InstCombineCasts.cpp revision 3dd08734c1812e47ae5f6aceba15f28865f75943
1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Support/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
21/// expression.  If so, decompose it, returning some value X, such that Val is
22/// X*Scale+Offset.
23///
24static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
25                                        uint64_t &Offset) {
26  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
27    Offset = CI->getZExtValue();
28    Scale  = 0;
29    return ConstantInt::get(Val->getType(), 0);
30  }
31
32  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
33    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
34      if (I->getOpcode() == Instruction::Shl) {
35        // This is a value scaled by '1 << the shift amt'.
36        Scale = UINT64_C(1) << RHS->getZExtValue();
37        Offset = 0;
38        return I->getOperand(0);
39      }
40
41      if (I->getOpcode() == Instruction::Mul) {
42        // This value is scaled by 'RHS'.
43        Scale = RHS->getZExtValue();
44        Offset = 0;
45        return I->getOperand(0);
46      }
47
48      if (I->getOpcode() == Instruction::Add) {
49        // We have X+C.  Check to see if we really have (X*C2)+C1,
50        // where C1 is divisible by C2.
51        unsigned SubScale;
52        Value *SubVal =
53          DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
54        Offset += RHS->getZExtValue();
55        Scale = SubScale;
56        return SubVal;
57      }
58    }
59  }
60
61  // Otherwise, we can't look past this.
62  Scale = 1;
63  Offset = 0;
64  return Val;
65}
66
67/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
68/// try to eliminate the cast by moving the type information into the alloc.
69Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
70                                                   AllocaInst &AI) {
71  // This requires TargetData to get the alloca alignment and size information.
72  if (!TD) return 0;
73
74  const PointerType *PTy = cast<PointerType>(CI.getType());
75
76  BuilderTy AllocaBuilder(*Builder);
77  AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
78
79  // Get the type really allocated and the type casted to.
80  const Type *AllocElTy = AI.getAllocatedType();
81  const Type *CastElTy = PTy->getElementType();
82  if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
83
84  unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
85  unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
86  if (CastElTyAlign < AllocElTyAlign) return 0;
87
88  // If the allocation has multiple uses, only promote it if we are strictly
89  // increasing the alignment of the resultant allocation.  If we keep it the
90  // same, we open the door to infinite loops of various kinds.  (A reference
91  // from a dbg.declare doesn't count as a use for this purpose.)
92  if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
93      CastElTyAlign == AllocElTyAlign) return 0;
94
95  uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
96  uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
97  if (CastElTySize == 0 || AllocElTySize == 0) return 0;
98
99  // See if we can satisfy the modulus by pulling a scale out of the array
100  // size argument.
101  unsigned ArraySizeScale;
102  uint64_t ArrayOffset;
103  Value *NumElements = // See if the array size is a decomposable linear expr.
104    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
105
106  // If we can now satisfy the modulus, by using a non-1 scale, we really can
107  // do the xform.
108  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
109      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
110
111  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
112  Value *Amt = 0;
113  if (Scale == 1) {
114    Amt = NumElements;
115  } else {
116    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
117    // Insert before the alloca, not before the cast.
118    Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
119  }
120
121  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
122    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
123                                  Offset, true);
124    Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
125  }
126
127  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
128  New->setAlignment(AI.getAlignment());
129  New->takeName(&AI);
130
131  // If the allocation has one real use plus a dbg.declare, just remove the
132  // declare.
133  if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
134    EraseInstFromFunction(*(Instruction*)DI);
135  }
136  // If the allocation has multiple real uses, insert a cast and change all
137  // things that used it to use the new cast.  This will also hack on CI, but it
138  // will die soon.
139  else if (!AI.hasOneUse()) {
140    // New is the allocation instruction, pointer typed. AI is the original
141    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
142    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
143    AI.replaceAllUsesWith(NewCast);
144  }
145  return ReplaceInstUsesWith(CI, New);
146}
147
148
149
150/// EvaluateInDifferentType - Given an expression that
151/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
152/// insert the code to evaluate the expression.
153Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
154                                             bool isSigned) {
155  if (Constant *C = dyn_cast<Constant>(V)) {
156    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
157    // If we got a constantexpr back, try to simplify it with TD info.
158    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
159      C = ConstantFoldConstantExpression(CE, TD);
160    return C;
161  }
162
163  // Otherwise, it must be an instruction.
164  Instruction *I = cast<Instruction>(V);
165  Instruction *Res = 0;
166  unsigned Opc = I->getOpcode();
167  switch (Opc) {
168  case Instruction::Add:
169  case Instruction::Sub:
170  case Instruction::Mul:
171  case Instruction::And:
172  case Instruction::Or:
173  case Instruction::Xor:
174  case Instruction::AShr:
175  case Instruction::LShr:
176  case Instruction::Shl:
177  case Instruction::UDiv:
178  case Instruction::URem: {
179    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
180    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
181    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
182    break;
183  }
184  case Instruction::Trunc:
185  case Instruction::ZExt:
186  case Instruction::SExt:
187    // If the source type of the cast is the type we're trying for then we can
188    // just return the source.  There's no need to insert it because it is not
189    // new.
190    if (I->getOperand(0)->getType() == Ty)
191      return I->getOperand(0);
192
193    // Otherwise, must be the same type of cast, so just reinsert a new one.
194    // This also handles the case of zext(trunc(x)) -> zext(x).
195    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
196                                      Opc == Instruction::SExt);
197    break;
198  case Instruction::Select: {
199    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
200    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
201    Res = SelectInst::Create(I->getOperand(0), True, False);
202    break;
203  }
204  case Instruction::PHI: {
205    PHINode *OPN = cast<PHINode>(I);
206    PHINode *NPN = PHINode::Create(Ty);
207    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
208      Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
209      NPN->addIncoming(V, OPN->getIncomingBlock(i));
210    }
211    Res = NPN;
212    break;
213  }
214  default:
215    // TODO: Can handle more cases here.
216    llvm_unreachable("Unreachable!");
217    break;
218  }
219
220  Res->takeName(I);
221  return InsertNewInstBefore(Res, *I);
222}
223
224
225/// This function is a wrapper around CastInst::isEliminableCastPair. It
226/// simply extracts arguments and returns what that function returns.
227static Instruction::CastOps
228isEliminableCastPair(
229  const CastInst *CI, ///< The first cast instruction
230  unsigned opcode,       ///< The opcode of the second cast instruction
231  const Type *DstTy,     ///< The target type for the second cast instruction
232  TargetData *TD         ///< The target data for pointer size
233) {
234
235  const Type *SrcTy = CI->getOperand(0)->getType();   // A from above
236  const Type *MidTy = CI->getType();                  // B from above
237
238  // Get the opcodes of the two Cast instructions
239  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
240  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
241
242  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
243                                                DstTy,
244                                  TD ? TD->getIntPtrType(CI->getContext()) : 0);
245
246  // We don't want to form an inttoptr or ptrtoint that converts to an integer
247  // type that differs from the pointer size.
