InstCombineCasts.cpp revision 75831904220042260c4faece8507a2807acba47f
1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Support/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
21/// expression.  If so, decompose it, returning some value X, such that Val is
22/// X*Scale+Offset.
23///
24static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
25                                        uint64_t &Offset) {
26  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
27    Offset = CI->getZExtValue();
28    Scale  = 0;
29    return ConstantInt::get(Val->getType(), 0);
30  }
31
32  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
33    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
34      if (I->getOpcode() == Instruction::Shl) {
35        // This is a value scaled by '1 << the shift amt'.
36        Scale = UINT64_C(1) << RHS->getZExtValue();
37        Offset = 0;
38        return I->getOperand(0);
39      }
40
41      if (I->getOpcode() == Instruction::Mul) {
42        // This value is scaled by 'RHS'.
43        Scale = RHS->getZExtValue();
44        Offset = 0;
45        return I->getOperand(0);
46      }
47
48      if (I->getOpcode() == Instruction::Add) {
49        // We have X+C.  Check to see if we really have (X*C2)+C1,
50        // where C1 is divisible by C2.
51        unsigned SubScale;
52        Value *SubVal =
53          DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
54        Offset += RHS->getZExtValue();
55        Scale = SubScale;
56        return SubVal;
57      }
58    }
59  }
60
61  // Otherwise, we can't look past this.
62  Scale = 1;
63  Offset = 0;
64  return Val;
65}
66
67/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
68/// try to eliminate the cast by moving the type information into the alloc.
69Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
70                                                   AllocaInst &AI) {
71  // This requires TargetData to get the alloca alignment and size information.
72  if (!TD) return 0;
73
74  const PointerType *PTy = cast<PointerType>(CI.getType());
75
76  BuilderTy AllocaBuilder(*Builder);
77  AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
78
79  // Get the type really allocated and the type casted to.
80  const Type *AllocElTy = AI.getAllocatedType();
81  const Type *CastElTy = PTy->getElementType();
82  if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
83
84  unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
85  unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
86  if (CastElTyAlign < AllocElTyAlign) return 0;
87
88  // If the allocation has multiple uses, only promote it if we are strictly
89  // increasing the alignment of the resultant allocation.  If we keep it the
90  // same, we open the door to infinite loops of various kinds.  (A reference
91  // from a dbg.declare doesn't count as a use for this purpose.)
92  if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
93      CastElTyAlign == AllocElTyAlign) return 0;
94
95  uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
96  uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
97  if (CastElTySize == 0 || AllocElTySize == 0) return 0;
98
99  // See if we can satisfy the modulus by pulling a scale out of the array
100  // size argument.
101  unsigned ArraySizeScale;
102  uint64_t ArrayOffset;
103  Value *NumElements = // See if the array size is a decomposable linear expr.
104    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
105
106  // If we can now satisfy the modulus, by using a non-1 scale, we really can
107  // do the xform.
108  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
109      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
110
111  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
112  Value *Amt = 0;
113  if (Scale == 1) {
114    Amt = NumElements;
115  } else {
116    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
117    // Insert before the alloca, not before the cast.
118    Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
119  }
120
121  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
122    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
123                                  Offset, true);
124    Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
125  }
126
127  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
128  New->setAlignment(AI.getAlignment());
129  New->takeName(&AI);
130
131  // If the allocation has one real use plus a dbg.declare, just remove the
132  // declare.
133  if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
134    EraseInstFromFunction(*(Instruction*)DI);
135  }
136  // If the allocation has multiple real uses, insert a cast and change all
137  // things that used it to use the new cast.  This will also hack on CI, but it
138  // will die soon.
139  else if (!AI.hasOneUse()) {
140    // New is the allocation instruction, pointer typed. AI is the original
141    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
142    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
143    AI.replaceAllUsesWith(NewCast);
144  }
145  return ReplaceInstUsesWith(CI, New);
146}
147
148
149
150/// EvaluateInDifferentType - Given an expression that
151/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
152/// insert the code to evaluate the expression.
153Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
154                                             bool isSigned) {
155  if (Constant *C = dyn_cast<Constant>(V)) {
156    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
157    // If we got a constantexpr back, try to simplify it with TD info.
158    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
159      C = ConstantFoldConstantExpression(CE, TD);
160    return C;
161  }
162
163  // Otherwise, it must be an instruction.
164  Instruction *I = cast<Instruction>(V);
165  Instruction *Res = 0;
166  unsigned Opc = I->getOpcode();
167  switch (Opc) {
168  case Instruction::Add:
169  case Instruction::Sub:
170  case Instruction::Mul:
171  case Instruction::And:
172  case Instruction::Or:
173  case Instruction::Xor:
174  case Instruction::AShr:
175  case Instruction::LShr:
176  case Instruction::Shl:
177  case Instruction::UDiv:
178  case Instruction::URem: {
179    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
180    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
181    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
182    break;
183  }
184  case Instruction::Trunc:
185  case Instruction::ZExt:
186  case Instruction::SExt:
187    // If the source type of the cast is the type we're trying for then we can
188    // just return the source.  There's no need to insert it because it is not
189    // new.
