GlobalOpt.cpp revision 1945d58025203aec7883c11ac51b827d440f6916
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass transforms simple global variables that never have their address 11// taken. If obviously true, it marks read/write globals as constant, deletes 12// variables only stored to, etc. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "globalopt" 17#include "llvm/Transforms/IPO.h" 18#include "llvm/CallingConv.h" 19#include "llvm/Constants.h" 20#include "llvm/DerivedTypes.h" 21#include "llvm/Instructions.h" 22#include "llvm/IntrinsicInst.h" 23#include "llvm/Module.h" 24#include "llvm/Pass.h" 25#include "llvm/Analysis/ConstantFolding.h" 26#include "llvm/Analysis/MemoryBuiltins.h" 27#include "llvm/Target/TargetData.h" 28#include "llvm/Support/CallSite.h" 29#include "llvm/Support/Debug.h" 30#include "llvm/Support/ErrorHandling.h" 31#include "llvm/Support/GetElementPtrTypeIterator.h" 32#include "llvm/Support/MathExtras.h" 33#include "llvm/Support/raw_ostream.h" 34#include "llvm/ADT/DenseMap.h" 35#include "llvm/ADT/SmallPtrSet.h" 36#include "llvm/ADT/SmallVector.h" 37#include "llvm/ADT/Statistic.h" 38#include "llvm/ADT/STLExtras.h" 39#include <algorithm> 40using namespace llvm; 41 42STATISTIC(NumMarked , "Number of globals marked constant"); 43STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 44STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 45STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 46STATISTIC(NumDeleted , "Number of globals deleted"); 47STATISTIC(NumFnDeleted , "Number of functions deleted"); 48STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 49STATISTIC(NumLocalized , "Number of globals localized"); 50STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 51STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 52STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 53STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 54STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 55STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 56 57namespace { 58 struct GlobalOpt : public ModulePass { 59 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 60 } 61 static char ID; // Pass identification, replacement for typeid 62 GlobalOpt() : ModulePass(ID) { 63 initializeGlobalOptPass(*PassRegistry::getPassRegistry()); 64 } 65 66 bool runOnModule(Module &M); 67 68 private: 69 GlobalVariable *FindGlobalCtors(Module &M); 70 bool OptimizeFunctions(Module &M); 71 bool OptimizeGlobalVars(Module &M); 72 bool OptimizeGlobalAliases(Module &M); 73 bool OptimizeGlobalCtorsList(GlobalVariable *&GCL); 74 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI); 75 }; 76} 77 78char GlobalOpt::ID = 0; 79INITIALIZE_PASS(GlobalOpt, "globalopt", 80 "Global Variable Optimizer", false, false) 81 82ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } 83 84namespace { 85 86/// GlobalStatus - As we analyze each global, keep track of some information 87/// about it. If we find out that the address of the global is taken, none of 88/// this info will be accurate. 89struct GlobalStatus { 90 /// isLoaded - True if the global is ever loaded. If the global isn't ever 91 /// loaded it can be deleted. 92 bool isLoaded; 93 94 /// StoredType - Keep track of what stores to the global look like. 95 /// 96 enum StoredType { 97 /// NotStored - There is no store to this global. It can thus be marked 98 /// constant. 99 NotStored, 100 101 /// isInitializerStored - This global is stored to, but the only thing 102 /// stored is the constant it was initialized with. This is only tracked 103 /// for scalar globals. 104 isInitializerStored, 105 106 /// isStoredOnce - This global is stored to, but only its initializer and 107 /// one other value is ever stored to it. If this global isStoredOnce, we 108 /// track the value stored to it in StoredOnceValue below. This is only 109 /// tracked for scalar globals. 110 isStoredOnce, 111 112 /// isStored - This global is stored to by multiple values or something else 113 /// that we cannot track. 114 isStored 115 } StoredType; 116 117 /// StoredOnceValue - If only one value (besides the initializer constant) is 118 /// ever stored to this global, keep track of what value it is. 119 Value *StoredOnceValue; 120 121 /// AccessingFunction/HasMultipleAccessingFunctions - These start out 122 /// null/false. When the first accessing function is noticed, it is recorded. 123 /// When a second different accessing function is noticed, 124 /// HasMultipleAccessingFunctions is set to true. 125 const Function *AccessingFunction; 126 bool HasMultipleAccessingFunctions; 127 128 /// HasNonInstructionUser - Set to true if this global has a user that is not 129 /// an instruction (e.g. a constant expr or GV initializer). 130 bool HasNonInstructionUser; 131 132 /// HasPHIUser - Set to true if this global has a user that is a PHI node. 133 bool HasPHIUser; 134 135 GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0), 136 AccessingFunction(0), HasMultipleAccessingFunctions(false), 137 HasNonInstructionUser(false), HasPHIUser(false) {} 138}; 139 140} 141 142// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used 143// by constants itself. Note that constants cannot be cyclic, so this test is 144// pretty easy to implement recursively. 145// 146static bool SafeToDestroyConstant(const Constant *C) { 147 if (isa<GlobalValue>(C)) return false; 148 149 for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; 150 ++UI) 151 if (const Constant *CU = dyn_cast<Constant>(*UI)) { 152 if (!SafeToDestroyConstant(CU)) return false; 153 } else 154 return false; 155 return true; 156} 157 158 159/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus 160/// structure. If the global has its address taken, return true to indicate we 161/// can't do anything with it. 162/// 163static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS, 164 SmallPtrSet<const PHINode*, 16> &PHIUsers) { 165 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 166 ++UI) { 167 const User *U = *UI; 168 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 169 GS.HasNonInstructionUser = true; 170 if (AnalyzeGlobal(CE, GS, PHIUsers)) return true; 171 } else if (const Instruction *I = dyn_cast<Instruction>(U)) { 172 if (!GS.HasMultipleAccessingFunctions) { 173 const Function *F = I->getParent()->getParent(); 174 if (GS.AccessingFunction == 0) 175 GS.AccessingFunction = F; 176 else if (GS.AccessingFunction != F) 177 GS.HasMultipleAccessingFunctions = true; 178 } 179 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 180 GS.isLoaded = true; 181 if (LI->isVolatile()) return true; // Don't hack on volatile loads. 182 } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 183 // Don't allow a store OF the address, only stores TO the address. 184 if (SI->getOperand(0) == V) return true; 185 186 if (SI->isVolatile()) return true; // Don't hack on volatile stores. 187 188 // If this is a direct store to the global (i.e., the global is a scalar 189 // value, not an aggregate), keep more specific information about 190 // stores. 191 if (GS.StoredType != GlobalStatus::isStored) { 192 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>( 193 SI->getOperand(1))) { 194 Value *StoredVal = SI->getOperand(0); 195 if (StoredVal == GV->getInitializer()) { 196 if (GS.StoredType < GlobalStatus::isInitializerStored) 197 GS.StoredType = GlobalStatus::isInitializerStored; 198 } else if (isa<LoadInst>(StoredVal) && 199 cast<LoadInst>(StoredVal)->getOperand(0) == GV) { 200 if (GS.StoredType < GlobalStatus::isInitializerStored) 201 GS.StoredType = GlobalStatus::isInitializerStored; 202 } else if (GS.StoredType < GlobalStatus::isStoredOnce) { 203 GS.StoredType = GlobalStatus::isStoredOnce; 204 GS.StoredOnceValue = StoredVal; 205 } else if (GS.StoredType == GlobalStatus::isStoredOnce && 206 GS.StoredOnceValue == StoredVal) { 207 // noop. 208 } else { 209 GS.StoredType = GlobalStatus::isStored; 210 } 211 } else { 212 GS.StoredType = GlobalStatus::isStored; 213 } 214 } 215 } else if (isa<GetElementPtrInst>(I)) { 216 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 217 } else if (isa<SelectInst>(I)) { 218 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 219 } else if (const PHINode *PN = dyn_cast<PHINode>(I)) { 220 // PHI nodes we can check just like select or GEP instructions, but we 221 // have to be careful about infinite recursion. 222 if (PHIUsers.insert(PN)) // Not already visited. 223 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 224 GS.HasPHIUser = true; 225 } else if (isa<CmpInst>(I)) { 226 // Nothing to analyse. 227 } else if (isa<MemTransferInst>(I)) { 228 const MemTransferInst *MTI = cast<MemTransferInst>(I); 229 if (MTI->getArgOperand(0) == V) 230 GS.StoredType = GlobalStatus::isStored; 231 if (MTI->getArgOperand(1) == V) 232 GS.isLoaded = true; 233 } else if (isa<MemSetInst>(I)) { 234 assert(cast<MemSetInst>(I)->getArgOperand(0) == V && 235 "Memset only takes one pointer!"); 236 GS.StoredType = GlobalStatus::isStored; 237 } else { 238 return true; // Any other non-load instruction might take address! 239 } 240 } else if (const Constant *C = dyn_cast<Constant>(U)) { 241 GS.HasNonInstructionUser = true; 242 // We might have a dead and dangling constant hanging off of here. 243 if (!SafeToDestroyConstant(C)) 244 return true; 245 } else { 246 GS.HasNonInstructionUser = true; 247 // Otherwise must be some other user. 248 return true; 249 } 250 } 251 252 return false; 253} 254 255static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) { 256 ConstantInt *CI = dyn_cast<ConstantInt>(Idx); 257 if (!CI) return 0; 258 unsigned IdxV = CI->getZExtValue(); 259 260 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) { 261 if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV); 262 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) { 263 if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV); 264 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) { 265 if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV); 266 } else if (isa<ConstantAggregateZero>(Agg)) { 267 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) { 268 if (IdxV < STy->getNumElements()) 269 return Constant::getNullValue(STy->getElementType(IdxV)); 270 } else if (const SequentialType *STy = 271 dyn_cast<SequentialType>(Agg->getType())) { 272 return Constant::getNullValue(STy->getElementType()); 273 } 274 } else if (isa<UndefValue>(Agg)) { 275 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) { 276 if (IdxV < STy->getNumElements()) 277 return UndefValue::get(STy->getElementType(IdxV)); 278 } else if (const SequentialType *STy = 279 dyn_cast<SequentialType>(Agg->getType())) { 280 return UndefValue::get(STy->getElementType()); 281 } 282 } 283 return 0; 284} 285 286 287/// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all 288/// users of the global, cleaning up the obvious ones. This is largely just a 289/// quick scan over the use list to clean up the easy and obvious cruft. This 290/// returns true if it made a change. 291static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) { 292 bool Changed = false; 293 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) { 294 User *U = *UI++; 295 296 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 297 if (Init) { 298 // Replace the load with the initializer. 299 LI->replaceAllUsesWith(Init); 300 LI->eraseFromParent(); 301 Changed = true; 302 } 303 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 304 // Store must be unreachable or storing Init into the global. 305 SI->eraseFromParent(); 306 Changed = true; 307 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 308 if (CE->getOpcode() == Instruction::GetElementPtr) { 309 Constant *SubInit = 0; 310 if (Init) 311 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 312 Changed |= CleanupConstantGlobalUsers(CE, SubInit); 313 } else if (CE->getOpcode() == Instruction::BitCast && 314 CE->getType()->isPointerTy()) { 315 // Pointer cast, delete any stores and memsets to the global. 