GlobalOpt.cpp revision 1df9859c40492511b8aa4321eb76496005d3b75b
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Analysis/MemoryBuiltins.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Support/CallSite.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/STLExtras.h"
39#include <algorithm>
40using namespace llvm;
41
42STATISTIC(NumMarked    , "Number of globals marked constant");
43STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
44STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
45STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
46STATISTIC(NumDeleted   , "Number of globals deleted");
47STATISTIC(NumFnDeleted , "Number of functions deleted");
48STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
49STATISTIC(NumLocalized , "Number of globals localized");
50STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
51STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
52STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
53STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
54STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
55STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
56
57namespace {
58  struct GlobalOpt : public ModulePass {
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60    }
61    static char ID; // Pass identification, replacement for typeid
62    GlobalOpt() : ModulePass(&ID) {}
63
64    bool runOnModule(Module &M);
65
66  private:
67    GlobalVariable *FindGlobalCtors(Module &M);
68    bool OptimizeFunctions(Module &M);
69    bool OptimizeGlobalVars(Module &M);
70    bool OptimizeGlobalAliases(Module &M);
71    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
72    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
73  };
74}
75
76char GlobalOpt::ID = 0;
77static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
78
79ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
80
81namespace {
82
83/// GlobalStatus - As we analyze each global, keep track of some information
84/// about it.  If we find out that the address of the global is taken, none of
85/// this info will be accurate.
86struct GlobalStatus {
87  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
88  /// loaded it can be deleted.
89  bool isLoaded;
90
91  /// StoredType - Keep track of what stores to the global look like.
92  ///
93  enum StoredType {
94    /// NotStored - There is no store to this global.  It can thus be marked
95    /// constant.
96    NotStored,
97
98    /// isInitializerStored - This global is stored to, but the only thing
99    /// stored is the constant it was initialized with.  This is only tracked
100    /// for scalar globals.
101    isInitializerStored,
102
103    /// isStoredOnce - This global is stored to, but only its initializer and
104    /// one other value is ever stored to it.  If this global isStoredOnce, we
105    /// track the value stored to it in StoredOnceValue below.  This is only
106    /// tracked for scalar globals.
107    isStoredOnce,
108
109    /// isStored - This global is stored to by multiple values or something else
110    /// that we cannot track.
111    isStored
112  } StoredType;
113
114  /// StoredOnceValue - If only one value (besides the initializer constant) is
115  /// ever stored to this global, keep track of what value it is.
116  Value *StoredOnceValue;
117
118  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
119  /// null/false.  When the first accessing function is noticed, it is recorded.
120  /// When a second different accessing function is noticed,
121  /// HasMultipleAccessingFunctions is set to true.
122  Function *AccessingFunction;
123  bool HasMultipleAccessingFunctions;
124
125  /// HasNonInstructionUser - Set to true if this global has a user that is not
126  /// an instruction (e.g. a constant expr or GV initializer).
127  bool HasNonInstructionUser;
128
129  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
130  bool HasPHIUser;
131
132  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
133                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
134                   HasNonInstructionUser(false), HasPHIUser(false) {}
135};
136
137}
138
139// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
140// by constants itself.  Note that constants cannot be cyclic, so this test is
141// pretty easy to implement recursively.
142//
143static bool SafeToDestroyConstant(Constant *C) {
144  if (isa<GlobalValue>(C)) return false;
145
146  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
147    if (Constant *CU = dyn_cast<Constant>(*UI)) {
148      if (!SafeToDestroyConstant(CU)) return false;
149    } else
150      return false;
151  return true;
152}
153
154
155/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
156/// structure.  If the global has its address taken, return true to indicate we
157/// can't do anything with it.
158///
159static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
160                          SmallPtrSet<PHINode*, 16> &PHIUsers) {
161  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
162    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
163      GS.HasNonInstructionUser = true;
164
165      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
166
167    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
168      if (!GS.HasMultipleAccessingFunctions) {
169        Function *F = I->getParent()->getParent();
170        if (GS.AccessingFunction == 0)
171          GS.AccessingFunction = F;
172        else if (GS.AccessingFunction != F)
173          GS.HasMultipleAccessingFunctions = true;
174      }
175      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
176        GS.isLoaded = true;
177        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
178      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
179        // Don't allow a store OF the address, only stores TO the address.
180        if (SI->getOperand(0) == V) return true;
181
182        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
183
184        // If this is a direct store to the global (i.e., the global is a scalar
185        // value, not an aggregate), keep more specific information about
186        // stores.
187        if (GS.StoredType != GlobalStatus::isStored) {
188          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
189            Value *StoredVal = SI->getOperand(0);
190            if (StoredVal == GV->getInitializer()) {
191              if (GS.StoredType < GlobalStatus::isInitializerStored)
192                GS.StoredType = GlobalStatus::isInitializerStored;
193            } else if (isa<LoadInst>(StoredVal) &&
194                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
195              // G = G
196              if (GS.StoredType < GlobalStatus::isInitializerStored)
197                GS.StoredType = GlobalStatus::isInitializerStored;
198            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
199              GS.StoredType = GlobalStatus::isStoredOnce;
200              GS.StoredOnceValue = StoredVal;
201            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
202                       GS.StoredOnceValue == StoredVal) {
203              // noop.
204            } else {
205              GS.StoredType = GlobalStatus::isStored;
206            }
207          } else {
208            GS.StoredType = GlobalStatus::isStored;
209          }
210        }
211      } else if (isa<GetElementPtrInst>(I)) {
212        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
213      } else if (isa<SelectInst>(I)) {
214        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
215      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
216        // PHI nodes we can check just like select or GEP instructions, but we
217        // have to be careful about infinite recursion.
218        if (PHIUsers.insert(PN))  // Not already visited.
219          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
220        GS.HasPHIUser = true;
221      } else if (isa<CmpInst>(I)) {
222      } else if (isa<MemTransferInst>(I)) {
223        if (I->getOperand(1) == V)
224          GS.StoredType = GlobalStatus::isStored;
225        if (I->getOperand(2) == V)
226          GS.isLoaded = true;
227      } else if (isa<MemSetInst>(I)) {
228        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
229        GS.StoredType = GlobalStatus::isStored;
230      } else {
231        return true;  // Any other non-load instruction might take address!
232      }
233    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
234      GS.HasNonInstructionUser = true;
235      // We might have a dead and dangling constant hanging off of here.
236      if (!SafeToDestroyConstant(C))
237        return true;
238    } else {
239      GS.HasNonInstructionUser = true;
240      // Otherwise must be some other user.
241      return true;
242    }
243
244  return false;
245}
246
247static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
248  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
249  if (!CI) return 0;
250  unsigned IdxV = CI->getZExtValue();
251
252  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
253    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
254  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
255    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
256  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
257    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
258  } else if (isa<ConstantAggregateZero>(Agg)) {
259    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
260      if (IdxV < STy->getNumElements())
261        return Constant::getNullValue(STy->getElementType(IdxV));
262    } else if (const SequentialType *STy =
263               dyn_cast<SequentialType>(Agg->getType())) {
264      return Constant::getNullValue(STy->getElementType());
265    }
266  } else if (isa<UndefValue>(Agg)) {
267    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
268      if (IdxV < STy->getNumElements())
269        return UndefValue::get(STy->getElementType(IdxV));
270    } else if (const SequentialType *STy =
271               dyn_cast<SequentialType>(Agg->getType())) {
272      return UndefValue::get(STy->getElementType());
273    }
274  }
275  return 0;
276}
277
278
279/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
280/// users of the global, cleaning up the obvious ones.  This is largely just a
281/// quick scan over the use list to clean up the easy and obvious cruft.  This
282/// returns true if it made a change.
283static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
284  bool Changed = false;
285  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
286    User *U = *UI++;
287
288    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
289      if (Init) {
290        // Replace the load with the initializer.
291        LI->replaceAllUsesWith(Init);
292        LI->eraseFromParent();
293        Changed = true;
294      }
295    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
296      // Store must be unreachable or storing Init into the global.
297      SI->eraseFromParent();
298      Changed = true;
299    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
300      if (CE->getOpcode() == Instruction::GetElementPtr) {
301        Constant *SubInit = 0;
302        if (Init)
303          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
304        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
305      } else if (CE->getOpcode() == Instruction::BitCast &&
306                 CE->getType()->isPointerTy()) {
307        // Pointer cast, delete any stores and memsets to the global.
308        Changed |= CleanupConstantGlobalUsers(CE, 0);
309      }
310
311      if (CE->use_empty()) {
312        CE->destroyConstant();
313        Changed = true;
314      }
315    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
316      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
317      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
318      // and will invalidate our notion of what Init is.
319      Constant *SubInit = 0;
320      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
321        ConstantExpr *CE =
322          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
323        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
324          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
325      }
326      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
327
328      if (GEP->use_empty()) {
329        GEP->eraseFromParent();
330        Changed = true;
331      }
332    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
333      if (MI->getRawDest() == V) {
334        MI->eraseFromParent();
335        Changed = true;
336      }
337
338    } else if (Constant *C = dyn_cast<Constant>(U)) {
339      // If we have a chain of dead constantexprs or other things dangling from
340      // us, and if they are all dead, nuke them without remorse.
341      if (SafeToDestroyConstant(C)) {
342        C->destroyConstant();
343        // This could have invalidated UI, start over from scratch.
344        CleanupConstantGlobalUsers(V, Init);
345        return true;
346      }
347    }
348  }
349  return Changed;
350}
351
352/// isSafeSROAElementUse - Return true if the specified instruction is a safe
353/// user of a derived expression from a global that we want to SROA.
354static bool isSafeSROAElementUse(Value *V) {
355  // We might have a dead and dangling constant hanging off of here.
356  if (Constant *C = dyn_cast<Constant>(V))
357    return SafeToDestroyConstant(C);
358
359  Instruction *I = dyn_cast<Instruction>(V);
360  if (!I) return false;
361
362  // Loads are ok.
363  if (isa<LoadInst>(I)) return true;
364
365  // Stores *to* the pointer are ok.
