GlobalOpt.cpp revision 23eb90714bb6a5a7d94a262f439b5bf872733cf1
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/ConstantFolding.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
25#include "llvm/IR/CallingConv.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/Pass.h"
34#include "llvm/Support/CallSite.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/GetElementPtrTypeIterator.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/Target/TargetLibraryInfo.h"
41#include "llvm/Transforms/Utils/ModuleUtils.h"
42#include <algorithm>
43using namespace llvm;
44
45STATISTIC(NumMarked    , "Number of globals marked constant");
46STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
47STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
48STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
49STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
50STATISTIC(NumDeleted   , "Number of globals deleted");
51STATISTIC(NumFnDeleted , "Number of functions deleted");
52STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
53STATISTIC(NumLocalized , "Number of globals localized");
54STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
55STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
56STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
57STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
58STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
59STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
60STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
61
62namespace {
63  struct GlobalStatus;
64  struct GlobalOpt : public ModulePass {
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.addRequired<TargetLibraryInfo>();
67    }
68    static char ID; // Pass identification, replacement for typeid
69    GlobalOpt() : ModulePass(ID) {
70      initializeGlobalOptPass(*PassRegistry::getPassRegistry());
71    }
72
73    bool runOnModule(Module &M);
74
75  private:
76    GlobalVariable *FindGlobalCtors(Module &M);
77    bool OptimizeFunctions(Module &M);
78    bool OptimizeGlobalVars(Module &M);
79    bool OptimizeGlobalAliases(Module &M);
80    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
81    bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
82    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
83                               const GlobalStatus &GS);
84    bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
85
86    DataLayout *TD;
87    TargetLibraryInfo *TLI;
88  };
89}
90
91char GlobalOpt::ID = 0;
92INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
93                "Global Variable Optimizer", false, false)
94INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
95INITIALIZE_PASS_END(GlobalOpt, "globalopt",
96                "Global Variable Optimizer", false, false)
97
98ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
99
100namespace {
101
102/// GlobalStatus - As we analyze each global, keep track of some information
103/// about it.  If we find out that the address of the global is taken, none of
104/// this info will be accurate.
105struct GlobalStatus {
106  /// isCompared - True if the global's address is used in a comparison.
107  bool isCompared;
108
109  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
110  /// loaded it can be deleted.
111  bool isLoaded;
112
113  /// StoredType - Keep track of what stores to the global look like.
114  ///
115  enum StoredType {
116    /// NotStored - There is no store to this global.  It can thus be marked
117    /// constant.
118    NotStored,
119
120    /// isInitializerStored - This global is stored to, but the only thing
121    /// stored is the constant it was initialized with.  This is only tracked
122    /// for scalar globals.
123    isInitializerStored,
124
125    /// isStoredOnce - This global is stored to, but only its initializer and
126    /// one other value is ever stored to it.  If this global isStoredOnce, we
127    /// track the value stored to it in StoredOnceValue below.  This is only
128    /// tracked for scalar globals.
129    isStoredOnce,
130
131    /// isStored - This global is stored to by multiple values or something else
132    /// that we cannot track.
133    isStored
134  } StoredType;
135
136  /// StoredOnceValue - If only one value (besides the initializer constant) is
137  /// ever stored to this global, keep track of what value it is.
138  Value *StoredOnceValue;
139
140  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
141  /// null/false.  When the first accessing function is noticed, it is recorded.
142  /// When a second different accessing function is noticed,
143  /// HasMultipleAccessingFunctions is set to true.
144  const Function *AccessingFunction;
145  bool HasMultipleAccessingFunctions;
146
147  /// HasNonInstructionUser - Set to true if this global has a user that is not
148  /// an instruction (e.g. a constant expr or GV initializer).
149  bool HasNonInstructionUser;
150
151  /// AtomicOrdering - Set to the strongest atomic ordering requirement.
152  AtomicOrdering Ordering;
153
154  GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored),
155                   StoredOnceValue(0), AccessingFunction(0),
156                   HasMultipleAccessingFunctions(false),
157                   HasNonInstructionUser(false), Ordering(NotAtomic) {}
158};
159
160}
161
162/// StrongerOrdering - Return the stronger of the two ordering. If the two
163/// orderings are acquire and release, then return AcquireRelease.
164///
165static AtomicOrdering StrongerOrdering(AtomicOrdering X, AtomicOrdering Y) {
166  if (X == Acquire && Y == Release) return AcquireRelease;
167  if (Y == Acquire && X == Release) return AcquireRelease;
168  return (AtomicOrdering)std::max(X, Y);
169}
170
171/// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
172/// by constants itself.  Note that constants cannot be cyclic, so this test is
173/// pretty easy to implement recursively.
174///
175static bool SafeToDestroyConstant(const Constant *C) {
176  if (isa<GlobalValue>(C)) return false;
177
178  for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
179       ++UI)
180    if (const Constant *CU = dyn_cast<Constant>(*UI)) {
181      if (!SafeToDestroyConstant(CU)) return false;
182    } else
183      return false;
184  return true;
185}
186
187
188/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
189/// structure.  If the global has its address taken, return true to indicate we
190/// can't do anything with it.
191///
192static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
193                          SmallPtrSet<const PHINode*, 16> &PHIUsers) {
194  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
195       ++UI) {
196    const User *U = *UI;
197    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
198      GS.HasNonInstructionUser = true;
199
200      // If the result of the constantexpr isn't pointer type, then we won't
201      // know to expect it in various places.  Just reject early.
202      if (!isa<PointerType>(CE->getType())) return true;
203
204      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
205    } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
206      if (!GS.HasMultipleAccessingFunctions) {
207        const Function *F = I->getParent()->getParent();
208        if (GS.AccessingFunction == 0)
209          GS.AccessingFunction = F;
210        else if (GS.AccessingFunction != F)
211          GS.HasMultipleAccessingFunctions = true;
212      }
213      if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
214        GS.isLoaded = true;
215        // Don't hack on volatile loads.
216        if (LI->isVolatile()) return true;
217        GS.Ordering = StrongerOrdering(GS.Ordering, LI->getOrdering());
218      } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
219        // Don't allow a store OF the address, only stores TO the address.
220        if (SI->getOperand(0) == V) return true;
221
222        // Don't hack on volatile stores.
223        if (SI->isVolatile()) return true;
224
225        GS.Ordering = StrongerOrdering(GS.Ordering, SI->getOrdering());
226
227        // If this is a direct store to the global (i.e., the global is a scalar
228        // value, not an aggregate), keep more specific information about
229        // stores.
230        if (GS.StoredType != GlobalStatus::isStored) {
231          if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
232                                                           SI->getOperand(1))) {
233            Value *StoredVal = SI->getOperand(0);
234
235            if (Constant *C = dyn_cast<Constant>(StoredVal)) {
236              if (C->isThreadDependent()) {
237                // The stored value changes between threads; don't track it.
238                return true;
239              }
240            }
241
242            if (StoredVal == GV->getInitializer()) {
243              if (GS.StoredType < GlobalStatus::isInitializerStored)
244                GS.StoredType = GlobalStatus::isInitializerStored;
245            } else if (isa<LoadInst>(StoredVal) &&
246                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
247              if (GS.StoredType < GlobalStatus::isInitializerStored)
248                GS.StoredType = GlobalStatus::isInitializerStored;
249            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
250              GS.StoredType = GlobalStatus::isStoredOnce;
251              GS.StoredOnceValue = StoredVal;
252            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
253                       GS.StoredOnceValue == StoredVal) {
254              // noop.
255            } else {
256              GS.StoredType = GlobalStatus::isStored;
257            }
258          } else {
259            GS.StoredType = GlobalStatus::isStored;
260          }
261        }
262      } else if (isa<BitCastInst>(I)) {
263        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
264      } else if (isa<GetElementPtrInst>(I)) {
265        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
266      } else if (isa<SelectInst>(I)) {
267        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
268      } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
269        // PHI nodes we can check just like select or GEP instructions, but we
270        // have to be careful about infinite recursion.
271        if (PHIUsers.insert(PN))  // Not already visited.
272          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
273      } else if (isa<CmpInst>(I)) {
274        GS.isCompared = true;
275      } else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
276        if (MTI->isVolatile()) return true;
277        if (MTI->getArgOperand(0) == V)
278          GS.StoredType = GlobalStatus::isStored;
279        if (MTI->getArgOperand(1) == V)
280          GS.isLoaded = true;
281      } else if (const MemSetInst *MSI = dyn_cast<MemSetInst>(I)) {
282        assert(MSI->getArgOperand(0) == V && "Memset only takes one pointer!");
283        if (MSI->isVolatile()) return true;
284        GS.StoredType = GlobalStatus::isStored;
285      } else {
286        return true;  // Any other non-load instruction might take address!
287      }
288    } else if (const Constant *C = dyn_cast<Constant>(U)) {
289      GS.HasNonInstructionUser = true;
290      // We might have a dead and dangling constant hanging off of here.
291      if (!SafeToDestroyConstant(C))
292        return true;
293    } else {
294      GS.HasNonInstructionUser = true;
295      // Otherwise must be some other user.
296      return true;
297    }
298  }
299
300  return false;
301}
302
303/// isLeakCheckerRoot - Is this global variable possibly used by a leak checker
304/// as a root?  If so, we might not really want to eliminate the stores to it.
305static bool isLeakCheckerRoot(GlobalVariable *GV) {
306  // A global variable is a root if it is a pointer, or could plausibly contain
307  // a pointer.  There are two challenges; one is that we could have a struct
308  // the has an inner member which is a pointer.  We recurse through the type to
309  // detect these (up to a point).  The other is that we may actually be a union
310  // of a pointer and another type, and so our LLVM type is an integer which
311  // gets converted into a pointer, or our type is an [i8 x #] with a pointer
312  // potentially contained here.
313
314  if (GV->hasPrivateLinkage())
315    return false;
316
317  SmallVector<Type *, 4> Types;
318  Types.push_back(cast<PointerType>(GV->getType())->getElementType());
319
320  unsigned Limit = 20;
321  do {
322    Type *Ty = Types.pop_back_val();
323    switch (Ty->getTypeID()) {
324      default: break;
325      case Type::PointerTyID: return true;
326      case Type::ArrayTyID:
327      case Type::VectorTyID: {
328        SequentialType *STy = cast<SequentialType>(Ty);
329        Types.push_back(STy->getElementType());
330        break;
331      }
332      case Type::StructTyID: {
333        StructType *STy = cast<StructType>(Ty);
334        if (STy->isOpaque()) return true;
335        for (StructType::element_iterator I = STy->element_begin(),
336                 E = STy->element_end(); I != E; ++I) {
337          Type *InnerTy = *I;
338          if (isa<PointerType>(InnerTy)) return true;
339          if (isa<CompositeType>(InnerTy))
340            Types.push_back(InnerTy);
341        }
342        break;
343      }
344    }
345    if (--Limit == 0) return true;
346  } while (!Types.empty());
347  return false;
348}
349
350/// Given a value that is stored to a global but never read, determine whether
351/// it's safe to remove the store and the chain of computation that feeds the
352/// store.
353static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
354  do {
355    if (isa<Constant>(V))
356      return true;
357    if (!V->hasOneUse())
358      return false;
359    if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
360        isa<GlobalValue>(V))
361      return false;
362    if (isAllocationFn(V, TLI))
363      return true;
364
365    Instruction *I = cast<Instruction>(V);
366    if (I->mayHaveSideEffects())
367      return false;
368    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
369      if (!GEP->hasAllConstantIndices())
370        return false;
371    } else if (I->getNumOperands() != 1) {
372      return false;
373    }
374
375    V = I->getOperand(0);
376  } while (1);
377}
378
379/// CleanupPointerRootUsers - This GV is a pointer root.  Loop over all users
380/// of the global and clean up any that obviously don't assign the global a
381/// value that isn't dynamically allocated.
382///
383static bool CleanupPointerRootUsers(GlobalVariable *GV,
384                                    const TargetLibraryInfo *TLI) {
385  // A brief explanation of leak checkers.  The goal is to find bugs where
386  // pointers are forgotten, causing an accumulating growth in memory
387  // usage over time.  The common strategy for leak checkers is to whitelist the
388  // memory pointed to by globals at exit.  This is popular because it also
389  // solves another problem where the main thread of a C++ program may shut down
390  // before other threads that are still expecting to use those globals.  To
391  // handle that case, we expect the program may create a singleton and never
392  // destroy it.
393
394  bool Changed = false;
395
396  // If Dead[n].first is the only use of a malloc result, we can delete its
397  // chain of computation and the store to the global in Dead[n].second.
398  SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
399
400  // Constants can't be pointers to dynamically allocated memory.
401  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
402       UI != E;) {
403    User *U = *UI++;
404    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
405      Value *V = SI->getValueOperand();
406      if (isa<Constant>(V)) {
407        Changed = true;
408        SI->eraseFromParent();
409      } else if (Instruction *I = dyn_cast<Instruction>(V)) {
410        if (I->hasOneUse())
411          Dead.push_back(std::make_pair(I, SI));
412      }
413    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
414      if (isa<Constant>(MSI->getValue())) {
415        Changed = true;
416        MSI->eraseFromParent();
417      } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
418        if (I->hasOneUse())
419          Dead.push_back(std::make_pair(I, MSI));
420      }
421    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
422      GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
423      if (MemSrc && MemSrc->isConstant()) {
424        Changed = true;
425        MTI->eraseFromParent();
426      } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
427        if (I->hasOneUse())
428          Dead.push_back(std::make_pair(I, MTI));
429      }
430    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
431      if (CE->use_empty()) {
432        CE->destroyConstant();
433        Changed = true;
434      }
435    } else if (Constant *C = dyn_cast<Constant>(U)) {
436      if (SafeToDestroyConstant(C)) {
437        C->destroyConstant();
438        // This could have invalidated UI, start over from scratch.
