GlobalOpt.cpp revision c62482d4edecd416e6529e31427fa6fd8a9b7ece
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass transforms simple global variables that never have their address 11// taken. If obviously true, it marks read/write globals as constant, deletes 12// variables only stored to, etc. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "globalopt" 17#include "llvm/Transforms/IPO.h" 18#include "llvm/CallingConv.h" 19#include "llvm/Constants.h" 20#include "llvm/DerivedTypes.h" 21#include "llvm/Instructions.h" 22#include "llvm/IntrinsicInst.h" 23#include "llvm/LLVMContext.h" 24#include "llvm/Module.h" 25#include "llvm/Pass.h" 26#include "llvm/Analysis/ConstantFolding.h" 27#include "llvm/Target/TargetData.h" 28#include "llvm/Support/CallSite.h" 29#include "llvm/Support/Compiler.h" 30#include "llvm/Support/Debug.h" 31#include "llvm/Support/ErrorHandling.h" 32#include "llvm/Support/GetElementPtrTypeIterator.h" 33#include "llvm/Support/MathExtras.h" 34#include "llvm/Support/raw_ostream.h" 35#include "llvm/ADT/DenseMap.h" 36#include "llvm/ADT/SmallPtrSet.h" 37#include "llvm/ADT/SmallVector.h" 38#include "llvm/ADT/Statistic.h" 39#include "llvm/ADT/STLExtras.h" 40#include <algorithm> 41using namespace llvm; 42 43STATISTIC(NumMarked , "Number of globals marked constant"); 44STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 45STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 46STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 47STATISTIC(NumDeleted , "Number of globals deleted"); 48STATISTIC(NumFnDeleted , "Number of functions deleted"); 49STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 50STATISTIC(NumLocalized , "Number of globals localized"); 51STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 52STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 53STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 54STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 55STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 56STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 57 58namespace { 59 struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass { 60 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 61 } 62 static char ID; // Pass identification, replacement for typeid 63 GlobalOpt() : ModulePass(&ID) {} 64 65 bool runOnModule(Module &M); 66 67 private: 68 GlobalVariable *FindGlobalCtors(Module &M); 69 bool OptimizeFunctions(Module &M); 70 bool OptimizeGlobalVars(Module &M); 71 bool OptimizeGlobalAliases(Module &M); 72 bool OptimizeGlobalCtorsList(GlobalVariable *&GCL); 73 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI); 74 }; 75} 76 77char GlobalOpt::ID = 0; 78static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer"); 79 80ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } 81 82namespace { 83 84/// GlobalStatus - As we analyze each global, keep track of some information 85/// about it. If we find out that the address of the global is taken, none of 86/// this info will be accurate. 87struct VISIBILITY_HIDDEN GlobalStatus { 88 /// isLoaded - True if the global is ever loaded. If the global isn't ever 89 /// loaded it can be deleted. 90 bool isLoaded; 91 92 /// StoredType - Keep track of what stores to the global look like. 93 /// 94 enum StoredType { 95 /// NotStored - There is no store to this global. It can thus be marked 96 /// constant. 97 NotStored, 98 99 /// isInitializerStored - This global is stored to, but the only thing 100 /// stored is the constant it was initialized with. This is only tracked 101 /// for scalar globals. 102 isInitializerStored, 103 104 /// isStoredOnce - This global is stored to, but only its initializer and 105 /// one other value is ever stored to it. If this global isStoredOnce, we 106 /// track the value stored to it in StoredOnceValue below. This is only 107 /// tracked for scalar globals. 108 isStoredOnce, 109 110 /// isStored - This global is stored to by multiple values or something else 111 /// that we cannot track. 112 isStored 113 } StoredType; 114 115 /// StoredOnceValue - If only one value (besides the initializer constant) is 116 /// ever stored to this global, keep track of what value it is. 117 Value *StoredOnceValue; 118 119 /// AccessingFunction/HasMultipleAccessingFunctions - These start out 120 /// null/false. When the first accessing function is noticed, it is recorded. 121 /// When a second different accessing function is noticed, 122 /// HasMultipleAccessingFunctions is set to true. 123 Function *AccessingFunction; 124 bool HasMultipleAccessingFunctions; 125 126 /// HasNonInstructionUser - Set to true if this global has a user that is not 127 /// an instruction (e.g. a constant expr or GV initializer). 128 bool HasNonInstructionUser; 129 130 /// HasPHIUser - Set to true if this global has a user that is a PHI node. 131 bool HasPHIUser; 132 133 GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0), 134 AccessingFunction(0), HasMultipleAccessingFunctions(false), 135 HasNonInstructionUser(false), HasPHIUser(false) {} 136}; 137 138} 139 140// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used 141// by constants itself. Note that constants cannot be cyclic, so this test is 142// pretty easy to implement recursively. 143// 144static bool SafeToDestroyConstant(Constant *C) { 145 if (isa<GlobalValue>(C)) return false; 146 147 for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI) 148 if (Constant *CU = dyn_cast<Constant>(*UI)) { 149 if (!SafeToDestroyConstant(CU)) return false; 150 } else 151 return false; 152 return true; 153} 154 155 156/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus 157/// structure. If the global has its address taken, return true to indicate we 158/// can't do anything with it. 159/// 160static bool AnalyzeGlobal(Value *V, GlobalStatus &GS, 161 SmallPtrSet<PHINode*, 16> &PHIUsers) { 162 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) 163 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) { 164 GS.HasNonInstructionUser = true; 165 166 if (AnalyzeGlobal(CE, GS, PHIUsers)) return true; 167 168 } else if (Instruction *I = dyn_cast<Instruction>(*UI)) { 169 if (!GS.HasMultipleAccessingFunctions) { 170 Function *F = I->getParent()->getParent(); 171 if (GS.AccessingFunction == 0) 172 GS.AccessingFunction = F; 173 else if (GS.AccessingFunction != F) 174 GS.HasMultipleAccessingFunctions = true; 175 } 176 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 177 GS.isLoaded = true; 178 if (LI->isVolatile()) return true; // Don't hack on volatile loads. 179 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 180 // Don't allow a store OF the address, only stores TO the address. 181 if (SI->getOperand(0) == V) return true; 182 183 if (SI->isVolatile()) return true; // Don't hack on volatile stores. 184 185 // If this is a direct store to the global (i.e., the global is a scalar 186 // value, not an aggregate), keep more specific information about 187 // stores. 188 if (GS.StoredType != GlobalStatus::isStored) { 189 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){ 190 Value *StoredVal = SI->getOperand(0); 191 if (StoredVal == GV->getInitializer()) { 192 if (GS.StoredType < GlobalStatus::isInitializerStored) 193 GS.StoredType = GlobalStatus::isInitializerStored; 194 } else if (isa<LoadInst>(StoredVal) && 195 cast<LoadInst>(StoredVal)->getOperand(0) == GV) { 196 // G = G 197 if (GS.StoredType < GlobalStatus::isInitializerStored) 198 GS.StoredType = GlobalStatus::isInitializerStored; 199 } else if (GS.StoredType < GlobalStatus::isStoredOnce) { 200 GS.StoredType = GlobalStatus::isStoredOnce; 201 GS.StoredOnceValue = StoredVal; 202 } else if (GS.StoredType == GlobalStatus::isStoredOnce && 203 GS.StoredOnceValue == StoredVal) { 204 // noop. 205 } else { 206 GS.StoredType = GlobalStatus::isStored; 207 } 208 } else { 209 GS.StoredType = GlobalStatus::isStored; 210 } 211 } 212 } else if (isa<GetElementPtrInst>(I)) { 213 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 214 } else if (isa<SelectInst>(I)) { 215 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 216 } else if (PHINode *PN = dyn_cast<PHINode>(I)) { 217 // PHI nodes we can check just like select or GEP instructions, but we 218 // have to be careful about infinite recursion. 219 if (PHIUsers.insert(PN)) // Not already visited. 220 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 221 GS.HasPHIUser = true; 222 } else if (isa<CmpInst>(I)) { 223 } else if (isa<MemTransferInst>(I)) { 224 if (I->getOperand(1) == V) 225 GS.StoredType = GlobalStatus::isStored; 226 if (I->getOperand(2) == V) 227 GS.isLoaded = true; 228 } else if (isa<MemSetInst>(I)) { 229 assert(I->getOperand(1) == V && "Memset only takes one pointer!"); 230 GS.StoredType = GlobalStatus::isStored; 231 } else { 232 return true; // Any other non-load instruction might take address! 233 } 234 } else if (Constant *C = dyn_cast<Constant>(*UI)) { 235 GS.HasNonInstructionUser = true; 236 // We might have a dead and dangling constant hanging off of here. 237 if (!SafeToDestroyConstant(C)) 238 return true; 239 } else { 240 GS.HasNonInstructionUser = true; 241 // Otherwise must be some other user. 242 return true; 243 } 244 245 return false; 246} 247 248static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx, 249 LLVMContext &Context) { 250 ConstantInt *CI = dyn_cast<ConstantInt>(Idx); 251 if (!CI) return 0; 252 unsigned IdxV = CI->getZExtValue(); 253 254 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) { 255 if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV); 256 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) { 257 if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV); 258 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) { 259 if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV); 260 } else if (isa<ConstantAggregateZero>(Agg)) { 261 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) { 262 if (IdxV < STy->getNumElements()) 263 return Constant::getNullValue(STy->getElementType(IdxV)); 264 } else if (const SequentialType *STy = 265 dyn_cast<SequentialType>(Agg->getType())) { 266 return Constant::getNullValue(STy->getElementType()); 267 } 268 } else if (isa<UndefValue>(Agg)) { 269 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) { 270 if (IdxV < STy->getNumElements()) 271 return UndefValue::get(STy->getElementType(IdxV)); 272 } else if (const SequentialType *STy = 273 dyn_cast<SequentialType>(Agg->getType())) { 274 return UndefValue::get(STy->getElementType()); 275 } 276 } 277 return 0; 278} 279 280 281/// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all 282/// users of the global, cleaning up the obvious ones. This is largely just a 283/// quick scan over the use list to clean up the easy and obvious cruft. This 284/// returns true if it made a change. 285static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 286 LLVMContext &Context) { 287 bool Changed = false; 288 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) { 289 User *U = *UI++; 290 291 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 292 if (Init) { 293 // Replace the load with the initializer. 294 LI->replaceAllUsesWith(Init); 295 LI->eraseFromParent(); 296 Changed = true; 297 } 298 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 299 // Store must be unreachable or storing Init into the global. 300 SI->eraseFromParent(); 301 Changed = true; 302 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 303 if (CE->getOpcode() == Instruction::GetElementPtr) { 304 Constant *SubInit = 0; 305 if (Init) 306 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context); 307 Changed |= CleanupConstantGlobalUsers(CE, SubInit, Context); 308 } else if (CE->getOpcode() == Instruction::BitCast && 309 isa<PointerType>(CE->getType())) { 310 // Pointer cast, delete any stores and memsets to the global. 