366  if (StoreInst *SI = dyn_cast<StoreInst>(I))
367    return SI->getOperand(0) != V;
368
369  // Otherwise, it must be a GEP.
370  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
371  if (GEPI == 0) return false;
372
373  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
374      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
375    return false;
376
377  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
378       I != E; ++I)
379    if (!isSafeSROAElementUse(*I))
380      return false;
381  return true;
382}
383
384
385/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
386/// Look at it and its uses and decide whether it is safe to SROA this global.
387///
388static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
389  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
390  if (!isa<GetElementPtrInst>(U) &&
391      (!isa<ConstantExpr>(U) ||
392       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
393    return false;
394
395  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
396  // don't like < 3 operand CE's, and we don't like non-constant integer
397  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
398  // value of C.
399  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
400      !cast<Constant>(U->getOperand(1))->isNullValue() ||
401      !isa<ConstantInt>(U->getOperand(2)))
402    return false;
403
404  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
405  ++GEPI;  // Skip over the pointer index.
406
407  // If this is a use of an array allocation, do a bit more checking for sanity.
408  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
409    uint64_t NumElements = AT->getNumElements();
410    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
411
412    // Check to make sure that index falls within the array.  If not,
413    // something funny is going on, so we won't do the optimization.
414    //
415    if (Idx->getZExtValue() >= NumElements)
416      return false;
417
418    // We cannot scalar repl this level of the array unless any array
419    // sub-indices are in-range constants.  In particular, consider:
420    // A[0][i].  We cannot know that the user isn't doing invalid things like
421    // allowing i to index an out-of-range subscript that accesses A[1].
422    //
423    // Scalar replacing *just* the outer index of the array is probably not
424    // going to be a win anyway, so just give up.
425    for (++GEPI; // Skip array index.
426         GEPI != E;
427         ++GEPI) {
428      uint64_t NumElements;
429      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
430        NumElements = SubArrayTy->getNumElements();
431      else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
432        NumElements = SubVectorTy->getNumElements();
433      else {
434        assert((*GEPI)->isStructTy() &&
435               "Indexed GEP type is not array, vector, or struct!");
436        continue;
437      }
438
439      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
440      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
441        return false;
442    }
443  }
444
445  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
446    if (!isSafeSROAElementUse(*I))
447      return false;
448  return true;
449}
450
451/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
452/// is safe for us to perform this transformation.
453///
454static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
455  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
456       UI != E; ++UI) {
457    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
458      return false;
459  }
460  return true;
461}
462
463
464/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
465/// variable.  This opens the door for other optimizations by exposing the
466/// behavior of the program in a more fine-grained way.  We have determined that
467/// this transformation is safe already.  We return the first global variable we
468/// insert so that the caller can reprocess it.
469static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
470  // Make sure this global only has simple uses that we can SRA.
471  if (!GlobalUsersSafeToSRA(GV))
472    return 0;
473
474  assert(GV->hasLocalLinkage() && !GV->isConstant());
475  Constant *Init = GV->getInitializer();
476  const Type *Ty = Init->getType();
477
478  std::vector<GlobalVariable*> NewGlobals;
479  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
480
481  // Get the alignment of the global, either explicit or target-specific.
482  unsigned StartAlignment = GV->getAlignment();
483  if (StartAlignment == 0)
484    StartAlignment = TD.getABITypeAlignment(GV->getType());
485
486  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
487    NewGlobals.reserve(STy->getNumElements());
488    const StructLayout &Layout = *TD.getStructLayout(STy);
489    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
490      Constant *In = getAggregateConstantElement(Init,
491                    ConstantInt::get(Type::getInt32Ty(STy->getContext()), i));
492      assert(In && "Couldn't get element of initializer?");
493      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
494                                               GlobalVariable::InternalLinkage,
495                                               In, GV->getName()+"."+Twine(i),
496                                               GV->isThreadLocal(),
497                                              GV->getType()->getAddressSpace());
498      Globals.insert(GV, NGV);
499      NewGlobals.push_back(NGV);
500
501      // Calculate the known alignment of the field.  If the original aggregate
502      // had 256 byte alignment for example, something might depend on that:
503      // propagate info to each field.
504      uint64_t FieldOffset = Layout.getElementOffset(i);
505      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
506      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
507        NGV->setAlignment(NewAlign);
508    }
509  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
510    unsigned NumElements = 0;
511    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
512      NumElements = ATy->getNumElements();
513    else
514      NumElements = cast<VectorType>(STy)->getNumElements();
515
516    if (NumElements > 16 && GV->hasNUsesOrMore(16))
517      return 0; // It's not worth it.
518    NewGlobals.reserve(NumElements);
519
520    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
521    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
522    for (unsigned i = 0, e = NumElements; i != e; ++i) {
523      Constant *In = getAggregateConstantElement(Init,
524                    ConstantInt::get(Type::getInt32Ty(Init->getContext()), i));
525      assert(In && "Couldn't get element of initializer?");
526
527      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
528                                               GlobalVariable::InternalLinkage,
529                                               In, GV->getName()+"."+Twine(i),
530                                               GV->isThreadLocal(),
531                                              GV->getType()->getAddressSpace());
532      Globals.insert(GV, NGV);
533      NewGlobals.push_back(NGV);
534
535      // Calculate the known alignment of the field.  If the original aggregate
536      // had 256 byte alignment for example, something might depend on that:
537      // propagate info to each field.
538      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
539      if (NewAlign > EltAlign)
540        NGV->setAlignment(NewAlign);
541    }
542  }
543
544  if (NewGlobals.empty())
545    return 0;
546
547  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
548
549  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
550
551  // Loop over all of the uses of the global, replacing the constantexpr geps,
552  // with smaller constantexpr geps or direct references.
553  while (!GV->use_empty()) {
554    User *GEP = GV->use_back();
555    assert(((isa<ConstantExpr>(GEP) &&
556             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
557            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
558
559    // Ignore the 1th operand, which has to be zero or else the program is quite
560    // broken (undefined).  Get the 2nd operand, which is the structure or array
561    // index.
562    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
563    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
564
565    Value *NewPtr = NewGlobals[Val];
566
567    // Form a shorter GEP if needed.
568    if (GEP->getNumOperands() > 3) {
569      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
570        SmallVector<Constant*, 8> Idxs;
571        Idxs.push_back(NullInt);
572        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
573          Idxs.push_back(CE->getOperand(i));
574        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
575                                                &Idxs[0], Idxs.size());
576      } else {
577        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
578        SmallVector<Value*, 8> Idxs;
579        Idxs.push_back(NullInt);
580        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
581          Idxs.push_back(GEPI->getOperand(i));
582        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
583                                           GEPI->getName()+"."+Twine(Val),GEPI);
584      }
585    }
586    GEP->replaceAllUsesWith(NewPtr);
587
588    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
589      GEPI->eraseFromParent();
590    else
591      cast<ConstantExpr>(GEP)->destroyConstant();
592  }
593
594  // Delete the old global, now that it is dead.
595  Globals.erase(GV);
596  ++NumSRA;
597
598  // Loop over the new globals array deleting any globals that are obviously
599  // dead.  This can arise due to scalarization of a structure or an array that
600  // has elements that are dead.
601  unsigned FirstGlobal = 0;
602  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
603    if (NewGlobals[i]->use_empty()) {
604      Globals.erase(NewGlobals[i]);
605      if (FirstGlobal == i) ++FirstGlobal;
606    }
607
608  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
609}
610
611/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
612/// value will trap if the value is dynamically null.  PHIs keeps track of any
613/// phi nodes we've seen to avoid reprocessing them.
614static bool AllUsesOfValueWillTrapIfNull(Value *V,
615                                         SmallPtrSet<PHINode*, 8> &PHIs) {
616  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
617    if (isa<LoadInst>(*UI)) {
618      // Will trap.
619    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
620      if (SI->getOperand(0) == V) {
621        //cerr << "NONTRAPPING USE: " << **UI;
622        return false;  // Storing the value.
623      }
624    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
625      if (CI->getOperand(0) != V) {
626        //cerr << "NONTRAPPING USE: " << **UI;
627        return false;  // Not calling the ptr
628      }
629    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
630      if (II->getOperand(0) != V) {
631        //cerr << "NONTRAPPING USE: " << **UI;
632        return false;  // Not calling the ptr
633      }
634    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
635      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
636    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
637      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
638    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
639      // If we've already seen this phi node, ignore it, it has already been
640      // checked.
641      if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
642        return false;
643    } else if (isa<ICmpInst>(*UI) &&
644               isa<ConstantPointerNull>(UI->getOperand(1))) {
645      // Ignore setcc X, null
646    } else {
647      //cerr << "NONTRAPPING USE: " << **UI;
648      return false;
649    }
650  return true;
651}
652
653/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
654/// from GV will trap if the loaded value is null.  Note that this also permits
655/// comparisons of the loaded value against null, as a special case.
656static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
657  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
658    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
659      SmallPtrSet<PHINode*, 8> PHIs;
660      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
661        return false;
662    } else if (isa<StoreInst>(*UI)) {
663      // Ignore stores to the global.
664    } else {
665      // We don't know or understand this user, bail out.
666      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
667      return false;
668    }
669
670  return true;
671}
672
673static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
674  bool Changed = false;
675  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
676    Instruction *I = cast<Instruction>(*UI++);
677    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
678      LI->setOperand(0, NewV);
679      Changed = true;
680    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
681      if (SI->getOperand(1) == V) {
682        SI->setOperand(1, NewV);
683        Changed = true;
684      }
685    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
686      if (I->getOperand(0) == V) {
687        // Calling through the pointer!  Turn into a direct call, but be careful
688        // that the pointer is not also being passed as an argument.
689        I->setOperand(0, NewV);
690        Changed = true;
691        bool PassedAsArg = false;
692        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
693          if (I->getOperand(i) == V) {
694            PassedAsArg = true;
695            I->setOperand(i, NewV);
696          }
697
698        if (PassedAsArg) {
699          // Being passed as an argument also.  Be careful to not invalidate UI!