316 Changed |= CleanupConstantGlobalUsers(CE, 0); 317 } 318 319 if (CE->use_empty()) { 320 CE->destroyConstant(); 321 Changed = true; 322 } 323 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 324 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 325 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 326 // and will invalidate our notion of what Init is. 327 Constant *SubInit = 0; 328 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 329 ConstantExpr *CE = 330 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP)); 331 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 332 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 333 } 334 Changed |= CleanupConstantGlobalUsers(GEP, SubInit); 335 336 if (GEP->use_empty()) { 337 GEP->eraseFromParent(); 338 Changed = true; 339 } 340 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 341 if (MI->getRawDest() == V) { 342 MI->eraseFromParent(); 343 Changed = true; 344 } 345 346 } else if (Constant *C = dyn_cast<Constant>(U)) { 347 // If we have a chain of dead constantexprs or other things dangling from 348 // us, and if they are all dead, nuke them without remorse. 349 if (SafeToDestroyConstant(C)) { 350 C->destroyConstant(); 351 // This could have invalidated UI, start over from scratch. 352 CleanupConstantGlobalUsers(V, Init); 353 return true; 354 } 355 } 356 } 357 return Changed; 358} 359 360/// isSafeSROAElementUse - Return true if the specified instruction is a safe 361/// user of a derived expression from a global that we want to SROA. 362static bool isSafeSROAElementUse(Value *V) { 363 // We might have a dead and dangling constant hanging off of here. 364 if (Constant *C = dyn_cast<Constant>(V)) 365 return SafeToDestroyConstant(C); 366 367 Instruction *I = dyn_cast<Instruction>(V); 368 if (!I) return false; 369 370 // Loads are ok. 371 if (isa<LoadInst>(I)) return true; 372 373 // Stores *to* the pointer are ok. 374 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 375 return SI->getOperand(0) != V; 376 377 // Otherwise, it must be a GEP. 378 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 379 if (GEPI == 0) return false; 380 381 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 382 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 383 return false; 384 385 for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end(); 386 I != E; ++I) 387 if (!isSafeSROAElementUse(*I)) 388 return false; 389 return true; 390} 391 392 393/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value. 394/// Look at it and its uses and decide whether it is safe to SROA this global. 395/// 396static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 397 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 398 if (!isa<GetElementPtrInst>(U) && 399 (!isa<ConstantExpr>(U) || 400 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 401 return false; 402 403 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 404 // don't like < 3 operand CE's, and we don't like non-constant integer 405 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 406 // value of C. 407 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 408 !cast<Constant>(U->getOperand(1))->isNullValue() || 409 !isa<ConstantInt>(U->getOperand(2))) 410 return false; 411 412 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 413 ++GEPI; // Skip over the pointer index. 414 415 // If this is a use of an array allocation, do a bit more checking for sanity. 416 if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 417 uint64_t NumElements = AT->getNumElements(); 418 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 419 420 // Check to make sure that index falls within the array. If not, 421 // something funny is going on, so we won't do the optimization. 422 // 423 if (Idx->getZExtValue() >= NumElements) 424 return false; 425 426 // We cannot scalar repl this level of the array unless any array 427 // sub-indices are in-range constants. In particular, consider: 428 // A[0][i]. We cannot know that the user isn't doing invalid things like 429 // allowing i to index an out-of-range subscript that accesses A[1]. 430 // 431 // Scalar replacing *just* the outer index of the array is probably not 432 // going to be a win anyway, so just give up. 433 for (++GEPI; // Skip array index. 434 GEPI != E; 435 ++GEPI) { 436 uint64_t NumElements; 437 if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 438 NumElements = SubArrayTy->getNumElements(); 439 else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 440 NumElements = SubVectorTy->getNumElements(); 441 else { 442 assert((*GEPI)->isStructTy() && 443 "Indexed GEP type is not array, vector, or struct!"); 444 continue; 445 } 446 447 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 448 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 449 return false; 450 } 451 } 452 453 for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I) 454 if (!isSafeSROAElementUse(*I)) 455 return false; 456 return true; 457} 458 459/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it 460/// is safe for us to perform this transformation. 461/// 462static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 463 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 464 UI != E; ++UI) { 465 if (!IsUserOfGlobalSafeForSRA(*UI, GV)) 466 return false; 467 } 468 return true; 469} 470 471 472/// SRAGlobal - Perform scalar replacement of aggregates on the specified global 473/// variable. This opens the door for other optimizations by exposing the 474/// behavior of the program in a more fine-grained way. We have determined that 475/// this transformation is safe already. We return the first global variable we 476/// insert so that the caller can reprocess it. 477static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) { 478 // Make sure this global only has simple uses that we can SRA. 479 if (!GlobalUsersSafeToSRA(GV)) 480 return 0; 481 482 assert(GV->hasLocalLinkage() && !GV->isConstant()); 483 Constant *Init = GV->getInitializer(); 484 const Type *Ty = Init->getType(); 485 486 std::vector<GlobalVariable*> NewGlobals; 487 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 488 489 // Get the alignment of the global, either explicit or target-specific. 490 unsigned StartAlignment = GV->getAlignment(); 491 if (StartAlignment == 0) 492 StartAlignment = TD.getABITypeAlignment(GV->getType()); 493 494 if (const StructType *STy = dyn_cast<StructType>(Ty)) { 495 NewGlobals.reserve(STy->getNumElements()); 496 const StructLayout &Layout = *TD.getStructLayout(STy); 497 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 498 Constant *In = getAggregateConstantElement(Init, 499 ConstantInt::get(Type::getInt32Ty(STy->getContext()), i)); 500 assert(In && "Couldn't get element of initializer?"); 501 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 502 GlobalVariable::InternalLinkage, 503 In, GV->getName()+"."+Twine(i), 504 GV->isThreadLocal(), 505 GV->getType()->getAddressSpace()); 506 Globals.insert(GV, NGV); 507 NewGlobals.push_back(NGV); 508 509 // Calculate the known alignment of the field. If the original aggregate 510 // had 256 byte alignment for example, something might depend on that: 511 // propagate info to each field. 512 uint64_t FieldOffset = Layout.getElementOffset(i); 513 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 514 if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i))) 515 NGV->setAlignment(NewAlign); 516 } 517 } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 518 unsigned NumElements = 0; 519 if (const ArrayType *ATy = dyn_cast<ArrayType>(STy)) 520 NumElements = ATy->getNumElements(); 521 else 522 NumElements = cast<VectorType>(STy)->getNumElements(); 523 524 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 525 return 0; // It's not worth it. 526 NewGlobals.reserve(NumElements); 527 528 uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType()); 529 unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType()); 530 for (unsigned i = 0, e = NumElements; i != e; ++i) { 531 Constant *In = getAggregateConstantElement(Init, 532 ConstantInt::get(Type::getInt32Ty(Init->getContext()), i)); 533 assert(In && "Couldn't get element of initializer?"); 534 535 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 536 GlobalVariable::InternalLinkage, 537 In, GV->getName()+"."+Twine(i), 538 GV->isThreadLocal(), 539 GV->getType()->getAddressSpace()); 540 Globals.insert(GV, NGV); 541 NewGlobals.push_back(NGV); 542 543 // Calculate the known alignment of the field. If the original aggregate 544 // had 256 byte alignment for example, something might depend on that: 545 // propagate info to each field. 546 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 547 if (NewAlign > EltAlign) 548 NGV->setAlignment(NewAlign); 549 } 550 } 551 552 if (NewGlobals.empty()) 553 return 0; 554 555 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV); 556 557 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 558 559 // Loop over all of the uses of the global, replacing the constantexpr geps, 560 // with smaller constantexpr geps or direct references. 561 while (!GV->use_empty()) { 562 User *GEP = GV->use_back(); 563 assert(((isa<ConstantExpr>(GEP) && 564 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 565 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 566 567 // Ignore the 1th operand, which has to be zero or else the program is quite 568 // broken (undefined). Get the 2nd operand, which is the structure or array 569 // index. 570 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 571 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 572 573 Value *NewPtr = NewGlobals[Val]; 574 575 // Form a shorter GEP if needed. 576 if (GEP->getNumOperands() > 3) { 577 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 578 SmallVector<Constant*, 8> Idxs; 579 Idxs.push_back(NullInt); 580 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 581 Idxs.push_back(CE->getOperand(i)); 582 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), 583 &Idxs[0], Idxs.size()); 584 } else { 585 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 586 SmallVector<Value*, 8> Idxs; 587 Idxs.push_back(NullInt); 588 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 589 Idxs.push_back(GEPI->getOperand(i)); 590 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(), 591 GEPI->getName()+"."+Twine(Val),GEPI); 592 } 593 } 594 GEP->replaceAllUsesWith(NewPtr); 595 596 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 597 GEPI->eraseFromParent(); 598 else 599 cast<ConstantExpr>(GEP)->destroyConstant(); 600 } 601 602 // Delete the old global, now that it is dead. 603 Globals.erase(GV); 604 ++NumSRA; 605 606 // Loop over the new globals array deleting any globals that are obviously 607 // dead. This can arise due to scalarization of a structure or an array that 608 // has elements that are dead. 609 unsigned FirstGlobal = 0; 610 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 611 if (NewGlobals[i]->use_empty()) { 612 Globals.erase(NewGlobals[i]); 613 if (FirstGlobal == i) ++FirstGlobal; 614 } 615 616 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0; 617} 618 619/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified 620/// value will trap if the value is dynamically null. PHIs keeps track of any 621/// phi nodes we've seen to avoid reprocessing them. 622static bool AllUsesOfValueWillTrapIfNull(const Value *V, 623 SmallPtrSet<const PHINode*, 8> &PHIs) { 624 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 625 ++UI) { 626 const User *U = *UI; 627 628 if (isa<LoadInst>(U)) { 629 // Will trap. 630 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 631 if (SI->getOperand(0) == V) { 632 //cerr << "NONTRAPPING USE: " << *U; 633 return false; // Storing the value. 634 } 635 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 636 if (CI->getCalledValue() != V) { 637 //cerr << "NONTRAPPING USE: " << *U; 638 return false; // Not calling the ptr 639 } 640 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 641 if (II->getCalledValue() != V) { 642 //cerr << "NONTRAPPING USE: " << *U; 643 return false; // Not calling the ptr 644 } 645 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 646 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 647 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 648 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 649 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 650 // If we've already seen this phi node, ignore it, it has already been 651 // checked. 652 if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 653 return false; 654 } else if (isa<ICmpInst>(U) && 655 isa<ConstantPointerNull>(UI->getOperand(1))) { 656 // Ignore icmp X, null 657 } else { 658 //cerr << "NONTRAPPING USE: " << *U; 659 return false; 660 } 661 } 662 return true; 663} 664 665/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads 666/// from GV will trap if the loaded value is null. Note that this also permits 667/// comparisons of the loaded value against null, as a special case. 668static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 669 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 670 UI != E; ++UI) { 671 const User *U = *UI; 672 673 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 674 SmallPtrSet<const PHINode*, 8> PHIs; 675 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 676 return false; 677 } else if (isa<StoreInst>(U)) { 678 // Ignore stores to the global. 