248  if ((Res == Instruction::IntToPtr &&
249          (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
250      (Res == Instruction::PtrToInt &&
251          (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
252    Res = 0;
253
254  return Instruction::CastOps(Res);
255}
256
257/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
258/// results in any code being generated and is interesting to optimize out. If
259/// the cast can be eliminated by some other simple transformation, we prefer
260/// to do the simplification first.
261bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
262                                      const Type *Ty) {
263  // Noop casts and casts of constants should be eliminated trivially.
264  if (V->getType() == Ty || isa<Constant>(V)) return false;
265
266  // If this is another cast that can be eliminated, we prefer to have it
267  // eliminated.
268  if (const CastInst *CI = dyn_cast<CastInst>(V))
269    if (isEliminableCastPair(CI, opc, Ty, TD))
270      return false;
271
272  // If this is a vector sext from a compare, then we don't want to break the
273  // idiom where each element of the extended vector is either zero or all ones.
274  if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
275    return false;
276
277  return true;
278}
279
280
281/// @brief Implement the transforms common to all CastInst visitors.
282Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
283  Value *Src = CI.getOperand(0);
284
285  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
286  // eliminate it now.
287  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
288    if (Instruction::CastOps opc =
289        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
290      // The first cast (CSrc) is eliminable so we need to fix up or replace
291      // the second cast (CI). CSrc will then have a good chance of being dead.
292      return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
293    }
294  }
295
296  // If we are casting a select then fold the cast into the select
297  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
298    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
299      return NV;
300
301  // If we are casting a PHI then fold the cast into the PHI
302  if (isa<PHINode>(Src)) {
303    // We don't do this if this would create a PHI node with an illegal type if
304    // it is currently legal.
305    if (!Src->getType()->isIntegerTy() ||
306        !CI.getType()->isIntegerTy() ||
307        ShouldChangeType(CI.getType(), Src->getType()))
308      if (Instruction *NV = FoldOpIntoPhi(CI))
309        return NV;
310  }
311
312  return 0;
313}
314
315/// CanEvaluateTruncated - Return true if we can evaluate the specified
316/// expression tree as type Ty instead of its larger type, and arrive with the
317/// same value.  This is used by code that tries to eliminate truncates.
318///
319/// Ty will always be a type smaller than V.  We should return true if trunc(V)
320/// can be computed by computing V in the smaller type.  If V is an instruction,
321/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
322/// makes sense if x and y can be efficiently truncated.
323///
324/// This function works on both vectors and scalars.
325///
326static bool CanEvaluateTruncated(Value *V, const Type *Ty) {
327  // We can always evaluate constants in another type.
328  if (isa<Constant>(V))
329    return true;
330
331  Instruction *I = dyn_cast<Instruction>(V);
332  if (!I) return false;
333
334  const Type *OrigTy = V->getType();
335
336  // If this is an extension from the dest type, we can eliminate it, even if it
337  // has multiple uses.
338  if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
339      I->getOperand(0)->getType() == Ty)
340    return true;
341
342  // We can't extend or shrink something that has multiple uses: doing so would
343  // require duplicating the instruction in general, which isn't profitable.
344  if (!I->hasOneUse()) return false;
345
346  unsigned Opc = I->getOpcode();
347  switch (Opc) {
348  case Instruction::Add:
349  case Instruction::Sub:
350  case Instruction::Mul:
351  case Instruction::And:
352  case Instruction::Or:
353  case Instruction::Xor:
354    // These operators can all arbitrarily be extended or truncated.
355    return CanEvaluateTruncated(I->getOperand(0), Ty) &&
356           CanEvaluateTruncated(I->getOperand(1), Ty);
357
358  case Instruction::UDiv:
359  case Instruction::URem: {
360    // UDiv and URem can be truncated if all the truncated bits are zero.
361    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
362    uint32_t BitWidth = Ty->getScalarSizeInBits();
363    if (BitWidth < OrigBitWidth) {
364      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
365      if (MaskedValueIsZero(I->getOperand(0), Mask) &&
366          MaskedValueIsZero(I->getOperand(1), Mask)) {
367        return CanEvaluateTruncated(I->getOperand(0), Ty) &&
368               CanEvaluateTruncated(I->getOperand(1), Ty);
369      }
370    }
371    break;
372  }
373  case Instruction::Shl:
374    // If we are truncating the result of this SHL, and if it's a shift of a
375    // constant amount, we can always perform a SHL in a smaller type.
376    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
377      uint32_t BitWidth = Ty->getScalarSizeInBits();
378      if (CI->getLimitedValue(BitWidth) < BitWidth)
379        return CanEvaluateTruncated(I->getOperand(0), Ty);
380    }
381    break;
382  case Instruction::LShr:
383    // If this is a truncate of a logical shr, we can truncate it to a smaller
384    // lshr iff we know that the bits we would otherwise be shifting in are
385    // already zeros.
386    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
387      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
388      uint32_t BitWidth = Ty->getScalarSizeInBits();
389      if (MaskedValueIsZero(I->getOperand(0),
390            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
391          CI->getLimitedValue(BitWidth) < BitWidth) {
392        return CanEvaluateTruncated(I->getOperand(0), Ty);
393      }
394    }
395    break;
396  case Instruction::Trunc:
397    // trunc(trunc(x)) -> trunc(x)
398    return true;
399  case Instruction::ZExt:
400  case Instruction::SExt:
401    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
402    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
403    return true;
404  case Instruction::Select: {
405    SelectInst *SI = cast<SelectInst>(I);
406    return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
407           CanEvaluateTruncated(SI->getFalseValue(), Ty);
408  }
409  case Instruction::PHI: {
410    // We can change a phi if we can change all operands.  Note that we never
411    // get into trouble with cyclic PHIs here because we only consider
412    // instructions with a single use.
413    PHINode *PN = cast<PHINode>(I);
414    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
415      if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
416        return false;
417    return true;
418  }
419  default:
420    // TODO: Can handle more cases here.
421    break;
422  }
423
424  return false;
425}
426
427Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
428  if (Instruction *Result = commonCastTransforms(CI))
429    return Result;
430
431  // See if we can simplify any instructions used by the input whose sole
432  // purpose is to compute bits we don't care about.