311 Changed |= CleanupConstantGlobalUsers(CE, 0, Context); 312 } 313 314 if (CE->use_empty()) { 315 CE->destroyConstant(); 316 Changed = true; 317 } 318 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 319 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 320 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 321 // and will invalidate our notion of what Init is. 322 Constant *SubInit = 0; 323 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 324 ConstantExpr *CE = 325 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, Context)); 326 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 327 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context); 328 } 329 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, Context); 330 331 if (GEP->use_empty()) { 332 GEP->eraseFromParent(); 333 Changed = true; 334 } 335 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 336 if (MI->getRawDest() == V) { 337 MI->eraseFromParent(); 338 Changed = true; 339 } 340 341 } else if (Constant *C = dyn_cast<Constant>(U)) { 342 // If we have a chain of dead constantexprs or other things dangling from 343 // us, and if they are all dead, nuke them without remorse. 344 if (SafeToDestroyConstant(C)) { 345 C->destroyConstant(); 346 // This could have invalidated UI, start over from scratch. 347 CleanupConstantGlobalUsers(V, Init, Context); 348 return true; 349 } 350 } 351 } 352 return Changed; 353} 354 355/// isSafeSROAElementUse - Return true if the specified instruction is a safe 356/// user of a derived expression from a global that we want to SROA. 357static bool isSafeSROAElementUse(Value *V) { 358 // We might have a dead and dangling constant hanging off of here. 359 if (Constant *C = dyn_cast<Constant>(V)) 360 return SafeToDestroyConstant(C); 361 362 Instruction *I = dyn_cast<Instruction>(V); 363 if (!I) return false; 364 365 // Loads are ok. 366 if (isa<LoadInst>(I)) return true; 367 368 // Stores *to* the pointer are ok. 369 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 370 return SI->getOperand(0) != V; 371 372 // Otherwise, it must be a GEP. 373 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 374 if (GEPI == 0) return false; 375 376 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 377 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 378 return false; 379 380 for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end(); 381 I != E; ++I) 382 if (!isSafeSROAElementUse(*I)) 383 return false; 384 return true; 385} 386 387 388/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value. 389/// Look at it and its uses and decide whether it is safe to SROA this global. 390/// 391static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 392 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 393 if (!isa<GetElementPtrInst>(U) && 394 (!isa<ConstantExpr>(U) || 395 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 396 return false; 397 398 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 399 // don't like < 3 operand CE's, and we don't like non-constant integer 400 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 401 // value of C. 402 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 403 !cast<Constant>(U->getOperand(1))->isNullValue() || 404 !isa<ConstantInt>(U->getOperand(2))) 405 return false; 406 407 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 408 ++GEPI; // Skip over the pointer index. 409 410 // If this is a use of an array allocation, do a bit more checking for sanity. 411 if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 412 uint64_t NumElements = AT->getNumElements(); 413 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 414 415 // Check to make sure that index falls within the array. If not, 416 // something funny is going on, so we won't do the optimization. 417 // 418 if (Idx->getZExtValue() >= NumElements) 419 return false; 420 421 // We cannot scalar repl this level of the array unless any array 422 // sub-indices are in-range constants. In particular, consider: 423 // A[0][i]. We cannot know that the user isn't doing invalid things like 424 // allowing i to index an out-of-range subscript that accesses A[1]. 425 // 426 // Scalar replacing *just* the outer index of the array is probably not 427 // going to be a win anyway, so just give up. 428 for (++GEPI; // Skip array index. 429 GEPI != E; 430 ++GEPI) { 431 uint64_t NumElements; 432 if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 433 NumElements = SubArrayTy->getNumElements(); 434 else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 435 NumElements = SubVectorTy->getNumElements(); 436 else { 437 assert(isa<StructType>(*GEPI) && 438 "Indexed GEP type is not array, vector, or struct!"); 439 continue; 440 } 441 442 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 443 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 444 return false; 445 } 446 } 447 448 for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I) 449 if (!isSafeSROAElementUse(*I)) 450 return false; 451 return true; 452} 453 454/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it 455/// is safe for us to perform this transformation. 456/// 457static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 458 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 459 UI != E; ++UI) { 460 if (!IsUserOfGlobalSafeForSRA(*UI, GV)) 461 return false; 462 } 463 return true; 464} 465 466 467/// SRAGlobal - Perform scalar replacement of aggregates on the specified global 468/// variable. This opens the door for other optimizations by exposing the 469/// behavior of the program in a more fine-grained way. We have determined that 470/// this transformation is safe already. We return the first global variable we 471/// insert so that the caller can reprocess it. 472static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD, 473 LLVMContext &Context) { 474 // Make sure this global only has simple uses that we can SRA. 475 if (!GlobalUsersSafeToSRA(GV)) 476 return 0; 477 478 assert(GV->hasLocalLinkage() && !GV->isConstant()); 479 Constant *Init = GV->getInitializer(); 480 const Type *Ty = Init->getType(); 481 482 std::vector<GlobalVariable*> NewGlobals; 483 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 484 485 // Get the alignment of the global, either explicit or target-specific. 486 unsigned StartAlignment = GV->getAlignment(); 487 if (StartAlignment == 0) 488 StartAlignment = TD.getABITypeAlignment(GV->getType()); 489 490 if (const StructType *STy = dyn_cast<StructType>(Ty)) { 491 NewGlobals.reserve(STy->getNumElements()); 492 const StructLayout &Layout = *TD.getStructLayout(STy); 493 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 494 Constant *In = getAggregateConstantElement(Init, 495 ConstantInt::get(Type::getInt32Ty(Context), i), 496 Context); 497 assert(In && "Couldn't get element of initializer?"); 498 GlobalVariable *NGV = new GlobalVariable(Context, 499 STy->getElementType(i), false, 500 GlobalVariable::InternalLinkage, 501 In, GV->getName()+"."+Twine(i), 502 GV->isThreadLocal(), 503 GV->getType()->getAddressSpace()); 504 Globals.insert(GV, NGV); 505 NewGlobals.push_back(NGV); 506 507 // Calculate the known alignment of the field. If the original aggregate 508 // had 256 byte alignment for example, something might depend on that: 509 // propagate info to each field. 510 uint64_t FieldOffset = Layout.getElementOffset(i); 511 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 512 if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i))) 513 NGV->setAlignment(NewAlign); 514 } 515 } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 516 unsigned NumElements = 0; 517 if (const ArrayType *ATy = dyn_cast<ArrayType>(STy)) 518 NumElements = ATy->getNumElements(); 519 else 520 NumElements = cast<VectorType>(STy)->getNumElements(); 521 522 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 523 return 0; // It's not worth it. 524 NewGlobals.reserve(NumElements); 525 526 uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType()); 527 unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType()); 528 for (unsigned i = 0, e = NumElements; i != e; ++i) { 529 Constant *In = getAggregateConstantElement(Init, 530 ConstantInt::get(Type::getInt32Ty(Context), i), 531 Context); 532 assert(In && "Couldn't get element of initializer?"); 533 534 GlobalVariable *NGV = new GlobalVariable(Context, 535 STy->getElementType(), false, 536 GlobalVariable::InternalLinkage, 537 In, GV->getName()+"."+Twine(i), 538 GV->isThreadLocal(), 539 GV->getType()->getAddressSpace()); 540 Globals.insert(GV, NGV); 541 NewGlobals.push_back(NGV); 542 543 // Calculate the known alignment of the field. If the original aggregate 544 // had 256 byte alignment for example, something might depend on that: 545 // propagate info to each field. 546 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 547 if (NewAlign > EltAlign) 548 NGV->setAlignment(NewAlign); 549 } 550 } 551 552 if (NewGlobals.empty()) 553 return 0; 554 555 DEBUG(errs() << "PERFORMING GLOBAL SRA ON: " << *GV); 556 557 Constant *NullInt = Constant::getNullValue(Type::getInt32Ty(Context)); 558 559 // Loop over all of the uses of the global, replacing the constantexpr geps, 560 // with smaller constantexpr geps or direct references. 561 while (!GV->use_empty()) { 562 User *GEP = GV->use_back(); 563 assert(((isa<ConstantExpr>(GEP) && 564 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 565 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 566 567 // Ignore the 1th operand, which has to be zero or else the program is quite 568 // broken (undefined). Get the 2nd operand, which is the structure or array 569 // index. 570 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 571 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 572 573 Value *NewPtr = NewGlobals[Val]; 574 575 // Form a shorter GEP if needed. 576 if (GEP->getNumOperands() > 3) { 577 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 578 SmallVector<Constant*, 8> Idxs; 579 Idxs.push_back(NullInt); 580 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 581 Idxs.push_back(CE->getOperand(i)); 582 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), 583 &Idxs[0], Idxs.size()); 584 } else { 585 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 586 SmallVector<Value*, 8> Idxs; 587 Idxs.push_back(NullInt); 588 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 589 Idxs.push_back(GEPI->getOperand(i)); 590 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(), 591 GEPI->getName()+"."+Twine(Val),GEPI); 592 } 593 } 594 GEP->replaceAllUsesWith(NewPtr); 595 596 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 597 GEPI->eraseFromParent(); 598 else 599 cast<ConstantExpr>(GEP)->destroyConstant(); 600 } 601 602 // Delete the old global, now that it is dead. 603 Globals.erase(GV); 604 ++NumSRA; 605 606 // Loop over the new globals array deleting any globals that are obviously 607 // dead. This can arise due to scalarization of a structure or an array that 608 // has elements that are dead. 609 unsigned FirstGlobal = 0; 610 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 611 if (NewGlobals[i]->use_empty()) { 612 Globals.erase(NewGlobals[i]); 613 if (FirstGlobal == i) ++FirstGlobal; 614 } 615 616 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0; 617} 618 619/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified 620/// value will trap if the value is dynamically null. PHIs keeps track of any 621/// phi nodes we've seen to avoid reprocessing them. 622static bool AllUsesOfValueWillTrapIfNull(Value *V, 623 SmallPtrSet<PHINode*, 8> &PHIs) { 624 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) 625 if (isa<LoadInst>(*UI)) { 626 // Will trap. 627 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 628 if (SI->getOperand(0) == V) { 629 //cerr << "NONTRAPPING USE: " << **UI; 630 return false; // Storing the value. 