GlobalOpt.cpp revision 1945d58025203aec7883c11ac51b827d440f6916
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Analysis/MemoryBuiltins.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Support/CallSite.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/STLExtras.h"
39#include <algorithm>
40using namespace llvm;
41
42STATISTIC(NumMarked    , "Number of globals marked constant");
43STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
44STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
45STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
46STATISTIC(NumDeleted   , "Number of globals deleted");
47STATISTIC(NumFnDeleted , "Number of functions deleted");
48STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
49STATISTIC(NumLocalized , "Number of globals localized");
50STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
51STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
52STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
53STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
54STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
55STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
56
57namespace {
58  struct GlobalOpt : public ModulePass {
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60    }
61    static char ID; // Pass identification, replacement for typeid
62    GlobalOpt() : ModulePass(ID) {
63      initializeGlobalOptPass(*PassRegistry::getPassRegistry());
64    }
65
66    bool runOnModule(Module &M);
67
68  private:
69    GlobalVariable *FindGlobalCtors(Module &M);
70    bool OptimizeFunctions(Module &M);
71    bool OptimizeGlobalVars(Module &M);
72    bool OptimizeGlobalAliases(Module &M);
73    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
74    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
75  };
76}
77
78char GlobalOpt::ID = 0;
79INITIALIZE_PASS(GlobalOpt, "globalopt",
80                "Global Variable Optimizer", false, false)
81
82ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
83
84namespace {
85
86/// GlobalStatus - As we analyze each global, keep track of some information
87/// about it.  If we find out that the address of the global is taken, none of
88/// this info will be accurate.
89struct GlobalStatus {
90  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
91  /// loaded it can be deleted.
92  bool isLoaded;
93
94  /// StoredType - Keep track of what stores to the global look like.
95  ///
96  enum StoredType {
97    /// NotStored - There is no store to this global.  It can thus be marked
98    /// constant.
99    NotStored,
100
101    /// isInitializerStored - This global is stored to, but the only thing
102    /// stored is the constant it was initialized with.  This is only tracked
103    /// for scalar globals.
104    isInitializerStored,
105
106    /// isStoredOnce - This global is stored to, but only its initializer and
107    /// one other value is ever stored to it.  If this global isStoredOnce, we
108    /// track the value stored to it in StoredOnceValue below.  This is only
109    /// tracked for scalar globals.
110    isStoredOnce,
111
112    /// isStored - This global is stored to by multiple values or something else
113    /// that we cannot track.
114    isStored
115  } StoredType;
116
117  /// StoredOnceValue - If only one value (besides the initializer constant) is
118  /// ever stored to this global, keep track of what value it is.
119  Value *StoredOnceValue;
120
121  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
122  /// null/false.  When the first accessing function is noticed, it is recorded.
123  /// When a second different accessing function is noticed,
124  /// HasMultipleAccessingFunctions is set to true.
125  const Function *AccessingFunction;
126  bool HasMultipleAccessingFunctions;
127
128  /// HasNonInstructionUser - Set to true if this global has a user that is not
129  /// an instruction (e.g. a constant expr or GV initializer).
130  bool HasNonInstructionUser;
131
132  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
133  bool HasPHIUser;
134
135  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
136                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
137                   HasNonInstructionUser(false), HasPHIUser(false) {}
138};
139
140}
141
142// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
143// by constants itself.  Note that constants cannot be cyclic, so this test is
144// pretty easy to implement recursively.
145//
146static bool SafeToDestroyConstant(const Constant *C) {
147  if (isa<GlobalValue>(C)) return false;
148
149  for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
150       ++UI)
151    if (const Constant *CU = dyn_cast<Constant>(*UI)) {
152      if (!SafeToDestroyConstant(CU)) return false;
153    } else
154      return false;
155  return true;
156}
157
158
159/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
160/// structure.  If the global has its address taken, return true to indicate we
161/// can't do anything with it.
162///
163static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
164                          SmallPtrSet<const PHINode*, 16> &PHIUsers) {
165  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
166       ++UI) {
167    const User *U = *UI;
168    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
169      GS.HasNonInstructionUser = true;
170      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
171    } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
172      if (!GS.HasMultipleAccessingFunctions) {
173        const Function *F = I->getParent()->getParent();
174        if (GS.AccessingFunction == 0)
175          GS.AccessingFunction = F;
176        else if (GS.AccessingFunction != F)
177          GS.HasMultipleAccessingFunctions = true;
178      }
179      if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
180        GS.isLoaded = true;
181        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
182      } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
183        // Don't allow a store OF the address, only stores TO the address.
184        if (SI->getOperand(0) == V) return true;
185
186        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
187
188        // If this is a direct store to the global (i.e., the global is a scalar
189        // value, not an aggregate), keep more specific information about
190        // stores.
191        if (GS.StoredType != GlobalStatus::isStored) {
192          if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
193                                                           SI->getOperand(1))) {
194            Value *StoredVal = SI->getOperand(0);
195            if (StoredVal == GV->getInitializer()) {
196              if (GS.StoredType < GlobalStatus::isInitializerStored)
197                GS.StoredType = GlobalStatus::isInitializerStored;
198            } else if (isa<LoadInst>(StoredVal) &&
199                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
200              if (GS.StoredType < GlobalStatus::isInitializerStored)
201                GS.StoredType = GlobalStatus::isInitializerStored;
202            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
203              GS.StoredType = GlobalStatus::isStoredOnce;
204              GS.StoredOnceValue = StoredVal;
205            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
206                       GS.StoredOnceValue == StoredVal) {
207              // noop.
208            } else {
209              GS.StoredType = GlobalStatus::isStored;
210            }
211          } else {
212            GS.StoredType = GlobalStatus::isStored;
213          }
214        }
215      } else if (isa<GetElementPtrInst>(I)) {
216        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
217      } else if (isa<SelectInst>(I)) {
218        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
219      } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
220        // PHI nodes we can check just like select or GEP instructions, but we
221        // have to be careful about infinite recursion.
222        if (PHIUsers.insert(PN))  // Not already visited.
223          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
224        GS.HasPHIUser = true;
225      } else if (isa<CmpInst>(I)) {
226        // Nothing to analyse.
227      } else if (isa<MemTransferInst>(I)) {
228        const MemTransferInst *MTI = cast<MemTransferInst>(I);
229        if (MTI->getArgOperand(0) == V)
230          GS.StoredType = GlobalStatus::isStored;
231        if (MTI->getArgOperand(1) == V)
232          GS.isLoaded = true;
233      } else if (isa<MemSetInst>(I)) {
234        assert(cast<MemSetInst>(I)->getArgOperand(0) == V &&
235               "Memset only takes one pointer!");
236        GS.StoredType = GlobalStatus::isStored;
237      } else {
238        return true;  // Any other non-load instruction might take address!
239      }
240    } else if (const Constant *C = dyn_cast<Constant>(U)) {
241      GS.HasNonInstructionUser = true;
242      // We might have a dead and dangling constant hanging off of here.
243      if (!SafeToDestroyConstant(C))
244        return true;
245    } else {
246      GS.HasNonInstructionUser = true;
247      // Otherwise must be some other user.
248      return true;
249    }
250  }
251
252  return false;
253}
254
255static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
256  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
257  if (!CI) return 0;
258  unsigned IdxV = CI->getZExtValue();
259
260  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
261    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
262  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
263    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
264  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
265    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
266  } else if (isa<ConstantAggregateZero>(Agg)) {
267    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
268      if (IdxV < STy->getNumElements())
269        return Constant::getNullValue(STy->getElementType(IdxV));
270    } else if (const SequentialType *STy =
271               dyn_cast<SequentialType>(Agg->getType())) {
272      return Constant::getNullValue(STy->getElementType());
273    }
274  } else if (isa<UndefValue>(Agg)) {
275    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
276      if (IdxV < STy->getNumElements())
277        return UndefValue::get(STy->getElementType(IdxV));
278    } else if (const SequentialType *STy =
279               dyn_cast<SequentialType>(Agg->getType())) {
280      return UndefValue::get(STy->getElementType());
281    }
282  }
283  return 0;
284}
285
286
287/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
288/// users of the global, cleaning up the obvious ones.  This is largely just a
289/// quick scan over the use list to clean up the easy and obvious cruft.  This
290/// returns true if it made a change.
291static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
292  bool Changed = false;
293  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
294    User *U = *UI++;
295
296    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
297      if (Init) {
298        // Replace the load with the initializer.
299        LI->replaceAllUsesWith(Init);
300        LI->eraseFromParent();
301        Changed = true;
302      }
303    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
304      // Store must be unreachable or storing Init into the global.
305      SI->eraseFromParent();
306      Changed = true;
307    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
308      if (CE->getOpcode() == Instruction::GetElementPtr) {
309        Constant *SubInit = 0;
310        if (Init)
311          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
312        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
313      } else if (CE->getOpcode() == Instruction::BitCast &&
314                 CE->getType()->isPointerTy()) {
315        // Pointer cast, delete any stores and memsets to the global.
316        Changed |= CleanupConstantGlobalUsers(CE, 0);
317      }
318
319      if (CE->use_empty()) {
320        CE->destroyConstant();
321        Changed = true;
322      }
323    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
324      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
325      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
326      // and will invalidate our notion of what Init is.
327      Constant *SubInit = 0;
328      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
329        ConstantExpr *CE =
330          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
331        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
332          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
333      }
334      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
335
336      if (GEP->use_empty()) {
337        GEP->eraseFromParent();
338        Changed = true;
339      }
340    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
341      if (MI->getRawDest() == V) {
342        MI->eraseFromParent();
343        Changed = true;
344      }
345
346    } else if (Constant *C = dyn_cast<Constant>(U)) {
347      // If we have a chain of dead constantexprs or other things dangling from
348      // us, and if they are all dead, nuke them without remorse.
349      if (SafeToDestroyConstant(C)) {
350        C->destroyConstant();
351        // This could have invalidated UI, start over from scratch.
352        CleanupConstantGlobalUsers(V, Init);
353        return true;
354      }
355    }
356  }
357  return Changed;
358}
359
360/// isSafeSROAElementUse - Return true if the specified instruction is a safe
361/// user of a derived expression from a global that we want to SROA.
362static bool isSafeSROAElementUse(Value *V) {
363  // We might have a dead and dangling constant hanging off of here.
