InstCombineCasts.cpp revision 26dbe7ec18740f642febcc738e628d921aafd079
1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Support/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
21/// expression.  If so, decompose it, returning some value X, such that Val is
22/// X*Scale+Offset.
23///
24static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
25                                        uint64_t &Offset) {
26  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
27    Offset = CI->getZExtValue();
28    Scale  = 0;
29    return ConstantInt::get(Val->getType(), 0);
30  }
31
32  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
33    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
34      if (I->getOpcode() == Instruction::Shl) {
35        // This is a value scaled by '1 << the shift amt'.
36        Scale = UINT64_C(1) << RHS->getZExtValue();
37        Offset = 0;
38        return I->getOperand(0);
39      }
40
41      if (I->getOpcode() == Instruction::Mul) {
42        // This value is scaled by 'RHS'.
43        Scale = RHS->getZExtValue();
44        Offset = 0;
45        return I->getOperand(0);
46      }
47
48      if (I->getOpcode() == Instruction::Add) {
49        // We have X+C.  Check to see if we really have (X*C2)+C1,
50        // where C1 is divisible by C2.
51        unsigned SubScale;
52        Value *SubVal =
53          DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
54        Offset += RHS->getZExtValue();
55        Scale = SubScale;
56        return SubVal;
57      }
58    }
59  }
60
61  // Otherwise, we can't look past this.
62  Scale = 1;
63  Offset = 0;
64  return Val;
65}
66
67/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
68/// try to eliminate the cast by moving the type information into the alloc.
69Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
70                                                   AllocaInst &AI) {
71  // This requires TargetData to get the alloca alignment and size information.
72  if (!TD) return 0;
73
74  const PointerType *PTy = cast<PointerType>(CI.getType());
75
76  BuilderTy AllocaBuilder(*Builder);
77  AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
78
79  // Get the type really allocated and the type casted to.
80  const Type *AllocElTy = AI.getAllocatedType();
81  const Type *CastElTy = PTy->getElementType();
82  if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
83
84  unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
85  unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
86  if (CastElTyAlign < AllocElTyAlign) return 0;
87
88  // If the allocation has multiple uses, only promote it if we are strictly
89  // increasing the alignment of the resultant allocation.  If we keep it the
90  // same, we open the door to infinite loops of various kinds.  (A reference
91  // from a dbg.declare doesn't count as a use for this purpose.)
92  if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
93      CastElTyAlign == AllocElTyAlign) return 0;
94
95  uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
96  uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
97  if (CastElTySize == 0 || AllocElTySize == 0) return 0;
98
99  // See if we can satisfy the modulus by pulling a scale out of the array
100  // size argument.
101  unsigned ArraySizeScale;
102  uint64_t ArrayOffset;
103  Value *NumElements = // See if the array size is a decomposable linear expr.
104    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
105
106  // If we can now satisfy the modulus, by using a non-1 scale, we really can
107  // do the xform.
108  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
109      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
110
111  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
112  Value *Amt = 0;
113  if (Scale == 1) {
114    Amt = NumElements;
115  } else {
116    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
117    // Insert before the alloca, not before the cast.
118    Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
119  }
120
121  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
122    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
123                                  Offset, true);
124    Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
125  }
126
127  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
128  New->setAlignment(AI.getAlignment());
129  New->takeName(&AI);
130
131  // If the allocation has one real use plus a dbg.declare, just remove the
132  // declare.
133  if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
134    EraseInstFromFunction(*(Instruction*)DI);
135  }
136  // If the allocation has multiple real uses, insert a cast and change all
137  // things that used it to use the new cast.  This will also hack on CI, but it
138  // will die soon.
139  else if (!AI.hasOneUse()) {
140    // New is the allocation instruction, pointer typed. AI is the original
141    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
142    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
143    AI.replaceAllUsesWith(NewCast);
144  }
145  return ReplaceInstUsesWith(CI, New);
146}
147
148
149
150/// EvaluateInDifferentType - Given an expression that
151/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
152/// insert the code to evaluate the expression.
153Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
154                                             bool isSigned) {
155  if (Constant *C = dyn_cast<Constant>(V)) {
156    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
157    // If we got a constantexpr back, try to simplify it with TD info.
158    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
159      C = ConstantFoldConstantExpression(CE, TD);
160    return C;
161  }
162
163  // Otherwise, it must be an instruction.
164  Instruction *I = cast<Instruction>(V);
165  Instruction *Res = 0;
166  unsigned Opc = I->getOpcode();
167  switch (Opc) {
168  case Instruction::Add:
169  case Instruction::Sub:
170  case Instruction::Mul:
171  case Instruction::And:
172  case Instruction::Or:
173  case Instruction::Xor:
174  case Instruction::AShr:
175  case Instruction::LShr:
176  case Instruction::Shl:
177  case Instruction::UDiv:
178  case Instruction::URem: {
179    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
180    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
181    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
182    break;
183  }
184  case Instruction::Trunc:
185  case Instruction::ZExt:
186  case Instruction::SExt:
187    // If the source type of the cast is the type we're trying for then we can
188    // just return the source.  There's no need to insert it because it is not
189    // new.
190    if (I->getOperand(0)->getType() == Ty)
191      return I->getOperand(0);
192
193    // Otherwise, must be the same type of cast, so just reinsert a new one.
194    // This also handles the case of zext(trunc(x)) -> zext(x).
195    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
196                                      Opc == Instruction::SExt);
197    break;
198  case Instruction::Select: {
199    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
200    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
201    Res = SelectInst::Create(I->getOperand(0), True, False);
202    break;
203  }
204  case Instruction::PHI: {
205    PHINode *OPN = cast<PHINode>(I);
206    PHINode *NPN = PHINode::Create(Ty);
207    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
208      Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
209      NPN->addIncoming(V, OPN->getIncomingBlock(i));
210    }
211    Res = NPN;
212    break;
213  }
214  default:
215    // TODO: Can handle more cases here.
