregate values are safe if all their elements are.
2082  if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2083      isa<ConstantVector>(C)) {
2084    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
2085      Constant *Op = cast<Constant>(C->getOperand(i));
2086      if (!isSimpleEnoughValueToCommit(Op, SimpleConstants))
2087        return false;
2088    }
2089    return true;
2090  }
2091
2092  // We don't know exactly what relocations are allowed in constant expressions,
2093  // so we allow &global+constantoffset, which is safe and uniformly supported
2094  // across targets.
2095  ConstantExpr *CE = cast<ConstantExpr>(C);
2096  switch (CE->getOpcode()) {
2097  case Instruction::BitCast:
2098  case Instruction::IntToPtr:
2099  case Instruction::PtrToInt:
2100    // These casts are always fine if the casted value is.
2101    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
2102
2103  // GEP is fine if it is simple + constant offset.
2104  case Instruction::GetElementPtr:
2105    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2106      if (!isa<ConstantInt>(CE->getOperand(i)))
2107        return false;
2108    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
2109
2110  case Instruction::Add:
2111    // We allow simple+cst.
2112    if (!isa<ConstantInt>(CE->getOperand(1)))
2113      return false;
2114    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
2115  }
2116  return false;
2117}
2118
2119static inline bool
2120isSimpleEnoughValueToCommit(Constant *C,
2121                            SmallPtrSet<Constant*, 8> &SimpleConstants) {
2122  // If we already checked this constant, we win.
2123  if (!SimpleConstants.insert(C)) return true;
2124  // Check the constant.
2125  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants);
2126}
2127
2128
2129/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2130/// enough for us to understand.  In particular, if it is a cast to anything
2131/// other than from one pointer type to another pointer type, we punt.
2132/// We basically just support direct accesses to globals and GEP's of
2133/// globals.  This should be kept up to date with CommitValueTo.
2134static bool isSimpleEnoughPointerToCommit(Constant *C) {
2135  // Conservatively, avoid aggregate types. This is because we don't
2136  // want to worry about them partially overlapping other stores.
2137  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2138    return false;
2139
2140  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2141    // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2142    // external globals.
2143    return GV->hasUniqueInitializer();
2144
2145  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2146    // Handle a constantexpr gep.
2147    if (CE->getOpcode() == Instruction::GetElementPtr &&
2148        isa<GlobalVariable>(CE->getOperand(0)) &&
2149        cast<GEPOperator>(CE)->isInBounds()) {
2150      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2151      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2152      // external globals.
2153      if (!GV->hasUniqueInitializer())
2154        return false;
2155
2156      // The first index must be zero.
2157      ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin()));
2158      if (!CI || !CI->isZero()) return false;
2159
2160      // The remaining indices must be compile-time known integers within the
2161      // notional bounds of the corresponding static array types.
2162      if (!CE->isGEPWithNoNotionalOverIndexing())
2163        return false;
2164
2165      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2166
2167    // A constantexpr bitcast from a pointer to another pointer is a no-op,
2168    // and we know how to evaluate it by moving the bitcast from the pointer
2169    // operand to the value operand.
2170    } else if (CE->getOpcode() == Instruction::BitCast &&
2171               isa<GlobalVariable>(CE->getOperand(0))) {
2172      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2173      // external globals.
2174      return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2175    }
2176  }
2177
2178  return false;
2179}
2180
2181/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2182/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2183/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2184static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2185                                   ConstantExpr *Addr, unsigned OpNo) {
2186  // Base case of the recursion.
2187  if (OpNo == Addr->getNumOperands()) {
2188    assert(Val->getType() == Init->getType() && "Type mismatch!");
2189    return Val;
2190  }
2191
2192  std::vector<Constant*> Elts;
2193  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2194
2195    // Break up the constant into its elements.
2196    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2197      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2198        Elts.push_back(cast<Constant>(*i));
2199    } else if (isa<ConstantAggregateZero>(Init)) {
2200      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2201        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2202    } else if (isa<UndefValue>(Init)) {
2203      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2204        Elts.push_back(UndefValue::get(STy->getElementType(i)));
2205    } else {
2206      llvm_unreachable("This code is out of sync with "
2207             " ConstantFoldLoadThroughGEPConstantExpr");
2208    }
2209
2210    // Replace the element that we are supposed to.