364  if (Constant *C = dyn_cast<Constant>(V))
365    return SafeToDestroyConstant(C);
366
367  Instruction *I = dyn_cast<Instruction>(V);
368  if (!I) return false;
369
370  // Loads are ok.
371  if (isa<LoadInst>(I)) return true;
372
373  // Stores *to* the pointer are ok.
374  if (StoreInst *SI = dyn_cast<StoreInst>(I))
375    return SI->getOperand(0) != V;
376
377  // Otherwise, it must be a GEP.
378  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
379  if (GEPI == 0) return false;
380
381  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
382      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
383    return false;
384
385  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
386       I != E; ++I)
387    if (!isSafeSROAElementUse(*I))
388      return false;
389  return true;
390}
391
392
393/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
394/// Look at it and its uses and decide whether it is safe to SROA this global.
395///
396static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
397  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
398  if (!isa<GetElementPtrInst>(U) &&
399      (!isa<ConstantExpr>(U) ||
400       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
401    return false;
402
403  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
404  // don't like < 3 operand CE's, and we don't like non-constant integer
405  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
406  // value of C.
407  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
408      !cast<Constant>(U->getOperand(1))->isNullValue() ||
409      !isa<ConstantInt>(U->getOperand(2)))
410    return false;
411
412  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
413  ++GEPI;  // Skip over the pointer index.
414
415  // If this is a use of an array allocation, do a bit more checking for sanity.
416  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
417    uint64_t NumElements = AT->getNumElements();
418    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
419
420    // Check to make sure that index falls within the array.  If not,
421    // something funny is going on, so we won't do the optimization.
422    //
423    if (Idx->getZExtValue() >= NumElements)
424      return false;
425
426    // We cannot scalar repl this level of the array unless any array
427    // sub-indices are in-range constants.  In particular, consider:
428    // A[0][i].  We cannot know that the user isn't doing invalid things like
429    // allowing i to index an out-of-range subscript that accesses A[1].
430    //
431    // Scalar replacing *just* the outer index of the array is probably not
432    // going to be a win anyway, so just give up.
433    for (++GEPI; // Skip array index.
434         GEPI != E;
435         ++GEPI) {
436      uint64_t NumElements;
437      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
438        NumElements = SubArrayTy->getNumElements();
439      else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
440        NumElements = SubVectorTy->getNumElements();
441      else {
442        assert((*GEPI)->isStructTy() &&
443               "Indexed GEP type is not array, vector, or struct!");
444        continue;
445      }
446
447      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
448      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
449        return false;
450    }
451  }
452
453  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
454    if (!isSafeSROAElementUse(*I))
455      return false;
456  return true;
457}
458
459/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
460/// is safe for us to perform this transformation.
461///
462static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
463  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
464       UI != E; ++UI) {
465    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
466      return false;
467  }
468  return true;
469}
470
471
472/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
473/// variable.  This opens the door for other optimizations by exposing the
474/// behavior of the program in a more fine-grained way.  We have determined that
475/// this transformation is safe already.  We return the first global variable we
476/// insert so that the caller can reprocess it.
477static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
478  // Make sure this global only has simple uses that we can SRA.
479  if (!GlobalUsersSafeToSRA(GV))
480    return 0;
481
482  assert(GV->hasLocalLinkage() && !GV->isConstant());
483  Constant *Init = GV->getInitializer();
484  const Type *Ty = Init->getType();
485
486  std::vector<GlobalVariable*> NewGlobals;
487  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
488
489  // Get the alignment of the global, either explicit or target-specific.
490  unsigned StartAlignment = GV->getAlignment();
491  if (StartAlignment == 0)
492    StartAlignment = TD.getABITypeAlignment(GV->getType());
493
494  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
495    NewGlobals.reserve(STy->getNumElements());
496    const StructLayout &Layout = *TD.getStructLayout(STy);
497    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
498      Constant *In = getAggregateConstantElement(Init,
499                    ConstantInt::get(Type::getInt32Ty(STy->getContext()), i));
500      assert(In && "Couldn't get element of initializer?");
501      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
502                                               GlobalVariable::InternalLinkage,
503                                               In, GV->getName()+"."+Twine(i),
504                                               GV->isThreadLocal(),
505                                              GV->getType()->getAddressSpace());
506      Globals.insert(GV, NGV);
507      NewGlobals.push_back(NGV);
508
509      // Calculate the known alignment of the field.  If the original aggregate
510      // had 256 byte alignment for example, something might depend on that:
511      // propagate info to each field.
512      uint64_t FieldOffset = Layout.getElementOffset(i);
513      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
514      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
515        NGV->setAlignment(NewAlign);
516    }
517  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
518    unsigned NumElements = 0;
519    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
520      NumElements = ATy->getNumElements();
521    else
522      NumElements = cast<VectorType>(STy)->getNumElements();
523
524    if (NumElements > 16 && GV->hasNUsesOrMore(16))
525      return 0; // It's not worth it.
526    NewGlobals.reserve(NumElements);
527
528    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
529    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
530    for (unsigned i = 0, e = NumElements; i != e; ++i) {
531      Constant *In = getAggregateConstantElement(Init,
532                    ConstantInt::get(Type::getInt32Ty(Init->getContext()), i));
533      assert(In && "Couldn't get element of initializer?");
534
535      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
536                                               GlobalVariable::InternalLinkage,
537                                               In, GV->getName()+"."+Twine(i),
538                                               GV->isThreadLocal(),
539                                              GV->getType()->getAddressSpace());
540      Globals.insert(GV, NGV);
541      NewGlobals.push_back(NGV);
542
543      // Calculate the known alignment of the field.  If the original aggregate
544      // had 256 byte alignment for example, something might depend on that:
545      // propagate info to each field.
546      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
547      if (NewAlign > EltAlign)
548        NGV->setAlignment(NewAlign);
549    }
550  }
551
552  if (NewGlobals.empty())
553    return 0;
554
555  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
556
557  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
558
559  // Loop over all of the uses of the global, replacing the constantexpr geps,
560  // with smaller constantexpr geps or direct references.
561  while (!GV->use_empty()) {
562    User *GEP = GV->use_back();
563    assert(((isa<ConstantExpr>(GEP) &&
564             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
565            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
566
567    // Ignore the 1th operand, which has to be zero or else the program is quite
568    // broken (undefined).  Get the 2nd operand, which is the structure or array
569    // index.
570    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
571    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
572
573    Value *NewPtr = NewGlobals[Val];
574
575    // Form a shorter GEP if needed.
576    if (GEP->getNumOperands() > 3) {
577      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
578        SmallVector<Constant*, 8> Idxs;
579        Idxs.push_back(NullInt);
580        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
581          Idxs.push_back(CE->getOperand(i));
582        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
583                                                &Idxs[0], Idxs.size());
584      } else {
585        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
586        SmallVector<Value*, 8> Idxs;
587        Idxs.push_back(NullInt);
588        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
589          Idxs.push_back(GEPI->getOperand(i));
590        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
591                                           GEPI->getName()+"."+Twine(Val),GEPI);
592      }
593    }
594    GEP->replaceAllUsesWith(NewPtr);
595
596    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
597      GEPI->eraseFromParent();
598    else
599      cast<ConstantExpr>(GEP)->destroyConstant();
600  }
601
602  // Delete the old global, now that it is dead.
603  Globals.erase(GV);
604  ++NumSRA;
605
606  // Loop over the new globals array deleting any globals that are obviously
607  // dead.  This can arise due to scalarization of a structure or an array that
608  // has elements that are dead.
609  unsigned FirstGlobal = 0;
610  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
611    if (NewGlobals[i]->use_empty()) {
612      Globals.erase(NewGlobals[i]);
613      if (FirstGlobal == i) ++FirstGlobal;
614    }
615
616  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
617}
618
619/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
620/// value will trap if the value is dynamically null.  PHIs keeps track of any
621/// phi nodes we've seen to avoid reprocessing them.
622static bool AllUsesOfValueWillTrapIfNull(const Value *V,
623                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
624  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
625       ++UI) {
626    const User *U = *UI;
627
628    if (isa<LoadInst>(U)) {
629      // Will trap.
630    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
631      if (SI->getOperand(0) == V) {
632        //cerr << "NONTRAPPING USE: " << *U;
633        return false;  // Storing the value.
634      }
635    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
636      if (CI->getCalledValue() != V) {
637        //cerr << "NONTRAPPING USE: " << *U;
638        return false;  // Not calling the ptr
639      }
640    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
641      if (II->getCalledValue() != V) {
642        //cerr << "NONTRAPPING USE: " << *U;
643        return false;  // Not calling the ptr
644      }
645    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
646      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
647    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
648      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
649    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
650      // If we've already seen this phi node, ignore it, it has already been
651      // checked.
652      if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
653        return false;
654    } else if (isa<ICmpInst>(U) &&
655               isa<ConstantPointerNull>(UI->getOperand(1))) {
656      // Ignore icmp X, null
657    } else {
658      //cerr << "NONTRAPPING USE: " << *U;
659      return false;
660    }
661  }
662  return true;
663}
664
665/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
666/// from GV will trap if the loaded value is null.  Note that this also permits
667/// comparisons of the loaded value against null, as a special case.
668static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
669  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
670       UI != E; ++UI) {
671    const User *U = *UI;
672
673    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
674      SmallPtrSet<const PHINode*, 8> PHIs;
675      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
676        return false;
677    } else if (isa<StoreInst>(U)) {
678      // Ignore stores to the global.
679    } else {
680      // We don't know or understand this user, bail out.
681      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
682      return false;
683    }
684  }
685  return true;
686}
687
688static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
689  bool Changed = false;
690  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
691    Instruction *I = cast<Instruction>(*UI++);
692    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
693      LI->setOperand(0, NewV);
694      Changed = true;
695    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
696      if (SI->getOperand(1) == V) {
697        SI->setOperand(1, NewV);
698        Changed = true;
699      }
700    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
701      CallSite CS(I);
702      if (CS.getCalledValue() == V) {
703        // Calling through the pointer!  Turn into a direct call, but be careful
704        // that the pointer is not also being passed as an argument.
705        CS.setCalledFunction(NewV);
706        Changed = true;
707        bool PassedAsArg = false;
708        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
709          if (CS.getArgument(i) == V) {
710            PassedAsArg = true;
711            CS.setArgument(i, NewV);
712          }
713
714        if (PassedAsArg) {
715          // Being passed as an argument also.  Be careful to not invalidate UI!
