GlobalOpt.cpp revision e61d0a626e58bdba004a7aad9abecb3a9bd85256
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass transforms simple global variables that never have their address 11// taken. If obviously true, it marks read/write globals as constant, deletes 12// variables only stored to, etc. 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "globalopt" 17#include "llvm/Transforms/IPO.h" 18#include "llvm/CallingConv.h" 19#include "llvm/Constants.h" 20#include "llvm/DerivedTypes.h" 21#include "llvm/Instructions.h" 22#include "llvm/IntrinsicInst.h" 23#include "llvm/Module.h" 24#include "llvm/Pass.h" 25#include "llvm/Analysis/ConstantFolding.h" 26#include "llvm/Target/TargetData.h" 27#include "llvm/Support/CallSite.h" 28#include "llvm/Support/Compiler.h" 29#include "llvm/Support/Debug.h" 30#include "llvm/Support/GetElementPtrTypeIterator.h" 31#include "llvm/Support/MathExtras.h" 32#include "llvm/ADT/SmallPtrSet.h" 33#include "llvm/ADT/SmallVector.h" 34#include "llvm/ADT/Statistic.h" 35#include "llvm/ADT/StringExtras.h" 36#include <algorithm> 37#include <map> 38#include <set> 39using namespace llvm; 40 41STATISTIC(NumMarked , "Number of globals marked constant"); 42STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 43STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 44STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 45STATISTIC(NumDeleted , "Number of globals deleted"); 46STATISTIC(NumFnDeleted , "Number of functions deleted"); 47STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 48STATISTIC(NumLocalized , "Number of globals localized"); 49STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 50STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 51STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 52STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 53 54namespace { 55 struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass { 56 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 57 AU.addRequired<TargetData>(); 58 } 59 static char ID; // Pass identification, replacement for typeid 60 GlobalOpt() : ModulePass(&ID) {} 61 62 bool runOnModule(Module &M); 63 64 private: 65 GlobalVariable *FindGlobalCtors(Module &M); 66 bool OptimizeFunctions(Module &M); 67 bool OptimizeGlobalVars(Module &M); 68 bool ResolveAliases(Module &M); 69 bool OptimizeGlobalCtorsList(GlobalVariable *&GCL); 70 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI); 71 }; 72} 73 74char GlobalOpt::ID = 0; 75static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer"); 76 77ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } 78 79namespace { 80 81/// GlobalStatus - As we analyze each global, keep track of some information 82/// about it. If we find out that the address of the global is taken, none of 83/// this info will be accurate. 84struct VISIBILITY_HIDDEN GlobalStatus { 85 /// isLoaded - True if the global is ever loaded. If the global isn't ever 86 /// loaded it can be deleted. 87 bool isLoaded; 88 89 /// StoredType - Keep track of what stores to the global look like. 90 /// 91 enum StoredType { 92 /// NotStored - There is no store to this global. It can thus be marked 93 /// constant. 94 NotStored, 95 96 /// isInitializerStored - This global is stored to, but the only thing 97 /// stored is the constant it was initialized with. This is only tracked 98 /// for scalar globals. 99 isInitializerStored, 100 101 /// isStoredOnce - This global is stored to, but only its initializer and 102 /// one other value is ever stored to it. If this global isStoredOnce, we 103 /// track the value stored to it in StoredOnceValue below. This is only 104 /// tracked for scalar globals. 105 isStoredOnce, 106 107 /// isStored - This global is stored to by multiple values or something else 108 /// that we cannot track. 109 isStored 110 } StoredType; 111 112 /// StoredOnceValue - If only one value (besides the initializer constant) is 113 /// ever stored to this global, keep track of what value it is. 114 Value *StoredOnceValue; 115 116 /// AccessingFunction/HasMultipleAccessingFunctions - These start out 117 /// null/false. When the first accessing function is noticed, it is recorded. 118 /// When a second different accessing function is noticed, 119 /// HasMultipleAccessingFunctions is set to true. 120 Function *AccessingFunction; 121 bool HasMultipleAccessingFunctions; 122 123 /// HasNonInstructionUser - Set to true if this global has a user that is not 124 /// an instruction (e.g. a constant expr or GV initializer). 125 bool HasNonInstructionUser; 126 127 /// HasPHIUser - Set to true if this global has a user that is a PHI node. 128 bool HasPHIUser; 129 130 GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0), 131 AccessingFunction(0), HasMultipleAccessingFunctions(false), 132 HasNonInstructionUser(false), HasPHIUser(false) {} 133}; 134 135} 136 137/// ConstantIsDead - Return true if the specified constant is (transitively) 138/// dead. The constant may be used by other constants (e.g. constant arrays and 139/// constant exprs) as long as they are dead, but it cannot be used by anything 140/// else. 141static bool ConstantIsDead(Constant *C) { 142 if (isa<GlobalValue>(C)) return false; 143 144 for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI) 145 if (Constant *CU = dyn_cast<Constant>(*UI)) { 146 if (!ConstantIsDead(CU)) return false; 147 } else 148 return false; 149 return true; 150} 151 152 153/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus 154/// structure. If the global has its address taken, return true to indicate we 155/// can't do anything with it. 156/// 157static bool AnalyzeGlobal(Value *V, GlobalStatus &GS, 158 std::set<PHINode*> &PHIUsers) { 159 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) 160 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) { 161 GS.HasNonInstructionUser = true; 162 163 if (AnalyzeGlobal(CE, GS, PHIUsers)) return true; 164 165 } else if (Instruction *I = dyn_cast<Instruction>(*UI)) { 166 if (!GS.HasMultipleAccessingFunctions) { 167 Function *F = I->getParent()->getParent(); 168 if (GS.AccessingFunction == 0) 169 GS.AccessingFunction = F; 170 else if (GS.AccessingFunction != F) 171 GS.HasMultipleAccessingFunctions = true; 172 } 173 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 174 GS.isLoaded = true; 175 if (LI->isVolatile()) return true; // Don't hack on volatile loads. 176 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 177 // Don't allow a store OF the address, only stores TO the address. 178 if (SI->getOperand(0) == V) return true; 179 180 if (SI->isVolatile()) return true; // Don't hack on volatile stores. 181 182 // If this is a direct store to the global (i.e., the global is a scalar 183 // value, not an aggregate), keep more specific information about 184 // stores. 185 if (GS.StoredType != GlobalStatus::isStored) { 186 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){ 187 Value *StoredVal = SI->getOperand(0); 188 if (StoredVal == GV->getInitializer()) { 189 if (GS.StoredType < GlobalStatus::isInitializerStored) 190 GS.StoredType = GlobalStatus::isInitializerStored; 191 } else if (isa<LoadInst>(StoredVal) && 192 cast<LoadInst>(StoredVal)->getOperand(0) == GV) { 193 // G = G 194 if (GS.StoredType < GlobalStatus::isInitializerStored) 195 GS.StoredType = GlobalStatus::isInitializerStored; 196 } else if (GS.StoredType < GlobalStatus::isStoredOnce) { 197 GS.StoredType = GlobalStatus::isStoredOnce; 198 GS.StoredOnceValue = StoredVal; 199 } else if (GS.StoredType == GlobalStatus::isStoredOnce && 200 GS.StoredOnceValue == StoredVal) { 201 // noop. 202 } else { 203 GS.StoredType = GlobalStatus::isStored; 204 } 205 } else { 206 GS.StoredType = GlobalStatus::isStored; 207 } 208 } 209 } else if (isa<GetElementPtrInst>(I)) { 210 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 211 } else if (isa<SelectInst>(I)) { 212 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 213 } else if (PHINode *PN = dyn_cast<PHINode>(I)) { 214 // PHI nodes we can check just like select or GEP instructions, but we 215 // have to be careful about infinite recursion. 216 if (PHIUsers.insert(PN).second) // Not already visited. 217 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 218 GS.HasPHIUser = true; 219 } else if (isa<CmpInst>(I)) { 220 } else if (isa<MemCpyInst>(I) || isa<MemMoveInst>(I)) { 221 if (I->getOperand(1) == V) 222 GS.StoredType = GlobalStatus::isStored; 223 if (I->getOperand(2) == V) 224 GS.isLoaded = true; 225 } else if (isa<MemSetInst>(I)) { 226 assert(I->getOperand(1) == V && "Memset only takes one pointer!"); 227 GS.StoredType = GlobalStatus::isStored; 228 } else { 229 return true; // Any other non-load instruction might take address! 230 } 231 } else if (Constant *C = dyn_cast<Constant>(*UI)) { 232 GS.HasNonInstructionUser = true; 233 // We might have a dead and dangling constant hanging off of here. 234 if (!ConstantIsDead(C)) 235 return true; 236 } else { 237 GS.HasNonInstructionUser = true; 238 // Otherwise must be some other user. 239 return true; 240 } 241 242 return false; 243} 244 245static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) { 246 ConstantInt *CI = dyn_cast<ConstantInt>(Idx); 247 if (!CI) return 0; 248 unsigned IdxV = CI->getZExtValue(); 249 250 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) { 251 if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV); 252 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) { 253 if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV); 254 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) { 255 if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV); 256 } else if (isa<ConstantAggregateZero>(Agg)) { 257 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) { 258 if (IdxV < STy->getNumElements()) 259 return Constant::getNullValue(STy->getElementType(IdxV)); 260 } else if (const SequentialType *STy = 261 dyn_cast<SequentialType>(Agg->getType())) { 262 return Constant::getNullValue(STy->getElementType()); 263 } 264 } else if (isa<UndefValue>(Agg)) { 265 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) { 266 if (IdxV < STy->getNumElements()) 267 return UndefValue::get(STy->getElementType(IdxV)); 268 } else if (const SequentialType *STy = 269 dyn_cast<SequentialType>(Agg->getType())) { 270 return UndefValue::get(STy->getElementType()); 271 } 272 } 273 return 0; 274} 275 276 277/// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all 278/// users of the global, cleaning up the obvious ones. This is largely just a 279/// quick scan over the use list to clean up the easy and obvious cruft. This 280/// returns true if it made a change. 