2211    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2212    unsigned Idx = CU->getZExtValue();
2213    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2214    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2215
2216    // Return the modified struct.
2217    return ConstantStruct::get(Init->getContext(), &Elts[0], Elts.size(),
2218                               STy->isPacked());
2219  } else {
2220    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2221    const SequentialType *InitTy = cast<SequentialType>(Init->getType());
2222
2223    uint64_t NumElts;
2224    if (const ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2225      NumElts = ATy->getNumElements();
2226    else
2227      NumElts = cast<VectorType>(InitTy)->getNumElements();
2228
2229
2230    // Break up the array into elements.
2231    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2232      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2233        Elts.push_back(cast<Constant>(*i));
2234    } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) {
2235      for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i)
2236        Elts.push_back(cast<Constant>(*i));
2237    } else if (isa<ConstantAggregateZero>(Init)) {
2238      Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType()));
2239    } else {
2240      assert(isa<UndefValue>(Init) && "This code is out of sync with "
2241             " ConstantFoldLoadThroughGEPConstantExpr");
2242      Elts.assign(NumElts, UndefValue::get(InitTy->getElementType()));
2243    }
2244
2245    assert(CI->getZExtValue() < NumElts);
2246    Elts[CI->getZExtValue()] =
2247      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2248
2249    if (Init->getType()->isArrayTy())
2250      return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2251    return ConstantVector::get(Elts);
2252  }
2253}
2254
2255/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2256/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2257static void CommitValueTo(Constant *Val, Constant *Addr) {
2258  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2259    assert(GV->hasInitializer());
2260    GV->setInitializer(Val);
2261    return;
2262  }
2263
2264  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2265  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2266  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2267}
2268
2269/// ComputeLoadResult - Return the value that would be computed by a load from
2270/// P after the stores reflected by 'memory' have been performed.  If we can't
2271/// decide, return null.
2272static Constant *ComputeLoadResult(Constant *P,
2273                                const DenseMap<Constant*, Constant*> &Memory) {
2274  // If this memory location has been recently stored, use the stored value: it
2275  // is the most up-to-date.
2276  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2277  if (I != Memory.end()) return I->second;
2278
2279  // Access it.
2280  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2281    if (GV->hasDefinitiveInitializer())
2282      return GV->getInitializer();
2283    return 0;
2284  }
2285
2286  // Handle a constantexpr getelementptr.
2287  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2288    if (CE->getOpcode() == Instruction::GetElementPtr &&
2289        isa<GlobalVariable>(CE->getOperand(0))) {
2290      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2291      if (GV->hasDefinitiveInitializer())
2292        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2293    }
2294
2295  return 0;  // don't know how to evaluate.
2296}
2297
2298/// EvaluateFunction - Evaluate a call to function F, returning true if
2299/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2300/// arguments for the function.
2301static bool EvaluateFunction(Function *F, Constant *&RetVal,
2302                             const SmallVectorImpl<Constant*> &ActualArgs,
2303                             std::vector<Function*> &CallStack,
2304                             DenseMap<Constant*, Constant*> &MutatedMemory,
2305                             std::vector<GlobalVariable*> &AllocaTmps,
2306                             SmallPtrSet<Constant*, 8> &SimpleConstants,
2307                             const TargetData *TD) {
2308  // Check to see if this function is already executing (recursion).  If so,
2309  // bail out.  TODO: we might want to accept limited recursion.
2310  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2311    return false;
2312
2313  CallStack.push_back(F);
2314
2315  /// Values - As we compute SSA register values, we store their contents here.
2316  DenseMap<Value*, Constant*> Values;
2317
2318  // Initialize arguments to the incoming values specified.
2319  unsigned ArgNo = 0;
2320  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2321       ++AI, ++ArgNo)
2322    Values[AI] = ActualArgs[ArgNo];
2323
2324  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2325  /// we can only evaluate any one basic block at most once.  This set keeps
2326  /// track of what we have executed so we can detect recursive cases etc.
2327  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2328
2329  // CurInst - The current instruction we're evaluating.
2330  BasicBlock::iterator CurInst = F->begin()->begin();
2331
2332  // This is the main evaluation loop.
2333  while (1) {
2334    Constant *InstResult = 0;
2335
2336    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2337      if (SI->isVolatile()) return false;  // no volatile accesses.