716          UI = V->use_begin();
717        }
718      }
719    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
720      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
721                                ConstantExpr::getCast(CI->getOpcode(),
722                                                      NewV, CI->getType()));
723      if (CI->use_empty()) {
724        Changed = true;
725        CI->eraseFromParent();
726      }
727    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
728      // Should handle GEP here.
729      SmallVector<Constant*, 8> Idxs;
730      Idxs.reserve(GEPI->getNumOperands()-1);
731      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
732           i != e; ++i)
733        if (Constant *C = dyn_cast<Constant>(*i))
734          Idxs.push_back(C);
735        else
736          break;
737      if (Idxs.size() == GEPI->getNumOperands()-1)
738        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
739                          ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
740                                                        Idxs.size()));
741      if (GEPI->use_empty()) {
742        Changed = true;
743        GEPI->eraseFromParent();
744      }
745    }
746  }
747
748  return Changed;
749}
750
751
752/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
753/// value stored into it.  If there are uses of the loaded value that would trap
754/// if the loaded value is dynamically null, then we know that they cannot be
755/// reachable with a null optimize away the load.
756static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
757  bool Changed = false;
758
759  // Keep track of whether we are able to remove all the uses of the global
760  // other than the store that defines it.
761  bool AllNonStoreUsesGone = true;
762
763  // Replace all uses of loads with uses of uses of the stored value.
764  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
765    User *GlobalUser = *GUI++;
766    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
767      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
768      // If we were able to delete all uses of the loads
769      if (LI->use_empty()) {
770        LI->eraseFromParent();
771        Changed = true;
772      } else {
773        AllNonStoreUsesGone = false;
774      }
775    } else if (isa<StoreInst>(GlobalUser)) {
776      // Ignore the store that stores "LV" to the global.
777      assert(GlobalUser->getOperand(1) == GV &&
778             "Must be storing *to* the global");
779    } else {
780      AllNonStoreUsesGone = false;
781
782      // If we get here we could have other crazy uses that are transitively
783      // loaded.
784      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
785              isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
786    }
787  }
788
789  if (Changed) {
790    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
791    ++NumGlobUses;
792  }
793
794  // If we nuked all of the loads, then none of the stores are needed either,
795  // nor is the global.
796  if (AllNonStoreUsesGone) {
797    DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
798    CleanupConstantGlobalUsers(GV, 0);
799    if (GV->use_empty()) {
800      GV->eraseFromParent();
801      ++NumDeleted;
802    }
803    Changed = true;
804  }
805  return Changed;
806}
807
808/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
809/// instructions that are foldable.
810static void ConstantPropUsersOf(Value *V) {
811  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
812    if (Instruction *I = dyn_cast<Instruction>(*UI++))
813      if (Constant *NewC = ConstantFoldInstruction(I)) {
814        I->replaceAllUsesWith(NewC);
815
816        // Advance UI to the next non-I use to avoid invalidating it!
817        // Instructions could multiply use V.
818        while (UI != E && *UI == I)
819          ++UI;
820        I->eraseFromParent();
821      }
822}
823
824/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
825/// variable, and transforms the program as if it always contained the result of
826/// the specified malloc.  Because it is always the result of the specified
827/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
828/// malloc into a global, and any loads of GV as uses of the new global.
829static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
830                                                     CallInst *CI,
831                                                     const Type *AllocTy,
832                                                     ConstantInt *NElements,
833                                                     TargetData* TD) {
834  DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
835
836  const Type *GlobalType;
837  if (NElements->getZExtValue() == 1)
838    GlobalType = AllocTy;
839  else
840    // If we have an array allocation, the global variable is of an array.
841    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
842
843  // Create the new global variable.  The contents of the malloc'd memory is
844  // undefined, so initialize with an undef value.
845  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
846                                             GlobalType, false,
847                                             GlobalValue::InternalLinkage,
848                                             UndefValue::get(GlobalType),
849                                             GV->getName()+".body",
850                                             GV,
851                                             GV->isThreadLocal());
852
853  // If there are bitcast users of the malloc (which is typical, usually we have
854  // a malloc + bitcast) then replace them with uses of the new global.  Update
855  // other users to use the global as well.
856  BitCastInst *TheBC = 0;
857  while (!CI->use_empty()) {
858    Instruction *User = cast<Instruction>(CI->use_back());
859    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
860      if (BCI->getType() == NewGV->getType()) {
861        BCI->replaceAllUsesWith(NewGV);
862        BCI->eraseFromParent();
863      } else {
864        BCI->setOperand(0, NewGV);
865      }
866    } else {
867      if (TheBC == 0)
868        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
869      User->replaceUsesOfWith(CI, TheBC);
870    }
871  }
872
873  Constant *RepValue = NewGV;
874  if (NewGV->getType() != GV->getType()->getElementType())
875    RepValue = ConstantExpr::getBitCast(RepValue,
876                                        GV->getType()->getElementType());
877
878  // If there is a comparison against null, we will insert a global bool to
879  // keep track of whether the global was initialized yet or not.
880  GlobalVariable *InitBool =
881    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
882                       GlobalValue::InternalLinkage,
883                       ConstantInt::getFalse(GV->getContext()),
884                       GV->getName()+".init", GV->isThreadLocal());
885  bool InitBoolUsed = false;
886
887  // Loop over all uses of GV, processing them in turn.
888  while (!GV->use_empty()) {
889    if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
890      // The global is initialized when the store to it occurs.
891      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, SI);
892      SI->eraseFromParent();
893      continue;
894    }
895
896    LoadInst *LI = cast<LoadInst>(GV->use_back());
897    while (!LI->use_empty()) {
898      Use &LoadUse = LI->use_begin().getUse();
899      if (!isa<ICmpInst>(LoadUse.getUser())) {
900        LoadUse = RepValue;
901        continue;
902      }
903
904      ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
905      // Replace the cmp X, 0 with a use of the bool value.
906      Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
907      InitBoolUsed = true;
908      switch (ICI->getPredicate()) {
909      default: llvm_unreachable("Unknown ICmp Predicate!");
910      case ICmpInst::ICMP_ULT:
911      case ICmpInst::ICMP_SLT:   // X < null -> always false
912        LV = ConstantInt::getFalse(GV->getContext());
913        break;
914      case ICmpInst::ICMP_ULE:
915      case ICmpInst::ICMP_SLE:
916      case ICmpInst::ICMP_EQ:
917        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
918        break;
919      case ICmpInst::ICMP_NE:
920      case ICmpInst::ICMP_UGE:
921      case ICmpInst::ICMP_SGE:
922      case ICmpInst::ICMP_UGT:
923      case ICmpInst::ICMP_SGT:
924        break;  // no change.
925      }
926      ICI->replaceAllUsesWith(LV);
927      ICI->eraseFromParent();
928    }
929    LI->eraseFromParent();
930  }
931
932  // If the initialization boolean was used, insert it, otherwise delete it.
933  if (!InitBoolUsed) {
934    while (!InitBool->use_empty())  // Delete initializations
935      cast<StoreInst>(InitBool->use_back())->eraseFromParent();
936    delete InitBool;
937  } else
938    GV->getParent()->getGlobalList().insert(GV, InitBool);
939
940  // Now the GV is dead, nuke it and the malloc..
941  GV->eraseFromParent();
942  CI->eraseFromParent();
943
944  // To further other optimizations, loop over all users of NewGV and try to
945  // constant prop them.  This will promote GEP instructions with constant
946  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
947  ConstantPropUsersOf(NewGV);
948  if (RepValue != NewGV)
949    ConstantPropUsersOf(RepValue);
950
951  return NewGV;
952}
953
954/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
955/// to make sure that there are no complex uses of V.  We permit simple things
956/// like dereferencing the pointer, but not storing through the address, unless
957/// it is to the specified global.
958static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
959                                                      const GlobalVariable *GV,
960                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
961  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
962       UI != E; ++UI) {
963    const Instruction *Inst = cast<Instruction>(*UI);
964
965    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
966      continue; // Fine, ignore.
967    }
968
969    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
970      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
971        return false;  // Storing the pointer itself... bad.
972      continue; // Otherwise, storing through it, or storing into GV... fine.
973    }
974
975    // Must index into the array and into the struct.
976    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
977      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
978        return false;
979      continue;
980    }
981
982    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
983      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
984      // cycles.
985      if (PHIs.insert(PN))
986        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
987          return false;
988      continue;
989    }
990
991    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
992      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
993        return false;
994      continue;
995    }
996
997    return false;
998  }
999  return true;
1000}
1001
1002/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1003/// somewhere.  Transform all uses of the allocation into loads from the
1004/// global and uses of the resultant pointer.  Further, delete the store into
1005/// GV.  This assumes that these value pass the
1006/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1007static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1008                                          GlobalVariable *GV) {
1009  while (!Alloc->use_empty()) {
1010    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1011    Instruction *InsertPt = U;
1012    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1013      // If this is the store of the allocation into the global, remove it.
1014      if (SI->getOperand(1) == GV) {
1015        SI->eraseFromParent();
1016        continue;
1017      }
1018    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1019      // Insert the load in the corresponding predecessor, not right before the
1020      // PHI.
1021      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1022    } else if (isa<BitCastInst>(U)) {
1023      // Must be bitcast between the malloc and store to initialize the global.
1024      ReplaceUsesOfMallocWithGlobal(U, GV);
1025      U->eraseFromParent();
1026      continue;
1027    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1028      // If this is a "GEP bitcast" and the user is a store to the global, then
1029      // just process it as a bitcast.
1030      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1031        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1032          if (SI->getOperand(1) == GV) {
1033            // Must be bitcast GEP between the malloc and store to initialize
1034            // the global.
1035            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1036            GEPI->eraseFromParent();
1037            continue;
1038          }
1039    }
1040
1041    // Insert a load from the global, and use it instead of the malloc.
1042    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1043    U->replaceUsesOfWith(Alloc, NL);
1044  }
1045}
1046
1047/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1048/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1049/// that index through the array and struct field, icmps of null, and PHIs.
1050static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1051                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1052                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1053  // We permit two users of the load: setcc comparing against the null
1054  // pointer, and a getelementptr of a specific form.
1055  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
1056       ++UI) {
1057    const Instruction *User = cast<Instruction>(*UI);
1058
1059    // Comparison against null is ok.