433  if (SimplifyDemandedInstructionBits(CI))
434    return &CI;
435
436  Value *Src = CI.getOperand(0);
437  const Type *DestTy = CI.getType(), *SrcTy = Src->getType();
438
439  // Attempt to truncate the entire input expression tree to the destination
440  // type.   Only do this if the dest type is a simple type, don't convert the
441  // expression tree to something weird like i93 unless the source is also
442  // strange.
443  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
444      CanEvaluateTruncated(Src, DestTy)) {
445
446    // If this cast is a truncate, evaluting in a different type always
447    // eliminates the cast, so it is always a win.
448    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
449          " to avoid cast: " << CI << '\n');
450    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
451    assert(Res->getType() == DestTy);
452    return ReplaceInstUsesWith(CI, Res);
453  }
454
455  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
456  if (DestTy->getScalarSizeInBits() == 1) {
457    Constant *One = ConstantInt::get(Src->getType(), 1);
458    Src = Builder->CreateAnd(Src, One, "tmp");
459    Value *Zero = Constant::getNullValue(Src->getType());
460    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
461  }
462
463  // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
464  Value *A = 0; ConstantInt *Cst = 0;
465  if (match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst))) &&
466      Src->hasOneUse()) {
467    // We have three types to worry about here, the type of A, the source of
468    // the truncate (MidSize), and the destination of the truncate. We know that
469    // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
470    // between ASize and ResultSize.
471    unsigned ASize = A->getType()->getPrimitiveSizeInBits();
472
473    // If the shift amount is larger than the size of A, then the result is
474    // known to be zero because all the input bits got shifted out.
475    if (Cst->getZExtValue() >= ASize)
476      return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
477
478    // Since we're doing an lshr and a zero extend, and know that the shift
479    // amount is smaller than ASize, it is always safe to do the shift in A's
480    // type, then zero extend or truncate to the result.
481    Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
482    Shift->takeName(Src);
483    return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
484  }
485
486  return 0;
487}
488
489/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
490/// in order to eliminate the icmp.
491Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
492                                             bool DoXform) {
493  // If we are just checking for a icmp eq of a single bit and zext'ing it
494  // to an integer, then shift the bit to the appropriate place and then
495  // cast to integer to avoid the comparison.
496  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
497    const APInt &Op1CV = Op1C->getValue();
498
499    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
500    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
501    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
502        (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
503      if (!DoXform) return ICI;
504
505      Value *In = ICI->getOperand(0);
506      Value *Sh = ConstantInt::get(In->getType(),
507                                   In->getType()->getScalarSizeInBits()-1);
508      In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
509      if (In->getType() != CI.getType())
510        In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
511
512      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
513        Constant *One = ConstantInt::get(In->getType(), 1);
514        In = Builder->CreateXor(In, One, In->getName()+".not");
515      }
516
517      return ReplaceInstUsesWith(CI, In);
518    }
519
520
521
522    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
523    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
524    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
525    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
526    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
527    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
528    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
529    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
530    if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
531        // This only works for EQ and NE
532        ICI->isEquality()) {
533      // If Op1C some other power of two, convert:
534      uint32_t BitWidth = Op1C->getType()->getBitWidth();
535      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
536      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
537      ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
538
539      APInt KnownZeroMask(~KnownZero);
540      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
541        if (!DoXform) return ICI;
542
543        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
544        if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
545          // (X&4) == 2 --> false
546          // (X&4) != 2 --> true
547          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
548                                           isNE);
549          Res = ConstantExpr::getZExt(Res, CI.getType());
550          return ReplaceInstUsesWith(CI, Res);
551        }
552
553        uint32_t ShiftAmt = KnownZeroMask.logBase2();
554        Value *In = ICI->getOperand(0);
555        if (ShiftAmt) {
556          // Perform a logical shr by shiftamt.
557          // Insert the shift to put the result in the low bit.
558          In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
559                                   In->getName()+".lobit");
560        }
561
562        if ((Op1CV != 0) == isNE) { // Toggle the low bit.
563          Constant *One = ConstantInt::get(In->getType(), 1);
564          In = Builder->CreateXor(In, One, "tmp");
565        }
566
567        if (CI.getType() == In->getType())
568          return ReplaceInstUsesWith(CI, In);
569        return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
570      }
571    }
572  }
573
574  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
575  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
576  // may lead to additional simplifications.
577  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
578    if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
579      uint32_t BitWidth = ITy->getBitWidth();
580      Value *LHS = ICI->getOperand(0);
581      Value *RHS = ICI->getOperand(1);
582
583      APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
584      APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
585      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
586      ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
587      ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
588
589      if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
590        APInt KnownBits = KnownZeroLHS | KnownOneLHS;
591        APInt UnknownBit = ~KnownBits;
592        if (UnknownBit.countPopulation() == 1) {
593          if (!DoXform) return ICI;
594
595          Value *Result = Builder->CreateXor(LHS, RHS);
596
597          // Mask off any bits that are set and won't be shifted away.
598          if (KnownOneLHS.uge(UnknownBit))
599            Result = Builder->CreateAnd(Result,
600                                        ConstantInt::get(ITy, UnknownBit));
601
602          // Shift the bit we're testing down to the lsb.
603          Result = Builder->CreateLShr(
604               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
605
606          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
607            Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
608          Result->takeName(ICI);
609          return ReplaceInstUsesWith(CI, Result);
610        }
611      }
612    }
613  }
614
615  return 0;
616}
617
618/// CanEvaluateZExtd - Determine if the specified value can be computed in the
619/// specified wider type and produce the same low bits.  If not, return false.
620///
621/// If this function returns true, it can also return a non-zero number of bits
622/// (in BitsToClear) which indicates that the value it computes is correct for
623/// the zero extend, but that the additional BitsToClear bits need to be zero'd
624/// out.  For example, to promote something like:
625///
626///   %B = trunc i64 %A to i32
627///   %C = lshr i32 %B, 8
628///   %E = zext i32 %C to i64
629///
630/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
631/// set to 8 to indicate that the promoted value needs to have bits 24-31
632/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
633/// clear the top bits anyway, doing this has no extra cost.
634///
635/// This function works on both vectors and scalars.
636static bool CanEvaluateZExtd(Value *V, const Type *Ty, unsigned &BitsToClear) {
637  BitsToClear = 0;
638  if (isa<Constant>(V))
639    return true;
640
641  Instruction *I = dyn_cast<Instruction>(V);
642  if (!I) return false;
643
644  // If the input is a truncate from the destination type, we can trivially
645  // eliminate it, even if it has multiple uses.
646  // FIXME: This is currently disabled until codegen can handle this without
647  // pessimizing code, PR5997.
648  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
649    return true;
650
651  // We can't extend or shrink something that has multiple uses: doing so would
652  // require duplicating the instruction in general, which isn't profitable.