439        Dead.clear();
440        CleanupPointerRootUsers(GV, TLI);
441        return true;
442      }
443    }
444  }
445
446  for (int i = 0, e = Dead.size(); i != e; ++i) {
447    if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
448      Dead[i].second->eraseFromParent();
449      Instruction *I = Dead[i].first;
450      do {
451        if (isAllocationFn(I, TLI))
452          break;
453        Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
454        if (!J)
455          break;
456        I->eraseFromParent();
457        I = J;
458      } while (1);
459      I->eraseFromParent();
460    }
461  }
462
463  return Changed;
464}
465
466/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
467/// users of the global, cleaning up the obvious ones.  This is largely just a
468/// quick scan over the use list to clean up the easy and obvious cruft.  This
469/// returns true if it made a change.
470static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
471                                       DataLayout *TD, TargetLibraryInfo *TLI) {
472  bool Changed = false;
473  SmallVector<User*, 8> WorkList(V->use_begin(), V->use_end());
474  while (!WorkList.empty()) {
475    User *U = WorkList.pop_back_val();
476
477    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
478      if (Init) {
479        // Replace the load with the initializer.
480        LI->replaceAllUsesWith(Init);
481        LI->eraseFromParent();
482        Changed = true;
483      }
484    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
485      // Store must be unreachable or storing Init into the global.
486      SI->eraseFromParent();
487      Changed = true;
488    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
489      if (CE->getOpcode() == Instruction::GetElementPtr) {
490        Constant *SubInit = 0;
491        if (Init)
492          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
493        Changed |= CleanupConstantGlobalUsers(CE, SubInit, TD, TLI);
494      } else if (CE->getOpcode() == Instruction::BitCast &&
495                 CE->getType()->isPointerTy()) {
496        // Pointer cast, delete any stores and memsets to the global.
497        Changed |= CleanupConstantGlobalUsers(CE, 0, TD, TLI);
498      }
499
500      if (CE->use_empty()) {
501        CE->destroyConstant();
502        Changed = true;
503      }
504    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
505      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
506      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
507      // and will invalidate our notion of what Init is.
508      Constant *SubInit = 0;
509      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
510        ConstantExpr *CE =
511          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, TD, TLI));
512        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
513          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
514
515        // If the initializer is an all-null value and we have an inbounds GEP,
516        // we already know what the result of any load from that GEP is.
517        // TODO: Handle splats.
518        if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
519          SubInit = Constant::getNullValue(GEP->getType()->getElementType());
520      }
521      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, TD, TLI);
522
523      if (GEP->use_empty()) {
524        GEP->eraseFromParent();
525        Changed = true;
526      }
527    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
528      if (MI->getRawDest() == V) {
529        MI->eraseFromParent();
530        Changed = true;
531      }
532
533    } else if (Constant *C = dyn_cast<Constant>(U)) {
534      // If we have a chain of dead constantexprs or other things dangling from
535      // us, and if they are all dead, nuke them without remorse.
536      if (SafeToDestroyConstant(C)) {
537        C->destroyConstant();
538        CleanupConstantGlobalUsers(V, Init, TD, TLI);
539        return true;
540      }
541    }
542  }
543  return Changed;
544}
545
546/// isSafeSROAElementUse - Return true if the specified instruction is a safe
547/// user of a derived expression from a global that we want to SROA.
548static bool isSafeSROAElementUse(Value *V) {
549  // We might have a dead and dangling constant hanging off of here.
550  if (Constant *C = dyn_cast<Constant>(V))
551    return SafeToDestroyConstant(C);
552
553  Instruction *I = dyn_cast<Instruction>(V);
554  if (!I) return false;
555
556  // Loads are ok.
557  if (isa<LoadInst>(I)) return true;
558
559  // Stores *to* the pointer are ok.
560  if (StoreInst *SI = dyn_cast<StoreInst>(I))
561    return SI->getOperand(0) != V;
562
563  // Otherwise, it must be a GEP.
564  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
565  if (GEPI == 0) return false;
566
567  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
568      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
569    return false;
570
571  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
572       I != E; ++I)
573    if (!isSafeSROAElementUse(*I))
574      return false;
575  return true;
576}
577
578
579/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
580/// Look at it and its uses and decide whether it is safe to SROA this global.
581///
582static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
583  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
584  if (!isa<GetElementPtrInst>(U) &&
585      (!isa<ConstantExpr>(U) ||
586       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
587    return false;
588
589  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
590  // don't like < 3 operand CE's, and we don't like non-constant integer
591  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
592  // value of C.
593  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
594      !cast<Constant>(U->getOperand(1))->isNullValue() ||
595      !isa<ConstantInt>(U->getOperand(2)))
596    return false;
597
598  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
599  ++GEPI;  // Skip over the pointer index.
600
601  // If this is a use of an array allocation, do a bit more checking for sanity.
602  if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
603    uint64_t NumElements = AT->getNumElements();
604    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
605
606    // Check to make sure that index falls within the array.  If not,
607    // something funny is going on, so we won't do the optimization.
608    //
609    if (Idx->getZExtValue() >= NumElements)
610      return false;
611
612    // We cannot scalar repl this level of the array unless any array
613    // sub-indices are in-range constants.  In particular, consider:
614    // A[0][i].  We cannot know that the user isn't doing invalid things like
615    // allowing i to index an out-of-range subscript that accesses A[1].
616    //
617    // Scalar replacing *just* the outer index of the array is probably not
618    // going to be a win anyway, so just give up.
619    for (++GEPI; // Skip array index.
620         GEPI != E;
621         ++GEPI) {
622      uint64_t NumElements;
623      if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
624        NumElements = SubArrayTy->getNumElements();
625      else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
626        NumElements = SubVectorTy->getNumElements();
627      else {
628        assert((*GEPI)->isStructTy() &&
629               "Indexed GEP type is not array, vector, or struct!");
630        continue;
631      }
632
633      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
634      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
635        return false;
636    }
637  }
638
639  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
640    if (!isSafeSROAElementUse(*I))
641      return false;
642  return true;
643}
644
645/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
646/// is safe for us to perform this transformation.
647///
648static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
649  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
650       UI != E; ++UI) {
651    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
652      return false;
653  }
654  return true;
655}
656
657
658/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
659/// variable.  This opens the door for other optimizations by exposing the
660/// behavior of the program in a more fine-grained way.  We have determined that
661/// this transformation is safe already.  We return the first global variable we
662/// insert so that the caller can reprocess it.
663static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &TD) {
664  // Make sure this global only has simple uses that we can SRA.
665  if (!GlobalUsersSafeToSRA(GV))
666    return 0;
667
668  assert(GV->hasLocalLinkage() && !GV->isConstant());
669  Constant *Init = GV->getInitializer();
670  Type *Ty = Init->getType();
671
672  std::vector<GlobalVariable*> NewGlobals;
673  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
674
675  // Get the alignment of the global, either explicit or target-specific.
676  unsigned StartAlignment = GV->getAlignment();
677  if (StartAlignment == 0)
678    StartAlignment = TD.getABITypeAlignment(GV->getType());
679
680  if (StructType *STy = dyn_cast<StructType>(Ty)) {
681    NewGlobals.reserve(STy->getNumElements());
682    const StructLayout &Layout = *TD.getStructLayout(STy);
683    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
684      Constant *In = Init->getAggregateElement(i);
685      assert(In && "Couldn't get element of initializer?");
686      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
687                                               GlobalVariable::InternalLinkage,
688                                               In, GV->getName()+"."+Twine(i),
689                                               GV->getThreadLocalMode(),
690                                              GV->getType()->getAddressSpace());
691      Globals.insert(GV, NGV);
692      NewGlobals.push_back(NGV);
693
694      // Calculate the known alignment of the field.  If the original aggregate
695      // had 256 byte alignment for example, something might depend on that:
696      // propagate info to each field.
697      uint64_t FieldOffset = Layout.getElementOffset(i);
698      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
699      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
700        NGV->setAlignment(NewAlign);
701    }
702  } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
703    unsigned NumElements = 0;
704    if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
705      NumElements = ATy->getNumElements();
706    else
707      NumElements = cast<VectorType>(STy)->getNumElements();
708
709    if (NumElements > 16 && GV->hasNUsesOrMore(16))
710      return 0; // It's not worth it.
711    NewGlobals.reserve(NumElements);
712
713    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
714    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
715    for (unsigned i = 0, e = NumElements; i != e; ++i) {
716      Constant *In = Init->getAggregateElement(i);
717      assert(In && "Couldn't get element of initializer?");
718
719      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
720                                               GlobalVariable::InternalLinkage,
721                                               In, GV->getName()+"."+Twine(i),
722                                               GV->getThreadLocalMode(),
723                                              GV->getType()->getAddressSpace());
724      Globals.insert(GV, NGV);
725      NewGlobals.push_back(NGV);
726
727      // Calculate the known alignment of the field.  If the original aggregate
728      // had 256 byte alignment for example, something might depend on that:
729      // propagate info to each field.
730      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
731      if (NewAlign > EltAlign)
732        NGV->setAlignment(NewAlign);
733    }
734  }
735
736  if (NewGlobals.empty())
737    return 0;
738
739  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
740
741  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
742
743  // Loop over all of the uses of the global, replacing the constantexpr geps,
744  // with smaller constantexpr geps or direct references.
745  while (!GV->use_empty()) {
746    User *GEP = GV->use_back();
747    assert(((isa<ConstantExpr>(GEP) &&
748             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
749            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
750
751    // Ignore the 1th operand, which has to be zero or else the program is quite
752    // broken (undefined).  Get the 2nd operand, which is the structure or array
753    // index.
754    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
755    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
756
757    Value *NewPtr = NewGlobals[Val];
758
759    // Form a shorter GEP if needed.
760    if (GEP->getNumOperands() > 3) {
761      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
762        SmallVector<Constant*, 8> Idxs;
763        Idxs.push_back(NullInt);
764        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
765          Idxs.push_back(CE->getOperand(i));
766        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs);
767      } else {
768        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
769        SmallVector<Value*, 8> Idxs;
770        Idxs.push_back(NullInt);
771        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
772          Idxs.push_back(GEPI->getOperand(i));
773        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs,
774                                           GEPI->getName()+"."+Twine(Val),GEPI);
775      }
776    }
777    GEP->replaceAllUsesWith(NewPtr);
778
779    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
780      GEPI->eraseFromParent();
781    else
782      cast<ConstantExpr>(GEP)->destroyConstant();
783  }
784
785  // Delete the old global, now that it is dead.
786  Globals.erase(GV);
787  ++NumSRA;
788
789  // Loop over the new globals array deleting any globals that are obviously
790  // dead.  This can arise due to scalarization of a structure or an array that
791  // has elements that are dead.
792  unsigned FirstGlobal = 0;
793  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
794    if (NewGlobals[i]->use_empty()) {
795      Globals.erase(NewGlobals[i]);
796      if (FirstGlobal == i) ++FirstGlobal;
797    }
798
799  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
800}
801
802/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
803/// value will trap if the value is dynamically null.  PHIs keeps track of any
804/// phi nodes we've seen to avoid reprocessing them.
805static bool AllUsesOfValueWillTrapIfNull(const Value *V,
806                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
807  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
808       ++UI) {
809    const User *U = *UI;
810
811    if (isa<LoadInst>(U)) {
812      // Will trap.
813    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
814      if (SI->getOperand(0) == V) {
815        //cerr << "NONTRAPPING USE: " << *U;
816        return false;  // Storing the value.
817      }
818    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
819      if (CI->getCalledValue() != V) {
820        //cerr << "NONTRAPPING USE: " << *U;
821        return false;  // Not calling the ptr
822      }
823    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
824      if (II->getCalledValue() != V) {
825        //cerr << "NONTRAPPING USE: " << *U;
826        return false;  // Not calling the ptr
827      }
828    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
829      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
830    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
831      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
832    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
833      // If we've already seen this phi node, ignore it, it has already been
834      // checked.
835      if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
836        return false;
837    } else if (isa<ICmpInst>(U) &&
838               isa<ConstantPointerNull>(UI->getOperand(1))) {
839      // Ignore icmp X, null
840    } else {
841      //cerr << "NONTRAPPING USE: " << *U;
842      return false;
843    }
844  }
845  return true;
846}
847
848/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
849/// from GV will trap if the loaded value is null.  Note that this also permits
850/// comparisons of the loaded value against null, as a special case.
851static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
852  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
853       UI != E; ++UI) {
854    const User *U = *UI;
855
856    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
857      SmallPtrSet<const PHINode*, 8> PHIs;
858      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
859        return false;
860    } else if (isa<StoreInst>(U)) {
861      // Ignore stores to the global.
862    } else {
863      // We don't know or understand this user, bail out.
