GlobalOpt.cpp revision 1df9859c40492511b8aa4321eb76496005d3b75b
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass transforms simple global variables that never have their address 11// taken. If obviously true, it marks read/write globals as constant, deletes 12// variables only stored to, etc. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "globalopt" 17#include "llvm/Transforms/IPO.h" 18#include "llvm/CallingConv.h" 19#include "llvm/Constants.h" 20#include "llvm/DerivedTypes.h" 21#include "llvm/Instructions.h" 22#include "llvm/IntrinsicInst.h" 23#include "llvm/Module.h" 24#include "llvm/Pass.h" 25#include "llvm/Analysis/ConstantFolding.h" 26#include "llvm/Analysis/MemoryBuiltins.h" 27#include "llvm/Target/TargetData.h" 28#include "llvm/Support/CallSite.h" 29#include "llvm/Support/Debug.h" 30#include "llvm/Support/ErrorHandling.h" 31#include "llvm/Support/GetElementPtrTypeIterator.h" 32#include "llvm/Support/MathExtras.h" 33#include "llvm/Support/raw_ostream.h" 34#include "llvm/ADT/DenseMap.h" 35#include "llvm/ADT/SmallPtrSet.h" 36#include "llvm/ADT/SmallVector.h" 37#include "llvm/ADT/Statistic.h" 38#include "llvm/ADT/STLExtras.h" 39#include <algorithm> 40using namespace llvm; 41 42STATISTIC(NumMarked , "Number of globals marked constant"); 43STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 44STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 45STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 46STATISTIC(NumDeleted , "Number of globals deleted"); 47STATISTIC(NumFnDeleted , "Number of functions deleted"); 48STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 49STATISTIC(NumLocalized , "Number of globals localized"); 50STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 51STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 52STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 53STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 54STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 55STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 56 57namespace { 58 struct GlobalOpt : public ModulePass { 59 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 60 } 61 static char ID; // Pass identification, replacement for typeid 62 GlobalOpt() : ModulePass(&ID) {} 63 64 bool runOnModule(Module &M); 65 66 private: 67 GlobalVariable *FindGlobalCtors(Module &M); 68 bool OptimizeFunctions(Module &M); 69 bool OptimizeGlobalVars(Module &M); 70 bool OptimizeGlobalAliases(Module &M); 71 bool OptimizeGlobalCtorsList(GlobalVariable *&GCL); 72 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI); 73 }; 74} 75 76char GlobalOpt::ID = 0; 77static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer"); 78 79ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } 80 81namespace { 82 83/// GlobalStatus - As we analyze each global, keep track of some information 84/// about it. If we find out that the address of the global is taken, none of 85/// this info will be accurate. 86struct GlobalStatus { 87 /// isLoaded - True if the global is ever loaded. If the global isn't ever 88 /// loaded it can be deleted. 89 bool isLoaded; 90 91 /// StoredType - Keep track of what stores to the global look like. 92 /// 93 enum StoredType { 94 /// NotStored - There is no store to this global. It can thus be marked 95 /// constant. 96 NotStored, 97 98 /// isInitializerStored - This global is stored to, but the only thing 99 /// stored is the constant it was initialized with. This is only tracked 100 /// for scalar globals. 101 isInitializerStored, 102 103 /// isStoredOnce - This global is stored to, but only its initializer and 104 /// one other value is ever stored to it. If this global isStoredOnce, we 105 /// track the value stored to it in StoredOnceValue below. This is only 106 /// tracked for scalar globals. 107 isStoredOnce, 108 109 /// isStored - This global is stored to by multiple values or something else 110 /// that we cannot track. 111 isStored 112 } StoredType; 113 114 /// StoredOnceValue - If only one value (besides the initializer constant) is 115 /// ever stored to this global, keep track of what value it is. 116 Value *StoredOnceValue; 117 118 /// AccessingFunction/HasMultipleAccessingFunctions - These start out 119 /// null/false. When the first accessing function is noticed, it is recorded. 120 /// When a second different accessing function is noticed, 121 /// HasMultipleAccessingFunctions is set to true. 122 Function *AccessingFunction; 123 bool HasMultipleAccessingFunctions; 124 125 /// HasNonInstructionUser - Set to true if this global has a user that is not 126 /// an instruction (e.g. a constant expr or GV initializer). 127 bool HasNonInstructionUser; 128 129 /// HasPHIUser - Set to true if this global has a user that is a PHI node. 130 bool HasPHIUser; 131 132 GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0), 133 AccessingFunction(0), HasMultipleAccessingFunctions(false), 134 HasNonInstructionUser(false), HasPHIUser(false) {} 135}; 136 137} 138 139// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used 140// by constants itself. Note that constants cannot be cyclic, so this test is 141// pretty easy to implement recursively. 142// 143static bool SafeToDestroyConstant(Constant *C) { 144 if (isa<GlobalValue>(C)) return false; 145 146 for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI) 147 if (Constant *CU = dyn_cast<Constant>(*UI)) { 148 if (!SafeToDestroyConstant(CU)) return false; 149 } else 150 return false; 151 return true; 152} 153 154 155/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus 156/// structure. If the global has its address taken, return true to indicate we 157/// can't do anything with it. 158/// 159static bool AnalyzeGlobal(Value *V, GlobalStatus &GS, 160 SmallPtrSet<PHINode*, 16> &PHIUsers) { 161 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) 162 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) { 163 GS.HasNonInstructionUser = true; 164 165 if (AnalyzeGlobal(CE, GS, PHIUsers)) return true; 166 167 } else if (Instruction *I = dyn_cast<Instruction>(*UI)) { 168 if (!GS.HasMultipleAccessingFunctions) { 169 Function *F = I->getParent()->getParent(); 170 if (GS.AccessingFunction == 0) 171 GS.AccessingFunction = F; 172 else if (GS.AccessingFunction != F) 173 GS.HasMultipleAccessingFunctions = true; 174 } 175 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 176 GS.isLoaded = true; 177 if (LI->isVolatile()) return true; // Don't hack on volatile loads. 178 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 179 // Don't allow a store OF the address, only stores TO the address. 180 if (SI->getOperand(0) == V) return true; 181 182 if (SI->isVolatile()) return true; // Don't hack on volatile stores. 183 184 // If this is a direct store to the global (i.e., the global is a scalar 185 // value, not an aggregate), keep more specific information about 186 // stores. 187 if (GS.StoredType != GlobalStatus::isStored) { 188 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){ 189 Value *StoredVal = SI->getOperand(0); 190 if (StoredVal == GV->getInitializer()) { 191 if (GS.StoredType < GlobalStatus::isInitializerStored) 192 GS.StoredType = GlobalStatus::isInitializerStored; 193 } else if (isa<LoadInst>(StoredVal) && 194 cast<LoadInst>(StoredVal)->getOperand(0) == GV) { 195 // G = G 196 if (GS.StoredType < GlobalStatus::isInitializerStored) 197 GS.StoredType = GlobalStatus::isInitializerStored; 198 } else if (GS.StoredType < GlobalStatus::isStoredOnce) { 199 GS.StoredType = GlobalStatus::isStoredOnce; 200 GS.StoredOnceValue = StoredVal; 201 } else if (GS.StoredType == GlobalStatus::isStoredOnce && 202 GS.StoredOnceValue == StoredVal) { 203 // noop. 204 } else { 205 GS.StoredType = GlobalStatus::isStored; 206 } 207 } else { 208 GS.StoredType = GlobalStatus::isStored; 209 } 210 } 211 } else if (isa<GetElementPtrInst>(I)) { 212 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 213 } else if (isa<SelectInst>(I)) { 214 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 215 } else if (PHINode *PN = dyn_cast<PHINode>(I)) { 216 // PHI nodes we can check just like select or GEP instructions, but we 217 // have to be careful about infinite recursion. 218 if (PHIUsers.insert(PN)) // Not already visited. 219 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 220 GS.HasPHIUser = true; 221 } else if (isa<CmpInst>(I)) { 222 } else if (isa<MemTransferInst>(I)) { 223 if (I->getOperand(1) == V) 224 GS.StoredType = GlobalStatus::isStored; 225 if (I->getOperand(2) == V) 226 GS.isLoaded = true; 227 } else if (isa<MemSetInst>(I)) { 228 assert(I->getOperand(1) == V && "Memset only takes one pointer!"); 229 GS.StoredType = GlobalStatus::isStored; 230 } else { 231 return true; // Any other non-load instruction might take address! 232 } 233 } else if (Constant *C = dyn_cast<Constant>(*UI)) { 234 GS.HasNonInstructionUser = true; 235 // We might have a dead and dangling constant hanging off of here. 236 if (!SafeToDestroyConstant(C)) 237 return true; 238 } else { 239 GS.HasNonInstructionUser = true; 240 // Otherwise must be some other user. 241 return true; 242 } 243 244 return false; 245} 246 247static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) { 248 ConstantInt *CI = dyn_cast<ConstantInt>(Idx); 249 if (!CI) return 0; 250 unsigned IdxV = CI->getZExtValue(); 251 252 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) { 253 if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV); 254 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) { 255 if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV); 256 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) { 257 if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV); 258 } else if (isa<ConstantAggregateZero>(Agg)) { 259 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) { 260 if (IdxV < STy->getNumElements()) 261 return Constant::getNullValue(STy->getElementType(IdxV)); 262 } else if (const SequentialType *STy = 263 dyn_cast<SequentialType>(Agg->getType())) { 264 return Constant::getNullValue(STy->getElementType()); 265 } 266 } else if (isa<UndefValue>(Agg)) { 267 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) { 268 if (IdxV < STy->getNumElements()) 269 return UndefValue::get(STy->getElementType(IdxV)); 270 } else if (const SequentialType *STy = 271 dyn_cast<SequentialType>(Agg->getType())) { 272 return UndefValue::get(STy->getElementType()); 273 } 274 } 275 return 0; 276} 277 278 279/// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all 280/// users of the global, cleaning up the obvious ones. This is largely just a 281/// quick scan over the use list to clean up the easy and obvious cruft. This 282/// returns true if it made a change. 283static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) { 284 bool Changed = false; 285 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) { 286 User *U = *UI++; 287 288 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 289 if (Init) { 290 // Replace the load with the initializer. 291 LI->replaceAllUsesWith(Init); 292 LI->eraseFromParent(); 293 Changed = true; 294 } 295 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 296 // Store must be unreachable or storing Init into the global. 297 SI->eraseFromParent(); 298 Changed = true; 299 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 300 if (CE->getOpcode() == Instruction::GetElementPtr) { 301 Constant *SubInit = 0; 302 if (Init) 303 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 304 Changed |= CleanupConstantGlobalUsers(CE, SubInit); 305 } else if (CE->getOpcode() == Instruction::BitCast && 306 CE->getType()->isPointerTy()) { 307 // Pointer cast, delete any stores and memsets to the global. 