653  if (!I->hasOneUse()) return false;
654
655  unsigned Opc = I->getOpcode(), Tmp;
656  switch (Opc) {
657  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
658  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
659  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
660    return true;
661  case Instruction::And:
662  case Instruction::Or:
663  case Instruction::Xor:
664  case Instruction::Add:
665  case Instruction::Sub:
666  case Instruction::Mul:
667  case Instruction::Shl:
668    if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
669        !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
670      return false;
671    // These can all be promoted if neither operand has 'bits to clear'.
672    if (BitsToClear == 0 && Tmp == 0)
673      return true;
674
675    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
676    // other side, BitsToClear is ok.
677    if (Tmp == 0 &&
678        (Opc == Instruction::And || Opc == Instruction::Or ||
679         Opc == Instruction::Xor)) {
680      // We use MaskedValueIsZero here for generality, but the case we care
681      // about the most is constant RHS.
682      unsigned VSize = V->getType()->getScalarSizeInBits();
683      if (MaskedValueIsZero(I->getOperand(1),
684                            APInt::getHighBitsSet(VSize, BitsToClear)))
685        return true;
686    }
687
688    // Otherwise, we don't know how to analyze this BitsToClear case yet.
689    return false;
690
691  case Instruction::LShr:
692    // We can promote lshr(x, cst) if we can promote x.  This requires the
693    // ultimate 'and' to clear out the high zero bits we're clearing out though.
694    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
695      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
696        return false;
697      BitsToClear += Amt->getZExtValue();
698      if (BitsToClear > V->getType()->getScalarSizeInBits())
699        BitsToClear = V->getType()->getScalarSizeInBits();
700      return true;
701    }
702    // Cannot promote variable LSHR.
703    return false;
704  case Instruction::Select:
705    if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
706        !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
707        // TODO: If important, we could handle the case when the BitsToClear are
708        // known zero in the disagreeing side.
709        Tmp != BitsToClear)
710      return false;
711    return true;
712
713  case Instruction::PHI: {
714    // We can change a phi if we can change all operands.  Note that we never
715    // get into trouble with cyclic PHIs here because we only consider
716    // instructions with a single use.
717    PHINode *PN = cast<PHINode>(I);
718    if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
719      return false;
720    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
721      if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
722          // TODO: If important, we could handle the case when the BitsToClear
723          // are known zero in the disagreeing input.
724          Tmp != BitsToClear)
725        return false;
726    return true;
727  }
728  default:
729    // TODO: Can handle more cases here.
730    return false;
731  }
732}
733
734Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
735  // If this zero extend is only used by a truncate, let the truncate by
736  // eliminated before we try to optimize this zext.
737  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
738    return 0;
739
740  // If one of the common conversion will work, do it.
741  if (Instruction *Result = commonCastTransforms(CI))
742    return Result;
743
744  // See if we can simplify any instructions used by the input whose sole
745  // purpose is to compute bits we don't care about.
746  if (SimplifyDemandedInstructionBits(CI))
747    return &CI;
748
749  Value *Src = CI.getOperand(0);
750  const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
751
752  // Attempt to extend the entire input expression tree to the destination
753  // type.   Only do this if the dest type is a simple type, don't convert the
754  // expression tree to something weird like i93 unless the source is also
755  // strange.
756  unsigned BitsToClear;
757  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
758      CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
759    assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
760           "Unreasonable BitsToClear");
761
762    // Okay, we can transform this!  Insert the new expression now.
763    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
764          " to avoid zero extend: " << CI);
765    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
766    assert(Res->getType() == DestTy);
767
768    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
769    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
770
771    // If the high bits are already filled with zeros, just replace this
772    // cast with the result.
773    if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
774                                                     DestBitSize-SrcBitsKept)))
775      return ReplaceInstUsesWith(CI, Res);
776
777    // We need to emit an AND to clear the high bits.
778    Constant *C = ConstantInt::get(Res->getType(),
779                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
780    return BinaryOperator::CreateAnd(Res, C);
781  }
782
783  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
784  // types and if the sizes are just right we can convert this into a logical
785  // 'and' which will be much cheaper than the pair of casts.
786  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
787    // TODO: Subsume this into EvaluateInDifferentType.
788
789    // Get the sizes of the types involved.  We know that the intermediate type
790    // will be smaller than A or C, but don't know the relation between A and C.
791    Value *A = CSrc->getOperand(0);
792    unsigned SrcSize = A->getType()->getScalarSizeInBits();
793    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
794    unsigned DstSize = CI.getType()->getScalarSizeInBits();
795    // If we're actually extending zero bits, then if
796    // SrcSize <  DstSize: zext(a & mask)
797    // SrcSize == DstSize: a & mask
798    // SrcSize  > DstSize: trunc(a) & mask
799    if (SrcSize < DstSize) {
800      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
801      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
802      Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
803      return new ZExtInst(And, CI.getType());
804    }
805
806    if (SrcSize == DstSize) {
807      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
808      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
809                                                           AndValue));
810    }
811    if (SrcSize > DstSize) {
812      Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
813      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
814      return BinaryOperator::CreateAnd(Trunc,
815                                       ConstantInt::get(Trunc->getType(),
816                                                        AndValue));
817    }
818  }
819
820  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
821    return transformZExtICmp(ICI, CI);
822
823  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
824  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
825    // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
826    // of the (zext icmp) will be transformed.
827    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
828    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
829    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
830        (transformZExtICmp(LHS, CI, false) ||
831         transformZExtICmp(RHS, CI, false))) {
832      Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
833      Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
834      return BinaryOperator::Create(Instruction::Or, LCast, RCast);
835    }
836  }
837
838  // zext(trunc(t) & C) -> (t & zext(C)).
839  if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
840    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
841      if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
842        Value *TI0 = TI->getOperand(0);
843        if (TI0->getType() == CI.getType())
844          return
845            BinaryOperator::CreateAnd(TI0,
846                                ConstantExpr::getZExt(C, CI.getType()));
847      }
848
849  // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
850  if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
851    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
852      if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
853        if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
854            And->getOperand(1) == C)
855          if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
856            Value *TI0 = TI->getOperand(0);
857            if (TI0->getType() == CI.getType()) {
858              Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
859              Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
860              return BinaryOperator::CreateXor(NewAnd, ZC);
861            }
862          }
863
864  // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
865  Value *X;
866  if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
867      match(SrcI, m_Not(m_Value(X))) &&
868      (!X->hasOneUse() || !isa<CmpInst>(X))) {
869    Value *New = Builder->CreateZExt(X, CI.getType());
870    return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
871  }
872
873  return 0;
874}
875
876/// CanEvaluateSExtd - Return true if we can take the specified value
877/// and return it as type Ty without inserting any new casts and without
878/// changing the value of the common low bits.  This is used by code that tries
879/// to promote integer operations to a wider types will allow us to eliminate
880/// the extension.