2338      Constant *Ptr = getVal(Values, SI->getOperand(1));
2339      if (!isSimpleEnoughPointerToCommit(Ptr))
2340        // If this is too complex for us to commit, reject it.
2341        return false;
2342
2343      Constant *Val = getVal(Values, SI->getOperand(0));
2344
2345      // If this might be too difficult for the backend to handle (e.g. the addr
2346      // of one global variable divided by another) then we can't commit it.
2347      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants))
2348        return false;
2349
2350      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2351        if (CE->getOpcode() == Instruction::BitCast) {
2352          // If we're evaluating a store through a bitcast, then we need
2353          // to pull the bitcast off the pointer type and push it onto the
2354          // stored value.
2355          Ptr = CE->getOperand(0);
2356
2357          const Type *NewTy=cast<PointerType>(Ptr->getType())->getElementType();
2358
2359          // In order to push the bitcast onto the stored value, a bitcast
2360          // from NewTy to Val's type must be legal.  If it's not, we can try
2361          // introspecting NewTy to find a legal conversion.
2362          while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2363            // If NewTy is a struct, we can convert the pointer to the struct
2364            // into a pointer to its first member.
2365            // FIXME: This could be extended to support arrays as well.
2366            if (const StructType *STy = dyn_cast<StructType>(NewTy)) {
2367              NewTy = STy->getTypeAtIndex(0U);
2368
2369              const IntegerType *IdxTy =IntegerType::get(NewTy->getContext(), 32);
2370              Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2371              Constant * const IdxList[] = {IdxZero, IdxZero};
2372
2373              Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList, 2);
2374
2375            // If we can't improve the situation by introspecting NewTy,
2376            // we have to give up.
2377            } else {
2378              return 0;
2379            }
2380          }
2381
2382          // If we found compatible types, go ahead and push the bitcast
2383          // onto the stored value.
2384          Val = ConstantExpr::getBitCast(Val, NewTy);
2385        }
2386
2387      MutatedMemory[Ptr] = Val;
2388    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2389      InstResult = ConstantExpr::get(BO->getOpcode(),
2390                                     getVal(Values, BO->getOperand(0)),
2391                                     getVal(Values, BO->getOperand(1)));
2392    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2393      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2394                                            getVal(Values, CI->getOperand(0)),
2395                                            getVal(Values, CI->getOperand(1)));
2396    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2397      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2398                                         getVal(Values, CI->getOperand(0)),
2399                                         CI->getType());
2400    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2401      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2402                                           getVal(Values, SI->getOperand(1)),
2403                                           getVal(Values, SI->getOperand(2)));
2404    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2405      Constant *P = getVal(Values, GEP->getOperand(0));
2406      SmallVector<Constant*, 8> GEPOps;
2407      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2408           i != e; ++i)
2409        GEPOps.push_back(getVal(Values, *i));
2410      InstResult = cast<GEPOperator>(GEP)->isInBounds() ?
2411          ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) :
2412          ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2413    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2414      if (LI->isVolatile()) return false;  // no volatile accesses.
2415      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2416                                     MutatedMemory);
2417      if (InstResult == 0) return false; // Could not evaluate load.
2418    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2419      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2420      const Type *Ty = AI->getType()->getElementType();
2421      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2422                                              GlobalValue::InternalLinkage,
2423                                              UndefValue::get(Ty),
2424                                              AI->getName()));
2425      InstResult = AllocaTmps.back();
2426    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2427
2428      // Debug info can safely be ignored here.
2429      if (isa<DbgInfoIntrinsic>(CI)) {
2430        ++CurInst;
2431        continue;
2432      }
2433
2434      // Cannot handle inline asm.
2435      if (isa<InlineAsm>(CI->getCalledValue())) return false;
2436
2437      // Resolve function pointers.
2438      Function *Callee = dyn_cast<Function>(getVal(Values,
2439                                                   CI->getCalledValue()));
2440      if (!Callee) return false;  // Cannot resolve.
2441
2442      SmallVector<Constant*, 8> Formals;
2443      CallSite CS(CI);
2444      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end();
2445           i != e; ++i)
2446        Formals.push_back(getVal(Values, *i));
2447
2448      if (Callee->isDeclaration()) {
2449        // If this is a function we can constant fold, do it.