308 Changed |= CleanupConstantGlobalUsers(CE, 0); 309 } 310 311 if (CE->use_empty()) { 312 CE->destroyConstant(); 313 Changed = true; 314 } 315 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 316 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 317 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 318 // and will invalidate our notion of what Init is. 319 Constant *SubInit = 0; 320 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 321 ConstantExpr *CE = 322 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP)); 323 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 324 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 325 } 326 Changed |= CleanupConstantGlobalUsers(GEP, SubInit); 327 328 if (GEP->use_empty()) { 329 GEP->eraseFromParent(); 330 Changed = true; 331 } 332 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 333 if (MI->getRawDest() == V) { 334 MI->eraseFromParent(); 335 Changed = true; 336 } 337 338 } else if (Constant *C = dyn_cast<Constant>(U)) { 339 // If we have a chain of dead constantexprs or other things dangling from 340 // us, and if they are all dead, nuke them without remorse. 341 if (SafeToDestroyConstant(C)) { 342 C->destroyConstant(); 343 // This could have invalidated UI, start over from scratch. 344 CleanupConstantGlobalUsers(V, Init); 345 return true; 346 } 347 } 348 } 349 return Changed; 350} 351 352/// isSafeSROAElementUse - Return true if the specified instruction is a safe 353/// user of a derived expression from a global that we want to SROA. 354static bool isSafeSROAElementUse(Value *V) { 355 // We might have a dead and dangling constant hanging off of here. 356 if (Constant *C = dyn_cast<Constant>(V)) 357 return SafeToDestroyConstant(C); 358 359 Instruction *I = dyn_cast<Instruction>(V); 360 if (!I) return false; 361 362 // Loads are ok. 363 if (isa<LoadInst>(I)) return true; 364 365 // Stores *to* the pointer are ok. 366 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 367 return SI->getOperand(0) != V; 368 369 // Otherwise, it must be a GEP. 370 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 371 if (GEPI == 0) return false; 372 373 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 374 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 375 return false; 376 377 for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end(); 378 I != E; ++I) 379 if (!isSafeSROAElementUse(*I)) 380 return false; 381 return true; 382} 383 384 385/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value. 386/// Look at it and its uses and decide whether it is safe to SROA this global. 387/// 388static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 389 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 390 if (!isa<GetElementPtrInst>(U) && 391 (!isa<ConstantExpr>(U) || 392 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 393 return false; 394 395 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 396 // don't like < 3 operand CE's, and we don't like non-constant integer 397 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 398 // value of C. 399 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 400 !cast<Constant>(U->getOperand(1))->isNullValue() || 401 !isa<ConstantInt>(U->getOperand(2))) 402 return false; 403 404 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 405 ++GEPI; // Skip over the pointer index. 406 407 // If this is a use of an array allocation, do a bit more checking for sanity. 408 if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 409 uint64_t NumElements = AT->getNumElements(); 410 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 411 412 // Check to make sure that index falls within the array. If not, 413 // something funny is going on, so we won't do the optimization. 414 // 415 if (Idx->getZExtValue() >= NumElements) 416 return false; 417 418 // We cannot scalar repl this level of the array unless any array 419 // sub-indices are in-range constants. In particular, consider: 420 // A[0][i]. We cannot know that the user isn't doing invalid things like 421 // allowing i to index an out-of-range subscript that accesses A[1]. 422 // 423 // Scalar replacing *just* the outer index of the array is probably not 424 // going to be a win anyway, so just give up. 425 for (++GEPI; // Skip array index. 426 GEPI != E; 427 ++GEPI) { 428 uint64_t NumElements; 429 if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 430 NumElements = SubArrayTy->getNumElements(); 431 else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 432 NumElements = SubVectorTy->getNumElements(); 433 else { 434 assert((*GEPI)->isStructTy() && 435 "Indexed GEP type is not array, vector, or struct!"); 436 continue; 437 } 438 439 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 440 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 441 return false; 442 } 443 } 444 445 for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I) 446 if (!isSafeSROAElementUse(*I)) 447 return false; 448 return true; 449} 450 451/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it 452/// is safe for us to perform this transformation. 453/// 454static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 455 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 456 UI != E; ++UI) { 457 if (!IsUserOfGlobalSafeForSRA(*UI, GV)) 458 return false; 459 } 460 return true; 461} 462 463 464/// SRAGlobal - Perform scalar replacement of aggregates on the specified global 465/// variable. This opens the door for other optimizations by exposing the 466/// behavior of the program in a more fine-grained way. We have determined that 467/// this transformation is safe already. We return the first global variable we 468/// insert so that the caller can reprocess it. 469static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) { 470 // Make sure this global only has simple uses that we can SRA. 471 if (!GlobalUsersSafeToSRA(GV)) 472 return 0; 473 474 assert(GV->hasLocalLinkage() && !GV->isConstant()); 475 Constant *Init = GV->getInitializer(); 476 const Type *Ty = Init->getType(); 477 478 std::vector<GlobalVariable*> NewGlobals; 479 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 480 481 // Get the alignment of the global, either explicit or target-specific. 482 unsigned StartAlignment = GV->getAlignment(); 483 if (StartAlignment == 0) 484 StartAlignment = TD.getABITypeAlignment(GV->getType()); 485 486 if (const StructType *STy = dyn_cast<StructType>(Ty)) { 487 NewGlobals.reserve(STy->getNumElements()); 488 const StructLayout &Layout = *TD.getStructLayout(STy); 489 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 490 Constant *In = getAggregateConstantElement(Init, 491 ConstantInt::get(Type::getInt32Ty(STy->getContext()), i)); 492 assert(In && "Couldn't get element of initializer?"); 493 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 494 GlobalVariable::InternalLinkage, 495 In, GV->getName()+"."+Twine(i), 496 GV->isThreadLocal(), 497 GV->getType()->getAddressSpace()); 498 Globals.insert(GV, NGV); 499 NewGlobals.push_back(NGV); 500 501 // Calculate the known alignment of the field. If the original aggregate 502 // had 256 byte alignment for example, something might depend on that: 503 // propagate info to each field. 504 uint64_t FieldOffset = Layout.getElementOffset(i); 505 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 506 if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i))) 507 NGV->setAlignment(NewAlign); 508 } 509 } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 510 unsigned NumElements = 0; 511 if (const ArrayType *ATy = dyn_cast<ArrayType>(STy)) 512 NumElements = ATy->getNumElements(); 513 else 514 NumElements = cast<VectorType>(STy)->getNumElements(); 515 516 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 517 return 0; // It's not worth it. 518 NewGlobals.reserve(NumElements); 519 520 uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType()); 521 unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType()); 522 for (unsigned i = 0, e = NumElements; i != e; ++i) { 523 Constant *In = getAggregateConstantElement(Init, 524 ConstantInt::get(Type::getInt32Ty(Init->getContext()), i)); 525 assert(In && "Couldn't get element of initializer?"); 526 527 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 528 GlobalVariable::InternalLinkage, 529 In, GV->getName()+"."+Twine(i), 530 GV->isThreadLocal(), 531 GV->getType()->getAddressSpace()); 532 Globals.insert(GV, NGV); 533 NewGlobals.push_back(NGV); 534 535 // Calculate the known alignment of the field. If the original aggregate 536 // had 256 byte alignment for example, something might depend on that: 537 // propagate info to each field. 538 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 539 if (NewAlign > EltAlign) 540 NGV->setAlignment(NewAlign); 541 } 542 } 543 544 if (NewGlobals.empty()) 545 return 0; 546 547 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV); 548 549 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 550 551 // Loop over all of the uses of the global, replacing the constantexpr geps, 552 // with smaller constantexpr geps or direct references. 553 while (!GV->use_empty()) { 554 User *GEP = GV->use_back(); 555 assert(((isa<ConstantExpr>(GEP) && 556 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 557 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 558 559 // Ignore the 1th operand, which has to be zero or else the program is quite 560 // broken (undefined). Get the 2nd operand, which is the structure or array 561 // index. 562 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 563 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 564 565 Value *NewPtr = NewGlobals[Val]; 566 567 // Form a shorter GEP if needed. 568 if (GEP->getNumOperands() > 3) { 569 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 570 SmallVector<Constant*, 8> Idxs; 571 Idxs.push_back(NullInt); 572 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 573 Idxs.push_back(CE->getOperand(i)); 574 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), 575 &Idxs[0], Idxs.size()); 576 } else { 577 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 578 SmallVector<Value*, 8> Idxs; 579 Idxs.push_back(NullInt); 580 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 581 Idxs.push_back(GEPI->getOperand(i)); 582 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(), 583 GEPI->getName()+"."+Twine(Val),GEPI); 584 } 585 } 586 GEP->replaceAllUsesWith(NewPtr); 587 588 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 589 GEPI->eraseFromParent(); 590 else 591 cast<ConstantExpr>(GEP)->destroyConstant(); 592 } 593 594 // Delete the old global, now that it is dead. 595 Globals.erase(GV); 596 ++NumSRA; 597 598 // Loop over the new globals array deleting any globals that are obviously 599 // dead. This can arise due to scalarization of a structure or an array that 600 // has elements that are dead. 601 unsigned FirstGlobal = 0; 602 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 603 if (NewGlobals[i]->use_empty()) { 604 Globals.erase(NewGlobals[i]); 605 if (FirstGlobal == i) ++FirstGlobal; 606 } 607 608 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0; 609} 610 611/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified 612/// value will trap if the value is dynamically null. PHIs keeps track of any 613/// phi nodes we've seen to avoid reprocessing them. 614static bool AllUsesOfValueWillTrapIfNull(Value *V, 615 SmallPtrSet<PHINode*, 8> &PHIs) { 616 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) 617 if (isa<LoadInst>(*UI)) { 618 // Will trap. 619 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 620 if (SI->getOperand(0) == V) { 621 //cerr << "NONTRAPPING USE: " << **UI; 622 return false; // Storing the value. 623 } 624 } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) { 625 if (CI->getOperand(0) != V) { 626 //cerr << "NONTRAPPING USE: " << **UI; 627 return false; // Not calling the ptr 628 } 629 } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) { 630 if (II->getOperand(0) != V) { 631 //cerr << "NONTRAPPING USE: " << **UI; 632 return false; // Not calling the ptr 633 } 634 } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) { 635 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 636 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) { 637 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 638 } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) { 639 // If we've already seen this phi node, ignore it, it has already been 640 // checked. 