881///
882/// This function works on both vectors and scalars.
883///
884static bool CanEvaluateSExtd(Value *V, const Type *Ty) {
885  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
886         "Can't sign extend type to a smaller type");
887  // If this is a constant, it can be trivially promoted.
888  if (isa<Constant>(V))
889    return true;
890
891  Instruction *I = dyn_cast<Instruction>(V);
892  if (!I) return false;
893
894  // If this is a truncate from the dest type, we can trivially eliminate it,
895  // even if it has multiple uses.
896  // FIXME: This is currently disabled until codegen can handle this without
897  // pessimizing code, PR5997.
898  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
899    return true;
900
901  // We can't extend or shrink something that has multiple uses: doing so would
902  // require duplicating the instruction in general, which isn't profitable.
903  if (!I->hasOneUse()) return false;
904
905  switch (I->getOpcode()) {
906  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
907  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
908  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
909    return true;
910  case Instruction::And:
911  case Instruction::Or:
912  case Instruction::Xor:
913  case Instruction::Add:
914  case Instruction::Sub:
915  case Instruction::Mul:
916    // These operators can all arbitrarily be extended if their inputs can.
917    return CanEvaluateSExtd(I->getOperand(0), Ty) &&
918           CanEvaluateSExtd(I->getOperand(1), Ty);
919
920  //case Instruction::Shl:   TODO
921  //case Instruction::LShr:  TODO
922
923  case Instruction::Select:
924    return CanEvaluateSExtd(I->getOperand(1), Ty) &&
925           CanEvaluateSExtd(I->getOperand(2), Ty);
926
927  case Instruction::PHI: {
928    // We can change a phi if we can change all operands.  Note that we never
929    // get into trouble with cyclic PHIs here because we only consider
930    // instructions with a single use.
931    PHINode *PN = cast<PHINode>(I);
932    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
933      if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
934    return true;
935  }
936  default:
937    // TODO: Can handle more cases here.
938    break;
939  }
940
941  return false;
942}
943
944Instruction *InstCombiner::visitSExt(SExtInst &CI) {
945  // If this sign extend is only used by a truncate, let the truncate by
946  // eliminated before we try to optimize this zext.
947  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
948    return 0;
949
950  if (Instruction *I = commonCastTransforms(CI))
951    return I;
952
953  // See if we can simplify any instructions used by the input whose sole
954  // purpose is to compute bits we don't care about.
955  if (SimplifyDemandedInstructionBits(CI))
956    return &CI;
957
958  Value *Src = CI.getOperand(0);
959  const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
960
961  // Attempt to extend the entire input expression tree to the destination
962  // type.   Only do this if the dest type is a simple type, don't convert the
963  // expression tree to something weird like i93 unless the source is also
964  // strange.
965  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
966      CanEvaluateSExtd(Src, DestTy)) {
967    // Okay, we can transform this!  Insert the new expression now.
968    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
969          " to avoid sign extend: " << CI);
970    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
971    assert(Res->getType() == DestTy);
972
973    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
974    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
975
976    // If the high bits are already filled with sign bit, just replace this
977    // cast with the result.
978    if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
979      return ReplaceInstUsesWith(CI, Res);
980
981    // We need to emit a shl + ashr to do the sign extend.
982    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
983    return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
984                                      ShAmt);
985  }
986
987  // If this input is a trunc from our destination, then turn sext(trunc(x))
988  // into shifts.
989  if (TruncInst *TI = dyn_cast<TruncInst>(Src))
990    if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
991      uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
992      uint32_t DestBitSize = DestTy->getScalarSizeInBits();
993
994      // We need to emit a shl + ashr to do the sign extend.
995      Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
996      Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
997      return BinaryOperator::CreateAShr(Res, ShAmt);
998    }
999
1000
1001  // (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed
1002  // (x >s -1) ? -1 : 0 -> ashr x, 31  -> all ones if not signed
1003  {
1004  ICmpInst::Predicate Pred; Value *CmpLHS; ConstantInt *CmpRHS;
1005  if (match(Src, m_ICmp(Pred, m_Value(CmpLHS), m_ConstantInt(CmpRHS)))) {
1006    // sext (x <s  0) to i32 --> x>>s31       true if signbit set.
1007    // sext (x >s -1) to i32 --> (x>>s31)^-1  true if signbit clear.
1008    if ((Pred == ICmpInst::ICMP_SLT && CmpRHS->isZero()) ||
1009        (Pred == ICmpInst::ICMP_SGT && CmpRHS->isAllOnesValue())) {
1010      Value *Sh = ConstantInt::get(CmpLHS->getType(),
1011                                   CmpLHS->getType()->getScalarSizeInBits()-1);
1012      Value *In = Builder->CreateAShr(CmpLHS, Sh, CmpLHS->getName()+".lobit");
1013      if (In->getType() != CI.getType())
1014        In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/, "tmp");
1015
1016      if (Pred == ICmpInst::ICMP_SGT)
1017        In = Builder->CreateNot(In, In->getName()+".not");
1018      return ReplaceInstUsesWith(CI, In);
1019    }
1020  }
1021  }
1022
1023
1024  // If the input is a shl/ashr pair of a same constant, then this is a sign
1025  // extension from a smaller value.  If we could trust arbitrary bitwidth
1026  // integers, we could turn this into a truncate to the smaller bit and then
1027  // use a sext for the whole extension.  Since we don't, look deeper and check
1028  // for a truncate.  If the source and dest are the same type, eliminate the
1029  // trunc and extend and just do shifts.  For example, turn:
1030  //   %a = trunc i32 %i to i8
1031  //   %b = shl i8 %a, 6
1032  //   %c = ashr i8 %b, 6
1033  //   %d = sext i8 %c to i32
1034  // into:
1035  //   %a = shl i32 %i, 30
1036  //   %d = ashr i32 %a, 30
1037  Value *A = 0;
1038  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1039  ConstantInt *BA = 0, *CA = 0;
1040  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1041                        m_ConstantInt(CA))) &&
1042      BA == CA && A->getType() == CI.getType()) {
1043    unsigned MidSize = Src->getType()->getScalarSizeInBits();
1044    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1045    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1046    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1047    A = Builder->CreateShl(A, ShAmtV, CI.getName());
1048    return BinaryOperator::CreateAShr(A, ShAmtV);
1049  }
1050
1051  return 0;
1052}
1053
1054
1055/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1056/// in the specified FP type without changing its value.