864      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
865      return false;
866    }
867  }
868  return true;
869}
870
871static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
872  bool Changed = false;
873  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
874    Instruction *I = cast<Instruction>(*UI++);
875    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
876      LI->setOperand(0, NewV);
877      Changed = true;
878    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
879      if (SI->getOperand(1) == V) {
880        SI->setOperand(1, NewV);
881        Changed = true;
882      }
883    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
884      CallSite CS(I);
885      if (CS.getCalledValue() == V) {
886        // Calling through the pointer!  Turn into a direct call, but be careful
887        // that the pointer is not also being passed as an argument.
888        CS.setCalledFunction(NewV);
889        Changed = true;
890        bool PassedAsArg = false;
891        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
892          if (CS.getArgument(i) == V) {
893            PassedAsArg = true;
894            CS.setArgument(i, NewV);
895          }
896
897        if (PassedAsArg) {
898          // Being passed as an argument also.  Be careful to not invalidate UI!
899          UI = V->use_begin();
900        }
901      }
902    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
903      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
904                                ConstantExpr::getCast(CI->getOpcode(),
905                                                      NewV, CI->getType()));
906      if (CI->use_empty()) {
907        Changed = true;
908        CI->eraseFromParent();
909      }
910    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
911      // Should handle GEP here.
912      SmallVector<Constant*, 8> Idxs;
913      Idxs.reserve(GEPI->getNumOperands()-1);
914      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
915           i != e; ++i)
916        if (Constant *C = dyn_cast<Constant>(*i))
917          Idxs.push_back(C);
918        else
919          break;
920      if (Idxs.size() == GEPI->getNumOperands()-1)
921        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
922                          ConstantExpr::getGetElementPtr(NewV, Idxs));
923      if (GEPI->use_empty()) {
924        Changed = true;
925        GEPI->eraseFromParent();
926      }
927    }
928  }
929
930  return Changed;
931}
932
933
934/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
935/// value stored into it.  If there are uses of the loaded value that would trap
936/// if the loaded value is dynamically null, then we know that they cannot be
937/// reachable with a null optimize away the load.
938static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
939                                            DataLayout *TD,
940                                            TargetLibraryInfo *TLI) {
941  bool Changed = false;
942
943  // Keep track of whether we are able to remove all the uses of the global
944  // other than the store that defines it.
945  bool AllNonStoreUsesGone = true;
946
947  // Replace all uses of loads with uses of uses of the stored value.
948  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
949    User *GlobalUser = *GUI++;
950    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
951      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
952      // If we were able to delete all uses of the loads
953      if (LI->use_empty()) {
954        LI->eraseFromParent();
955        Changed = true;
956      } else {
957        AllNonStoreUsesGone = false;
958      }
959    } else if (isa<StoreInst>(GlobalUser)) {
960      // Ignore the store that stores "LV" to the global.
961      assert(GlobalUser->getOperand(1) == GV &&
962             "Must be storing *to* the global");
963    } else {
964      AllNonStoreUsesGone = false;
965
966      // If we get here we could have other crazy uses that are transitively
967      // loaded.
968      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
969              isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
970              isa<BitCastInst>(GlobalUser) ||
971              isa<GetElementPtrInst>(GlobalUser)) &&
972             "Only expect load and stores!");
973    }
974  }
975
976  if (Changed) {
977    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
978    ++NumGlobUses;
979  }
980
981  // If we nuked all of the loads, then none of the stores are needed either,
982  // nor is the global.
983  if (AllNonStoreUsesGone) {
984    if (isLeakCheckerRoot(GV)) {
985      Changed |= CleanupPointerRootUsers(GV, TLI);
986    } else {
987      Changed = true;
988      CleanupConstantGlobalUsers(GV, 0, TD, TLI);
989    }
990    if (GV->use_empty()) {
991      DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
992      Changed = true;
993      GV->eraseFromParent();
994      ++NumDeleted;
995    }
996  }
997  return Changed;
998}
999
1000/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
1001/// instructions that are foldable.
1002static void ConstantPropUsersOf(Value *V,
1003                                DataLayout *TD, TargetLibraryInfo *TLI) {
1004  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
1005    if (Instruction *I = dyn_cast<Instruction>(*UI++))
1006      if (Constant *NewC = ConstantFoldInstruction(I, TD, TLI)) {
1007        I->replaceAllUsesWith(NewC);
1008
1009        // Advance UI to the next non-I use to avoid invalidating it!
1010        // Instructions could multiply use V.
1011        while (UI != E && *UI == I)
1012          ++UI;
1013        I->eraseFromParent();
1014      }
1015}
1016
1017/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
1018/// variable, and transforms the program as if it always contained the result of
1019/// the specified malloc.  Because it is always the result of the specified
1020/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
1021/// malloc into a global, and any loads of GV as uses of the new global.
1022static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
1023                                                     CallInst *CI,
1024                                                     Type *AllocTy,
1025                                                     ConstantInt *NElements,
1026                                                     DataLayout *TD,
1027                                                     TargetLibraryInfo *TLI) {
1028  DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
1029
1030  Type *GlobalType;
1031  if (NElements->getZExtValue() == 1)
1032    GlobalType = AllocTy;
1033  else
1034    // If we have an array allocation, the global variable is of an array.
1035    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
1036
1037  // Create the new global variable.  The contents of the malloc'd memory is
1038  // undefined, so initialize with an undef value.
1039  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
1040                                             GlobalType, false,
1041                                             GlobalValue::InternalLinkage,
1042                                             UndefValue::get(GlobalType),
1043                                             GV->getName()+".body",
1044                                             GV,
1045                                             GV->getThreadLocalMode());
1046
1047  // If there are bitcast users of the malloc (which is typical, usually we have
1048  // a malloc + bitcast) then replace them with uses of the new global.  Update
1049  // other users to use the global as well.
1050  BitCastInst *TheBC = 0;
1051  while (!CI->use_empty()) {
1052    Instruction *User = cast<Instruction>(CI->use_back());
1053    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1054      if (BCI->getType() == NewGV->getType()) {
1055        BCI->replaceAllUsesWith(NewGV);
1056        BCI->eraseFromParent();
1057      } else {
1058        BCI->setOperand(0, NewGV);
1059      }
1060    } else {
1061      if (TheBC == 0)
1062        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
1063      User->replaceUsesOfWith(CI, TheBC);
1064    }
1065  }
1066
1067  Constant *RepValue = NewGV;
1068  if (NewGV->getType() != GV->getType()->getElementType())
1069    RepValue = ConstantExpr::getBitCast(RepValue,
1070                                        GV->getType()->getElementType());
1071
1072  // If there is a comparison against null, we will insert a global bool to
1073  // keep track of whether the global was initialized yet or not.
1074  GlobalVariable *InitBool =
1075    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
1076                       GlobalValue::InternalLinkage,
1077                       ConstantInt::getFalse(GV->getContext()),
1078                       GV->getName()+".init", GV->getThreadLocalMode());
1079  bool InitBoolUsed = false;
1080
1081  // Loop over all uses of GV, processing them in turn.
1082  while (!GV->use_empty()) {
1083    if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
1084      // The global is initialized when the store to it occurs.
1085      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
1086                    SI->getOrdering(), SI->getSynchScope(), SI);
1087      SI->eraseFromParent();
1088      continue;
1089    }
1090
1091    LoadInst *LI = cast<LoadInst>(GV->use_back());
1092    while (!LI->use_empty()) {
1093      Use &LoadUse = LI->use_begin().getUse();
1094      if (!isa<ICmpInst>(LoadUse.getUser())) {
1095        LoadUse = RepValue;
1096        continue;
1097      }
1098
1099      ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
1100      // Replace the cmp X, 0 with a use of the bool value.
1101      // Sink the load to where the compare was, if atomic rules allow us to.
1102      Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
1103                               LI->getOrdering(), LI->getSynchScope(),
1104                               LI->isUnordered() ? (Instruction*)ICI : LI);
1105      InitBoolUsed = true;
1106      switch (ICI->getPredicate()) {
1107      default: llvm_unreachable("Unknown ICmp Predicate!");
1108      case ICmpInst::ICMP_ULT:
1109      case ICmpInst::ICMP_SLT:   // X < null -> always false
1110        LV = ConstantInt::getFalse(GV->getContext());
1111        break;
1112      case ICmpInst::ICMP_ULE:
1113      case ICmpInst::ICMP_SLE:
1114      case ICmpInst::ICMP_EQ:
1115        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
1116        break;
1117      case ICmpInst::ICMP_NE:
1118      case ICmpInst::ICMP_UGE:
1119      case ICmpInst::ICMP_SGE:
1120      case ICmpInst::ICMP_UGT:
1121      case ICmpInst::ICMP_SGT:
1122        break;  // no change.
1123      }
1124      ICI->replaceAllUsesWith(LV);
1125      ICI->eraseFromParent();
1126    }
1127    LI->eraseFromParent();
1128  }
1129
1130  // If the initialization boolean was used, insert it, otherwise delete it.
1131  if (!InitBoolUsed) {
1132    while (!InitBool->use_empty())  // Delete initializations
1133      cast<StoreInst>(InitBool->use_back())->eraseFromParent();
1134    delete InitBool;
1135  } else
1136    GV->getParent()->getGlobalList().insert(GV, InitBool);
1137
1138  // Now the GV is dead, nuke it and the malloc..
1139  GV->eraseFromParent();
1140  CI->eraseFromParent();
1141
1142  // To further other optimizations, loop over all users of NewGV and try to
1143  // constant prop them.  This will promote GEP instructions with constant
1144  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
1145  ConstantPropUsersOf(NewGV, TD, TLI);
1146  if (RepValue != NewGV)
1147    ConstantPropUsersOf(RepValue, TD, TLI);
1148
1149  return NewGV;
1150}
1151
1152/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
1153/// to make sure that there are no complex uses of V.  We permit simple things
1154/// like dereferencing the pointer, but not storing through the address, unless
1155/// it is to the specified global.
1156static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
1157                                                      const GlobalVariable *GV,
1158                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
1159  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
1160       UI != E; ++UI) {
1161    const Instruction *Inst = cast<Instruction>(*UI);
1162
1163    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
1164      continue; // Fine, ignore.
1165    }
1166
1167    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1168      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
1169        return false;  // Storing the pointer itself... bad.
1170      continue; // Otherwise, storing through it, or storing into GV... fine.
1171    }
1172
1173    // Must index into the array and into the struct.
1174    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
1175      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
1176        return false;
1177      continue;
1178    }
1179
1180    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1181      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1182      // cycles.
1183      if (PHIs.insert(PN))
1184        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1185          return false;
1186      continue;
1187    }
1188
1189    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1190      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1191        return false;
1192      continue;
1193    }
1194
1195    return false;
1196  }
1197  return true;
1198}
1199
1200/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1201/// somewhere.  Transform all uses of the allocation into loads from the
1202/// global and uses of the resultant pointer.  Further, delete the store into
1203/// GV.  This assumes that these value pass the
1204/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1205static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1206                                          GlobalVariable *GV) {
1207  while (!Alloc->use_empty()) {
1208    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1209    Instruction *InsertPt = U;
1210    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1211      // If this is the store of the allocation into the global, remove it.
1212      if (SI->getOperand(1) == GV) {
1213        SI->eraseFromParent();
1214        continue;
1215      }
1216    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1217      // Insert the load in the corresponding predecessor, not right before the
1218      // PHI.
1219      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1220    } else if (isa<BitCastInst>(U)) {
1221      // Must be bitcast between the malloc and store to initialize the global.
1222      ReplaceUsesOfMallocWithGlobal(U, GV);
1223      U->eraseFromParent();
1224      continue;
1225    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1226      // If this is a "GEP bitcast" and the user is a store to the global, then
1227      // just process it as a bitcast.
1228      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1229        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1230          if (SI->getOperand(1) == GV) {
1231            // Must be bitcast GEP between the malloc and store to initialize
1232            // the global.
1233            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1234            GEPI->eraseFromParent();
1235            continue;
1236          }
1237    }
1238
1239    // Insert a load from the global, and use it instead of the malloc.
1240    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1241    U->replaceUsesOfWith(Alloc, NL);
1242  }
1243}
1244
1245/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1246/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1247/// that index through the array and struct field, icmps of null, and PHIs.
1248static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1249                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1250                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1251  // We permit two users of the load: setcc comparing against the null
1252  // pointer, and a getelementptr of a specific form.
1253  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
1254       ++UI) {
1255    const Instruction *User = cast<Instruction>(*UI);
1256
1257    // Comparison against null is ok.
1258    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1259      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1260        return false;
1261      continue;
1262    }
1263
1264    // getelementptr is also ok, but only a simple form.
1265    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1266      // Must index into the array and into the struct.
1267      if (GEPI->getNumOperands() < 3)
1268        return false;
1269
1270      // Otherwise the GEP is ok.
1271      continue;
1272    }
1273
1274    if (const PHINode *PN = dyn_cast<PHINode>(User)) {
1275      if (!LoadUsingPHIsPerLoad.insert(PN))
1276        // This means some phi nodes are dependent on each other.
1277        // Avoid infinite looping!
1278        return false;
1279      if (!LoadUsingPHIs.insert(PN))
1280        // If we have already analyzed this PHI, then it is safe.
1281        continue;
1282
1283      // Make sure all uses of the PHI are simple enough to transform.
1284      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1285                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1286        return false;
1287
1288      continue;
1289    }
1290
1291    // Otherwise we don't know what this is, not ok.
1292    return false;
1293  }
1294
1295  return true;
1296}
1297
1298
1299/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1300/// GV are simple enough to perform HeapSRA, return true.