641 if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 642 return false; 643 } else if (isa<ICmpInst>(*UI) && 644 isa<ConstantPointerNull>(UI->getOperand(1))) { 645 // Ignore setcc X, null 646 } else { 647 //cerr << "NONTRAPPING USE: " << **UI; 648 return false; 649 } 650 return true; 651} 652 653/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads 654/// from GV will trap if the loaded value is null. Note that this also permits 655/// comparisons of the loaded value against null, as a special case. 656static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) { 657 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI) 658 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 659 SmallPtrSet<PHINode*, 8> PHIs; 660 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 661 return false; 662 } else if (isa<StoreInst>(*UI)) { 663 // Ignore stores to the global. 664 } else { 665 // We don't know or understand this user, bail out. 666 //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI; 667 return false; 668 } 669 670 return true; 671} 672 673static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 674 bool Changed = false; 675 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) { 676 Instruction *I = cast<Instruction>(*UI++); 677 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 678 LI->setOperand(0, NewV); 679 Changed = true; 680 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 681 if (SI->getOperand(1) == V) { 682 SI->setOperand(1, NewV); 683 Changed = true; 684 } 685 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 686 if (I->getOperand(0) == V) { 687 // Calling through the pointer! Turn into a direct call, but be careful 688 // that the pointer is not also being passed as an argument. 689 I->setOperand(0, NewV); 690 Changed = true; 691 bool PassedAsArg = false; 692 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i) 693 if (I->getOperand(i) == V) { 694 PassedAsArg = true; 695 I->setOperand(i, NewV); 696 } 697 698 if (PassedAsArg) { 699 // Being passed as an argument also. Be careful to not invalidate UI! 700 UI = V->use_begin(); 701 } 702 } 703 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 704 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 705 ConstantExpr::getCast(CI->getOpcode(), 706 NewV, CI->getType())); 707 if (CI->use_empty()) { 708 Changed = true; 709 CI->eraseFromParent(); 710 } 711 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 712 // Should handle GEP here. 713 SmallVector<Constant*, 8> Idxs; 714 Idxs.reserve(GEPI->getNumOperands()-1); 715 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 716 i != e; ++i) 717 if (Constant *C = dyn_cast<Constant>(*i)) 718 Idxs.push_back(C); 719 else 720 break; 721 if (Idxs.size() == GEPI->getNumOperands()-1) 722 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI, 723 ConstantExpr::getGetElementPtr(NewV, &Idxs[0], 724 Idxs.size())); 725 if (GEPI->use_empty()) { 726 Changed = true; 727 GEPI->eraseFromParent(); 728 } 729 } 730 } 731 732 return Changed; 733} 734 735 736/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null 737/// value stored into it. If there are uses of the loaded value that would trap 738/// if the loaded value is dynamically null, then we know that they cannot be 739/// reachable with a null optimize away the load. 740static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) { 741 bool Changed = false; 742 743 // Keep track of whether we are able to remove all the uses of the global 744 // other than the store that defines it. 745 bool AllNonStoreUsesGone = true; 746 747 // Replace all uses of loads with uses of uses of the stored value. 748 for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){ 749 User *GlobalUser = *GUI++; 750 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 751 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 752 // If we were able to delete all uses of the loads 753 if (LI->use_empty()) { 754 LI->eraseFromParent(); 755 Changed = true; 756 } else { 757 AllNonStoreUsesGone = false; 758 } 759 } else if (isa<StoreInst>(GlobalUser)) { 760 // Ignore the store that stores "LV" to the global. 761 assert(GlobalUser->getOperand(1) == GV && 762 "Must be storing *to* the global"); 763 } else { 764 AllNonStoreUsesGone = false; 765 766 // If we get here we could have other crazy uses that are transitively 767 // loaded. 768 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 769 isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!"); 770 } 771 } 772 773 if (Changed) { 774 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV); 775 ++NumGlobUses; 776 } 777 778 // If we nuked all of the loads, then none of the stores are needed either, 779 // nor is the global. 780 if (AllNonStoreUsesGone) { 781 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 782 CleanupConstantGlobalUsers(GV, 0); 783 if (GV->use_empty()) { 784 GV->eraseFromParent(); 785 ++NumDeleted; 786 } 787 Changed = true; 788 } 789 return Changed; 790} 791 792/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the 793/// instructions that are foldable. 794static void ConstantPropUsersOf(Value *V) { 795 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) 796 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 797 if (Constant *NewC = ConstantFoldInstruction(I)) { 798 I->replaceAllUsesWith(NewC); 799 800 // Advance UI to the next non-I use to avoid invalidating it! 801 // Instructions could multiply use V. 802 while (UI != E && *UI == I) 803 ++UI; 804 I->eraseFromParent(); 805 } 806} 807 808/// OptimizeGlobalAddressOfMalloc - This function takes the specified global 809/// variable, and transforms the program as if it always contained the result of 810/// the specified malloc. Because it is always the result of the specified 811/// malloc, there is no reason to actually DO the malloc. Instead, turn the 812/// malloc into a global, and any loads of GV as uses of the new global. 813static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, 814 CallInst *CI, 815 const Type *AllocTy, 816 Value* NElems, 817 TargetData* TD) { 818 DEBUG(dbgs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 819 820 const Type *IntPtrTy = TD->getIntPtrType(GV->getContext()); 821 822 // CI has either 0 or 1 bitcast uses (getMallocType() would otherwise have 823 // returned NULL and we would not be here). 824 BitCastInst *BCI = NULL; 825 for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); UI != E; ) 826 if ((BCI = dyn_cast<BitCastInst>(cast<Instruction>(*UI++)))) 827 break; 828 829 ConstantInt *NElements = cast<ConstantInt>(NElems); 830 if (NElements->getZExtValue() != 1) { 831 // If we have an array allocation, transform it to a single element 832 // allocation to make the code below simpler. 833 Type *NewTy = ArrayType::get(AllocTy, NElements->getZExtValue()); 834 unsigned TypeSize = TD->getTypeAllocSize(NewTy); 835 if (const StructType *ST = dyn_cast<StructType>(NewTy)) 836 TypeSize = TD->getStructLayout(ST)->getSizeInBytes(); 837 Instruction *NewCI = CallInst::CreateMalloc(CI, IntPtrTy, NewTy, 838 ConstantInt::get(IntPtrTy, TypeSize)); 839 Value* Indices[2]; 840 Indices[0] = Indices[1] = Constant::getNullValue(IntPtrTy); 841 Value *NewGEP = GetElementPtrInst::Create(NewCI, Indices, Indices + 2, 842 NewCI->getName()+".el0", CI); 843 Value *Cast = new BitCastInst(NewGEP, CI->getType(), "el0", CI); 844 if (BCI) BCI->replaceAllUsesWith(NewGEP); 845 CI->replaceAllUsesWith(Cast); 846 if (BCI) BCI->eraseFromParent(); 847 CI->eraseFromParent(); 848 BCI = dyn_cast<BitCastInst>(NewCI); 849 CI = BCI ? extractMallocCallFromBitCast(BCI) : cast<CallInst>(NewCI); 850 } 851 852 // Create the new global variable. The contents of the malloc'd memory is 853 // undefined, so initialize with an undef value. 854 const Type *MAT = getMallocAllocatedType(CI); 855 Constant *Init = UndefValue::get(MAT); 856 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(), 857 MAT, false, 858 GlobalValue::InternalLinkage, Init, 859 GV->getName()+".body", 860 GV, 861 GV->isThreadLocal()); 862 863 // Anything that used the malloc or its bitcast now uses the global directly. 864 if (BCI) BCI->replaceAllUsesWith(NewGV); 865 CI->replaceAllUsesWith(new BitCastInst(NewGV, CI->getType(), "newgv", CI)); 866 867 Constant *RepValue = NewGV; 868 if (NewGV->getType() != GV->getType()->getElementType()) 869 RepValue = ConstantExpr::getBitCast(RepValue, 870 GV->getType()->getElementType()); 871 872 // If there is a comparison against null, we will insert a global bool to 873 // keep track of whether the global was initialized yet or not. 874 GlobalVariable *InitBool = 875 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 876 GlobalValue::InternalLinkage, 877 ConstantInt::getFalse(GV->getContext()), 878 GV->getName()+".init", GV->isThreadLocal()); 879 bool InitBoolUsed = false; 880 881 // Loop over all uses of GV, processing them in turn. 882 std::vector<StoreInst*> Stores; 883 while (!GV->use_empty()) 884 if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) { 885 while (!LI->use_empty()) { 886 Use &LoadUse = LI->use_begin().getUse(); 887 if (!isa<ICmpInst>(LoadUse.getUser())) 888 LoadUse = RepValue; 889 else { 890 ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser()); 891 // Replace the cmp X, 0 with a use of the bool value. 892 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI); 893 InitBoolUsed = true; 894 switch (ICI->getPredicate()) { 895 default: llvm_unreachable("Unknown ICmp Predicate!"); 896 case ICmpInst::ICMP_ULT: 897 case ICmpInst::ICMP_SLT: // X < null -> always false 898 LV = ConstantInt::getFalse(GV->getContext()); 899 break; 900 case ICmpInst::ICMP_ULE: 901 case ICmpInst::ICMP_SLE: 902 case ICmpInst::ICMP_EQ: 903 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 904 break; 905 case ICmpInst::ICMP_NE: 906 case ICmpInst::ICMP_UGE: 907 case ICmpInst::ICMP_SGE: 908 case ICmpInst::ICMP_UGT: 909 case ICmpInst::ICMP_SGT: 910 break; // no change. 911 } 912 ICI->replaceAllUsesWith(LV); 913 ICI->eraseFromParent(); 914 } 915 } 916 LI->eraseFromParent(); 917 } else { 918 StoreInst *SI = cast<StoreInst>(GV->use_back()); 919 // The global is initialized when the store to it occurs. 920 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, SI); 921 SI->eraseFromParent(); 922 } 923 924 // If the initialization boolean was used, insert it, otherwise delete it. 925 if (!InitBoolUsed) { 926 while (!InitBool->use_empty()) // Delete initializations 927 cast<Instruction>(InitBool->use_back())->eraseFromParent(); 928 delete InitBool; 929 } else 930 GV->getParent()->getGlobalList().insert(GV, InitBool); 931 932 933 // Now the GV is dead, nuke it and the malloc (both CI and BCI). 934 GV->eraseFromParent(); 935 if (BCI) BCI->eraseFromParent(); 936 CI->eraseFromParent(); 937 938 // To further other optimizations, loop over all users of NewGV and try to 939 // constant prop them. This will promote GEP instructions with constant 940 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 941 ConstantPropUsersOf(NewGV); 942 if (RepValue != NewGV) 943 ConstantPropUsersOf(RepValue); 944 945 return NewGV; 946} 947 948/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking 949/// to make sure that there are no complex uses of V. We permit simple things 950/// like dereferencing the pointer, but not storing through the address, unless 951/// it is to the specified global. 952static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V, 953 GlobalVariable *GV, 954 SmallPtrSet<PHINode*, 8> &PHIs) { 955 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ 956 Instruction *Inst = cast<Instruction>(*UI); 957 958 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 959 continue; // Fine, ignore. 960 } 961 962 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 963 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 964 return false; // Storing the pointer itself... bad. 965 continue; // Otherwise, storing through it, or storing into GV... fine. 966 } 967 968 if (isa<GetElementPtrInst>(Inst)) { 969 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 970 return false; 971 continue; 972 } 973 974 if (PHINode *PN = dyn_cast<PHINode>(Inst)) { 975 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 976 // cycles. 