281static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) { 282 bool Changed = false; 283 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) { 284 User *U = *UI++; 285 286 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 287 if (Init) { 288 // Replace the load with the initializer. 289 LI->replaceAllUsesWith(Init); 290 LI->eraseFromParent(); 291 Changed = true; 292 } 293 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 294 // Store must be unreachable or storing Init into the global. 295 SI->eraseFromParent(); 296 Changed = true; 297 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 298 if (CE->getOpcode() == Instruction::GetElementPtr) { 299 Constant *SubInit = 0; 300 if (Init) 301 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 302 Changed |= CleanupConstantGlobalUsers(CE, SubInit); 303 } else if (CE->getOpcode() == Instruction::BitCast && 304 isa<PointerType>(CE->getType())) { 305 // Pointer cast, delete any stores and memsets to the global. 306 Changed |= CleanupConstantGlobalUsers(CE, 0); 307 } 308 309 if (CE->use_empty()) { 310 CE->destroyConstant(); 311 Changed = true; 312 } 313 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 314 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 315 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 316 // and will invalidate our notion of what Init is. 317 Constant *SubInit = 0; 318 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 319 ConstantExpr *CE = 320 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP)); 321 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 322 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 323 } 324 Changed |= CleanupConstantGlobalUsers(GEP, SubInit); 325 326 if (GEP->use_empty()) { 327 GEP->eraseFromParent(); 328 Changed = true; 329 } 330 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 331 if (MI->getRawDest() == V) { 332 MI->eraseFromParent(); 333 Changed = true; 334 } 335 336 } else if (Constant *C = dyn_cast<Constant>(U)) { 337 // If we have a chain of dead constantexprs or other things dangling from 338 // us, and if they are all dead, nuke them without remorse. 339 if (ConstantIsDead(C)) { 340 C->destroyConstant(); 341 // This could have invalidated UI, start over from scratch. 342 CleanupConstantGlobalUsers(V, Init); 343 return true; 344 } 345 } 346 } 347 return Changed; 348} 349 350/// isSafeSROAElementUse - Return true if the specified instruction is a safe 351/// user of a derived expression from a global that we want to SROA. 352static bool isSafeSROAElementUse(Value *V) { 353 // We might have a dead and dangling constant hanging off of here. 354 if (Constant *C = dyn_cast<Constant>(V)) 355 return ConstantIsDead(C); 356 357 Instruction *I = dyn_cast<Instruction>(V); 358 if (!I) return false; 359 360 // Loads are ok. 361 if (isa<LoadInst>(I)) return true; 362 363 // Stores *to* the pointer are ok. 364 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 365 return SI->getOperand(0) != V; 366 367 // Otherwise, it must be a GEP. 368 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 369 if (GEPI == 0) return false; 370 371 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 372 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 373 return false; 374 375 for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end(); 376 I != E; ++I) 377 if (!isSafeSROAElementUse(*I)) 378 return false; 379 return true; 380} 381 382 383/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value. 384/// Look at it and its uses and decide whether it is safe to SROA this global. 385/// 386static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 387 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 388 if (!isa<GetElementPtrInst>(U) && 389 (!isa<ConstantExpr>(U) || 390 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 391 return false; 392 393 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 394 // don't like < 3 operand CE's, and we don't like non-constant integer 395 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 396 // value of C. 397 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 398 !cast<Constant>(U->getOperand(1))->isNullValue() || 399 !isa<ConstantInt>(U->getOperand(2))) 400 return false; 401 402 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 403 ++GEPI; // Skip over the pointer index. 404 405 // If this is a use of an array allocation, do a bit more checking for sanity. 406 if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 407 uint64_t NumElements = AT->getNumElements(); 408 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 409 410 // Check to make sure that index falls within the array. If not, 411 // something funny is going on, so we won't do the optimization. 412 // 413 if (Idx->getZExtValue() >= NumElements) 414 return false; 415 416 // We cannot scalar repl this level of the array unless any array 417 // sub-indices are in-range constants. In particular, consider: 418 // A[0][i]. We cannot know that the user isn't doing invalid things like 419 // allowing i to index an out-of-range subscript that accesses A[1]. 420 // 421 // Scalar replacing *just* the outer index of the array is probably not 422 // going to be a win anyway, so just give up. 423 for (++GEPI; // Skip array index. 424 GEPI != E && (isa<ArrayType>(*GEPI) || isa<VectorType>(*GEPI)); 425 ++GEPI) { 426 uint64_t NumElements; 427 if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 428 NumElements = SubArrayTy->getNumElements(); 429 else 430 NumElements = cast<VectorType>(*GEPI)->getNumElements(); 431 432 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 433 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 434 return false; 435 } 436 } 437 438 for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I) 439 if (!isSafeSROAElementUse(*I)) 440 return false; 441 return true; 442} 443 444/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it 445/// is safe for us to perform this transformation. 446/// 447static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 448 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 449 UI != E; ++UI) { 450 if (!IsUserOfGlobalSafeForSRA(*UI, GV)) 451 return false; 452 } 453 return true; 454} 455 456 457/// SRAGlobal - Perform scalar replacement of aggregates on the specified global 458/// variable. This opens the door for other optimizations by exposing the 459/// behavior of the program in a more fine-grained way. We have determined that 460/// this transformation is safe already. We return the first global variable we 461/// insert so that the caller can reprocess it. 462static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) { 463 // Make sure this global only has simple uses that we can SRA. 464 if (!GlobalUsersSafeToSRA(GV)) 465 return 0; 466 467 assert(GV->hasInternalLinkage() && !GV->isConstant()); 468 Constant *Init = GV->getInitializer(); 469 const Type *Ty = Init->getType(); 470 471 std::vector<GlobalVariable*> NewGlobals; 472 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 473 474 // Get the alignment of the global, either explicit or target-specific. 475 unsigned StartAlignment = GV->getAlignment(); 476 if (StartAlignment == 0) 477 StartAlignment = TD.getABITypeAlignment(GV->getType()); 478 479 if (const StructType *STy = dyn_cast<StructType>(Ty)) { 480 NewGlobals.reserve(STy->getNumElements()); 481 const StructLayout &Layout = *TD.getStructLayout(STy); 482 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 483 Constant *In = getAggregateConstantElement(Init, 484 ConstantInt::get(Type::Int32Ty, i)); 485 assert(In && "Couldn't get element of initializer?"); 486 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 487 GlobalVariable::InternalLinkage, 488 In, GV->getName()+"."+utostr(i), 489 (Module *)NULL, 490 GV->isThreadLocal(), 491 GV->getType()->getAddressSpace()); 492 Globals.insert(GV, NGV); 493 NewGlobals.push_back(NGV); 494 495 // Calculate the known alignment of the field. If the original aggregate 496 // had 256 byte alignment for example, something might depend on that: 497 // propagate info to each field. 498 uint64_t FieldOffset = Layout.getElementOffset(i); 499 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 500 if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i))) 501 NGV->setAlignment(NewAlign); 502 } 503 } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 504 unsigned NumElements = 0; 505 if (const ArrayType *ATy = dyn_cast<ArrayType>(STy)) 506 NumElements = ATy->getNumElements(); 507 else 508 NumElements = cast<VectorType>(STy)->getNumElements(); 509 510 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 511 return 0; // It's not worth it. 512 NewGlobals.reserve(NumElements); 513 514 uint64_t EltSize = TD.getABITypeSize(STy->getElementType()); 515 unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType()); 516 for (unsigned i = 0, e = NumElements; i != e; ++i) { 517 Constant *In = getAggregateConstantElement(Init, 518 ConstantInt::get(Type::Int32Ty, i)); 519 assert(In && "Couldn't get element of initializer?"); 520 521 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 522 GlobalVariable::InternalLinkage, 523 In, GV->getName()+"."+utostr(i), 524 (Module *)NULL, 525 GV->isThreadLocal(), 526 GV->getType()->getAddressSpace()); 527 Globals.insert(GV, NGV); 528 NewGlobals.push_back(NGV); 529 530 // Calculate the known alignment of the field. If the original aggregate 531 // had 256 byte alignment for example, something might depend on that: 532 // propagate info to each field. 533 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 534 if (NewAlign > EltAlign) 535 NGV->setAlignment(NewAlign); 536 } 537 } 538 539 if (NewGlobals.empty()) 540 return 0; 541 542 DOUT << "PERFORMING GLOBAL SRA ON: " << *GV; 543 544 Constant *NullInt = Constant::getNullValue(Type::Int32Ty); 545 546 // Loop over all of the uses of the global, replacing the constantexpr geps, 547 // with smaller constantexpr geps or direct references. 548 while (!GV->use_empty()) { 549 User *GEP = GV->use_back(); 550 assert(((isa<ConstantExpr>(GEP) && 551 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 552 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 553 554 // Ignore the 1th operand, which has to be zero or else the program is quite 555 // broken (undefined). Get the 2nd operand, which is the structure or array 556 // index. 557 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 558 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 559 560 Value *NewPtr = NewGlobals[Val]; 561 562 // Form a shorter GEP if needed. 