631 } 632 } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) { 633 if (CI->getOperand(0) != V) { 634 //cerr << "NONTRAPPING USE: " << **UI; 635 return false; // Not calling the ptr 636 } 637 } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) { 638 if (II->getOperand(0) != V) { 639 //cerr << "NONTRAPPING USE: " << **UI; 640 return false; // Not calling the ptr 641 } 642 } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) { 643 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 644 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) { 645 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 646 } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) { 647 // If we've already seen this phi node, ignore it, it has already been 648 // checked. 649 if (PHIs.insert(PN)) 650 return AllUsesOfValueWillTrapIfNull(PN, PHIs); 651 } else if (isa<ICmpInst>(*UI) && 652 isa<ConstantPointerNull>(UI->getOperand(1))) { 653 // Ignore setcc X, null 654 } else { 655 //cerr << "NONTRAPPING USE: " << **UI; 656 return false; 657 } 658 return true; 659} 660 661/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads 662/// from GV will trap if the loaded value is null. Note that this also permits 663/// comparisons of the loaded value against null, as a special case. 664static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) { 665 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI) 666 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 667 SmallPtrSet<PHINode*, 8> PHIs; 668 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 669 return false; 670 } else if (isa<StoreInst>(*UI)) { 671 // Ignore stores to the global. 672 } else { 673 // We don't know or understand this user, bail out. 674 //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI; 675 return false; 676 } 677 678 return true; 679} 680 681static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV, 682 LLVMContext &Context) { 683 bool Changed = false; 684 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) { 685 Instruction *I = cast<Instruction>(*UI++); 686 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 687 LI->setOperand(0, NewV); 688 Changed = true; 689 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 690 if (SI->getOperand(1) == V) { 691 SI->setOperand(1, NewV); 692 Changed = true; 693 } 694 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 695 if (I->getOperand(0) == V) { 696 // Calling through the pointer! Turn into a direct call, but be careful 697 // that the pointer is not also being passed as an argument. 698 I->setOperand(0, NewV); 699 Changed = true; 700 bool PassedAsArg = false; 701 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i) 702 if (I->getOperand(i) == V) { 703 PassedAsArg = true; 704 I->setOperand(i, NewV); 705 } 706 707 if (PassedAsArg) { 708 // Being passed as an argument also. Be careful to not invalidate UI! 709 UI = V->use_begin(); 710 } 711 } 712 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 713 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 714 ConstantExpr::getCast(CI->getOpcode(), 715 NewV, CI->getType()), Context); 716 if (CI->use_empty()) { 717 Changed = true; 718 CI->eraseFromParent(); 719 } 720 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 721 // Should handle GEP here. 722 SmallVector<Constant*, 8> Idxs; 723 Idxs.reserve(GEPI->getNumOperands()-1); 724 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 725 i != e; ++i) 726 if (Constant *C = dyn_cast<Constant>(*i)) 727 Idxs.push_back(C); 728 else 729 break; 730 if (Idxs.size() == GEPI->getNumOperands()-1) 731 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI, 732 ConstantExpr::getGetElementPtr(NewV, &Idxs[0], 733 Idxs.size()), Context); 734 if (GEPI->use_empty()) { 735 Changed = true; 736 GEPI->eraseFromParent(); 737 } 738 } 739 } 740 741 return Changed; 742} 743 744 745/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null 746/// value stored into it. If there are uses of the loaded value that would trap 747/// if the loaded value is dynamically null, then we know that they cannot be 748/// reachable with a null optimize away the load. 749static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 750 LLVMContext &Context) { 751 bool Changed = false; 752 753 // Keep track of whether we are able to remove all the uses of the global 754 // other than the store that defines it. 755 bool AllNonStoreUsesGone = true; 756 757 // Replace all uses of loads with uses of uses of the stored value. 758 for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){ 759 User *GlobalUser = *GUI++; 760 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 761 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV, Context); 762 // If we were able to delete all uses of the loads 763 if (LI->use_empty()) { 764 LI->eraseFromParent(); 765 Changed = true; 766 } else { 767 AllNonStoreUsesGone = false; 768 } 769 } else if (isa<StoreInst>(GlobalUser)) { 770 // Ignore the store that stores "LV" to the global. 771 assert(GlobalUser->getOperand(1) == GV && 772 "Must be storing *to* the global"); 773 } else { 774 AllNonStoreUsesGone = false; 775 776 // If we get here we could have other crazy uses that are transitively 777 // loaded. 778 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 779 isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!"); 780 } 781 } 782 783 if (Changed) { 784 DEBUG(errs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV); 785 ++NumGlobUses; 786 } 787 788 // If we nuked all of the loads, then none of the stores are needed either, 789 // nor is the global. 790 if (AllNonStoreUsesGone) { 791 DEBUG(errs() << " *** GLOBAL NOW DEAD!\n"); 792 CleanupConstantGlobalUsers(GV, 0, Context); 793 if (GV->use_empty()) { 794 GV->eraseFromParent(); 795 ++NumDeleted; 796 } 797 Changed = true; 798 } 799 return Changed; 800} 801 802/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the 803/// instructions that are foldable. 804static void ConstantPropUsersOf(Value *V, LLVMContext &Context) { 805 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) 806 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 807 if (Constant *NewC = ConstantFoldInstruction(I, Context)) { 808 I->replaceAllUsesWith(NewC); 809 810 // Advance UI to the next non-I use to avoid invalidating it! 811 // Instructions could multiply use V. 812 while (UI != E && *UI == I) 813 ++UI; 814 I->eraseFromParent(); 815 } 816} 817 818/// OptimizeGlobalAddressOfMalloc - This function takes the specified global 819/// variable, and transforms the program as if it always contained the result of 820/// the specified malloc. Because it is always the result of the specified 821/// malloc, there is no reason to actually DO the malloc. Instead, turn the 822/// malloc into a global, and any loads of GV as uses of the new global. 823static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, 824 MallocInst *MI, 825 LLVMContext &Context) { 826 DEBUG(errs() << "PROMOTING MALLOC GLOBAL: " << *GV << " MALLOC = " << *MI); 827 ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize()); 828 829 if (NElements->getZExtValue() != 1) { 830 // If we have an array allocation, transform it to a single element 831 // allocation to make the code below simpler. 832 Type *NewTy = ArrayType::get(MI->getAllocatedType(), 833 NElements->getZExtValue()); 834 MallocInst *NewMI = 835 new MallocInst(NewTy, Constant::getNullValue(Type::getInt32Ty(Context)), 836 MI->getAlignment(), MI->getName(), MI); 837 Value* Indices[2]; 838 Indices[0] = Indices[1] = Constant::getNullValue(Type::getInt32Ty(Context)); 839 Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2, 840 NewMI->getName()+".el0", MI); 841 MI->replaceAllUsesWith(NewGEP); 842 MI->eraseFromParent(); 843 MI = NewMI; 844 } 845 846 // Create the new global variable. The contents of the malloc'd memory is 847 // undefined, so initialize with an undef value. 848 // FIXME: This new global should have the alignment returned by malloc. Code 849 // could depend on malloc returning large alignment (on the mac, 16 bytes) but 850 // this would only guarantee some lower alignment. 851 Constant *Init = UndefValue::get(MI->getAllocatedType()); 852 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(), 853 MI->getAllocatedType(), false, 854 GlobalValue::InternalLinkage, Init, 855 GV->getName()+".body", 856 GV, 857 GV->isThreadLocal()); 858 859 // Anything that used the malloc now uses the global directly. 860 MI->replaceAllUsesWith(NewGV); 861 862 Constant *RepValue = NewGV; 863 if (NewGV->getType() != GV->getType()->getElementType()) 864 RepValue = ConstantExpr::getBitCast(RepValue, 865 GV->getType()->getElementType()); 866 867 // If there is a comparison against null, we will insert a global bool to 868 // keep track of whether the global was initialized yet or not. 869 GlobalVariable *InitBool = 870 new GlobalVariable(Context, Type::getInt1Ty(Context), false, 871 GlobalValue::InternalLinkage, 872 ConstantInt::getFalse(Context), GV->getName()+".init", 873 GV->isThreadLocal()); 874 bool InitBoolUsed = false; 875 876 // Loop over all uses of GV, processing them in turn. 877 std::vector<StoreInst*> Stores; 878 while (!GV->use_empty()) 879 if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) { 880 while (!LI->use_empty()) { 881 Use &LoadUse = LI->use_begin().getUse(); 882 if (!isa<ICmpInst>(LoadUse.getUser())) 883 LoadUse = RepValue; 884 else { 885 ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser()); 886 // Replace the cmp X, 0 with a use of the bool value. 887 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI); 888 InitBoolUsed = true; 889 switch (CI->getPredicate()) { 890 default: llvm_unreachable("Unknown ICmp Predicate!"); 891 case ICmpInst::ICMP_ULT: 892 case ICmpInst::ICMP_SLT: 893 LV = ConstantInt::getFalse(Context); // X < null -> always false 894 break; 895 case ICmpInst::ICMP_ULE: 896 case ICmpInst::ICMP_SLE: 897 case ICmpInst::ICMP_EQ: 898 LV = BinaryOperator::CreateNot(LV, "notinit", CI); 899 break; 900 case ICmpInst::ICMP_NE: 901 case ICmpInst::ICMP_UGE: 902 case ICmpInst::ICMP_SGE: 903 case ICmpInst::ICMP_UGT: 904 case ICmpInst::ICMP_SGT: 905 break; // no change. 906 } 907 CI->replaceAllUsesWith(LV); 908 CI->eraseFromParent(); 909 } 910 } 911 LI->eraseFromParent(); 912 } else { 913 StoreInst *SI = cast<StoreInst>(GV->use_back()); 914 // The global is initialized when the store to it occurs. 915 new StoreInst(ConstantInt::getTrue(Context), InitBool, SI); 916 SI->eraseFromParent(); 917 } 918 919 // If the initialization boolean was used, insert it, otherwise delete it. 920 if (!InitBoolUsed) { 921 while (!InitBool->use_empty()) // Delete initializations 922 cast<Instruction>(InitBool->use_back())->eraseFromParent(); 923 delete InitBool; 924 } else 925 GV->getParent()->getGlobalList().insert(GV, InitBool); 926 927 928 // Now the GV is dead, nuke it and the malloc. 929 GV->eraseFromParent(); 930 MI->eraseFromParent(); 931 932 // To further other optimizations, loop over all users of NewGV and try to 933 // constant prop them. This will promote GEP instructions with constant 934 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 935 ConstantPropUsersOf(NewGV, Context); 936 if (RepValue != NewGV) 937 ConstantPropUsersOf(RepValue, Context); 938 939 return NewGV; 940} 941 942/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking 943/// to make sure that there are no complex uses of V. We permit simple things 944/// like dereferencing the pointer, but not storing through the address, unless 945/// it is to the specified global. 946static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V, 947 GlobalVariable *GV, 948 SmallPtrSet<PHINode*, 8> &PHIs) { 949 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ 950 Instruction *Inst = cast<Instruction>(*UI); 951 952 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 953 continue; // Fine, ignore. 