977 if (PHIs.insert(PN)) 978 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 979 return false; 980 continue; 981 } 982 983 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 984 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 985 return false; 986 continue; 987 } 988 989 return false; 990 } 991 return true; 992} 993 994/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV 995/// somewhere. Transform all uses of the allocation into loads from the 996/// global and uses of the resultant pointer. Further, delete the store into 997/// GV. This assumes that these value pass the 998/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 999static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1000 GlobalVariable *GV) { 1001 while (!Alloc->use_empty()) { 1002 Instruction *U = cast<Instruction>(*Alloc->use_begin()); 1003 Instruction *InsertPt = U; 1004 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1005 // If this is the store of the allocation into the global, remove it. 1006 if (SI->getOperand(1) == GV) { 1007 SI->eraseFromParent(); 1008 continue; 1009 } 1010 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1011 // Insert the load in the corresponding predecessor, not right before the 1012 // PHI. 1013 InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator(); 1014 } else if (isa<BitCastInst>(U)) { 1015 // Must be bitcast between the malloc and store to initialize the global. 1016 ReplaceUsesOfMallocWithGlobal(U, GV); 1017 U->eraseFromParent(); 1018 continue; 1019 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1020 // If this is a "GEP bitcast" and the user is a store to the global, then 1021 // just process it as a bitcast. 1022 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1023 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back())) 1024 if (SI->getOperand(1) == GV) { 1025 // Must be bitcast GEP between the malloc and store to initialize 1026 // the global. 1027 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1028 GEPI->eraseFromParent(); 1029 continue; 1030 } 1031 } 1032 1033 // Insert a load from the global, and use it instead of the malloc. 1034 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1035 U->replaceUsesOfWith(Alloc, NL); 1036 } 1037} 1038 1039/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi 1040/// of a load) are simple enough to perform heap SRA on. This permits GEP's 1041/// that index through the array and struct field, icmps of null, and PHIs. 1042static bool LoadUsesSimpleEnoughForHeapSRA(Value *V, 1043 SmallPtrSet<PHINode*, 32> &LoadUsingPHIs, 1044 SmallPtrSet<PHINode*, 32> &LoadUsingPHIsPerLoad) { 1045 // We permit two users of the load: setcc comparing against the null 1046 // pointer, and a getelementptr of a specific form. 1047 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ 1048 Instruction *User = cast<Instruction>(*UI); 1049 1050 // Comparison against null is ok. 1051 if (ICmpInst *ICI = dyn_cast<ICmpInst>(User)) { 1052 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1053 return false; 1054 continue; 1055 } 1056 1057 // getelementptr is also ok, but only a simple form. 1058 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { 1059 // Must index into the array and into the struct. 1060 if (GEPI->getNumOperands() < 3) 1061 return false; 1062 1063 // Otherwise the GEP is ok. 1064 continue; 1065 } 1066 1067 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1068 if (!LoadUsingPHIsPerLoad.insert(PN)) 1069 // This means some phi nodes are dependent on each other. 1070 // Avoid infinite looping! 1071 return false; 1072 if (!LoadUsingPHIs.insert(PN)) 1073 // If we have already analyzed this PHI, then it is safe. 1074 continue; 1075 1076 // Make sure all uses of the PHI are simple enough to transform. 1077 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1078 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1079 return false; 1080 1081 continue; 1082 } 1083 1084 // Otherwise we don't know what this is, not ok. 1085 return false; 1086 } 1087 1088 return true; 1089} 1090 1091 1092/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from 1093/// GV are simple enough to perform HeapSRA, return true. 1094static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV, 1095 Instruction *StoredVal) { 1096 SmallPtrSet<PHINode*, 32> LoadUsingPHIs; 1097 SmallPtrSet<PHINode*, 32> LoadUsingPHIsPerLoad; 1098 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E; 1099 ++UI) 1100 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1101 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1102 LoadUsingPHIsPerLoad)) 1103 return false; 1104 LoadUsingPHIsPerLoad.clear(); 1105 } 1106 1107 // If we reach here, we know that all uses of the loads and transitive uses 1108 // (through PHI nodes) are simple enough to transform. However, we don't know 1109 // that all inputs the to the PHI nodes are in the same equivalence sets. 1110 // Check to verify that all operands of the PHIs are either PHIS that can be 1111 // transformed, loads from GV, or MI itself. 1112 for (SmallPtrSet<PHINode*, 32>::iterator I = LoadUsingPHIs.begin(), 1113 E = LoadUsingPHIs.end(); I != E; ++I) { 1114 PHINode *PN = *I; 1115 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1116 Value *InVal = PN->getIncomingValue(op); 1117 1118 // PHI of the stored value itself is ok. 1119 if (InVal == StoredVal) continue; 1120 1121 if (PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1122 // One of the PHIs in our set is (optimistically) ok. 1123 if (LoadUsingPHIs.count(InPN)) 1124 continue; 1125 return false; 1126 } 1127 1128 // Load from GV is ok. 1129 if (LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1130 if (LI->getOperand(0) == GV) 1131 continue; 1132 1133 // UNDEF? NULL? 1134 1135 // Anything else is rejected. 1136 return false; 1137 } 1138 } 1139 1140 return true; 1141} 1142 1143static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1144 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1145 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1146 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1147 1148 if (FieldNo >= FieldVals.size()) 1149 FieldVals.resize(FieldNo+1); 1150 1151 // If we already have this value, just reuse the previously scalarized 1152 // version. 1153 if (Value *FieldVal = FieldVals[FieldNo]) 1154 return FieldVal; 1155 1156 // Depending on what instruction this is, we have several cases. 1157 Value *Result; 1158 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1159 // This is a scalarized version of the load from the global. Just create 1160 // a new Load of the scalarized global. 1161 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1162 InsertedScalarizedValues, 1163 PHIsToRewrite), 1164 LI->getName()+".f"+Twine(FieldNo), LI); 1165 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1166 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1167 // field. 1168 const StructType *ST = 1169 cast<StructType>(cast<PointerType>(PN->getType())->getElementType()); 1170 1171 Result = 1172 PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)), 1173 PN->getName()+".f"+Twine(FieldNo), PN); 1174 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1175 } else { 1176 llvm_unreachable("Unknown usable value"); 1177 Result = 0; 1178 } 1179 1180 return FieldVals[FieldNo] = Result; 1181} 1182 1183/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from 1184/// the load, rewrite the derived value to use the HeapSRoA'd load. 1185static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1186 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1187 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1188 // If this is a comparison against null, handle it. 1189 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1190 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1191 // If we have a setcc of the loaded pointer, we can use a setcc of any 1192 // field. 1193 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1194 InsertedScalarizedValues, PHIsToRewrite); 1195 1196 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1197 Constant::getNullValue(NPtr->getType()), 1198 SCI->getName()); 1199 SCI->replaceAllUsesWith(New); 1200 SCI->eraseFromParent(); 1201 return; 1202 } 1203 1204 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1205 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1206 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1207 && "Unexpected GEPI!"); 1208 1209 // Load the pointer for this field. 1210 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1211 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1212 InsertedScalarizedValues, PHIsToRewrite); 1213 1214 // Create the new GEP idx vector. 1215 SmallVector<Value*, 8> GEPIdx; 1216 GEPIdx.push_back(GEPI->getOperand(1)); 1217 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1218 1219 Value *NGEPI = GetElementPtrInst::Create(NewPtr, 1220 GEPIdx.begin(), GEPIdx.end(), 1221 GEPI->getName(), GEPI); 1222 GEPI->replaceAllUsesWith(NGEPI); 1223 GEPI->eraseFromParent(); 1224 return; 1225 } 1226 1227 // Recursively transform the users of PHI nodes. This will lazily create the 1228 // PHIs that are needed for individual elements. Keep track of what PHIs we 1229 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1230 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1231 // already been seen first by another load, so its uses have already been 1232 // processed. 1233 PHINode *PN = cast<PHINode>(LoadUser); 1234 bool Inserted; 1235 DenseMap<Value*, std::vector<Value*> >::iterator InsertPos; 1236 tie(InsertPos, Inserted) = 1237 InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>())); 1238 if (!Inserted) return; 1239 1240 // If this is the first time we've seen this PHI, recursively process all 1241 // users. 1242 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) { 1243 Instruction *User = cast<Instruction>(*UI++); 1244 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1245 } 1246} 1247 1248/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr 1249/// is a value loaded from the global. Eliminate all uses of Ptr, making them 1250/// use FieldGlobals instead. All uses of loaded values satisfy 1251/// AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1252static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1253 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1254 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1255 for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end(); 1256 UI != E; ) { 1257 Instruction *User = cast<Instruction>(*UI++); 1258 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1259 } 1260 1261 if (Load->use_empty()) { 1262 Load->eraseFromParent(); 1263 InsertedScalarizedValues.erase(Load); 1264 } 1265} 1266 1267/// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break 1268/// it up into multiple allocations of arrays of the fields. 1269static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1270 Value* NElems, TargetData *TD) { 1271 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1272 const Type* MAT = getMallocAllocatedType(CI); 1273 const StructType *STy = cast<StructType>(MAT); 1274 1275 // There is guaranteed to be at least one use of the malloc (storing 1276 // it into GV). If there are other uses, change them to be uses of 1277 // the global to simplify later code. This also deletes the store 1278 // into GV. 1279 ReplaceUsesOfMallocWithGlobal(CI, GV); 1280 1281 // Okay, at this point, there are no users of the malloc. Insert N 1282 // new mallocs at the same place as CI, and N globals. 1283 std::vector<Value*> FieldGlobals; 1284 std::vector<Value*> FieldMallocs; 1285 1286 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1287 const Type *FieldTy = STy->getElementType(FieldNo); 1288 const PointerType *PFieldTy = PointerType::getUnqual(FieldTy); 1289 1290 GlobalVariable *NGV = 1291 new GlobalVariable(*GV->getParent(), 1292 PFieldTy, false, GlobalValue::InternalLinkage, 1293 Constant::getNullValue(PFieldTy), 1294 GV->getName() + ".f" + Twine(FieldNo), GV, 1295 GV->isThreadLocal()); 1296 FieldGlobals.push_back(NGV); 1297 1298 unsigned TypeSize = TD->getTypeAllocSize(FieldTy); 1299 if (const StructType *ST = dyn_cast<StructType>(FieldTy)) 1300 TypeSize = TD->getStructLayout(ST)->getSizeInBytes(); 1301 const Type *IntPtrTy = TD->getIntPtrType(CI->getContext()); 1302 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1303 ConstantInt::get(IntPtrTy, TypeSize), 1304 NElems, 1305 CI->getName() + ".f" + Twine(FieldNo)); 1306 CallInst *NCI = dyn_cast<BitCastInst>(NMI) ? 