1301static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1302                                                    Instruction *StoredVal) {
1303  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1304  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1305  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1306       UI != E; ++UI)
1307    if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1308      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1309                                          LoadUsingPHIsPerLoad))
1310        return false;
1311      LoadUsingPHIsPerLoad.clear();
1312    }
1313
1314  // If we reach here, we know that all uses of the loads and transitive uses
1315  // (through PHI nodes) are simple enough to transform.  However, we don't know
1316  // that all inputs the to the PHI nodes are in the same equivalence sets.
1317  // Check to verify that all operands of the PHIs are either PHIS that can be
1318  // transformed, loads from GV, or MI itself.
1319  for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1320       , E = LoadUsingPHIs.end(); I != E; ++I) {
1321    const PHINode *PN = *I;
1322    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1323      Value *InVal = PN->getIncomingValue(op);
1324
1325      // PHI of the stored value itself is ok.
1326      if (InVal == StoredVal) continue;
1327
1328      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1329        // One of the PHIs in our set is (optimistically) ok.
1330        if (LoadUsingPHIs.count(InPN))
1331          continue;
1332        return false;
1333      }
1334
1335      // Load from GV is ok.
1336      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1337        if (LI->getOperand(0) == GV)
1338          continue;
1339
1340      // UNDEF? NULL?
1341
1342      // Anything else is rejected.
1343      return false;
1344    }
1345  }
1346
1347  return true;
1348}
1349
1350static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1351               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1352                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1353  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1354
1355  if (FieldNo >= FieldVals.size())
1356    FieldVals.resize(FieldNo+1);
1357
1358  // If we already have this value, just reuse the previously scalarized
1359  // version.
1360  if (Value *FieldVal = FieldVals[FieldNo])
1361    return FieldVal;
1362
1363  // Depending on what instruction this is, we have several cases.
1364  Value *Result;
1365  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1366    // This is a scalarized version of the load from the global.  Just create
1367    // a new Load of the scalarized global.
1368    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1369                                           InsertedScalarizedValues,
1370                                           PHIsToRewrite),
1371                          LI->getName()+".f"+Twine(FieldNo), LI);
1372  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1373    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1374    // field.
1375    StructType *ST =
1376      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1377
1378    PHINode *NewPN =
1379     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1380                     PN->getNumIncomingValues(),
1381                     PN->getName()+".f"+Twine(FieldNo), PN);
1382    Result = NewPN;
1383    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1384  } else {
1385    llvm_unreachable("Unknown usable value");
1386  }
1387
1388  return FieldVals[FieldNo] = Result;
1389}
1390
1391/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1392/// the load, rewrite the derived value to use the HeapSRoA'd load.
1393static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1394             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1395                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1396  // If this is a comparison against null, handle it.
1397  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1398    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1399    // If we have a setcc of the loaded pointer, we can use a setcc of any
1400    // field.
1401    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1402                                   InsertedScalarizedValues, PHIsToRewrite);
1403
1404    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1405                              Constant::getNullValue(NPtr->getType()),
1406                              SCI->getName());
1407    SCI->replaceAllUsesWith(New);
1408    SCI->eraseFromParent();
1409    return;
1410  }
1411
1412  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1413  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1414    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1415           && "Unexpected GEPI!");
1416
1417    // Load the pointer for this field.
1418    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1419    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1420                                     InsertedScalarizedValues, PHIsToRewrite);
1421
1422    // Create the new GEP idx vector.
1423    SmallVector<Value*, 8> GEPIdx;
1424    GEPIdx.push_back(GEPI->getOperand(1));
1425    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1426
1427    Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx,
1428                                             GEPI->getName(), GEPI);
1429    GEPI->replaceAllUsesWith(NGEPI);
1430    GEPI->eraseFromParent();
1431    return;
1432  }
1433
1434  // Recursively transform the users of PHI nodes.  This will lazily create the
1435  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1436  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1437  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1438  // already been seen first by another load, so its uses have already been
1439  // processed.
1440  PHINode *PN = cast<PHINode>(LoadUser);
1441  if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1442                                              std::vector<Value*>())).second)
1443    return;
1444
1445  // If this is the first time we've seen this PHI, recursively process all
1446  // users.
1447  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1448    Instruction *User = cast<Instruction>(*UI++);
1449    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1450  }
1451}
1452
1453/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1454/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1455/// use FieldGlobals instead.  All uses of loaded values satisfy
1456/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1457static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1458               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1459                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1460  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1461       UI != E; ) {
1462    Instruction *User = cast<Instruction>(*UI++);
1463    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1464  }
1465
1466  if (Load->use_empty()) {
1467    Load->eraseFromParent();
1468    InsertedScalarizedValues.erase(Load);
1469  }
1470}
1471
1472/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1473/// it up into multiple allocations of arrays of the fields.
1474static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1475                                            Value *NElems, DataLayout *TD,
1476                                            const TargetLibraryInfo *TLI) {
1477  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1478  Type *MAT = getMallocAllocatedType(CI, TLI);
1479  StructType *STy = cast<StructType>(MAT);
1480
1481  // There is guaranteed to be at least one use of the malloc (storing
1482  // it into GV).  If there are other uses, change them to be uses of
1483  // the global to simplify later code.  This also deletes the store
1484  // into GV.
1485  ReplaceUsesOfMallocWithGlobal(CI, GV);
1486
1487  // Okay, at this point, there are no users of the malloc.  Insert N
1488  // new mallocs at the same place as CI, and N globals.
1489  std::vector<Value*> FieldGlobals;
1490  std::vector<Value*> FieldMallocs;
1491
1492  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1493    Type *FieldTy = STy->getElementType(FieldNo);
1494    PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1495
1496    GlobalVariable *NGV =
1497      new GlobalVariable(*GV->getParent(),
1498                         PFieldTy, false, GlobalValue::InternalLinkage,
1499                         Constant::getNullValue(PFieldTy),
1500                         GV->getName() + ".f" + Twine(FieldNo), GV,
1501                         GV->getThreadLocalMode());
1502    FieldGlobals.push_back(NGV);
1503
1504    unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1505    if (StructType *ST = dyn_cast<StructType>(FieldTy))
1506      TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1507    Type *IntPtrTy = TD->getIntPtrType(CI->getType());
1508    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1509                                        ConstantInt::get(IntPtrTy, TypeSize),
1510                                        NElems, 0,
1511                                        CI->getName() + ".f" + Twine(FieldNo));
1512    FieldMallocs.push_back(NMI);
1513    new StoreInst(NMI, NGV, CI);
1514  }
1515
1516  // The tricky aspect of this transformation is handling the case when malloc
1517  // fails.  In the original code, malloc failing would set the result pointer
1518  // of malloc to null.  In this case, some mallocs could succeed and others
1519  // could fail.  As such, we emit code that looks like this:
1520  //    F0 = malloc(field0)
1521  //    F1 = malloc(field1)
1522  //    F2 = malloc(field2)
1523  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1524  //      if (F0) { free(F0); F0 = 0; }
1525  //      if (F1) { free(F1); F1 = 0; }
1526  //      if (F2) { free(F2); F2 = 0; }
1527  //    }
1528  // The malloc can also fail if its argument is too large.
1529  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1530  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1531                                  ConstantZero, "isneg");
1532  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1533    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1534                             Constant::getNullValue(FieldMallocs[i]->getType()),
1535                               "isnull");
1536    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1537  }
1538
1539  // Split the basic block at the old malloc.
1540  BasicBlock *OrigBB = CI->getParent();
1541  BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1542
1543  // Create the block to check the first condition.  Put all these blocks at the
1544  // end of the function as they are unlikely to be executed.
1545  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1546                                                "malloc_ret_null",
1547                                                OrigBB->getParent());
1548
1549  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1550  // branch on RunningOr.
1551  OrigBB->getTerminator()->eraseFromParent();
1552  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1553
1554  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1555  // pointer, because some may be null while others are not.
1556  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1557    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1558    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1559                              Constant::getNullValue(GVVal->getType()));
1560    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1561                                               OrigBB->getParent());
1562    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1563                                               OrigBB->getParent());
1564    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1565                                         Cmp, NullPtrBlock);
1566
1567    // Fill in FreeBlock.
1568    CallInst::CreateFree(GVVal, BI);
1569    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1570                  FreeBlock);
1571    BranchInst::Create(NextBlock, FreeBlock);
1572
1573    NullPtrBlock = NextBlock;
1574  }
1575
1576  BranchInst::Create(ContBB, NullPtrBlock);
1577
1578  // CI is no longer needed, remove it.
1579  CI->eraseFromParent();
1580
1581  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1582  /// update all uses of the load, keep track of what scalarized loads are
1583  /// inserted for a given load.
1584  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1585  InsertedScalarizedValues[GV] = FieldGlobals;
1586
1587  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1588
1589  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1590  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1591  // of the per-field globals instead.
1592  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1593    Instruction *User = cast<Instruction>(*UI++);
1594
1595    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1596      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1597      continue;
1598    }
1599
1600    // Must be a store of null.
1601    StoreInst *SI = cast<StoreInst>(User);
1602    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1603           "Unexpected heap-sra user!");
1604
1605    // Insert a store of null into each global.
1606    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1607      PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1608      Constant *Null = Constant::getNullValue(PT->getElementType());
1609      new StoreInst(Null, FieldGlobals[i], SI);
1610    }
1611    // Erase the original store.
1612    SI->eraseFromParent();
1613  }
1614
1615  // While we have PHIs that are interesting to rewrite, do it.
1616  while (!PHIsToRewrite.empty()) {
1617    PHINode *PN = PHIsToRewrite.back().first;
1618    unsigned FieldNo = PHIsToRewrite.back().second;
1619    PHIsToRewrite.pop_back();
1620    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1621    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1622
1623    // Add all the incoming values.  This can materialize more phis.
1624    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1625      Value *InVal = PN->getIncomingValue(i);
1626      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1627                               PHIsToRewrite);
1628      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1629    }
1630  }
1631
1632  // Drop all inter-phi links and any loads that made it this far.
1633  for (DenseMap<Value*, std::vector<Value*> >::iterator
1634       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1635       I != E; ++I) {
1636    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1637      PN->dropAllReferences();
1638    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1639      LI->dropAllReferences();
1640  }
1641
1642  // Delete all the phis and loads now that inter-references are dead.
1643  for (DenseMap<Value*, std::vector<Value*> >::iterator
1644       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1645       I != E; ++I) {
1646    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1647      PN->eraseFromParent();
1648    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1649      LI->eraseFromParent();
1650  }
1651
1652  // The old global is now dead, remove it.
1653  GV->eraseFromParent();
1654
1655  ++NumHeapSRA;
1656  return cast<GlobalVariable>(FieldGlobals[0]);
1657}
1658
1659/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1660/// pointer global variable with a single value stored it that is a malloc or
1661/// cast of malloc.
1662static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1663                                               CallInst *CI,
1664                                               Type *AllocTy,
1665                                               AtomicOrdering Ordering,
1666                                               Module::global_iterator &GVI,
1667                                               DataLayout *TD,
1668                                               TargetLibraryInfo *TLI) {
1669  if (!TD)
1670    return false;
1671
1672  // If this is a malloc of an abstract type, don't touch it.
1673  if (!AllocTy->isSized())
1674    return false;
1675
1676  // We can't optimize this global unless all uses of it are *known* to be
1677  // of the malloc value, not of the null initializer value (consider a use
1678  // that compares the global's value against zero to see if the malloc has
1679  // been reached).  To do this, we check to see if all uses of the global
1680  // would trap if the global were null: this proves that they must all
1681  // happen after the malloc.
1682  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1683    return false;
1684
1685  // We can't optimize this if the malloc itself is used in a complex way,
1686  // for example, being stored into multiple globals.  This allows the
1687  // malloc to be stored into the specified global, loaded icmp'd, and
1688  // GEP'd.  These are all things we could transform to using the global
1689  // for.
1690  SmallPtrSet<const PHINode*, 8> PHIs;
1691  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1692    return false;
1693
1694  // If we have a global that is only initialized with a fixed size malloc,
1695  // transform the program to use global memory instead of malloc'd memory.
1696  // This eliminates dynamic allocation, avoids an indirection accessing the
1697  // data, and exposes the resultant global to further GlobalOpt.
1698  // We cannot optimize the malloc if we cannot determine malloc array size.
1699  Value *NElems = getMallocArraySize(CI, TD, TLI, true);
1700  if (!NElems)
1701    return false;
1702
1703  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1704    // Restrict this transformation to only working on small allocations
1705    // (2048 bytes currently), as we don't want to introduce a 16M global or
1706    // something.
1707    if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1708      GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD, TLI);
1709      return true;
1710    }
1711
1712  // If the allocation is an array of structures, consider transforming this
1713  // into multiple malloc'd arrays, one for each field.  This is basically
1714  // SRoA for malloc'd memory.
1715
1716  if (Ordering != NotAtomic)
1717    return false;
1718
1719  // If this is an allocation of a fixed size array of structs, analyze as a
1720  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1721  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1722    if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1723      AllocTy = AT->getElementType();
1724
1725  StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1726  if (!AllocSTy)
1727    return false;
1728
1729  // This the structure has an unreasonable number of fields, leave it
1730  // alone.