563 if (GEP->getNumOperands() > 3) { 564 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 565 SmallVector<Constant*, 8> Idxs; 566 Idxs.push_back(NullInt); 567 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 568 Idxs.push_back(CE->getOperand(i)); 569 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), 570 &Idxs[0], Idxs.size()); 571 } else { 572 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 573 SmallVector<Value*, 8> Idxs; 574 Idxs.push_back(NullInt); 575 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 576 Idxs.push_back(GEPI->getOperand(i)); 577 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(), 578 GEPI->getName()+"."+utostr(Val), GEPI); 579 } 580 } 581 GEP->replaceAllUsesWith(NewPtr); 582 583 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 584 GEPI->eraseFromParent(); 585 else 586 cast<ConstantExpr>(GEP)->destroyConstant(); 587 } 588 589 // Delete the old global, now that it is dead. 590 Globals.erase(GV); 591 ++NumSRA; 592 593 // Loop over the new globals array deleting any globals that are obviously 594 // dead. This can arise due to scalarization of a structure or an array that 595 // has elements that are dead. 596 unsigned FirstGlobal = 0; 597 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 598 if (NewGlobals[i]->use_empty()) { 599 Globals.erase(NewGlobals[i]); 600 if (FirstGlobal == i) ++FirstGlobal; 601 } 602 603 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0; 604} 605 606/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified 607/// value will trap if the value is dynamically null. PHIs keeps track of any 608/// phi nodes we've seen to avoid reprocessing them. 609static bool AllUsesOfValueWillTrapIfNull(Value *V, 610 SmallPtrSet<PHINode*, 8> &PHIs) { 611 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) 612 if (isa<LoadInst>(*UI)) { 613 // Will trap. 614 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 615 if (SI->getOperand(0) == V) { 616 //cerr << "NONTRAPPING USE: " << **UI; 617 return false; // Storing the value. 618 } 619 } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) { 620 if (CI->getOperand(0) != V) { 621 //cerr << "NONTRAPPING USE: " << **UI; 622 return false; // Not calling the ptr 623 } 624 } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) { 625 if (II->getOperand(0) != V) { 626 //cerr << "NONTRAPPING USE: " << **UI; 627 return false; // Not calling the ptr 628 } 629 } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) { 630 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 631 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) { 632 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 633 } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) { 634 // If we've already seen this phi node, ignore it, it has already been 635 // checked. 636 if (PHIs.insert(PN)) 637 return AllUsesOfValueWillTrapIfNull(PN, PHIs); 638 } else if (isa<ICmpInst>(*UI) && 639 isa<ConstantPointerNull>(UI->getOperand(1))) { 640 // Ignore setcc X, null 641 } else { 642 //cerr << "NONTRAPPING USE: " << **UI; 643 return false; 644 } 645 return true; 646} 647 648/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads 649/// from GV will trap if the loaded value is null. Note that this also permits 650/// comparisons of the loaded value against null, as a special case. 651static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) { 652 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI) 653 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 654 SmallPtrSet<PHINode*, 8> PHIs; 655 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 656 return false; 657 } else if (isa<StoreInst>(*UI)) { 658 // Ignore stores to the global. 659 } else { 660 // We don't know or understand this user, bail out. 661 //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI; 662 return false; 663 } 664 665 return true; 666} 667 668static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 669 bool Changed = false; 670 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) { 671 Instruction *I = cast<Instruction>(*UI++); 672 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 673 LI->setOperand(0, NewV); 674 Changed = true; 675 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 676 if (SI->getOperand(1) == V) { 677 SI->setOperand(1, NewV); 678 Changed = true; 679 } 680 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 681 if (I->getOperand(0) == V) { 682 // Calling through the pointer! Turn into a direct call, but be careful 683 // that the pointer is not also being passed as an argument. 684 I->setOperand(0, NewV); 685 Changed = true; 686 bool PassedAsArg = false; 687 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i) 688 if (I->getOperand(i) == V) { 689 PassedAsArg = true; 690 I->setOperand(i, NewV); 691 } 692 693 if (PassedAsArg) { 694 // Being passed as an argument also. Be careful to not invalidate UI! 695 UI = V->use_begin(); 696 } 697 } 698 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 699 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 700 ConstantExpr::getCast(CI->getOpcode(), 701 NewV, CI->getType())); 702 if (CI->use_empty()) { 703 Changed = true; 704 CI->eraseFromParent(); 705 } 706 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 707 // Should handle GEP here. 708 SmallVector<Constant*, 8> Idxs; 709 Idxs.reserve(GEPI->getNumOperands()-1); 710 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 711 i != e; ++i) 712 if (Constant *C = dyn_cast<Constant>(*i)) 713 Idxs.push_back(C); 714 else 715 break; 716 if (Idxs.size() == GEPI->getNumOperands()-1) 717 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI, 718 ConstantExpr::getGetElementPtr(NewV, &Idxs[0], 719 Idxs.size())); 720 if (GEPI->use_empty()) { 721 Changed = true; 722 GEPI->eraseFromParent(); 723 } 724 } 725 } 726 727 return Changed; 728} 729 730 731/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null 732/// value stored into it. If there are uses of the loaded value that would trap 733/// if the loaded value is dynamically null, then we know that they cannot be 734/// reachable with a null optimize away the load. 735static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) { 736 std::vector<LoadInst*> Loads; 737 bool Changed = false; 738 739 // Replace all uses of loads with uses of uses of the stored value. 740 for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); 741 GUI != E; ++GUI) 742 if (LoadInst *LI = dyn_cast<LoadInst>(*GUI)) { 743 Loads.push_back(LI); 744 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 745 } else { 746 // If we get here we could have stores, selects, or phi nodes whose values 747 // are loaded. 748 assert((isa<StoreInst>(*GUI) || isa<PHINode>(*GUI) || 749 isa<SelectInst>(*GUI) || isa<ConstantExpr>(*GUI)) && 750 "Only expect load and stores!"); 751 } 752 753 if (Changed) { 754 DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV; 755 ++NumGlobUses; 756 } 757 758 // Delete all of the loads we can, keeping track of whether we nuked them all! 759 bool AllLoadsGone = true; 760 while (!Loads.empty()) { 761 LoadInst *L = Loads.back(); 762 if (L->use_empty()) { 763 L->eraseFromParent(); 764 Changed = true; 765 } else { 766 AllLoadsGone = false; 767 } 768 Loads.pop_back(); 769 } 770 771 // If we nuked all of the loads, then none of the stores are needed either, 772 // nor is the global. 773 if (AllLoadsGone) { 774 DOUT << " *** GLOBAL NOW DEAD!\n"; 775 CleanupConstantGlobalUsers(GV, 0); 776 if (GV->use_empty()) { 777 GV->eraseFromParent(); 778 ++NumDeleted; 779 } 780 Changed = true; 781 } 782 return Changed; 783} 784 785/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the 786/// instructions that are foldable. 787static void ConstantPropUsersOf(Value *V) { 788 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) 789 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 790 if (Constant *NewC = ConstantFoldInstruction(I)) { 791 I->replaceAllUsesWith(NewC); 792 793 // Advance UI to the next non-I use to avoid invalidating it! 794 // Instructions could multiply use V. 795 while (UI != E && *UI == I) 796 ++UI; 797 I->eraseFromParent(); 798 } 799} 800 801/// OptimizeGlobalAddressOfMalloc - This function takes the specified global 802/// variable, and transforms the program as if it always contained the result of 803/// the specified malloc. Because it is always the result of the specified 804/// malloc, there is no reason to actually DO the malloc. Instead, turn the 805/// malloc into a global, and any loads of GV as uses of the new global. 806static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, 807 MallocInst *MI) { 808 DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << " MALLOC = " << *MI; 809 ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize()); 810 811 if (NElements->getZExtValue() != 1) { 812 // If we have an array allocation, transform it to a single element 813 // allocation to make the code below simpler. 814 Type *NewTy = ArrayType::get(MI->getAllocatedType(), 815 NElements->getZExtValue()); 816 MallocInst *NewMI = 817 new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty), 818 MI->getAlignment(), MI->getName(), MI); 819 Value* Indices[2]; 820 Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty); 821 Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2, 822 NewMI->getName()+".el0", MI); 823 MI->replaceAllUsesWith(NewGEP); 824 MI->eraseFromParent(); 825 MI = NewMI; 826 } 827 828 // Create the new global variable. The contents of the malloc'd memory is 829 // undefined, so initialize with an undef value. 830 Constant *Init = UndefValue::get(MI->getAllocatedType()); 831 GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false, 832 GlobalValue::InternalLinkage, Init, 833 GV->getName()+".body", 834 (Module *)NULL, 835 GV->isThreadLocal()); 836 // FIXME: This new global should have the alignment returned by malloc. Code 837 // could depend on malloc returning large alignment (on the mac, 16 bytes) but 838 // this would only guarantee some lower alignment. 839 GV->getParent()->getGlobalList().insert(GV, NewGV); 840 841 // Anything that used the malloc now uses the global directly. 842 MI->replaceAllUsesWith(NewGV); 843 844 Constant *RepValue = NewGV; 845 if (NewGV->getType() != GV->getType()->getElementType()) 846 RepValue = ConstantExpr::getBitCast(RepValue, 847 GV->getType()->getElementType()); 848 849 // If there is a comparison against null, we will insert a global bool to 850 // keep track of whether the global was initialized yet or not. 851 GlobalVariable *InitBool = 852 new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage, 853 ConstantInt::getFalse(), GV->getName()+".init", 854 (Module *)NULL, GV->isThreadLocal()); 855 bool InitBoolUsed = false; 856 857 // Loop over all uses of GV, processing them in turn. 858 std::vector<StoreInst*> Stores; 859 while (!GV->use_empty()) 860 if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) { 861 while (!LI->use_empty()) { 862 Use &LoadUse = LI->use_begin().getUse(); 863 if (!isa<ICmpInst>(LoadUse.getUser())) 864 LoadUse = RepValue; 865 else { 866 ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser()); 867 // Replace the cmp X, 0 with a use of the bool value. 