1060    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1061      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1062        return false;
1063      continue;
1064    }
1065
1066    // getelementptr is also ok, but only a simple form.
1067    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1068      // Must index into the array and into the struct.
1069      if (GEPI->getNumOperands() < 3)
1070        return false;
1071
1072      // Otherwise the GEP is ok.
1073      continue;
1074    }
1075
1076    if (const PHINode *PN = dyn_cast<PHINode>(User)) {
1077      if (!LoadUsingPHIsPerLoad.insert(PN))
1078        // This means some phi nodes are dependent on each other.
1079        // Avoid infinite looping!
1080        return false;
1081      if (!LoadUsingPHIs.insert(PN))
1082        // If we have already analyzed this PHI, then it is safe.
1083        continue;
1084
1085      // Make sure all uses of the PHI are simple enough to transform.
1086      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1087                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1088        return false;
1089
1090      continue;
1091    }
1092
1093    // Otherwise we don't know what this is, not ok.
1094    return false;
1095  }
1096
1097  return true;
1098}
1099
1100
1101/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1102/// GV are simple enough to perform HeapSRA, return true.
1103static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1104                                                    Instruction *StoredVal) {
1105  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1106  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1107  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1108       UI != E; ++UI)
1109    if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1110      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1111                                          LoadUsingPHIsPerLoad))
1112        return false;
1113      LoadUsingPHIsPerLoad.clear();
1114    }
1115
1116  // If we reach here, we know that all uses of the loads and transitive uses
1117  // (through PHI nodes) are simple enough to transform.  However, we don't know
1118  // that all inputs the to the PHI nodes are in the same equivalence sets.
1119  // Check to verify that all operands of the PHIs are either PHIS that can be
1120  // transformed, loads from GV, or MI itself.
1121  for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1122       , E = LoadUsingPHIs.end(); I != E; ++I) {
1123    const PHINode *PN = *I;
1124    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1125      Value *InVal = PN->getIncomingValue(op);
1126
1127      // PHI of the stored value itself is ok.
1128      if (InVal == StoredVal) continue;
1129
1130      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1131        // One of the PHIs in our set is (optimistically) ok.
1132        if (LoadUsingPHIs.count(InPN))
1133          continue;
1134        return false;
1135      }
1136
1137      // Load from GV is ok.
1138      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1139        if (LI->getOperand(0) == GV)
1140          continue;
1141
1142      // UNDEF? NULL?
1143
1144      // Anything else is rejected.
1145      return false;
1146    }
1147  }
1148
1149  return true;
1150}
1151
1152static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1153               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1154                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1155  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1156
1157  if (FieldNo >= FieldVals.size())
1158    FieldVals.resize(FieldNo+1);
1159
1160  // If we already have this value, just reuse the previously scalarized
1161  // version.
1162  if (Value *FieldVal = FieldVals[FieldNo])
1163    return FieldVal;
1164
1165  // Depending on what instruction this is, we have several cases.
1166  Value *Result;
1167  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1168    // This is a scalarized version of the load from the global.  Just create
1169    // a new Load of the scalarized global.
1170    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1171                                           InsertedScalarizedValues,
1172                                           PHIsToRewrite),
1173                          LI->getName()+".f"+Twine(FieldNo), LI);
1174  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1175    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1176    // field.
1177    const StructType *ST =
1178      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1179
1180    Result =
1181     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1182                     PN->getName()+".f"+Twine(FieldNo), PN);
1183    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1184  } else {
1185    llvm_unreachable("Unknown usable value");
1186    Result = 0;
1187  }
1188
1189  return FieldVals[FieldNo] = Result;
1190}
1191
1192/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1193/// the load, rewrite the derived value to use the HeapSRoA'd load.
1194static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1195             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1196                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1197  // If this is a comparison against null, handle it.
1198  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1199    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1200    // If we have a setcc of the loaded pointer, we can use a setcc of any
1201    // field.
1202    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1203                                   InsertedScalarizedValues, PHIsToRewrite);
1204
1205    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1206                              Constant::getNullValue(NPtr->getType()),
1207                              SCI->getName());
1208    SCI->replaceAllUsesWith(New);
1209    SCI->eraseFromParent();
1210    return;
1211  }
1212
1213  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1214  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1215    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1216           && "Unexpected GEPI!");
1217
1218    // Load the pointer for this field.
1219    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1220    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1221                                     InsertedScalarizedValues, PHIsToRewrite);
1222
1223    // Create the new GEP idx vector.
1224    SmallVector<Value*, 8> GEPIdx;
1225    GEPIdx.push_back(GEPI->getOperand(1));
1226    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1227
1228    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1229                                             GEPIdx.begin(), GEPIdx.end(),
1230                                             GEPI->getName(), GEPI);
1231    GEPI->replaceAllUsesWith(NGEPI);
1232    GEPI->eraseFromParent();
1233    return;
1234  }
1235
1236  // Recursively transform the users of PHI nodes.  This will lazily create the
1237  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1238  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1239  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1240  // already been seen first by another load, so its uses have already been
1241  // processed.
1242  PHINode *PN = cast<PHINode>(LoadUser);
1243  bool Inserted;
1244  DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1245  tie(InsertPos, Inserted) =
1246    InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1247  if (!Inserted) return;
1248
1249  // If this is the first time we've seen this PHI, recursively process all
1250  // users.
1251  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1252    Instruction *User = cast<Instruction>(*UI++);
1253    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1254  }
1255}
1256
1257/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1258/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1259/// use FieldGlobals instead.  All uses of loaded values satisfy
1260/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1261static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1262               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1263                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1264  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1265       UI != E; ) {
1266    Instruction *User = cast<Instruction>(*UI++);
1267    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1268  }
1269
1270  if (Load->use_empty()) {
1271    Load->eraseFromParent();
1272    InsertedScalarizedValues.erase(Load);
1273  }
1274}
1275
1276/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1277/// it up into multiple allocations of arrays of the fields.
1278static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1279                                            Value* NElems, TargetData *TD) {
1280  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1281  const Type* MAT = getMallocAllocatedType(CI);
1282  const StructType *STy = cast<StructType>(MAT);
1283
1284  // There is guaranteed to be at least one use of the malloc (storing
1285  // it into GV).  If there are other uses, change them to be uses of
1286  // the global to simplify later code.  This also deletes the store
1287  // into GV.
1288  ReplaceUsesOfMallocWithGlobal(CI, GV);
1289
1290  // Okay, at this point, there are no users of the malloc.  Insert N
1291  // new mallocs at the same place as CI, and N globals.
1292  std::vector<Value*> FieldGlobals;
1293  std::vector<Value*> FieldMallocs;
1294
1295  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1296    const Type *FieldTy = STy->getElementType(FieldNo);
1297    const PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1298
1299    GlobalVariable *NGV =
1300      new GlobalVariable(*GV->getParent(),
1301                         PFieldTy, false, GlobalValue::InternalLinkage,
1302                         Constant::getNullValue(PFieldTy),
1303                         GV->getName() + ".f" + Twine(FieldNo), GV,
1304                         GV->isThreadLocal());
1305    FieldGlobals.push_back(NGV);
1306
1307    unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1308    if (const StructType *ST = dyn_cast<StructType>(FieldTy))
1309      TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1310    const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1311    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1312                                        ConstantInt::get(IntPtrTy, TypeSize),
1313                                        NElems, 0,
1314                                        CI->getName() + ".f" + Twine(FieldNo));
1315    FieldMallocs.push_back(NMI);
1316    new StoreInst(NMI, NGV, CI);
1317  }
1318
1319  // The tricky aspect of this transformation is handling the case when malloc
1320  // fails.  In the original code, malloc failing would set the result pointer
1321  // of malloc to null.  In this case, some mallocs could succeed and others
1322  // could fail.  As such, we emit code that looks like this:
1323  //    F0 = malloc(field0)
1324  //    F1 = malloc(field1)
1325  //    F2 = malloc(field2)
1326  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1327  //      if (F0) { free(F0); F0 = 0; }
1328  //      if (F1) { free(F1); F1 = 0; }
1329  //      if (F2) { free(F2); F2 = 0; }
1330  //    }
1331  // The malloc can also fail if its argument is too large.
1332  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1333  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1334                                  ConstantZero, "isneg");
1335  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1336    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1337                             Constant::getNullValue(FieldMallocs[i]->getType()),
1338                               "isnull");
1339    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1340  }
1341
1342  // Split the basic block at the old malloc.
1343  BasicBlock *OrigBB = CI->getParent();
1344  BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1345
1346  // Create the block to check the first condition.  Put all these blocks at the
1347  // end of the function as they are unlikely to be executed.
1348  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1349                                                "malloc_ret_null",
1350                                                OrigBB->getParent());
1351
1352  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1353  // branch on RunningOr.
1354  OrigBB->getTerminator()->eraseFromParent();
1355  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1356
1357  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1358  // pointer, because some may be null while others are not.
1359  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1360    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1361    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1362                              Constant::getNullValue(GVVal->getType()),
1363                              "tmp");
1364    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1365                                               OrigBB->getParent());
1366    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1367                                               OrigBB->getParent());
1368    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1369                                         Cmp, NullPtrBlock);
1370
1371    // Fill in FreeBlock.
1372    CallInst::CreateFree(GVVal, BI);
1373    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1374                  FreeBlock);
1375    BranchInst::Create(NextBlock, FreeBlock);
1376
1377    NullPtrBlock = NextBlock;
1378  }
1379
1380  BranchInst::Create(ContBB, NullPtrBlock);
1381
1382  // CI is no longer needed, remove it.
1383  CI->eraseFromParent();
1384
1385  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1386  /// update all uses of the load, keep track of what scalarized loads are
1387  /// inserted for a given load.
1388  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1389  InsertedScalarizedValues[GV] = FieldGlobals;
1390
1391  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1392
1393  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1394  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1395  // of the per-field globals instead.
1396  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1397    Instruction *User = cast<Instruction>(*UI++);
1398
1399    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1400      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1401      continue;
1402    }
1403
1404    // Must be a store of null.
1405    StoreInst *SI = cast<StoreInst>(User);
1406    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1407           "Unexpected heap-sra user!");
1408
1409    // Insert a store of null into each global.