700          UI = V->use_begin();
701        }
702      }
703    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
704      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
705                                ConstantExpr::getCast(CI->getOpcode(),
706                                                      NewV, CI->getType()));
707      if (CI->use_empty()) {
708        Changed = true;
709        CI->eraseFromParent();
710      }
711    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
712      // Should handle GEP here.
713      SmallVector<Constant*, 8> Idxs;
714      Idxs.reserve(GEPI->getNumOperands()-1);
715      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
716           i != e; ++i)
717        if (Constant *C = dyn_cast<Constant>(*i))
718          Idxs.push_back(C);
719        else
720          break;
721      if (Idxs.size() == GEPI->getNumOperands()-1)
722        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
723                          ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
724                                                        Idxs.size()));
725      if (GEPI->use_empty()) {
726        Changed = true;
727        GEPI->eraseFromParent();
728      }
729    }
730  }
731
732  return Changed;
733}
734
735
736/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
737/// value stored into it.  If there are uses of the loaded value that would trap
738/// if the loaded value is dynamically null, then we know that they cannot be
739/// reachable with a null optimize away the load.
740static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
741  bool Changed = false;
742
743  // Keep track of whether we are able to remove all the uses of the global
744  // other than the store that defines it.
745  bool AllNonStoreUsesGone = true;
746
747  // Replace all uses of loads with uses of uses of the stored value.
748  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
749    User *GlobalUser = *GUI++;
750    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
751      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
752      // If we were able to delete all uses of the loads
753      if (LI->use_empty()) {
754        LI->eraseFromParent();
755        Changed = true;
756      } else {
757        AllNonStoreUsesGone = false;
758      }
759    } else if (isa<StoreInst>(GlobalUser)) {
760      // Ignore the store that stores "LV" to the global.
761      assert(GlobalUser->getOperand(1) == GV &&
762             "Must be storing *to* the global");
763    } else {
764      AllNonStoreUsesGone = false;
765
766      // If we get here we could have other crazy uses that are transitively
767      // loaded.
768      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
769              isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
770    }
771  }
772
773  if (Changed) {
774    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
775    ++NumGlobUses;
776  }
777
778  // If we nuked all of the loads, then none of the stores are needed either,
779  // nor is the global.
780  if (AllNonStoreUsesGone) {
781    DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
782    CleanupConstantGlobalUsers(GV, 0);
783    if (GV->use_empty()) {
784      GV->eraseFromParent();
785      ++NumDeleted;
786    }
787    Changed = true;
788  }
789  return Changed;
790}
791
792/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
793/// instructions that are foldable.
794static void ConstantPropUsersOf(Value *V) {
795  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
796    if (Instruction *I = dyn_cast<Instruction>(*UI++))
797      if (Constant *NewC = ConstantFoldInstruction(I)) {
798        I->replaceAllUsesWith(NewC);
799
800        // Advance UI to the next non-I use to avoid invalidating it!
801        // Instructions could multiply use V.
802        while (UI != E && *UI == I)
803          ++UI;
804        I->eraseFromParent();
805      }
806}
807
808/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
809/// variable, and transforms the program as if it always contained the result of
810/// the specified malloc.  Because it is always the result of the specified
811/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
812/// malloc into a global, and any loads of GV as uses of the new global.
813static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
814                                                     CallInst *CI,
815                                                     const Type *AllocTy,
816                                                     Value* NElems,
817                                                     TargetData* TD) {
818  DEBUG(dbgs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
819
820  const Type *IntPtrTy = TD->getIntPtrType(GV->getContext());
821
822  // CI has either 0 or 1 bitcast uses (getMallocType() would otherwise have
823  // returned NULL and we would not be here).
824  BitCastInst *BCI = NULL;
825  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); UI != E; )
826    if ((BCI = dyn_cast<BitCastInst>(cast<Instruction>(*UI++))))
827      break;
828
829  ConstantInt *NElements = cast<ConstantInt>(NElems);
830  if (NElements->getZExtValue() != 1) {
831    // If we have an array allocation, transform it to a single element
832    // allocation to make the code below simpler.
833    Type *NewTy = ArrayType::get(AllocTy, NElements->getZExtValue());
834    unsigned TypeSize = TD->getTypeAllocSize(NewTy);
835    if (const StructType *ST = dyn_cast<StructType>(NewTy))
836      TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
837    Instruction *NewCI = CallInst::CreateMalloc(CI, IntPtrTy, NewTy,
838                                         ConstantInt::get(IntPtrTy, TypeSize));
839    Value* Indices[2];
840    Indices[0] = Indices[1] = Constant::getNullValue(IntPtrTy);
841    Value *NewGEP = GetElementPtrInst::Create(NewCI, Indices, Indices + 2,
842                                              NewCI->getName()+".el0", CI);
843    Value *Cast = new BitCastInst(NewGEP, CI->getType(), "el0", CI);
844    if (BCI) BCI->replaceAllUsesWith(NewGEP);
845    CI->replaceAllUsesWith(Cast);
846    if (BCI) BCI->eraseFromParent();
847    CI->eraseFromParent();
848    BCI = dyn_cast<BitCastInst>(NewCI);
849    CI = BCI ? extractMallocCallFromBitCast(BCI) : cast<CallInst>(NewCI);
850  }
851
852  // Create the new global variable.  The contents of the malloc'd memory is
853  // undefined, so initialize with an undef value.
854  const Type *MAT = getMallocAllocatedType(CI);
855  Constant *Init = UndefValue::get(MAT);
856  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
857                                             MAT, false,
858                                             GlobalValue::InternalLinkage, Init,
859                                             GV->getName()+".body",
860                                             GV,
861                                             GV->isThreadLocal());
862
863  // Anything that used the malloc or its bitcast now uses the global directly.
864  if (BCI) BCI->replaceAllUsesWith(NewGV);
865  CI->replaceAllUsesWith(new BitCastInst(NewGV, CI->getType(), "newgv", CI));
866
867  Constant *RepValue = NewGV;
868  if (NewGV->getType() != GV->getType()->getElementType())
869    RepValue = ConstantExpr::getBitCast(RepValue,
870                                        GV->getType()->getElementType());
871
872  // If there is a comparison against null, we will insert a global bool to
873  // keep track of whether the global was initialized yet or not.
874  GlobalVariable *InitBool =
875    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
876                       GlobalValue::InternalLinkage,
877                       ConstantInt::getFalse(GV->getContext()),
878                       GV->getName()+".init", GV->isThreadLocal());
879  bool InitBoolUsed = false;
880
881  // Loop over all uses of GV, processing them in turn.
882  std::vector<StoreInst*> Stores;
883  while (!GV->use_empty())
884    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
885      while (!LI->use_empty()) {
886        Use &LoadUse = LI->use_begin().getUse();
887        if (!isa<ICmpInst>(LoadUse.getUser()))
888          LoadUse = RepValue;
889        else {
890          ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
891          // Replace the cmp X, 0 with a use of the bool value.
892          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
893          InitBoolUsed = true;
894          switch (ICI->getPredicate()) {
895          default: llvm_unreachable("Unknown ICmp Predicate!");
896          case ICmpInst::ICMP_ULT:
897          case ICmpInst::ICMP_SLT:   // X < null -> always false
898            LV = ConstantInt::getFalse(GV->getContext());
899            break;
900          case ICmpInst::ICMP_ULE:
901          case ICmpInst::ICMP_SLE:
902          case ICmpInst::ICMP_EQ:
903            LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
904            break;
905          case ICmpInst::ICMP_NE:
906          case ICmpInst::ICMP_UGE:
907          case ICmpInst::ICMP_SGE:
908          case ICmpInst::ICMP_UGT:
909          case ICmpInst::ICMP_SGT:
910            break;  // no change.
911          }
912          ICI->replaceAllUsesWith(LV);
913          ICI->eraseFromParent();
914        }
915      }
916      LI->eraseFromParent();
917    } else {
918      StoreInst *SI = cast<StoreInst>(GV->use_back());
919      // The global is initialized when the store to it occurs.
920      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, SI);
921      SI->eraseFromParent();
922    }
923
924  // If the initialization boolean was used, insert it, otherwise delete it.
925  if (!InitBoolUsed) {
926    while (!InitBool->use_empty())  // Delete initializations
927      cast<Instruction>(InitBool->use_back())->eraseFromParent();
928    delete InitBool;
929  } else
930    GV->getParent()->getGlobalList().insert(GV, InitBool);
931
932
933  // Now the GV is dead, nuke it and the malloc (both CI and BCI).
934  GV->eraseFromParent();
935  if (BCI) BCI->eraseFromParent();
936  CI->eraseFromParent();
937
938  // To further other optimizations, loop over all users of NewGV and try to
939  // constant prop them.  This will promote GEP instructions with constant
940  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
941  ConstantPropUsersOf(NewGV);
942  if (RepValue != NewGV)
943    ConstantPropUsersOf(RepValue);
944
945  return NewGV;
946}
947
948/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
949/// to make sure that there are no complex uses of V.  We permit simple things
950/// like dereferencing the pointer, but not storing through the address, unless
951/// it is to the specified global.
952static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
953                                                      GlobalVariable *GV,
954                                              SmallPtrSet<PHINode*, 8> &PHIs) {
955  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
956    Instruction *Inst = cast<Instruction>(*UI);
957
958    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
959      continue; // Fine, ignore.
960    }
961
962    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
963      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
964        return false;  // Storing the pointer itself... bad.
965      continue; // Otherwise, storing through it, or storing into GV... fine.
966    }
967
968    if (isa<GetElementPtrInst>(Inst)) {
969      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
970        return false;
971      continue;
972    }
973
974    if (PHINode *PN = dyn_cast<PHINode>(Inst)) {
975      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
976      // cycles.
977      if (PHIs.insert(PN))
978        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
979          return false;
980      continue;
981    }
982
983    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
984      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
985        return false;
986      continue;
987    }
988
989    return false;
990  }
991  return true;
992}
993
994/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
995/// somewhere.  Transform all uses of the allocation into loads from the
996/// global and uses of the resultant pointer.  Further, delete the store into
997/// GV.  This assumes that these value pass the
998/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
999static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1000                                          GlobalVariable *GV) {
1001  while (!Alloc->use_empty()) {
1002    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1003    Instruction *InsertPt = U;
1004    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1005      // If this is the store of the allocation into the global, remove it.