954 } 955 956 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 957 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 958 return false; // Storing the pointer itself... bad. 959 continue; // Otherwise, storing through it, or storing into GV... fine. 960 } 961 962 if (isa<GetElementPtrInst>(Inst)) { 963 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 964 return false; 965 continue; 966 } 967 968 if (PHINode *PN = dyn_cast<PHINode>(Inst)) { 969 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 970 // cycles. 971 if (PHIs.insert(PN)) 972 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 973 return false; 974 continue; 975 } 976 977 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 978 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 979 return false; 980 continue; 981 } 982 983 return false; 984 } 985 return true; 986} 987 988/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV 989/// somewhere. Transform all uses of the allocation into loads from the 990/// global and uses of the resultant pointer. Further, delete the store into 991/// GV. This assumes that these value pass the 992/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 993static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 994 GlobalVariable *GV) { 995 while (!Alloc->use_empty()) { 996 Instruction *U = cast<Instruction>(*Alloc->use_begin()); 997 Instruction *InsertPt = U; 998 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 999 // If this is the store of the allocation into the global, remove it. 1000 if (SI->getOperand(1) == GV) { 1001 SI->eraseFromParent(); 1002 continue; 1003 } 1004 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1005 // Insert the load in the corresponding predecessor, not right before the 1006 // PHI. 1007 InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator(); 1008 } else if (isa<BitCastInst>(U)) { 1009 // Must be bitcast between the malloc and store to initialize the global. 1010 ReplaceUsesOfMallocWithGlobal(U, GV); 1011 U->eraseFromParent(); 1012 continue; 1013 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1014 // If this is a "GEP bitcast" and the user is a store to the global, then 1015 // just process it as a bitcast. 1016 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1017 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back())) 1018 if (SI->getOperand(1) == GV) { 1019 // Must be bitcast GEP between the malloc and store to initialize 1020 // the global. 1021 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1022 GEPI->eraseFromParent(); 1023 continue; 1024 } 1025 } 1026 1027 // Insert a load from the global, and use it instead of the malloc. 1028 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1029 U->replaceUsesOfWith(Alloc, NL); 1030 } 1031} 1032 1033/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi 1034/// of a load) are simple enough to perform heap SRA on. This permits GEP's 1035/// that index through the array and struct field, icmps of null, and PHIs. 1036static bool LoadUsesSimpleEnoughForHeapSRA(Value *V, 1037 SmallPtrSet<PHINode*, 32> &LoadUsingPHIs, 1038 SmallPtrSet<PHINode*, 32> &LoadUsingPHIsPerLoad) { 1039 // We permit two users of the load: setcc comparing against the null 1040 // pointer, and a getelementptr of a specific form. 1041 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ 1042 Instruction *User = cast<Instruction>(*UI); 1043 1044 // Comparison against null is ok. 1045 if (ICmpInst *ICI = dyn_cast<ICmpInst>(User)) { 1046 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1047 return false; 1048 continue; 1049 } 1050 1051 // getelementptr is also ok, but only a simple form. 1052 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { 1053 // Must index into the array and into the struct. 1054 if (GEPI->getNumOperands() < 3) 1055 return false; 1056 1057 // Otherwise the GEP is ok. 1058 continue; 1059 } 1060 1061 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1062 if (!LoadUsingPHIsPerLoad.insert(PN)) 1063 // This means some phi nodes are dependent on each other. 1064 // Avoid infinite looping! 1065 return false; 1066 if (!LoadUsingPHIs.insert(PN)) 1067 // If we have already analyzed this PHI, then it is safe. 1068 continue; 1069 1070 // Make sure all uses of the PHI are simple enough to transform. 1071 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1072 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1073 return false; 1074 1075 continue; 1076 } 1077 1078 // Otherwise we don't know what this is, not ok. 1079 return false; 1080 } 1081 1082 return true; 1083} 1084 1085 1086/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from 1087/// GV are simple enough to perform HeapSRA, return true. 1088static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV, 1089 MallocInst *MI) { 1090 SmallPtrSet<PHINode*, 32> LoadUsingPHIs; 1091 SmallPtrSet<PHINode*, 32> LoadUsingPHIsPerLoad; 1092 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E; 1093 ++UI) 1094 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1095 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1096 LoadUsingPHIsPerLoad)) 1097 return false; 1098 LoadUsingPHIsPerLoad.clear(); 1099 } 1100 1101 // If we reach here, we know that all uses of the loads and transitive uses 1102 // (through PHI nodes) are simple enough to transform. However, we don't know 1103 // that all inputs the to the PHI nodes are in the same equivalence sets. 1104 // Check to verify that all operands of the PHIs are either PHIS that can be 1105 // transformed, loads from GV, or MI itself. 1106 for (SmallPtrSet<PHINode*, 32>::iterator I = LoadUsingPHIs.begin(), 1107 E = LoadUsingPHIs.end(); I != E; ++I) { 1108 PHINode *PN = *I; 1109 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1110 Value *InVal = PN->getIncomingValue(op); 1111 1112 // PHI of the stored value itself is ok. 1113 if (InVal == MI) continue; 1114 1115 if (PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1116 // One of the PHIs in our set is (optimistically) ok. 1117 if (LoadUsingPHIs.count(InPN)) 1118 continue; 1119 return false; 1120 } 1121 1122 // Load from GV is ok. 1123 if (LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1124 if (LI->getOperand(0) == GV) 1125 continue; 1126 1127 // UNDEF? NULL? 1128 1129 // Anything else is rejected. 1130 return false; 1131 } 1132 } 1133 1134 return true; 1135} 1136 1137static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1138 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1139 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite, 1140 LLVMContext &Context) { 1141 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1142 1143 if (FieldNo >= FieldVals.size()) 1144 FieldVals.resize(FieldNo+1); 1145 1146 // If we already have this value, just reuse the previously scalarized 1147 // version. 1148 if (Value *FieldVal = FieldVals[FieldNo]) 1149 return FieldVal; 1150 1151 // Depending on what instruction this is, we have several cases. 1152 Value *Result; 1153 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1154 // This is a scalarized version of the load from the global. Just create 1155 // a new Load of the scalarized global. 1156 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1157 InsertedScalarizedValues, 1158 PHIsToRewrite, Context), 1159 LI->getName()+".f"+Twine(FieldNo), LI); 1160 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1161 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1162 // field. 1163 const StructType *ST = 1164 cast<StructType>(cast<PointerType>(PN->getType())->getElementType()); 1165 1166 Result = 1167 PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)), 1168 PN->getName()+".f"+Twine(FieldNo), PN); 1169 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1170 } else { 1171 llvm_unreachable("Unknown usable value"); 1172 Result = 0; 1173 } 1174 1175 return FieldVals[FieldNo] = Result; 1176} 1177 1178/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from 1179/// the load, rewrite the derived value to use the HeapSRoA'd load. 1180static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1181 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1182 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite, 1183 LLVMContext &Context) { 1184 // If this is a comparison against null, handle it. 1185 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1186 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1187 // If we have a setcc of the loaded pointer, we can use a setcc of any 1188 // field. 1189 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1190 InsertedScalarizedValues, PHIsToRewrite, 1191 Context); 1192 1193 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1194 Constant::getNullValue(NPtr->getType()), 1195 SCI->getName()); 1196 SCI->replaceAllUsesWith(New); 1197 SCI->eraseFromParent(); 1198 return; 1199 } 1200 1201 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1202 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1203 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1204 && "Unexpected GEPI!"); 1205 1206 // Load the pointer for this field. 1207 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1208 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1209 InsertedScalarizedValues, PHIsToRewrite, 1210 Context); 1211 1212 // Create the new GEP idx vector. 1213 SmallVector<Value*, 8> GEPIdx; 1214 GEPIdx.push_back(GEPI->getOperand(1)); 1215 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1216 1217 Value *NGEPI = GetElementPtrInst::Create(NewPtr, 1218 GEPIdx.begin(), GEPIdx.end(), 1219 GEPI->getName(), GEPI); 1220 GEPI->replaceAllUsesWith(NGEPI); 1221 GEPI->eraseFromParent(); 1222 return; 1223 } 1224 1225 // Recursively transform the users of PHI nodes. This will lazily create the 1226 // PHIs that are needed for individual elements. Keep track of what PHIs we 1227 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1228 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1229 // already been seen first by another load, so its uses have already been 1230 // processed. 1231 PHINode *PN = cast<PHINode>(LoadUser); 1232 bool Inserted; 1233 DenseMap<Value*, std::vector<Value*> >::iterator InsertPos; 1234 tie(InsertPos, Inserted) = 1235 InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>())); 1236 if (!Inserted) return; 1237 1238 // If this is the first time we've seen this PHI, recursively process all 1239 // users. 1240 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) { 1241 Instruction *User = cast<Instruction>(*UI++); 1242 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite, 1243 Context); 1244 } 1245} 1246 1247/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr 1248/// is a value loaded from the global. Eliminate all uses of Ptr, making them 1249/// use FieldGlobals instead. All uses of loaded values satisfy 1250/// AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1251static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1252 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1253 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite, 1254 LLVMContext &Context) { 1255 for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end(); 1256 UI != E; ) { 1257 Instruction *User = cast<Instruction>(*UI++); 1258 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite, 1259 Context); 1260 } 1261 1262 if (Load->use_empty()) { 1263 Load->eraseFromParent(); 1264 InsertedScalarizedValues.erase(Load); 1265 } 1266} 1267 1268/// PerformHeapAllocSRoA - MI is an allocation of an array of structures. Break 1269/// it up into multiple allocations of arrays of the fields. 1270static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI, 1271 LLVMContext &Context){ 1272 DEBUG(errs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *MI); 1273 const StructType *STy = cast<StructType>(MI->getAllocatedType()); 1274 1275 // There is guaranteed to be at least one use of the malloc (storing 1276 // it into GV). If there are other uses, change them to be uses of 1277 // the global to simplify later code. This also deletes the store 1278 // into GV. 1279 ReplaceUsesOfMallocWithGlobal(MI, GV); 1280 1281 // Okay, at this point, there are no users of the malloc. Insert N 1282 // new mallocs at the same place as MI, and N globals. 