679 } else { 680 // We don't know or understand this user, bail out. 681 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 682 return false; 683 } 684 } 685 return true; 686} 687 688static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 689 bool Changed = false; 690 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) { 691 Instruction *I = cast<Instruction>(*UI++); 692 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 693 LI->setOperand(0, NewV); 694 Changed = true; 695 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 696 if (SI->getOperand(1) == V) { 697 SI->setOperand(1, NewV); 698 Changed = true; 699 } 700 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 701 CallSite CS(I); 702 if (CS.getCalledValue() == V) { 703 // Calling through the pointer! Turn into a direct call, but be careful 704 // that the pointer is not also being passed as an argument. 705 CS.setCalledFunction(NewV); 706 Changed = true; 707 bool PassedAsArg = false; 708 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 709 if (CS.getArgument(i) == V) { 710 PassedAsArg = true; 711 CS.setArgument(i, NewV); 712 } 713 714 if (PassedAsArg) { 715 // Being passed as an argument also. Be careful to not invalidate UI! 716 UI = V->use_begin(); 717 } 718 } 719 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 720 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 721 ConstantExpr::getCast(CI->getOpcode(), 722 NewV, CI->getType())); 723 if (CI->use_empty()) { 724 Changed = true; 725 CI->eraseFromParent(); 726 } 727 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 728 // Should handle GEP here. 729 SmallVector<Constant*, 8> Idxs; 730 Idxs.reserve(GEPI->getNumOperands()-1); 731 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 732 i != e; ++i) 733 if (Constant *C = dyn_cast<Constant>(*i)) 734 Idxs.push_back(C); 735 else 736 break; 737 if (Idxs.size() == GEPI->getNumOperands()-1) 738 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI, 739 ConstantExpr::getGetElementPtr(NewV, &Idxs[0], 740 Idxs.size())); 741 if (GEPI->use_empty()) { 742 Changed = true; 743 GEPI->eraseFromParent(); 744 } 745 } 746 } 747 748 return Changed; 749} 750 751 752/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null 753/// value stored into it. If there are uses of the loaded value that would trap 754/// if the loaded value is dynamically null, then we know that they cannot be 755/// reachable with a null optimize away the load. 756static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) { 757 bool Changed = false; 758 759 // Keep track of whether we are able to remove all the uses of the global 760 // other than the store that defines it. 761 bool AllNonStoreUsesGone = true; 762 763 // Replace all uses of loads with uses of uses of the stored value. 764 for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){ 765 User *GlobalUser = *GUI++; 766 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 767 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 768 // If we were able to delete all uses of the loads 769 if (LI->use_empty()) { 770 LI->eraseFromParent(); 771 Changed = true; 772 } else { 773 AllNonStoreUsesGone = false; 774 } 775 } else if (isa<StoreInst>(GlobalUser)) { 776 // Ignore the store that stores "LV" to the global. 777 assert(GlobalUser->getOperand(1) == GV && 778 "Must be storing *to* the global"); 779 } else { 780 AllNonStoreUsesGone = false; 781 782 // If we get here we could have other crazy uses that are transitively 783 // loaded. 784 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 785 isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!"); 786 } 787 } 788 789 if (Changed) { 790 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV); 791 ++NumGlobUses; 792 } 793 794 // If we nuked all of the loads, then none of the stores are needed either, 795 // nor is the global. 796 if (AllNonStoreUsesGone) { 797 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 798 CleanupConstantGlobalUsers(GV, 0); 799 if (GV->use_empty()) { 800 GV->eraseFromParent(); 801 ++NumDeleted; 802 } 803 Changed = true; 804 } 805 return Changed; 806} 807 808/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the 809/// instructions that are foldable. 810static void ConstantPropUsersOf(Value *V) { 811 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) 812 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 813 if (Constant *NewC = ConstantFoldInstruction(I)) { 814 I->replaceAllUsesWith(NewC); 815 816 // Advance UI to the next non-I use to avoid invalidating it! 817 // Instructions could multiply use V. 818 while (UI != E && *UI == I) 819 ++UI; 820 I->eraseFromParent(); 821 } 822} 823 824/// OptimizeGlobalAddressOfMalloc - This function takes the specified global 825/// variable, and transforms the program as if it always contained the result of 826/// the specified malloc. Because it is always the result of the specified 827/// malloc, there is no reason to actually DO the malloc. Instead, turn the 828/// malloc into a global, and any loads of GV as uses of the new global. 829static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, 830 CallInst *CI, 831 const Type *AllocTy, 832 ConstantInt *NElements, 833 TargetData* TD) { 834 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 835 836 const Type *GlobalType; 837 if (NElements->getZExtValue() == 1) 838 GlobalType = AllocTy; 839 else 840 // If we have an array allocation, the global variable is of an array. 841 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 842 843 // Create the new global variable. The contents of the malloc'd memory is 844 // undefined, so initialize with an undef value. 845 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(), 846 GlobalType, false, 847 GlobalValue::InternalLinkage, 848 UndefValue::get(GlobalType), 849 GV->getName()+".body", 850 GV, 851 GV->isThreadLocal()); 852 853 // If there are bitcast users of the malloc (which is typical, usually we have 854 // a malloc + bitcast) then replace them with uses of the new global. Update 855 // other users to use the global as well. 856 BitCastInst *TheBC = 0; 857 while (!CI->use_empty()) { 858 Instruction *User = cast<Instruction>(CI->use_back()); 859 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 860 if (BCI->getType() == NewGV->getType()) { 861 BCI->replaceAllUsesWith(NewGV); 862 BCI->eraseFromParent(); 863 } else { 864 BCI->setOperand(0, NewGV); 865 } 866 } else { 867 if (TheBC == 0) 868 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 869 User->replaceUsesOfWith(CI, TheBC); 870 } 871 } 872 873 Constant *RepValue = NewGV; 874 if (NewGV->getType() != GV->getType()->getElementType()) 875 RepValue = ConstantExpr::getBitCast(RepValue, 876 GV->getType()->getElementType()); 877 878 // If there is a comparison against null, we will insert a global bool to 879 // keep track of whether the global was initialized yet or not. 880 GlobalVariable *InitBool = 881 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 882 GlobalValue::InternalLinkage, 883 ConstantInt::getFalse(GV->getContext()), 884 GV->getName()+".init", GV->isThreadLocal()); 885 bool InitBoolUsed = false; 886 887 // Loop over all uses of GV, processing them in turn. 888 while (!GV->use_empty()) { 889 if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) { 890 // The global is initialized when the store to it occurs. 891 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, SI); 892 SI->eraseFromParent(); 893 continue; 894 } 895 896 LoadInst *LI = cast<LoadInst>(GV->use_back()); 897 while (!LI->use_empty()) { 898 Use &LoadUse = LI->use_begin().getUse(); 899 if (!isa<ICmpInst>(LoadUse.getUser())) { 900 LoadUse = RepValue; 901 continue; 902 } 903 904 ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser()); 905 // Replace the cmp X, 0 with a use of the bool value. 906 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI); 907 InitBoolUsed = true; 908 switch (ICI->getPredicate()) { 909 default: llvm_unreachable("Unknown ICmp Predicate!"); 910 case ICmpInst::ICMP_ULT: 911 case ICmpInst::ICMP_SLT: // X < null -> always false 912 LV = ConstantInt::getFalse(GV->getContext()); 913 break; 914 case ICmpInst::ICMP_ULE: 915 case ICmpInst::ICMP_SLE: 916 case ICmpInst::ICMP_EQ: 917 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 918 break; 919 case ICmpInst::ICMP_NE: 920 case ICmpInst::ICMP_UGE: 921 case ICmpInst::ICMP_SGE: 922 case ICmpInst::ICMP_UGT: 923 case ICmpInst::ICMP_SGT: 924 break; // no change. 925 } 926 ICI->replaceAllUsesWith(LV); 927 ICI->eraseFromParent(); 928 } 929 LI->eraseFromParent(); 930 } 931 932 // If the initialization boolean was used, insert it, otherwise delete it. 933 if (!InitBoolUsed) { 934 while (!InitBool->use_empty()) // Delete initializations 935 cast<StoreInst>(InitBool->use_back())->eraseFromParent(); 936 delete InitBool; 937 } else 938 GV->getParent()->getGlobalList().insert(GV, InitBool); 939 940 // Now the GV is dead, nuke it and the malloc.. 941 GV->eraseFromParent(); 942 CI->eraseFromParent(); 943 944 // To further other optimizations, loop over all users of NewGV and try to 945 // constant prop them. This will promote GEP instructions with constant 946 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 947 ConstantPropUsersOf(NewGV); 948 if (RepValue != NewGV) 949 ConstantPropUsersOf(RepValue); 950 951 return NewGV; 952} 953 954/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking 955/// to make sure that there are no complex uses of V. We permit simple things 956/// like dereferencing the pointer, but not storing through the address, unless 957/// it is to the specified global. 958static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 959 const GlobalVariable *GV, 960 SmallPtrSet<const PHINode*, 8> &PHIs) { 961 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 962 UI != E; ++UI) { 963 const Instruction *Inst = cast<Instruction>(*UI); 964 965 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 966 continue; // Fine, ignore. 967 } 968 969 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 970 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 971 return false; // Storing the pointer itself... bad. 972 continue; // Otherwise, storing through it, or storing into GV... fine. 973 } 974 975 // Must index into the array and into the struct. 976 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 977 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 978 return false; 979 continue; 980 } 981 982 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 983 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 984 // cycles. 985 if (PHIs.insert(PN)) 986 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 987 return false; 988 continue; 989 } 990 991 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 992 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 993 return false; 994 continue; 995 } 996 997 return false; 998 } 999 return true; 1000} 1001 1002/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV 1003/// somewhere. Transform all uses of the allocation into loads from the 1004/// global and uses of the resultant pointer. Further, delete the store into 1005/// GV. This assumes that these value pass the 1006/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1007static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1008 GlobalVariable *GV) { 1009 while (!Alloc->use_empty()) { 1010 Instruction *U = cast<Instruction>(*Alloc->use_begin()); 1011 Instruction *InsertPt = U; 1012 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1013 // If this is the store of the allocation into the global, remove it. 1014 if (SI->getOperand(1) == GV) { 1015 SI->eraseFromParent(); 1016 continue; 1017 } 1018 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1019 // Insert the load in the corresponding predecessor, not right before the 1020 // PHI. 1021 InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator(); 1022 } else if (isa<BitCastInst>(U)) { 1023 // Must be bitcast between the malloc and store to initialize the global. 1024 ReplaceUsesOfMallocWithGlobal(U, GV); 1025 U->eraseFromParent(); 1026 continue; 1027 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1028 // If this is a "GEP bitcast" and the user is a store to the global, then 1029 // just process it as a bitcast. 