1006      if (SI->getOperand(1) == GV) {
1007        SI->eraseFromParent();
1008        continue;
1009      }
1010    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1011      // Insert the load in the corresponding predecessor, not right before the
1012      // PHI.
1013      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1014    } else if (isa<BitCastInst>(U)) {
1015      // Must be bitcast between the malloc and store to initialize the global.
1016      ReplaceUsesOfMallocWithGlobal(U, GV);
1017      U->eraseFromParent();
1018      continue;
1019    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1020      // If this is a "GEP bitcast" and the user is a store to the global, then
1021      // just process it as a bitcast.
1022      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1023        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1024          if (SI->getOperand(1) == GV) {
1025            // Must be bitcast GEP between the malloc and store to initialize
1026            // the global.
1027            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1028            GEPI->eraseFromParent();
1029            continue;
1030          }
1031    }
1032
1033    // Insert a load from the global, and use it instead of the malloc.
1034    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1035    U->replaceUsesOfWith(Alloc, NL);
1036  }
1037}
1038
1039/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1040/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1041/// that index through the array and struct field, icmps of null, and PHIs.
1042static bool LoadUsesSimpleEnoughForHeapSRA(Value *V,
1043                              SmallPtrSet<PHINode*, 32> &LoadUsingPHIs,
1044                              SmallPtrSet<PHINode*, 32> &LoadUsingPHIsPerLoad) {
1045  // We permit two users of the load: setcc comparing against the null
1046  // pointer, and a getelementptr of a specific form.
1047  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1048    Instruction *User = cast<Instruction>(*UI);
1049
1050    // Comparison against null is ok.
1051    if (ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1052      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1053        return false;
1054      continue;
1055    }
1056
1057    // getelementptr is also ok, but only a simple form.
1058    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1059      // Must index into the array and into the struct.
1060      if (GEPI->getNumOperands() < 3)
1061        return false;
1062
1063      // Otherwise the GEP is ok.
1064      continue;
1065    }
1066
1067    if (PHINode *PN = dyn_cast<PHINode>(User)) {
1068      if (!LoadUsingPHIsPerLoad.insert(PN))
1069        // This means some phi nodes are dependent on each other.
1070        // Avoid infinite looping!
1071        return false;
1072      if (!LoadUsingPHIs.insert(PN))
1073        // If we have already analyzed this PHI, then it is safe.
1074        continue;
1075
1076      // Make sure all uses of the PHI are simple enough to transform.
1077      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1078                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1079        return false;
1080
1081      continue;
1082    }
1083
1084    // Otherwise we don't know what this is, not ok.
1085    return false;
1086  }
1087
1088  return true;
1089}
1090
1091
1092/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1093/// GV are simple enough to perform HeapSRA, return true.
1094static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
1095                                                    Instruction *StoredVal) {
1096  SmallPtrSet<PHINode*, 32> LoadUsingPHIs;
1097  SmallPtrSet<PHINode*, 32> LoadUsingPHIsPerLoad;
1098  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
1099       ++UI)
1100    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1101      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1102                                          LoadUsingPHIsPerLoad))
1103        return false;
1104      LoadUsingPHIsPerLoad.clear();
1105    }
1106
1107  // If we reach here, we know that all uses of the loads and transitive uses
1108  // (through PHI nodes) are simple enough to transform.  However, we don't know
1109  // that all inputs the to the PHI nodes are in the same equivalence sets.
1110  // Check to verify that all operands of the PHIs are either PHIS that can be
1111  // transformed, loads from GV, or MI itself.
1112  for (SmallPtrSet<PHINode*, 32>::iterator I = LoadUsingPHIs.begin(),
1113       E = LoadUsingPHIs.end(); I != E; ++I) {
1114    PHINode *PN = *I;
1115    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1116      Value *InVal = PN->getIncomingValue(op);
1117
1118      // PHI of the stored value itself is ok.
1119      if (InVal == StoredVal) continue;
1120
1121      if (PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1122        // One of the PHIs in our set is (optimistically) ok.
1123        if (LoadUsingPHIs.count(InPN))
1124          continue;
1125        return false;
1126      }
1127
1128      // Load from GV is ok.
1129      if (LoadInst *LI = dyn_cast<LoadInst>(InVal))
1130        if (LI->getOperand(0) == GV)
1131          continue;
1132
1133      // UNDEF? NULL?
1134
1135      // Anything else is rejected.
1136      return false;
1137    }
1138  }
1139
1140  return true;
1141}
1142
1143static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1144               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1145                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1146  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1147
1148  if (FieldNo >= FieldVals.size())
1149    FieldVals.resize(FieldNo+1);
1150
1151  // If we already have this value, just reuse the previously scalarized
1152  // version.
1153  if (Value *FieldVal = FieldVals[FieldNo])
1154    return FieldVal;
1155
1156  // Depending on what instruction this is, we have several cases.
1157  Value *Result;
1158  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1159    // This is a scalarized version of the load from the global.  Just create
1160    // a new Load of the scalarized global.
1161    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1162                                           InsertedScalarizedValues,
1163                                           PHIsToRewrite),
1164                          LI->getName()+".f"+Twine(FieldNo), LI);
1165  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1166    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1167    // field.
1168    const StructType *ST =
1169      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1170
1171    Result =
1172     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1173                     PN->getName()+".f"+Twine(FieldNo), PN);
1174    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1175  } else {
1176    llvm_unreachable("Unknown usable value");
1177    Result = 0;
1178  }
1179
1180  return FieldVals[FieldNo] = Result;
1181}
1182
1183/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1184/// the load, rewrite the derived value to use the HeapSRoA'd load.
1185static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1186             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1187                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1188  // If this is a comparison against null, handle it.
1189  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1190    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1191    // If we have a setcc of the loaded pointer, we can use a setcc of any
1192    // field.
1193    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1194                                   InsertedScalarizedValues, PHIsToRewrite);
1195
1196    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1197                              Constant::getNullValue(NPtr->getType()),
1198                              SCI->getName());
1199    SCI->replaceAllUsesWith(New);
1200    SCI->eraseFromParent();
1201    return;
1202  }
1203
1204  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1205  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1206    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1207           && "Unexpected GEPI!");
1208
1209    // Load the pointer for this field.
1210    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1211    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1212                                     InsertedScalarizedValues, PHIsToRewrite);
1213
1214    // Create the new GEP idx vector.
1215    SmallVector<Value*, 8> GEPIdx;
1216    GEPIdx.push_back(GEPI->getOperand(1));
1217    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1218
1219    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1220                                             GEPIdx.begin(), GEPIdx.end(),
1221                                             GEPI->getName(), GEPI);
1222    GEPI->replaceAllUsesWith(NGEPI);
1223    GEPI->eraseFromParent();
1224    return;
1225  }
1226
1227  // Recursively transform the users of PHI nodes.  This will lazily create the
1228  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1229  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1230  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1231  // already been seen first by another load, so its uses have already been
1232  // processed.
1233  PHINode *PN = cast<PHINode>(LoadUser);
1234  bool Inserted;
1235  DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1236  tie(InsertPos, Inserted) =
1237    InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1238  if (!Inserted) return;
1239
1240  // If this is the first time we've seen this PHI, recursively process all
1241  // users.
1242  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1243    Instruction *User = cast<Instruction>(*UI++);
1244    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1245  }
1246}
1247
1248/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1249/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1250/// use FieldGlobals instead.  All uses of loaded values satisfy
1251/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1252static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1253               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1254                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1255  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1256       UI != E; ) {
1257    Instruction *User = cast<Instruction>(*UI++);
1258    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1259  }
1260
1261  if (Load->use_empty()) {
1262    Load->eraseFromParent();
1263    InsertedScalarizedValues.erase(Load);
1264  }
1265}
1266
1267/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1268/// it up into multiple allocations of arrays of the fields.
1269static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1270                                            Value* NElems, TargetData *TD) {
1271  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1272  const Type* MAT = getMallocAllocatedType(CI);
1273  const StructType *STy = cast<StructType>(MAT);
1274
1275  // There is guaranteed to be at least one use of the malloc (storing
1276  // it into GV).  If there are other uses, change them to be uses of
1277  // the global to simplify later code.  This also deletes the store
1278  // into GV.
1279  ReplaceUsesOfMallocWithGlobal(CI, GV);
1280
1281  // Okay, at this point, there are no users of the malloc.  Insert N
1282  // new mallocs at the same place as CI, and N globals.
1283  std::vector<Value*> FieldGlobals;
1284  std::vector<Value*> FieldMallocs;
1285
1286  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1287    const Type *FieldTy = STy->getElementType(FieldNo);
1288    const PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1289
1290    GlobalVariable *NGV =
1291      new GlobalVariable(*GV->getParent(),
1292                         PFieldTy, false, GlobalValue::InternalLinkage,
1293                         Constant::getNullValue(PFieldTy),
1294                         GV->getName() + ".f" + Twine(FieldNo), GV,
1295                         GV->isThreadLocal());
1296    FieldGlobals.push_back(NGV);
1297
1298    unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1299    if (const StructType *ST = dyn_cast<StructType>(FieldTy))
1300      TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1301    const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1302    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1303                                        ConstantInt::get(IntPtrTy, TypeSize),
1304                                        NElems,
1305                                        CI->getName() + ".f" + Twine(FieldNo));
1306    CallInst *NCI = dyn_cast<BitCastInst>(NMI) ?
1307                    extractMallocCallFromBitCast(NMI) : cast<CallInst>(NMI);
1308    FieldMallocs.push_back(NCI);
1309    new StoreInst(NMI, NGV, CI);
1310  }
1311
1312  // The tricky aspect of this transformation is handling the case when malloc
1313  // fails.  In the original code, malloc failing would set the result pointer
1314  // of malloc to null.  In this case, some mallocs could succeed and others
1315  // could fail.  As such, we emit code that looks like this:
1316  //    F0 = malloc(field0)
1317  //    F1 = malloc(field1)
1318  //    F2 = malloc(field2)
1319  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1320  //      if (F0) { free(F0); F0 = 0; }
1321  //      if (F1) { free(F1); F1 = 0; }
1322  //      if (F2) { free(F2); F2 = 0; }
1323  //    }
1324  // The malloc can also fail if its argument is too large.