1307 extractMallocCallFromBitCast(NMI) : cast<CallInst>(NMI); 1308 FieldMallocs.push_back(NCI); 1309 new StoreInst(NMI, NGV, CI); 1310 } 1311 1312 // The tricky aspect of this transformation is handling the case when malloc 1313 // fails. In the original code, malloc failing would set the result pointer 1314 // of malloc to null. In this case, some mallocs could succeed and others 1315 // could fail. As such, we emit code that looks like this: 1316 // F0 = malloc(field0) 1317 // F1 = malloc(field1) 1318 // F2 = malloc(field2) 1319 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1320 // if (F0) { free(F0); F0 = 0; } 1321 // if (F1) { free(F1); F1 = 0; } 1322 // if (F2) { free(F2); F2 = 0; } 1323 // } 1324 // The malloc can also fail if its argument is too large. 1325 Constant *ConstantZero = ConstantInt::get(CI->getOperand(1)->getType(), 0); 1326 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getOperand(1), 1327 ConstantZero, "isneg"); 1328 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1329 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1330 Constant::getNullValue(FieldMallocs[i]->getType()), 1331 "isnull"); 1332 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1333 } 1334 1335 // Split the basic block at the old malloc. 1336 BasicBlock *OrigBB = CI->getParent(); 1337 BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont"); 1338 1339 // Create the block to check the first condition. Put all these blocks at the 1340 // end of the function as they are unlikely to be executed. 1341 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1342 "malloc_ret_null", 1343 OrigBB->getParent()); 1344 1345 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1346 // branch on RunningOr. 1347 OrigBB->getTerminator()->eraseFromParent(); 1348 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1349 1350 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1351 // pointer, because some may be null while others are not. 1352 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1353 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1354 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1355 Constant::getNullValue(GVVal->getType()), 1356 "tmp"); 1357 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1358 OrigBB->getParent()); 1359 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1360 OrigBB->getParent()); 1361 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1362 Cmp, NullPtrBlock); 1363 1364 // Fill in FreeBlock. 1365 CallInst::CreateFree(GVVal, BI); 1366 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1367 FreeBlock); 1368 BranchInst::Create(NextBlock, FreeBlock); 1369 1370 NullPtrBlock = NextBlock; 1371 } 1372 1373 BranchInst::Create(ContBB, NullPtrBlock); 1374 1375 // CI is no longer needed, remove it. 1376 CI->eraseFromParent(); 1377 1378 /// InsertedScalarizedLoads - As we process loads, if we can't immediately 1379 /// update all uses of the load, keep track of what scalarized loads are 1380 /// inserted for a given load. 1381 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1382 InsertedScalarizedValues[GV] = FieldGlobals; 1383 1384 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1385 1386 // Okay, the malloc site is completely handled. All of the uses of GV are now 1387 // loads, and all uses of those loads are simple. Rewrite them to use loads 1388 // of the per-field globals instead. 1389 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) { 1390 Instruction *User = cast<Instruction>(*UI++); 1391 1392 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1393 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1394 continue; 1395 } 1396 1397 // Must be a store of null. 1398 StoreInst *SI = cast<StoreInst>(User); 1399 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1400 "Unexpected heap-sra user!"); 1401 1402 // Insert a store of null into each global. 1403 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1404 const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType()); 1405 Constant *Null = Constant::getNullValue(PT->getElementType()); 1406 new StoreInst(Null, FieldGlobals[i], SI); 1407 } 1408 // Erase the original store. 1409 SI->eraseFromParent(); 1410 } 1411 1412 // While we have PHIs that are interesting to rewrite, do it. 1413 while (!PHIsToRewrite.empty()) { 1414 PHINode *PN = PHIsToRewrite.back().first; 1415 unsigned FieldNo = PHIsToRewrite.back().second; 1416 PHIsToRewrite.pop_back(); 1417 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1418 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1419 1420 // Add all the incoming values. This can materialize more phis. 1421 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1422 Value *InVal = PN->getIncomingValue(i); 1423 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1424 PHIsToRewrite); 1425 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1426 } 1427 } 1428 1429 // Drop all inter-phi links and any loads that made it this far. 1430 for (DenseMap<Value*, std::vector<Value*> >::iterator 1431 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1432 I != E; ++I) { 1433 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1434 PN->dropAllReferences(); 1435 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1436 LI->dropAllReferences(); 1437 } 1438 1439 // Delete all the phis and loads now that inter-references are dead. 1440 for (DenseMap<Value*, std::vector<Value*> >::iterator 1441 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1442 I != E; ++I) { 1443 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1444 PN->eraseFromParent(); 1445 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1446 LI->eraseFromParent(); 1447 } 1448 1449 // The old global is now dead, remove it. 1450 GV->eraseFromParent(); 1451 1452 ++NumHeapSRA; 1453 return cast<GlobalVariable>(FieldGlobals[0]); 1454} 1455 1456/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a 1457/// pointer global variable with a single value stored it that is a malloc or 1458/// cast of malloc. 1459static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, 1460 CallInst *CI, 1461 const Type *AllocTy, 1462 Module::global_iterator &GVI, 1463 TargetData *TD) { 1464 // If this is a malloc of an abstract type, don't touch it. 1465 if (!AllocTy->isSized()) 1466 return false; 1467 1468 // We can't optimize this global unless all uses of it are *known* to be 1469 // of the malloc value, not of the null initializer value (consider a use 1470 // that compares the global's value against zero to see if the malloc has 1471 // been reached). To do this, we check to see if all uses of the global 1472 // would trap if the global were null: this proves that they must all 1473 // happen after the malloc. 1474 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1475 return false; 1476 1477 // We can't optimize this if the malloc itself is used in a complex way, 1478 // for example, being stored into multiple globals. This allows the 1479 // malloc to be stored into the specified global, loaded setcc'd, and 1480 // GEP'd. These are all things we could transform to using the global 1481 // for. 1482 { 1483 SmallPtrSet<PHINode*, 8> PHIs; 1484 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1485 return false; 1486 } 1487 1488 // If we have a global that is only initialized with a fixed size malloc, 1489 // transform the program to use global memory instead of malloc'd memory. 1490 // This eliminates dynamic allocation, avoids an indirection accessing the 1491 // data, and exposes the resultant global to further GlobalOpt. 1492 // We cannot optimize the malloc if we cannot determine malloc array size. 1493 if (Value *NElems = getMallocArraySize(CI, TD, true)) { 1494 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1495 // Restrict this transformation to only working on small allocations 1496 // (2048 bytes currently), as we don't want to introduce a 16M global or 1497 // something. 1498 if (TD && 1499 NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) { 1500 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElems, TD); 1501 return true; 1502 } 1503 1504 // If the allocation is an array of structures, consider transforming this 1505 // into multiple malloc'd arrays, one for each field. This is basically 1506 // SRoA for malloc'd memory. 1507 1508 // If this is an allocation of a fixed size array of structs, analyze as a 1509 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1510 if (NElems == ConstantInt::get(CI->getOperand(1)->getType(), 1)) 1511 if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1512 AllocTy = AT->getElementType(); 1513 1514 if (const StructType *AllocSTy = dyn_cast<StructType>(AllocTy)) { 1515 // This the structure has an unreasonable number of fields, leave it 1516 // alone. 1517 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1518 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1519 1520 // If this is a fixed size array, transform the Malloc to be an alloc of 1521 // structs. malloc [100 x struct],1 -> malloc struct, 100 1522 if (const ArrayType *AT = 1523 dyn_cast<ArrayType>(getMallocAllocatedType(CI))) { 1524 const Type *IntPtrTy = TD->getIntPtrType(CI->getContext()); 1525 unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes(); 1526 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1527 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1528 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, 1529 AllocSize, NumElements, 1530 CI->getName()); 1531 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1532 CI->replaceAllUsesWith(Cast); 1533 CI->eraseFromParent(); 1534 CI = dyn_cast<BitCastInst>(Malloc) ? 1535 extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc); 1536 } 1537 1538 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD); 1539 return true; 1540 } 1541 } 1542 } 1543 1544 return false; 1545} 1546 1547// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge 1548// that only one value (besides its initializer) is ever stored to the global. 1549static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1550 Module::global_iterator &GVI, 1551 TargetData *TD) { 1552 // Ignore no-op GEPs and bitcasts. 1553 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1554 1555 // If we are dealing with a pointer global that is initialized to null and 1556 // only has one (non-null) value stored into it, then we can optimize any 1557 // users of the loaded value (often calls and loads) that would trap if the 1558 // value was null. 1559 if (GV->getInitializer()->getType()->isPointerTy() && 1560 GV->getInitializer()->isNullValue()) { 1561 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1562 if (GV->getInitializer()->getType() != SOVC->getType()) 1563 SOVC = 1564 ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1565 1566 // Optimize away any trapping uses of the loaded value. 1567 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC)) 1568 return true; 1569 } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) { 1570 const Type* MallocType = getMallocAllocatedType(CI); 1571 if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1572 GVI, TD)) 1573 return true; 1574 } 1575 } 1576 1577 return false; 1578} 1579 1580/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only 1581/// two values ever stored into GV are its initializer and OtherVal. See if we 1582/// can shrink the global into a boolean and select between the two values 1583/// whenever it is used. This exposes the values to other scalar optimizations. 1584static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1585 const Type *GVElType = GV->getType()->getElementType(); 1586 1587 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1588 // an FP value, pointer or vector, don't do this optimization because a select 1589 // between them is very expensive and unlikely to lead to later 1590 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1591 // where v1 and v2 both require constant pool loads, a big loss. 1592 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1593 GVElType->isFloatingPointTy() || 1594 GVElType->isPointerTy() || GVElType->isVectorTy()) 1595 return false; 1596 1597 // Walk the use list of the global seeing if all the uses are load or store. 