1030 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1031 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back())) 1032 if (SI->getOperand(1) == GV) { 1033 // Must be bitcast GEP between the malloc and store to initialize 1034 // the global. 1035 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1036 GEPI->eraseFromParent(); 1037 continue; 1038 } 1039 } 1040 1041 // Insert a load from the global, and use it instead of the malloc. 1042 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1043 U->replaceUsesOfWith(Alloc, NL); 1044 } 1045} 1046 1047/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi 1048/// of a load) are simple enough to perform heap SRA on. This permits GEP's 1049/// that index through the array and struct field, icmps of null, and PHIs. 1050static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1051 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs, 1052 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) { 1053 // We permit two users of the load: setcc comparing against the null 1054 // pointer, and a getelementptr of a specific form. 1055 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 1056 ++UI) { 1057 const Instruction *User = cast<Instruction>(*UI); 1058 1059 // Comparison against null is ok. 1060 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) { 1061 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1062 return false; 1063 continue; 1064 } 1065 1066 // getelementptr is also ok, but only a simple form. 1067 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { 1068 // Must index into the array and into the struct. 1069 if (GEPI->getNumOperands() < 3) 1070 return false; 1071 1072 // Otherwise the GEP is ok. 1073 continue; 1074 } 1075 1076 if (const PHINode *PN = dyn_cast<PHINode>(User)) { 1077 if (!LoadUsingPHIsPerLoad.insert(PN)) 1078 // This means some phi nodes are dependent on each other. 1079 // Avoid infinite looping! 1080 return false; 1081 if (!LoadUsingPHIs.insert(PN)) 1082 // If we have already analyzed this PHI, then it is safe. 1083 continue; 1084 1085 // Make sure all uses of the PHI are simple enough to transform. 1086 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1087 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1088 return false; 1089 1090 continue; 1091 } 1092 1093 // Otherwise we don't know what this is, not ok. 1094 return false; 1095 } 1096 1097 return true; 1098} 1099 1100 1101/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from 1102/// GV are simple enough to perform HeapSRA, return true. 1103static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1104 Instruction *StoredVal) { 1105 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1106 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1107 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 1108 UI != E; ++UI) 1109 if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1110 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1111 LoadUsingPHIsPerLoad)) 1112 return false; 1113 LoadUsingPHIsPerLoad.clear(); 1114 } 1115 1116 // If we reach here, we know that all uses of the loads and transitive uses 1117 // (through PHI nodes) are simple enough to transform. However, we don't know 1118 // that all inputs the to the PHI nodes are in the same equivalence sets. 1119 // Check to verify that all operands of the PHIs are either PHIS that can be 1120 // transformed, loads from GV, or MI itself. 1121 for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin() 1122 , E = LoadUsingPHIs.end(); I != E; ++I) { 1123 const PHINode *PN = *I; 1124 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1125 Value *InVal = PN->getIncomingValue(op); 1126 1127 // PHI of the stored value itself is ok. 1128 if (InVal == StoredVal) continue; 1129 1130 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1131 // One of the PHIs in our set is (optimistically) ok. 1132 if (LoadUsingPHIs.count(InPN)) 1133 continue; 1134 return false; 1135 } 1136 1137 // Load from GV is ok. 1138 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1139 if (LI->getOperand(0) == GV) 1140 continue; 1141 1142 // UNDEF? NULL? 1143 1144 // Anything else is rejected. 1145 return false; 1146 } 1147 } 1148 1149 return true; 1150} 1151 1152static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1153 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1154 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1155 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1156 1157 if (FieldNo >= FieldVals.size()) 1158 FieldVals.resize(FieldNo+1); 1159 1160 // If we already have this value, just reuse the previously scalarized 1161 // version. 1162 if (Value *FieldVal = FieldVals[FieldNo]) 1163 return FieldVal; 1164 1165 // Depending on what instruction this is, we have several cases. 1166 Value *Result; 1167 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1168 // This is a scalarized version of the load from the global. Just create 1169 // a new Load of the scalarized global. 1170 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1171 InsertedScalarizedValues, 1172 PHIsToRewrite), 1173 LI->getName()+".f"+Twine(FieldNo), LI); 1174 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1175 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1176 // field. 1177 const StructType *ST = 1178 cast<StructType>(cast<PointerType>(PN->getType())->getElementType()); 1179 1180 Result = 1181 PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)), 1182 PN->getName()+".f"+Twine(FieldNo), PN); 1183 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1184 } else { 1185 llvm_unreachable("Unknown usable value"); 1186 Result = 0; 1187 } 1188 1189 return FieldVals[FieldNo] = Result; 1190} 1191 1192/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from 1193/// the load, rewrite the derived value to use the HeapSRoA'd load. 1194static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1195 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1196 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1197 // If this is a comparison against null, handle it. 1198 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1199 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1200 // If we have a setcc of the loaded pointer, we can use a setcc of any 1201 // field. 1202 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1203 InsertedScalarizedValues, PHIsToRewrite); 1204 1205 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1206 Constant::getNullValue(NPtr->getType()), 1207 SCI->getName()); 1208 SCI->replaceAllUsesWith(New); 1209 SCI->eraseFromParent(); 1210 return; 1211 } 1212 1213 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1214 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1215 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1216 && "Unexpected GEPI!"); 1217 1218 // Load the pointer for this field. 1219 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1220 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1221 InsertedScalarizedValues, PHIsToRewrite); 1222 1223 // Create the new GEP idx vector. 1224 SmallVector<Value*, 8> GEPIdx; 1225 GEPIdx.push_back(GEPI->getOperand(1)); 1226 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1227 1228 Value *NGEPI = GetElementPtrInst::Create(NewPtr, 1229 GEPIdx.begin(), GEPIdx.end(), 1230 GEPI->getName(), GEPI); 1231 GEPI->replaceAllUsesWith(NGEPI); 1232 GEPI->eraseFromParent(); 1233 return; 1234 } 1235 1236 // Recursively transform the users of PHI nodes. This will lazily create the 1237 // PHIs that are needed for individual elements. Keep track of what PHIs we 1238 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1239 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1240 // already been seen first by another load, so its uses have already been 1241 // processed. 1242 PHINode *PN = cast<PHINode>(LoadUser); 1243 bool Inserted; 1244 DenseMap<Value*, std::vector<Value*> >::iterator InsertPos; 1245 tie(InsertPos, Inserted) = 1246 InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>())); 1247 if (!Inserted) return; 1248 1249 // If this is the first time we've seen this PHI, recursively process all 1250 // users. 1251 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) { 1252 Instruction *User = cast<Instruction>(*UI++); 1253 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1254 } 1255} 1256 1257/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr 1258/// is a value loaded from the global. Eliminate all uses of Ptr, making them 1259/// use FieldGlobals instead. All uses of loaded values satisfy 1260/// AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1261static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1262 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1263 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1264 for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end(); 1265 UI != E; ) { 1266 Instruction *User = cast<Instruction>(*UI++); 1267 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1268 } 1269 1270 if (Load->use_empty()) { 1271 Load->eraseFromParent(); 1272 InsertedScalarizedValues.erase(Load); 1273 } 1274} 1275 1276/// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break 1277/// it up into multiple allocations of arrays of the fields. 1278static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1279 Value* NElems, TargetData *TD) { 1280 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1281 const Type* MAT = getMallocAllocatedType(CI); 1282 const StructType *STy = cast<StructType>(MAT); 1283 1284 // There is guaranteed to be at least one use of the malloc (storing 1285 // it into GV). If there are other uses, change them to be uses of 1286 // the global to simplify later code. This also deletes the store 1287 // into GV. 1288 ReplaceUsesOfMallocWithGlobal(CI, GV); 1289 1290 // Okay, at this point, there are no users of the malloc. Insert N 1291 // new mallocs at the same place as CI, and N globals. 1292 std::vector<Value*> FieldGlobals; 1293 std::vector<Value*> FieldMallocs; 1294 1295 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1296 const Type *FieldTy = STy->getElementType(FieldNo); 1297 const PointerType *PFieldTy = PointerType::getUnqual(FieldTy); 1298 1299 GlobalVariable *NGV = 1300 new GlobalVariable(*GV->getParent(), 1301 PFieldTy, false, GlobalValue::InternalLinkage, 1302 Constant::getNullValue(PFieldTy), 1303 GV->getName() + ".f" + Twine(FieldNo), GV, 1304 GV->isThreadLocal()); 1305 FieldGlobals.push_back(NGV); 1306 1307 unsigned TypeSize = TD->getTypeAllocSize(FieldTy); 1308 if (const StructType *ST = dyn_cast<StructType>(FieldTy)) 1309 TypeSize = TD->getStructLayout(ST)->getSizeInBytes(); 1310 const Type *IntPtrTy = TD->getIntPtrType(CI->getContext()); 1311 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1312 ConstantInt::get(IntPtrTy, TypeSize), 1313 NElems, 0, 1314 CI->getName() + ".f" + Twine(FieldNo)); 1315 FieldMallocs.push_back(NMI); 1316 new StoreInst(NMI, NGV, CI); 1317 } 1318 1319 // The tricky aspect of this transformation is handling the case when malloc 1320 // fails. In the original code, malloc failing would set the result pointer 1321 // of malloc to null. In this case, some mallocs could succeed and others 1322 // could fail. As such, we emit code that looks like this: 1323 // F0 = malloc(field0) 1324 // F1 = malloc(field1) 1325 // F2 = malloc(field2) 1326 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1327 // if (F0) { free(F0); F0 = 0; } 1328 // if (F1) { free(F1); F1 = 0; } 1329 // if (F2) { free(F2); F2 = 0; } 1330 // } 1331 // The malloc can also fail if its argument is too large. 1332 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1333 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1334 ConstantZero, "isneg"); 1335 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1336 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1337 Constant::getNullValue(FieldMallocs[i]->getType()), 1338 "isnull"); 1339 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1340 } 1341 1342 // Split the basic block at the old malloc. 1343 BasicBlock *OrigBB = CI->getParent(); 1344 BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont"); 1345 1346 // Create the block to check the first condition. Put all these blocks at the 1347 // end of the function as they are unlikely to be executed. 1348 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1349 "malloc_ret_null", 1350 OrigBB->getParent()); 1351 1352 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1353 // branch on RunningOr. 