1325  Constant *ConstantZero = ConstantInt::get(CI->getOperand(1)->getType(), 0);
1326  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getOperand(1),
1327                                  ConstantZero, "isneg");
1328  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1329    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1330                             Constant::getNullValue(FieldMallocs[i]->getType()),
1331                               "isnull");
1332    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1333  }
1334
1335  // Split the basic block at the old malloc.
1336  BasicBlock *OrigBB = CI->getParent();
1337  BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1338
1339  // Create the block to check the first condition.  Put all these blocks at the
1340  // end of the function as they are unlikely to be executed.
1341  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1342                                                "malloc_ret_null",
1343                                                OrigBB->getParent());
1344
1345  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1346  // branch on RunningOr.
1347  OrigBB->getTerminator()->eraseFromParent();
1348  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1349
1350  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1351  // pointer, because some may be null while others are not.
1352  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1353    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1354    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1355                              Constant::getNullValue(GVVal->getType()),
1356                              "tmp");
1357    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1358                                               OrigBB->getParent());
1359    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1360                                               OrigBB->getParent());
1361    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1362                                         Cmp, NullPtrBlock);
1363
1364    // Fill in FreeBlock.
1365    CallInst::CreateFree(GVVal, BI);
1366    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1367                  FreeBlock);
1368    BranchInst::Create(NextBlock, FreeBlock);
1369
1370    NullPtrBlock = NextBlock;
1371  }
1372
1373  BranchInst::Create(ContBB, NullPtrBlock);
1374
1375  // CI is no longer needed, remove it.
1376  CI->eraseFromParent();
1377
1378  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1379  /// update all uses of the load, keep track of what scalarized loads are
1380  /// inserted for a given load.
1381  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1382  InsertedScalarizedValues[GV] = FieldGlobals;
1383
1384  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1385
1386  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1387  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1388  // of the per-field globals instead.
1389  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1390    Instruction *User = cast<Instruction>(*UI++);
1391
1392    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1393      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1394      continue;
1395    }
1396
1397    // Must be a store of null.
1398    StoreInst *SI = cast<StoreInst>(User);
1399    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1400           "Unexpected heap-sra user!");
1401
1402    // Insert a store of null into each global.
1403    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1404      const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1405      Constant *Null = Constant::getNullValue(PT->getElementType());
1406      new StoreInst(Null, FieldGlobals[i], SI);
1407    }
1408    // Erase the original store.
1409    SI->eraseFromParent();
1410  }
1411
1412  // While we have PHIs that are interesting to rewrite, do it.
1413  while (!PHIsToRewrite.empty()) {
1414    PHINode *PN = PHIsToRewrite.back().first;
1415    unsigned FieldNo = PHIsToRewrite.back().second;
1416    PHIsToRewrite.pop_back();
1417    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1418    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1419
1420    // Add all the incoming values.  This can materialize more phis.
1421    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1422      Value *InVal = PN->getIncomingValue(i);
1423      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1424                               PHIsToRewrite);
1425      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1426    }
1427  }
1428
1429  // Drop all inter-phi links and any loads that made it this far.
1430  for (DenseMap<Value*, std::vector<Value*> >::iterator
1431       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1432       I != E; ++I) {
1433    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1434      PN->dropAllReferences();
1435    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1436      LI->dropAllReferences();
1437  }
1438
1439  // Delete all the phis and loads now that inter-references are dead.
1440  for (DenseMap<Value*, std::vector<Value*> >::iterator
1441       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1442       I != E; ++I) {
1443    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1444      PN->eraseFromParent();
1445    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1446      LI->eraseFromParent();
1447  }
1448
1449  // The old global is now dead, remove it.
1450  GV->eraseFromParent();
1451
1452  ++NumHeapSRA;
1453  return cast<GlobalVariable>(FieldGlobals[0]);
1454}
1455
1456/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1457/// pointer global variable with a single value stored it that is a malloc or
1458/// cast of malloc.
1459static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1460                                               CallInst *CI,
1461                                               const Type *AllocTy,
1462                                               Module::global_iterator &GVI,
1463                                               TargetData *TD) {
1464  // If this is a malloc of an abstract type, don't touch it.
1465  if (!AllocTy->isSized())
1466    return false;
1467
1468  // We can't optimize this global unless all uses of it are *known* to be
1469  // of the malloc value, not of the null initializer value (consider a use
1470  // that compares the global's value against zero to see if the malloc has
1471  // been reached).  To do this, we check to see if all uses of the global
1472  // would trap if the global were null: this proves that they must all
1473  // happen after the malloc.
1474  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1475    return false;
1476
1477  // We can't optimize this if the malloc itself is used in a complex way,
1478  // for example, being stored into multiple globals.  This allows the
1479  // malloc to be stored into the specified global, loaded setcc'd, and
1480  // GEP'd.  These are all things we could transform to using the global
1481  // for.
1482  {
1483    SmallPtrSet<PHINode*, 8> PHIs;
1484    if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1485      return false;
1486  }
1487
1488  // If we have a global that is only initialized with a fixed size malloc,
1489  // transform the program to use global memory instead of malloc'd memory.
1490  // This eliminates dynamic allocation, avoids an indirection accessing the
1491  // data, and exposes the resultant global to further GlobalOpt.
1492  // We cannot optimize the malloc if we cannot determine malloc array size.
1493  if (Value *NElems = getMallocArraySize(CI, TD, true)) {
1494    if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1495      // Restrict this transformation to only working on small allocations
1496      // (2048 bytes currently), as we don't want to introduce a 16M global or
1497      // something.
1498      if (TD &&
1499          NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1500        GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElems, TD);
1501        return true;
1502      }
1503
1504    // If the allocation is an array of structures, consider transforming this
1505    // into multiple malloc'd arrays, one for each field.  This is basically
1506    // SRoA for malloc'd memory.
1507
1508    // If this is an allocation of a fixed size array of structs, analyze as a
1509    // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1510    if (NElems == ConstantInt::get(CI->getOperand(1)->getType(), 1))
1511      if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1512        AllocTy = AT->getElementType();
1513
1514    if (const StructType *AllocSTy = dyn_cast<StructType>(AllocTy)) {
1515      // This the structure has an unreasonable number of fields, leave it
1516      // alone.
1517      if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1518          AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1519
1520        // If this is a fixed size array, transform the Malloc to be an alloc of
1521        // structs.  malloc [100 x struct],1 -> malloc struct, 100
1522        if (const ArrayType *AT =
1523                              dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
1524          const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1525          unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1526          Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1527          Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1528          Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1529                                                       AllocSize, NumElements,
1530                                                       CI->getName());
1531          Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1532          CI->replaceAllUsesWith(Cast);
1533          CI->eraseFromParent();
1534          CI = dyn_cast<BitCastInst>(Malloc) ?
1535               extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc);
1536        }
1537
1538        GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD);
1539        return true;
1540      }
1541    }
1542  }
1543
1544  return false;
1545}
1546
1547// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1548// that only one value (besides its initializer) is ever stored to the global.
1549static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1550                                     Module::global_iterator &GVI,
1551                                     TargetData *TD) {
1552  // Ignore no-op GEPs and bitcasts.
1553  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1554
1555  // If we are dealing with a pointer global that is initialized to null and
1556  // only has one (non-null) value stored into it, then we can optimize any
1557  // users of the loaded value (often calls and loads) that would trap if the
1558  // value was null.
1559  if (GV->getInitializer()->getType()->isPointerTy() &&
1560      GV->getInitializer()->isNullValue()) {
1561    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1562      if (GV->getInitializer()->getType() != SOVC->getType())
1563        SOVC =
1564         ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1565
1566      // Optimize away any trapping uses of the loaded value.
1567      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1568        return true;
1569    } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
1570      const Type* MallocType = getMallocAllocatedType(CI);
1571      if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1572                                                           GVI, TD))
1573        return true;
1574    }
1575  }
1576
1577  return false;
1578}
1579
1580/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1581/// two values ever stored into GV are its initializer and OtherVal.  See if we
1582/// can shrink the global into a boolean and select between the two values
1583/// whenever it is used.  This exposes the values to other scalar optimizations.
1584static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1585  const Type *GVElType = GV->getType()->getElementType();
1586
1587  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1588  // an FP value, pointer or vector, don't do this optimization because a select
1589  // between them is very expensive and unlikely to lead to later
1590  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1591  // where v1 and v2 both require constant pool loads, a big loss.
1592  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1593      GVElType->isFloatingPointTy() ||
1594      GVElType->isPointerTy() || GVElType->isVectorTy())
1595    return false;
1596
1597  // Walk the use list of the global seeing if all the uses are load or store.
1598  // If there is anything else, bail out.
1599  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1600    if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1601      return false;
1602
1603  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
1604
1605  // Create the new global, initializing it to false.
1606  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1607                                             false,
1608                                             GlobalValue::InternalLinkage,
1609                                        ConstantInt::getFalse(GV->getContext()),
1610                                             GV->getName()+".b",
1611                                             GV->isThreadLocal());
1612  GV->getParent()->getGlobalList().insert(GV, NewGV);
1613
1614  Constant *InitVal = GV->getInitializer();
1615  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1616         "No reason to shrink to bool!");
1617
1618  // If initialized to zero and storing one into the global, we can use a cast
1619  // instead of a select to synthesize the desired value.
1620  bool IsOneZero = false;
1621  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1622    IsOneZero = InitVal->isNullValue() && CI->isOne();
1623
1624  while (!GV->use_empty()) {
1625    Instruction *UI = cast<Instruction>(GV->use_back());
1626    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1627      // Change the store into a boolean store.
1628      bool StoringOther = SI->getOperand(0) == OtherVal;
1629      // Only do this if we weren't storing a loaded value.
1630      Value *StoreVal;
1631      if (StoringOther || SI->getOperand(0) == InitVal)
1632        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1633                                    StoringOther);
1634      else {
1635        // Otherwise, we are storing a previously loaded copy.  To do this,
1636        // change the copy from copying the original value to just copying the
1637        // bool.