1731  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1732      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1733
1734    // If this is a fixed size array, transform the Malloc to be an alloc of
1735    // structs.  malloc [100 x struct],1 -> malloc struct, 100
1736    if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1737      Type *IntPtrTy = TD->getIntPtrType(CI->getType());
1738      unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1739      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1740      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1741      Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1742                                                   AllocSize, NumElements,
1743                                                   0, CI->getName());
1744      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1745      CI->replaceAllUsesWith(Cast);
1746      CI->eraseFromParent();
1747      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1748        CI = cast<CallInst>(BCI->getOperand(0));
1749      else
1750        CI = cast<CallInst>(Malloc);
1751    }
1752
1753    GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, TLI, true),
1754                               TD, TLI);
1755    return true;
1756  }
1757
1758  return false;
1759}
1760
1761// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1762// that only one value (besides its initializer) is ever stored to the global.
1763static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1764                                     AtomicOrdering Ordering,
1765                                     Module::global_iterator &GVI,
1766                                     DataLayout *TD, TargetLibraryInfo *TLI) {
1767  // Ignore no-op GEPs and bitcasts.
1768  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1769
1770  // If we are dealing with a pointer global that is initialized to null and
1771  // only has one (non-null) value stored into it, then we can optimize any
1772  // users of the loaded value (often calls and loads) that would trap if the
1773  // value was null.
1774  if (GV->getInitializer()->getType()->isPointerTy() &&
1775      GV->getInitializer()->isNullValue()) {
1776    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1777      if (GV->getInitializer()->getType() != SOVC->getType())
1778        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1779
1780      // Optimize away any trapping uses of the loaded value.
1781      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, TD, TLI))
1782        return true;
1783    } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1784      Type *MallocType = getMallocAllocatedType(CI, TLI);
1785      if (MallocType &&
1786          TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
1787                                             TD, TLI))
1788        return true;
1789    }
1790  }
1791
1792  return false;
1793}
1794
1795/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1796/// two values ever stored into GV are its initializer and OtherVal.  See if we
1797/// can shrink the global into a boolean and select between the two values
1798/// whenever it is used.  This exposes the values to other scalar optimizations.
1799static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1800  Type *GVElType = GV->getType()->getElementType();
1801
1802  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1803  // an FP value, pointer or vector, don't do this optimization because a select
1804  // between them is very expensive and unlikely to lead to later
1805  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1806  // where v1 and v2 both require constant pool loads, a big loss.
1807  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1808      GVElType->isFloatingPointTy() ||
1809      GVElType->isPointerTy() || GVElType->isVectorTy())
1810    return false;
1811
1812  // Walk the use list of the global seeing if all the uses are load or store.
1813  // If there is anything else, bail out.
1814  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
1815    User *U = *I;
1816    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1817      return false;
1818  }
1819
1820  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
1821
1822  // Create the new global, initializing it to false.
1823  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1824                                             false,
1825                                             GlobalValue::InternalLinkage,
1826                                        ConstantInt::getFalse(GV->getContext()),
1827                                             GV->getName()+".b",
1828                                             GV->getThreadLocalMode(),
1829                                             GV->getType()->getAddressSpace());
1830  GV->getParent()->getGlobalList().insert(GV, NewGV);
1831
1832  Constant *InitVal = GV->getInitializer();
1833  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1834         "No reason to shrink to bool!");
1835
1836  // If initialized to zero and storing one into the global, we can use a cast
1837  // instead of a select to synthesize the desired value.
1838  bool IsOneZero = false;
1839  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1840    IsOneZero = InitVal->isNullValue() && CI->isOne();
1841
1842  while (!GV->use_empty()) {
1843    Instruction *UI = cast<Instruction>(GV->use_back());
1844    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1845      // Change the store into a boolean store.
1846      bool StoringOther = SI->getOperand(0) == OtherVal;
1847      // Only do this if we weren't storing a loaded value.
1848      Value *StoreVal;
1849      if (StoringOther || SI->getOperand(0) == InitVal) {
1850        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1851                                    StoringOther);
1852      } else {
1853        // Otherwise, we are storing a previously loaded copy.  To do this,
1854        // change the copy from copying the original value to just copying the
1855        // bool.
1856        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1857
1858        // If we've already replaced the input, StoredVal will be a cast or
1859        // select instruction.  If not, it will be a load of the original
1860        // global.
1861        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1862          assert(LI->getOperand(0) == GV && "Not a copy!");
1863          // Insert a new load, to preserve the saved value.
1864          StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1865                                  LI->getOrdering(), LI->getSynchScope(), LI);
1866        } else {
1867          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1868                 "This is not a form that we understand!");
1869          StoreVal = StoredVal->getOperand(0);
1870          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1871        }
1872      }
1873      new StoreInst(StoreVal, NewGV, false, 0,
1874                    SI->getOrdering(), SI->getSynchScope(), SI);
1875    } else {
1876      // Change the load into a load of bool then a select.
1877      LoadInst *LI = cast<LoadInst>(UI);
1878      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1879                                   LI->getOrdering(), LI->getSynchScope(), LI);
1880      Value *NSI;
1881      if (IsOneZero)
1882        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1883      else
1884        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1885      NSI->takeName(LI);
1886      LI->replaceAllUsesWith(NSI);
1887    }
1888    UI->eraseFromParent();
1889  }
1890
1891  // Retain the name of the old global variable. People who are debugging their
1892  // programs may expect these variables to be named the same.
1893  NewGV->takeName(GV);
1894  GV->eraseFromParent();
1895  return true;
1896}
1897
1898
1899/// ProcessGlobal - Analyze the specified global variable and optimize it if
1900/// possible.  If we make a change, return true.
1901bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
1902                              Module::global_iterator &GVI) {
1903  if (!GV->isDiscardableIfUnused())
1904    return false;
1905
1906  // Do more involved optimizations if the global is internal.
1907  GV->removeDeadConstantUsers();
1908
1909  if (GV->use_empty()) {
1910    DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1911    GV->eraseFromParent();
1912    ++NumDeleted;
1913    return true;
1914  }
1915
1916  if (!GV->hasLocalLinkage())
1917    return false;
1918
1919  SmallPtrSet<const PHINode*, 16> PHIUsers;
1920  GlobalStatus GS;
1921
1922  if (AnalyzeGlobal(GV, GS, PHIUsers))
1923    return false;
1924
1925  if (!GS.isCompared && !GV->hasUnnamedAddr()) {
1926    GV->setUnnamedAddr(true);
1927    NumUnnamed++;
1928  }
1929
1930  if (GV->isConstant() || !GV->hasInitializer())
1931    return false;
1932
1933  return ProcessInternalGlobal(GV, GVI, GS);
1934}
1935
1936/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1937/// it if possible.  If we make a change, return true.
1938bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1939                                      Module::global_iterator &GVI,
1940                                      const GlobalStatus &GS) {
1941  // If this is a first class global and has only one accessing function
1942  // and this function is main (which we know is not recursive), we replace
1943  // the global with a local alloca in this function.
1944  //
1945  // NOTE: It doesn't make sense to promote non single-value types since we
1946  // are just replacing static memory to stack memory.
1947  //
1948  // If the global is in different address space, don't bring it to stack.
1949  if (!GS.HasMultipleAccessingFunctions &&
1950      GS.AccessingFunction && !GS.HasNonInstructionUser &&
1951      GV->getType()->getElementType()->isSingleValueType() &&
1952      GS.AccessingFunction->getName() == "main" &&
1953      GS.AccessingFunction->hasExternalLinkage() &&
1954      GV->getType()->getAddressSpace() == 0) {
1955    DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1956    Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1957                                                   ->getEntryBlock().begin());
1958    Type *ElemTy = GV->getType()->getElementType();
1959    // FIXME: Pass Global's alignment when globals have alignment
1960    AllocaInst *Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1961    if (!isa<UndefValue>(GV->getInitializer()))
1962      new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1963
1964    GV->replaceAllUsesWith(Alloca);
1965    GV->eraseFromParent();
1966    ++NumLocalized;
1967    return true;
1968  }
1969
1970  // If the global is never loaded (but may be stored to), it is dead.
1971  // Delete it now.
1972  if (!GS.isLoaded) {
1973    DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1974
1975    bool Changed;
1976    if (isLeakCheckerRoot(GV)) {
1977      // Delete any constant stores to the global.
1978      Changed = CleanupPointerRootUsers(GV, TLI);
1979    } else {
1980      // Delete any stores we can find to the global.  We may not be able to
1981      // make it completely dead though.
1982      Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
1983    }
1984
1985    // If the global is dead now, delete it.
1986    if (GV->use_empty()) {
1987      GV->eraseFromParent();
1988      ++NumDeleted;
1989      Changed = true;
1990    }
1991    return Changed;
1992
1993  } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1994    DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1995    GV->setConstant(true);
1996
1997    // Clean up any obviously simplifiable users now.
1998    CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
1999
2000    // If the global is dead now, just nuke it.
2001    if (GV->use_empty()) {
2002      DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
2003            << "all users and delete global!\n");
2004      GV->eraseFromParent();
2005      ++NumDeleted;
2006    }
2007
2008    ++NumMarked;
2009    return true;
2010  } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
2011    if (DataLayout *TD = getAnalysisIfAvailable<DataLayout>())
2012      if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
2013        GVI = FirstNewGV;  // Don't skip the newly produced globals!
2014        return true;
2015      }
2016  } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
2017    // If the initial value for the global was an undef value, and if only
2018    // one other value was stored into it, we can just change the
2019    // initializer to be the stored value, then delete all stores to the
2020    // global.  This allows us to mark it constant.
2021    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2022      if (isa<UndefValue>(GV->getInitializer())) {
2023        // Change the initial value here.
2024        GV->setInitializer(SOVConstant);
2025
2026        // Clean up any obviously simplifiable users now.
2027        CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
2028
2029        if (GV->use_empty()) {
2030          DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2031                       << "simplify all users and delete global!\n");
2032          GV->eraseFromParent();
2033          ++NumDeleted;
2034        } else {
2035          GVI = GV;
2036        }
2037        ++NumSubstitute;
2038        return true;
2039      }
2040
2041    // Try to optimize globals based on the knowledge that only one value
2042    // (besides its initializer) is ever stored to the global.
2043    if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
2044                                 TD, TLI))
2045      return true;
2046
2047    // Otherwise, if the global was not a boolean, we can shrink it to be a
2048    // boolean.
2049    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2050      if (GS.Ordering == NotAtomic) {
2051        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2052          ++NumShrunkToBool;
2053          return true;
2054        }
2055      }
2056    }
2057  }
2058
2059  return false;
2060}
2061
2062/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
2063/// function, changing them to FastCC.
2064static void ChangeCalleesToFastCall(Function *F) {
2065  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
2066    if (isa<BlockAddress>(*UI))
2067      continue;
2068    CallSite User(cast<Instruction>(*UI));
2069    User.setCallingConv(CallingConv::Fast);
2070  }
2071}
2072
2073static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
2074  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
2075    unsigned Index = Attrs.getSlotIndex(i);
2076    if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
2077      continue;
2078
2079    // There can be only one.
2080    return Attrs.removeAttribute(C, Index, Attribute::Nest);
2081  }
2082
2083  return Attrs;
2084}
2085
2086static void RemoveNestAttribute(Function *F) {
2087  F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2088  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
2089    if (isa<BlockAddress>(*UI))
2090      continue;
2091    CallSite User(cast<Instruction>(*UI));
2092    User.setAttributes(StripNest(F->getContext(), User.getAttributes()));
2093  }
2094}
2095
2096bool GlobalOpt::OptimizeFunctions(Module &M) {
2097  bool Changed = false;
2098  // Optimize functions.
2099  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2100    Function *F = FI++;
2101    // Functions without names cannot be referenced outside this module.
2102    if (!F->hasName() && !F->isDeclaration())
2103      F->setLinkage(GlobalValue::InternalLinkage);
2104    F->removeDeadConstantUsers();
2105    if (F->isDefTriviallyDead()) {
2106      F->eraseFromParent();
2107      Changed = true;
2108      ++NumFnDeleted;
2109    } else if (F->hasLocalLinkage()) {
2110      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
2111          !F->hasAddressTaken()) {
2112        // If this function has C calling conventions, is not a varargs
2113        // function, and is only called directly, promote it to use the Fast
2114        // calling convention.
2115        F->setCallingConv(CallingConv::Fast);
2116        ChangeCalleesToFastCall(F);
2117        ++NumFastCallFns;
2118        Changed = true;
2119      }
2120
2121      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2122          !F->hasAddressTaken()) {
2123        // The function is not used by a trampoline intrinsic, so it is safe
2124        // to remove the 'nest' attribute.
2125        RemoveNestAttribute(F);
2126        ++NumNestRemoved;
2127        Changed = true;
2128      }
2129    }
2130  }
2131  return Changed;
2132}
2133
2134bool GlobalOpt::OptimizeGlobalVars(Module &M) {
2135  bool Changed = false;
2136  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2137       GVI != E; ) {
2138    GlobalVariable *GV = GVI++;
2139    // Global variables without names cannot be referenced outside this module.
2140    if (!GV->hasName() && !GV->isDeclaration())
2141      GV->setLinkage(GlobalValue::InternalLinkage);
2142    // Simplify the initializer.
2143    if (GV->hasInitializer())
2144      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
2145        Constant *New = ConstantFoldConstantExpression(CE, TD, TLI);
2146        if (New && New != CE)
2147          GV->setInitializer(New);
2148      }
2149
2150    Changed |= ProcessGlobal(GV, GVI);
2151  }
2152  return Changed;
2153}
2154
2155/// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all
2156/// initializers have an init priority of 65535.