216    llvm_unreachable("Unreachable!");
217    break;
218  }
219
220  Res->takeName(I);
221  return InsertNewInstBefore(Res, *I);
222}
223
224
225/// This function is a wrapper around CastInst::isEliminableCastPair. It
226/// simply extracts arguments and returns what that function returns.
227static Instruction::CastOps
228isEliminableCastPair(
229  const CastInst *CI, ///< The first cast instruction
230  unsigned opcode,       ///< The opcode of the second cast instruction
231  const Type *DstTy,     ///< The target type for the second cast instruction
232  TargetData *TD         ///< The target data for pointer size
233) {
234
235  const Type *SrcTy = CI->getOperand(0)->getType();   // A from above
236  const Type *MidTy = CI->getType();                  // B from above
237
238  // Get the opcodes of the two Cast instructions
239  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
240  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
241
242  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
243                                                DstTy,
244                                  TD ? TD->getIntPtrType(CI->getContext()) : 0);
245
246  // We don't want to form an inttoptr or ptrtoint that converts to an integer
247  // type that differs from the pointer size.
248  if ((Res == Instruction::IntToPtr &&
249          (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
250      (Res == Instruction::PtrToInt &&
251          (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
252    Res = 0;
253
254  return Instruction::CastOps(Res);
255}
256
257/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
258/// results in any code being generated and is interesting to optimize out. If
259/// the cast can be eliminated by some other simple transformation, we prefer
260/// to do the simplification first.
261bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
262                                      const Type *Ty) {
263  // Noop casts and casts of constants should be eliminated trivially.
264  if (V->getType() == Ty || isa<Constant>(V)) return false;
265
266  // If this is another cast that can be eliminated, we prefer to have it
267  // eliminated.
268  if (const CastInst *CI = dyn_cast<CastInst>(V))
269    if (isEliminableCastPair(CI, opc, Ty, TD))
270      return false;
271
272  // If this is a vector sext from a compare, then we don't want to break the
273  // idiom where each element of the extended vector is either zero or all ones.
274  if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
275    return false;
276
277  return true;
278}
279
280
281/// @brief Implement the transforms common to all CastInst visitors.
282Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
283  Value *Src = CI.getOperand(0);
284
285  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
286  // eliminate it now.
287  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
288    if (Instruction::CastOps opc =
289        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
290      // The first cast (CSrc) is eliminable so we need to fix up or replace
291      // the second cast (CI). CSrc will then have a good chance of being dead.
292      return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
293    }
294  }
295
296  // If we are casting a select then fold the cast into the select
297  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
298    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
299      return NV;
300
301  // If we are casting a PHI then fold the cast into the PHI
302  if (isa<PHINode>(Src)) {
303    // We don't do this if this would create a PHI node with an illegal type if
304    // it is currently legal.
305    if (!Src->getType()->isIntegerTy() ||
306        !CI.getType()->isIntegerTy() ||
307        ShouldChangeType(CI.getType(), Src->getType()))
308      if (Instruction *NV = FoldOpIntoPhi(CI))
309        return NV;
310  }
311
312  return 0;
313}
314
315/// CanEvaluateTruncated - Return true if we can evaluate the specified
316/// expression tree as type Ty instead of its larger type, and arrive with the
317/// same value.  This is used by code that tries to eliminate truncates.
318///
319/// Ty will always be a type smaller than V.  We should return true if trunc(V)
320/// can be computed by computing V in the smaller type.  If V is an instruction,
321/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
322/// makes sense if x and y can be efficiently truncated.
323///
324/// This function works on both vectors and scalars.
325///
326static bool CanEvaluateTruncated(Value *V, const Type *Ty) {
327  // We can always evaluate constants in another type.
328  if (isa<Constant>(V))
329    return true;
330
331  Instruction *I = dyn_cast<Instruction>(V);
332  if (!I) return false;
333
334  const Type *OrigTy = V->getType();
335
336  // If this is an extension from the dest type, we can eliminate it, even if it
337  // has multiple uses.
338  if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
339      I->getOperand(0)->getType() == Ty)
340    return true;
341
342  // We can't extend or shrink something that has multiple uses: doing so would
343  // require duplicating the instruction in general, which isn't profitable.
344  if (!I->hasOneUse()) return false;
345
346  unsigned Opc = I->getOpcode();
347  switch (Opc) {
348  case Instruction::Add:
349  case Instruction::Sub:
350  case Instruction::Mul:
351  case Instruction::And:
352  case Instruction::Or:
353  case Instruction::Xor:
354    // These operators can all arbitrarily be extended or truncated.
355    return CanEvaluateTruncated(I->getOperand(0), Ty) &&
356           CanEvaluateTruncated(I->getOperand(1), Ty);
357
358  case Instruction::UDiv:
359  case Instruction::URem: {
360    // UDiv and URem can be truncated if all the truncated bits are zero.
361    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
362    uint32_t BitWidth = Ty->getScalarSizeInBits();
363    if (BitWidth < OrigBitWidth) {
364      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
365      if (MaskedValueIsZero(I->getOperand(0), Mask) &&
366          MaskedValueIsZero(I->getOperand(1), Mask)) {
367        return CanEvaluateTruncated(I->getOperand(0), Ty) &&
368               CanEvaluateTruncated(I->getOperand(1), Ty);
369      }
370    }
371    break;
372  }
373  case Instruction::Shl:
374    // If we are truncating the result of this SHL, and if it's a shift of a
375    // constant amount, we can always perform a SHL in a smaller type.
376    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
377      uint32_t BitWidth = Ty->getScalarSizeInBits();
378      if (CI->getLimitedValue(BitWidth) < BitWidth)
379        return CanEvaluateTruncated(I->getOperand(0), Ty);
380    }
381    break;
382  case Instruction::LShr:
383    // If this is a truncate of a logical shr, we can truncate it to a smaller
384    // lshr iff we know that the bits we would otherwise be shifting in are
385    // already zeros.