1638        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1639
1640        // If we're already replaced the input, StoredVal will be a cast or
1641        // select instruction.  If not, it will be a load of the original
1642        // global.
1643        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1644          assert(LI->getOperand(0) == GV && "Not a copy!");
1645          // Insert a new load, to preserve the saved value.
1646          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1647        } else {
1648          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1649                 "This is not a form that we understand!");
1650          StoreVal = StoredVal->getOperand(0);
1651          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1652        }
1653      }
1654      new StoreInst(StoreVal, NewGV, SI);
1655    } else {
1656      // Change the load into a load of bool then a select.
1657      LoadInst *LI = cast<LoadInst>(UI);
1658      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1659      Value *NSI;
1660      if (IsOneZero)
1661        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1662      else
1663        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1664      NSI->takeName(LI);
1665      LI->replaceAllUsesWith(NSI);
1666    }
1667    UI->eraseFromParent();
1668  }
1669
1670  GV->eraseFromParent();
1671  return true;
1672}
1673
1674
1675/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1676/// it if possible.  If we make a change, return true.
1677bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1678                                      Module::global_iterator &GVI) {
1679  SmallPtrSet<PHINode*, 16> PHIUsers;
1680  GlobalStatus GS;
1681  GV->removeDeadConstantUsers();
1682
1683  if (GV->use_empty()) {
1684    DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1685    GV->eraseFromParent();
1686    ++NumDeleted;
1687    return true;
1688  }
1689
1690  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1691#if 0
1692    DEBUG(dbgs() << "Global: " << *GV);
1693    DEBUG(dbgs() << "  isLoaded = " << GS.isLoaded << "\n");
1694    DEBUG(dbgs() << "  StoredType = ");
1695    switch (GS.StoredType) {
1696    case GlobalStatus::NotStored: DEBUG(dbgs() << "NEVER STORED\n"); break;
1697    case GlobalStatus::isInitializerStored: DEBUG(dbgs() << "INIT STORED\n");
1698                                            break;
1699    case GlobalStatus::isStoredOnce: DEBUG(dbgs() << "STORED ONCE\n"); break;
1700    case GlobalStatus::isStored: DEBUG(dbgs() << "stored\n"); break;
1701    }
1702    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1703      DEBUG(dbgs() << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n");
1704    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1705      DEBUG(dbgs() << "  AccessingFunction = " << GS.AccessingFunction->getName()
1706                  << "\n");
1707    DEBUG(dbgs() << "  HasMultipleAccessingFunctions =  "
1708                 << GS.HasMultipleAccessingFunctions << "\n");
1709    DEBUG(dbgs() << "  HasNonInstructionUser = "
1710                 << GS.HasNonInstructionUser<<"\n");
1711    DEBUG(dbgs() << "\n");
1712#endif
1713
1714    // If this is a first class global and has only one accessing function
1715    // and this function is main (which we know is not recursive we can make
1716    // this global a local variable) we replace the global with a local alloca
1717    // in this function.
1718    //
1719    // NOTE: It doesn't make sense to promote non single-value types since we
1720    // are just replacing static memory to stack memory.
1721    //
1722    // If the global is in different address space, don't bring it to stack.
1723    if (!GS.HasMultipleAccessingFunctions &&
1724        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1725        GV->getType()->getElementType()->isSingleValueType() &&
1726        GS.AccessingFunction->getName() == "main" &&
1727        GS.AccessingFunction->hasExternalLinkage() &&
1728        GV->getType()->getAddressSpace() == 0) {
1729      DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1730      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1731      const Type* ElemTy = GV->getType()->getElementType();
1732      // FIXME: Pass Global's alignment when globals have alignment
1733      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1734      if (!isa<UndefValue>(GV->getInitializer()))
1735        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1736
1737      GV->replaceAllUsesWith(Alloca);
1738      GV->eraseFromParent();
1739      ++NumLocalized;
1740      return true;
1741    }
1742
1743    // If the global is never loaded (but may be stored to), it is dead.
1744    // Delete it now.
1745    if (!GS.isLoaded) {
1746      DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1747
1748      // Delete any stores we can find to the global.  We may not be able to
1749      // make it completely dead though.
1750      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1751
1752      // If the global is dead now, delete it.
1753      if (GV->use_empty()) {
1754        GV->eraseFromParent();
1755        ++NumDeleted;
1756        Changed = true;
1757      }
1758      return Changed;
1759
1760    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1761      DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
1762      GV->setConstant(true);
1763
1764      // Clean up any obviously simplifiable users now.
1765      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1766
1767      // If the global is dead now, just nuke it.
1768      if (GV->use_empty()) {
1769        DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1770                     << "all users and delete global!\n");
1771        GV->eraseFromParent();
1772        ++NumDeleted;
1773      }
1774
1775      ++NumMarked;
1776      return true;
1777    } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1778      if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1779        if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
1780          GVI = FirstNewGV;  // Don't skip the newly produced globals!
1781          return true;
1782        }
1783    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1784      // If the initial value for the global was an undef value, and if only
1785      // one other value was stored into it, we can just change the
1786      // initializer to be the stored value, then delete all stores to the
1787      // global.  This allows us to mark it constant.
1788      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1789        if (isa<UndefValue>(GV->getInitializer())) {
1790          // Change the initial value here.
1791          GV->setInitializer(SOVConstant);
1792
1793          // Clean up any obviously simplifiable users now.
1794          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1795
1796          if (GV->use_empty()) {
1797            DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1798                         << "simplify all users and delete global!\n");
1799            GV->eraseFromParent();
1800            ++NumDeleted;
1801          } else {
1802            GVI = GV;
1803          }
1804          ++NumSubstitute;
1805          return true;
1806        }
1807
1808      // Try to optimize globals based on the knowledge that only one value
1809      // (besides its initializer) is ever stored to the global.
1810      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1811                                   getAnalysisIfAvailable<TargetData>()))
1812        return true;
1813
1814      // Otherwise, if the global was not a boolean, we can shrink it to be a
1815      // boolean.
1816      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1817        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1818          ++NumShrunkToBool;
1819          return true;
1820        }
1821    }
1822  }
1823  return false;
1824}
1825
1826/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1827/// function, changing them to FastCC.
1828static void ChangeCalleesToFastCall(Function *F) {
1829  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1830    CallSite User(cast<Instruction>(*UI));
1831    User.setCallingConv(CallingConv::Fast);
1832  }
1833}
1834
1835static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1836  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1837    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1838      continue;
1839
1840    // There can be only one.
1841    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1842  }
1843
1844  return Attrs;
1845}
1846
1847static void RemoveNestAttribute(Function *F) {
1848  F->setAttributes(StripNest(F->getAttributes()));
1849  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1850    CallSite User(cast<Instruction>(*UI));
1851    User.setAttributes(StripNest(User.getAttributes()));
1852  }
1853}
1854
1855bool GlobalOpt::OptimizeFunctions(Module &M) {
1856  bool Changed = false;
1857  // Optimize functions.
1858  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1859    Function *F = FI++;
1860    // Functions without names cannot be referenced outside this module.
1861    if (!F->hasName() && !F->isDeclaration())
1862      F->setLinkage(GlobalValue::InternalLinkage);
1863    F->removeDeadConstantUsers();
1864    if (F->use_empty() && (F->hasLocalLinkage() || F->hasLinkOnceLinkage())) {
1865      F->eraseFromParent();
1866      Changed = true;
1867      ++NumFnDeleted;
1868    } else if (F->hasLocalLinkage()) {
1869      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1870          !F->hasAddressTaken()) {
1871        // If this function has C calling conventions, is not a varargs
1872        // function, and is only called directly, promote it to use the Fast
1873        // calling convention.
1874        F->setCallingConv(CallingConv::Fast);
1875        ChangeCalleesToFastCall(F);
1876        ++NumFastCallFns;
1877        Changed = true;
1878      }
1879
1880      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1881          !F->hasAddressTaken()) {
1882        // The function is not used by a trampoline intrinsic, so it is safe
1883        // to remove the 'nest' attribute.
1884        RemoveNestAttribute(F);
1885        ++NumNestRemoved;
1886        Changed = true;
1887      }
1888    }
1889  }
1890  return Changed;
1891}
1892
1893bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1894  bool Changed = false;
1895  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1896       GVI != E; ) {
1897    GlobalVariable *GV = GVI++;
1898    // Global variables without names cannot be referenced outside this module.
1899    if (!GV->hasName() && !GV->isDeclaration())
1900      GV->setLinkage(GlobalValue::InternalLinkage);
1901    // Simplify the initializer.
1902    if (GV->hasInitializer())
1903      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1904        TargetData *TD = getAnalysisIfAvailable<TargetData>();
1905        Constant *New = ConstantFoldConstantExpression(CE, TD);
1906        if (New && New != CE)
1907          GV->setInitializer(New);
1908      }
1909    // Do more involved optimizations if the global is internal.
1910    if (!GV->isConstant() && GV->hasLocalLinkage() &&
1911        GV->hasInitializer())
1912      Changed |= ProcessInternalGlobal(GV, GVI);
1913  }
1914  return Changed;
1915}
1916
1917/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1918/// initializers have an init priority of 65535.
1919GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1920  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1921       I != E; ++I)
1922    if (I->getName() == "llvm.global_ctors") {
1923      // Found it, verify it's an array of { int, void()* }.
1924      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1925      if (!ATy) return 0;
1926      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1927      if (!STy || STy->getNumElements() != 2 ||
1928          !STy->getElementType(0)->isIntegerTy(32)) return 0;
1929      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1930      if (!PFTy) return 0;
1931      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1932      if (!FTy || !FTy->getReturnType()->isVoidTy() ||
1933          FTy->isVarArg() || FTy->getNumParams() != 0)
1934        return 0;
1935
1936      // Verify that the initializer is simple enough for us to handle.
1937      if (!I->hasDefinitiveInitializer()) return 0;
1938      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1939      if (!CA) return 0;
1940      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
1941        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) {
1942          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1943            continue;
1944
1945          // Must have a function or null ptr.