2157GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
2158  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
2159  if (GV == 0) return 0;
2160
2161  // Verify that the initializer is simple enough for us to handle. We are
2162  // only allowed to optimize the initializer if it is unique.
2163  if (!GV->hasUniqueInitializer()) return 0;
2164
2165  if (isa<ConstantAggregateZero>(GV->getInitializer()))
2166    return GV;
2167  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
2168
2169  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
2170    if (isa<ConstantAggregateZero>(*i))
2171      continue;
2172    ConstantStruct *CS = cast<ConstantStruct>(*i);
2173    if (isa<ConstantPointerNull>(CS->getOperand(1)))
2174      continue;
2175
2176    // Must have a function or null ptr.
2177    if (!isa<Function>(CS->getOperand(1)))
2178      return 0;
2179
2180    // Init priority must be standard.
2181    ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0));
2182    if (CI->getZExtValue() != 65535)
2183      return 0;
2184  }
2185
2186  return GV;
2187}
2188
2189/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
2190/// return a list of the functions and null terminator as a vector.
2191static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
2192  if (GV->getInitializer()->isNullValue())
2193    return std::vector<Function*>();
2194  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
2195  std::vector<Function*> Result;
2196  Result.reserve(CA->getNumOperands());
2197  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
2198    ConstantStruct *CS = cast<ConstantStruct>(*i);
2199    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
2200  }
2201  return Result;
2202}
2203
2204/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
2205/// specified array, returning the new global to use.
2206static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
2207                                          const std::vector<Function*> &Ctors) {
2208  // If we made a change, reassemble the initializer list.
2209  Constant *CSVals[2];
2210  CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535);
2211  CSVals[1] = 0;
2212
2213  StructType *StructTy =
2214    cast <StructType>(
2215    cast<ArrayType>(GCL->getType()->getElementType())->getElementType());
2216
2217  // Create the new init list.
2218  std::vector<Constant*> CAList;
2219  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
2220    if (Ctors[i]) {
2221      CSVals[1] = Ctors[i];
2222    } else {
2223      Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
2224                                          false);
2225      PointerType *PFTy = PointerType::getUnqual(FTy);
2226      CSVals[1] = Constant::getNullValue(PFTy);
2227      CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2228                                   0x7fffffff);
2229    }
2230    CAList.push_back(ConstantStruct::get(StructTy, CSVals));
2231  }
2232
2233  // Create the array initializer.
2234  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2235                                                   CAList.size()), CAList);
2236
2237  // If we didn't change the number of elements, don't create a new GV.
2238  if (CA->getType() == GCL->getInitializer()->getType()) {
2239    GCL->setInitializer(CA);
2240    return GCL;
2241  }
2242
2243  // Create the new global and insert it next to the existing list.
2244  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2245                                           GCL->getLinkage(), CA, "",
2246                                           GCL->getThreadLocalMode());
2247  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2248  NGV->takeName(GCL);
2249
2250  // Nuke the old list, replacing any uses with the new one.
2251  if (!GCL->use_empty()) {
2252    Constant *V = NGV;
2253    if (V->getType() != GCL->getType())
2254      V = ConstantExpr::getBitCast(V, GCL->getType());
2255    GCL->replaceAllUsesWith(V);
2256  }
2257  GCL->eraseFromParent();
2258
2259  if (Ctors.size())
2260    return NGV;
2261  else
2262    return 0;
2263}
2264
2265
2266static inline bool
2267isSimpleEnoughValueToCommit(Constant *C,
2268                            SmallPtrSet<Constant*, 8> &SimpleConstants,
2269                            const DataLayout *TD);
2270
2271
2272/// isSimpleEnoughValueToCommit - Return true if the specified constant can be
2273/// handled by the code generator.  We don't want to generate something like:
2274///   void *X = &X/42;
2275/// because the code generator doesn't have a relocation that can handle that.
2276///
2277/// This function should be called if C was not found (but just got inserted)
2278/// in SimpleConstants to avoid having to rescan the same constants all the
2279/// time.
2280static bool isSimpleEnoughValueToCommitHelper(Constant *C,
2281                                   SmallPtrSet<Constant*, 8> &SimpleConstants,
2282                                   const DataLayout *TD) {
2283  // Simple integer, undef, constant aggregate zero, global addresses, etc are
2284  // all supported.
2285  if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
2286      isa<GlobalValue>(C))
2287    return true;
2288
2289  // Aggregate values are safe if all their elements are.
2290  if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2291      isa<ConstantVector>(C)) {
2292    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
2293      Constant *Op = cast<Constant>(C->getOperand(i));
2294      if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, TD))
2295        return false;
2296    }
2297    return true;
2298  }
2299
2300  // We don't know exactly what relocations are allowed in constant expressions,
2301  // so we allow &global+constantoffset, which is safe and uniformly supported
2302  // across targets.
2303  ConstantExpr *CE = cast<ConstantExpr>(C);
2304  switch (CE->getOpcode()) {
2305  case Instruction::BitCast:
2306    // Bitcast is fine if the casted value is fine.
2307    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2308
2309  case Instruction::IntToPtr:
2310  case Instruction::PtrToInt:
2311    // int <=> ptr is fine if the int type is the same size as the
2312    // pointer type.
2313    if (!TD || TD->getTypeSizeInBits(CE->getType()) !=
2314               TD->getTypeSizeInBits(CE->getOperand(0)->getType()))
2315      return false;
2316    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2317
2318  // GEP is fine if it is simple + constant offset.
2319  case Instruction::GetElementPtr:
2320    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2321      if (!isa<ConstantInt>(CE->getOperand(i)))
2322        return false;
2323    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2324
2325  case Instruction::Add:
2326    // We allow simple+cst.
2327    if (!isa<ConstantInt>(CE->getOperand(1)))
2328      return false;
2329    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2330  }
2331  return false;
2332}
2333
2334static inline bool
2335isSimpleEnoughValueToCommit(Constant *C,
2336                            SmallPtrSet<Constant*, 8> &SimpleConstants,
2337                            const DataLayout *TD) {
2338  // If we already checked this constant, we win.
2339  if (!SimpleConstants.insert(C)) return true;
2340  // Check the constant.
2341  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, TD);
2342}
2343
2344
2345/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2346/// enough for us to understand.  In particular, if it is a cast to anything
2347/// other than from one pointer type to another pointer type, we punt.
2348/// We basically just support direct accesses to globals and GEP's of
2349/// globals.  This should be kept up to date with CommitValueTo.
2350static bool isSimpleEnoughPointerToCommit(Constant *C) {
2351  // Conservatively, avoid aggregate types. This is because we don't
2352  // want to worry about them partially overlapping other stores.
2353  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2354    return false;
2355
2356  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2357    // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2358    // external globals.
2359    return GV->hasUniqueInitializer();
2360
2361  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2362    // Handle a constantexpr gep.
2363    if (CE->getOpcode() == Instruction::GetElementPtr &&
2364        isa<GlobalVariable>(CE->getOperand(0)) &&
2365        cast<GEPOperator>(CE)->isInBounds()) {
2366      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2367      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2368      // external globals.
2369      if (!GV->hasUniqueInitializer())
2370        return false;
2371
2372      // The first index must be zero.
2373      ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin()));
2374      if (!CI || !CI->isZero()) return false;
2375
2376      // The remaining indices must be compile-time known integers within the
2377      // notional bounds of the corresponding static array types.
2378      if (!CE->isGEPWithNoNotionalOverIndexing())
2379        return false;
2380
2381      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2382
2383    // A constantexpr bitcast from a pointer to another pointer is a no-op,
2384    // and we know how to evaluate it by moving the bitcast from the pointer
2385    // operand to the value operand.
2386    } else if (CE->getOpcode() == Instruction::BitCast &&
2387               isa<GlobalVariable>(CE->getOperand(0))) {
2388      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2389      // external globals.
2390      return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2391    }
2392  }
2393
2394  return false;
2395}
2396
2397/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2398/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2399/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2400static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2401                                   ConstantExpr *Addr, unsigned OpNo) {
2402  // Base case of the recursion.
2403  if (OpNo == Addr->getNumOperands()) {
2404    assert(Val->getType() == Init->getType() && "Type mismatch!");
2405    return Val;
2406  }
2407
2408  SmallVector<Constant*, 32> Elts;
2409  if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2410    // Break up the constant into its elements.
2411    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2412      Elts.push_back(Init->getAggregateElement(i));
2413
2414    // Replace the element that we are supposed to.
2415    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2416    unsigned Idx = CU->getZExtValue();
2417    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2418    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2419
2420    // Return the modified struct.
2421    return ConstantStruct::get(STy, Elts);
2422  }
2423
2424  ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2425  SequentialType *InitTy = cast<SequentialType>(Init->getType());
2426
2427  uint64_t NumElts;
2428  if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2429    NumElts = ATy->getNumElements();
2430  else
2431    NumElts = InitTy->getVectorNumElements();
2432
2433  // Break up the array into elements.
2434  for (uint64_t i = 0, e = NumElts; i != e; ++i)
2435    Elts.push_back(Init->getAggregateElement(i));
2436
2437  assert(CI->getZExtValue() < NumElts);
2438  Elts[CI->getZExtValue()] =
2439    EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2440
2441  if (Init->getType()->isArrayTy())
2442    return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2443  return ConstantVector::get(Elts);
2444}
2445
2446/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2447/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2448static void CommitValueTo(Constant *Val, Constant *Addr) {
2449  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2450    assert(GV->hasInitializer());
2451    GV->setInitializer(Val);
2452    return;
2453  }
2454
2455  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2456  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2457  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2458}
2459
2460namespace {
2461
2462/// Evaluator - This class evaluates LLVM IR, producing the Constant
2463/// representing each SSA instruction.  Changes to global variables are stored
2464/// in a mapping that can be iterated over after the evaluation is complete.
2465/// Once an evaluation call fails, the evaluation object should not be reused.
2466class Evaluator {
2467public:
2468  Evaluator(const DataLayout *TD, const TargetLibraryInfo *TLI)
2469    : TD(TD), TLI(TLI) {
2470    ValueStack.push_back(new DenseMap<Value*, Constant*>);
2471  }
2472
2473  ~Evaluator() {
2474    DeleteContainerPointers(ValueStack);
2475    while (!AllocaTmps.empty()) {
2476      GlobalVariable *Tmp = AllocaTmps.back();
2477      AllocaTmps.pop_back();
2478
2479      // If there are still users of the alloca, the program is doing something
2480      // silly, e.g. storing the address of the alloca somewhere and using it
2481      // later.  Since this is undefined, we'll just make it be null.
2482      if (!Tmp->use_empty())
2483        Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2484      delete Tmp;
2485    }
2486  }
2487
2488  /// EvaluateFunction - Evaluate a call to function F, returning true if
2489  /// successful, false if we can't evaluate it.  ActualArgs contains the formal
2490  /// arguments for the function.
2491  bool EvaluateFunction(Function *F, Constant *&RetVal,
2492                        const SmallVectorImpl<Constant*> &ActualArgs);
2493
2494  /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2495  /// successful, false if we can't evaluate it.  NewBB returns the next BB that
2496  /// control flows into, or null upon return.
2497  bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
2498
2499  Constant *getVal(Value *V) {
2500    if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2501    Constant *R = ValueStack.back()->lookup(V);
2502    assert(R && "Reference to an uncomputed value!");
2503    return R;
2504  }
2505
2506  void setVal(Value *V, Constant *C) {
2507    ValueStack.back()->operator[](V) = C;
2508  }
2509
2510  const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
2511    return MutatedMemory;
2512  }
2513
2514  const SmallPtrSet<GlobalVariable*, 8> &getInvariants() const {
2515    return Invariants;
2516  }
2517
2518private:
2519  Constant *ComputeLoadResult(Constant *P);
2520
2521  /// ValueStack - As we compute SSA register values, we store their contents
2522  /// here. The back of the vector contains the current function and the stack
2523  /// contains the values in the calling frames.
2524  SmallVector<DenseMap<Value*, Constant*>*, 4> ValueStack;
2525
2526  /// CallStack - This is used to detect recursion.  In pathological situations
2527  /// we could hit exponential behavior, but at least there is nothing
2528  /// unbounded.
2529  SmallVector<Function*, 4> CallStack;
2530
2531  /// MutatedMemory - For each store we execute, we update this map.  Loads
2532  /// check this to get the most up-to-date value.  If evaluation is successful,
2533  /// this state is committed to the process.
2534  DenseMap<Constant*, Constant*> MutatedMemory;
2535
2536  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2537  /// to represent its body.  This vector is needed so we can delete the
2538  /// temporary globals when we are done.
2539  SmallVector<GlobalVariable*, 32> AllocaTmps;
2540
2541  /// Invariants - These global variables have been marked invariant by the
2542  /// static constructor.
2543  SmallPtrSet<GlobalVariable*, 8> Invariants;
2544
2545  /// SimpleConstants - These are constants we have checked and know to be
2546  /// simple enough to live in a static initializer of a global.
2547  SmallPtrSet<Constant*, 8> SimpleConstants;
2548
2549  const DataLayout *TD;
2550  const TargetLibraryInfo *TLI;
2551};
2552
2553}  // anonymous namespace
2554
2555/// ComputeLoadResult - Return the value that would be computed by a load from
2556/// P after the stores reflected by 'memory' have been performed.  If we can't
2557/// decide, return null.