1410    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1411      const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1412      Constant *Null = Constant::getNullValue(PT->getElementType());
1413      new StoreInst(Null, FieldGlobals[i], SI);
1414    }
1415    // Erase the original store.
1416    SI->eraseFromParent();
1417  }
1418
1419  // While we have PHIs that are interesting to rewrite, do it.
1420  while (!PHIsToRewrite.empty()) {
1421    PHINode *PN = PHIsToRewrite.back().first;
1422    unsigned FieldNo = PHIsToRewrite.back().second;
1423    PHIsToRewrite.pop_back();
1424    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1425    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1426
1427    // Add all the incoming values.  This can materialize more phis.
1428    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1429      Value *InVal = PN->getIncomingValue(i);
1430      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1431                               PHIsToRewrite);
1432      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1433    }
1434  }
1435
1436  // Drop all inter-phi links and any loads that made it this far.
1437  for (DenseMap<Value*, std::vector<Value*> >::iterator
1438       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1439       I != E; ++I) {
1440    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1441      PN->dropAllReferences();
1442    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1443      LI->dropAllReferences();
1444  }
1445
1446  // Delete all the phis and loads now that inter-references are dead.
1447  for (DenseMap<Value*, std::vector<Value*> >::iterator
1448       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1449       I != E; ++I) {
1450    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1451      PN->eraseFromParent();
1452    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1453      LI->eraseFromParent();
1454  }
1455
1456  // The old global is now dead, remove it.
1457  GV->eraseFromParent();
1458
1459  ++NumHeapSRA;
1460  return cast<GlobalVariable>(FieldGlobals[0]);
1461}
1462
1463/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1464/// pointer global variable with a single value stored it that is a malloc or
1465/// cast of malloc.
1466static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1467                                               CallInst *CI,
1468                                               const Type *AllocTy,
1469                                               Module::global_iterator &GVI,
1470                                               TargetData *TD) {
1471  if (!TD)
1472    return false;
1473
1474  // If this is a malloc of an abstract type, don't touch it.
1475  if (!AllocTy->isSized())
1476    return false;
1477
1478  // We can't optimize this global unless all uses of it are *known* to be
1479  // of the malloc value, not of the null initializer value (consider a use
1480  // that compares the global's value against zero to see if the malloc has
1481  // been reached).  To do this, we check to see if all uses of the global
1482  // would trap if the global were null: this proves that they must all
1483  // happen after the malloc.
1484  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1485    return false;
1486
1487  // We can't optimize this if the malloc itself is used in a complex way,
1488  // for example, being stored into multiple globals.  This allows the
1489  // malloc to be stored into the specified global, loaded setcc'd, and
1490  // GEP'd.  These are all things we could transform to using the global
1491  // for.
1492  SmallPtrSet<const PHINode*, 8> PHIs;
1493  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1494    return false;
1495
1496  // If we have a global that is only initialized with a fixed size malloc,
1497  // transform the program to use global memory instead of malloc'd memory.
1498  // This eliminates dynamic allocation, avoids an indirection accessing the
1499  // data, and exposes the resultant global to further GlobalOpt.
1500  // We cannot optimize the malloc if we cannot determine malloc array size.
1501  Value *NElems = getMallocArraySize(CI, TD, true);
1502  if (!NElems)
1503    return false;
1504
1505  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1506    // Restrict this transformation to only working on small allocations
1507    // (2048 bytes currently), as we don't want to introduce a 16M global or
1508    // something.
1509    if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1510      GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD);
1511      return true;
1512    }
1513
1514  // If the allocation is an array of structures, consider transforming this
1515  // into multiple malloc'd arrays, one for each field.  This is basically
1516  // SRoA for malloc'd memory.
1517
1518  // If this is an allocation of a fixed size array of structs, analyze as a
1519  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1520  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1521    if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1522      AllocTy = AT->getElementType();
1523
1524  const StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1525  if (!AllocSTy)
1526    return false;
1527
1528  // This the structure has an unreasonable number of fields, leave it
1529  // alone.
1530  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1531      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1532
1533    // If this is a fixed size array, transform the Malloc to be an alloc of
1534    // structs.  malloc [100 x struct],1 -> malloc struct, 100
1535    if (const ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
1536      const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1537      unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1538      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1539      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1540      Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1541                                                   AllocSize, NumElements,
1542                                                   0, CI->getName());
1543      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1544      CI->replaceAllUsesWith(Cast);
1545      CI->eraseFromParent();
1546      CI = dyn_cast<BitCastInst>(Malloc) ?
1547        extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc);
1548    }
1549
1550    GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD);
1551    return true;
1552  }
1553
1554  return false;
1555}
1556
1557// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1558// that only one value (besides its initializer) is ever stored to the global.
1559static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1560                                     Module::global_iterator &GVI,
1561                                     TargetData *TD) {
1562  // Ignore no-op GEPs and bitcasts.
1563  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1564
1565  // If we are dealing with a pointer global that is initialized to null and
1566  // only has one (non-null) value stored into it, then we can optimize any
1567  // users of the loaded value (often calls and loads) that would trap if the
1568  // value was null.
1569  if (GV->getInitializer()->getType()->isPointerTy() &&
1570      GV->getInitializer()->isNullValue()) {
1571    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1572      if (GV->getInitializer()->getType() != SOVC->getType())
1573        SOVC =
1574         ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1575
1576      // Optimize away any trapping uses of the loaded value.
1577      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1578        return true;
1579    } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
1580      const Type* MallocType = getMallocAllocatedType(CI);
1581      if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1582                                                           GVI, TD))
1583        return true;
1584    }
1585  }
1586
1587  return false;
1588}
1589
1590/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1591/// two values ever stored into GV are its initializer and OtherVal.  See if we
1592/// can shrink the global into a boolean and select between the two values
1593/// whenever it is used.  This exposes the values to other scalar optimizations.
1594static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1595  const Type *GVElType = GV->getType()->getElementType();
1596
1597  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1598  // an FP value, pointer or vector, don't do this optimization because a select
1599  // between them is very expensive and unlikely to lead to later
1600  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1601  // where v1 and v2 both require constant pool loads, a big loss.
1602  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1603      GVElType->isFloatingPointTy() ||
1604      GVElType->isPointerTy() || GVElType->isVectorTy())
1605    return false;
1606
1607  // Walk the use list of the global seeing if all the uses are load or store.
1608  // If there is anything else, bail out.
1609  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
1610    User *U = *I;
1611    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1612      return false;
1613  }
1614
1615  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
1616
1617  // Create the new global, initializing it to false.
1618  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1619                                             false,
1620                                             GlobalValue::InternalLinkage,
1621                                        ConstantInt::getFalse(GV->getContext()),
1622                                             GV->getName()+".b",
1623                                             GV->isThreadLocal());
1624  GV->getParent()->getGlobalList().insert(GV, NewGV);
1625
1626  Constant *InitVal = GV->getInitializer();
1627  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1628         "No reason to shrink to bool!");
1629
1630  // If initialized to zero and storing one into the global, we can use a cast
1631  // instead of a select to synthesize the desired value.
1632  bool IsOneZero = false;
1633  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1634    IsOneZero = InitVal->isNullValue() && CI->isOne();
1635
1636  while (!GV->use_empty()) {
1637    Instruction *UI = cast<Instruction>(GV->use_back());
1638    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1639      // Change the store into a boolean store.
1640      bool StoringOther = SI->getOperand(0) == OtherVal;
1641      // Only do this if we weren't storing a loaded value.
1642      Value *StoreVal;
1643      if (StoringOther || SI->getOperand(0) == InitVal)
1644        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1645                                    StoringOther);
1646      else {
1647        // Otherwise, we are storing a previously loaded copy.  To do this,
1648        // change the copy from copying the original value to just copying the
1649        // bool.
1650        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1651
1652        // If we've already replaced the input, StoredVal will be a cast or
1653        // select instruction.  If not, it will be a load of the original
1654        // global.
1655        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1656          assert(LI->getOperand(0) == GV && "Not a copy!");
1657          // Insert a new load, to preserve the saved value.
1658          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1659        } else {
1660          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1661                 "This is not a form that we understand!");
1662          StoreVal = StoredVal->getOperand(0);
1663          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1664        }
1665      }
1666      new StoreInst(StoreVal, NewGV, SI);
1667    } else {
1668      // Change the load into a load of bool then a select.
1669      LoadInst *LI = cast<LoadInst>(UI);
1670      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1671      Value *NSI;
1672      if (IsOneZero)
1673        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1674      else
1675        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1676      NSI->takeName(LI);
1677      LI->replaceAllUsesWith(NSI);
1678    }
1679    UI->eraseFromParent();
1680  }
1681
1682  GV->eraseFromParent();
1683  return true;
1684}
1685
1686
1687/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1688/// it if possible.  If we make a change, return true.
1689bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1690                                      Module::global_iterator &GVI) {
1691  SmallPtrSet<const PHINode*, 16> PHIUsers;
1692  GlobalStatus GS;
1693  GV->removeDeadConstantUsers();
1694
1695  if (GV->use_empty()) {
1696    DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1697    GV->eraseFromParent();
1698    ++NumDeleted;
1699    return true;
1700  }
1701
1702  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1703#if 0
1704    DEBUG(dbgs() << "Global: " << *GV);
1705    DEBUG(dbgs() << "  isLoaded = " << GS.isLoaded << "\n");
1706    DEBUG(dbgs() << "  StoredType = ");
1707    switch (GS.StoredType) {
1708    case GlobalStatus::NotStored: DEBUG(dbgs() << "NEVER STORED\n"); break;
1709    case GlobalStatus::isInitializerStored: DEBUG(dbgs() << "INIT STORED\n");
1710                                            break;
1711    case GlobalStatus::isStoredOnce: DEBUG(dbgs() << "STORED ONCE\n"); break;
1712    case GlobalStatus::isStored: DEBUG(dbgs() << "stored\n"); break;
1713    }
1714    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1715      DEBUG(dbgs() << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n");
1716    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1717      DEBUG(dbgs() << "  AccessingFunction = "
1718                   << GS.AccessingFunction->getName() << "\n");
1719    DEBUG(dbgs() << "  HasMultipleAccessingFunctions =  "
1720                 << GS.HasMultipleAccessingFunctions << "\n");
1721    DEBUG(dbgs() << "  HasNonInstructionUser = "
1722                 << GS.HasNonInstructionUser<<"\n");
1723    DEBUG(dbgs() << "\n");
1724#endif
1725
1726    // If this is a first class global and has only one accessing function
1727    // and this function is main (which we know is not recursive we can make
1728    // this global a local variable) we replace the global with a local alloca
1729    // in this function.