1946          if (!isa<Function>(CS->getOperand(1)))
1947            return 0;
1948
1949          // Init priority must be standard.
1950          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1951          if (!CI || CI->getZExtValue() != 65535)
1952            return 0;
1953        } else {
1954          return 0;
1955        }
1956
1957      return I;
1958    }
1959  return 0;
1960}
1961
1962/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1963/// return a list of the functions and null terminator as a vector.
1964static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1965  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1966  std::vector<Function*> Result;
1967  Result.reserve(CA->getNumOperands());
1968  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1969    ConstantStruct *CS = cast<ConstantStruct>(*i);
1970    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1971  }
1972  return Result;
1973}
1974
1975/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1976/// specified array, returning the new global to use.
1977static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1978                                          const std::vector<Function*> &Ctors) {
1979  // If we made a change, reassemble the initializer list.
1980  std::vector<Constant*> CSVals;
1981  CSVals.push_back(ConstantInt::get(Type::getInt32Ty(GCL->getContext()),65535));
1982  CSVals.push_back(0);
1983
1984  // Create the new init list.
1985  std::vector<Constant*> CAList;
1986  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1987    if (Ctors[i]) {
1988      CSVals[1] = Ctors[i];
1989    } else {
1990      const Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
1991                                          false);
1992      const PointerType *PFTy = PointerType::getUnqual(FTy);
1993      CSVals[1] = Constant::getNullValue(PFTy);
1994      CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
1995                                   2147483647);
1996    }
1997    CAList.push_back(ConstantStruct::get(GCL->getContext(), CSVals, false));
1998  }
1999
2000  // Create the array initializer.
2001  const Type *StructTy =
2002      cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
2003  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2004                                                   CAList.size()), CAList);
2005
2006  // If we didn't change the number of elements, don't create a new GV.
2007  if (CA->getType() == GCL->getInitializer()->getType()) {
2008    GCL->setInitializer(CA);
2009    return GCL;
2010  }
2011
2012  // Create the new global and insert it next to the existing list.
2013  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2014                                           GCL->getLinkage(), CA, "",
2015                                           GCL->isThreadLocal());
2016  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2017  NGV->takeName(GCL);
2018
2019  // Nuke the old list, replacing any uses with the new one.
2020  if (!GCL->use_empty()) {
2021    Constant *V = NGV;
2022    if (V->getType() != GCL->getType())
2023      V = ConstantExpr::getBitCast(V, GCL->getType());
2024    GCL->replaceAllUsesWith(V);
2025  }
2026  GCL->eraseFromParent();
2027
2028  if (Ctors.size())
2029    return NGV;
2030  else
2031    return 0;
2032}
2033
2034
2035static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
2036                        Value *V) {
2037  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2038  Constant *R = ComputedValues[V];
2039  assert(R && "Reference to an uncomputed value!");
2040  return R;
2041}
2042
2043/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2044/// enough for us to understand.  In particular, if it is a cast of something,
2045/// we punt.  We basically just support direct accesses to globals and GEP's of
2046/// globals.  This should be kept up to date with CommitValueTo.
2047static bool isSimpleEnoughPointerToCommit(Constant *C) {
2048  // Conservatively, avoid aggregate types. This is because we don't
2049  // want to worry about them partially overlapping other stores.
2050  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2051    return false;
2052
2053  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2054    // Do not allow weak/linkonce/dllimport/dllexport linkage or
2055    // external globals.
2056    return GV->hasDefinitiveInitializer();
2057
2058  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2059    // Handle a constantexpr gep.
2060    if (CE->getOpcode() == Instruction::GetElementPtr &&
2061        isa<GlobalVariable>(CE->getOperand(0)) &&
2062        cast<GEPOperator>(CE)->isInBounds()) {
2063      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2064      // Do not allow weak/linkonce/dllimport/dllexport linkage or
2065      // external globals.
2066      if (!GV->hasDefinitiveInitializer())
2067        return false;
2068
2069      // The first index must be zero.
2070      ConstantInt *CI = dyn_cast<ConstantInt>(*next(CE->op_begin()));
2071      if (!CI || !CI->isZero()) return false;
2072
2073      // The remaining indices must be compile-time known integers within the
2074      // notional bounds of the corresponding static array types.
2075      if (!CE->isGEPWithNoNotionalOverIndexing())
2076        return false;
2077
2078      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2079    }
2080  return false;
2081}
2082
2083/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2084/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2085/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2086static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2087                                   ConstantExpr *Addr, unsigned OpNo) {
2088  // Base case of the recursion.
2089  if (OpNo == Addr->getNumOperands()) {
2090    assert(Val->getType() == Init->getType() && "Type mismatch!");
2091    return Val;
2092  }
2093
2094  std::vector<Constant*> Elts;
2095  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2096
2097    // Break up the constant into its elements.
2098    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2099      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2100        Elts.push_back(cast<Constant>(*i));
2101    } else if (isa<ConstantAggregateZero>(Init)) {
2102      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2103        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2104    } else if (isa<UndefValue>(Init)) {
2105      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2106        Elts.push_back(UndefValue::get(STy->getElementType(i)));
2107    } else {
2108      llvm_unreachable("This code is out of sync with "
2109             " ConstantFoldLoadThroughGEPConstantExpr");
2110    }
2111
2112    // Replace the element that we are supposed to.
2113    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2114    unsigned Idx = CU->getZExtValue();
2115    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2116    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2117
2118    // Return the modified struct.
2119    return ConstantStruct::get(Init->getContext(), &Elts[0], Elts.size(),
2120                               STy->isPacked());
2121  } else {
2122    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2123    const SequentialType *InitTy = cast<SequentialType>(Init->getType());
2124
2125    uint64_t NumElts;
2126    if (const ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2127      NumElts = ATy->getNumElements();
2128    else
2129      NumElts = cast<VectorType>(InitTy)->getNumElements();
2130
2131
2132    // Break up the array into elements.
2133    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2134      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2135        Elts.push_back(cast<Constant>(*i));
2136    } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) {
2137      for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i)
2138        Elts.push_back(cast<Constant>(*i));
2139    } else if (isa<ConstantAggregateZero>(Init)) {
2140      Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType()));
2141    } else {
2142      assert(isa<UndefValue>(Init) && "This code is out of sync with "
2143             " ConstantFoldLoadThroughGEPConstantExpr");
2144      Elts.assign(NumElts, UndefValue::get(InitTy->getElementType()));
2145    }
2146
2147    assert(CI->getZExtValue() < NumElts);
2148    Elts[CI->getZExtValue()] =
2149      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2150
2151    if (Init->getType()->isArrayTy())
2152      return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2153    else
2154      return ConstantVector::get(&Elts[0], Elts.size());
2155  }
2156}
2157
2158/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2159/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2160static void CommitValueTo(Constant *Val, Constant *Addr) {
2161  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2162    assert(GV->hasInitializer());
2163    GV->setInitializer(Val);
2164    return;
2165  }
2166
2167  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2168  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2169  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2170}
2171
2172/// ComputeLoadResult - Return the value that would be computed by a load from
2173/// P after the stores reflected by 'memory' have been performed.  If we can't
2174/// decide, return null.
2175static Constant *ComputeLoadResult(Constant *P,
2176                                const DenseMap<Constant*, Constant*> &Memory) {
2177  // If this memory location has been recently stored, use the stored value: it
2178  // is the most up-to-date.
2179  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2180  if (I != Memory.end()) return I->second;
2181
2182  // Access it.
2183  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2184    if (GV->hasDefinitiveInitializer())
2185      return GV->getInitializer();
2186    return 0;
2187  }
2188
2189  // Handle a constantexpr getelementptr.
2190  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2191    if (CE->getOpcode() == Instruction::GetElementPtr &&
2192        isa<GlobalVariable>(CE->getOperand(0))) {
2193      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2194      if (GV->hasDefinitiveInitializer())
2195        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2196    }
2197
2198  return 0;  // don't know how to evaluate.
2199}
2200
2201/// EvaluateFunction - Evaluate a call to function F, returning true if
2202/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2203/// arguments for the function.
2204static bool EvaluateFunction(Function *F, Constant *&RetVal,
2205                             const SmallVectorImpl<Constant*> &ActualArgs,
2206                             std::vector<Function*> &CallStack,
2207                             DenseMap<Constant*, Constant*> &MutatedMemory,
2208                             std::vector<GlobalVariable*> &AllocaTmps) {
2209  // Check to see if this function is already executing (recursion).  If so,
2210  // bail out.  TODO: we might want to accept limited recursion.
2211  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2212    return false;
2213
2214  CallStack.push_back(F);
2215
2216  /// Values - As we compute SSA register values, we store their contents here.
2217  DenseMap<Value*, Constant*> Values;
2218
2219  // Initialize arguments to the incoming values specified.
2220  unsigned ArgNo = 0;
2221  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2222       ++AI, ++ArgNo)
2223    Values[AI] = ActualArgs[ArgNo];
2224
2225  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2226  /// we can only evaluate any one basic block at most once.  This set keeps
2227  /// track of what we have executed so we can detect recursive cases etc.
2228  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2229
2230  // CurInst - The current instruction we're evaluating.
2231  BasicBlock::iterator CurInst = F->begin()->begin();
2232
2233  // This is the main evaluation loop.
2234  while (1) {
2235    Constant *InstResult = 0;
2236
2237    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2238      if (SI->isVolatile()) return false;  // no volatile accesses.
2239      Constant *Ptr = getVal(Values, SI->getOperand(1));
2240      if (!isSimpleEnoughPointerToCommit(Ptr))
2241        // If this is too complex for us to commit, reject it.