868 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI); 869 InitBoolUsed = true; 870 switch (CI->getPredicate()) { 871 default: assert(0 && "Unknown ICmp Predicate!"); 872 case ICmpInst::ICMP_ULT: 873 case ICmpInst::ICMP_SLT: 874 LV = ConstantInt::getFalse(); // X < null -> always false 875 break; 876 case ICmpInst::ICMP_ULE: 877 case ICmpInst::ICMP_SLE: 878 case ICmpInst::ICMP_EQ: 879 LV = BinaryOperator::CreateNot(LV, "notinit", CI); 880 break; 881 case ICmpInst::ICMP_NE: 882 case ICmpInst::ICMP_UGE: 883 case ICmpInst::ICMP_SGE: 884 case ICmpInst::ICMP_UGT: 885 case ICmpInst::ICMP_SGT: 886 break; // no change. 887 } 888 CI->replaceAllUsesWith(LV); 889 CI->eraseFromParent(); 890 } 891 } 892 LI->eraseFromParent(); 893 } else { 894 StoreInst *SI = cast<StoreInst>(GV->use_back()); 895 // The global is initialized when the store to it occurs. 896 new StoreInst(ConstantInt::getTrue(), InitBool, SI); 897 SI->eraseFromParent(); 898 } 899 900 // If the initialization boolean was used, insert it, otherwise delete it. 901 if (!InitBoolUsed) { 902 while (!InitBool->use_empty()) // Delete initializations 903 cast<Instruction>(InitBool->use_back())->eraseFromParent(); 904 delete InitBool; 905 } else 906 GV->getParent()->getGlobalList().insert(GV, InitBool); 907 908 909 // Now the GV is dead, nuke it and the malloc. 910 GV->eraseFromParent(); 911 MI->eraseFromParent(); 912 913 // To further other optimizations, loop over all users of NewGV and try to 914 // constant prop them. This will promote GEP instructions with constant 915 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 916 ConstantPropUsersOf(NewGV); 917 if (RepValue != NewGV) 918 ConstantPropUsersOf(RepValue); 919 920 return NewGV; 921} 922 923/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking 924/// to make sure that there are no complex uses of V. We permit simple things 925/// like dereferencing the pointer, but not storing through the address, unless 926/// it is to the specified global. 927static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V, 928 GlobalVariable *GV, 929 SmallPtrSet<PHINode*, 8> &PHIs) { 930 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) 931 if (isa<LoadInst>(*UI) || isa<CmpInst>(*UI)) { 932 // Fine, ignore. 933 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 934 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 935 return false; // Storing the pointer itself... bad. 936 // Otherwise, storing through it, or storing into GV... fine. 937 } else if (isa<GetElementPtrInst>(*UI)) { 938 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(cast<Instruction>(*UI), 939 GV, PHIs)) 940 return false; 941 } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) { 942 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 943 // cycles. 944 if (PHIs.insert(PN)) 945 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 946 return false; 947 } else { 948 return false; 949 } 950 return true; 951} 952 953/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV 954/// somewhere. Transform all uses of the allocation into loads from the 955/// global and uses of the resultant pointer. Further, delete the store into 956/// GV. This assumes that these value pass the 957/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 958static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 959 GlobalVariable *GV) { 960 while (!Alloc->use_empty()) { 961 Instruction *U = cast<Instruction>(*Alloc->use_begin()); 962 Instruction *InsertPt = U; 963 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 964 // If this is the store of the allocation into the global, remove it. 965 if (SI->getOperand(1) == GV) { 966 SI->eraseFromParent(); 967 continue; 968 } 969 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 970 // Insert the load in the corresponding predecessor, not right before the 971 // PHI. 972 unsigned PredNo = Alloc->use_begin().getOperandNo()/2; 973 InsertPt = PN->getIncomingBlock(PredNo)->getTerminator(); 974 } 975 976 // Insert a load from the global, and use it instead of the malloc. 977 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 978 U->replaceUsesOfWith(Alloc, NL); 979 } 980} 981 982/// GlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from 983/// GV are simple enough to perform HeapSRA, return true. 984static bool GlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV, 985 MallocInst *MI) { 986 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E; 987 ++UI) 988 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 989 // We permit two users of the load: setcc comparing against the null 990 // pointer, and a getelementptr of a specific form. 991 for (Value::use_iterator UI = LI->use_begin(), E = LI->use_end(); 992 UI != E; ++UI) { 993 // Comparison against null is ok. 994 if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) { 995 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 996 return false; 997 continue; 998 } 999 1000 // getelementptr is also ok, but only a simple form. 1001 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) { 1002 // Must index into the array and into the struct. 1003 if (GEPI->getNumOperands() < 3) 1004 return false; 1005 1006 // Otherwise the GEP is ok. 1007 continue; 1008 } 1009 1010 if (PHINode *PN = dyn_cast<PHINode>(*UI)) { 1011 // We have a phi of a load from the global. We can only handle this 1012 // if the other PHI'd values are actually the same. In this case, 1013 // the rewriter will just drop the phi entirely. 1014 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1015 Value *IV = PN->getIncomingValue(i); 1016 if (IV == LI) continue; // Trivial the same. 1017 1018 // If the phi'd value is from the malloc that initializes the value, 1019 // we can xform it. 1020 if (IV == MI) continue; 1021 1022 // Otherwise, we don't know what it is. 1023 return false; 1024 } 1025 return true; 1026 } 1027 1028 // Otherwise we don't know what this is, not ok. 1029 return false; 1030 } 1031 } 1032 return true; 1033} 1034 1035/// GetHeapSROALoad - Return the load for the specified field of the HeapSROA'd 1036/// value, lazily creating it on demand. 1037static Value *GetHeapSROALoad(Instruction *Load, unsigned FieldNo, 1038 const std::vector<GlobalVariable*> &FieldGlobals, 1039 std::vector<Value *> &InsertedLoadsForPtr) { 1040 if (InsertedLoadsForPtr.size() <= FieldNo) 1041 InsertedLoadsForPtr.resize(FieldNo+1); 1042 if (InsertedLoadsForPtr[FieldNo] == 0) 1043 InsertedLoadsForPtr[FieldNo] = new LoadInst(FieldGlobals[FieldNo], 1044 Load->getName()+".f" + 1045 utostr(FieldNo), Load); 1046 return InsertedLoadsForPtr[FieldNo]; 1047} 1048 1049/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from 1050/// the load, rewrite the derived value to use the HeapSRoA'd load. 1051static void RewriteHeapSROALoadUser(LoadInst *Load, Instruction *LoadUser, 1052 const std::vector<GlobalVariable*> &FieldGlobals, 1053 std::vector<Value *> &InsertedLoadsForPtr) { 1054 // If this is a comparison against null, handle it. 1055 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1056 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1057 // If we have a setcc of the loaded pointer, we can use a setcc of any 1058 // field. 1059 Value *NPtr; 1060 if (InsertedLoadsForPtr.empty()) { 1061 NPtr = GetHeapSROALoad(Load, 0, FieldGlobals, InsertedLoadsForPtr); 1062 } else { 1063 NPtr = InsertedLoadsForPtr.back(); 1064 } 1065 1066 Value *New = new ICmpInst(SCI->getPredicate(), NPtr, 1067 Constant::getNullValue(NPtr->getType()), 1068 SCI->getName(), SCI); 1069 SCI->replaceAllUsesWith(New); 1070 SCI->eraseFromParent(); 1071 return; 1072 } 1073 1074 // Handle 'getelementptr Ptr, Idx, uint FieldNo ...' 1075 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1076 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1077 && "Unexpected GEPI!"); 1078 1079 // Load the pointer for this field. 1080 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1081 Value *NewPtr = GetHeapSROALoad(Load, FieldNo, 1082 FieldGlobals, InsertedLoadsForPtr); 1083 1084 // Create the new GEP idx vector. 1085 SmallVector<Value*, 8> GEPIdx; 1086 GEPIdx.push_back(GEPI->getOperand(1)); 1087 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1088 1089 Value *NGEPI = GetElementPtrInst::Create(NewPtr, 1090 GEPIdx.begin(), GEPIdx.end(), 1091 GEPI->getName(), GEPI); 1092 GEPI->replaceAllUsesWith(NGEPI); 1093 GEPI->eraseFromParent(); 1094 return; 1095 } 1096 1097 // Handle PHI nodes. PHI nodes must be merging in the same values, plus 1098 // potentially the original malloc. Insert phi nodes for each field, then 1099 // process uses of the PHI. 1100 PHINode *PN = cast<PHINode>(LoadUser); 1101 std::vector<Value *> PHIsForField; 1102 PHIsForField.resize(FieldGlobals.size()); 1103 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1104 Value *LoadV = GetHeapSROALoad(Load, i, FieldGlobals, InsertedLoadsForPtr); 1105 1106 PHINode *FieldPN = PHINode::Create(LoadV->getType(), 1107 PN->getName()+"."+utostr(i), PN); 1108 // Fill in the predecessor values. 1109 for (unsigned pred = 0, e = PN->getNumIncomingValues(); pred != e; ++pred) { 1110 // Each predecessor either uses the load or the original malloc. 1111 Value *InVal = PN->getIncomingValue(pred); 1112 BasicBlock *BB = PN->getIncomingBlock(pred); 1113 Value *NewVal; 1114 if (isa<MallocInst>(InVal)) { 1115 // Insert a reload from the global in the predecessor. 1116 NewVal = GetHeapSROALoad(BB->getTerminator(), i, FieldGlobals, 1117 PHIsForField); 1118 } else { 1119 NewVal = InsertedLoadsForPtr[i]; 1120 } 1121 FieldPN->addIncoming(NewVal, BB); 1122 } 1123 PHIsForField[i] = FieldPN; 1124 } 1125 1126 // Since PHIsForField specifies a phi for every input value, the lazy inserter 1127 // will never insert a load. 1128 while (!PN->use_empty()) 1129 RewriteHeapSROALoadUser(Load, PN->use_back(), FieldGlobals, PHIsForField); 1130 PN->eraseFromParent(); 1131} 1132 1133/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr 1134/// is a value loaded from the global. Eliminate all uses of Ptr, making them 1135/// use FieldGlobals instead. All uses of loaded values satisfy 1136/// GlobalLoadUsesSimpleEnoughForHeapSRA. 1137static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1138 const std::vector<GlobalVariable*> &FieldGlobals) { 1139 std::vector<Value *> InsertedLoadsForPtr; 1140 //InsertedLoadsForPtr.resize(FieldGlobals.size()); 1141 while (!Load->use_empty()) 1142 RewriteHeapSROALoadUser(Load, Load->use_back(), 1143 FieldGlobals, InsertedLoadsForPtr); 1144} 1145 1146/// PerformHeapAllocSRoA - MI is an allocation of an array of structures. Break 1147/// it up into multiple allocations of arrays of the fields. 