1598 // If there is anything else, bail out. 1599 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I) 1600 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 1601 return false; 1602 1603 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV); 1604 1605 // Create the new global, initializing it to false. 1606 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1607 false, 1608 GlobalValue::InternalLinkage, 1609 ConstantInt::getFalse(GV->getContext()), 1610 GV->getName()+".b", 1611 GV->isThreadLocal()); 1612 GV->getParent()->getGlobalList().insert(GV, NewGV); 1613 1614 Constant *InitVal = GV->getInitializer(); 1615 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1616 "No reason to shrink to bool!"); 1617 1618 // If initialized to zero and storing one into the global, we can use a cast 1619 // instead of a select to synthesize the desired value. 1620 bool IsOneZero = false; 1621 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1622 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1623 1624 while (!GV->use_empty()) { 1625 Instruction *UI = cast<Instruction>(GV->use_back()); 1626 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1627 // Change the store into a boolean store. 1628 bool StoringOther = SI->getOperand(0) == OtherVal; 1629 // Only do this if we weren't storing a loaded value. 1630 Value *StoreVal; 1631 if (StoringOther || SI->getOperand(0) == InitVal) 1632 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1633 StoringOther); 1634 else { 1635 // Otherwise, we are storing a previously loaded copy. To do this, 1636 // change the copy from copying the original value to just copying the 1637 // bool. 1638 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1639 1640 // If we're already replaced the input, StoredVal will be a cast or 1641 // select instruction. If not, it will be a load of the original 1642 // global. 1643 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1644 assert(LI->getOperand(0) == GV && "Not a copy!"); 1645 // Insert a new load, to preserve the saved value. 1646 StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI); 1647 } else { 1648 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1649 "This is not a form that we understand!"); 1650 StoreVal = StoredVal->getOperand(0); 1651 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1652 } 1653 } 1654 new StoreInst(StoreVal, NewGV, SI); 1655 } else { 1656 // Change the load into a load of bool then a select. 1657 LoadInst *LI = cast<LoadInst>(UI); 1658 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI); 1659 Value *NSI; 1660 if (IsOneZero) 1661 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1662 else 1663 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1664 NSI->takeName(LI); 1665 LI->replaceAllUsesWith(NSI); 1666 } 1667 UI->eraseFromParent(); 1668 } 1669 1670 GV->eraseFromParent(); 1671 return true; 1672} 1673 1674 1675/// ProcessInternalGlobal - Analyze the specified global variable and optimize 1676/// it if possible. If we make a change, return true. 1677bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, 1678 Module::global_iterator &GVI) { 1679 SmallPtrSet<PHINode*, 16> PHIUsers; 1680 GlobalStatus GS; 1681 GV->removeDeadConstantUsers(); 1682 1683 if (GV->use_empty()) { 1684 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV); 1685 GV->eraseFromParent(); 1686 ++NumDeleted; 1687 return true; 1688 } 1689 1690 if (!AnalyzeGlobal(GV, GS, PHIUsers)) { 1691#if 0 1692 DEBUG(dbgs() << "Global: " << *GV); 1693 DEBUG(dbgs() << " isLoaded = " << GS.isLoaded << "\n"); 1694 DEBUG(dbgs() << " StoredType = "); 1695 switch (GS.StoredType) { 1696 case GlobalStatus::NotStored: DEBUG(dbgs() << "NEVER STORED\n"); break; 1697 case GlobalStatus::isInitializerStored: DEBUG(dbgs() << "INIT STORED\n"); 1698 break; 1699 case GlobalStatus::isStoredOnce: DEBUG(dbgs() << "STORED ONCE\n"); break; 1700 case GlobalStatus::isStored: DEBUG(dbgs() << "stored\n"); break; 1701 } 1702 if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue) 1703 DEBUG(dbgs() << " StoredOnceValue = " << *GS.StoredOnceValue << "\n"); 1704 if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions) 1705 DEBUG(dbgs() << " AccessingFunction = " << GS.AccessingFunction->getName() 1706 << "\n"); 1707 DEBUG(dbgs() << " HasMultipleAccessingFunctions = " 1708 << GS.HasMultipleAccessingFunctions << "\n"); 1709 DEBUG(dbgs() << " HasNonInstructionUser = " 1710 << GS.HasNonInstructionUser<<"\n"); 1711 DEBUG(dbgs() << "\n"); 1712#endif 1713 1714 // If this is a first class global and has only one accessing function 1715 // and this function is main (which we know is not recursive we can make 1716 // this global a local variable) we replace the global with a local alloca 1717 // in this function. 1718 // 1719 // NOTE: It doesn't make sense to promote non single-value types since we 1720 // are just replacing static memory to stack memory. 1721 // 1722 // If the global is in different address space, don't bring it to stack. 1723 if (!GS.HasMultipleAccessingFunctions && 1724 GS.AccessingFunction && !GS.HasNonInstructionUser && 1725 GV->getType()->getElementType()->isSingleValueType() && 1726 GS.AccessingFunction->getName() == "main" && 1727 GS.AccessingFunction->hasExternalLinkage() && 1728 GV->getType()->getAddressSpace() == 0) { 1729 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV); 1730 Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin(); 1731 const Type* ElemTy = GV->getType()->getElementType(); 1732 // FIXME: Pass Global's alignment when globals have alignment 1733 AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI); 1734 if (!isa<UndefValue>(GV->getInitializer())) 1735 new StoreInst(GV->getInitializer(), Alloca, FirstI); 1736 1737 GV->replaceAllUsesWith(Alloca); 1738 GV->eraseFromParent(); 1739 ++NumLocalized; 1740 return true; 1741 } 1742 1743 // If the global is never loaded (but may be stored to), it is dead. 1744 // Delete it now. 1745 if (!GS.isLoaded) { 1746 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV); 1747 1748 // Delete any stores we can find to the global. We may not be able to 1749 // make it completely dead though. 1750 bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer()); 1751 1752 // If the global is dead now, delete it. 1753 if (GV->use_empty()) { 1754 GV->eraseFromParent(); 1755 ++NumDeleted; 1756 Changed = true; 1757 } 1758 return Changed; 1759 1760 } else if (GS.StoredType <= GlobalStatus::isInitializerStored) { 1761 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV); 1762 GV->setConstant(true); 1763 1764 // Clean up any obviously simplifiable users now. 1765 CleanupConstantGlobalUsers(GV, GV->getInitializer()); 1766 1767 // If the global is dead now, just nuke it. 1768 if (GV->use_empty()) { 1769 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1770 << "all users and delete global!\n"); 1771 GV->eraseFromParent(); 1772 ++NumDeleted; 1773 } 1774 1775 ++NumMarked; 1776 return true; 1777 } else if (!GV->getInitializer()->getType()->isSingleValueType()) { 1778 if (TargetData *TD = getAnalysisIfAvailable<TargetData>()) 1779 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) { 1780 GVI = FirstNewGV; // Don't skip the newly produced globals! 1781 return true; 1782 } 1783 } else if (GS.StoredType == GlobalStatus::isStoredOnce) { 1784 // If the initial value for the global was an undef value, and if only 1785 // one other value was stored into it, we can just change the 1786 // initializer to be the stored value, then delete all stores to the 1787 // global. This allows us to mark it constant. 1788 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1789 if (isa<UndefValue>(GV->getInitializer())) { 1790 // Change the initial value here. 1791 GV->setInitializer(SOVConstant); 1792 1793 // Clean up any obviously simplifiable users now. 1794 CleanupConstantGlobalUsers(GV, GV->getInitializer()); 1795 1796 if (GV->use_empty()) { 1797 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1798 << "simplify all users and delete global!\n"); 1799 GV->eraseFromParent(); 1800 ++NumDeleted; 1801 } else { 1802 GVI = GV; 1803 } 1804 ++NumSubstitute; 1805 return true; 1806 } 1807 1808 // Try to optimize globals based on the knowledge that only one value 1809 // (besides its initializer) is ever stored to the global. 1810 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI, 1811 getAnalysisIfAvailable<TargetData>())) 1812 return true; 1813 1814 // Otherwise, if the global was not a boolean, we can shrink it to be a 1815 // boolean. 1816 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1817 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1818 ++NumShrunkToBool; 1819 return true; 1820 } 1821 } 1822 } 1823 return false; 1824} 1825 1826/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified 1827/// function, changing them to FastCC. 1828static void ChangeCalleesToFastCall(Function *F) { 1829 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 1830 CallSite User(cast<Instruction>(*UI)); 1831 User.setCallingConv(CallingConv::Fast); 1832 } 1833} 1834 1835static AttrListPtr StripNest(const AttrListPtr &Attrs) { 1836 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1837 if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0) 1838 continue; 1839 1840 // There can be only one. 1841 return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest); 1842 } 1843 1844 return Attrs; 1845} 1846 1847static void RemoveNestAttribute(Function *F) { 1848 F->setAttributes(StripNest(F->getAttributes())); 1849 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 1850 CallSite User(cast<Instruction>(*UI)); 1851 User.setAttributes(StripNest(User.getAttributes())); 1852 } 1853} 1854 1855bool GlobalOpt::OptimizeFunctions(Module &M) { 1856 bool Changed = false; 1857 // Optimize functions. 1858 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 1859 Function *F = FI++; 1860 // Functions without names cannot be referenced outside this module. 1861 if (!F->hasName() && !F->isDeclaration()) 1862 F->setLinkage(GlobalValue::InternalLinkage); 1863 F->removeDeadConstantUsers(); 1864 if (F->use_empty() && (F->hasLocalLinkage() || F->hasLinkOnceLinkage())) { 1865 F->eraseFromParent(); 1866 Changed = true; 1867 ++NumFnDeleted; 1868 } else if (F->hasLocalLinkage()) { 1869 if (F->getCallingConv() == CallingConv::C && !F->isVarArg() && 1870 !F->hasAddressTaken()) { 1871 // If this function has C calling conventions, is not a varargs 1872 // function, and is only called directly, promote it to use the Fast 1873 // calling convention. 1874 F->setCallingConv(CallingConv::Fast); 1875 ChangeCalleesToFastCall(F); 1876 ++NumFastCallFns; 1877 Changed = true; 1878 } 1879 1880 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 1881 !F->hasAddressTaken()) { 1882 // The function is not used by a trampoline intrinsic, so it is safe 1883 // to remove the 'nest' attribute. 1884 RemoveNestAttribute(F); 1885 ++NumNestRemoved; 1886 Changed = true; 1887 } 1888 } 1889 } 1890 return Changed; 1891} 1892 1893bool GlobalOpt::OptimizeGlobalVars(Module &M) { 1894 bool Changed = false; 1895 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 1896 GVI != E; ) { 1897 GlobalVariable *GV = GVI++; 1898 // Global variables without names cannot be referenced outside this module. 1899 if (!GV->hasName() && !GV->isDeclaration()) 1900 GV->setLinkage(GlobalValue::InternalLinkage); 1901 // Simplify the initializer. 1902 if (GV->hasInitializer()) 1903 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) { 1904 TargetData *TD = getAnalysisIfAvailable<TargetData>(); 1905 Constant *New = ConstantFoldConstantExpression(CE, TD); 1906 if (New && New != CE) 1907 GV->setInitializer(New); 1908 } 1909 // Do more involved optimizations if the global is internal. 1910 if (!GV->isConstant() && GV->hasLocalLinkage() && 1911 GV->hasInitializer()) 1912 Changed |= ProcessInternalGlobal(GV, GVI); 1913 } 1914 return Changed; 1915} 1916 1917/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all 1918/// initializers have an init priority of 65535. 