1283 std::vector<Value*> FieldGlobals; 1284 std::vector<MallocInst*> FieldMallocs; 1285 1286 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1287 const Type *FieldTy = STy->getElementType(FieldNo); 1288 const Type *PFieldTy = PointerType::getUnqual(FieldTy); 1289 1290 GlobalVariable *NGV = 1291 new GlobalVariable(*GV->getParent(), 1292 PFieldTy, false, GlobalValue::InternalLinkage, 1293 Constant::getNullValue(PFieldTy), 1294 GV->getName() + ".f" + Twine(FieldNo), GV, 1295 GV->isThreadLocal()); 1296 FieldGlobals.push_back(NGV); 1297 1298 MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(), 1299 MI->getName() + ".f" + Twine(FieldNo), MI); 1300 FieldMallocs.push_back(NMI); 1301 new StoreInst(NMI, NGV, MI); 1302 } 1303 1304 // The tricky aspect of this transformation is handling the case when malloc 1305 // fails. In the original code, malloc failing would set the result pointer 1306 // of malloc to null. In this case, some mallocs could succeed and others 1307 // could fail. As such, we emit code that looks like this: 1308 // F0 = malloc(field0) 1309 // F1 = malloc(field1) 1310 // F2 = malloc(field2) 1311 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1312 // if (F0) { free(F0); F0 = 0; } 1313 // if (F1) { free(F1); F1 = 0; } 1314 // if (F2) { free(F2); F2 = 0; } 1315 // } 1316 Value *RunningOr = 0; 1317 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1318 Value *Cond = new ICmpInst(MI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1319 Constant::getNullValue(FieldMallocs[i]->getType()), 1320 "isnull"); 1321 if (!RunningOr) 1322 RunningOr = Cond; // First seteq 1323 else 1324 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", MI); 1325 } 1326 1327 // Split the basic block at the old malloc. 1328 BasicBlock *OrigBB = MI->getParent(); 1329 BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont"); 1330 1331 // Create the block to check the first condition. Put all these blocks at the 1332 // end of the function as they are unlikely to be executed. 1333 BasicBlock *NullPtrBlock = BasicBlock::Create(Context, "malloc_ret_null", 1334 OrigBB->getParent()); 1335 1336 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1337 // branch on RunningOr. 1338 OrigBB->getTerminator()->eraseFromParent(); 1339 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1340 1341 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1342 // pointer, because some may be null while others are not. 1343 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1344 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1345 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1346 Constant::getNullValue(GVVal->getType()), 1347 "tmp"); 1348 BasicBlock *FreeBlock = BasicBlock::Create(Context, "free_it", 1349 OrigBB->getParent()); 1350 BasicBlock *NextBlock = BasicBlock::Create(Context, "next", 1351 OrigBB->getParent()); 1352 BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock); 1353 1354 // Fill in FreeBlock. 1355 new FreeInst(GVVal, FreeBlock); 1356 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1357 FreeBlock); 1358 BranchInst::Create(NextBlock, FreeBlock); 1359 1360 NullPtrBlock = NextBlock; 1361 } 1362 1363 BranchInst::Create(ContBB, NullPtrBlock); 1364 1365 // MI is no longer needed, remove it. 1366 MI->eraseFromParent(); 1367 1368 /// InsertedScalarizedLoads - As we process loads, if we can't immediately 1369 /// update all uses of the load, keep track of what scalarized loads are 1370 /// inserted for a given load. 1371 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1372 InsertedScalarizedValues[GV] = FieldGlobals; 1373 1374 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1375 1376 // Okay, the malloc site is completely handled. All of the uses of GV are now 1377 // loads, and all uses of those loads are simple. Rewrite them to use loads 1378 // of the per-field globals instead. 1379 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) { 1380 Instruction *User = cast<Instruction>(*UI++); 1381 1382 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1383 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite, 1384 Context); 1385 continue; 1386 } 1387 1388 // Must be a store of null. 1389 StoreInst *SI = cast<StoreInst>(User); 1390 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1391 "Unexpected heap-sra user!"); 1392 1393 // Insert a store of null into each global. 1394 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1395 const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType()); 1396 Constant *Null = Constant::getNullValue(PT->getElementType()); 1397 new StoreInst(Null, FieldGlobals[i], SI); 1398 } 1399 // Erase the original store. 1400 SI->eraseFromParent(); 1401 } 1402 1403 // While we have PHIs that are interesting to rewrite, do it. 1404 while (!PHIsToRewrite.empty()) { 1405 PHINode *PN = PHIsToRewrite.back().first; 1406 unsigned FieldNo = PHIsToRewrite.back().second; 1407 PHIsToRewrite.pop_back(); 1408 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1409 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1410 1411 // Add all the incoming values. This can materialize more phis. 1412 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1413 Value *InVal = PN->getIncomingValue(i); 1414 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1415 PHIsToRewrite, Context); 1416 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1417 } 1418 } 1419 1420 // Drop all inter-phi links and any loads that made it this far. 1421 for (DenseMap<Value*, std::vector<Value*> >::iterator 1422 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1423 I != E; ++I) { 1424 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1425 PN->dropAllReferences(); 1426 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1427 LI->dropAllReferences(); 1428 } 1429 1430 // Delete all the phis and loads now that inter-references are dead. 1431 for (DenseMap<Value*, std::vector<Value*> >::iterator 1432 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1433 I != E; ++I) { 1434 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1435 PN->eraseFromParent(); 1436 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1437 LI->eraseFromParent(); 1438 } 1439 1440 // The old global is now dead, remove it. 1441 GV->eraseFromParent(); 1442 1443 ++NumHeapSRA; 1444 return cast<GlobalVariable>(FieldGlobals[0]); 1445} 1446 1447/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a 1448/// pointer global variable with a single value stored it that is a malloc or 1449/// cast of malloc. 1450static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, 1451 MallocInst *MI, 1452 Module::global_iterator &GVI, 1453 TargetData *TD, 1454 LLVMContext &Context) { 1455 // If this is a malloc of an abstract type, don't touch it. 1456 if (!MI->getAllocatedType()->isSized()) 1457 return false; 1458 1459 // We can't optimize this global unless all uses of it are *known* to be 1460 // of the malloc value, not of the null initializer value (consider a use 1461 // that compares the global's value against zero to see if the malloc has 1462 // been reached). To do this, we check to see if all uses of the global 1463 // would trap if the global were null: this proves that they must all 1464 // happen after the malloc. 1465 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1466 return false; 1467 1468 // We can't optimize this if the malloc itself is used in a complex way, 1469 // for example, being stored into multiple globals. This allows the 1470 // malloc to be stored into the specified global, loaded setcc'd, and 1471 // GEP'd. These are all things we could transform to using the global 1472 // for. 1473 { 1474 SmallPtrSet<PHINode*, 8> PHIs; 1475 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs)) 1476 return false; 1477 } 1478 1479 1480 // If we have a global that is only initialized with a fixed size malloc, 1481 // transform the program to use global memory instead of malloc'd memory. 1482 // This eliminates dynamic allocation, avoids an indirection accessing the 1483 // data, and exposes the resultant global to further GlobalOpt. 1484 if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) { 1485 // Restrict this transformation to only working on small allocations 1486 // (2048 bytes currently), as we don't want to introduce a 16M global or 1487 // something. 1488 if (TD && 1489 NElements->getZExtValue()* 1490 TD->getTypeAllocSize(MI->getAllocatedType()) < 2048) { 1491 GVI = OptimizeGlobalAddressOfMalloc(GV, MI, Context); 1492 return true; 1493 } 1494 } 1495 1496 // If the allocation is an array of structures, consider transforming this 1497 // into multiple malloc'd arrays, one for each field. This is basically 1498 // SRoA for malloc'd memory. 1499 const Type *AllocTy = MI->getAllocatedType(); 1500 1501 // If this is an allocation of a fixed size array of structs, analyze as a 1502 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1503 if (!MI->isArrayAllocation()) 1504 if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1505 AllocTy = AT->getElementType(); 1506 1507 if (const StructType *AllocSTy = dyn_cast<StructType>(AllocTy)) { 1508 // This the structure has an unreasonable number of fields, leave it 1509 // alone. 1510 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1511 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) { 1512 1513 // If this is a fixed size array, transform the Malloc to be an alloc of 1514 // structs. malloc [100 x struct],1 -> malloc struct, 100 1515 if (const ArrayType *AT = dyn_cast<ArrayType>(MI->getAllocatedType())) { 1516 MallocInst *NewMI = 1517 new MallocInst(AllocSTy, 1518 ConstantInt::get(Type::getInt32Ty(Context), 1519 AT->getNumElements()), 1520 "", MI); 1521 NewMI->takeName(MI); 1522 Value *Cast = new BitCastInst(NewMI, MI->getType(), "tmp", MI); 1523 MI->replaceAllUsesWith(Cast); 1524 MI->eraseFromParent(); 1525 MI = NewMI; 1526 } 1527 1528 GVI = PerformHeapAllocSRoA(GV, MI, Context); 1529 return true; 1530 } 1531 } 1532 1533 return false; 1534} 1535 1536// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge 1537// that only one value (besides its initializer) is ever stored to the global. 1538static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1539 Module::global_iterator &GVI, 1540 TargetData *TD, LLVMContext &Context) { 1541 // Ignore no-op GEPs and bitcasts. 1542 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1543 1544 // If we are dealing with a pointer global that is initialized to null and 1545 // only has one (non-null) value stored into it, then we can optimize any 1546 // users of the loaded value (often calls and loads) that would trap if the 1547 // value was null. 1548 if (isa<PointerType>(GV->getInitializer()->getType()) && 1549 GV->getInitializer()->isNullValue()) { 1550 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1551 if (GV->getInitializer()->getType() != SOVC->getType()) 1552 SOVC = 1553 ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1554 1555 // Optimize away any trapping uses of the loaded value. 1556 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, Context)) 1557 return true; 1558 } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) { 1559 if (TryToOptimizeStoreOfMallocToGlobal(GV, MI, GVI, TD, Context)) 1560 return true; 1561 } 1562 } 1563 1564 return false; 1565} 1566 1567/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only 1568/// two values ever stored into GV are its initializer and OtherVal. See if we 1569/// can shrink the global into a boolean and select between the two values 1570/// whenever it is used. This exposes the values to other scalar optimizations. 