1057static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1058  bool losesInfo;
1059  APFloat F = CFP->getValueAPF();
1060  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1061  if (!losesInfo)
1062    return ConstantFP::get(CFP->getContext(), F);
1063  return 0;
1064}
1065
1066/// LookThroughFPExtensions - If this is an fp extension instruction, look
1067/// through it until we get the source value.
1068static Value *LookThroughFPExtensions(Value *V) {
1069  if (Instruction *I = dyn_cast<Instruction>(V))
1070    if (I->getOpcode() == Instruction::FPExt)
1071      return LookThroughFPExtensions(I->getOperand(0));
1072
1073  // If this value is a constant, return the constant in the smallest FP type
1074  // that can accurately represent it.  This allows us to turn
1075  // (float)((double)X+2.0) into x+2.0f.
1076  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1077    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1078      return V;  // No constant folding of this.
1079    // See if the value can be truncated to float and then reextended.
1080    if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1081      return V;
1082    if (CFP->getType()->isDoubleTy())
1083      return V;  // Won't shrink.
1084    if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1085      return V;
1086    // Don't try to shrink to various long double types.
1087  }
1088
1089  return V;
1090}
1091
1092Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1093  if (Instruction *I = commonCastTransforms(CI))
1094    return I;
1095
1096  // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
1097  // smaller than the destination type, we can eliminate the truncate by doing
1098  // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
1099  // as many builtins (sqrt, etc).
1100  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1101  if (OpI && OpI->hasOneUse()) {
1102    switch (OpI->getOpcode()) {
1103    default: break;
1104    case Instruction::FAdd:
1105    case Instruction::FSub:
1106    case Instruction::FMul:
1107    case Instruction::FDiv:
1108    case Instruction::FRem:
1109      const Type *SrcTy = OpI->getType();
1110      Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
1111      Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
1112      if (LHSTrunc->getType() != SrcTy &&
1113          RHSTrunc->getType() != SrcTy) {
1114        unsigned DstSize = CI.getType()->getScalarSizeInBits();
1115        // If the source types were both smaller than the destination type of
1116        // the cast, do this xform.
1117        if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
1118            RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
1119          LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
1120          RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
1121          return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
1122        }
1123      }
1124      break;
1125    }
1126  }
1127
1128  // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
1129  // NOTE: This should be disabled by -fno-builtin-sqrt if we ever support it.
1130  CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
1131  if (Call && Call->getCalledFunction() &&
1132      Call->getCalledFunction()->getName() == "sqrt" &&
1133      Call->getNumArgOperands() == 1) {
1134    CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1135    if (Arg && Arg->getOpcode() == Instruction::FPExt &&
1136        CI.getType()->isFloatTy() &&
1137        Call->getType()->isDoubleTy() &&
1138        Arg->getType()->isDoubleTy() &&
1139        Arg->getOperand(0)->getType()->isFloatTy()) {
1140      Function *Callee = Call->getCalledFunction();
1141      Module *M = CI.getParent()->getParent()->getParent();
1142      Constant* SqrtfFunc = M->getOrInsertFunction("sqrtf",
1143                                                   Callee->getAttributes(),
1144                                                   Builder->getFloatTy(),
1145                                                   Builder->getFloatTy(),
1146                                                   NULL);
1147      CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1148                                       "sqrtfcall");
1149      ret->setAttributes(Callee->getAttributes());
1150      return ret;
1151    }
1152  }
1153
1154  return 0;
1155}
1156
1157Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1158  return commonCastTransforms(CI);
1159}
1160
1161Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1162  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1163  if (OpI == 0)
1164    return commonCastTransforms(FI);
1165
1166  // fptoui(uitofp(X)) --> X
1167  // fptoui(sitofp(X)) --> X
1168  // This is safe if the intermediate type has enough bits in its mantissa to
1169  // accurately represent all values of X.  For example, do not do this with
1170  // i64->float->i64.  This is also safe for sitofp case, because any negative
1171  // 'X' value would cause an undefined result for the fptoui.
1172  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1173      OpI->getOperand(0)->getType() == FI.getType() &&
1174      (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1175                    OpI->getType()->getFPMantissaWidth())
1176    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1177
1178  return commonCastTransforms(FI);
1179}
1180
1181Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1182  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1183  if (OpI == 0)
1184    return commonCastTransforms(FI);
1185
1186  // fptosi(sitofp(X)) --> X
1187  // fptosi(uitofp(X)) --> X
1188  // This is safe if the intermediate type has enough bits in its mantissa to
1189  // accurately represent all values of X.  For example, do not do this with
1190  // i64->float->i64.  This is also safe for sitofp case, because any negative
1191  // 'X' value would cause an undefined result for the fptoui.
1192  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1193      OpI->getOperand(0)->getType() == FI.getType() &&
1194      (int)FI.getType()->getScalarSizeInBits() <=
1195                    OpI->getType()->getFPMantissaWidth())
1196    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1197
1198  return commonCastTransforms(FI);
1199}
1200
1201Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1202  return commonCastTransforms(CI);
1203}
1204
1205Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1206  return commonCastTransforms(CI);
1207}
1208
1209Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1210  // If the source integer type is not the intptr_t type for this target, do a
1211  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1212  // cast to be exposed to other transforms.
1213  if (TD) {
1214    if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
1215        TD->getPointerSizeInBits()) {
1216      Value *P = Builder->CreateTrunc(CI.getOperand(0),
1217                                      TD->getIntPtrType(CI.getContext()), "tmp");
1218      return new IntToPtrInst(P, CI.getType());
1219    }
1220    if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
1221        TD->getPointerSizeInBits()) {
1222      Value *P = Builder->CreateZExt(CI.getOperand(0),
1223                                     TD->getIntPtrType(CI.getContext()), "tmp");
1224      return new IntToPtrInst(P, CI.getType());
1225    }
1226  }
1227
1228  if (Instruction *I = commonCastTransforms(CI))
1229    return I;
1230
1231  return 0;
1232}
1233
1234/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1235Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1236  Value *Src = CI.getOperand(0);
1237
1238  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1239    // If casting the result of a getelementptr instruction with no offset, turn
1240    // this into a cast of the original pointer!
1241    if (GEP->hasAllZeroIndices()) {
1242      // Changing the cast operand is usually not a good idea but it is safe
1243      // here because the pointer operand is being replaced with another
1244      // pointer operand so the opcode doesn't need to change.
1245      Worklist.Add(GEP);
1246      CI.setOperand(0, GEP->getOperand(0));
1247      return &CI;
1248    }
1249
1250    // If the GEP has a single use, and the base pointer is a bitcast, and the
1251    // GEP computes a constant offset, see if we can convert these three
1252    // instructions into fewer.  This typically happens with unions and other
1253    // non-type-safe code.