2558Constant *Evaluator::ComputeLoadResult(Constant *P) {
2559  // If this memory location has been recently stored, use the stored value: it
2560  // is the most up-to-date.
2561  DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
2562  if (I != MutatedMemory.end()) return I->second;
2563
2564  // Access it.
2565  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2566    if (GV->hasDefinitiveInitializer())
2567      return GV->getInitializer();
2568    return 0;
2569  }
2570
2571  // Handle a constantexpr getelementptr.
2572  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2573    if (CE->getOpcode() == Instruction::GetElementPtr &&
2574        isa<GlobalVariable>(CE->getOperand(0))) {
2575      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2576      if (GV->hasDefinitiveInitializer())
2577        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2578    }
2579
2580  return 0;  // don't know how to evaluate.
2581}
2582
2583/// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2584/// successful, false if we can't evaluate it.  NewBB returns the next BB that
2585/// control flows into, or null upon return.
2586bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
2587                              BasicBlock *&NextBB) {
2588  // This is the main evaluation loop.
2589  while (1) {
2590    Constant *InstResult = 0;
2591
2592    DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
2593
2594    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2595      if (!SI->isSimple()) {
2596        DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
2597        return false;  // no volatile/atomic accesses.
2598      }
2599      Constant *Ptr = getVal(SI->getOperand(1));
2600      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2601        DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
2602        Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2603        DEBUG(dbgs() << "; To: " << *Ptr << "\n");
2604      }
2605      if (!isSimpleEnoughPointerToCommit(Ptr)) {
2606        // If this is too complex for us to commit, reject it.
2607        DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
2608        return false;
2609      }
2610
2611      Constant *Val = getVal(SI->getOperand(0));
2612
2613      // If this might be too difficult for the backend to handle (e.g. the addr
2614      // of one global variable divided by another) then we can't commit it.
2615      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD)) {
2616        DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
2617              << "\n");
2618        return false;
2619      }
2620
2621      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2622        if (CE->getOpcode() == Instruction::BitCast) {
2623          DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
2624          // If we're evaluating a store through a bitcast, then we need
2625          // to pull the bitcast off the pointer type and push it onto the
2626          // stored value.
2627          Ptr = CE->getOperand(0);
2628
2629          Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
2630
2631          // In order to push the bitcast onto the stored value, a bitcast
2632          // from NewTy to Val's type must be legal.  If it's not, we can try
2633          // introspecting NewTy to find a legal conversion.
2634          while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2635            // If NewTy is a struct, we can convert the pointer to the struct
2636            // into a pointer to its first member.
2637            // FIXME: This could be extended to support arrays as well.
2638            if (StructType *STy = dyn_cast<StructType>(NewTy)) {
2639              NewTy = STy->getTypeAtIndex(0U);
2640
2641              IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
2642              Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2643              Constant * const IdxList[] = {IdxZero, IdxZero};
2644
2645              Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList);
2646              if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2647                Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2648
2649            // If we can't improve the situation by introspecting NewTy,
2650            // we have to give up.
2651            } else {
2652              DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
2653                    "evaluate.\n");
2654              return false;
2655            }
2656          }
2657
2658          // If we found compatible types, go ahead and push the bitcast
2659          // onto the stored value.
2660          Val = ConstantExpr::getBitCast(Val, NewTy);
2661
2662          DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
2663        }
2664      }
2665
2666      MutatedMemory[Ptr] = Val;
2667    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2668      InstResult = ConstantExpr::get(BO->getOpcode(),
2669                                     getVal(BO->getOperand(0)),
2670                                     getVal(BO->getOperand(1)));
2671      DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
2672            << "\n");
2673    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2674      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2675                                            getVal(CI->getOperand(0)),
2676                                            getVal(CI->getOperand(1)));
2677      DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
2678            << "\n");
2679    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2680      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2681                                         getVal(CI->getOperand(0)),
2682                                         CI->getType());
2683      DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
2684            << "\n");
2685    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2686      InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
2687                                           getVal(SI->getOperand(1)),
2688                                           getVal(SI->getOperand(2)));
2689      DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
2690            << "\n");
2691    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2692      Constant *P = getVal(GEP->getOperand(0));
2693      SmallVector<Constant*, 8> GEPOps;
2694      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2695           i != e; ++i)
2696        GEPOps.push_back(getVal(*i));
2697      InstResult =
2698        ConstantExpr::getGetElementPtr(P, GEPOps,
2699                                       cast<GEPOperator>(GEP)->isInBounds());
2700      DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
2701            << "\n");
2702    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2703
2704      if (!LI->isSimple()) {
2705        DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
2706        return false;  // no volatile/atomic accesses.
2707      }
2708
2709      Constant *Ptr = getVal(LI->getOperand(0));
2710      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2711        Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2712        DEBUG(dbgs() << "Found a constant pointer expression, constant "
2713              "folding: " << *Ptr << "\n");
2714      }
2715      InstResult = ComputeLoadResult(Ptr);
2716      if (InstResult == 0) {
2717        DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
2718              "\n");
2719        return false; // Could not evaluate load.
2720      }
2721
2722      DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
2723    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2724      if (AI->isArrayAllocation()) {
2725        DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
2726        return false;  // Cannot handle array allocs.
2727      }
2728      Type *Ty = AI->getType()->getElementType();
2729      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2730                                              GlobalValue::InternalLinkage,
2731                                              UndefValue::get(Ty),
2732                                              AI->getName()));
2733      InstResult = AllocaTmps.back();
2734      DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
2735    } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
2736      CallSite CS(CurInst);
2737
2738      // Debug info can safely be ignored here.
2739      if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
2740        DEBUG(dbgs() << "Ignoring debug info.\n");
2741        ++CurInst;
2742        continue;
2743      }
2744
2745      // Cannot handle inline asm.
2746      if (isa<InlineAsm>(CS.getCalledValue())) {
2747        DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
2748        return false;
2749      }
2750
2751      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
2752        if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
2753          if (MSI->isVolatile()) {
2754            DEBUG(dbgs() << "Can not optimize a volatile memset " <<
2755                  "intrinsic.\n");
2756            return false;
2757          }
2758          Constant *Ptr = getVal(MSI->getDest());
2759          Constant *Val = getVal(MSI->getValue());
2760          Constant *DestVal = ComputeLoadResult(getVal(Ptr));
2761          if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
2762            // This memset is a no-op.
2763            DEBUG(dbgs() << "Ignoring no-op memset.\n");
2764            ++CurInst;
2765            continue;
2766          }
2767        }
2768
2769        if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2770            II->getIntrinsicID() == Intrinsic::lifetime_end) {
2771          DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
2772          ++CurInst;
2773          continue;
2774        }
2775
2776        if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2777          // We don't insert an entry into Values, as it doesn't have a
2778          // meaningful return value.
2779          if (!II->use_empty()) {
2780            DEBUG(dbgs() << "Found unused invariant_start. Cant evaluate.\n");
2781            return false;
2782          }
2783          ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
2784          Value *PtrArg = getVal(II->getArgOperand(1));
2785          Value *Ptr = PtrArg->stripPointerCasts();
2786          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
2787            Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
2788            if (TD && !Size->isAllOnesValue() &&
2789                Size->getValue().getLimitedValue() >=
2790                TD->getTypeStoreSize(ElemTy)) {
2791              Invariants.insert(GV);
2792              DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
2793                    << "\n");
2794            } else {
2795              DEBUG(dbgs() << "Found a global var, but can not treat it as an "
2796                    "invariant.\n");
2797            }
2798          }
2799          // Continue even if we do nothing.
2800          ++CurInst;
2801          continue;
2802        }
2803
2804        DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
2805        return false;
2806      }
2807
2808      // Resolve function pointers.
2809      Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
2810      if (!Callee || Callee->mayBeOverridden()) {
2811        DEBUG(dbgs() << "Can not resolve function pointer.\n");
2812        return false;  // Cannot resolve.
2813      }
2814
2815      SmallVector<Constant*, 8> Formals;
2816      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
2817        Formals.push_back(getVal(*i));
2818
2819      if (Callee->isDeclaration()) {
2820        // If this is a function we can constant fold, do it.
2821        if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
2822          InstResult = C;
2823          DEBUG(dbgs() << "Constant folded function call. Result: " <<
2824                *InstResult << "\n");
2825        } else {
2826          DEBUG(dbgs() << "Can not constant fold function call.\n");
2827          return false;
2828        }
2829      } else {
2830        if (Callee->getFunctionType()->isVarArg()) {
2831          DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
2832          return false;
2833        }
2834
2835        Constant *RetVal = 0;
2836        // Execute the call, if successful, use the return value.
2837        ValueStack.push_back(new DenseMap<Value*, Constant*>);
2838        if (!EvaluateFunction(Callee, RetVal, Formals)) {
2839          DEBUG(dbgs() << "Failed to evaluate function.\n");
2840          return false;
2841        }
2842        delete ValueStack.pop_back_val();
2843        InstResult = RetVal;
2844
2845        if (InstResult != NULL) {
2846          DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
2847                InstResult << "\n\n");
2848        } else {
2849          DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
2850        }
2851      }
2852    } else if (isa<TerminatorInst>(CurInst)) {
2853      DEBUG(dbgs() << "Found a terminator instruction.\n");
2854
2855      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2856        if (BI->isUnconditional()) {
2857          NextBB = BI->getSuccessor(0);
2858        } else {
2859          ConstantInt *Cond =
2860            dyn_cast<ConstantInt>(getVal(BI->getCondition()));
2861          if (!Cond) return false;  // Cannot determine.
2862
2863          NextBB = BI->getSuccessor(!Cond->getZExtValue());
2864        }
2865      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2866        ConstantInt *Val =
2867          dyn_cast<ConstantInt>(getVal(SI->getCondition()));
2868        if (!Val) return false;  // Cannot determine.
2869        NextBB = SI->findCaseValue(Val).getCaseSuccessor();
2870      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2871        Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
2872        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2873          NextBB = BA->getBasicBlock();
2874        else
2875          return false;  // Cannot determine.
2876      } else if (isa<ReturnInst>(CurInst)) {
2877        NextBB = 0;
2878      } else {
2879        // invoke, unwind, resume, unreachable.
2880        DEBUG(dbgs() << "Can not handle terminator.");
2881        return false;  // Cannot handle this terminator.
2882      }
2883
2884      // We succeeded at evaluating this block!
2885      DEBUG(dbgs() << "Successfully evaluated block.\n");
2886      return true;
2887    } else {
2888      // Did not know how to evaluate this!
2889      DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
2890            "\n");
2891      return false;
2892    }
2893
2894    if (!CurInst->use_empty()) {
2895      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2896        InstResult = ConstantFoldConstantExpression(CE, TD, TLI);
2897
2898      setVal(CurInst, InstResult);
2899    }
2900
2901    // If we just processed an invoke, we finished evaluating the block.
2902    if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
2903      NextBB = II->getNormalDest();
2904      DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
2905      return true;
2906    }
2907
2908    // Advance program counter.
2909    ++CurInst;
2910  }
2911}
2912
2913/// EvaluateFunction - Evaluate a call to function F, returning true if
2914/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2915/// arguments for the function.
2916bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
2917                                 const SmallVectorImpl<Constant*> &ActualArgs) {
2918  // Check to see if this function is already executing (recursion).  If so,
2919  // bail out.  TODO: we might want to accept limited recursion.
2920  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2921    return false;
2922
2923  CallStack.push_back(F);
2924
2925  // Initialize arguments to the incoming values specified.
2926  unsigned ArgNo = 0;
2927  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2928       ++AI, ++ArgNo)
2929    setVal(AI, ActualArgs[ArgNo]);
2930
2931  // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2932  // we can only evaluate any one basic block at most once.  This set keeps
2933  // track of what we have executed so we can detect recursive cases etc.
2934  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2935
2936  // CurBB - The current basic block we're evaluating.
2937  BasicBlock *CurBB = F->begin();
2938
2939  BasicBlock::iterator CurInst = CurBB->begin();
2940
2941  while (1) {
2942    BasicBlock *NextBB = 0; // Initialized to avoid compiler warnings.
2943    DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
2944
2945    if (!EvaluateBlock(CurInst, NextBB))
2946      return false;
2947
2948    if (NextBB == 0) {
2949      // Successfully running until there's no next block means that we found
2950      // the return.  Fill it the return value and pop the call stack.
2951      ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
2952      if (RI->getNumOperands())
2953        RetVal = getVal(RI->getOperand(0));
2954      CallStack.pop_back();
2955      return true;
2956    }
2957
2958    // Okay, we succeeded in evaluating this control flow.  See if we have
2959    // executed the new block before.  If so, we have a looping function,
2960    // which we cannot evaluate in reasonable time.
2961    if (!ExecutedBlocks.insert(NextBB))
2962      return false;  // looped!
2963
2964    // Okay, we have never been in this block before.  Check to see if there
2965    // are any PHI nodes.  If so, evaluate them with information about where
2966    // we came from.
2967    PHINode *PN = 0;
2968    for (CurInst = NextBB->begin();
2969         (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2970      setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
2971
2972    // Advance to the next block.
2973    CurBB = NextBB;
2974  }
2975}
2976
2977/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2978/// we can.  Return true if we can, false otherwise.
2979static bool EvaluateStaticConstructor(Function *F, const DataLayout *TD,
2980                                      const TargetLibraryInfo *TLI) {
2981  // Call the function.