1354 OrigBB->getTerminator()->eraseFromParent(); 1355 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1356 1357 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1358 // pointer, because some may be null while others are not. 1359 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1360 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1361 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1362 Constant::getNullValue(GVVal->getType()), 1363 "tmp"); 1364 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1365 OrigBB->getParent()); 1366 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1367 OrigBB->getParent()); 1368 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1369 Cmp, NullPtrBlock); 1370 1371 // Fill in FreeBlock. 1372 CallInst::CreateFree(GVVal, BI); 1373 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1374 FreeBlock); 1375 BranchInst::Create(NextBlock, FreeBlock); 1376 1377 NullPtrBlock = NextBlock; 1378 } 1379 1380 BranchInst::Create(ContBB, NullPtrBlock); 1381 1382 // CI is no longer needed, remove it. 1383 CI->eraseFromParent(); 1384 1385 /// InsertedScalarizedLoads - As we process loads, if we can't immediately 1386 /// update all uses of the load, keep track of what scalarized loads are 1387 /// inserted for a given load. 1388 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1389 InsertedScalarizedValues[GV] = FieldGlobals; 1390 1391 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1392 1393 // Okay, the malloc site is completely handled. All of the uses of GV are now 1394 // loads, and all uses of those loads are simple. Rewrite them to use loads 1395 // of the per-field globals instead. 1396 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) { 1397 Instruction *User = cast<Instruction>(*UI++); 1398 1399 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1400 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1401 continue; 1402 } 1403 1404 // Must be a store of null. 1405 StoreInst *SI = cast<StoreInst>(User); 1406 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1407 "Unexpected heap-sra user!"); 1408 1409 // Insert a store of null into each global. 1410 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1411 const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType()); 1412 Constant *Null = Constant::getNullValue(PT->getElementType()); 1413 new StoreInst(Null, FieldGlobals[i], SI); 1414 } 1415 // Erase the original store. 1416 SI->eraseFromParent(); 1417 } 1418 1419 // While we have PHIs that are interesting to rewrite, do it. 1420 while (!PHIsToRewrite.empty()) { 1421 PHINode *PN = PHIsToRewrite.back().first; 1422 unsigned FieldNo = PHIsToRewrite.back().second; 1423 PHIsToRewrite.pop_back(); 1424 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1425 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1426 1427 // Add all the incoming values. This can materialize more phis. 1428 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1429 Value *InVal = PN->getIncomingValue(i); 1430 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1431 PHIsToRewrite); 1432 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1433 } 1434 } 1435 1436 // Drop all inter-phi links and any loads that made it this far. 1437 for (DenseMap<Value*, std::vector<Value*> >::iterator 1438 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1439 I != E; ++I) { 1440 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1441 PN->dropAllReferences(); 1442 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1443 LI->dropAllReferences(); 1444 } 1445 1446 // Delete all the phis and loads now that inter-references are dead. 1447 for (DenseMap<Value*, std::vector<Value*> >::iterator 1448 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1449 I != E; ++I) { 1450 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1451 PN->eraseFromParent(); 1452 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1453 LI->eraseFromParent(); 1454 } 1455 1456 // The old global is now dead, remove it. 1457 GV->eraseFromParent(); 1458 1459 ++NumHeapSRA; 1460 return cast<GlobalVariable>(FieldGlobals[0]); 1461} 1462 1463/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a 1464/// pointer global variable with a single value stored it that is a malloc or 1465/// cast of malloc. 1466static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, 1467 CallInst *CI, 1468 const Type *AllocTy, 1469 Module::global_iterator &GVI, 1470 TargetData *TD) { 1471 if (!TD) 1472 return false; 1473 1474 // If this is a malloc of an abstract type, don't touch it. 1475 if (!AllocTy->isSized()) 1476 return false; 1477 1478 // We can't optimize this global unless all uses of it are *known* to be 1479 // of the malloc value, not of the null initializer value (consider a use 1480 // that compares the global's value against zero to see if the malloc has 1481 // been reached). To do this, we check to see if all uses of the global 1482 // would trap if the global were null: this proves that they must all 1483 // happen after the malloc. 1484 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1485 return false; 1486 1487 // We can't optimize this if the malloc itself is used in a complex way, 1488 // for example, being stored into multiple globals. This allows the 1489 // malloc to be stored into the specified global, loaded setcc'd, and 1490 // GEP'd. These are all things we could transform to using the global 1491 // for. 1492 SmallPtrSet<const PHINode*, 8> PHIs; 1493 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1494 return false; 1495 1496 // If we have a global that is only initialized with a fixed size malloc, 1497 // transform the program to use global memory instead of malloc'd memory. 1498 // This eliminates dynamic allocation, avoids an indirection accessing the 1499 // data, and exposes the resultant global to further GlobalOpt. 1500 // We cannot optimize the malloc if we cannot determine malloc array size. 1501 Value *NElems = getMallocArraySize(CI, TD, true); 1502 if (!NElems) 1503 return false; 1504 1505 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1506 // Restrict this transformation to only working on small allocations 1507 // (2048 bytes currently), as we don't want to introduce a 16M global or 1508 // something. 1509 if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) { 1510 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD); 1511 return true; 1512 } 1513 1514 // If the allocation is an array of structures, consider transforming this 1515 // into multiple malloc'd arrays, one for each field. This is basically 1516 // SRoA for malloc'd memory. 1517 1518 // If this is an allocation of a fixed size array of structs, analyze as a 1519 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1520 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1521 if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1522 AllocTy = AT->getElementType(); 1523 1524 const StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1525 if (!AllocSTy) 1526 return false; 1527 1528 // This the structure has an unreasonable number of fields, leave it 1529 // alone. 1530 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1531 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1532 1533 // If this is a fixed size array, transform the Malloc to be an alloc of 1534 // structs. malloc [100 x struct],1 -> malloc struct, 100 1535 if (const ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) { 1536 const Type *IntPtrTy = TD->getIntPtrType(CI->getContext()); 1537 unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes(); 1538 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1539 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1540 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, 1541 AllocSize, NumElements, 1542 0, CI->getName()); 1543 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1544 CI->replaceAllUsesWith(Cast); 1545 CI->eraseFromParent(); 1546 CI = dyn_cast<BitCastInst>(Malloc) ? 1547 extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc); 1548 } 1549 1550 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD); 1551 return true; 1552 } 1553 1554 return false; 1555} 1556 1557// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge 1558// that only one value (besides its initializer) is ever stored to the global. 1559static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1560 Module::global_iterator &GVI, 1561 TargetData *TD) { 1562 // Ignore no-op GEPs and bitcasts. 1563 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1564 1565 // If we are dealing with a pointer global that is initialized to null and 1566 // only has one (non-null) value stored into it, then we can optimize any 1567 // users of the loaded value (often calls and loads) that would trap if the 1568 // value was null. 1569 if (GV->getInitializer()->getType()->isPointerTy() && 1570 GV->getInitializer()->isNullValue()) { 1571 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1572 if (GV->getInitializer()->getType() != SOVC->getType()) 1573 SOVC = 1574 ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1575 1576 // Optimize away any trapping uses of the loaded value. 1577 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC)) 1578 return true; 1579 } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) { 1580 const Type* MallocType = getMallocAllocatedType(CI); 1581 if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1582 GVI, TD)) 1583 return true; 1584 } 1585 } 1586 1587 return false; 1588} 1589 1590/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only 1591/// two values ever stored into GV are its initializer and OtherVal. See if we 1592/// can shrink the global into a boolean and select between the two values 1593/// whenever it is used. This exposes the values to other scalar optimizations. 1594static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1595 const Type *GVElType = GV->getType()->getElementType(); 1596 1597 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1598 // an FP value, pointer or vector, don't do this optimization because a select 1599 // between them is very expensive and unlikely to lead to later 1600 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1601 // where v1 and v2 both require constant pool loads, a big loss. 1602 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1603 GVElType->isFloatingPointTy() || 1604 GVElType->isPointerTy() || GVElType->isVectorTy()) 1605 return false; 1606 1607 // Walk the use list of the global seeing if all the uses are load or store. 1608 // If there is anything else, bail out. 1609 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){ 1610 User *U = *I; 1611 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1612 return false; 1613 } 1614 1615 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV); 1616 1617 // Create the new global, initializing it to false. 1618 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1619 false, 1620 GlobalValue::InternalLinkage, 1621 ConstantInt::getFalse(GV->getContext()), 1622 GV->getName()+".b", 1623 GV->isThreadLocal()); 1624 GV->getParent()->getGlobalList().insert(GV, NewGV); 1625 1626 Constant *InitVal = GV->getInitializer(); 1627 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1628 "No reason to shrink to bool!"); 1629 1630 // If initialized to zero and storing one into the global, we can use a cast 1631 // instead of a select to synthesize the desired value. 1632 bool IsOneZero = false; 1633 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1634 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1635 1636 while (!GV->use_empty()) { 1637 Instruction *UI = cast<Instruction>(GV->use_back()); 1638 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1639 // Change the store into a boolean store. 1640 bool StoringOther = SI->getOperand(0) == OtherVal; 1641 // Only do this if we weren't storing a loaded value. 1642 Value *StoreVal; 1643 if (StoringOther || SI->getOperand(0) == InitVal) 1644 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1645 StoringOther); 1646 else { 1647 // Otherwise, we are storing a previously loaded copy. To do this, 1648 // change the copy from copying the original value to just copying the 1649 // bool. 1650 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1651 1652 // If we've already replaced the input, StoredVal will be a cast or 1653 // select instruction. If not, it will be a load of the original 1654 // global. 1655 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1656 assert(LI->getOperand(0) == GV && "Not a copy!"); 1657 // Insert a new load, to preserve the saved value. 