1571static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal, 1572 LLVMContext &Context) { 1573 const Type *GVElType = GV->getType()->getElementType(); 1574 1575 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1576 // an FP value, pointer or vector, don't do this optimization because a select 1577 // between them is very expensive and unlikely to lead to later 1578 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1579 // where v1 and v2 both require constant pool loads, a big loss. 1580 if (GVElType == Type::getInt1Ty(Context) || GVElType->isFloatingPoint() || 1581 isa<PointerType>(GVElType) || isa<VectorType>(GVElType)) 1582 return false; 1583 1584 // Walk the use list of the global seeing if all the uses are load or store. 1585 // If there is anything else, bail out. 1586 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I) 1587 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 1588 return false; 1589 1590 DEBUG(errs() << " *** SHRINKING TO BOOL: " << *GV); 1591 1592 // Create the new global, initializing it to false. 1593 GlobalVariable *NewGV = new GlobalVariable(Context, 1594 Type::getInt1Ty(Context), false, 1595 GlobalValue::InternalLinkage, ConstantInt::getFalse(Context), 1596 GV->getName()+".b", 1597 GV->isThreadLocal()); 1598 GV->getParent()->getGlobalList().insert(GV, NewGV); 1599 1600 Constant *InitVal = GV->getInitializer(); 1601 assert(InitVal->getType() != Type::getInt1Ty(Context) && 1602 "No reason to shrink to bool!"); 1603 1604 // If initialized to zero and storing one into the global, we can use a cast 1605 // instead of a select to synthesize the desired value. 1606 bool IsOneZero = false; 1607 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1608 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1609 1610 while (!GV->use_empty()) { 1611 Instruction *UI = cast<Instruction>(GV->use_back()); 1612 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1613 // Change the store into a boolean store. 1614 bool StoringOther = SI->getOperand(0) == OtherVal; 1615 // Only do this if we weren't storing a loaded value. 1616 Value *StoreVal; 1617 if (StoringOther || SI->getOperand(0) == InitVal) 1618 StoreVal = ConstantInt::get(Type::getInt1Ty(Context), StoringOther); 1619 else { 1620 // Otherwise, we are storing a previously loaded copy. To do this, 1621 // change the copy from copying the original value to just copying the 1622 // bool. 1623 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1624 1625 // If we're already replaced the input, StoredVal will be a cast or 1626 // select instruction. If not, it will be a load of the original 1627 // global. 1628 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1629 assert(LI->getOperand(0) == GV && "Not a copy!"); 1630 // Insert a new load, to preserve the saved value. 1631 StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI); 1632 } else { 1633 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1634 "This is not a form that we understand!"); 1635 StoreVal = StoredVal->getOperand(0); 1636 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1637 } 1638 } 1639 new StoreInst(StoreVal, NewGV, SI); 1640 } else { 1641 // Change the load into a load of bool then a select. 1642 LoadInst *LI = cast<LoadInst>(UI); 1643 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI); 1644 Value *NSI; 1645 if (IsOneZero) 1646 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1647 else 1648 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1649 NSI->takeName(LI); 1650 LI->replaceAllUsesWith(NSI); 1651 } 1652 UI->eraseFromParent(); 1653 } 1654 1655 GV->eraseFromParent(); 1656 return true; 1657} 1658 1659 1660/// ProcessInternalGlobal - Analyze the specified global variable and optimize 1661/// it if possible. If we make a change, return true. 1662bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, 1663 Module::global_iterator &GVI) { 1664 SmallPtrSet<PHINode*, 16> PHIUsers; 1665 GlobalStatus GS; 1666 GV->removeDeadConstantUsers(); 1667 1668 if (GV->use_empty()) { 1669 DEBUG(errs() << "GLOBAL DEAD: " << *GV); 1670 GV->eraseFromParent(); 1671 ++NumDeleted; 1672 return true; 1673 } 1674 1675 if (!AnalyzeGlobal(GV, GS, PHIUsers)) { 1676#if 0 1677 cerr << "Global: " << *GV; 1678 cerr << " isLoaded = " << GS.isLoaded << "\n"; 1679 cerr << " StoredType = "; 1680 switch (GS.StoredType) { 1681 case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break; 1682 case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break; 1683 case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break; 1684 case GlobalStatus::isStored: cerr << "stored\n"; break; 1685 } 1686 if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue) 1687 cerr << " StoredOnceValue = " << *GS.StoredOnceValue << "\n"; 1688 if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions) 1689 cerr << " AccessingFunction = " << GS.AccessingFunction->getName() 1690 << "\n"; 1691 cerr << " HasMultipleAccessingFunctions = " 1692 << GS.HasMultipleAccessingFunctions << "\n"; 1693 cerr << " HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n"; 1694 cerr << "\n"; 1695#endif 1696 1697 // If this is a first class global and has only one accessing function 1698 // and this function is main (which we know is not recursive we can make 1699 // this global a local variable) we replace the global with a local alloca 1700 // in this function. 1701 // 1702 // NOTE: It doesn't make sense to promote non single-value types since we 1703 // are just replacing static memory to stack memory. 1704 // 1705 // If the global is in different address space, don't bring it to stack. 1706 if (!GS.HasMultipleAccessingFunctions && 1707 GS.AccessingFunction && !GS.HasNonInstructionUser && 1708 GV->getType()->getElementType()->isSingleValueType() && 1709 GS.AccessingFunction->getName() == "main" && 1710 GS.AccessingFunction->hasExternalLinkage() && 1711 GV->getType()->getAddressSpace() == 0) { 1712 DEBUG(errs() << "LOCALIZING GLOBAL: " << *GV); 1713 Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin(); 1714 const Type* ElemTy = GV->getType()->getElementType(); 1715 // FIXME: Pass Global's alignment when globals have alignment 1716 AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI); 1717 if (!isa<UndefValue>(GV->getInitializer())) 1718 new StoreInst(GV->getInitializer(), Alloca, FirstI); 1719 1720 GV->replaceAllUsesWith(Alloca); 1721 GV->eraseFromParent(); 1722 ++NumLocalized; 1723 return true; 1724 } 1725 1726 // If the global is never loaded (but may be stored to), it is dead. 1727 // Delete it now. 1728 if (!GS.isLoaded) { 1729 DEBUG(errs() << "GLOBAL NEVER LOADED: " << *GV); 1730 1731 // Delete any stores we can find to the global. We may not be able to 1732 // make it completely dead though. 1733 bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), 1734 GV->getContext()); 1735 1736 // If the global is dead now, delete it. 1737 if (GV->use_empty()) { 1738 GV->eraseFromParent(); 1739 ++NumDeleted; 1740 Changed = true; 1741 } 1742 return Changed; 1743 1744 } else if (GS.StoredType <= GlobalStatus::isInitializerStored) { 1745 DEBUG(errs() << "MARKING CONSTANT: " << *GV); 1746 GV->setConstant(true); 1747 1748 // Clean up any obviously simplifiable users now. 1749 CleanupConstantGlobalUsers(GV, GV->getInitializer(), GV->getContext()); 1750 1751 // If the global is dead now, just nuke it. 1752 if (GV->use_empty()) { 1753 DEBUG(errs() << " *** Marking constant allowed us to simplify " 1754 << "all users and delete global!\n"); 1755 GV->eraseFromParent(); 1756 ++NumDeleted; 1757 } 1758 1759 ++NumMarked; 1760 return true; 1761 } else if (!GV->getInitializer()->getType()->isSingleValueType()) { 1762 if (TargetData *TD = getAnalysisIfAvailable<TargetData>()) 1763 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD, 1764 GV->getContext())) { 1765 GVI = FirstNewGV; // Don't skip the newly produced globals! 1766 return true; 1767 } 1768 } else if (GS.StoredType == GlobalStatus::isStoredOnce) { 1769 // If the initial value for the global was an undef value, and if only 1770 // one other value was stored into it, we can just change the 1771 // initializer to be the stored value, then delete all stores to the 1772 // global. This allows us to mark it constant. 1773 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1774 if (isa<UndefValue>(GV->getInitializer())) { 1775 // Change the initial value here. 1776 GV->setInitializer(SOVConstant); 1777 1778 // Clean up any obviously simplifiable users now. 1779 CleanupConstantGlobalUsers(GV, GV->getInitializer(), 1780 GV->getContext()); 1781 1782 if (GV->use_empty()) { 1783 DEBUG(errs() << " *** Substituting initializer allowed us to " 1784 << "simplify all users and delete global!\n"); 1785 GV->eraseFromParent(); 1786 ++NumDeleted; 1787 } else { 1788 GVI = GV; 1789 } 1790 ++NumSubstitute; 1791 return true; 1792 } 1793 1794 // Try to optimize globals based on the knowledge that only one value 1795 // (besides its initializer) is ever stored to the global. 1796 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI, 1797 getAnalysisIfAvailable<TargetData>(), 1798 GV->getContext())) 1799 return true; 1800 1801 // Otherwise, if the global was not a boolean, we can shrink it to be a 1802 // boolean. 1803 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1804 if (TryToShrinkGlobalToBoolean(GV, SOVConstant, GV->getContext())) { 1805 ++NumShrunkToBool; 1806 return true; 1807 } 1808 } 1809 } 1810 return false; 1811} 1812 1813/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified 1814/// function, changing them to FastCC. 1815static void ChangeCalleesToFastCall(Function *F) { 1816 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 1817 CallSite User(cast<Instruction>(*UI)); 1818 User.setCallingConv(CallingConv::Fast); 1819 } 1820} 1821 1822static AttrListPtr StripNest(const AttrListPtr &Attrs) { 1823 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1824 if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0) 1825 continue; 1826 1827 // There can be only one. 1828 return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest); 1829 } 1830 1831 return Attrs; 1832} 1833 1834static void RemoveNestAttribute(Function *F) { 1835 F->setAttributes(StripNest(F->getAttributes())); 1836 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 1837 CallSite User(cast<Instruction>(*UI)); 1838 User.setAttributes(StripNest(User.getAttributes())); 1839 } 1840} 1841 1842bool GlobalOpt::OptimizeFunctions(Module &M) { 1843 bool Changed = false; 1844 // Optimize functions. 1845 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 1846 Function *F = FI++; 1847 // Functions without names cannot be referenced outside this module. 1848 if (!F->hasName() && !F->isDeclaration()) 1849 F->setLinkage(GlobalValue::InternalLinkage); 1850 F->removeDeadConstantUsers(); 1851 if (F->use_empty() && (F->hasLocalLinkage() || 1852 F->hasLinkOnceLinkage())) { 1853 M.getFunctionList().erase(F); 1854 Changed = true; 1855 ++NumFnDeleted; 1856 } else if (F->hasLocalLinkage()) { 1857 if (F->getCallingConv() == CallingConv::C && !F->isVarArg() && 1858 !F->hasAddressTaken()) { 1859 // If this function has C calling conventions, is not a varargs 1860 // function, and is only called directly, promote it to use the Fast 1861 // calling convention. 1862 F->setCallingConv(CallingConv::Fast); 1863 ChangeCalleesToFastCall(F); 1864 ++NumFastCallFns; 1865 Changed = true; 1866 } 1867 1868 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 1869 !F->hasAddressTaken()) { 1870 // The function is not used by a trampoline intrinsic, so it is safe 1871 // to remove the 'nest' attribute. 1872 RemoveNestAttribute(F); 1873 ++NumNestRemoved; 1874 Changed = true; 1875 } 1876 } 1877 } 1878 return Changed; 1879} 1880 1881bool GlobalOpt::OptimizeGlobalVars(Module &M) { 1882 bool Changed = false; 1883 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 1884 GVI != E; ) { 1885 GlobalVariable *GV = GVI++; 1886 // Global variables without names cannot be referenced outside this module. 