2450        if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
2451                                           Formals.size())) {
2452          InstResult = C;
2453        } else {
2454          return false;
2455        }
2456      } else {
2457        if (Callee->getFunctionType()->isVarArg())
2458          return false;
2459
2460        Constant *RetVal;
2461        // Execute the call, if successful, use the return value.
2462        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2463                              MutatedMemory, AllocaTmps, SimpleConstants, TD))
2464          return false;
2465        InstResult = RetVal;
2466      }
2467    } else if (isa<TerminatorInst>(CurInst)) {
2468      BasicBlock *NewBB = 0;
2469      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2470        if (BI->isUnconditional()) {
2471          NewBB = BI->getSuccessor(0);
2472        } else {
2473          ConstantInt *Cond =
2474            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2475          if (!Cond) return false;  // Cannot determine.
2476
2477          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2478        }
2479      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2480        ConstantInt *Val =
2481          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2482        if (!Val) return false;  // Cannot determine.
2483        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2484      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2485        Value *Val = getVal(Values, IBI->getAddress())->stripPointerCasts();
2486        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2487          NewBB = BA->getBasicBlock();
2488        else
2489          return false;  // Cannot determine.
2490      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2491        if (RI->getNumOperands())
2492          RetVal = getVal(Values, RI->getOperand(0));
2493
2494        CallStack.pop_back();  // return from fn.
2495        return true;  // We succeeded at evaluating this ctor!
2496      } else {
2497        // invoke, unwind, unreachable.
2498        return false;  // Cannot handle this terminator.
2499      }
2500
2501      // Okay, we succeeded in evaluating this control flow.  See if we have
2502      // executed the new block before.  If so, we have a looping function,
2503      // which we cannot evaluate in reasonable time.
2504      if (!ExecutedBlocks.insert(NewBB))
2505        return false;  // looped!
2506
2507      // Okay, we have never been in this block before.  Check to see if there
2508      // are any PHI nodes.  If so, evaluate them with information about where
2509      // we came from.
2510      BasicBlock *OldBB = CurInst->getParent();
2511      CurInst = NewBB->begin();
2512      PHINode *PN;
2513      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2514        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2515
2516      // Do NOT increment CurInst.  We know that the terminator had no value.
2517      continue;
2518    } else {
2519      // Did not know how to evaluate this!
2520      return false;
2521    }
2522
2523    if (!CurInst->use_empty()) {
2524      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2525        InstResult = ConstantFoldConstantExpression(CE, TD);
2526
2527      Values[CurInst] = InstResult;
2528    }
2529
2530    // Advance program counter.
2531    ++CurInst;
2532  }
2533}
2534
2535/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2536/// we can.  Return true if we can, false otherwise.
2537static bool EvaluateStaticConstructor(Function *F, const TargetData *TD) {
2538  /// MutatedMemory - For each store we execute, we update this map.  Loads
2539  /// check this to get the most up-to-date value.  If evaluation is successful,
2540  /// this state is committed to the process.
2541  DenseMap<Constant*, Constant*> MutatedMemory;
2542
2543  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2544  /// to represent its body.  This vector is needed so we can delete the
2545  /// temporary globals when we are done.
2546  std::vector<GlobalVariable*> AllocaTmps;
2547
2548  /// CallStack - This is used to detect recursion.  In pathological situations
2549  /// we could hit exponential behavior, but at least there is nothing
2550  /// unbounded.
2551  std::vector<Function*> CallStack;
2552
2553  /// SimpleConstants - These are constants we have checked and know to be
2554  /// simple enough to live in a static initializer of a global.
2555  SmallPtrSet<Constant*, 8> SimpleConstants;
2556
2557  // Call the function.
2558  Constant *RetValDummy;
2559  bool EvalSuccess = EvaluateFunction(F, RetValDummy,
2560                                      SmallVector<Constant*, 0>(), CallStack,
2561                                      MutatedMemory, AllocaTmps,
2562                                      SimpleConstants, TD);
2563
2564  if (EvalSuccess) {
2565    // We succeeded at evaluation: commit the result.
2566    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2567          << F->getName() << "' to " << MutatedMemory.size()
2568          << " stores.\n");
2569    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2570         E = MutatedMemory.end(); I != E; ++I)
2571      CommitValueTo(I->second, I->first);
2572  }
2573
2574  // At this point, we are done interpreting.  If we created any 'alloca'
2575  // temporaries, release them now.