1658 StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI); 1659 } else { 1660 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1661 "This is not a form that we understand!"); 1662 StoreVal = StoredVal->getOperand(0); 1663 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1664 } 1665 } 1666 new StoreInst(StoreVal, NewGV, SI); 1667 } else { 1668 // Change the load into a load of bool then a select. 1669 LoadInst *LI = cast<LoadInst>(UI); 1670 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI); 1671 Value *NSI; 1672 if (IsOneZero) 1673 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1674 else 1675 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1676 NSI->takeName(LI); 1677 LI->replaceAllUsesWith(NSI); 1678 } 1679 UI->eraseFromParent(); 1680 } 1681 1682 GV->eraseFromParent(); 1683 return true; 1684} 1685 1686 1687/// ProcessInternalGlobal - Analyze the specified global variable and optimize 1688/// it if possible. If we make a change, return true. 1689bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, 1690 Module::global_iterator &GVI) { 1691 SmallPtrSet<const PHINode*, 16> PHIUsers; 1692 GlobalStatus GS; 1693 GV->removeDeadConstantUsers(); 1694 1695 if (GV->use_empty()) { 1696 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV); 1697 GV->eraseFromParent(); 1698 ++NumDeleted; 1699 return true; 1700 } 1701 1702 if (!AnalyzeGlobal(GV, GS, PHIUsers)) { 1703#if 0 1704 DEBUG(dbgs() << "Global: " << *GV); 1705 DEBUG(dbgs() << " isLoaded = " << GS.isLoaded << "\n"); 1706 DEBUG(dbgs() << " StoredType = "); 1707 switch (GS.StoredType) { 1708 case GlobalStatus::NotStored: DEBUG(dbgs() << "NEVER STORED\n"); break; 1709 case GlobalStatus::isInitializerStored: DEBUG(dbgs() << "INIT STORED\n"); 1710 break; 1711 case GlobalStatus::isStoredOnce: DEBUG(dbgs() << "STORED ONCE\n"); break; 1712 case GlobalStatus::isStored: DEBUG(dbgs() << "stored\n"); break; 1713 } 1714 if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue) 1715 DEBUG(dbgs() << " StoredOnceValue = " << *GS.StoredOnceValue << "\n"); 1716 if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions) 1717 DEBUG(dbgs() << " AccessingFunction = " 1718 << GS.AccessingFunction->getName() << "\n"); 1719 DEBUG(dbgs() << " HasMultipleAccessingFunctions = " 1720 << GS.HasMultipleAccessingFunctions << "\n"); 1721 DEBUG(dbgs() << " HasNonInstructionUser = " 1722 << GS.HasNonInstructionUser<<"\n"); 1723 DEBUG(dbgs() << "\n"); 1724#endif 1725 1726 // If this is a first class global and has only one accessing function 1727 // and this function is main (which we know is not recursive we can make 1728 // this global a local variable) we replace the global with a local alloca 1729 // in this function. 1730 // 1731 // NOTE: It doesn't make sense to promote non single-value types since we 1732 // are just replacing static memory to stack memory. 1733 // 1734 // If the global is in different address space, don't bring it to stack. 1735 if (!GS.HasMultipleAccessingFunctions && 1736 GS.AccessingFunction && !GS.HasNonInstructionUser && 1737 GV->getType()->getElementType()->isSingleValueType() && 1738 GS.AccessingFunction->getName() == "main" && 1739 GS.AccessingFunction->hasExternalLinkage() && 1740 GV->getType()->getAddressSpace() == 0) { 1741 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV); 1742 Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1743 ->getEntryBlock().begin()); 1744 const Type* ElemTy = GV->getType()->getElementType(); 1745 // FIXME: Pass Global's alignment when globals have alignment 1746 AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI); 1747 if (!isa<UndefValue>(GV->getInitializer())) 1748 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1749 1750 GV->replaceAllUsesWith(Alloca); 1751 GV->eraseFromParent(); 1752 ++NumLocalized; 1753 return true; 1754 } 1755 1756 // If the global is never loaded (but may be stored to), it is dead. 1757 // Delete it now. 1758 if (!GS.isLoaded) { 1759 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV); 1760 1761 // Delete any stores we can find to the global. We may not be able to 1762 // make it completely dead though. 1763 bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer()); 1764 1765 // If the global is dead now, delete it. 1766 if (GV->use_empty()) { 1767 GV->eraseFromParent(); 1768 ++NumDeleted; 1769 Changed = true; 1770 } 1771 return Changed; 1772 1773 } else if (GS.StoredType <= GlobalStatus::isInitializerStored) { 1774 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV); 1775 GV->setConstant(true); 1776 1777 // Clean up any obviously simplifiable users now. 1778 CleanupConstantGlobalUsers(GV, GV->getInitializer()); 1779 1780 // If the global is dead now, just nuke it. 1781 if (GV->use_empty()) { 1782 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1783 << "all users and delete global!\n"); 1784 GV->eraseFromParent(); 1785 ++NumDeleted; 1786 } 1787 1788 ++NumMarked; 1789 return true; 1790 } else if (!GV->getInitializer()->getType()->isSingleValueType()) { 1791 if (TargetData *TD = getAnalysisIfAvailable<TargetData>()) 1792 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) { 1793 GVI = FirstNewGV; // Don't skip the newly produced globals! 1794 return true; 1795 } 1796 } else if (GS.StoredType == GlobalStatus::isStoredOnce) { 1797 // If the initial value for the global was an undef value, and if only 1798 // one other value was stored into it, we can just change the 1799 // initializer to be the stored value, then delete all stores to the 1800 // global. This allows us to mark it constant. 1801 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1802 if (isa<UndefValue>(GV->getInitializer())) { 1803 // Change the initial value here. 1804 GV->setInitializer(SOVConstant); 1805 1806 // Clean up any obviously simplifiable users now. 1807 CleanupConstantGlobalUsers(GV, GV->getInitializer()); 1808 1809 if (GV->use_empty()) { 1810 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1811 << "simplify all users and delete global!\n"); 1812 GV->eraseFromParent(); 1813 ++NumDeleted; 1814 } else { 1815 GVI = GV; 1816 } 1817 ++NumSubstitute; 1818 return true; 1819 } 1820 1821 // Try to optimize globals based on the knowledge that only one value 1822 // (besides its initializer) is ever stored to the global. 1823 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI, 1824 getAnalysisIfAvailable<TargetData>())) 1825 return true; 1826 1827 // Otherwise, if the global was not a boolean, we can shrink it to be a 1828 // boolean. 1829 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1830 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1831 ++NumShrunkToBool; 1832 return true; 1833 } 1834 } 1835 } 1836 return false; 1837} 1838 1839/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified 1840/// function, changing them to FastCC. 1841static void ChangeCalleesToFastCall(Function *F) { 1842 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 1843 CallSite User(cast<Instruction>(*UI)); 1844 User.setCallingConv(CallingConv::Fast); 1845 } 1846} 1847 1848static AttrListPtr StripNest(const AttrListPtr &Attrs) { 1849 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1850 if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0) 1851 continue; 1852 1853 // There can be only one. 1854 return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest); 1855 } 1856 1857 return Attrs; 1858} 1859 1860static void RemoveNestAttribute(Function *F) { 1861 F->setAttributes(StripNest(F->getAttributes())); 1862 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 1863 CallSite User(cast<Instruction>(*UI)); 1864 User.setAttributes(StripNest(User.getAttributes())); 1865 } 1866} 1867 1868bool GlobalOpt::OptimizeFunctions(Module &M) { 1869 bool Changed = false; 1870 // Optimize functions. 1871 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 1872 Function *F = FI++; 1873 // Functions without names cannot be referenced outside this module. 1874 if (!F->hasName() && !F->isDeclaration()) 1875 F->setLinkage(GlobalValue::InternalLinkage); 1876 F->removeDeadConstantUsers(); 1877 if (F->use_empty() && (F->hasLocalLinkage() || F->hasLinkOnceLinkage())) { 1878 F->eraseFromParent(); 1879 Changed = true; 1880 ++NumFnDeleted; 1881 } else if (F->hasLocalLinkage()) { 1882 if (F->getCallingConv() == CallingConv::C && !F->isVarArg() && 1883 !F->hasAddressTaken()) { 1884 // If this function has C calling conventions, is not a varargs 1885 // function, and is only called directly, promote it to use the Fast 1886 // calling convention. 1887 F->setCallingConv(CallingConv::Fast); 1888 ChangeCalleesToFastCall(F); 1889 ++NumFastCallFns; 1890 Changed = true; 1891 } 1892 1893 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 1894 !F->hasAddressTaken()) { 1895 // The function is not used by a trampoline intrinsic, so it is safe 1896 // to remove the 'nest' attribute. 1897 RemoveNestAttribute(F); 1898 ++NumNestRemoved; 1899 Changed = true; 1900 } 1901 } 1902 } 1903 return Changed; 1904} 1905 1906bool GlobalOpt::OptimizeGlobalVars(Module &M) { 1907 bool Changed = false; 1908 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 1909 GVI != E; ) { 1910 GlobalVariable *GV = GVI++; 1911 // Global variables without names cannot be referenced outside this module. 1912 if (!GV->hasName() && !GV->isDeclaration()) 1913 GV->setLinkage(GlobalValue::InternalLinkage); 1914 // Simplify the initializer. 1915 if (GV->hasInitializer()) 1916 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) { 1917 TargetData *TD = getAnalysisIfAvailable<TargetData>(); 1918 Constant *New = ConstantFoldConstantExpression(CE, TD); 1919 if (New && New != CE) 1920 GV->setInitializer(New); 1921 } 1922 // Do more involved optimizations if the global is internal. 1923 if (!GV->isConstant() && GV->hasLocalLinkage() && 1924 GV->hasInitializer()) 1925 Changed |= ProcessInternalGlobal(GV, GVI); 1926 } 1927 return Changed; 1928} 1929 1930/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all 1931/// initializers have an init priority of 65535. 1932GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) { 1933 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1934 if (GV == 0) return 0; 1935 1936 // Found it, verify it's an array of { int, void()* }. 1937 const ArrayType *ATy =dyn_cast<ArrayType>(GV->getType()->getElementType()); 1938 if (!ATy) return 0; 1939 const StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 1940 if (!STy || STy->getNumElements() != 2 || 1941 !STy->getElementType(0)->isIntegerTy(32)) return 0; 1942 const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1)); 1943 if (!PFTy) return 0; 1944 const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType()); 1945 if (!FTy || !FTy->getReturnType()->isVoidTy() || 1946 FTy->isVarArg() || FTy->getNumParams() != 0) 1947 return 0; 1948 1949 // Verify that the initializer is simple enough for us to handle. We are 1950 // only allowed to optimize the initializer if it is unique. 1951 if (!GV->hasUniqueInitializer()) return 0; 1952 1953 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1954 if (!CA) return 0; 1955 1956 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) { 1957 ConstantStruct *CS = dyn_cast<ConstantStruct>(*i); 1958 if (CS == 0) return 0; 1959 1960 if (isa<ConstantPointerNull>(CS->getOperand(1))) 1961 continue; 1962 1963 // Must have a function or null ptr. 1964 if (!isa<Function>(CS->getOperand(1))) 1965 return 0; 1966 1967 // Init priority must be standard. 1968 ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0)); 1969 if (!CI || CI->getZExtValue() != 65535) 1970 return 0; 1971 } 1972 1973 return GV; 1974} 1975 1976/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand, 1977/// return a list of the functions and null terminator as a vector. 1978static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) { 1979 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 1980 std::vector<Function*> Result; 1981 Result.reserve(CA->getNumOperands()); 1982 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) { 1983 ConstantStruct *CS = cast<ConstantStruct>(*i); 1984 Result.push_back(dyn_cast<Function>(CS->getOperand(1))); 1985 } 1986 return Result; 1987} 1988 1989/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the 1990/// specified array, returning the new global to use. 1991static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL, 1992 const std::vector<Function*> &Ctors) { 1993 // If we made a change, reassemble the initializer list. 1994 std::vector<Constant*> CSVals; 1995 CSVals.push_back(ConstantInt::get(Type::getInt32Ty(GCL->getContext()),65535)); 1996 CSVals.push_back(0); 1997 1998 // Create the new init list. 1999 std::vector<Constant*> CAList; 2000 for (unsigned i = 0, e = Ctors.size(); i != e; ++i) { 2001 if (Ctors[i]) { 2002 CSVals[1] = Ctors[i]; 2003 } else { 2004 const Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()), 2005 false); 2006 const PointerType *PFTy = PointerType::getUnqual(FTy); 2007 CSVals[1] = Constant::getNullValue(PFTy); 2008 CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 2009 2147483647); 2010 } 2011 CAList.push_back(ConstantStruct::get(GCL->getContext(), CSVals, false)); 2012 } 2013 2014 // Create the array initializer. 