1887 if (!GV->hasName() && !GV->isDeclaration()) 1888 GV->setLinkage(GlobalValue::InternalLinkage); 1889 if (!GV->isConstant() && GV->hasLocalLinkage() && 1890 GV->hasInitializer()) 1891 Changed |= ProcessInternalGlobal(GV, GVI); 1892 } 1893 return Changed; 1894} 1895 1896/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all 1897/// initializers have an init priority of 65535. 1898GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) { 1899 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 1900 I != E; ++I) 1901 if (I->getName() == "llvm.global_ctors") { 1902 // Found it, verify it's an array of { int, void()* }. 1903 const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType()); 1904 if (!ATy) return 0; 1905 const StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 1906 if (!STy || STy->getNumElements() != 2 || 1907 STy->getElementType(0) != Type::getInt32Ty(M.getContext())) return 0; 1908 const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1)); 1909 if (!PFTy) return 0; 1910 const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType()); 1911 if (!FTy || FTy->getReturnType() != Type::getVoidTy(M.getContext()) || 1912 FTy->isVarArg() || FTy->getNumParams() != 0) 1913 return 0; 1914 1915 // Verify that the initializer is simple enough for us to handle. 1916 if (!I->hasDefinitiveInitializer()) return 0; 1917 ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer()); 1918 if (!CA) return 0; 1919 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) 1920 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) { 1921 if (isa<ConstantPointerNull>(CS->getOperand(1))) 1922 continue; 1923 1924 // Must have a function or null ptr. 1925 if (!isa<Function>(CS->getOperand(1))) 1926 return 0; 1927 1928 // Init priority must be standard. 1929 ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0)); 1930 if (!CI || CI->getZExtValue() != 65535) 1931 return 0; 1932 } else { 1933 return 0; 1934 } 1935 1936 return I; 1937 } 1938 return 0; 1939} 1940 1941/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand, 1942/// return a list of the functions and null terminator as a vector. 1943static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) { 1944 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 1945 std::vector<Function*> Result; 1946 Result.reserve(CA->getNumOperands()); 1947 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) { 1948 ConstantStruct *CS = cast<ConstantStruct>(*i); 1949 Result.push_back(dyn_cast<Function>(CS->getOperand(1))); 1950 } 1951 return Result; 1952} 1953 1954/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the 1955/// specified array, returning the new global to use. 1956static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL, 1957 const std::vector<Function*> &Ctors, 1958 LLVMContext &Context) { 1959 // If we made a change, reassemble the initializer list. 1960 std::vector<Constant*> CSVals; 1961 CSVals.push_back(ConstantInt::get(Type::getInt32Ty(Context), 65535)); 1962 CSVals.push_back(0); 1963 1964 // Create the new init list. 1965 std::vector<Constant*> CAList; 1966 for (unsigned i = 0, e = Ctors.size(); i != e; ++i) { 1967 if (Ctors[i]) { 1968 CSVals[1] = Ctors[i]; 1969 } else { 1970 const Type *FTy = FunctionType::get(Type::getVoidTy(Context), false); 1971 const PointerType *PFTy = PointerType::getUnqual(FTy); 1972 CSVals[1] = Constant::getNullValue(PFTy); 1973 CSVals[0] = ConstantInt::get(Type::getInt32Ty(Context), 2147483647); 1974 } 1975 CAList.push_back(ConstantStruct::get(Context, CSVals)); 1976 } 1977 1978 // Create the array initializer. 1979 const Type *StructTy = 1980 cast<ArrayType>(GCL->getType()->getElementType())->getElementType(); 1981 Constant *CA = ConstantArray::get(ArrayType::get(StructTy, 1982 CAList.size()), CAList); 1983 1984 // If we didn't change the number of elements, don't create a new GV. 1985 if (CA->getType() == GCL->getInitializer()->getType()) { 1986 GCL->setInitializer(CA); 1987 return GCL; 1988 } 1989 1990 // Create the new global and insert it next to the existing list. 1991 GlobalVariable *NGV = new GlobalVariable(Context, CA->getType(), 1992 GCL->isConstant(), 1993 GCL->getLinkage(), CA, "", 1994 GCL->isThreadLocal()); 1995 GCL->getParent()->getGlobalList().insert(GCL, NGV); 1996 NGV->takeName(GCL); 1997 1998 // Nuke the old list, replacing any uses with the new one. 1999 if (!GCL->use_empty()) { 2000 Constant *V = NGV; 2001 if (V->getType() != GCL->getType()) 2002 V = ConstantExpr::getBitCast(V, GCL->getType()); 2003 GCL->replaceAllUsesWith(V); 2004 } 2005 GCL->eraseFromParent(); 2006 2007 if (Ctors.size()) 2008 return NGV; 2009 else 2010 return 0; 2011} 2012 2013 2014static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues, 2015 Value *V) { 2016 if (Constant *CV = dyn_cast<Constant>(V)) return CV; 2017 Constant *R = ComputedValues[V]; 2018 assert(R && "Reference to an uncomputed value!"); 2019 return R; 2020} 2021 2022/// isSimpleEnoughPointerToCommit - Return true if this constant is simple 2023/// enough for us to understand. In particular, if it is a cast of something, 2024/// we punt. We basically just support direct accesses to globals and GEP's of 2025/// globals. This should be kept up to date with CommitValueTo. 2026static bool isSimpleEnoughPointerToCommit(Constant *C, LLVMContext &Context) { 2027 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 2028 // Do not allow weak/linkonce/dllimport/dllexport linkage or 2029 // external globals. 2030 return GV->hasDefinitiveInitializer(); 2031 2032 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2033 // Handle a constantexpr gep. 2034 if (CE->getOpcode() == Instruction::GetElementPtr && 2035 isa<GlobalVariable>(CE->getOperand(0)) && 2036 cast<GEPOperator>(CE)->isInBounds()) { 2037 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2038 // Do not allow weak/linkonce/dllimport/dllexport linkage or 2039 // external globals. 2040 if (!GV->hasDefinitiveInitializer()) 2041 return false; 2042 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE, 2043 Context); 2044 } 2045 return false; 2046} 2047 2048/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global 2049/// initializer. This returns 'Init' modified to reflect 'Val' stored into it. 2050/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into. 2051static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2052 ConstantExpr *Addr, unsigned OpNo, 2053 LLVMContext &Context) { 2054 // Base case of the recursion. 2055 if (OpNo == Addr->getNumOperands()) { 2056 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2057 return Val; 2058 } 2059 2060 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2061 std::vector<Constant*> Elts; 2062 2063 // Break up the constant into its elements. 2064 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2065 for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i) 2066 Elts.push_back(cast<Constant>(*i)); 2067 } else if (isa<ConstantAggregateZero>(Init)) { 2068 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2069 Elts.push_back(Constant::getNullValue(STy->getElementType(i))); 2070 } else if (isa<UndefValue>(Init)) { 2071 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2072 Elts.push_back(UndefValue::get(STy->getElementType(i))); 2073 } else { 2074 llvm_unreachable("This code is out of sync with " 2075 " ConstantFoldLoadThroughGEPConstantExpr"); 2076 } 2077 2078 // Replace the element that we are supposed to. 2079 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2080 unsigned Idx = CU->getZExtValue(); 2081 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2082 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1, Context); 2083 2084 // Return the modified struct. 2085 return ConstantStruct::get(Context, &Elts[0], Elts.size(), STy->isPacked()); 2086 } else { 2087 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2088 const ArrayType *ATy = cast<ArrayType>(Init->getType()); 2089 2090 // Break up the array into elements. 2091 std::vector<Constant*> Elts; 2092 if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2093 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) 2094 Elts.push_back(cast<Constant>(*i)); 2095 } else if (isa<ConstantAggregateZero>(Init)) { 2096 Constant *Elt = Constant::getNullValue(ATy->getElementType()); 2097 Elts.assign(ATy->getNumElements(), Elt); 2098 } else if (isa<UndefValue>(Init)) { 2099 Constant *Elt = UndefValue::get(ATy->getElementType()); 2100 Elts.assign(ATy->getNumElements(), Elt); 2101 } else { 2102 llvm_unreachable("This code is out of sync with " 2103 " ConstantFoldLoadThroughGEPConstantExpr"); 2104 } 2105 2106 assert(CI->getZExtValue() < ATy->getNumElements()); 2107 Elts[CI->getZExtValue()] = 2108 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1, Context); 2109 return ConstantArray::get(ATy, Elts); 2110 } 2111} 2112 2113/// CommitValueTo - We have decided that Addr (which satisfies the predicate 2114/// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2115static void CommitValueTo(Constant *Val, Constant *Addr, 2116 LLVMContext &Context) { 2117 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2118 assert(GV->hasInitializer()); 2119 GV->setInitializer(Val); 2120 return; 2121 } 2122 2123 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2124 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2125 2126 Constant *Init = GV->getInitializer(); 2127 Init = EvaluateStoreInto(Init, Val, CE, 2, Context); 2128 GV->setInitializer(Init); 2129} 2130 2131/// ComputeLoadResult - Return the value that would be computed by a load from 2132/// P after the stores reflected by 'memory' have been performed. If we can't 2133/// decide, return null. 2134static Constant *ComputeLoadResult(Constant *P, 2135 const DenseMap<Constant*, Constant*> &Memory, 2136 LLVMContext &Context) { 2137 // If this memory location has been recently stored, use the stored value: it 2138 // is the most up-to-date. 2139 DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P); 2140 if (I != Memory.end()) return I->second; 2141 2142 // Access it. 2143 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 2144 if (GV->hasDefinitiveInitializer()) 2145 return GV->getInitializer(); 2146 return 0; 2147 } 2148 2149 // Handle a constantexpr getelementptr. 2150 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) 2151 if (CE->getOpcode() == Instruction::GetElementPtr && 2152 isa<GlobalVariable>(CE->getOperand(0))) { 2153 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2154 if (GV->hasDefinitiveInitializer()) 2155 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE, 2156 Context); 2157 } 2158 2159 return 0; // don't know how to evaluate. 2160} 2161 2162/// EvaluateFunction - Evaluate a call to function F, returning true if 2163/// successful, false if we can't evaluate it. ActualArgs contains the formal 2164/// arguments for the function. 2165static bool EvaluateFunction(Function *F, Constant *&RetVal, 2166 const SmallVectorImpl<Constant*> &ActualArgs, 2167 std::vector<Function*> &CallStack, 2168 DenseMap<Constant*, Constant*> &MutatedMemory, 2169 std::vector<GlobalVariable*> &AllocaTmps) { 2170 // Check to see if this function is already executing (recursion). If so, 2171 // bail out. TODO: we might want to accept limited recursion. 2172 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end()) 2173 return false; 2174 2175 LLVMContext &Context = F->getContext(); 2176 2177 CallStack.push_back(F); 2178 2179 /// Values - As we compute SSA register values, we store their contents here. 2180 DenseMap<Value*, Constant*> Values; 2181 2182 // Initialize arguments to the incoming values specified. 2183 unsigned ArgNo = 0; 2184 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 2185 ++AI, ++ArgNo) 2186 Values[AI] = ActualArgs[ArgNo]; 2187 2188 /// ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 2189 /// we can only evaluate any one basic block at most once. This set keeps 2190 /// track of what we have executed so we can detect recursive cases etc. 2191 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 2192 2193 // CurInst - The current instruction we're evaluating. 