386    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
387      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
388      uint32_t BitWidth = Ty->getScalarSizeInBits();
389      if (MaskedValueIsZero(I->getOperand(0),
390            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
391          CI->getLimitedValue(BitWidth) < BitWidth) {
392        return CanEvaluateTruncated(I->getOperand(0), Ty);
393      }
394    }
395    break;
396  case Instruction::Trunc:
397    // trunc(trunc(x)) -> trunc(x)
398    return true;
399  case Instruction::Select: {
400    SelectInst *SI = cast<SelectInst>(I);
401    return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
402           CanEvaluateTruncated(SI->getFalseValue(), Ty);
403  }
404  case Instruction::PHI: {
405    // We can change a phi if we can change all operands.  Note that we never
406    // get into trouble with cyclic PHIs here because we only consider
407    // instructions with a single use.
408    PHINode *PN = cast<PHINode>(I);
409    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
410      if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
411        return false;
412    return true;
413  }
414  default:
415    // TODO: Can handle more cases here.
416    break;
417  }
418
419  return false;
420}
421
422Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
423  if (Instruction *Result = commonCastTransforms(CI))
424    return Result;
425
426  // See if we can simplify any instructions used by the input whose sole
427  // purpose is to compute bits we don't care about.
428  if (SimplifyDemandedInstructionBits(CI))
429    return &CI;
430
431  Value *Src = CI.getOperand(0);
432  const Type *DestTy = CI.getType(), *SrcTy = Src->getType();
433
434  // Attempt to truncate the entire input expression tree to the destination
435  // type.   Only do this if the dest type is a simple type, don't convert the
436  // expression tree to something weird like i93 unless the source is also
437  // strange.
438  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
439      CanEvaluateTruncated(Src, DestTy)) {
440
441    // If this cast is a truncate, evaluting in a different type always
442    // eliminates the cast, so it is always a win.
443    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
444          " to avoid cast: " << CI << '\n');
445    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
446    assert(Res->getType() == DestTy);
447    return ReplaceInstUsesWith(CI, Res);
448  }
449
450  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
451  if (DestTy->getScalarSizeInBits() == 1) {
452    Constant *One = ConstantInt::get(Src->getType(), 1);
453    Src = Builder->CreateAnd(Src, One, "tmp");
454    Value *Zero = Constant::getNullValue(Src->getType());
455    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
456  }
457
458  return 0;
459}
460
461/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
462/// in order to eliminate the icmp.
463Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
464                                             bool DoXform) {
465  // If we are just checking for a icmp eq of a single bit and zext'ing it
466  // to an integer, then shift the bit to the appropriate place and then
467  // cast to integer to avoid the comparison.
468  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
469    const APInt &Op1CV = Op1C->getValue();
470
471    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
472    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
473    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
474        (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
475      if (!DoXform) return ICI;
476
477      Value *In = ICI->getOperand(0);
478      Value *Sh = ConstantInt::get(In->getType(),
479                                   In->getType()->getScalarSizeInBits()-1);
480      In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
481      if (In->getType() != CI.getType())
482        In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
483
484      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
485        Constant *One = ConstantInt::get(In->getType(), 1);
486        In = Builder->CreateXor(In, One, In->getName()+".not");
487      }
488
489      return ReplaceInstUsesWith(CI, In);
490    }
491
492
493
494    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
495    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
496    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
497    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
498    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
499    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
500    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
501    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
502    if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
503        // This only works for EQ and NE
504        ICI->isEquality()) {
505      // If Op1C some other power of two, convert:
506      uint32_t BitWidth = Op1C->getType()->getBitWidth();
507      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
508      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
509      ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
510
511      APInt KnownZeroMask(~KnownZero);
512      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
513        if (!DoXform) return ICI;
514
515        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
516        if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
517          // (X&4) == 2 --> false
518          // (X&4) != 2 --> true
519          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
520                                           isNE);
521          Res = ConstantExpr::getZExt(Res, CI.getType());
522          return ReplaceInstUsesWith(CI, Res);
523        }
524
525        uint32_t ShiftAmt = KnownZeroMask.logBase2();
526        Value *In = ICI->getOperand(0);
527        if (ShiftAmt) {
528          // Perform a logical shr by shiftamt.
529          // Insert the shift to put the result in the low bit.
530          In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
531                                   In->getName()+".lobit");
532        }
533
534        if ((Op1CV != 0) == isNE) { // Toggle the low bit.
535          Constant *One = ConstantInt::get(In->getType(), 1);
536          In = Builder->CreateXor(In, One, "tmp");
537        }
538
539        if (CI.getType() == In->getType())
540          return ReplaceInstUsesWith(CI, In);
541        else
542          return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
543      }
544    }
545  }
546
547  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
548  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
549  // may lead to additional simplifications.
550  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
551    if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
552      uint32_t BitWidth = ITy->getBitWidth();
553      Value *LHS = ICI->getOperand(0);
554      Value *RHS = ICI->getOperand(1);
555
556      APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
557      APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
558      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
559      ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
560      ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
561
562      if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
563        APInt KnownBits = KnownZeroLHS | KnownOneLHS;
564        APInt UnknownBit = ~KnownBits;
565        if (UnknownBit.countPopulation() == 1) {
566          if (!DoXform) return ICI;
567
568          Value *Result = Builder->CreateXor(LHS, RHS);
569
570          // Mask off any bits that are set and won't be shifted away.
571          if (KnownOneLHS.uge(UnknownBit))
572            Result = Builder->CreateAnd(Result,
573                                        ConstantInt::get(ITy, UnknownBit));
574
575          // Shift the bit we're testing down to the lsb.
576          Result = Builder->CreateLShr(
577               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
578
579          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
580            Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
581          Result->takeName(ICI);
582          return ReplaceInstUsesWith(CI, Result);
583        }
584      }
585    }
586  }
587
588  return 0;
589}
590
591/// CanEvaluateZExtd - Determine if the specified value can be computed in the
592/// specified wider type and produce the same low bits.  If not, return false.
593///
594/// If this function returns true, it can also return a non-zero number of bits
595/// (in BitsToClear) which indicates that the value it computes is correct for
596/// the zero extend, but that the additional BitsToClear bits need to be zero'd
597/// out.  For example, to promote something like:
598///
599///   %B = trunc i64 %A to i32
600///   %C = lshr i32 %B, 8
601///   %E = zext i32 %C to i64
602///
603/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
604/// set to 8 to indicate that the promoted value needs to have bits 24-31
605/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
606/// clear the top bits anyway, doing this has no extra cost.