1919GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) { 1920 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 1921 I != E; ++I) 1922 if (I->getName() == "llvm.global_ctors") { 1923 // Found it, verify it's an array of { int, void()* }. 1924 const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType()); 1925 if (!ATy) return 0; 1926 const StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 1927 if (!STy || STy->getNumElements() != 2 || 1928 !STy->getElementType(0)->isIntegerTy(32)) return 0; 1929 const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1)); 1930 if (!PFTy) return 0; 1931 const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType()); 1932 if (!FTy || !FTy->getReturnType()->isVoidTy() || 1933 FTy->isVarArg() || FTy->getNumParams() != 0) 1934 return 0; 1935 1936 // Verify that the initializer is simple enough for us to handle. 1937 if (!I->hasDefinitiveInitializer()) return 0; 1938 ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer()); 1939 if (!CA) return 0; 1940 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) 1941 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) { 1942 if (isa<ConstantPointerNull>(CS->getOperand(1))) 1943 continue; 1944 1945 // Must have a function or null ptr. 1946 if (!isa<Function>(CS->getOperand(1))) 1947 return 0; 1948 1949 // Init priority must be standard. 1950 ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0)); 1951 if (!CI || CI->getZExtValue() != 65535) 1952 return 0; 1953 } else { 1954 return 0; 1955 } 1956 1957 return I; 1958 } 1959 return 0; 1960} 1961 1962/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand, 1963/// return a list of the functions and null terminator as a vector. 1964static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) { 1965 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 1966 std::vector<Function*> Result; 1967 Result.reserve(CA->getNumOperands()); 1968 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) { 1969 ConstantStruct *CS = cast<ConstantStruct>(*i); 1970 Result.push_back(dyn_cast<Function>(CS->getOperand(1))); 1971 } 1972 return Result; 1973} 1974 1975/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the 1976/// specified array, returning the new global to use. 1977static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL, 1978 const std::vector<Function*> &Ctors) { 1979 // If we made a change, reassemble the initializer list. 1980 std::vector<Constant*> CSVals; 1981 CSVals.push_back(ConstantInt::get(Type::getInt32Ty(GCL->getContext()),65535)); 1982 CSVals.push_back(0); 1983 1984 // Create the new init list. 1985 std::vector<Constant*> CAList; 1986 for (unsigned i = 0, e = Ctors.size(); i != e; ++i) { 1987 if (Ctors[i]) { 1988 CSVals[1] = Ctors[i]; 1989 } else { 1990 const Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()), 1991 false); 1992 const PointerType *PFTy = PointerType::getUnqual(FTy); 1993 CSVals[1] = Constant::getNullValue(PFTy); 1994 CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 1995 2147483647); 1996 } 1997 CAList.push_back(ConstantStruct::get(GCL->getContext(), CSVals, false)); 1998 } 1999 2000 // Create the array initializer. 2001 const Type *StructTy = 2002 cast<ArrayType>(GCL->getType()->getElementType())->getElementType(); 2003 Constant *CA = ConstantArray::get(ArrayType::get(StructTy, 2004 CAList.size()), CAList); 2005 2006 // If we didn't change the number of elements, don't create a new GV. 2007 if (CA->getType() == GCL->getInitializer()->getType()) { 2008 GCL->setInitializer(CA); 2009 return GCL; 2010 } 2011 2012 // Create the new global and insert it next to the existing list. 2013 GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(), 2014 GCL->getLinkage(), CA, "", 2015 GCL->isThreadLocal()); 2016 GCL->getParent()->getGlobalList().insert(GCL, NGV); 2017 NGV->takeName(GCL); 2018 2019 // Nuke the old list, replacing any uses with the new one. 2020 if (!GCL->use_empty()) { 2021 Constant *V = NGV; 2022 if (V->getType() != GCL->getType()) 2023 V = ConstantExpr::getBitCast(V, GCL->getType()); 2024 GCL->replaceAllUsesWith(V); 2025 } 2026 GCL->eraseFromParent(); 2027 2028 if (Ctors.size()) 2029 return NGV; 2030 else 2031 return 0; 2032} 2033 2034 2035static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues, 2036 Value *V) { 2037 if (Constant *CV = dyn_cast<Constant>(V)) return CV; 2038 Constant *R = ComputedValues[V]; 2039 assert(R && "Reference to an uncomputed value!"); 2040 return R; 2041} 2042 2043/// isSimpleEnoughPointerToCommit - Return true if this constant is simple 2044/// enough for us to understand. In particular, if it is a cast of something, 2045/// we punt. We basically just support direct accesses to globals and GEP's of 2046/// globals. This should be kept up to date with CommitValueTo. 2047static bool isSimpleEnoughPointerToCommit(Constant *C) { 2048 // Conservatively, avoid aggregate types. This is because we don't 2049 // want to worry about them partially overlapping other stores. 2050 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) 2051 return false; 2052 2053 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 2054 // Do not allow weak/linkonce/dllimport/dllexport linkage or 2055 // external globals. 2056 return GV->hasDefinitiveInitializer(); 2057 2058 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2059 // Handle a constantexpr gep. 2060 if (CE->getOpcode() == Instruction::GetElementPtr && 2061 isa<GlobalVariable>(CE->getOperand(0)) && 2062 cast<GEPOperator>(CE)->isInBounds()) { 2063 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2064 // Do not allow weak/linkonce/dllimport/dllexport linkage or 2065 // external globals. 2066 if (!GV->hasDefinitiveInitializer()) 2067 return false; 2068 2069 // The first index must be zero. 2070 ConstantInt *CI = dyn_cast<ConstantInt>(*next(CE->op_begin())); 2071 if (!CI || !CI->isZero()) return false; 2072 2073 // The remaining indices must be compile-time known integers within the 2074 // notional bounds of the corresponding static array types. 2075 if (!CE->isGEPWithNoNotionalOverIndexing()) 2076 return false; 2077 2078 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2079 } 2080 return false; 2081} 2082 2083/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global 2084/// initializer. This returns 'Init' modified to reflect 'Val' stored into it. 2085/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into. 2086static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2087 ConstantExpr *Addr, unsigned OpNo) { 2088 // Base case of the recursion. 2089 if (OpNo == Addr->getNumOperands()) { 2090 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2091 return Val; 2092 } 2093 2094 std::vector<Constant*> Elts; 2095 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2096 2097 // Break up the constant into its elements. 2098 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2099 for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i) 2100 Elts.push_back(cast<Constant>(*i)); 2101 } else if (isa<ConstantAggregateZero>(Init)) { 2102 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2103 Elts.push_back(Constant::getNullValue(STy->getElementType(i))); 2104 } else if (isa<UndefValue>(Init)) { 2105 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2106 Elts.push_back(UndefValue::get(STy->getElementType(i))); 2107 } else { 2108 llvm_unreachable("This code is out of sync with " 2109 " ConstantFoldLoadThroughGEPConstantExpr"); 2110 } 2111 2112 // Replace the element that we are supposed to. 2113 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2114 unsigned Idx = CU->getZExtValue(); 2115 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2116 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2117 2118 // Return the modified struct. 2119 return ConstantStruct::get(Init->getContext(), &Elts[0], Elts.size(), 2120 STy->isPacked()); 2121 } else { 2122 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2123 const SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2124 2125 uint64_t NumElts; 2126 if (const ArrayType *ATy = dyn_cast<ArrayType>(InitTy)) 2127 NumElts = ATy->getNumElements(); 2128 else 2129 NumElts = cast<VectorType>(InitTy)->getNumElements(); 2130 2131 2132 // Break up the array into elements. 2133 if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2134 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) 2135 Elts.push_back(cast<Constant>(*i)); 2136 } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) { 2137 for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i) 2138 Elts.push_back(cast<Constant>(*i)); 2139 } else if (isa<ConstantAggregateZero>(Init)) { 2140 Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType())); 2141 } else { 2142 assert(isa<UndefValue>(Init) && "This code is out of sync with " 2143 " ConstantFoldLoadThroughGEPConstantExpr"); 2144 Elts.assign(NumElts, UndefValue::get(InitTy->getElementType())); 2145 } 2146 2147 assert(CI->getZExtValue() < NumElts); 2148 Elts[CI->getZExtValue()] = 2149 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2150 2151 if (Init->getType()->isArrayTy()) 2152 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2153 else 2154 return ConstantVector::get(&Elts[0], Elts.size()); 2155 } 2156} 2157 2158/// CommitValueTo - We have decided that Addr (which satisfies the predicate 2159/// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2160static void CommitValueTo(Constant *Val, Constant *Addr) { 2161 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2162 assert(GV->hasInitializer()); 2163 GV->setInitializer(Val); 2164 return; 2165 } 2166 2167 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2168 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2169 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2170} 2171 2172/// ComputeLoadResult - Return the value that would be computed by a load from 2173/// P after the stores reflected by 'memory' have been performed. If we can't 2174/// decide, return null. 2175static Constant *ComputeLoadResult(Constant *P, 2176 const DenseMap<Constant*, Constant*> &Memory) { 2177 // If this memory location has been recently stored, use the stored value: it 2178 // is the most up-to-date. 2179 DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P); 2180 if (I != Memory.end()) return I->second; 2181 2182 // Access it. 2183 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 2184 if (GV->hasDefinitiveInitializer()) 2185 return GV->getInitializer(); 2186 return 0; 2187 } 2188 2189 // Handle a constantexpr getelementptr. 2190 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) 2191 if (CE->getOpcode() == Instruction::GetElementPtr && 2192 isa<GlobalVariable>(CE->getOperand(0))) { 2193 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2194 if (GV->hasDefinitiveInitializer()) 2195 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2196 } 2197 2198 return 0; // don't know how to evaluate. 2199} 2200 2201/// EvaluateFunction - Evaluate a call to function F, returning true if 2202/// successful, false if we can't evaluate it. ActualArgs contains the formal 2203/// arguments for the function. 2204static bool EvaluateFunction(Function *F, Constant *&RetVal, 2205 const SmallVectorImpl<Constant*> &ActualArgs, 2206 std::vector<Function*> &CallStack, 2207 DenseMap<Constant*, Constant*> &MutatedMemory, 2208 std::vector<GlobalVariable*> &AllocaTmps) { 2209 // Check to see if this function is already executing (recursion). If so, 2210 // bail out. TODO: we might want to accept limited recursion. 2211 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end()) 2212 return false; 2213 2214 CallStack.push_back(F); 2215 2216 /// Values - As we compute SSA register values, we store their contents here. 2217 DenseMap<Value*, Constant*> Values; 2218 2219 // Initialize arguments to the incoming values specified. 2220 unsigned ArgNo = 0; 2221 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 2222 ++AI, ++ArgNo) 2223 Values[AI] = ActualArgs[ArgNo]; 2224 2225 /// ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 2226 /// we can only evaluate any one basic block at most once. This set keeps 2227 /// track of what we have executed so we can detect recursive cases etc. 2228 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 2229 2230 // CurInst - The current instruction we're evaluating. 