1730    //
1731    // NOTE: It doesn't make sense to promote non single-value types since we
1732    // are just replacing static memory to stack memory.
1733    //
1734    // If the global is in different address space, don't bring it to stack.
1735    if (!GS.HasMultipleAccessingFunctions &&
1736        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1737        GV->getType()->getElementType()->isSingleValueType() &&
1738        GS.AccessingFunction->getName() == "main" &&
1739        GS.AccessingFunction->hasExternalLinkage() &&
1740        GV->getType()->getAddressSpace() == 0) {
1741      DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1742      Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1743                                                     ->getEntryBlock().begin());
1744      const Type* ElemTy = GV->getType()->getElementType();
1745      // FIXME: Pass Global's alignment when globals have alignment
1746      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1747      if (!isa<UndefValue>(GV->getInitializer()))
1748        new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1749
1750      GV->replaceAllUsesWith(Alloca);
1751      GV->eraseFromParent();
1752      ++NumLocalized;
1753      return true;
1754    }
1755
1756    // If the global is never loaded (but may be stored to), it is dead.
1757    // Delete it now.
1758    if (!GS.isLoaded) {
1759      DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1760
1761      // Delete any stores we can find to the global.  We may not be able to
1762      // make it completely dead though.
1763      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1764
1765      // If the global is dead now, delete it.
1766      if (GV->use_empty()) {
1767        GV->eraseFromParent();
1768        ++NumDeleted;
1769        Changed = true;
1770      }
1771      return Changed;
1772
1773    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1774      DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
1775      GV->setConstant(true);
1776
1777      // Clean up any obviously simplifiable users now.
1778      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1779
1780      // If the global is dead now, just nuke it.
1781      if (GV->use_empty()) {
1782        DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1783                     << "all users and delete global!\n");
1784        GV->eraseFromParent();
1785        ++NumDeleted;
1786      }
1787
1788      ++NumMarked;
1789      return true;
1790    } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1791      if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1792        if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
1793          GVI = FirstNewGV;  // Don't skip the newly produced globals!
1794          return true;
1795        }
1796    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1797      // If the initial value for the global was an undef value, and if only
1798      // one other value was stored into it, we can just change the
1799      // initializer to be the stored value, then delete all stores to the
1800      // global.  This allows us to mark it constant.
1801      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1802        if (isa<UndefValue>(GV->getInitializer())) {
1803          // Change the initial value here.
1804          GV->setInitializer(SOVConstant);
1805
1806          // Clean up any obviously simplifiable users now.
1807          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1808
1809          if (GV->use_empty()) {
1810            DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1811                         << "simplify all users and delete global!\n");
1812            GV->eraseFromParent();
1813            ++NumDeleted;
1814          } else {
1815            GVI = GV;
1816          }
1817          ++NumSubstitute;
1818          return true;
1819        }
1820
1821      // Try to optimize globals based on the knowledge that only one value
1822      // (besides its initializer) is ever stored to the global.
1823      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1824                                   getAnalysisIfAvailable<TargetData>()))
1825        return true;
1826
1827      // Otherwise, if the global was not a boolean, we can shrink it to be a
1828      // boolean.
1829      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1830        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1831          ++NumShrunkToBool;
1832          return true;
1833        }
1834    }
1835  }
1836  return false;
1837}
1838
1839/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1840/// function, changing them to FastCC.
1841static void ChangeCalleesToFastCall(Function *F) {
1842  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1843    CallSite User(cast<Instruction>(*UI));
1844    User.setCallingConv(CallingConv::Fast);
1845  }
1846}
1847
1848static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1849  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1850    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1851      continue;
1852
1853    // There can be only one.
1854    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1855  }
1856
1857  return Attrs;
1858}
1859
1860static void RemoveNestAttribute(Function *F) {
1861  F->setAttributes(StripNest(F->getAttributes()));
1862  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1863    CallSite User(cast<Instruction>(*UI));
1864    User.setAttributes(StripNest(User.getAttributes()));
1865  }
1866}
1867
1868bool GlobalOpt::OptimizeFunctions(Module &M) {
1869  bool Changed = false;
1870  // Optimize functions.
1871  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1872    Function *F = FI++;
1873    // Functions without names cannot be referenced outside this module.
1874    if (!F->hasName() && !F->isDeclaration())
1875      F->setLinkage(GlobalValue::InternalLinkage);
1876    F->removeDeadConstantUsers();
1877    if (F->use_empty() && (F->hasLocalLinkage() || F->hasLinkOnceLinkage())) {
1878      F->eraseFromParent();
1879      Changed = true;
1880      ++NumFnDeleted;
1881    } else if (F->hasLocalLinkage()) {
1882      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1883          !F->hasAddressTaken()) {
1884        // If this function has C calling conventions, is not a varargs
1885        // function, and is only called directly, promote it to use the Fast
1886        // calling convention.
1887        F->setCallingConv(CallingConv::Fast);
1888        ChangeCalleesToFastCall(F);
1889        ++NumFastCallFns;
1890        Changed = true;
1891      }
1892
1893      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1894          !F->hasAddressTaken()) {
1895        // The function is not used by a trampoline intrinsic, so it is safe
1896        // to remove the 'nest' attribute.
1897        RemoveNestAttribute(F);
1898        ++NumNestRemoved;
1899        Changed = true;
1900      }
1901    }
1902  }
1903  return Changed;
1904}
1905
1906bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1907  bool Changed = false;
1908  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1909       GVI != E; ) {
1910    GlobalVariable *GV = GVI++;
1911    // Global variables without names cannot be referenced outside this module.
1912    if (!GV->hasName() && !GV->isDeclaration())
1913      GV->setLinkage(GlobalValue::InternalLinkage);
1914    // Simplify the initializer.
1915    if (GV->hasInitializer())
1916      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1917        TargetData *TD = getAnalysisIfAvailable<TargetData>();
1918        Constant *New = ConstantFoldConstantExpression(CE, TD);
1919        if (New && New != CE)
1920          GV->setInitializer(New);
1921      }
1922    // Do more involved optimizations if the global is internal.
1923    if (!GV->isConstant() && GV->hasLocalLinkage() &&
1924        GV->hasInitializer())
1925      Changed |= ProcessInternalGlobal(GV, GVI);
1926  }
1927  return Changed;
1928}
1929
1930/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1931/// initializers have an init priority of 65535.
1932GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1933  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1934  if (GV == 0) return 0;
1935
1936  // Found it, verify it's an array of { int, void()* }.
1937  const ArrayType *ATy =dyn_cast<ArrayType>(GV->getType()->getElementType());
1938  if (!ATy) return 0;
1939  const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1940  if (!STy || STy->getNumElements() != 2 ||
1941      !STy->getElementType(0)->isIntegerTy(32)) return 0;
1942  const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1943  if (!PFTy) return 0;
1944  const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1945  if (!FTy || !FTy->getReturnType()->isVoidTy() ||
1946      FTy->isVarArg() || FTy->getNumParams() != 0)
1947    return 0;
1948
1949  // Verify that the initializer is simple enough for us to handle. We are
1950  // only allowed to optimize the initializer if it is unique.
1951  if (!GV->hasUniqueInitializer()) return 0;
1952
1953  ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1954  if (!CA) return 0;
1955
1956  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1957    ConstantStruct *CS = dyn_cast<ConstantStruct>(*i);
1958    if (CS == 0) return 0;
1959
1960    if (isa<ConstantPointerNull>(CS->getOperand(1)))
1961      continue;
1962
1963    // Must have a function or null ptr.
1964    if (!isa<Function>(CS->getOperand(1)))
1965      return 0;
1966
1967    // Init priority must be standard.
1968    ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1969    if (!CI || CI->getZExtValue() != 65535)
1970      return 0;
1971  }
1972
1973  return GV;
1974}
1975
1976/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1977/// return a list of the functions and null terminator as a vector.
1978static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1979  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1980  std::vector<Function*> Result;
1981  Result.reserve(CA->getNumOperands());
1982  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1983    ConstantStruct *CS = cast<ConstantStruct>(*i);
1984    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1985  }
1986  return Result;
1987}
1988
1989/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1990/// specified array, returning the new global to use.
1991static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1992                                          const std::vector<Function*> &Ctors) {
1993  // If we made a change, reassemble the initializer list.
1994  std::vector<Constant*> CSVals;
1995  CSVals.push_back(ConstantInt::get(Type::getInt32Ty(GCL->getContext()),65535));
1996  CSVals.push_back(0);
1997
1998  // Create the new init list.
1999  std::vector<Constant*> CAList;
2000  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
2001    if (Ctors[i]) {
2002      CSVals[1] = Ctors[i];
2003    } else {
2004      const Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
2005                                          false);
2006      const PointerType *PFTy = PointerType::getUnqual(FTy);
2007      CSVals[1] = Constant::getNullValue(PFTy);
2008      CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2009                                   2147483647);
2010    }
2011    CAList.push_back(ConstantStruct::get(GCL->getContext(), CSVals, false));
2012  }
2013
2014  // Create the array initializer.
2015  const Type *StructTy =
2016      cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
2017  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2018                                                   CAList.size()), CAList);
2019
2020  // If we didn't change the number of elements, don't create a new GV.
2021  if (CA->getType() == GCL->getInitializer()->getType()) {
2022    GCL->setInitializer(CA);
2023    return GCL;
2024  }
2025
2026  // Create the new global and insert it next to the existing list.
2027  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2028                                           GCL->getLinkage(), CA, "",
2029                                           GCL->isThreadLocal());
2030  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2031  NGV->takeName(GCL);
2032
2033  // Nuke the old list, replacing any uses with the new one.
2034  if (!GCL->use_empty()) {
2035    Constant *V = NGV;
2036    if (V->getType() != GCL->getType())
2037      V = ConstantExpr::getBitCast(V, GCL->getType());
2038    GCL->replaceAllUsesWith(V);
2039  }
2040  GCL->eraseFromParent();
2041
2042  if (Ctors.size())
2043    return NGV;
2044  else
2045    return 0;
2046}
2047
2048
2049static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues, Value *V) {
2050  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2051  Constant *R = ComputedValues[V];
2052  assert(R && "Reference to an uncomputed value!");
2053  return R;
2054}
2055
2056static inline bool
2057isSimpleEnoughValueToCommit(Constant *C,
2058                            SmallPtrSet<Constant*, 8> &SimpleConstants);
2059
2060
2061/// isSimpleEnoughValueToCommit - Return true if the specified constant can be
2062/// handled by the code generator.  We don't want to generate something like:
2063///   void *X = &X/42;
2064/// because the code generator doesn't have a relocation that can handle that.