607///
608/// This function works on both vectors and scalars.
609static bool CanEvaluateZExtd(Value *V, const Type *Ty, unsigned &BitsToClear) {
610  BitsToClear = 0;
611  if (isa<Constant>(V))
612    return true;
613
614  Instruction *I = dyn_cast<Instruction>(V);
615  if (!I) return false;
616
617  // If the input is a truncate from the destination type, we can trivially
618  // eliminate it, even if it has multiple uses.
619  // FIXME: This is currently disabled until codegen can handle this without
620  // pessimizing code, PR5997.
621  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
622    return true;
623
624  // We can't extend or shrink something that has multiple uses: doing so would
625  // require duplicating the instruction in general, which isn't profitable.
626  if (!I->hasOneUse()) return false;
627
628  unsigned Opc = I->getOpcode(), Tmp;
629  switch (Opc) {
630  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
631  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
632  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
633    return true;
634  case Instruction::And:
635  case Instruction::Or:
636  case Instruction::Xor:
637  case Instruction::Add:
638  case Instruction::Sub:
639  case Instruction::Mul:
640  case Instruction::Shl:
641    if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
642        !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
643      return false;
644    // These can all be promoted if neither operand has 'bits to clear'.
645    if (BitsToClear == 0 && Tmp == 0)
646      return true;
647
648    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
649    // other side, BitsToClear is ok.
650    if (Tmp == 0 &&
651        (Opc == Instruction::And || Opc == Instruction::Or ||
652         Opc == Instruction::Xor)) {
653      // We use MaskedValueIsZero here for generality, but the case we care
654      // about the most is constant RHS.
655      unsigned VSize = V->getType()->getScalarSizeInBits();
656      if (MaskedValueIsZero(I->getOperand(1),
657                            APInt::getHighBitsSet(VSize, BitsToClear)))
658        return true;
659    }
660
661    // Otherwise, we don't know how to analyze this BitsToClear case yet.
662    return false;
663
664  case Instruction::LShr:
665    // We can promote lshr(x, cst) if we can promote x.  This requires the
666    // ultimate 'and' to clear out the high zero bits we're clearing out though.
667    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
668      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
669        return false;
670      BitsToClear += Amt->getZExtValue();
671      if (BitsToClear > V->getType()->getScalarSizeInBits())
672        BitsToClear = V->getType()->getScalarSizeInBits();
673      return true;
674    }
675    // Cannot promote variable LSHR.
676    return false;
677  case Instruction::Select:
678    if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
679        !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
680        // TODO: If important, we could handle the case when the BitsToClear are
681        // known zero in the disagreeing side.
682        Tmp != BitsToClear)
683      return false;
684    return true;
685
686  case Instruction::PHI: {
687    // We can change a phi if we can change all operands.  Note that we never
688    // get into trouble with cyclic PHIs here because we only consider
689    // instructions with a single use.
690    PHINode *PN = cast<PHINode>(I);
691    if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
692      return false;
693    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
694      if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
695          // TODO: If important, we could handle the case when the BitsToClear
696          // are known zero in the disagreeing input.
697          Tmp != BitsToClear)
698        return false;
699    return true;
700  }
701  default:
702    // TODO: Can handle more cases here.
703    return false;
704  }
705}
706
707Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
708  // If this zero extend is only used by a truncate, let the truncate by
709  // eliminated before we try to optimize this zext.
710  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
711    return 0;
712
713  // If one of the common conversion will work, do it.
714  if (Instruction *Result = commonCastTransforms(CI))
715    return Result;
716
717  // See if we can simplify any instructions used by the input whose sole
718  // purpose is to compute bits we don't care about.
719  if (SimplifyDemandedInstructionBits(CI))
720    return &CI;
721
722  Value *Src = CI.getOperand(0);
723  const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
724
725  // Attempt to extend the entire input expression tree to the destination
726  // type.   Only do this if the dest type is a simple type, don't convert the
727  // expression tree to something weird like i93 unless the source is also
728  // strange.
729  unsigned BitsToClear;
730  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
731      CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
732    assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
733           "Unreasonable BitsToClear");
734
735    // Okay, we can transform this!  Insert the new expression now.
736    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
737          " to avoid zero extend: " << CI);
738    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
739    assert(Res->getType() == DestTy);
740
741    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
742    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
743
744    // If the high bits are already filled with zeros, just replace this
745    // cast with the result.
746    if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
747                                                     DestBitSize-SrcBitsKept)))
748      return ReplaceInstUsesWith(CI, Res);
749
750    // We need to emit an AND to clear the high bits.
751    Constant *C = ConstantInt::get(Res->getType(),
752                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
753    return BinaryOperator::CreateAnd(Res, C);
754  }
755
756  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
757  // types and if the sizes are just right we can convert this into a logical
758  // 'and' which will be much cheaper than the pair of casts.
759  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
760    // TODO: Subsume this into EvaluateInDifferentType.
761
762    // Get the sizes of the types involved.  We know that the intermediate type
763    // will be smaller than A or C, but don't know the relation between A and C.
764    Value *A = CSrc->getOperand(0);
765    unsigned SrcSize = A->getType()->getScalarSizeInBits();
766    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
767    unsigned DstSize = CI.getType()->getScalarSizeInBits();
768    // If we're actually extending zero bits, then if
769    // SrcSize <  DstSize: zext(a & mask)
770    // SrcSize == DstSize: a & mask
771    // SrcSize  > DstSize: trunc(a) & mask
772    if (SrcSize < DstSize) {
773      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
774      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
775      Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
776      return new ZExtInst(And, CI.getType());
777    }
778
779    if (SrcSize == DstSize) {
780      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
781      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
782                                                           AndValue));
783    }
784    if (SrcSize > DstSize) {
785      Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
786      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
787      return BinaryOperator::CreateAnd(Trunc,
788                                       ConstantInt::get(Trunc->getType(),
789                                                        AndValue));
790    }
791  }
792
793  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
794    return transformZExtICmp(ICI, CI);
795
796  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
797  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
798    // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
799    // of the (zext icmp) will be transformed.