2015 const Type *StructTy = 2016 cast<ArrayType>(GCL->getType()->getElementType())->getElementType(); 2017 Constant *CA = ConstantArray::get(ArrayType::get(StructTy, 2018 CAList.size()), CAList); 2019 2020 // If we didn't change the number of elements, don't create a new GV. 2021 if (CA->getType() == GCL->getInitializer()->getType()) { 2022 GCL->setInitializer(CA); 2023 return GCL; 2024 } 2025 2026 // Create the new global and insert it next to the existing list. 2027 GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(), 2028 GCL->getLinkage(), CA, "", 2029 GCL->isThreadLocal()); 2030 GCL->getParent()->getGlobalList().insert(GCL, NGV); 2031 NGV->takeName(GCL); 2032 2033 // Nuke the old list, replacing any uses with the new one. 2034 if (!GCL->use_empty()) { 2035 Constant *V = NGV; 2036 if (V->getType() != GCL->getType()) 2037 V = ConstantExpr::getBitCast(V, GCL->getType()); 2038 GCL->replaceAllUsesWith(V); 2039 } 2040 GCL->eraseFromParent(); 2041 2042 if (Ctors.size()) 2043 return NGV; 2044 else 2045 return 0; 2046} 2047 2048 2049static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues, Value *V) { 2050 if (Constant *CV = dyn_cast<Constant>(V)) return CV; 2051 Constant *R = ComputedValues[V]; 2052 assert(R && "Reference to an uncomputed value!"); 2053 return R; 2054} 2055 2056static inline bool 2057isSimpleEnoughValueToCommit(Constant *C, 2058 SmallPtrSet<Constant*, 8> &SimpleConstants); 2059 2060 2061/// isSimpleEnoughValueToCommit - Return true if the specified constant can be 2062/// handled by the code generator. We don't want to generate something like: 2063/// void *X = &X/42; 2064/// because the code generator doesn't have a relocation that can handle that. 2065/// 2066/// This function should be called if C was not found (but just got inserted) 2067/// in SimpleConstants to avoid having to rescan the same constants all the 2068/// time. 2069static bool isSimpleEnoughValueToCommitHelper(Constant *C, 2070 SmallPtrSet<Constant*, 8> &SimpleConstants) { 2071 // Simple integer, undef, constant aggregate zero, global addresses, etc are 2072 // all supported. 2073 if (C->getNumOperands() == 0 || isa<BlockAddress>(C) || 2074 isa<GlobalValue>(C)) 2075 return true; 2076 2077 // Aggregate values are safe if all their elements are. 2078 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2079 isa<ConstantVector>(C)) { 2080 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 2081 Constant *Op = cast<Constant>(C->getOperand(i)); 2082 if (!isSimpleEnoughValueToCommit(Op, SimpleConstants)) 2083 return false; 2084 } 2085 return true; 2086 } 2087 2088 // We don't know exactly what relocations are allowed in constant expressions, 2089 // so we allow &global+constantoffset, which is safe and uniformly supported 2090 // across targets. 2091 ConstantExpr *CE = cast<ConstantExpr>(C); 2092 switch (CE->getOpcode()) { 2093 case Instruction::BitCast: 2094 case Instruction::IntToPtr: 2095 case Instruction::PtrToInt: 2096 // These casts are always fine if the casted value is. 2097 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants); 2098 2099 // GEP is fine if it is simple + constant offset. 2100 case Instruction::GetElementPtr: 2101 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 2102 if (!isa<ConstantInt>(CE->getOperand(i))) 2103 return false; 2104 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants); 2105 2106 case Instruction::Add: 2107 // We allow simple+cst. 2108 if (!isa<ConstantInt>(CE->getOperand(1))) 2109 return false; 2110 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants); 2111 } 2112 return false; 2113} 2114 2115static inline bool 2116isSimpleEnoughValueToCommit(Constant *C, 2117 SmallPtrSet<Constant*, 8> &SimpleConstants) { 2118 // If we already checked this constant, we win. 2119 if (!SimpleConstants.insert(C)) return true; 2120 // Check the constant. 2121 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants); 2122} 2123 2124 2125/// isSimpleEnoughPointerToCommit - Return true if this constant is simple 2126/// enough for us to understand. In particular, if it is a cast of something, 2127/// we punt. We basically just support direct accesses to globals and GEP's of 2128/// globals. This should be kept up to date with CommitValueTo. 2129static bool isSimpleEnoughPointerToCommit(Constant *C) { 2130 // Conservatively, avoid aggregate types. This is because we don't 2131 // want to worry about them partially overlapping other stores. 2132 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) 2133 return false; 2134 2135 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 2136 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2137 // external globals. 2138 return GV->hasUniqueInitializer(); 2139 2140 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2141 // Handle a constantexpr gep. 2142 if (CE->getOpcode() == Instruction::GetElementPtr && 2143 isa<GlobalVariable>(CE->getOperand(0)) && 2144 cast<GEPOperator>(CE)->isInBounds()) { 2145 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2146 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2147 // external globals. 2148 if (!GV->hasUniqueInitializer()) 2149 return false; 2150 2151 // The first index must be zero. 2152 ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin())); 2153 if (!CI || !CI->isZero()) return false; 2154 2155 // The remaining indices must be compile-time known integers within the 2156 // notional bounds of the corresponding static array types. 2157 if (!CE->isGEPWithNoNotionalOverIndexing()) 2158 return false; 2159 2160 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2161 } 2162 return false; 2163} 2164 2165/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global 2166/// initializer. This returns 'Init' modified to reflect 'Val' stored into it. 2167/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into. 2168static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2169 ConstantExpr *Addr, unsigned OpNo) { 2170 // Base case of the recursion. 2171 if (OpNo == Addr->getNumOperands()) { 2172 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2173 return Val; 2174 } 2175 2176 std::vector<Constant*> Elts; 2177 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2178 2179 // Break up the constant into its elements. 2180 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2181 for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i) 2182 Elts.push_back(cast<Constant>(*i)); 2183 } else if (isa<ConstantAggregateZero>(Init)) { 2184 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2185 Elts.push_back(Constant::getNullValue(STy->getElementType(i))); 2186 } else if (isa<UndefValue>(Init)) { 2187 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2188 Elts.push_back(UndefValue::get(STy->getElementType(i))); 2189 } else { 2190 llvm_unreachable("This code is out of sync with " 2191 " ConstantFoldLoadThroughGEPConstantExpr"); 2192 } 2193 2194 // Replace the element that we are supposed to. 2195 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2196 unsigned Idx = CU->getZExtValue(); 2197 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2198 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2199 2200 // Return the modified struct. 2201 return ConstantStruct::get(Init->getContext(), &Elts[0], Elts.size(), 2202 STy->isPacked()); 2203 } else { 2204 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2205 const SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2206 2207 uint64_t NumElts; 2208 if (const ArrayType *ATy = dyn_cast<ArrayType>(InitTy)) 2209 NumElts = ATy->getNumElements(); 2210 else 2211 NumElts = cast<VectorType>(InitTy)->getNumElements(); 2212 2213 2214 // Break up the array into elements. 2215 if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2216 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) 2217 Elts.push_back(cast<Constant>(*i)); 2218 } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) { 2219 for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i) 2220 Elts.push_back(cast<Constant>(*i)); 2221 } else if (isa<ConstantAggregateZero>(Init)) { 2222 Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType())); 2223 } else { 2224 assert(isa<UndefValue>(Init) && "This code is out of sync with " 2225 " ConstantFoldLoadThroughGEPConstantExpr"); 2226 Elts.assign(NumElts, UndefValue::get(InitTy->getElementType())); 2227 } 2228 2229 assert(CI->getZExtValue() < NumElts); 2230 Elts[CI->getZExtValue()] = 2231 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2232 2233 if (Init->getType()->isArrayTy()) 2234 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2235 else 2236 return ConstantVector::get(&Elts[0], Elts.size()); 2237 } 2238} 2239 2240/// CommitValueTo - We have decided that Addr (which satisfies the predicate 2241/// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2242static void CommitValueTo(Constant *Val, Constant *Addr) { 2243 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2244 assert(GV->hasInitializer()); 2245 GV->setInitializer(Val); 2246 return; 2247 } 2248 2249 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2250 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2251 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2252} 2253 2254/// ComputeLoadResult - Return the value that would be computed by a load from 2255/// P after the stores reflected by 'memory' have been performed. If we can't 2256/// decide, return null. 2257static Constant *ComputeLoadResult(Constant *P, 2258 const DenseMap<Constant*, Constant*> &Memory) { 2259 // If this memory location has been recently stored, use the stored value: it 2260 // is the most up-to-date. 2261 DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P); 2262 if (I != Memory.end()) return I->second; 2263 2264 // Access it. 2265 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 2266 if (GV->hasDefinitiveInitializer()) 2267 return GV->getInitializer(); 2268 return 0; 2269 } 2270 2271 // Handle a constantexpr getelementptr. 2272 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) 2273 if (CE->getOpcode() == Instruction::GetElementPtr && 2274 isa<GlobalVariable>(CE->getOperand(0))) { 2275 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2276 if (GV->hasDefinitiveInitializer()) 2277 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2278 } 2279 2280 return 0; // don't know how to evaluate. 2281} 2282 2283/// EvaluateFunction - Evaluate a call to function F, returning true if 2284/// successful, false if we can't evaluate it. ActualArgs contains the formal 2285/// arguments for the function. 2286static bool EvaluateFunction(Function *F, Constant *&RetVal, 2287 const SmallVectorImpl<Constant*> &ActualArgs, 2288 std::vector<Function*> &CallStack, 2289 DenseMap<Constant*, Constant*> &MutatedMemory, 2290 std::vector<GlobalVariable*> &AllocaTmps, 2291 SmallPtrSet<Constant*, 8> &SimpleConstants, 2292 const TargetData *TD) { 2293 // Check to see if this function is already executing (recursion). If so, 2294 // bail out. TODO: we might want to accept limited recursion. 2295 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end()) 2296 return false; 2297 2298 CallStack.push_back(F); 2299 2300 /// Values - As we compute SSA register values, we store their contents here. 2301 DenseMap<Value*, Constant*> Values; 2302 2303 // Initialize arguments to the incoming values specified. 2304 unsigned ArgNo = 0; 2305 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 2306 ++AI, ++ArgNo) 2307 Values[AI] = ActualArgs[ArgNo]; 2308 2309 /// ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 2310 /// we can only evaluate any one basic block at most once. This set keeps 2311 /// track of what we have executed so we can detect recursive cases etc. 2312 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 2313 2314 // CurInst - The current instruction we're evaluating. 