2982  Evaluator Eval(TD, TLI);
2983  Constant *RetValDummy;
2984  bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2985                                           SmallVector<Constant*, 0>());
2986
2987  if (EvalSuccess) {
2988    // We succeeded at evaluation: commit the result.
2989    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2990          << F->getName() << "' to " << Eval.getMutatedMemory().size()
2991          << " stores.\n");
2992    for (DenseMap<Constant*, Constant*>::const_iterator I =
2993           Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
2994         I != E; ++I)
2995      CommitValueTo(I->second, I->first);
2996    for (SmallPtrSet<GlobalVariable*, 8>::const_iterator I =
2997           Eval.getInvariants().begin(), E = Eval.getInvariants().end();
2998         I != E; ++I)
2999      (*I)->setConstant(true);
3000  }
3001
3002  return EvalSuccess;
3003}
3004
3005/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
3006/// Return true if anything changed.
3007bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
3008  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
3009  bool MadeChange = false;
3010  if (Ctors.empty()) return false;
3011
3012  // Loop over global ctors, optimizing them when we can.
3013  for (unsigned i = 0; i != Ctors.size(); ++i) {
3014    Function *F = Ctors[i];
3015    // Found a null terminator in the middle of the list, prune off the rest of
3016    // the list.
3017    if (F == 0) {
3018      if (i != Ctors.size()-1) {
3019        Ctors.resize(i+1);
3020        MadeChange = true;
3021      }
3022      break;
3023    }
3024    DEBUG(dbgs() << "Optimizing Global Constructor: " << *F << "\n");
3025
3026    // We cannot simplify external ctor functions.
3027    if (F->empty()) continue;
3028
3029    // If we can evaluate the ctor at compile time, do.
3030    if (EvaluateStaticConstructor(F, TD, TLI)) {
3031      Ctors.erase(Ctors.begin()+i);
3032      MadeChange = true;
3033      --i;
3034      ++NumCtorsEvaluated;
3035      continue;
3036    }
3037  }
3038
3039  if (!MadeChange) return false;
3040
3041  GCL = InstallGlobalCtors(GCL, Ctors);
3042  return true;
3043}
3044
3045static int compareNames(Constant *const *A, Constant *const *B) {
3046  return (*A)->getName().compare((*B)->getName());
3047}
3048
3049static void setUsedInitializer(GlobalVariable &V,
3050                               SmallPtrSet<GlobalValue *, 8> Init) {
3051  if (Init.empty()) {
3052    V.eraseFromParent();
3053    return;
3054  }
3055
3056  SmallVector<llvm::Constant *, 8> UsedArray;
3057  PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext());
3058
3059  for (SmallPtrSet<GlobalValue *, 8>::iterator I = Init.begin(), E = Init.end();
3060       I != E; ++I) {
3061    Constant *Cast = llvm::ConstantExpr::getBitCast(*I, Int8PtrTy);
3062    UsedArray.push_back(Cast);
3063  }
3064  // Sort to get deterministic order.
3065  array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
3066  ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
3067
3068  Module *M = V.getParent();
3069  V.removeFromParent();
3070  GlobalVariable *NV =
3071      new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
3072                         llvm::ConstantArray::get(ATy, UsedArray), "");
3073  NV->takeName(&V);
3074  NV->setSection("llvm.metadata");
3075  delete &V;
3076}
3077
3078namespace {
3079/// \brief An easy to access representation of llvm.used and llvm.compiler.used.
3080class LLVMUsed {
3081  SmallPtrSet<GlobalValue *, 8> Used;
3082  SmallPtrSet<GlobalValue *, 8> CompilerUsed;
3083  GlobalVariable *UsedV;
3084  GlobalVariable *CompilerUsedV;
3085
3086public:
3087  LLVMUsed(Module &M) {
3088    UsedV = collectUsedGlobalVariables(M, Used, false);
3089    CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
3090  }
3091  typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
3092  iterator usedBegin() { return Used.begin(); }
3093  iterator usedEnd() { return Used.end(); }
3094  iterator compilerUsedBegin() { return CompilerUsed.begin(); }
3095  iterator compilerUsedEnd() { return CompilerUsed.end(); }
3096  bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
3097  bool compilerUsedCount(GlobalValue *GV) const {
3098    return CompilerUsed.count(GV);
3099  }
3100  bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
3101  bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
3102  bool usedInsert(GlobalValue *GV) { return Used.insert(GV); }
3103  bool compilerUsedInsert(GlobalValue *GV) { return CompilerUsed.insert(GV); }
3104
3105  void syncVariablesAndSets() {
3106    if (UsedV)
3107      setUsedInitializer(*UsedV, Used);
3108    if (CompilerUsedV)
3109      setUsedInitializer(*CompilerUsedV, CompilerUsed);
3110  }
3111};
3112}
3113
3114static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
3115  if (GA.use_empty()) // No use at all.
3116    return false;
3117
3118  assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
3119         "We should have removed the duplicated "
3120         "element from llvm.compiler.used");
3121  if (!GA.hasOneUse())
3122    // Strictly more than one use. So at least one is not in llvm.used and
3123    // llvm.compiler.used.
3124    return true;
3125
3126  // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
3127  return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
3128}
3129
3130static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
3131                                               const LLVMUsed &U) {
3132  unsigned N = 2;
3133  assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
3134         "We should have removed the duplicated "
3135         "element from llvm.compiler.used");
3136  if (U.usedCount(&V) || U.compilerUsedCount(&V))
3137    ++N;
3138  return V.hasNUsesOrMore(N);
3139}
3140
3141static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
3142  if (!GA.hasLocalLinkage())
3143    return true;
3144
3145  return U.usedCount(&GA) || U.compilerUsedCount(&GA);
3146}
3147
3148static bool hasUsesToReplace(GlobalAlias &GA, LLVMUsed &U, bool &RenameTarget) {
3149  RenameTarget = false;
3150  bool Ret = false;
3151  if (hasUseOtherThanLLVMUsed(GA, U))
3152    Ret = true;
3153
3154  // If the alias is externally visible, we may still be able to simplify it.
3155  if (!mayHaveOtherReferences(GA, U))
3156    return Ret;
3157
3158  // If the aliasee has internal linkage, give it the name and linkage
3159  // of the alias, and delete the alias.  This turns:
3160  //   define internal ... @f(...)
3161  //   @a = alias ... @f
3162  // into:
3163  //   define ... @a(...)
3164  Constant *Aliasee = GA.getAliasee();
3165  GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
3166  if (!Target->hasLocalLinkage())
3167    return Ret;
3168
3169  // Do not perform the transform if multiple aliases potentially target the
3170  // aliasee. This check also ensures that it is safe to replace the section
3171  // and other attributes of the aliasee with those of the alias.
3172  if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
3173    return Ret;
3174
3175  RenameTarget = true;
3176  return true;
3177}
3178
3179bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
3180  bool Changed = false;
3181  LLVMUsed Used(M);
3182
3183  for (SmallPtrSet<GlobalValue *, 8>::iterator I = Used.usedBegin(),
3184                                               E = Used.usedEnd();
3185       I != E; ++I)
3186    Used.compilerUsedErase(*I);
3187
3188  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
3189       I != E;) {
3190    Module::alias_iterator J = I++;
3191    // Aliases without names cannot be referenced outside this module.
3192    if (!J->hasName() && !J->isDeclaration())
3193      J->setLinkage(GlobalValue::InternalLinkage);
3194    // If the aliasee may change at link time, nothing can be done - bail out.
3195    if (J->mayBeOverridden())
3196      continue;
3197
3198    Constant *Aliasee = J->getAliasee();
3199    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
3200    Target->removeDeadConstantUsers();
3201
3202    // Make all users of the alias use the aliasee instead.
3203    bool RenameTarget;
3204    if (!hasUsesToReplace(*J, Used, RenameTarget))
3205      continue;
3206
3207    J->replaceAllUsesWith(Aliasee);
3208    ++NumAliasesResolved;
3209    Changed = true;
3210
3211    if (RenameTarget) {
3212      // Give the aliasee the name, linkage and other attributes of the alias.
3213      Target->takeName(J);
3214      Target->setLinkage(J->getLinkage());
3215      Target->GlobalValue::copyAttributesFrom(J);
3216
3217      if (Used.usedErase(J))
3218        Used.usedInsert(Target);
3219
3220      if (Used.compilerUsedErase(J))
3221        Used.compilerUsedInsert(Target);
3222    } else if (mayHaveOtherReferences(*J, Used))
3223      continue;
3224
3225    // Delete the alias.
3226    M.getAliasList().erase(J);
3227    ++NumAliasesRemoved;
3228    Changed = true;
3229  }
3230
3231  Used.syncVariablesAndSets();
3232
3233  return Changed;
3234}
3235
3236static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
3237  if (!TLI->has(LibFunc::cxa_atexit))
3238    return 0;
3239
3240  Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
3241
3242  if (!Fn)
3243    return 0;
3244
3245  FunctionType *FTy = Fn->getFunctionType();
3246
3247  // Checking that the function has the right return type, the right number of
3248  // parameters and that they all have pointer types should be enough.
3249  if (!FTy->getReturnType()->isIntegerTy() ||
3250      FTy->getNumParams() != 3 ||
3251      !FTy->getParamType(0)->isPointerTy() ||
3252      !FTy->getParamType(1)->isPointerTy() ||
3253      !FTy->getParamType(2)->isPointerTy())
3254    return 0;
3255
3256  return Fn;
3257}
3258
3259/// cxxDtorIsEmpty - Returns whether the given function is an empty C++
3260/// destructor and can therefore be eliminated.
3261/// Note that we assume that other optimization passes have already simplified
3262/// the code so we only look for a function with a single basic block, where
3263/// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
3264/// other side-effect free instructions.
3265static bool cxxDtorIsEmpty(const Function &Fn,
3266                           SmallPtrSet<const Function *, 8> &CalledFunctions) {
3267  // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
3268  // nounwind, but that doesn't seem worth doing.
3269  if (Fn.isDeclaration())
3270    return false;
3271
3272  if (++Fn.begin() != Fn.end())
3273    return false;
3274
3275  const BasicBlock &EntryBlock = Fn.getEntryBlock();
3276  for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
3277       I != E; ++I) {
3278    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
3279      // Ignore debug intrinsics.
3280      if (isa<DbgInfoIntrinsic>(CI))
3281        continue;
3282
3283      const Function *CalledFn = CI->getCalledFunction();
3284
3285      if (!CalledFn)
3286        return false;
3287
3288      SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
3289
3290      // Don't treat recursive functions as empty.
3291      if (!NewCalledFunctions.insert(CalledFn))
3292        return false;
3293
3294      if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
3295        return false;
3296    } else if (isa<ReturnInst>(*I))
3297      return true; // We're done.
3298    else if (I->mayHaveSideEffects())
3299      return false; // Destructor with side effects, bail.
3300  }
3301
3302  return false;
3303}
3304
3305bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
3306  /// Itanium C++ ABI p3.3.5:
3307  ///
3308  ///   After constructing a global (or local static) object, that will require
3309  ///   destruction on exit, a termination function is registered as follows:
3310  ///
3311  ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
3312  ///
3313  ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
3314  ///   call f(p) when DSO d is unloaded, before all such termination calls
3315  ///   registered before this one. It returns zero if registration is
3316  ///   successful, nonzero on failure.
3317
3318  // This pass will look for calls to __cxa_atexit where the function is trivial
3319  // and remove them.
3320  bool Changed = false;
3321
3322  for (Function::use_iterator I = CXAAtExitFn->use_begin(),
3323       E = CXAAtExitFn->use_end(); I != E;) {
3324    // We're only interested in calls. Theoretically, we could handle invoke
3325    // instructions as well, but neither llvm-gcc nor clang generate invokes
3326    // to __cxa_atexit.
3327    CallInst *CI = dyn_cast<CallInst>(*I++);
3328    if (!CI)
3329      continue;
3330
3331    Function *DtorFn =
3332      dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
3333    if (!DtorFn)
3334      continue;
3335
3336    SmallPtrSet<const Function *, 8> CalledFunctions;
3337    if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
3338      continue;
3339
3340    // Just remove the call.
3341    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
3342    CI->eraseFromParent();
3343
3344    ++NumCXXDtorsRemoved;
3345
3346    Changed |= true;
3347  }
3348
3349  return Changed;
3350}
3351
3352bool GlobalOpt::runOnModule(Module &M) {
3353  bool Changed = false;
3354
3355  TD = getAnalysisIfAvailable<DataLayout>();
3356  TLI = &getAnalysis<TargetLibraryInfo>();
3357
3358  // Try to find the llvm.globalctors list.
3359  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
3360
3361  bool LocalChange = true;
3362  while (LocalChange) {
3363    LocalChange = false;
3364
3365    // Delete functions that are trivially dead, ccc -> fastcc
3366    LocalChange |= OptimizeFunctions(M);
3367
3368    // Optimize global_ctors list.
3369    if (GlobalCtors)
3370      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
3371
3372    // Optimize non-address-taken globals.
3373    LocalChange |= OptimizeGlobalVars(M);
3374
3375    // Resolve aliases, when possible.
3376    LocalChange |= OptimizeGlobalAliases(M);
3377
3378    // Try to remove trivial global destructors if they are not removed
3379    // already.
3380    Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
3381    if (CXAAtExitFn)
3382      LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
3383
3384    Changed |= LocalChange;
3385  }
3386
3387  // TODO: Move all global ctors functions to the end of the module for code
3388  // layout.
3389
3390  return Changed;
3391}
3392