800    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
801    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
802    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
803        (transformZExtICmp(LHS, CI, false) ||
804         transformZExtICmp(RHS, CI, false))) {
805      Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
806      Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
807      return BinaryOperator::Create(Instruction::Or, LCast, RCast);
808    }
809  }
810
811  // zext(trunc(t) & C) -> (t & zext(C)).
812  if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
813    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
814      if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
815        Value *TI0 = TI->getOperand(0);
816        if (TI0->getType() == CI.getType())
817          return
818            BinaryOperator::CreateAnd(TI0,
819                                ConstantExpr::getZExt(C, CI.getType()));
820      }
821
822  // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
823  if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
824    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
825      if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
826        if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
827            And->getOperand(1) == C)
828          if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
829            Value *TI0 = TI->getOperand(0);
830            if (TI0->getType() == CI.getType()) {
831              Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
832              Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
833              return BinaryOperator::CreateXor(NewAnd, ZC);
834            }
835          }
836
837  // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
838  Value *X;
839  if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
840      match(SrcI, m_Not(m_Value(X))) &&
841      (!X->hasOneUse() || !isa<CmpInst>(X))) {
842    Value *New = Builder->CreateZExt(X, CI.getType());
843    return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
844  }
845
846  return 0;
847}
848
849/// CanEvaluateSExtd - Return true if we can take the specified value
850/// and return it as type Ty without inserting any new casts and without
851/// changing the value of the common low bits.  This is used by code that tries
852/// to promote integer operations to a wider types will allow us to eliminate
853/// the extension.
854///
855/// This function works on both vectors and scalars.
856///
857static bool CanEvaluateSExtd(Value *V, const Type *Ty) {
858  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
859         "Can't sign extend type to a smaller type");
860  // If this is a constant, it can be trivially promoted.
861  if (isa<Constant>(V))
862    return true;
863
864  Instruction *I = dyn_cast<Instruction>(V);
865  if (!I) return false;
866
867  // If this is a truncate from the dest type, we can trivially eliminate it,
868  // even if it has multiple uses.
869  // FIXME: This is currently disabled until codegen can handle this without
870  // pessimizing code, PR5997.
871  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
872    return true;
873
874  // We can't extend or shrink something that has multiple uses: doing so would
875  // require duplicating the instruction in general, which isn't profitable.
876  if (!I->hasOneUse()) return false;
877
878  switch (I->getOpcode()) {
879  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
880  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
881  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
882    return true;
883  case Instruction::And:
884  case Instruction::Or:
885  case Instruction::Xor:
886  case Instruction::Add:
887  case Instruction::Sub:
888  case Instruction::Mul:
889    // These operators can all arbitrarily be extended if their inputs can.
890    return CanEvaluateSExtd(I->getOperand(0), Ty) &&
891           CanEvaluateSExtd(I->getOperand(1), Ty);
892
893  //case Instruction::Shl:   TODO
894  //case Instruction::LShr:  TODO
895
896  case Instruction::Select:
897    return CanEvaluateSExtd(I->getOperand(1), Ty) &&
898           CanEvaluateSExtd(I->getOperand(2), Ty);
899
900  case Instruction::PHI: {
901    // We can change a phi if we can change all operands.  Note that we never
902    // get into trouble with cyclic PHIs here because we only consider
903    // instructions with a single use.
904    PHINode *PN = cast<PHINode>(I);
905    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
906      if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
907    return true;
908  }
909  default:
910    // TODO: Can handle more cases here.
911    break;
912  }
913
914  return false;
915}
916
917Instruction *InstCombiner::visitSExt(SExtInst &CI) {
918  // If this sign extend is only used by a truncate, let the truncate by
919  // eliminated before we try to optimize this zext.
920  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
921    return 0;
922
923  if (Instruction *I = commonCastTransforms(CI))
924    return I;
925
926  // See if we can simplify any instructions used by the input whose sole
927  // purpose is to compute bits we don't care about.
928  if (SimplifyDemandedInstructionBits(CI))
929    return &CI;
930
931  Value *Src = CI.getOperand(0);
932  const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
933
934  // Attempt to extend the entire input expression tree to the destination
935  // type.   Only do this if the dest type is a simple type, don't convert the
936  // expression tree to something weird like i93 unless the source is also
937  // strange.
938  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
939      CanEvaluateSExtd(Src, DestTy)) {
940    // Okay, we can transform this!  Insert the new expression now.
941    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
942          " to avoid sign extend: " << CI);
943    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
944    assert(Res->getType() == DestTy);
945
946    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
947    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
948
949    // If the high bits are already filled with sign bit, just replace this
950    // cast with the result.
951    if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
952      return ReplaceInstUsesWith(CI, Res);
953
954    // We need to emit a shl + ashr to do the sign extend.
955    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
956    return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
957                                      ShAmt);
958  }
959
960  // If this input is a trunc from our destination, then turn sext(trunc(x))
961  // into shifts.
962  if (TruncInst *TI = dyn_cast<TruncInst>(Src))
963    if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
964      uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
965      uint32_t DestBitSize = DestTy->getScalarSizeInBits();
966
967      // We need to emit a shl + ashr to do the sign extend.
968      Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
969      Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
970      return BinaryOperator::CreateAShr(Res, ShAmt);
971    }
972
973
974  // (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed
975  // (x >s -1) ? -1 : 0 -> ashr x, 31  -> all ones if not signed
976  {
977  ICmpInst::Predicate Pred; Value *CmpLHS; ConstantInt *CmpRHS;
978  if (match(Src, m_ICmp(Pred, m_Value(CmpLHS), m_ConstantInt(CmpRHS)))) {
979    // sext (x <s  0) to i32 --> x>>s31       true if signbit set.
980    // sext (x >s -1) to i32 --> (x>>s31)^-1  true if signbit clear.