1254    if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1255        GEP->hasAllConstantIndices()) {
1256      // We are guaranteed to get a constant from EmitGEPOffset.
1257      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
1258      int64_t Offset = OffsetV->getSExtValue();
1259
1260      // Get the base pointer input of the bitcast, and the type it points to.
1261      Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
1262      const Type *GEPIdxTy =
1263      cast<PointerType>(OrigBase->getType())->getElementType();
1264      SmallVector<Value*, 8> NewIndices;
1265      if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
1266        // If we were able to index down into an element, create the GEP
1267        // and bitcast the result.  This eliminates one bitcast, potentially
1268        // two.
1269        Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1270        Builder->CreateInBoundsGEP(OrigBase,
1271                                   NewIndices.begin(), NewIndices.end()) :
1272        Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
1273        NGEP->takeName(GEP);
1274
1275        if (isa<BitCastInst>(CI))
1276          return new BitCastInst(NGEP, CI.getType());
1277        assert(isa<PtrToIntInst>(CI));
1278        return new PtrToIntInst(NGEP, CI.getType());
1279      }
1280    }
1281  }
1282
1283  return commonCastTransforms(CI);
1284}
1285
1286Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1287  // If the destination integer type is not the intptr_t type for this target,
1288  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1289  // to be exposed to other transforms.
1290  if (TD) {
1291    if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1292      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1293                                         TD->getIntPtrType(CI.getContext()),
1294                                         "tmp");
1295      return new TruncInst(P, CI.getType());
1296    }
1297    if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
1298      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1299                                         TD->getIntPtrType(CI.getContext()),
1300                                         "tmp");
1301      return new ZExtInst(P, CI.getType());
1302    }
1303  }
1304
1305  return commonPointerCastTransforms(CI);
1306}
1307
1308/// OptimizeVectorResize - This input value (which is known to have vector type)
1309/// is being zero extended or truncated to the specified vector type.  Try to
1310/// replace it with a shuffle (and vector/vector bitcast) if possible.
1311///
1312/// The source and destination vector types may have different element types.
1313static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy,
1314                                         InstCombiner &IC) {
1315  // We can only do this optimization if the output is a multiple of the input
1316  // element size, or the input is a multiple of the output element size.
1317  // Convert the input type to have the same element type as the output.
1318  const VectorType *SrcTy = cast<VectorType>(InVal->getType());
1319
1320  if (SrcTy->getElementType() != DestTy->getElementType()) {
1321    // The input types don't need to be identical, but for now they must be the
1322    // same size.  There is no specific reason we couldn't handle things like
1323    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1324    // there yet.
1325    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1326        DestTy->getElementType()->getPrimitiveSizeInBits())
1327      return 0;
1328
1329    SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1330    InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1331  }
1332
1333  // Now that the element types match, get the shuffle mask and RHS of the
1334  // shuffle to use, which depends on whether we're increasing or decreasing the
1335  // size of the input.
1336  SmallVector<Constant*, 16> ShuffleMask;
1337  Value *V2;
1338  const IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext());
1339
1340  if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1341    // If we're shrinking the number of elements, just shuffle in the low
1342    // elements from the input and use undef as the second shuffle input.
1343    V2 = UndefValue::get(SrcTy);
1344    for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1345      ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1346
1347  } else {
1348    // If we're increasing the number of elements, shuffle in all of the
1349    // elements from InVal and fill the rest of the result elements with zeros
1350    // from a constant zero.
1351    V2 = Constant::getNullValue(SrcTy);
1352    unsigned SrcElts = SrcTy->getNumElements();
1353    for (unsigned i = 0, e = SrcElts; i != e; ++i)
1354      ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1355
1356    // The excess elements reference the first element of the zero input.
1357    ShuffleMask.append(DestTy->getNumElements()-SrcElts,
1358                       ConstantInt::get(Int32Ty, SrcElts));
1359  }
1360
1361  Constant *Mask = ConstantVector::get(ShuffleMask.data(), ShuffleMask.size());
1362  return new ShuffleVectorInst(InVal, V2, Mask);
1363}
1364
1365static bool isMultipleOfTypeSize(unsigned Value, const Type *Ty) {
1366  return Value % Ty->getPrimitiveSizeInBits() == 0;
1367}
1368
1369static bool getTypeSizeIndex(unsigned Value, const Type *Ty) {
1370  return Value / Ty->getPrimitiveSizeInBits();
1371}
1372
1373/// CollectInsertionElements - V is a value which is inserted into a vector of
1374/// VecEltTy.  Look through the value to see if we can decompose it into
1375/// insertions into the vector.  See the example in the comment for
1376/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1377/// The type of V is always a non-zero multiple of VecEltTy's size.
1378///
1379/// This returns false if the pattern can't be matched or true if it can,
1380/// filling in Elements with the elements found here.
1381static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
1382                                     SmallVectorImpl<Value*> &Elements,
1383                                     const Type *VecEltTy) {
1384  // If we got down to a value of the right type, we win, try inserting into the
1385  // right element.
1386  if (V->getType() == VecEltTy) {
1387    // Fail if multiple elements are inserted into this slot.
1388    if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
1389      return false;
1390
1391    Elements[ElementIndex] = V;
1392    return true;
1393  }
1394
1395  //if (Constant *C = dyn_cast<Constant>(V)) {
1396    // Figure out the # elements this provides, and bitcast it or slice it up
1397    // as required.
1398  //}
1399
1400  if (!V->hasOneUse()) return false;
1401
1402  Instruction *I = dyn_cast<Instruction>(V);
1403  if (I == 0) return false;
1404  switch (I->getOpcode()) {
1405  default: return false; // Unhandled case.
1406  case Instruction::BitCast:
1407    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1408                                    Elements, VecEltTy);
1409  case Instruction::ZExt:
1410    if (!isMultipleOfTypeSize(
1411                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1412                              VecEltTy))
1413      return false;
1414    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1415                                    Elements, VecEltTy);
1416  case Instruction::Or:
1417    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1418                                    Elements, VecEltTy) &&
1419           CollectInsertionElements(I->getOperand(1), ElementIndex,
1420                                    Elements, VecEltTy);
1421  case Instruction::Shl: {
1422    // Must be shifting by a constant that is a multiple of the element size.
1423    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1424    if (CI == 0) return false;
1425    if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
1426    unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
1427
1428    return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
1429                                    Elements, VecEltTy);
1430  }
1431
1432  }
1433}
1434
1435
1436/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1437/// may be doing shifts and ors to assemble the elements of the vector manually.