1148static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){ 1149 DOUT << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *MI; 1150 const StructType *STy = cast<StructType>(MI->getAllocatedType()); 1151 1152 // There is guaranteed to be at least one use of the malloc (storing 1153 // it into GV). If there are other uses, change them to be uses of 1154 // the global to simplify later code. This also deletes the store 1155 // into GV. 1156 ReplaceUsesOfMallocWithGlobal(MI, GV); 1157 1158 // Okay, at this point, there are no users of the malloc. Insert N 1159 // new mallocs at the same place as MI, and N globals. 1160 std::vector<GlobalVariable*> FieldGlobals; 1161 std::vector<MallocInst*> FieldMallocs; 1162 1163 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1164 const Type *FieldTy = STy->getElementType(FieldNo); 1165 const Type *PFieldTy = PointerType::getUnqual(FieldTy); 1166 1167 GlobalVariable *NGV = 1168 new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage, 1169 Constant::getNullValue(PFieldTy), 1170 GV->getName() + ".f" + utostr(FieldNo), GV, 1171 GV->isThreadLocal()); 1172 FieldGlobals.push_back(NGV); 1173 1174 MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(), 1175 MI->getName() + ".f" + utostr(FieldNo),MI); 1176 FieldMallocs.push_back(NMI); 1177 new StoreInst(NMI, NGV, MI); 1178 } 1179 1180 // The tricky aspect of this transformation is handling the case when malloc 1181 // fails. In the original code, malloc failing would set the result pointer 1182 // of malloc to null. In this case, some mallocs could succeed and others 1183 // could fail. As such, we emit code that looks like this: 1184 // F0 = malloc(field0) 1185 // F1 = malloc(field1) 1186 // F2 = malloc(field2) 1187 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1188 // if (F0) { free(F0); F0 = 0; } 1189 // if (F1) { free(F1); F1 = 0; } 1190 // if (F2) { free(F2); F2 = 0; } 1191 // } 1192 Value *RunningOr = 0; 1193 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1194 Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i], 1195 Constant::getNullValue(FieldMallocs[i]->getType()), 1196 "isnull", MI); 1197 if (!RunningOr) 1198 RunningOr = Cond; // First seteq 1199 else 1200 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", MI); 1201 } 1202 1203 // Split the basic block at the old malloc. 1204 BasicBlock *OrigBB = MI->getParent(); 1205 BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont"); 1206 1207 // Create the block to check the first condition. Put all these blocks at the 1208 // end of the function as they are unlikely to be executed. 1209 BasicBlock *NullPtrBlock = BasicBlock::Create("malloc_ret_null", 1210 OrigBB->getParent()); 1211 1212 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1213 // branch on RunningOr. 1214 OrigBB->getTerminator()->eraseFromParent(); 1215 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1216 1217 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1218 // pointer, because some may be null while others are not. 1219 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1220 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1221 Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal, 1222 Constant::getNullValue(GVVal->getType()), 1223 "tmp", NullPtrBlock); 1224 BasicBlock *FreeBlock = BasicBlock::Create("free_it", OrigBB->getParent()); 1225 BasicBlock *NextBlock = BasicBlock::Create("next", OrigBB->getParent()); 1226 BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock); 1227 1228 // Fill in FreeBlock. 1229 new FreeInst(GVVal, FreeBlock); 1230 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1231 FreeBlock); 1232 BranchInst::Create(NextBlock, FreeBlock); 1233 1234 NullPtrBlock = NextBlock; 1235 } 1236 1237 BranchInst::Create(ContBB, NullPtrBlock); 1238 1239 // MI is no longer needed, remove it. 1240 MI->eraseFromParent(); 1241 1242 1243 // Okay, the malloc site is completely handled. All of the uses of GV are now 1244 // loads, and all uses of those loads are simple. Rewrite them to use loads 1245 // of the per-field globals instead. 1246 while (!GV->use_empty()) { 1247 if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) { 1248 RewriteUsesOfLoadForHeapSRoA(LI, FieldGlobals); 1249 LI->eraseFromParent(); 1250 } else { 1251 // Must be a store of null. 1252 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1253 assert(isa<Constant>(SI->getOperand(0)) && 1254 cast<Constant>(SI->getOperand(0))->isNullValue() && 1255 "Unexpected heap-sra user!"); 1256 1257 // Insert a store of null into each global. 1258 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1259 Constant *Null = 1260 Constant::getNullValue(FieldGlobals[i]->getType()->getElementType()); 1261 new StoreInst(Null, FieldGlobals[i], SI); 1262 } 1263 // Erase the original store. 1264 SI->eraseFromParent(); 1265 } 1266 } 1267 1268 // The old global is now dead, remove it. 1269 GV->eraseFromParent(); 1270 1271 ++NumHeapSRA; 1272 return FieldGlobals[0]; 1273} 1274 1275/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a 1276/// pointer global variable with a single value stored it that is a malloc or 1277/// cast of malloc. 1278static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, 1279 MallocInst *MI, 1280 Module::global_iterator &GVI, 1281 TargetData &TD) { 1282 // If this is a malloc of an abstract type, don't touch it. 1283 if (!MI->getAllocatedType()->isSized()) 1284 return false; 1285 1286 // We can't optimize this global unless all uses of it are *known* to be 1287 // of the malloc value, not of the null initializer value (consider a use 1288 // that compares the global's value against zero to see if the malloc has 1289 // been reached). To do this, we check to see if all uses of the global 1290 // would trap if the global were null: this proves that they must all 1291 // happen after the malloc. 1292 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1293 return false; 1294 1295 // We can't optimize this if the malloc itself is used in a complex way, 1296 // for example, being stored into multiple globals. This allows the 1297 // malloc to be stored into the specified global, loaded setcc'd, and 1298 // GEP'd. These are all things we could transform to using the global 1299 // for. 1300 { 1301 SmallPtrSet<PHINode*, 8> PHIs; 1302 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs)) 1303 return false; 1304 } 1305 1306 1307 // If we have a global that is only initialized with a fixed size malloc, 1308 // transform the program to use global memory instead of malloc'd memory. 1309 // This eliminates dynamic allocation, avoids an indirection accessing the 1310 // data, and exposes the resultant global to further GlobalOpt. 1311 if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) { 1312 // Restrict this transformation to only working on small allocations 1313 // (2048 bytes currently), as we don't want to introduce a 16M global or 1314 // something. 1315 if (NElements->getZExtValue()* 1316 TD.getABITypeSize(MI->getAllocatedType()) < 2048) { 1317 GVI = OptimizeGlobalAddressOfMalloc(GV, MI); 1318 return true; 1319 } 1320 } 1321 1322 // If the allocation is an array of structures, consider transforming this 1323 // into multiple malloc'd arrays, one for each field. This is basically 1324 // SRoA for malloc'd memory. 1325 if (const StructType *AllocTy = 1326 dyn_cast<StructType>(MI->getAllocatedType())) { 1327 // This the structure has an unreasonable number of fields, leave it 1328 // alone. 1329 if (AllocTy->getNumElements() <= 16 && AllocTy->getNumElements() > 0 && 1330 GlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) { 1331 GVI = PerformHeapAllocSRoA(GV, MI); 1332 return true; 1333 } 1334 } 1335 1336 return false; 1337} 1338 1339// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge 1340// that only one value (besides its initializer) is ever stored to the global. 1341static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1342 Module::global_iterator &GVI, 1343 TargetData &TD) { 1344 if (CastInst *CI = dyn_cast<CastInst>(StoredOnceVal)) 1345 StoredOnceVal = CI->getOperand(0); 1346 else if (GetElementPtrInst *GEPI =dyn_cast<GetElementPtrInst>(StoredOnceVal)){ 1347 // "getelementptr Ptr, 0, 0, 0" is really just a cast. 1348 if (GEPI->hasAllZeroIndices()) 1349 StoredOnceVal = GEPI->getOperand(0); 1350 } 1351 1352 // If we are dealing with a pointer global that is initialized to null and 1353 // only has one (non-null) value stored into it, then we can optimize any 1354 // users of the loaded value (often calls and loads) that would trap if the 1355 // value was null. 1356 if (isa<PointerType>(GV->getInitializer()->getType()) && 1357 GV->getInitializer()->isNullValue()) { 1358 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1359 if (GV->getInitializer()->getType() != SOVC->getType()) 1360 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1361 1362 // Optimize away any trapping uses of the loaded value. 1363 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC)) 1364 return true; 1365 } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) { 1366 if (TryToOptimizeStoreOfMallocToGlobal(GV, MI, GVI, TD)) 1367 return true; 1368 } 1369 } 1370 1371 return false; 1372} 1373 1374/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only 1375/// two values ever stored into GV are its initializer and OtherVal. See if we 1376/// can shrink the global into a boolean and select between the two values 1377/// whenever it is used. This exposes the values to other scalar optimizations. 1378static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1379 const Type *GVElType = GV->getType()->getElementType(); 1380 1381 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1382 // an FP value or vector, don't do this optimization because a select between 1383 // them is very expensive and unlikely to lead to later simplification. 1384 if (GVElType == Type::Int1Ty || GVElType->isFloatingPoint() || 1385 isa<VectorType>(GVElType)) 1386 return false; 1387 1388 // Walk the use list of the global seeing if all the uses are load or store. 1389 // If there is anything else, bail out. 1390 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I) 1391 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 1392 return false; 1393 1394 DOUT << " *** SHRINKING TO BOOL: " << *GV; 1395 1396 // Create the new global, initializing it to false. 1397 GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false, 1398 GlobalValue::InternalLinkage, ConstantInt::getFalse(), 1399 GV->getName()+".b", 1400 (Module *)NULL, 1401 GV->isThreadLocal()); 1402 GV->getParent()->getGlobalList().insert(GV, NewGV); 1403 1404 Constant *InitVal = GV->getInitializer(); 1405 assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!"); 1406 1407 // If initialized to zero and storing one into the global, we can use a cast 1408 // instead of a select to synthesize the desired value. 