981    if ((Pred == ICmpInst::ICMP_SLT && CmpRHS->isZero()) ||
982        (Pred == ICmpInst::ICMP_SGT && CmpRHS->isAllOnesValue())) {
983      Value *Sh = ConstantInt::get(CmpLHS->getType(),
984                                   CmpLHS->getType()->getScalarSizeInBits()-1);
985      Value *In = Builder->CreateAShr(CmpLHS, Sh, CmpLHS->getName()+".lobit");
986      if (In->getType() != CI.getType())
987        In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/, "tmp");
988
989      if (Pred == ICmpInst::ICMP_SGT)
990        In = Builder->CreateNot(In, In->getName()+".not");
991      return ReplaceInstUsesWith(CI, In);
992    }
993  }
994  }
995
996
997  // If the input is a shl/ashr pair of a same constant, then this is a sign
998  // extension from a smaller value.  If we could trust arbitrary bitwidth
999  // integers, we could turn this into a truncate to the smaller bit and then
1000  // use a sext for the whole extension.  Since we don't, look deeper and check
1001  // for a truncate.  If the source and dest are the same type, eliminate the
1002  // trunc and extend and just do shifts.  For example, turn:
1003  //   %a = trunc i32 %i to i8
1004  //   %b = shl i8 %a, 6
1005  //   %c = ashr i8 %b, 6
1006  //   %d = sext i8 %c to i32
1007  // into:
1008  //   %a = shl i32 %i, 30
1009  //   %d = ashr i32 %a, 30
1010  Value *A = 0;
1011  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1012  ConstantInt *BA = 0, *CA = 0;
1013  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1014                        m_ConstantInt(CA))) &&
1015      BA == CA && A->getType() == CI.getType()) {
1016    unsigned MidSize = Src->getType()->getScalarSizeInBits();
1017    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1018    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1019    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1020    A = Builder->CreateShl(A, ShAmtV, CI.getName());
1021    return BinaryOperator::CreateAShr(A, ShAmtV);
1022  }
1023
1024  return 0;
1025}
1026
1027
1028/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1029/// in the specified FP type without changing its value.
1030static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1031  bool losesInfo;
1032  APFloat F = CFP->getValueAPF();
1033  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1034  if (!losesInfo)
1035    return ConstantFP::get(CFP->getContext(), F);
1036  return 0;
1037}
1038
1039/// LookThroughFPExtensions - If this is an fp extension instruction, look
1040/// through it until we get the source value.
1041static Value *LookThroughFPExtensions(Value *V) {
1042  if (Instruction *I = dyn_cast<Instruction>(V))
1043    if (I->getOpcode() == Instruction::FPExt)
1044      return LookThroughFPExtensions(I->getOperand(0));
1045
1046  // If this value is a constant, return the constant in the smallest FP type
1047  // that can accurately represent it.  This allows us to turn
1048  // (float)((double)X+2.0) into x+2.0f.
1049  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1050    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1051      return V;  // No constant folding of this.
1052    // See if the value can be truncated to float and then reextended.
1053    if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1054      return V;
1055    if (CFP->getType()->isDoubleTy())
1056      return V;  // Won't shrink.
1057    if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1058      return V;
1059    // Don't try to shrink to various long double types.
1060  }
1061
1062  return V;
1063}
1064
1065Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1066  if (Instruction *I = commonCastTransforms(CI))
1067    return I;
1068
1069  // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
1070  // smaller than the destination type, we can eliminate the truncate by doing
1071  // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
1072  // as many builtins (sqrt, etc).
1073  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1074  if (OpI && OpI->hasOneUse()) {
1075    switch (OpI->getOpcode()) {
1076    default: break;
1077    case Instruction::FAdd:
1078    case Instruction::FSub:
1079    case Instruction::FMul:
1080    case Instruction::FDiv:
1081    case Instruction::FRem:
1082      const Type *SrcTy = OpI->getType();
1083      Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
1084      Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
1085      if (LHSTrunc->getType() != SrcTy &&
1086          RHSTrunc->getType() != SrcTy) {
1087        unsigned DstSize = CI.getType()->getScalarSizeInBits();
1088        // If the source types were both smaller than the destination type of
1089        // the cast, do this xform.
1090        if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
1091            RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
1092          LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
1093          RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
1094          return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
1095        }
1096      }
1097      break;
1098    }
1099  }
1100
1101  // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
1102  // NOTE: This should be disabled by -fno-builtin-sqrt if we ever support it.
1103  CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
1104  if (Call && Call->getCalledFunction() &&
1105      Call->getCalledFunction()->getName() == "sqrt" &&
1106      Call->getNumArgOperands() == 1) {
1107    CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1108    if (Arg && Arg->getOpcode() == Instruction::FPExt &&
1109        CI.getType()->isFloatTy() &&
1110        Call->getType()->isDoubleTy() &&
1111        Arg->getType()->isDoubleTy() &&
1112        Arg->getOperand(0)->getType()->isFloatTy()) {
1113      Function *Callee = Call->getCalledFunction();
1114      Module *M = CI.getParent()->getParent()->getParent();
1115      Constant* SqrtfFunc = M->getOrInsertFunction("sqrtf",
1116                                                   Callee->getAttributes(),
1117                                                   Builder->getFloatTy(),
1118                                                   Builder->getFloatTy(),
1119                                                   NULL);
1120      CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1121                                       "sqrtfcall");
1122      ret->setAttributes(Callee->getAttributes());
1123      return ret;
1124    }
1125  }
1126
1127  return 0;
1128}
1129
1130Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1131  return commonCastTransforms(CI);
1132}
1133
1134Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1135  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1136  if (OpI == 0)
1137    return commonCastTransforms(FI);
1138
1139  // fptoui(uitofp(X)) --> X
1140  // fptoui(sitofp(X)) --> X
1141  // This is safe if the intermediate type has enough bits in its mantissa to
1142  // accurately represent all values of X.  For example, do not do this with
1143  // i64->float->i64.  This is also safe for sitofp case, because any negative
1144  // 'X' value would cause an undefined result for the fptoui.