1438/// Try to rip the code out and replace it with insertelements.  This is to
1439/// optimize code like this:
1440///
1441///    %tmp37 = bitcast float %inc to i32
1442///    %tmp38 = zext i32 %tmp37 to i64
1443///    %tmp31 = bitcast float %inc5 to i32
1444///    %tmp32 = zext i32 %tmp31 to i64
1445///    %tmp33 = shl i64 %tmp32, 32
1446///    %ins35 = or i64 %tmp33, %tmp38
1447///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1448///
1449/// Into two insertelements that do "buildvector{%inc, %inc5}".
1450static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1451                                                InstCombiner &IC) {
1452  const VectorType *DestVecTy = cast<VectorType>(CI.getType());
1453  Value *IntInput = CI.getOperand(0);
1454
1455  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1456  if (!CollectInsertionElements(IntInput, 0, Elements,
1457                                DestVecTy->getElementType()))
1458    return 0;
1459
1460  // If we succeeded, we know that all of the element are specified by Elements
1461  // or are zero if Elements has a null entry.  Recast this as a set of
1462  // insertions.
1463  Value *Result = Constant::getNullValue(CI.getType());
1464  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1465    if (Elements[i] == 0) continue;  // Unset element.
1466
1467    Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1468                                             IC.Builder->getInt32(i));
1469  }
1470
1471  return Result;
1472}
1473
1474
1475/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1476/// bitcast.  The various long double bitcasts can't get in here.
1477static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
1478  Value *Src = CI.getOperand(0);
1479  const Type *DestTy = CI.getType();
1480
1481  // If this is a bitcast from int to float, check to see if the int is an
1482  // extraction from a vector.
1483  Value *VecInput = 0;
1484  // bitcast(trunc(bitcast(somevector)))
1485  if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1486      isa<VectorType>(VecInput->getType())) {
1487    const VectorType *VecTy = cast<VectorType>(VecInput->getType());
1488    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1489
1490    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1491      // If the element type of the vector doesn't match the result type,
1492      // bitcast it to be a vector type we can extract from.
1493      if (VecTy->getElementType() != DestTy) {
1494        VecTy = VectorType::get(DestTy,
1495                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1496        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1497      }
1498
1499      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
1500    }
1501  }
1502
1503  // bitcast(trunc(lshr(bitcast(somevector), cst))
1504  ConstantInt *ShAmt = 0;
1505  if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1506                                m_ConstantInt(ShAmt)))) &&
1507      isa<VectorType>(VecInput->getType())) {
1508    const VectorType *VecTy = cast<VectorType>(VecInput->getType());
1509    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1510    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1511        ShAmt->getZExtValue() % DestWidth == 0) {
1512      // If the element type of the vector doesn't match the result type,
1513      // bitcast it to be a vector type we can extract from.
1514      if (VecTy->getElementType() != DestTy) {
1515        VecTy = VectorType::get(DestTy,
1516                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1517        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1518      }
1519
1520      unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1521      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1522    }
1523  }
1524  return 0;
1525}
1526
1527Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1528  // If the operands are integer typed then apply the integer transforms,
1529  // otherwise just apply the common ones.
1530  Value *Src = CI.getOperand(0);
1531  const Type *SrcTy = Src->getType();
1532  const Type *DestTy = CI.getType();
1533
1534  // Get rid of casts from one type to the same type. These are useless and can
1535  // be replaced by the operand.
1536  if (DestTy == Src->getType())
1537    return ReplaceInstUsesWith(CI, Src);
1538
1539  if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1540    const PointerType *SrcPTy = cast<PointerType>(SrcTy);
1541    const Type *DstElTy = DstPTy->getElementType();
1542    const Type *SrcElTy = SrcPTy->getElementType();
1543
1544    // If the address spaces don't match, don't eliminate the bitcast, which is
1545    // required for changing types.
1546    if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1547      return 0;
1548
1549    // If we are casting a alloca to a pointer to a type of the same
1550    // size, rewrite the allocation instruction to allocate the "right" type.
1551    // There is no need to modify malloc calls because it is their bitcast that
1552    // needs to be cleaned up.
1553    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1554      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1555        return V;
1556
1557    // If the source and destination are pointers, and this cast is equivalent
1558    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1559    // This can enhance SROA and other transforms that want type-safe pointers.
1560    Constant *ZeroUInt =
1561      Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1562    unsigned NumZeros = 0;
1563    while (SrcElTy != DstElTy &&
1564           isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1565           SrcElTy->getNumContainedTypes() /* not "{}" */) {
1566      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1567      ++NumZeros;
1568    }
1569
1570    // If we found a path from the src to dest, create the getelementptr now.
1571    if (SrcElTy == DstElTy) {
1572      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1573      return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
1574                                               ((Instruction*)NULL));
1575    }
1576  }
1577
1578  // Try to optimize int -> float bitcasts.
1579  if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1580    if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1581      return I;
1582
1583  if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1584    if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1585      Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1586      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1587                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1588      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1589    }
1590
1591    if (isa<IntegerType>(SrcTy)) {
1592      // If this is a cast from an integer to vector, check to see if the input
1593      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1594      // the casts with a shuffle and (potentially) a bitcast.
1595      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1596        CastInst *SrcCast = cast<CastInst>(Src);
1597        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1598          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1599            if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
1600                                               cast<VectorType>(DestTy), *this))
1601              return I;
1602      }
1603
1604      // If the input is an 'or' instruction, we may be doing shifts and ors to
1605      // assemble the elements of the vector manually.  Try to rip the code out
1606      // and replace it with insertelements.
1607      if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1608        return ReplaceInstUsesWith(CI, V);
1609    }
1610  }
1611
1612  if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1613    if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
1614      Value *Elem =
1615        Builder->CreateExtractElement(Src,
1616                   Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1617      return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1618    }
1619  }
1620
1621  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1622    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1623    // a bitcast to a vector with the same # elts.
1624    if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1625        cast<VectorType>(DestTy)->getNumElements() ==
1626              SVI->getType()->getNumElements() &&
1627        SVI->getType()->getNumElements() ==
1628          cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1629      BitCastInst *Tmp;
1630      // If either of the operands is a cast from CI.getType(), then
1631      // evaluating the shuffle in the casted destination's type will allow
1632      // us to eliminate at least one cast.
1633      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1634           Tmp->getOperand(0)->getType() == DestTy) ||
1635          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1636           Tmp->getOperand(0)->getType() == DestTy)) {
1637        Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1638        Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1639        // Return a new shuffle vector.  Use the same element ID's, as we
1640        // know the vector types match #elts.
1641        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1642      }
1643    }
1644  }
1645
1646  if (SrcTy->isPointerTy())
1647    return commonPointerCastTransforms(CI);
1648  return commonCastTransforms(CI);
1649}
1650