1409 bool IsOneZero = false; 1410 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1411 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1412 1413 while (!GV->use_empty()) { 1414 Instruction *UI = cast<Instruction>(GV->use_back()); 1415 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1416 // Change the store into a boolean store. 1417 bool StoringOther = SI->getOperand(0) == OtherVal; 1418 // Only do this if we weren't storing a loaded value. 1419 Value *StoreVal; 1420 if (StoringOther || SI->getOperand(0) == InitVal) 1421 StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther); 1422 else { 1423 // Otherwise, we are storing a previously loaded copy. To do this, 1424 // change the copy from copying the original value to just copying the 1425 // bool. 1426 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1427 1428 // If we're already replaced the input, StoredVal will be a cast or 1429 // select instruction. If not, it will be a load of the original 1430 // global. 1431 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1432 assert(LI->getOperand(0) == GV && "Not a copy!"); 1433 // Insert a new load, to preserve the saved value. 1434 StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI); 1435 } else { 1436 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1437 "This is not a form that we understand!"); 1438 StoreVal = StoredVal->getOperand(0); 1439 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1440 } 1441 } 1442 new StoreInst(StoreVal, NewGV, SI); 1443 } else { 1444 // Change the load into a load of bool then a select. 1445 LoadInst *LI = cast<LoadInst>(UI); 1446 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI); 1447 Value *NSI; 1448 if (IsOneZero) 1449 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1450 else 1451 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1452 NSI->takeName(LI); 1453 LI->replaceAllUsesWith(NSI); 1454 } 1455 UI->eraseFromParent(); 1456 } 1457 1458 GV->eraseFromParent(); 1459 return true; 1460} 1461 1462 1463/// ProcessInternalGlobal - Analyze the specified global variable and optimize 1464/// it if possible. If we make a change, return true. 1465bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, 1466 Module::global_iterator &GVI) { 1467 std::set<PHINode*> PHIUsers; 1468 GlobalStatus GS; 1469 GV->removeDeadConstantUsers(); 1470 1471 if (GV->use_empty()) { 1472 DOUT << "GLOBAL DEAD: " << *GV; 1473 GV->eraseFromParent(); 1474 ++NumDeleted; 1475 return true; 1476 } 1477 1478 if (!AnalyzeGlobal(GV, GS, PHIUsers)) { 1479#if 0 1480 cerr << "Global: " << *GV; 1481 cerr << " isLoaded = " << GS.isLoaded << "\n"; 1482 cerr << " StoredType = "; 1483 switch (GS.StoredType) { 1484 case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break; 1485 case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break; 1486 case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break; 1487 case GlobalStatus::isStored: cerr << "stored\n"; break; 1488 } 1489 if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue) 1490 cerr << " StoredOnceValue = " << *GS.StoredOnceValue << "\n"; 1491 if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions) 1492 cerr << " AccessingFunction = " << GS.AccessingFunction->getName() 1493 << "\n"; 1494 cerr << " HasMultipleAccessingFunctions = " 1495 << GS.HasMultipleAccessingFunctions << "\n"; 1496 cerr << " HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n"; 1497 cerr << "\n"; 1498#endif 1499 1500 // If this is a first class global and has only one accessing function 1501 // and this function is main (which we know is not recursive we can make 1502 // this global a local variable) we replace the global with a local alloca 1503 // in this function. 1504 // 1505 // NOTE: It doesn't make sense to promote non single-value types since we 1506 // are just replacing static memory to stack memory. 1507 if (!GS.HasMultipleAccessingFunctions && 1508 GS.AccessingFunction && !GS.HasNonInstructionUser && 1509 GV->getType()->getElementType()->isSingleValueType() && 1510 GS.AccessingFunction->getName() == "main" && 1511 GS.AccessingFunction->hasExternalLinkage()) { 1512 DOUT << "LOCALIZING GLOBAL: " << *GV; 1513 Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin(); 1514 const Type* ElemTy = GV->getType()->getElementType(); 1515 // FIXME: Pass Global's alignment when globals have alignment 1516 AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI); 1517 if (!isa<UndefValue>(GV->getInitializer())) 1518 new StoreInst(GV->getInitializer(), Alloca, FirstI); 1519 1520 GV->replaceAllUsesWith(Alloca); 1521 GV->eraseFromParent(); 1522 ++NumLocalized; 1523 return true; 1524 } 1525 1526 // If the global is never loaded (but may be stored to), it is dead. 1527 // Delete it now. 1528 if (!GS.isLoaded) { 1529 DOUT << "GLOBAL NEVER LOADED: " << *GV; 1530 1531 // Delete any stores we can find to the global. We may not be able to 1532 // make it completely dead though. 1533 bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer()); 1534 1535 // If the global is dead now, delete it. 1536 if (GV->use_empty()) { 1537 GV->eraseFromParent(); 1538 ++NumDeleted; 1539 Changed = true; 1540 } 1541 return Changed; 1542 1543 } else if (GS.StoredType <= GlobalStatus::isInitializerStored) { 1544 DOUT << "MARKING CONSTANT: " << *GV; 1545 GV->setConstant(true); 1546 1547 // Clean up any obviously simplifiable users now. 1548 CleanupConstantGlobalUsers(GV, GV->getInitializer()); 1549 1550 // If the global is dead now, just nuke it. 1551 if (GV->use_empty()) { 1552 DOUT << " *** Marking constant allowed us to simplify " 1553 << "all users and delete global!\n"; 1554 GV->eraseFromParent(); 1555 ++NumDeleted; 1556 } 1557 1558 ++NumMarked; 1559 return true; 1560 } else if (!GV->getInitializer()->getType()->isSingleValueType()) { 1561 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, 1562 getAnalysis<TargetData>())) { 1563 GVI = FirstNewGV; // Don't skip the newly produced globals! 1564 return true; 1565 } 1566 } else if (GS.StoredType == GlobalStatus::isStoredOnce) { 1567 // If the initial value for the global was an undef value, and if only 1568 // one other value was stored into it, we can just change the 1569 // initializer to be an undef value, then delete all stores to the 1570 // global. This allows us to mark it constant. 1571 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1572 if (isa<UndefValue>(GV->getInitializer())) { 1573 // Change the initial value here. 1574 GV->setInitializer(SOVConstant); 1575 1576 // Clean up any obviously simplifiable users now. 1577 CleanupConstantGlobalUsers(GV, GV->getInitializer()); 1578 1579 if (GV->use_empty()) { 1580 DOUT << " *** Substituting initializer allowed us to " 1581 << "simplify all users and delete global!\n"; 1582 GV->eraseFromParent(); 1583 ++NumDeleted; 1584 } else { 1585 GVI = GV; 1586 } 1587 ++NumSubstitute; 1588 return true; 1589 } 1590 1591 // Try to optimize globals based on the knowledge that only one value 1592 // (besides its initializer) is ever stored to the global. 1593 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI, 1594 getAnalysis<TargetData>())) 1595 return true; 1596 1597 // Otherwise, if the global was not a boolean, we can shrink it to be a 1598 // boolean. 1599 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1600 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1601 ++NumShrunkToBool; 1602 return true; 1603 } 1604 } 1605 } 1606 return false; 1607} 1608 1609/// OnlyCalledDirectly - Return true if the specified function is only called 1610/// directly. In other words, its address is never taken. 1611static bool OnlyCalledDirectly(Function *F) { 1612 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 1613 Instruction *User = dyn_cast<Instruction>(*UI); 1614 if (!User) return false; 1615 if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false; 1616 1617 // See if the function address is passed as an argument. 1618 for (User::op_iterator i = User->op_begin() + 1, e = User->op_end(); 1619 i != e; ++i) 1620 if (*i == F) return false; 1621 } 1622 return true; 1623} 1624 1625/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified 1626/// function, changing them to FastCC. 1627static void ChangeCalleesToFastCall(Function *F) { 1628 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 1629 CallSite User(cast<Instruction>(*UI)); 1630 User.setCallingConv(CallingConv::Fast); 1631 } 1632} 1633 1634static AttrListPtr StripNest(const AttrListPtr &Attrs) { 1635 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1636 if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0) 1637 continue; 1638 1639 // There can be only one. 1640 return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest); 1641 } 1642 1643 return Attrs; 1644} 1645 1646static void RemoveNestAttribute(Function *F) { 1647 F->setAttributes(StripNest(F->getAttributes())); 1648 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 1649 CallSite User(cast<Instruction>(*UI)); 1650 User.setAttributes(StripNest(User.getAttributes())); 1651 } 1652} 1653 1654bool GlobalOpt::OptimizeFunctions(Module &M) { 1655 bool Changed = false; 1656 // Optimize functions. 1657 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 1658 Function *F = FI++; 1659 F->removeDeadConstantUsers(); 1660 if (F->use_empty() && (F->hasInternalLinkage() || 1661 F->hasLinkOnceLinkage())) { 1662 M.getFunctionList().erase(F); 1663 Changed = true; 1664 ++NumFnDeleted; 1665 } else if (F->hasInternalLinkage()) { 1666 if (F->getCallingConv() == CallingConv::C && !F->isVarArg() && 1667 OnlyCalledDirectly(F)) { 1668 // If this function has C calling conventions, is not a varargs 1669 // function, and is only called directly, promote it to use the Fast 1670 // calling convention. 1671 F->setCallingConv(CallingConv::Fast); 1672 ChangeCalleesToFastCall(F); 1673 ++NumFastCallFns; 1674 Changed = true; 1675 } 1676 1677 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 1678 OnlyCalledDirectly(F)) { 1679 // The function is not used by a trampoline intrinsic, so it is safe 1680 // to remove the 'nest' attribute. 1681 RemoveNestAttribute(F); 1682 ++NumNestRemoved; 1683 Changed = true; 1684 } 1685 } 1686 } 1687 return Changed; 1688} 1689 1690bool GlobalOpt::OptimizeGlobalVars(Module &M) { 1691 bool Changed = false; 1692 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 1693 GVI != E; ) { 1694 GlobalVariable *GV = GVI++; 1695 if (!GV->isConstant() && GV->hasInternalLinkage() && 1696 GV->hasInitializer()) 1697 Changed |= ProcessInternalGlobal(GV, GVI); 1698 } 1699 return Changed; 1700} 1701 1702/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all 1703/// initializers have an init priority of 65535. 