1145  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1146      OpI->getOperand(0)->getType() == FI.getType() &&
1147      (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1148                    OpI->getType()->getFPMantissaWidth())
1149    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1150
1151  return commonCastTransforms(FI);
1152}
1153
1154Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1155  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1156  if (OpI == 0)
1157    return commonCastTransforms(FI);
1158
1159  // fptosi(sitofp(X)) --> X
1160  // fptosi(uitofp(X)) --> X
1161  // This is safe if the intermediate type has enough bits in its mantissa to
1162  // accurately represent all values of X.  For example, do not do this with
1163  // i64->float->i64.  This is also safe for sitofp case, because any negative
1164  // 'X' value would cause an undefined result for the fptoui.
1165  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1166      OpI->getOperand(0)->getType() == FI.getType() &&
1167      (int)FI.getType()->getScalarSizeInBits() <=
1168                    OpI->getType()->getFPMantissaWidth())
1169    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1170
1171  return commonCastTransforms(FI);
1172}
1173
1174Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1175  return commonCastTransforms(CI);
1176}
1177
1178Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1179  return commonCastTransforms(CI);
1180}
1181
1182Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1183  // If the source integer type is not the intptr_t type for this target, do a
1184  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1185  // cast to be exposed to other transforms.
1186  if (TD) {
1187    if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
1188        TD->getPointerSizeInBits()) {
1189      Value *P = Builder->CreateTrunc(CI.getOperand(0),
1190                                      TD->getIntPtrType(CI.getContext()), "tmp");
1191      return new IntToPtrInst(P, CI.getType());
1192    }
1193    if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
1194        TD->getPointerSizeInBits()) {
1195      Value *P = Builder->CreateZExt(CI.getOperand(0),
1196                                     TD->getIntPtrType(CI.getContext()), "tmp");
1197      return new IntToPtrInst(P, CI.getType());
1198    }
1199  }
1200
1201  if (Instruction *I = commonCastTransforms(CI))
1202    return I;
1203
1204  return 0;
1205}
1206
1207/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1208Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1209  Value *Src = CI.getOperand(0);
1210
1211  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1212    // If casting the result of a getelementptr instruction with no offset, turn
1213    // this into a cast of the original pointer!
1214    if (GEP->hasAllZeroIndices()) {
1215      // Changing the cast operand is usually not a good idea but it is safe
1216      // here because the pointer operand is being replaced with another
1217      // pointer operand so the opcode doesn't need to change.
1218      Worklist.Add(GEP);
1219      CI.setOperand(0, GEP->getOperand(0));
1220      return &CI;
1221    }
1222
1223    // If the GEP has a single use, and the base pointer is a bitcast, and the
1224    // GEP computes a constant offset, see if we can convert these three
1225    // instructions into fewer.  This typically happens with unions and other
1226    // non-type-safe code.
1227    if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1228        GEP->hasAllConstantIndices()) {
1229      // We are guaranteed to get a constant from EmitGEPOffset.
1230      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
1231      int64_t Offset = OffsetV->getSExtValue();
1232
1233      // Get the base pointer input of the bitcast, and the type it points to.
1234      Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
1235      const Type *GEPIdxTy =
1236      cast<PointerType>(OrigBase->getType())->getElementType();
1237      SmallVector<Value*, 8> NewIndices;
1238      if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
1239        // If we were able to index down into an element, create the GEP
1240        // and bitcast the result.  This eliminates one bitcast, potentially
1241        // two.
1242        Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1243        Builder->CreateInBoundsGEP(OrigBase,
1244                                   NewIndices.begin(), NewIndices.end()) :
1245        Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
1246        NGEP->takeName(GEP);
1247
1248        if (isa<BitCastInst>(CI))
1249          return new BitCastInst(NGEP, CI.getType());
1250        assert(isa<PtrToIntInst>(CI));
1251        return new PtrToIntInst(NGEP, CI.getType());
1252      }
1253    }
1254  }
1255
1256  return commonCastTransforms(CI);
1257}
1258
1259Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1260  // If the destination integer type is not the intptr_t type for this target,
1261  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1262  // to be exposed to other transforms.
1263  if (TD) {
1264    if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1265      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1266                                         TD->getIntPtrType(CI.getContext()),
1267                                         "tmp");
1268      return new TruncInst(P, CI.getType());
1269    }
1270    if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
1271      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1272                                         TD->getIntPtrType(CI.getContext()),
1273                                         "tmp");
1274      return new ZExtInst(P, CI.getType());
1275    }
1276  }
1277
1278  return commonPointerCastTransforms(CI);
1279}
1280
1281/// OptimizeVectorResize - This input value (which is known to have vector type)
1282/// is being zero extended or truncated to the specified vector type.  Try to
1283/// replace it with a shuffle (and vector/vector bitcast) if possible.
1284///
1285/// The source and destination vector types may have different element types.
1286static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy,
1287                                         InstCombiner &IC) {
1288  // We can only do this optimization if the output is a multiple of the input
1289  // element size, or the input is a multiple of the output element size.
1290  // Convert the input type to have the same element type as the output.
1291  const VectorType *SrcTy = cast<VectorType>(InVal->getType());
1292
1293  if (SrcTy->getElementType() != DestTy->getElementType()) {
1294    // The input types don't need to be identical, but for now they must be the
1295    // same size.  There is no specific reason we couldn't handle things like
1296    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1297    // there yet.
1298    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1299        DestTy->getElementType()->getPrimitiveSizeInBits())
1300      return 0;
1301
1302    SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1303    InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1304  }
1305
1306  // Now that the element types match, get the shuffle mask and RHS of the
1307  // shuffle to use, which depends on whether we're increasing or decreasing the
1308  // size of the input.
1309  SmallVector<Constant*, 16> ShuffleMask;
1310  Value *V2;
1311  const IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext());
1312
1313  if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1314    // If we're shrinking the number of elements, just shuffle in the low
1315    // elements from the input and use undef as the second shuffle input.