2576  while (!AllocaTmps.empty()) {
2577    GlobalVariable *Tmp = AllocaTmps.back();
2578    AllocaTmps.pop_back();
2579
2580    // If there are still users of the alloca, the program is doing something
2581    // silly, e.g. storing the address of the alloca somewhere and using it
2582    // later.  Since this is undefined, we'll just make it be null.
2583    if (!Tmp->use_empty())
2584      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2585    delete Tmp;
2586  }
2587
2588  return EvalSuccess;
2589}
2590
2591
2592
2593/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2594/// Return true if anything changed.
2595bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2596  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2597  bool MadeChange = false;
2598  if (Ctors.empty()) return false;
2599
2600  const TargetData *TD = getAnalysisIfAvailable<TargetData>();
2601  // Loop over global ctors, optimizing them when we can.
2602  for (unsigned i = 0; i != Ctors.size(); ++i) {
2603    Function *F = Ctors[i];
2604    // Found a null terminator in the middle of the list, prune off the rest of
2605    // the list.
2606    if (F == 0) {
2607      if (i != Ctors.size()-1) {
2608        Ctors.resize(i+1);
2609        MadeChange = true;
2610      }
2611      break;
2612    }
2613
2614    // We cannot simplify external ctor functions.
2615    if (F->empty()) continue;
2616
2617    // If we can evaluate the ctor at compile time, do.
2618    if (EvaluateStaticConstructor(F, TD)) {
2619      Ctors.erase(Ctors.begin()+i);
2620      MadeChange = true;
2621      --i;
2622      ++NumCtorsEvaluated;
2623      continue;
2624    }
2625  }
2626
2627  if (!MadeChange) return false;
2628
2629  GCL = InstallGlobalCtors(GCL, Ctors);
2630  return true;
2631}
2632
2633bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2634  bool Changed = false;
2635
2636  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2637       I != E;) {
2638    Module::alias_iterator J = I++;
2639    // Aliases without names cannot be referenced outside this module.
2640    if (!J->hasName() && !J->isDeclaration())
2641      J->setLinkage(GlobalValue::InternalLinkage);
2642    // If the aliasee may change at link time, nothing can be done - bail out.
2643    if (J->mayBeOverridden())
2644      continue;
2645
2646    Constant *Aliasee = J->getAliasee();
2647    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2648    Target->removeDeadConstantUsers();
2649    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2650
2651    // Make all users of the alias use the aliasee instead.
2652    if (!J->use_empty()) {
2653      J->replaceAllUsesWith(Aliasee);
2654      ++NumAliasesResolved;
2655      Changed = true;
2656    }
2657
2658    // If the alias is externally visible, we may still be able to simplify it.
2659    if (!J->hasLocalLinkage()) {
2660      // If the aliasee has internal linkage, give it the name and linkage
2661      // of the alias, and delete the alias.  This turns:
2662      //   define internal ... @f(...)
2663      //   @a = alias ... @f
2664      // into:
2665      //   define ... @a(...)
2666      if (!Target->hasLocalLinkage())
2667        continue;
2668
2669      // Do not perform the transform if multiple aliases potentially target the
2670      // aliasee. This check also ensures that it is safe to replace the section
2671      // and other attributes of the aliasee with those of the alias.
2672      if (!hasOneUse)
2673        continue;
2674
2675      // Give the aliasee the name, linkage and other attributes of the alias.
2676      Target->takeName(J);
2677      Target->setLinkage(J->getLinkage());
2678      Target->GlobalValue::copyAttributesFrom(J);
2679    }
2680
2681    // Delete the alias.
2682    M.getAliasList().erase(J);
2683    ++NumAliasesRemoved;
2684    Changed = true;
2685  }
2686
2687  return Changed;
2688}
2689
2690static Function *FindCXAAtExit(Module &M) {
2691  Function *Fn = M.getFunction("__cxa_atexit");
2692
2693  if (!Fn)
2694    return 0;
2695
2696  const FunctionType *FTy = Fn->getFunctionType();
2697
2698  // Checking that the function has the right return type, the right number of
2699  // parameters and that they all have pointer types should be enough.