2065///
2066/// This function should be called if C was not found (but just got inserted)
2067/// in SimpleConstants to avoid having to rescan the same constants all the
2068/// time.
2069static bool isSimpleEnoughValueToCommitHelper(Constant *C,
2070                                   SmallPtrSet<Constant*, 8> &SimpleConstants) {
2071  // Simple integer, undef, constant aggregate zero, global addresses, etc are
2072  // all supported.
2073  if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
2074      isa<GlobalValue>(C))
2075    return true;
2076
2077  // Aggregate values are safe if all their elements are.
2078  if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2079      isa<ConstantVector>(C)) {
2080    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
2081      Constant *Op = cast<Constant>(C->getOperand(i));
2082      if (!isSimpleEnoughValueToCommit(Op, SimpleConstants))
2083        return false;
2084    }
2085    return true;
2086  }
2087
2088  // We don't know exactly what relocations are allowed in constant expressions,
2089  // so we allow &global+constantoffset, which is safe and uniformly supported
2090  // across targets.
2091  ConstantExpr *CE = cast<ConstantExpr>(C);
2092  switch (CE->getOpcode()) {
2093  case Instruction::BitCast:
2094  case Instruction::IntToPtr:
2095  case Instruction::PtrToInt:
2096    // These casts are always fine if the casted value is.
2097    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
2098
2099  // GEP is fine if it is simple + constant offset.
2100  case Instruction::GetElementPtr:
2101    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2102      if (!isa<ConstantInt>(CE->getOperand(i)))
2103        return false;
2104    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
2105
2106  case Instruction::Add:
2107    // We allow simple+cst.
2108    if (!isa<ConstantInt>(CE->getOperand(1)))
2109      return false;
2110    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
2111  }
2112  return false;
2113}
2114
2115static inline bool
2116isSimpleEnoughValueToCommit(Constant *C,
2117                            SmallPtrSet<Constant*, 8> &SimpleConstants) {
2118  // If we already checked this constant, we win.
2119  if (!SimpleConstants.insert(C)) return true;
2120  // Check the constant.
2121  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants);
2122}
2123
2124
2125/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2126/// enough for us to understand.  In particular, if it is a cast of something,
2127/// we punt.  We basically just support direct accesses to globals and GEP's of
2128/// globals.  This should be kept up to date with CommitValueTo.
2129static bool isSimpleEnoughPointerToCommit(Constant *C) {
2130  // Conservatively, avoid aggregate types. This is because we don't
2131  // want to worry about them partially overlapping other stores.
2132  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2133    return false;
2134
2135  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2136    // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2137    // external globals.
2138    return GV->hasUniqueInitializer();
2139
2140  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2141    // Handle a constantexpr gep.
2142    if (CE->getOpcode() == Instruction::GetElementPtr &&
2143        isa<GlobalVariable>(CE->getOperand(0)) &&
2144        cast<GEPOperator>(CE)->isInBounds()) {
2145      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2146      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2147      // external globals.
2148      if (!GV->hasUniqueInitializer())
2149        return false;
2150
2151      // The first index must be zero.
2152      ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin()));
2153      if (!CI || !CI->isZero()) return false;
2154
2155      // The remaining indices must be compile-time known integers within the
2156      // notional bounds of the corresponding static array types.
2157      if (!CE->isGEPWithNoNotionalOverIndexing())
2158        return false;
2159
2160      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2161    }
2162  return false;
2163}
2164
2165/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2166/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2167/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2168static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2169                                   ConstantExpr *Addr, unsigned OpNo) {
2170  // Base case of the recursion.
2171  if (OpNo == Addr->getNumOperands()) {
2172    assert(Val->getType() == Init->getType() && "Type mismatch!");
2173    return Val;
2174  }
2175
2176  std::vector<Constant*> Elts;
2177  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2178
2179    // Break up the constant into its elements.
2180    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2181      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2182        Elts.push_back(cast<Constant>(*i));
2183    } else if (isa<ConstantAggregateZero>(Init)) {
2184      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2185        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2186    } else if (isa<UndefValue>(Init)) {
2187      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2188        Elts.push_back(UndefValue::get(STy->getElementType(i)));
2189    } else {
2190      llvm_unreachable("This code is out of sync with "
2191             " ConstantFoldLoadThroughGEPConstantExpr");
2192    }
2193
2194    // Replace the element that we are supposed to.
2195    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2196    unsigned Idx = CU->getZExtValue();
2197    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2198    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2199
2200    // Return the modified struct.
2201    return ConstantStruct::get(Init->getContext(), &Elts[0], Elts.size(),
2202                               STy->isPacked());
2203  } else {
2204    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2205    const SequentialType *InitTy = cast<SequentialType>(Init->getType());
2206
2207    uint64_t NumElts;
2208    if (const ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2209      NumElts = ATy->getNumElements();
2210    else
2211      NumElts = cast<VectorType>(InitTy)->getNumElements();
2212
2213
2214    // Break up the array into elements.
2215    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2216      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2217        Elts.push_back(cast<Constant>(*i));
2218    } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) {
2219      for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i)
2220        Elts.push_back(cast<Constant>(*i));
2221    } else if (isa<ConstantAggregateZero>(Init)) {
2222      Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType()));
2223    } else {
2224      assert(isa<UndefValue>(Init) && "This code is out of sync with "
2225             " ConstantFoldLoadThroughGEPConstantExpr");
2226      Elts.assign(NumElts, UndefValue::get(InitTy->getElementType()));
2227    }
2228
2229    assert(CI->getZExtValue() < NumElts);
2230    Elts[CI->getZExtValue()] =
2231      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2232
2233    if (Init->getType()->isArrayTy())
2234      return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2235    else
2236      return ConstantVector::get(&Elts[0], Elts.size());
2237  }
2238}
2239
2240/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2241/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2242static void CommitValueTo(Constant *Val, Constant *Addr) {
2243  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2244    assert(GV->hasInitializer());
2245    GV->setInitializer(Val);
2246    return;
2247  }
2248
2249  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2250  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2251  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2252}
2253
2254/// ComputeLoadResult - Return the value that would be computed by a load from
2255/// P after the stores reflected by 'memory' have been performed.  If we can't
2256/// decide, return null.
2257static Constant *ComputeLoadResult(Constant *P,
2258                                const DenseMap<Constant*, Constant*> &Memory) {
2259  // If this memory location has been recently stored, use the stored value: it
2260  // is the most up-to-date.
2261  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2262  if (I != Memory.end()) return I->second;
2263
2264  // Access it.
2265  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2266    if (GV->hasDefinitiveInitializer())
2267      return GV->getInitializer();
2268    return 0;
2269  }
2270
2271  // Handle a constantexpr getelementptr.
2272  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2273    if (CE->getOpcode() == Instruction::GetElementPtr &&
2274        isa<GlobalVariable>(CE->getOperand(0))) {
2275      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2276      if (GV->hasDefinitiveInitializer())
2277        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2278    }
2279
2280  return 0;  // don't know how to evaluate.
2281}
2282
2283/// EvaluateFunction - Evaluate a call to function F, returning true if
2284/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2285/// arguments for the function.
2286static bool EvaluateFunction(Function *F, Constant *&RetVal,
2287                             const SmallVectorImpl<Constant*> &ActualArgs,
2288                             std::vector<Function*> &CallStack,
2289                             DenseMap<Constant*, Constant*> &MutatedMemory,
2290                             std::vector<GlobalVariable*> &AllocaTmps,
2291                             SmallPtrSet<Constant*, 8> &SimpleConstants,
2292                             const TargetData *TD) {
2293  // Check to see if this function is already executing (recursion).  If so,
2294  // bail out.  TODO: we might want to accept limited recursion.
2295  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2296    return false;
2297
2298  CallStack.push_back(F);
2299
2300  /// Values - As we compute SSA register values, we store their contents here.
2301  DenseMap<Value*, Constant*> Values;
2302
2303  // Initialize arguments to the incoming values specified.
2304  unsigned ArgNo = 0;
2305  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2306       ++AI, ++ArgNo)
2307    Values[AI] = ActualArgs[ArgNo];
2308
2309  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2310  /// we can only evaluate any one basic block at most once.  This set keeps
2311  /// track of what we have executed so we can detect recursive cases etc.
2312  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2313
2314  // CurInst - The current instruction we're evaluating.
2315  BasicBlock::iterator CurInst = F->begin()->begin();
2316
2317  // This is the main evaluation loop.
2318  while (1) {
2319    Constant *InstResult = 0;
2320
2321    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2322      if (SI->isVolatile()) return false;  // no volatile accesses.
2323      Constant *Ptr = getVal(Values, SI->getOperand(1));
2324      if (!isSimpleEnoughPointerToCommit(Ptr))
2325        // If this is too complex for us to commit, reject it.
2326        return false;
2327
2328      Constant *Val = getVal(Values, SI->getOperand(0));
2329
2330      // If this might be too difficult for the backend to handle (e.g. the addr
2331      // of one global variable divided by another) then we can't commit it.
2332      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants))
2333        return false;
2334      MutatedMemory[Ptr] = Val;
2335    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2336      InstResult = ConstantExpr::get(BO->getOpcode(),
2337                                     getVal(Values, BO->getOperand(0)),
2338                                     getVal(Values, BO->getOperand(1)));
2339    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2340      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2341                                            getVal(Values, CI->getOperand(0)),
2342                                            getVal(Values, CI->getOperand(1)));
2343    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2344      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2345                                         getVal(Values, CI->getOperand(0)),
2346                                         CI->getType());
2347    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2348      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2349                                           getVal(Values, SI->getOperand(1)),
2350                                           getVal(Values, SI->getOperand(2)));
2351    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2352      Constant *P = getVal(Values, GEP->getOperand(0));
2353      SmallVector<Constant*, 8> GEPOps;
2354      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2355           i != e; ++i)
2356        GEPOps.push_back(getVal(Values, *i));
2357      InstResult = cast<GEPOperator>(GEP)->isInBounds() ?
2358          ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) :
2359          ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2360    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2361      if (LI->isVolatile()) return false;  // no volatile accesses.