1704GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) { 1705 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 1706 I != E; ++I) 1707 if (I->getName() == "llvm.global_ctors") { 1708 // Found it, verify it's an array of { int, void()* }. 1709 const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType()); 1710 if (!ATy) return 0; 1711 const StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 1712 if (!STy || STy->getNumElements() != 2 || 1713 STy->getElementType(0) != Type::Int32Ty) return 0; 1714 const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1)); 1715 if (!PFTy) return 0; 1716 const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType()); 1717 if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() || 1718 FTy->getNumParams() != 0) 1719 return 0; 1720 1721 // Verify that the initializer is simple enough for us to handle. 1722 if (!I->hasInitializer()) return 0; 1723 ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer()); 1724 if (!CA) return 0; 1725 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) 1726 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) { 1727 if (isa<ConstantPointerNull>(CS->getOperand(1))) 1728 continue; 1729 1730 // Must have a function or null ptr. 1731 if (!isa<Function>(CS->getOperand(1))) 1732 return 0; 1733 1734 // Init priority must be standard. 1735 ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0)); 1736 if (!CI || CI->getZExtValue() != 65535) 1737 return 0; 1738 } else { 1739 return 0; 1740 } 1741 1742 return I; 1743 } 1744 return 0; 1745} 1746 1747/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand, 1748/// return a list of the functions and null terminator as a vector. 1749static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) { 1750 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 1751 std::vector<Function*> Result; 1752 Result.reserve(CA->getNumOperands()); 1753 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) { 1754 ConstantStruct *CS = cast<ConstantStruct>(*i); 1755 Result.push_back(dyn_cast<Function>(CS->getOperand(1))); 1756 } 1757 return Result; 1758} 1759 1760/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the 1761/// specified array, returning the new global to use. 1762static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL, 1763 const std::vector<Function*> &Ctors) { 1764 // If we made a change, reassemble the initializer list. 1765 std::vector<Constant*> CSVals; 1766 CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535)); 1767 CSVals.push_back(0); 1768 1769 // Create the new init list. 1770 std::vector<Constant*> CAList; 1771 for (unsigned i = 0, e = Ctors.size(); i != e; ++i) { 1772 if (Ctors[i]) { 1773 CSVals[1] = Ctors[i]; 1774 } else { 1775 const Type *FTy = FunctionType::get(Type::VoidTy, 1776 std::vector<const Type*>(), false); 1777 const PointerType *PFTy = PointerType::getUnqual(FTy); 1778 CSVals[1] = Constant::getNullValue(PFTy); 1779 CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647); 1780 } 1781 CAList.push_back(ConstantStruct::get(CSVals)); 1782 } 1783 1784 // Create the array initializer. 1785 const Type *StructTy = 1786 cast<ArrayType>(GCL->getType()->getElementType())->getElementType(); 1787 Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()), 1788 CAList); 1789 1790 // If we didn't change the number of elements, don't create a new GV. 1791 if (CA->getType() == GCL->getInitializer()->getType()) { 1792 GCL->setInitializer(CA); 1793 return GCL; 1794 } 1795 1796 // Create the new global and insert it next to the existing list. 1797 GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(), 1798 GCL->getLinkage(), CA, "", 1799 (Module *)NULL, 1800 GCL->isThreadLocal()); 1801 GCL->getParent()->getGlobalList().insert(GCL, NGV); 1802 NGV->takeName(GCL); 1803 1804 // Nuke the old list, replacing any uses with the new one. 1805 if (!GCL->use_empty()) { 1806 Constant *V = NGV; 1807 if (V->getType() != GCL->getType()) 1808 V = ConstantExpr::getBitCast(V, GCL->getType()); 1809 GCL->replaceAllUsesWith(V); 1810 } 1811 GCL->eraseFromParent(); 1812 1813 if (Ctors.size()) 1814 return NGV; 1815 else 1816 return 0; 1817} 1818 1819 1820static Constant *getVal(std::map<Value*, Constant*> &ComputedValues, 1821 Value *V) { 1822 if (Constant *CV = dyn_cast<Constant>(V)) return CV; 1823 Constant *R = ComputedValues[V]; 1824 assert(R && "Reference to an uncomputed value!"); 1825 return R; 1826} 1827 1828/// isSimpleEnoughPointerToCommit - Return true if this constant is simple 1829/// enough for us to understand. In particular, if it is a cast of something, 1830/// we punt. We basically just support direct accesses to globals and GEP's of 1831/// globals. This should be kept up to date with CommitValueTo. 1832static bool isSimpleEnoughPointerToCommit(Constant *C) { 1833 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) { 1834 if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage()) 1835 return false; // do not allow weak/linkonce/dllimport/dllexport linkage. 1836 return !GV->isDeclaration(); // reject external globals. 1837 } 1838 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 1839 // Handle a constantexpr gep. 1840 if (CE->getOpcode() == Instruction::GetElementPtr && 1841 isa<GlobalVariable>(CE->getOperand(0))) { 1842 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 1843 if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage()) 1844 return false; // do not allow weak/linkonce/dllimport/dllexport linkage. 1845 return GV->hasInitializer() && 1846 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 1847 } 1848 return false; 1849} 1850 1851/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global 1852/// initializer. This returns 'Init' modified to reflect 'Val' stored into it. 1853/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into. 1854static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 1855 ConstantExpr *Addr, unsigned OpNo) { 1856 // Base case of the recursion. 1857 if (OpNo == Addr->getNumOperands()) { 1858 assert(Val->getType() == Init->getType() && "Type mismatch!"); 1859 return Val; 1860 } 1861 1862 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 1863 std::vector<Constant*> Elts; 1864 1865 // Break up the constant into its elements. 1866 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 1867 for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i) 1868 Elts.push_back(cast<Constant>(*i)); 1869 } else if (isa<ConstantAggregateZero>(Init)) { 1870 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1871 Elts.push_back(Constant::getNullValue(STy->getElementType(i))); 1872 } else if (isa<UndefValue>(Init)) { 1873 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1874 Elts.push_back(UndefValue::get(STy->getElementType(i))); 1875 } else { 1876 assert(0 && "This code is out of sync with " 1877 " ConstantFoldLoadThroughGEPConstantExpr"); 1878 } 1879 1880 // Replace the element that we are supposed to. 1881 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 1882 unsigned Idx = CU->getZExtValue(); 1883 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 1884 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 1885 1886 // Return the modified struct. 1887 return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked()); 1888 } else { 1889 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 1890 const ArrayType *ATy = cast<ArrayType>(Init->getType()); 1891 1892 // Break up the array into elements. 1893 std::vector<Constant*> Elts; 1894 if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 1895 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) 1896 Elts.push_back(cast<Constant>(*i)); 1897 } else if (isa<ConstantAggregateZero>(Init)) { 1898 Constant *Elt = Constant::getNullValue(ATy->getElementType()); 1899 Elts.assign(ATy->getNumElements(), Elt); 1900 } else if (isa<UndefValue>(Init)) { 1901 Constant *Elt = UndefValue::get(ATy->getElementType()); 1902 Elts.assign(ATy->getNumElements(), Elt); 1903 } else { 1904 assert(0 && "This code is out of sync with " 1905 " ConstantFoldLoadThroughGEPConstantExpr"); 1906 } 1907 1908 assert(CI->getZExtValue() < ATy->getNumElements()); 1909 Elts[CI->getZExtValue()] = 1910 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 1911 return ConstantArray::get(ATy, Elts); 1912 } 1913} 1914 1915/// CommitValueTo - We have decided that Addr (which satisfies the predicate 1916/// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 1917static void CommitValueTo(Constant *Val, Constant *Addr) { 1918 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 1919 assert(GV->hasInitializer()); 1920 GV->setInitializer(Val); 1921 return; 1922 } 1923 1924 ConstantExpr *CE = cast<ConstantExpr>(Addr); 1925 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 1926 1927 Constant *Init = GV->getInitializer(); 1928 Init = EvaluateStoreInto(Init, Val, CE, 2); 1929 GV->setInitializer(Init); 1930} 1931 1932/// ComputeLoadResult - Return the value that would be computed by a load from 1933/// P after the stores reflected by 'memory' have been performed. If we can't 1934/// decide, return null. 1935static Constant *ComputeLoadResult(Constant *P, 1936 const std::map<Constant*, Constant*> &Memory) { 1937 // If this memory location has been recently stored, use the stored value: it 1938 // is the most up-to-date. 1939 std::map<Constant*, Constant*>::const_iterator I = Memory.find(P); 1940 if (I != Memory.end()) return I->second; 1941 1942 // Access it. 1943 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 1944 if (GV->hasInitializer()) 1945 return GV->getInitializer(); 1946 return 0; 1947 } 1948 1949 // Handle a constantexpr getelementptr. 1950 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) 1951 if (CE->getOpcode() == Instruction::GetElementPtr && 1952 isa<GlobalVariable>(CE->getOperand(0))) { 1953 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 1954 if (GV->hasInitializer()) 1955 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 1956 } 1957 1958 return 0; // don't know how to evaluate. 1959} 1960 1961/// EvaluateFunction - Evaluate a call to function F, returning true if 1962/// successful, false if we can't evaluate it. ActualArgs contains the formal 1963/// arguments for the function. 1964static bool EvaluateFunction(Function *F, Constant *&RetVal, 1965 const std::vector<Constant*> &ActualArgs, 1966 std::vector<Function*> &CallStack, 1967 std::map<Constant*, Constant*> &MutatedMemory, 1968 std::vector<GlobalVariable*> &AllocaTmps) { 1969 // Check to see if this function is already executing (recursion). If so, 1970 // bail out. TODO: we might want to accept limited recursion. 