2700  if (!FTy->getReturnType()->isIntegerTy() ||
2701      FTy->getNumParams() != 3 ||
2702      !FTy->getParamType(0)->isPointerTy() ||
2703      !FTy->getParamType(1)->isPointerTy() ||
2704      !FTy->getParamType(2)->isPointerTy())
2705    return 0;
2706
2707  return Fn;
2708}
2709
2710/// cxxDtorIsEmpty - Returns whether the given function is an empty C++
2711/// destructor and can therefore be eliminated.
2712/// Note that we assume that other optimization passes have already simplified
2713/// the code so we only look for a function with a single basic block, where
2714/// the only allowed instructions are 'ret' or 'call' to empty C++ dtor.
2715static bool cxxDtorIsEmpty(const Function &Fn,
2716                           SmallPtrSet<const Function *, 8> &CalledFunctions) {
2717  // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2718  // nounwind, but that doesn't seem worth doing.
2719  if (Fn.isDeclaration())
2720    return false;
2721
2722  if (++Fn.begin() != Fn.end())
2723    return false;
2724
2725  const BasicBlock &EntryBlock = Fn.getEntryBlock();
2726  for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2727       I != E; ++I) {
2728    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2729      // Ignore debug intrinsics.
2730      if (isa<DbgInfoIntrinsic>(CI))
2731        continue;
2732
2733      const Function *CalledFn = CI->getCalledFunction();
2734
2735      if (!CalledFn)
2736        return false;
2737
2738      SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2739
2740      // Don't treat recursive functions as empty.
2741      if (!NewCalledFunctions.insert(CalledFn))
2742        return false;
2743
2744      if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2745        return false;
2746    } else if (isa<ReturnInst>(*I))
2747      return true;
2748    else
2749      return false;
2750  }
2751
2752  return false;
2753}
2754
2755bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2756  /// Itanium C++ ABI p3.3.5:
2757  ///
2758  ///   After constructing a global (or local static) object, that will require
2759  ///   destruction on exit, a termination function is registered as follows:
2760  ///
2761  ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2762  ///
2763  ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2764  ///   call f(p) when DSO d is unloaded, before all such termination calls
2765  ///   registered before this one. It returns zero if registration is
2766  ///   successful, nonzero on failure.
2767
2768  // This pass will look for calls to __cxa_atexit where the function is trivial
2769  // and remove them.
2770  bool Changed = false;
2771
2772  for (Function::use_iterator I = CXAAtExitFn->use_begin(),
2773       E = CXAAtExitFn->use_end(); I != E;) {
2774    // We're only interested in calls. Theoretically, we could handle invoke
2775    // instructions as well, but neither llvm-gcc nor clang generate invokes
2776    // to __cxa_atexit.
2777    CallInst *CI = dyn_cast<CallInst>(*I++);
2778    if (!CI)
2779      continue;
2780
2781    Function *DtorFn =
2782      dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2783    if (!DtorFn)
2784      continue;
2785
2786    SmallPtrSet<const Function *, 8> CalledFunctions;
2787    if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2788      continue;
2789
2790    // Just remove the call.
2791    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2792    CI->eraseFromParent();
2793
2794    ++NumCXXDtorsRemoved;
2795
2796    Changed |= true;
2797  }
2798
2799  return Changed;
2800}
2801
2802bool GlobalOpt::runOnModule(Module &M) {
2803  bool Changed = false;
2804
2805  // Try to find the llvm.globalctors list.
2806  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2807
2808  Function *CXAAtExitFn = FindCXAAtExit(M);
2809
2810  bool LocalChange = true;
2811  while (LocalChange) {
2812    LocalChange = false;
2813
2814    // Delete functions that are trivially dead, ccc -> fastcc
2815    LocalChange |= OptimizeFunctions(M);
2816
2817    // Optimize global_ctors list.
2818    if (GlobalCtors)
2819      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2820
2821    // Optimize non-address-taken globals.
2822    LocalChange |= OptimizeGlobalVars(M);
2823
2824    // Resolve aliases, when possible.
2825    LocalChange |= OptimizeGlobalAliases(M);
2826
2827    // Try to remove trivial global destructors.
2828    if (CXAAtExitFn)
2829      LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2830
2831    Changed |= LocalChange;
2832  }
2833
2834  // TODO: Move all global ctors functions to the end of the module for code
2835  // layout.
2836
2837  return Changed;
2838}
2839