1316    V2 = UndefValue::get(SrcTy);
1317    for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1318      ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1319
1320  } else {
1321    // If we're increasing the number of elements, shuffle in all of the
1322    // elements from InVal and fill the rest of the result elements with zeros
1323    // from a constant zero.
1324    V2 = Constant::getNullValue(SrcTy);
1325    unsigned SrcElts = SrcTy->getNumElements();
1326    for (unsigned i = 0, e = SrcElts; i != e; ++i)
1327      ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1328
1329    // The excess elements reference the first element of the zero input.
1330    ShuffleMask.append(DestTy->getNumElements()-SrcElts,
1331                       ConstantInt::get(Int32Ty, SrcElts));
1332  }
1333
1334  Constant *Mask = ConstantVector::get(ShuffleMask.data(), ShuffleMask.size());
1335  return new ShuffleVectorInst(InVal, V2, Mask);
1336}
1337
1338/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1339/// bitcast.  The various long double bitcasts can't get in here.
1340static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
1341  Value *Src = CI.getOperand(0);
1342  const Type *DestTy = CI.getType();
1343
1344  // If this is a bitcast from int to float, check to see if the int is an
1345  // extraction from a vector.
1346  Value *VecInput = 0;
1347  // bitcast(trunc(bitcast(somevector)))
1348  if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1349      isa<VectorType>(VecInput->getType())) {
1350    const VectorType *VecTy = cast<VectorType>(VecInput->getType());
1351    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1352
1353    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1354      // If the element type of the vector doesn't match the result type,
1355      // bitcast it to be a vector type we can extract from.
1356      if (VecTy->getElementType() != DestTy) {
1357        VecTy = VectorType::get(DestTy,
1358                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1359        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1360      }
1361
1362      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
1363    }
1364  }
1365
1366  // bitcast(trunc(lshr(bitcast(somevector), cst))
1367  ConstantInt *ShAmt = 0;
1368  if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1369                                m_ConstantInt(ShAmt)))) &&
1370      isa<VectorType>(VecInput->getType())) {
1371    const VectorType *VecTy = cast<VectorType>(VecInput->getType());
1372    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1373    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1374        ShAmt->getZExtValue() % DestWidth == 0) {
1375      // If the element type of the vector doesn't match the result type,
1376      // bitcast it to be a vector type we can extract from.
1377      if (VecTy->getElementType() != DestTy) {
1378        VecTy = VectorType::get(DestTy,
1379                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1380        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1381      }
1382
1383      unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1384      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1385    }
1386  }
1387  return 0;
1388}
1389
1390Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1391  // If the operands are integer typed then apply the integer transforms,
1392  // otherwise just apply the common ones.
1393  Value *Src = CI.getOperand(0);
1394  const Type *SrcTy = Src->getType();
1395  const Type *DestTy = CI.getType();
1396
1397  // Get rid of casts from one type to the same type. These are useless and can
1398  // be replaced by the operand.
1399  if (DestTy == Src->getType())
1400    return ReplaceInstUsesWith(CI, Src);
1401
1402  if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1403    const PointerType *SrcPTy = cast<PointerType>(SrcTy);
1404    const Type *DstElTy = DstPTy->getElementType();
1405    const Type *SrcElTy = SrcPTy->getElementType();
1406
1407    // If the address spaces don't match, don't eliminate the bitcast, which is
1408    // required for changing types.
1409    if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1410      return 0;
1411
1412    // If we are casting a alloca to a pointer to a type of the same
1413    // size, rewrite the allocation instruction to allocate the "right" type.
1414    // There is no need to modify malloc calls because it is their bitcast that
1415    // needs to be cleaned up.
1416    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1417      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1418        return V;
1419
1420    // If the source and destination are pointers, and this cast is equivalent
1421    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1422    // This can enhance SROA and other transforms that want type-safe pointers.
1423    Constant *ZeroUInt =
1424      Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1425    unsigned NumZeros = 0;
1426    while (SrcElTy != DstElTy &&
1427           isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1428           SrcElTy->getNumContainedTypes() /* not "{}" */) {
1429      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1430      ++NumZeros;
1431    }
1432
1433    // If we found a path from the src to dest, create the getelementptr now.
1434    if (SrcElTy == DstElTy) {
1435      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1436      return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
1437                                               ((Instruction*)NULL));
1438    }
1439  }
1440
1441  // Try to optimize int -> float bitcasts.
1442  if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1443    if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1444      return I;
1445
1446  if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1447    if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1448      Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1449      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1450                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1451      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1452    }
1453
1454    // If this is a cast from an integer to vector, check to see if the input
1455    // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1456    // the casts with a shuffle and (potentially) a bitcast.
1457    if (isa<IntegerType>(SrcTy) && (isa<TruncInst>(Src) || isa<ZExtInst>(Src))){
1458      CastInst *SrcCast = cast<CastInst>(Src);
1459      if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1460        if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1461          if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
1462                                               cast<VectorType>(DestTy), *this))
1463            return I;
1464    }
1465  }
1466
1467  if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1468    if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
1469      Value *Elem =
1470        Builder->CreateExtractElement(Src,
1471                   Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1472      return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1473    }
1474  }
1475
1476  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1477    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1478    // a bitcast to a vector with the same # elts.
1479    if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1480        cast<VectorType>(DestTy)->getNumElements() ==
1481              SVI->getType()->getNumElements() &&
1482        SVI->getType()->getNumElements() ==
1483          cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1484      BitCastInst *Tmp;
1485      // If either of the operands is a cast from CI.getType(), then
1486      // evaluating the shuffle in the casted destination's type will allow
1487      // us to eliminate at least one cast.
1488      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1489           Tmp->getOperand(0)->getType() == DestTy) ||
1490          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1491           Tmp->getOperand(0)->getType() == DestTy)) {
1492        Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1493        Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1494        // Return a new shuffle vector.  Use the same element ID's, as we
1495        // know the vector types match #elts.
1496        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1497      }
1498    }
1499  }
1500
1501  if (SrcTy->isPointerTy())
1502    return commonPointerCastTransforms(CI);
1503  return commonCastTransforms(CI);
1504}
1505