1971 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end()) 1972 return false; 1973 1974 CallStack.push_back(F); 1975 1976 /// Values - As we compute SSA register values, we store their contents here. 1977 std::map<Value*, Constant*> Values; 1978 1979 // Initialize arguments to the incoming values specified. 1980 unsigned ArgNo = 0; 1981 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 1982 ++AI, ++ArgNo) 1983 Values[AI] = ActualArgs[ArgNo]; 1984 1985 /// ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 1986 /// we can only evaluate any one basic block at most once. This set keeps 1987 /// track of what we have executed so we can detect recursive cases etc. 1988 std::set<BasicBlock*> ExecutedBlocks; 1989 1990 // CurInst - The current instruction we're evaluating. 1991 BasicBlock::iterator CurInst = F->begin()->begin(); 1992 1993 // This is the main evaluation loop. 1994 while (1) { 1995 Constant *InstResult = 0; 1996 1997 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 1998 if (SI->isVolatile()) return false; // no volatile accesses. 1999 Constant *Ptr = getVal(Values, SI->getOperand(1)); 2000 if (!isSimpleEnoughPointerToCommit(Ptr)) 2001 // If this is too complex for us to commit, reject it. 2002 return false; 2003 Constant *Val = getVal(Values, SI->getOperand(0)); 2004 MutatedMemory[Ptr] = Val; 2005 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 2006 InstResult = ConstantExpr::get(BO->getOpcode(), 2007 getVal(Values, BO->getOperand(0)), 2008 getVal(Values, BO->getOperand(1))); 2009 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 2010 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 2011 getVal(Values, CI->getOperand(0)), 2012 getVal(Values, CI->getOperand(1))); 2013 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 2014 InstResult = ConstantExpr::getCast(CI->getOpcode(), 2015 getVal(Values, CI->getOperand(0)), 2016 CI->getType()); 2017 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 2018 InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)), 2019 getVal(Values, SI->getOperand(1)), 2020 getVal(Values, SI->getOperand(2))); 2021 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 2022 Constant *P = getVal(Values, GEP->getOperand(0)); 2023 SmallVector<Constant*, 8> GEPOps; 2024 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); 2025 i != e; ++i) 2026 GEPOps.push_back(getVal(Values, *i)); 2027 InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size()); 2028 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 2029 if (LI->isVolatile()) return false; // no volatile accesses. 2030 InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)), 2031 MutatedMemory); 2032 if (InstResult == 0) return false; // Could not evaluate load. 2033 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 2034 if (AI->isArrayAllocation()) return false; // Cannot handle array allocs. 2035 const Type *Ty = AI->getType()->getElementType(); 2036 AllocaTmps.push_back(new GlobalVariable(Ty, false, 2037 GlobalValue::InternalLinkage, 2038 UndefValue::get(Ty), 2039 AI->getName())); 2040 InstResult = AllocaTmps.back(); 2041 } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) { 2042 // Cannot handle inline asm. 2043 if (isa<InlineAsm>(CI->getOperand(0))) return false; 2044 2045 // Resolve function pointers. 2046 Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0))); 2047 if (!Callee) return false; // Cannot resolve. 2048 2049 std::vector<Constant*> Formals; 2050 for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end(); 2051 i != e; ++i) 2052 Formals.push_back(getVal(Values, *i)); 2053 2054 if (Callee->isDeclaration()) { 2055 // If this is a function we can constant fold, do it. 2056 if (Constant *C = ConstantFoldCall(Callee, &Formals[0], 2057 Formals.size())) { 2058 InstResult = C; 2059 } else { 2060 return false; 2061 } 2062 } else { 2063 if (Callee->getFunctionType()->isVarArg()) 2064 return false; 2065 2066 Constant *RetVal; 2067 2068 // Execute the call, if successful, use the return value. 2069 if (!EvaluateFunction(Callee, RetVal, Formals, CallStack, 2070 MutatedMemory, AllocaTmps)) 2071 return false; 2072 InstResult = RetVal; 2073 } 2074 } else if (isa<TerminatorInst>(CurInst)) { 2075 BasicBlock *NewBB = 0; 2076 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 2077 if (BI->isUnconditional()) { 2078 NewBB = BI->getSuccessor(0); 2079 } else { 2080 ConstantInt *Cond = 2081 dyn_cast<ConstantInt>(getVal(Values, BI->getCondition())); 2082 if (!Cond) return false; // Cannot determine. 2083 2084 NewBB = BI->getSuccessor(!Cond->getZExtValue()); 2085 } 2086 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 2087 ConstantInt *Val = 2088 dyn_cast<ConstantInt>(getVal(Values, SI->getCondition())); 2089 if (!Val) return false; // Cannot determine. 2090 NewBB = SI->getSuccessor(SI->findCaseValue(Val)); 2091 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) { 2092 if (RI->getNumOperands()) 2093 RetVal = getVal(Values, RI->getOperand(0)); 2094 2095 CallStack.pop_back(); // return from fn. 2096 return true; // We succeeded at evaluating this ctor! 2097 } else { 2098 // invoke, unwind, unreachable. 2099 return false; // Cannot handle this terminator. 2100 } 2101 2102 // Okay, we succeeded in evaluating this control flow. See if we have 2103 // executed the new block before. If so, we have a looping function, 2104 // which we cannot evaluate in reasonable time. 2105 if (!ExecutedBlocks.insert(NewBB).second) 2106 return false; // looped! 2107 2108 // Okay, we have never been in this block before. Check to see if there 2109 // are any PHI nodes. If so, evaluate them with information about where 2110 // we came from. 2111 BasicBlock *OldBB = CurInst->getParent(); 2112 CurInst = NewBB->begin(); 2113 PHINode *PN; 2114 for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 2115 Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB)); 2116 2117 // Do NOT increment CurInst. We know that the terminator had no value. 2118 continue; 2119 } else { 2120 // Did not know how to evaluate this! 2121 return false; 2122 } 2123 2124 if (!CurInst->use_empty()) 2125 Values[CurInst] = InstResult; 2126 2127 // Advance program counter. 2128 ++CurInst; 2129 } 2130} 2131 2132/// EvaluateStaticConstructor - Evaluate static constructors in the function, if 2133/// we can. Return true if we can, false otherwise. 2134static bool EvaluateStaticConstructor(Function *F) { 2135 /// MutatedMemory - For each store we execute, we update this map. Loads 2136 /// check this to get the most up-to-date value. If evaluation is successful, 2137 /// this state is committed to the process. 2138 std::map<Constant*, Constant*> MutatedMemory; 2139 2140 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable 2141 /// to represent its body. This vector is needed so we can delete the 2142 /// temporary globals when we are done. 2143 std::vector<GlobalVariable*> AllocaTmps; 2144 2145 /// CallStack - This is used to detect recursion. In pathological situations 2146 /// we could hit exponential behavior, but at least there is nothing 2147 /// unbounded. 2148 std::vector<Function*> CallStack; 2149 2150 // Call the function. 2151 Constant *RetValDummy; 2152 bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(), 2153 CallStack, MutatedMemory, AllocaTmps); 2154 if (EvalSuccess) { 2155 // We succeeded at evaluation: commit the result. 2156 DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2157 << F->getName() << "' to " << MutatedMemory.size() 2158 << " stores.\n"; 2159 for (std::map<Constant*, Constant*>::iterator I = MutatedMemory.begin(), 2160 E = MutatedMemory.end(); I != E; ++I) 2161 CommitValueTo(I->second, I->first); 2162 } 2163 2164 // At this point, we are done interpreting. If we created any 'alloca' 2165 // temporaries, release them now. 2166 while (!AllocaTmps.empty()) { 2167 GlobalVariable *Tmp = AllocaTmps.back(); 2168 AllocaTmps.pop_back(); 2169 2170 // If there are still users of the alloca, the program is doing something 2171 // silly, e.g. storing the address of the alloca somewhere and using it 2172 // later. Since this is undefined, we'll just make it be null. 2173 if (!Tmp->use_empty()) 2174 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType())); 2175 delete Tmp; 2176 } 2177 2178 return EvalSuccess; 2179} 2180 2181 2182 2183/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible. 2184/// Return true if anything changed. 2185bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) { 2186 std::vector<Function*> Ctors = ParseGlobalCtors(GCL); 2187 bool MadeChange = false; 2188 if (Ctors.empty()) return false; 2189 2190 // Loop over global ctors, optimizing them when we can. 2191 for (unsigned i = 0; i != Ctors.size(); ++i) { 2192 Function *F = Ctors[i]; 2193 // Found a null terminator in the middle of the list, prune off the rest of 2194 // the list. 2195 if (F == 0) { 2196 if (i != Ctors.size()-1) { 2197 Ctors.resize(i+1); 2198 MadeChange = true; 2199 } 2200 break; 2201 } 2202 2203 // We cannot simplify external ctor functions. 2204 if (F->empty()) continue; 2205 2206 // If we can evaluate the ctor at compile time, do. 2207 if (EvaluateStaticConstructor(F)) { 2208 Ctors.erase(Ctors.begin()+i); 2209 MadeChange = true; 2210 --i; 2211 ++NumCtorsEvaluated; 2212 continue; 2213 } 2214 } 2215 2216 if (!MadeChange) return false; 2217 2218 GCL = InstallGlobalCtors(GCL, Ctors); 2219 return true; 2220} 2221 2222bool GlobalOpt::ResolveAliases(Module &M) { 2223 bool Changed = false; 2224 2225 for (Module::alias_iterator I = M.alias_begin(), 2226 E = M.alias_end(); I != E; ++I) { 2227 if (I->use_empty()) 2228 continue; 2229 2230 if (const GlobalValue *GV = I->resolveAliasedGlobal()) 2231 if (GV != I) { 2232 I->replaceAllUsesWith(const_cast<GlobalValue*>(GV)); 2233 Changed = true; 2234 } 2235 } 2236 2237 return Changed; 2238} 2239 2240bool GlobalOpt::runOnModule(Module &M) { 2241 bool Changed = false; 2242 2243 // Try to find the llvm.globalctors list. 2244 GlobalVariable *GlobalCtors = FindGlobalCtors(M); 2245 2246 bool LocalChange = true; 2247 while (LocalChange) { 2248 LocalChange = false; 2249 2250 // Delete functions that are trivially dead, ccc -> fastcc 2251 LocalChange |= OptimizeFunctions(M); 2252 2253 // Optimize global_ctors list. 2254 if (GlobalCtors) 2255 LocalChange |= OptimizeGlobalCtorsList(GlobalCtors); 2256 2257 // Optimize non-address-taken globals. 2258 LocalChange |= OptimizeGlobalVars(M); 2259 2260 // Resolve aliases, when possible. 2261 LocalChange |= ResolveAliases(M); 2262 Changed |= LocalChange; 2263 } 2264 2265 // TODO: Move all global ctors functions to the end of the module for code 2266 // layout. 2267 2268 return Changed; 2269} 2270