2242        return false;
2243      Constant *Val = getVal(Values, SI->getOperand(0));
2244      MutatedMemory[Ptr] = Val;
2245    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2246      InstResult = ConstantExpr::get(BO->getOpcode(),
2247                                     getVal(Values, BO->getOperand(0)),
2248                                     getVal(Values, BO->getOperand(1)));
2249    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2250      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2251                                            getVal(Values, CI->getOperand(0)),
2252                                            getVal(Values, CI->getOperand(1)));
2253    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2254      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2255                                         getVal(Values, CI->getOperand(0)),
2256                                         CI->getType());
2257    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2258      InstResult =
2259            ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2260                                           getVal(Values, SI->getOperand(1)),
2261                                           getVal(Values, SI->getOperand(2)));
2262    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2263      Constant *P = getVal(Values, GEP->getOperand(0));
2264      SmallVector<Constant*, 8> GEPOps;
2265      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2266           i != e; ++i)
2267        GEPOps.push_back(getVal(Values, *i));
2268      InstResult = cast<GEPOperator>(GEP)->isInBounds() ?
2269          ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) :
2270          ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2271    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2272      if (LI->isVolatile()) return false;  // no volatile accesses.
2273      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2274                                     MutatedMemory);
2275      if (InstResult == 0) return false; // Could not evaluate load.
2276    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2277      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2278      const Type *Ty = AI->getType()->getElementType();
2279      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2280                                              GlobalValue::InternalLinkage,
2281                                              UndefValue::get(Ty),
2282                                              AI->getName()));
2283      InstResult = AllocaTmps.back();
2284    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2285
2286      // Debug info can safely be ignored here.
2287      if (isa<DbgInfoIntrinsic>(CI)) {
2288        ++CurInst;
2289        continue;
2290      }
2291
2292      // Cannot handle inline asm.
2293      if (isa<InlineAsm>(CI->getOperand(0))) return false;
2294
2295      // Resolve function pointers.
2296      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2297      if (!Callee) return false;  // Cannot resolve.
2298
2299      SmallVector<Constant*, 8> Formals;
2300      for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end();
2301           i != e; ++i)
2302        Formals.push_back(getVal(Values, *i));
2303
2304      if (Callee->isDeclaration()) {
2305        // If this is a function we can constant fold, do it.
2306        if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
2307                                           Formals.size())) {
2308          InstResult = C;
2309        } else {
2310          return false;
2311        }
2312      } else {
2313        if (Callee->getFunctionType()->isVarArg())
2314          return false;
2315
2316        Constant *RetVal;
2317        // Execute the call, if successful, use the return value.
2318        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2319                              MutatedMemory, AllocaTmps))
2320          return false;
2321        InstResult = RetVal;
2322      }
2323    } else if (isa<TerminatorInst>(CurInst)) {
2324      BasicBlock *NewBB = 0;
2325      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2326        if (BI->isUnconditional()) {
2327          NewBB = BI->getSuccessor(0);
2328        } else {
2329          ConstantInt *Cond =
2330            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2331          if (!Cond) return false;  // Cannot determine.
2332
2333          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2334        }
2335      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2336        ConstantInt *Val =
2337          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2338        if (!Val) return false;  // Cannot determine.
2339        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2340      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2341        Value *Val = getVal(Values, IBI->getAddress())->stripPointerCasts();
2342        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2343          NewBB = BA->getBasicBlock();
2344        else
2345          return false;  // Cannot determine.
2346      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2347        if (RI->getNumOperands())
2348          RetVal = getVal(Values, RI->getOperand(0));
2349
2350        CallStack.pop_back();  // return from fn.
2351        return true;  // We succeeded at evaluating this ctor!
2352      } else {
2353        // invoke, unwind, unreachable.
2354        return false;  // Cannot handle this terminator.
2355      }
2356
2357      // Okay, we succeeded in evaluating this control flow.  See if we have
2358      // executed the new block before.  If so, we have a looping function,
2359      // which we cannot evaluate in reasonable time.
2360      if (!ExecutedBlocks.insert(NewBB))
2361        return false;  // looped!
2362
2363      // Okay, we have never been in this block before.  Check to see if there
2364      // are any PHI nodes.  If so, evaluate them with information about where
2365      // we came from.
2366      BasicBlock *OldBB = CurInst->getParent();
2367      CurInst = NewBB->begin();
2368      PHINode *PN;
2369      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2370        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2371
2372      // Do NOT increment CurInst.  We know that the terminator had no value.
2373      continue;
2374    } else {
2375      // Did not know how to evaluate this!
2376      return false;
2377    }
2378
2379    if (!CurInst->use_empty())
2380      Values[CurInst] = InstResult;
2381
2382    // Advance program counter.
2383    ++CurInst;
2384  }
2385}
2386
2387/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2388/// we can.  Return true if we can, false otherwise.
2389static bool EvaluateStaticConstructor(Function *F) {
2390  /// MutatedMemory - For each store we execute, we update this map.  Loads
2391  /// check this to get the most up-to-date value.  If evaluation is successful,
2392  /// this state is committed to the process.
2393  DenseMap<Constant*, Constant*> MutatedMemory;
2394
2395  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2396  /// to represent its body.  This vector is needed so we can delete the
2397  /// temporary globals when we are done.
2398  std::vector<GlobalVariable*> AllocaTmps;
2399
2400  /// CallStack - This is used to detect recursion.  In pathological situations
2401  /// we could hit exponential behavior, but at least there is nothing
2402  /// unbounded.
2403  std::vector<Function*> CallStack;
2404
2405  // Call the function.
2406  Constant *RetValDummy;
2407  bool EvalSuccess = EvaluateFunction(F, RetValDummy,
2408                                      SmallVector<Constant*, 0>(), CallStack,
2409                                      MutatedMemory, AllocaTmps);
2410  if (EvalSuccess) {
2411    // We succeeded at evaluation: commit the result.
2412    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2413          << F->getName() << "' to " << MutatedMemory.size()
2414          << " stores.\n");
2415    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2416         E = MutatedMemory.end(); I != E; ++I)
2417      CommitValueTo(I->second, I->first);
2418  }
2419
2420  // At this point, we are done interpreting.  If we created any 'alloca'
2421  // temporaries, release them now.
2422  while (!AllocaTmps.empty()) {
2423    GlobalVariable *Tmp = AllocaTmps.back();
2424    AllocaTmps.pop_back();
2425
2426    // If there are still users of the alloca, the program is doing something
2427    // silly, e.g. storing the address of the alloca somewhere and using it
2428    // later.  Since this is undefined, we'll just make it be null.
2429    if (!Tmp->use_empty())
2430      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2431    delete Tmp;
2432  }
2433
2434  return EvalSuccess;
2435}
2436
2437
2438
2439/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2440/// Return true if anything changed.
2441bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2442  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2443  bool MadeChange = false;
2444  if (Ctors.empty()) return false;
2445
2446  // Loop over global ctors, optimizing them when we can.
2447  for (unsigned i = 0; i != Ctors.size(); ++i) {
2448    Function *F = Ctors[i];
2449    // Found a null terminator in the middle of the list, prune off the rest of
2450    // the list.
2451    if (F == 0) {
2452      if (i != Ctors.size()-1) {
2453        Ctors.resize(i+1);
2454        MadeChange = true;
2455      }
2456      break;
2457    }
2458
2459    // We cannot simplify external ctor functions.
2460    if (F->empty()) continue;
2461
2462    // If we can evaluate the ctor at compile time, do.
2463    if (EvaluateStaticConstructor(F)) {
2464      Ctors.erase(Ctors.begin()+i);
2465      MadeChange = true;
2466      --i;
2467      ++NumCtorsEvaluated;
2468      continue;
2469    }
2470  }
2471
2472  if (!MadeChange) return false;
2473
2474  GCL = InstallGlobalCtors(GCL, Ctors);
2475  return true;
2476}
2477
2478bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2479  bool Changed = false;
2480
2481  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2482       I != E;) {
2483    Module::alias_iterator J = I++;
2484    // Aliases without names cannot be referenced outside this module.
2485    if (!J->hasName() && !J->isDeclaration())
2486      J->setLinkage(GlobalValue::InternalLinkage);
2487    // If the aliasee may change at link time, nothing can be done - bail out.
2488    if (J->mayBeOverridden())
2489      continue;
2490
2491    Constant *Aliasee = J->getAliasee();
2492    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2493    Target->removeDeadConstantUsers();
2494    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2495
2496    // Make all users of the alias use the aliasee instead.
2497    if (!J->use_empty()) {
2498      J->replaceAllUsesWith(Aliasee);
2499      ++NumAliasesResolved;
2500      Changed = true;
2501    }
2502
2503    // If the alias is externally visible, we may still be able to simplify it.
2504    if (!J->hasLocalLinkage()) {
2505      // If the aliasee has internal linkage, give it the name and linkage
2506      // of the alias, and delete the alias.  This turns:
2507      //   define internal ... @f(...)
2508      //   @a = alias ... @f
2509      // into:
2510      //   define ... @a(...)
2511      if (!Target->hasLocalLinkage())
2512        continue;
2513
2514      // Do not perform the transform if multiple aliases potentially target the
2515      // aliasee.  This check also ensures that it is safe to replace the section
2516      // and other attributes of the aliasee with those of the alias.
2517      if (!hasOneUse)
2518        continue;
2519
2520      // Give the aliasee the name, linkage and other attributes of the alias.
2521      Target->takeName(J);
2522      Target->setLinkage(J->getLinkage());
2523      Target->GlobalValue::copyAttributesFrom(J);
2524    }
2525
2526    // Delete the alias.
2527    M.getAliasList().erase(J);
2528    ++NumAliasesRemoved;
2529    Changed = true;
2530  }
2531
2532  return Changed;
2533}
2534
2535bool GlobalOpt::runOnModule(Module &M) {
2536  bool Changed = false;
2537
2538  // Try to find the llvm.globalctors list.
2539  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2540
2541  bool LocalChange = true;
2542  while (LocalChange) {
2543    LocalChange = false;
2544
2545    // Delete functions that are trivially dead, ccc -> fastcc
2546    LocalChange |= OptimizeFunctions(M);
2547
2548    // Optimize global_ctors list.
2549    if (GlobalCtors)
2550      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2551
2552    // Optimize non-address-taken globals.
2553    LocalChange |= OptimizeGlobalVars(M);
2554
2555    // Resolve aliases, when possible.
2556    LocalChange |= OptimizeGlobalAliases(M);
2557    Changed |= LocalChange;
2558  }
2559
2560  // TODO: Move all global ctors functions to the end of the module for code
2561  // layout.
2562
2563  return Changed;
2564}
2565