2194 BasicBlock::iterator CurInst = F->begin()->begin(); 2195 2196 // This is the main evaluation loop. 2197 while (1) { 2198 Constant *InstResult = 0; 2199 2200 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 2201 if (SI->isVolatile()) return false; // no volatile accesses. 2202 Constant *Ptr = getVal(Values, SI->getOperand(1)); 2203 if (!isSimpleEnoughPointerToCommit(Ptr, Context)) 2204 // If this is too complex for us to commit, reject it. 2205 return false; 2206 Constant *Val = getVal(Values, SI->getOperand(0)); 2207 MutatedMemory[Ptr] = Val; 2208 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 2209 InstResult = ConstantExpr::get(BO->getOpcode(), 2210 getVal(Values, BO->getOperand(0)), 2211 getVal(Values, BO->getOperand(1))); 2212 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 2213 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 2214 getVal(Values, CI->getOperand(0)), 2215 getVal(Values, CI->getOperand(1))); 2216 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 2217 InstResult = ConstantExpr::getCast(CI->getOpcode(), 2218 getVal(Values, CI->getOperand(0)), 2219 CI->getType()); 2220 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 2221 InstResult = 2222 ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)), 2223 getVal(Values, SI->getOperand(1)), 2224 getVal(Values, SI->getOperand(2))); 2225 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 2226 Constant *P = getVal(Values, GEP->getOperand(0)); 2227 SmallVector<Constant*, 8> GEPOps; 2228 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); 2229 i != e; ++i) 2230 GEPOps.push_back(getVal(Values, *i)); 2231 InstResult = cast<GEPOperator>(GEP)->isInBounds() ? 2232 ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) : 2233 ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size()); 2234 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 2235 if (LI->isVolatile()) return false; // no volatile accesses. 2236 InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)), 2237 MutatedMemory, Context); 2238 if (InstResult == 0) return false; // Could not evaluate load. 2239 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 2240 if (AI->isArrayAllocation()) return false; // Cannot handle array allocs. 2241 const Type *Ty = AI->getType()->getElementType(); 2242 AllocaTmps.push_back(new GlobalVariable(Context, Ty, false, 2243 GlobalValue::InternalLinkage, 2244 UndefValue::get(Ty), 2245 AI->getName())); 2246 InstResult = AllocaTmps.back(); 2247 } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) { 2248 2249 // Debug info can safely be ignored here. 2250 if (isa<DbgInfoIntrinsic>(CI)) { 2251 ++CurInst; 2252 continue; 2253 } 2254 2255 // Cannot handle inline asm. 2256 if (isa<InlineAsm>(CI->getOperand(0))) return false; 2257 2258 // Resolve function pointers. 2259 Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0))); 2260 if (!Callee) return false; // Cannot resolve. 2261 2262 SmallVector<Constant*, 8> Formals; 2263 for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end(); 2264 i != e; ++i) 2265 Formals.push_back(getVal(Values, *i)); 2266 2267 if (Callee->isDeclaration()) { 2268 // If this is a function we can constant fold, do it. 2269 if (Constant *C = ConstantFoldCall(Callee, Formals.data(), 2270 Formals.size())) { 2271 InstResult = C; 2272 } else { 2273 return false; 2274 } 2275 } else { 2276 if (Callee->getFunctionType()->isVarArg()) 2277 return false; 2278 2279 Constant *RetVal; 2280 // Execute the call, if successful, use the return value. 2281 if (!EvaluateFunction(Callee, RetVal, Formals, CallStack, 2282 MutatedMemory, AllocaTmps)) 2283 return false; 2284 InstResult = RetVal; 2285 } 2286 } else if (isa<TerminatorInst>(CurInst)) { 2287 BasicBlock *NewBB = 0; 2288 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 2289 if (BI->isUnconditional()) { 2290 NewBB = BI->getSuccessor(0); 2291 } else { 2292 ConstantInt *Cond = 2293 dyn_cast<ConstantInt>(getVal(Values, BI->getCondition())); 2294 if (!Cond) return false; // Cannot determine. 2295 2296 NewBB = BI->getSuccessor(!Cond->getZExtValue()); 2297 } 2298 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 2299 ConstantInt *Val = 2300 dyn_cast<ConstantInt>(getVal(Values, SI->getCondition())); 2301 if (!Val) return false; // Cannot determine. 2302 NewBB = SI->getSuccessor(SI->findCaseValue(Val)); 2303 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) { 2304 if (RI->getNumOperands()) 2305 RetVal = getVal(Values, RI->getOperand(0)); 2306 2307 CallStack.pop_back(); // return from fn. 2308 return true; // We succeeded at evaluating this ctor! 2309 } else { 2310 // invoke, unwind, unreachable. 2311 return false; // Cannot handle this terminator. 2312 } 2313 2314 // Okay, we succeeded in evaluating this control flow. See if we have 2315 // executed the new block before. If so, we have a looping function, 2316 // which we cannot evaluate in reasonable time. 2317 if (!ExecutedBlocks.insert(NewBB)) 2318 return false; // looped! 2319 2320 // Okay, we have never been in this block before. Check to see if there 2321 // are any PHI nodes. If so, evaluate them with information about where 2322 // we came from. 2323 BasicBlock *OldBB = CurInst->getParent(); 2324 CurInst = NewBB->begin(); 2325 PHINode *PN; 2326 for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 2327 Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB)); 2328 2329 // Do NOT increment CurInst. We know that the terminator had no value. 2330 continue; 2331 } else { 2332 // Did not know how to evaluate this! 2333 return false; 2334 } 2335 2336 if (!CurInst->use_empty()) 2337 Values[CurInst] = InstResult; 2338 2339 // Advance program counter. 2340 ++CurInst; 2341 } 2342} 2343 2344/// EvaluateStaticConstructor - Evaluate static constructors in the function, if 2345/// we can. Return true if we can, false otherwise. 2346static bool EvaluateStaticConstructor(Function *F) { 2347 /// MutatedMemory - For each store we execute, we update this map. Loads 2348 /// check this to get the most up-to-date value. If evaluation is successful, 2349 /// this state is committed to the process. 2350 DenseMap<Constant*, Constant*> MutatedMemory; 2351 2352 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable 2353 /// to represent its body. This vector is needed so we can delete the 2354 /// temporary globals when we are done. 2355 std::vector<GlobalVariable*> AllocaTmps; 2356 2357 /// CallStack - This is used to detect recursion. In pathological situations 2358 /// we could hit exponential behavior, but at least there is nothing 2359 /// unbounded. 2360 std::vector<Function*> CallStack; 2361 2362 // Call the function. 2363 Constant *RetValDummy; 2364 bool EvalSuccess = EvaluateFunction(F, RetValDummy, 2365 SmallVector<Constant*, 0>(), CallStack, 2366 MutatedMemory, AllocaTmps); 2367 if (EvalSuccess) { 2368 // We succeeded at evaluation: commit the result. 2369 DEBUG(errs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2370 << F->getName() << "' to " << MutatedMemory.size() 2371 << " stores.\n"); 2372 for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(), 2373 E = MutatedMemory.end(); I != E; ++I) 2374 CommitValueTo(I->second, I->first, F->getContext()); 2375 } 2376 2377 // At this point, we are done interpreting. If we created any 'alloca' 2378 // temporaries, release them now. 2379 while (!AllocaTmps.empty()) { 2380 GlobalVariable *Tmp = AllocaTmps.back(); 2381 AllocaTmps.pop_back(); 2382 2383 // If there are still users of the alloca, the program is doing something 2384 // silly, e.g. storing the address of the alloca somewhere and using it 2385 // later. Since this is undefined, we'll just make it be null. 2386 if (!Tmp->use_empty()) 2387 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType())); 2388 delete Tmp; 2389 } 2390 2391 return EvalSuccess; 2392} 2393 2394 2395 2396/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible. 2397/// Return true if anything changed. 2398bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) { 2399 std::vector<Function*> Ctors = ParseGlobalCtors(GCL); 2400 bool MadeChange = false; 2401 if (Ctors.empty()) return false; 2402 2403 // Loop over global ctors, optimizing them when we can. 2404 for (unsigned i = 0; i != Ctors.size(); ++i) { 2405 Function *F = Ctors[i]; 2406 // Found a null terminator in the middle of the list, prune off the rest of 2407 // the list. 2408 if (F == 0) { 2409 if (i != Ctors.size()-1) { 2410 Ctors.resize(i+1); 2411 MadeChange = true; 2412 } 2413 break; 2414 } 2415 2416 // We cannot simplify external ctor functions. 2417 if (F->empty()) continue; 2418 2419 // If we can evaluate the ctor at compile time, do. 2420 if (EvaluateStaticConstructor(F)) { 2421 Ctors.erase(Ctors.begin()+i); 2422 MadeChange = true; 2423 --i; 2424 ++NumCtorsEvaluated; 2425 continue; 2426 } 2427 } 2428 2429 if (!MadeChange) return false; 2430 2431 GCL = InstallGlobalCtors(GCL, Ctors, GCL->getContext()); 2432 return true; 2433} 2434 2435bool GlobalOpt::OptimizeGlobalAliases(Module &M) { 2436 bool Changed = false; 2437 2438 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2439 I != E;) { 2440 Module::alias_iterator J = I++; 2441 // Aliases without names cannot be referenced outside this module. 2442 if (!J->hasName() && !J->isDeclaration()) 2443 J->setLinkage(GlobalValue::InternalLinkage); 2444 // If the aliasee may change at link time, nothing can be done - bail out. 2445 if (J->mayBeOverridden()) 2446 continue; 2447 2448 Constant *Aliasee = J->getAliasee(); 2449 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2450 Target->removeDeadConstantUsers(); 2451 bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse(); 2452 2453 // Make all users of the alias use the aliasee instead. 2454 if (!J->use_empty()) { 2455 J->replaceAllUsesWith(Aliasee); 2456 ++NumAliasesResolved; 2457 Changed = true; 2458 } 2459 2460 // If the aliasee has internal linkage, give it the name and linkage 2461 // of the alias, and delete the alias. This turns: 2462 // define internal ... @f(...) 2463 // @a = alias ... @f 2464 // into: 2465 // define ... @a(...) 2466 if (!Target->hasLocalLinkage()) 2467 continue; 2468 2469 // The transform is only useful if the alias does not have internal linkage. 2470 if (J->hasLocalLinkage()) 2471 continue; 2472 2473 // Do not perform the transform if multiple aliases potentially target the 2474 // aliasee. This check also ensures that it is safe to replace the section 2475 // and other attributes of the aliasee with those of the alias. 2476 if (!hasOneUse) 2477 continue; 2478 2479 // Give the aliasee the name, linkage and other attributes of the alias. 2480 Target->takeName(J); 2481 Target->setLinkage(J->getLinkage()); 2482 Target->GlobalValue::copyAttributesFrom(J); 2483 2484 // Delete the alias. 2485 M.getAliasList().erase(J); 2486 ++NumAliasesRemoved; 2487 Changed = true; 2488 } 2489 2490 return Changed; 2491} 2492 2493bool GlobalOpt::runOnModule(Module &M) { 2494 bool Changed = false; 2495 2496 // Try to find the llvm.globalctors list. 2497 GlobalVariable *GlobalCtors = FindGlobalCtors(M); 2498 2499 bool LocalChange = true; 2500 while (LocalChange) { 2501 LocalChange = false; 2502 2503 // Delete functions that are trivially dead, ccc -> fastcc 2504 LocalChange |= OptimizeFunctions(M); 2505 2506 // Optimize global_ctors list. 2507 if (GlobalCtors) 2508 LocalChange |= OptimizeGlobalCtorsList(GlobalCtors); 2509 2510 // Optimize non-address-taken globals. 2511 LocalChange |= OptimizeGlobalVars(M); 2512 2513 // Resolve aliases, when possible. 2514 LocalChange |= OptimizeGlobalAliases(M); 2515 Changed |= LocalChange; 2516 } 2517 2518 // TODO: Move all global ctors functions to the end of the module for code 2519 // layout. 2520 2521 return Changed; 2522} 2523