2315 BasicBlock::iterator CurInst = F->begin()->begin(); 2316 2317 // This is the main evaluation loop. 2318 while (1) { 2319 Constant *InstResult = 0; 2320 2321 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 2322 if (SI->isVolatile()) return false; // no volatile accesses. 2323 Constant *Ptr = getVal(Values, SI->getOperand(1)); 2324 if (!isSimpleEnoughPointerToCommit(Ptr)) 2325 // If this is too complex for us to commit, reject it. 2326 return false; 2327 2328 Constant *Val = getVal(Values, SI->getOperand(0)); 2329 2330 // If this might be too difficult for the backend to handle (e.g. the addr 2331 // of one global variable divided by another) then we can't commit it. 2332 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants)) 2333 return false; 2334 MutatedMemory[Ptr] = Val; 2335 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 2336 InstResult = ConstantExpr::get(BO->getOpcode(), 2337 getVal(Values, BO->getOperand(0)), 2338 getVal(Values, BO->getOperand(1))); 2339 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 2340 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 2341 getVal(Values, CI->getOperand(0)), 2342 getVal(Values, CI->getOperand(1))); 2343 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 2344 InstResult = ConstantExpr::getCast(CI->getOpcode(), 2345 getVal(Values, CI->getOperand(0)), 2346 CI->getType()); 2347 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 2348 InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)), 2349 getVal(Values, SI->getOperand(1)), 2350 getVal(Values, SI->getOperand(2))); 2351 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 2352 Constant *P = getVal(Values, GEP->getOperand(0)); 2353 SmallVector<Constant*, 8> GEPOps; 2354 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); 2355 i != e; ++i) 2356 GEPOps.push_back(getVal(Values, *i)); 2357 InstResult = cast<GEPOperator>(GEP)->isInBounds() ? 2358 ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) : 2359 ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size()); 2360 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 2361 if (LI->isVolatile()) return false; // no volatile accesses. 2362 InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)), 2363 MutatedMemory); 2364 if (InstResult == 0) return false; // Could not evaluate load. 2365 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 2366 if (AI->isArrayAllocation()) return false; // Cannot handle array allocs. 2367 const Type *Ty = AI->getType()->getElementType(); 2368 AllocaTmps.push_back(new GlobalVariable(Ty, false, 2369 GlobalValue::InternalLinkage, 2370 UndefValue::get(Ty), 2371 AI->getName())); 2372 InstResult = AllocaTmps.back(); 2373 } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) { 2374 2375 // Debug info can safely be ignored here. 2376 if (isa<DbgInfoIntrinsic>(CI)) { 2377 ++CurInst; 2378 continue; 2379 } 2380 2381 // Cannot handle inline asm. 2382 if (isa<InlineAsm>(CI->getCalledValue())) return false; 2383 2384 // Resolve function pointers. 2385 Function *Callee = dyn_cast<Function>(getVal(Values, 2386 CI->getCalledValue())); 2387 if (!Callee) return false; // Cannot resolve. 2388 2389 SmallVector<Constant*, 8> Formals; 2390 CallSite CS(CI); 2391 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); 2392 i != e; ++i) 2393 Formals.push_back(getVal(Values, *i)); 2394 2395 if (Callee->isDeclaration()) { 2396 // If this is a function we can constant fold, do it. 2397 if (Constant *C = ConstantFoldCall(Callee, Formals.data(), 2398 Formals.size())) { 2399 InstResult = C; 2400 } else { 2401 return false; 2402 } 2403 } else { 2404 if (Callee->getFunctionType()->isVarArg()) 2405 return false; 2406 2407 Constant *RetVal; 2408 // Execute the call, if successful, use the return value. 2409 if (!EvaluateFunction(Callee, RetVal, Formals, CallStack, 2410 MutatedMemory, AllocaTmps, SimpleConstants, TD)) 2411 return false; 2412 InstResult = RetVal; 2413 } 2414 } else if (isa<TerminatorInst>(CurInst)) { 2415 BasicBlock *NewBB = 0; 2416 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 2417 if (BI->isUnconditional()) { 2418 NewBB = BI->getSuccessor(0); 2419 } else { 2420 ConstantInt *Cond = 2421 dyn_cast<ConstantInt>(getVal(Values, BI->getCondition())); 2422 if (!Cond) return false; // Cannot determine. 2423 2424 NewBB = BI->getSuccessor(!Cond->getZExtValue()); 2425 } 2426 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 2427 ConstantInt *Val = 2428 dyn_cast<ConstantInt>(getVal(Values, SI->getCondition())); 2429 if (!Val) return false; // Cannot determine. 2430 NewBB = SI->getSuccessor(SI->findCaseValue(Val)); 2431 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 2432 Value *Val = getVal(Values, IBI->getAddress())->stripPointerCasts(); 2433 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 2434 NewBB = BA->getBasicBlock(); 2435 else 2436 return false; // Cannot determine. 2437 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) { 2438 if (RI->getNumOperands()) 2439 RetVal = getVal(Values, RI->getOperand(0)); 2440 2441 CallStack.pop_back(); // return from fn. 2442 return true; // We succeeded at evaluating this ctor! 2443 } else { 2444 // invoke, unwind, unreachable. 2445 return false; // Cannot handle this terminator. 2446 } 2447 2448 // Okay, we succeeded in evaluating this control flow. See if we have 2449 // executed the new block before. If so, we have a looping function, 2450 // which we cannot evaluate in reasonable time. 2451 if (!ExecutedBlocks.insert(NewBB)) 2452 return false; // looped! 2453 2454 // Okay, we have never been in this block before. Check to see if there 2455 // are any PHI nodes. If so, evaluate them with information about where 2456 // we came from. 2457 BasicBlock *OldBB = CurInst->getParent(); 2458 CurInst = NewBB->begin(); 2459 PHINode *PN; 2460 for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 2461 Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB)); 2462 2463 // Do NOT increment CurInst. We know that the terminator had no value. 2464 continue; 2465 } else { 2466 // Did not know how to evaluate this! 2467 return false; 2468 } 2469 2470 if (!CurInst->use_empty()) { 2471 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult)) 2472 InstResult = ConstantFoldConstantExpression(CE, TD); 2473 2474 Values[CurInst] = InstResult; 2475 } 2476 2477 // Advance program counter. 2478 ++CurInst; 2479 } 2480} 2481 2482/// EvaluateStaticConstructor - Evaluate static constructors in the function, if 2483/// we can. Return true if we can, false otherwise. 2484static bool EvaluateStaticConstructor(Function *F, const TargetData *TD) { 2485 /// MutatedMemory - For each store we execute, we update this map. Loads 2486 /// check this to get the most up-to-date value. If evaluation is successful, 2487 /// this state is committed to the process. 2488 DenseMap<Constant*, Constant*> MutatedMemory; 2489 2490 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable 2491 /// to represent its body. This vector is needed so we can delete the 2492 /// temporary globals when we are done. 2493 std::vector<GlobalVariable*> AllocaTmps; 2494 2495 /// CallStack - This is used to detect recursion. In pathological situations 2496 /// we could hit exponential behavior, but at least there is nothing 2497 /// unbounded. 2498 std::vector<Function*> CallStack; 2499 2500 /// SimpleConstants - These are constants we have checked and know to be 2501 /// simple enough to live in a static initializer of a global. 2502 SmallPtrSet<Constant*, 8> SimpleConstants; 2503 2504 // Call the function. 2505 Constant *RetValDummy; 2506 bool EvalSuccess = EvaluateFunction(F, RetValDummy, 2507 SmallVector<Constant*, 0>(), CallStack, 2508 MutatedMemory, AllocaTmps, 2509 SimpleConstants, TD); 2510 2511 if (EvalSuccess) { 2512 // We succeeded at evaluation: commit the result. 2513 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2514 << F->getName() << "' to " << MutatedMemory.size() 2515 << " stores.\n"); 2516 for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(), 2517 E = MutatedMemory.end(); I != E; ++I) 2518 CommitValueTo(I->second, I->first); 2519 } 2520 2521 // At this point, we are done interpreting. If we created any 'alloca' 2522 // temporaries, release them now. 2523 while (!AllocaTmps.empty()) { 2524 GlobalVariable *Tmp = AllocaTmps.back(); 2525 AllocaTmps.pop_back(); 2526 2527 // If there are still users of the alloca, the program is doing something 2528 // silly, e.g. storing the address of the alloca somewhere and using it 2529 // later. Since this is undefined, we'll just make it be null. 2530 if (!Tmp->use_empty()) 2531 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType())); 2532 delete Tmp; 2533 } 2534 2535 return EvalSuccess; 2536} 2537 2538 2539 2540/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible. 2541/// Return true if anything changed. 2542bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) { 2543 std::vector<Function*> Ctors = ParseGlobalCtors(GCL); 2544 bool MadeChange = false; 2545 if (Ctors.empty()) return false; 2546 2547 const TargetData *TD = getAnalysisIfAvailable<TargetData>(); 2548 // Loop over global ctors, optimizing them when we can. 2549 for (unsigned i = 0; i != Ctors.size(); ++i) { 2550 Function *F = Ctors[i]; 2551 // Found a null terminator in the middle of the list, prune off the rest of 2552 // the list. 2553 if (F == 0) { 2554 if (i != Ctors.size()-1) { 2555 Ctors.resize(i+1); 2556 MadeChange = true; 2557 } 2558 break; 2559 } 2560 2561 // We cannot simplify external ctor functions. 2562 if (F->empty()) continue; 2563 2564 // If we can evaluate the ctor at compile time, do. 2565 if (EvaluateStaticConstructor(F, TD)) { 2566 Ctors.erase(Ctors.begin()+i); 2567 MadeChange = true; 2568 --i; 2569 ++NumCtorsEvaluated; 2570 continue; 2571 } 2572 } 2573 2574 if (!MadeChange) return false; 2575 2576 GCL = InstallGlobalCtors(GCL, Ctors); 2577 return true; 2578} 2579 2580bool GlobalOpt::OptimizeGlobalAliases(Module &M) { 2581 bool Changed = false; 2582 2583 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2584 I != E;) { 2585 Module::alias_iterator J = I++; 2586 // Aliases without names cannot be referenced outside this module. 2587 if (!J->hasName() && !J->isDeclaration()) 2588 J->setLinkage(GlobalValue::InternalLinkage); 2589 // If the aliasee may change at link time, nothing can be done - bail out. 2590 if (J->mayBeOverridden()) 2591 continue; 2592 2593 Constant *Aliasee = J->getAliasee(); 2594 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2595 Target->removeDeadConstantUsers(); 2596 bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse(); 2597 2598 // Make all users of the alias use the aliasee instead. 2599 if (!J->use_empty()) { 2600 J->replaceAllUsesWith(Aliasee); 2601 ++NumAliasesResolved; 2602 Changed = true; 2603 } 2604 2605 // If the alias is externally visible, we may still be able to simplify it. 2606 if (!J->hasLocalLinkage()) { 2607 // If the aliasee has internal linkage, give it the name and linkage 2608 // of the alias, and delete the alias. This turns: 2609 // define internal ... @f(...) 2610 // @a = alias ... @f 2611 // into: 2612 // define ... @a(...) 2613 if (!Target->hasLocalLinkage()) 2614 continue; 2615 2616 // Do not perform the transform if multiple aliases potentially target the 2617 // aliasee. This check also ensures that it is safe to replace the section 2618 // and other attributes of the aliasee with those of the alias. 2619 if (!hasOneUse) 2620 continue; 2621 2622 // Give the aliasee the name, linkage and other attributes of the alias. 2623 Target->takeName(J); 2624 Target->setLinkage(J->getLinkage()); 2625 Target->GlobalValue::copyAttributesFrom(J); 2626 } 2627 2628 // Delete the alias. 2629 M.getAliasList().erase(J); 2630 ++NumAliasesRemoved; 2631 Changed = true; 2632 } 2633 2634 return Changed; 2635} 2636 2637bool GlobalOpt::runOnModule(Module &M) { 2638 bool Changed = false; 2639 2640 // Try to find the llvm.globalctors list. 2641 GlobalVariable *GlobalCtors = FindGlobalCtors(M); 2642 2643 bool LocalChange = true; 2644 while (LocalChange) { 2645 LocalChange = false; 2646 2647 // Delete functions that are trivially dead, ccc -> fastcc 2648 LocalChange |= OptimizeFunctions(M); 2649 2650 // Optimize global_ctors list. 2651 if (GlobalCtors) 2652 LocalChange |= OptimizeGlobalCtorsList(GlobalCtors); 2653 2654 // Optimize non-address-taken globals. 2655 LocalChange |= OptimizeGlobalVars(M); 2656 2657 // Resolve aliases, when possible. 2658 LocalChange |= OptimizeGlobalAliases(M); 2659 Changed |= LocalChange; 2660 } 2661 2662 // TODO: Move all global ctors functions to the end of the module for code 2663 // layout. 2664 2665 return Changed; 2666} 2667