2231 BasicBlock::iterator CurInst = F->begin()->begin(); 2232 2233 // This is the main evaluation loop. 2234 while (1) { 2235 Constant *InstResult = 0; 2236 2237 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 2238 if (SI->isVolatile()) return false; // no volatile accesses. 2239 Constant *Ptr = getVal(Values, SI->getOperand(1)); 2240 if (!isSimpleEnoughPointerToCommit(Ptr)) 2241 // If this is too complex for us to commit, reject it. 2242 return false; 2243 Constant *Val = getVal(Values, SI->getOperand(0)); 2244 MutatedMemory[Ptr] = Val; 2245 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 2246 InstResult = ConstantExpr::get(BO->getOpcode(), 2247 getVal(Values, BO->getOperand(0)), 2248 getVal(Values, BO->getOperand(1))); 2249 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 2250 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 2251 getVal(Values, CI->getOperand(0)), 2252 getVal(Values, CI->getOperand(1))); 2253 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 2254 InstResult = ConstantExpr::getCast(CI->getOpcode(), 2255 getVal(Values, CI->getOperand(0)), 2256 CI->getType()); 2257 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 2258 InstResult = 2259 ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)), 2260 getVal(Values, SI->getOperand(1)), 2261 getVal(Values, SI->getOperand(2))); 2262 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 2263 Constant *P = getVal(Values, GEP->getOperand(0)); 2264 SmallVector<Constant*, 8> GEPOps; 2265 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); 2266 i != e; ++i) 2267 GEPOps.push_back(getVal(Values, *i)); 2268 InstResult = cast<GEPOperator>(GEP)->isInBounds() ? 2269 ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) : 2270 ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size()); 2271 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 2272 if (LI->isVolatile()) return false; // no volatile accesses. 2273 InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)), 2274 MutatedMemory); 2275 if (InstResult == 0) return false; // Could not evaluate load. 2276 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 2277 if (AI->isArrayAllocation()) return false; // Cannot handle array allocs. 2278 const Type *Ty = AI->getType()->getElementType(); 2279 AllocaTmps.push_back(new GlobalVariable(Ty, false, 2280 GlobalValue::InternalLinkage, 2281 UndefValue::get(Ty), 2282 AI->getName())); 2283 InstResult = AllocaTmps.back(); 2284 } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) { 2285 2286 // Debug info can safely be ignored here. 2287 if (isa<DbgInfoIntrinsic>(CI)) { 2288 ++CurInst; 2289 continue; 2290 } 2291 2292 // Cannot handle inline asm. 2293 if (isa<InlineAsm>(CI->getOperand(0))) return false; 2294 2295 // Resolve function pointers. 2296 Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0))); 2297 if (!Callee) return false; // Cannot resolve. 2298 2299 SmallVector<Constant*, 8> Formals; 2300 for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end(); 2301 i != e; ++i) 2302 Formals.push_back(getVal(Values, *i)); 2303 2304 if (Callee->isDeclaration()) { 2305 // If this is a function we can constant fold, do it. 2306 if (Constant *C = ConstantFoldCall(Callee, Formals.data(), 2307 Formals.size())) { 2308 InstResult = C; 2309 } else { 2310 return false; 2311 } 2312 } else { 2313 if (Callee->getFunctionType()->isVarArg()) 2314 return false; 2315 2316 Constant *RetVal; 2317 // Execute the call, if successful, use the return value. 2318 if (!EvaluateFunction(Callee, RetVal, Formals, CallStack, 2319 MutatedMemory, AllocaTmps)) 2320 return false; 2321 InstResult = RetVal; 2322 } 2323 } else if (isa<TerminatorInst>(CurInst)) { 2324 BasicBlock *NewBB = 0; 2325 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 2326 if (BI->isUnconditional()) { 2327 NewBB = BI->getSuccessor(0); 2328 } else { 2329 ConstantInt *Cond = 2330 dyn_cast<ConstantInt>(getVal(Values, BI->getCondition())); 2331 if (!Cond) return false; // Cannot determine. 2332 2333 NewBB = BI->getSuccessor(!Cond->getZExtValue()); 2334 } 2335 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 2336 ConstantInt *Val = 2337 dyn_cast<ConstantInt>(getVal(Values, SI->getCondition())); 2338 if (!Val) return false; // Cannot determine. 2339 NewBB = SI->getSuccessor(SI->findCaseValue(Val)); 2340 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 2341 Value *Val = getVal(Values, IBI->getAddress())->stripPointerCasts(); 2342 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 2343 NewBB = BA->getBasicBlock(); 2344 else 2345 return false; // Cannot determine. 2346 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) { 2347 if (RI->getNumOperands()) 2348 RetVal = getVal(Values, RI->getOperand(0)); 2349 2350 CallStack.pop_back(); // return from fn. 2351 return true; // We succeeded at evaluating this ctor! 2352 } else { 2353 // invoke, unwind, unreachable. 2354 return false; // Cannot handle this terminator. 2355 } 2356 2357 // Okay, we succeeded in evaluating this control flow. See if we have 2358 // executed the new block before. If so, we have a looping function, 2359 // which we cannot evaluate in reasonable time. 2360 if (!ExecutedBlocks.insert(NewBB)) 2361 return false; // looped! 2362 2363 // Okay, we have never been in this block before. Check to see if there 2364 // are any PHI nodes. If so, evaluate them with information about where 2365 // we came from. 2366 BasicBlock *OldBB = CurInst->getParent(); 2367 CurInst = NewBB->begin(); 2368 PHINode *PN; 2369 for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 2370 Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB)); 2371 2372 // Do NOT increment CurInst. We know that the terminator had no value. 2373 continue; 2374 } else { 2375 // Did not know how to evaluate this! 2376 return false; 2377 } 2378 2379 if (!CurInst->use_empty()) 2380 Values[CurInst] = InstResult; 2381 2382 // Advance program counter. 2383 ++CurInst; 2384 } 2385} 2386 2387/// EvaluateStaticConstructor - Evaluate static constructors in the function, if 2388/// we can. Return true if we can, false otherwise. 2389static bool EvaluateStaticConstructor(Function *F) { 2390 /// MutatedMemory - For each store we execute, we update this map. Loads 2391 /// check this to get the most up-to-date value. If evaluation is successful, 2392 /// this state is committed to the process. 2393 DenseMap<Constant*, Constant*> MutatedMemory; 2394 2395 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable 2396 /// to represent its body. This vector is needed so we can delete the 2397 /// temporary globals when we are done. 2398 std::vector<GlobalVariable*> AllocaTmps; 2399 2400 /// CallStack - This is used to detect recursion. In pathological situations 2401 /// we could hit exponential behavior, but at least there is nothing 2402 /// unbounded. 2403 std::vector<Function*> CallStack; 2404 2405 // Call the function. 2406 Constant *RetValDummy; 2407 bool EvalSuccess = EvaluateFunction(F, RetValDummy, 2408 SmallVector<Constant*, 0>(), CallStack, 2409 MutatedMemory, AllocaTmps); 2410 if (EvalSuccess) { 2411 // We succeeded at evaluation: commit the result. 2412 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2413 << F->getName() << "' to " << MutatedMemory.size() 2414 << " stores.\n"); 2415 for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(), 2416 E = MutatedMemory.end(); I != E; ++I) 2417 CommitValueTo(I->second, I->first); 2418 } 2419 2420 // At this point, we are done interpreting. If we created any 'alloca' 2421 // temporaries, release them now. 2422 while (!AllocaTmps.empty()) { 2423 GlobalVariable *Tmp = AllocaTmps.back(); 2424 AllocaTmps.pop_back(); 2425 2426 // If there are still users of the alloca, the program is doing something 2427 // silly, e.g. storing the address of the alloca somewhere and using it 2428 // later. Since this is undefined, we'll just make it be null. 2429 if (!Tmp->use_empty()) 2430 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType())); 2431 delete Tmp; 2432 } 2433 2434 return EvalSuccess; 2435} 2436 2437 2438 2439/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible. 2440/// Return true if anything changed. 2441bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) { 2442 std::vector<Function*> Ctors = ParseGlobalCtors(GCL); 2443 bool MadeChange = false; 2444 if (Ctors.empty()) return false; 2445 2446 // Loop over global ctors, optimizing them when we can. 2447 for (unsigned i = 0; i != Ctors.size(); ++i) { 2448 Function *F = Ctors[i]; 2449 // Found a null terminator in the middle of the list, prune off the rest of 2450 // the list. 2451 if (F == 0) { 2452 if (i != Ctors.size()-1) { 2453 Ctors.resize(i+1); 2454 MadeChange = true; 2455 } 2456 break; 2457 } 2458 2459 // We cannot simplify external ctor functions. 2460 if (F->empty()) continue; 2461 2462 // If we can evaluate the ctor at compile time, do. 2463 if (EvaluateStaticConstructor(F)) { 2464 Ctors.erase(Ctors.begin()+i); 2465 MadeChange = true; 2466 --i; 2467 ++NumCtorsEvaluated; 2468 continue; 2469 } 2470 } 2471 2472 if (!MadeChange) return false; 2473 2474 GCL = InstallGlobalCtors(GCL, Ctors); 2475 return true; 2476} 2477 2478bool GlobalOpt::OptimizeGlobalAliases(Module &M) { 2479 bool Changed = false; 2480 2481 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2482 I != E;) { 2483 Module::alias_iterator J = I++; 2484 // Aliases without names cannot be referenced outside this module. 2485 if (!J->hasName() && !J->isDeclaration()) 2486 J->setLinkage(GlobalValue::InternalLinkage); 2487 // If the aliasee may change at link time, nothing can be done - bail out. 2488 if (J->mayBeOverridden()) 2489 continue; 2490 2491 Constant *Aliasee = J->getAliasee(); 2492 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2493 Target->removeDeadConstantUsers(); 2494 bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse(); 2495 2496 // Make all users of the alias use the aliasee instead. 2497 if (!J->use_empty()) { 2498 J->replaceAllUsesWith(Aliasee); 2499 ++NumAliasesResolved; 2500 Changed = true; 2501 } 2502 2503 // If the alias is externally visible, we may still be able to simplify it. 2504 if (!J->hasLocalLinkage()) { 2505 // If the aliasee has internal linkage, give it the name and linkage 2506 // of the alias, and delete the alias. This turns: 2507 // define internal ... @f(...) 2508 // @a = alias ... @f 2509 // into: 2510 // define ... @a(...) 2511 if (!Target->hasLocalLinkage()) 2512 continue; 2513 2514 // Do not perform the transform if multiple aliases potentially target the 2515 // aliasee. This check also ensures that it is safe to replace the section 2516 // and other attributes of the aliasee with those of the alias. 2517 if (!hasOneUse) 2518 continue; 2519 2520 // Give the aliasee the name, linkage and other attributes of the alias. 2521 Target->takeName(J); 2522 Target->setLinkage(J->getLinkage()); 2523 Target->GlobalValue::copyAttributesFrom(J); 2524 } 2525 2526 // Delete the alias. 2527 M.getAliasList().erase(J); 2528 ++NumAliasesRemoved; 2529 Changed = true; 2530 } 2531 2532 return Changed; 2533} 2534 2535bool GlobalOpt::runOnModule(Module &M) { 2536 bool Changed = false; 2537 2538 // Try to find the llvm.globalctors list. 2539 GlobalVariable *GlobalCtors = FindGlobalCtors(M); 2540 2541 bool LocalChange = true; 2542 while (LocalChange) { 2543 LocalChange = false; 2544 2545 // Delete functions that are trivially dead, ccc -> fastcc 2546 LocalChange |= OptimizeFunctions(M); 2547 2548 // Optimize global_ctors list. 2549 if (GlobalCtors) 2550 LocalChange |= OptimizeGlobalCtorsList(GlobalCtors); 2551 2552 // Optimize non-address-taken globals. 2553 LocalChange |= OptimizeGlobalVars(M); 2554 2555 // Resolve aliases, when possible. 2556 LocalChange |= OptimizeGlobalAliases(M); 2557 Changed |= LocalChange; 2558 } 2559 2560 // TODO: Move all global ctors functions to the end of the module for code 2561 // layout. 2562 2563 return Changed; 2564} 2565