2362      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2363                                     MutatedMemory);
2364      if (InstResult == 0) return false; // Could not evaluate load.
2365    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2366      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2367      const Type *Ty = AI->getType()->getElementType();
2368      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2369                                              GlobalValue::InternalLinkage,
2370                                              UndefValue::get(Ty),
2371                                              AI->getName()));
2372      InstResult = AllocaTmps.back();
2373    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2374
2375      // Debug info can safely be ignored here.
2376      if (isa<DbgInfoIntrinsic>(CI)) {
2377        ++CurInst;
2378        continue;
2379      }
2380
2381      // Cannot handle inline asm.
2382      if (isa<InlineAsm>(CI->getCalledValue())) return false;
2383
2384      // Resolve function pointers.
2385      Function *Callee = dyn_cast<Function>(getVal(Values,
2386                                                   CI->getCalledValue()));
2387      if (!Callee) return false;  // Cannot resolve.
2388
2389      SmallVector<Constant*, 8> Formals;
2390      CallSite CS(CI);
2391      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end();
2392           i != e; ++i)
2393        Formals.push_back(getVal(Values, *i));
2394
2395      if (Callee->isDeclaration()) {
2396        // If this is a function we can constant fold, do it.
2397        if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
2398                                           Formals.size())) {
2399          InstResult = C;
2400        } else {
2401          return false;
2402        }
2403      } else {
2404        if (Callee->getFunctionType()->isVarArg())
2405          return false;
2406
2407        Constant *RetVal;
2408        // Execute the call, if successful, use the return value.
2409        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2410                              MutatedMemory, AllocaTmps, SimpleConstants, TD))
2411          return false;
2412        InstResult = RetVal;
2413      }
2414    } else if (isa<TerminatorInst>(CurInst)) {
2415      BasicBlock *NewBB = 0;
2416      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2417        if (BI->isUnconditional()) {
2418          NewBB = BI->getSuccessor(0);
2419        } else {
2420          ConstantInt *Cond =
2421            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2422          if (!Cond) return false;  // Cannot determine.
2423
2424          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2425        }
2426      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2427        ConstantInt *Val =
2428          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2429        if (!Val) return false;  // Cannot determine.
2430        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2431      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2432        Value *Val = getVal(Values, IBI->getAddress())->stripPointerCasts();
2433        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2434          NewBB = BA->getBasicBlock();
2435        else
2436          return false;  // Cannot determine.
2437      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2438        if (RI->getNumOperands())
2439          RetVal = getVal(Values, RI->getOperand(0));
2440
2441        CallStack.pop_back();  // return from fn.
2442        return true;  // We succeeded at evaluating this ctor!
2443      } else {
2444        // invoke, unwind, unreachable.
2445        return false;  // Cannot handle this terminator.
2446      }
2447
2448      // Okay, we succeeded in evaluating this control flow.  See if we have
2449      // executed the new block before.  If so, we have a looping function,
2450      // which we cannot evaluate in reasonable time.
2451      if (!ExecutedBlocks.insert(NewBB))
2452        return false;  // looped!
2453
2454      // Okay, we have never been in this block before.  Check to see if there
2455      // are any PHI nodes.  If so, evaluate them with information about where
2456      // we came from.
2457      BasicBlock *OldBB = CurInst->getParent();
2458      CurInst = NewBB->begin();
2459      PHINode *PN;
2460      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2461        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2462
2463      // Do NOT increment CurInst.  We know that the terminator had no value.
2464      continue;
2465    } else {
2466      // Did not know how to evaluate this!
2467      return false;
2468    }
2469
2470    if (!CurInst->use_empty()) {
2471      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2472        InstResult = ConstantFoldConstantExpression(CE, TD);
2473
2474      Values[CurInst] = InstResult;
2475    }
2476
2477    // Advance program counter.
2478    ++CurInst;
2479  }
2480}
2481
2482/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2483/// we can.  Return true if we can, false otherwise.
2484static bool EvaluateStaticConstructor(Function *F, const TargetData *TD) {
2485  /// MutatedMemory - For each store we execute, we update this map.  Loads
2486  /// check this to get the most up-to-date value.  If evaluation is successful,
2487  /// this state is committed to the process.
2488  DenseMap<Constant*, Constant*> MutatedMemory;
2489
2490  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2491  /// to represent its body.  This vector is needed so we can delete the
2492  /// temporary globals when we are done.
2493  std::vector<GlobalVariable*> AllocaTmps;
2494
2495  /// CallStack - This is used to detect recursion.  In pathological situations
2496  /// we could hit exponential behavior, but at least there is nothing
2497  /// unbounded.
2498  std::vector<Function*> CallStack;
2499
2500  /// SimpleConstants - These are constants we have checked and know to be
2501  /// simple enough to live in a static initializer of a global.
2502  SmallPtrSet<Constant*, 8> SimpleConstants;
2503
2504  // Call the function.
2505  Constant *RetValDummy;
2506  bool EvalSuccess = EvaluateFunction(F, RetValDummy,
2507                                      SmallVector<Constant*, 0>(), CallStack,
2508                                      MutatedMemory, AllocaTmps,
2509                                      SimpleConstants, TD);
2510
2511  if (EvalSuccess) {
2512    // We succeeded at evaluation: commit the result.
2513    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2514          << F->getName() << "' to " << MutatedMemory.size()
2515          << " stores.\n");
2516    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2517         E = MutatedMemory.end(); I != E; ++I)
2518      CommitValueTo(I->second, I->first);
2519  }
2520
2521  // At this point, we are done interpreting.  If we created any 'alloca'
2522  // temporaries, release them now.
2523  while (!AllocaTmps.empty()) {
2524    GlobalVariable *Tmp = AllocaTmps.back();
2525    AllocaTmps.pop_back();
2526
2527    // If there are still users of the alloca, the program is doing something
2528    // silly, e.g. storing the address of the alloca somewhere and using it
2529    // later.  Since this is undefined, we'll just make it be null.
2530    if (!Tmp->use_empty())
2531      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2532    delete Tmp;
2533  }
2534
2535  return EvalSuccess;
2536}
2537
2538
2539
2540/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2541/// Return true if anything changed.
2542bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2543  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2544  bool MadeChange = false;
2545  if (Ctors.empty()) return false;
2546
2547  const TargetData *TD = getAnalysisIfAvailable<TargetData>();
2548  // Loop over global ctors, optimizing them when we can.
2549  for (unsigned i = 0; i != Ctors.size(); ++i) {
2550    Function *F = Ctors[i];
2551    // Found a null terminator in the middle of the list, prune off the rest of
2552    // the list.
2553    if (F == 0) {
2554      if (i != Ctors.size()-1) {
2555        Ctors.resize(i+1);
2556        MadeChange = true;
2557      }
2558      break;
2559    }
2560
2561    // We cannot simplify external ctor functions.
2562    if (F->empty()) continue;
2563
2564    // If we can evaluate the ctor at compile time, do.
2565    if (EvaluateStaticConstructor(F, TD)) {
2566      Ctors.erase(Ctors.begin()+i);
2567      MadeChange = true;
2568      --i;
2569      ++NumCtorsEvaluated;
2570      continue;
2571    }
2572  }
2573
2574  if (!MadeChange) return false;
2575
2576  GCL = InstallGlobalCtors(GCL, Ctors);
2577  return true;
2578}
2579
2580bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2581  bool Changed = false;
2582
2583  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2584       I != E;) {
2585    Module::alias_iterator J = I++;
2586    // Aliases without names cannot be referenced outside this module.
2587    if (!J->hasName() && !J->isDeclaration())
2588      J->setLinkage(GlobalValue::InternalLinkage);
2589    // If the aliasee may change at link time, nothing can be done - bail out.
2590    if (J->mayBeOverridden())
2591      continue;
2592
2593    Constant *Aliasee = J->getAliasee();
2594    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2595    Target->removeDeadConstantUsers();
2596    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2597
2598    // Make all users of the alias use the aliasee instead.
2599    if (!J->use_empty()) {
2600      J->replaceAllUsesWith(Aliasee);
2601      ++NumAliasesResolved;
2602      Changed = true;
2603    }
2604
2605    // If the alias is externally visible, we may still be able to simplify it.
2606    if (!J->hasLocalLinkage()) {
2607      // If the aliasee has internal linkage, give it the name and linkage
2608      // of the alias, and delete the alias.  This turns:
2609      //   define internal ... @f(...)
2610      //   @a = alias ... @f
2611      // into:
2612      //   define ... @a(...)
2613      if (!Target->hasLocalLinkage())
2614        continue;
2615
2616      // Do not perform the transform if multiple aliases potentially target the
2617      // aliasee. This check also ensures that it is safe to replace the section
2618      // and other attributes of the aliasee with those of the alias.
2619      if (!hasOneUse)
2620        continue;
2621
2622      // Give the aliasee the name, linkage and other attributes of the alias.
2623      Target->takeName(J);
2624      Target->setLinkage(J->getLinkage());
2625      Target->GlobalValue::copyAttributesFrom(J);
2626    }
2627
2628    // Delete the alias.
2629    M.getAliasList().erase(J);
2630    ++NumAliasesRemoved;
2631    Changed = true;
2632  }
2633
2634  return Changed;
2635}
2636
2637bool GlobalOpt::runOnModule(Module &M) {
2638  bool Changed = false;
2639
2640  // Try to find the llvm.globalctors list.
2641  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2642
2643  bool LocalChange = true;
2644  while (LocalChange) {
2645    LocalChange = false;
2646
2647    // Delete functions that are trivially dead, ccc -> fastcc
2648    LocalChange |= OptimizeFunctions(M);
2649
2650    // Optimize global_ctors list.
2651    if (GlobalCtors)
2652      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2653
2654    // Optimize non-address-taken globals.
2655    LocalChange |= OptimizeGlobalVars(M);
2656
2657    // Resolve aliases, when possible.
2658    LocalChange |= OptimizeGlobalAliases(M);
2659    Changed |= LocalChange;
2660  }
2661
2662  // TODO: Move all global ctors functions to the end of the module for code
2663  // layout.
2664
2665  return Changed;
2666}
2667