190    if (I->getOperand(0)->getType() == Ty)
191      return I->getOperand(0);
192
193    // Otherwise, must be the same type of cast, so just reinsert a new one.
194    // This also handles the case of zext(trunc(x)) -> zext(x).
195    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
196                                      Opc == Instruction::SExt);
197    break;
198  case Instruction::Select: {
199    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
200    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
201    Res = SelectInst::Create(I->getOperand(0), True, False);
202    break;
203  }
204  case Instruction::PHI: {
205    PHINode *OPN = cast<PHINode>(I);
206    PHINode *NPN = PHINode::Create(Ty);
207    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
208      Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
209      NPN->addIncoming(V, OPN->getIncomingBlock(i));
210    }
211    Res = NPN;
212    break;
213  }
214  default:
215    // TODO: Can handle more cases here.
216    llvm_unreachable("Unreachable!");
217    break;
218  }
219
220  Res->takeName(I);
221  return InsertNewInstBefore(Res, *I);
222}
223
224
225/// This function is a wrapper around CastInst::isEliminableCastPair. It
226/// simply extracts arguments and returns what that function returns.
227static Instruction::CastOps
228isEliminableCastPair(
229  const CastInst *CI, ///< The first cast instruction
230  unsigned opcode,       ///< The opcode of the second cast instruction
231  const Type *DstTy,     ///< The target type for the second cast instruction
232  TargetData *TD         ///< The target data for pointer size
233) {
234
235  const Type *SrcTy = CI->getOperand(0)->getType();   // A from above
236  const Type *MidTy = CI->getType();                  // B from above
237
238  // Get the opcodes of the two Cast instructions
239  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
240  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
241
242  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
243                                                DstTy,
244                                  TD ? TD->getIntPtrType(CI->getContext()) : 0);
245
246  // We don't want to form an inttoptr or ptrtoint that converts to an integer
247  // type that differs from the pointer size.
248  if ((Res == Instruction::IntToPtr &&
249          (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
250      (Res == Instruction::PtrToInt &&
251          (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
252    Res = 0;
253
254  return Instruction::CastOps(Res);
255}
256
257/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
258/// results in any code being generated and is interesting to optimize out. If
259/// the cast can be eliminated by some other simple transformation, we prefer
260/// to do the simplification first.
261bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
262                                      const Type *Ty) {
263  // Noop casts and casts of constants should be eliminated trivially.
264  if (V->getType() == Ty || isa<Constant>(V)) return false;
265
266  // If this is another cast that can be eliminated, we prefer to have it
267  // eliminated.
268  if (const CastInst *CI = dyn_cast<CastInst>(V))
269    if (isEliminableCastPair(CI, opc, Ty, TD))
270      return false;
271
272  // If this is a vector sext from a compare, then we don't want to break the
273  // idiom where each element of the extended vector is either zero or all ones.
274  if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
275    return false;
276
277  return true;
278}
279
280
281/// @brief Implement the transforms common to all CastInst visitors.
282Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
283  Value *Src = CI.getOperand(0);
284
285  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
286  // eliminate it now.
287  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
288    if (Instruction::CastOps opc =
289        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
290      // The first cast (CSrc) is eliminable so we need to fix up or replace
291      // the second cast (CI). CSrc will then have a good chance of being dead.
292      return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
293    }
294  }
295
296  // If we are casting a select then fold the cast into the select
297  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
298    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
299      return NV;
300
301  // If we are casting a PHI then fold the cast into the PHI
302  if (isa<PHINode>(Src)) {
303    // We don't do this if this would create a PHI node with an illegal type if
304    // it is currently legal.
305    if (!Src->getType()->isIntegerTy() ||
306        !CI.getType()->isIntegerTy() ||
307        ShouldChangeType(CI.getType(), Src->getType()))
308      if (Instruction *NV = FoldOpIntoPhi(CI))
309        return NV;
310  }
311
312  return 0;
313}
314
315/// CanEvaluateTruncated - Return true if we can evaluate the specified
316/// expression tree as type Ty instead of its larger type, and arrive with the
317/// same value.  This is used by code that tries to eliminate truncates.
318///
319/// Ty will always be a type smaller than V.  We should return true if trunc(V)
320/// can be computed by computing V in the smaller type.  If V is an instruction,
321/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
322/// makes sense if x and y can be efficiently truncated.
323///
324/// This function works on both vectors and scalars.
325///
326static bool CanEvaluateTruncated(Value *V, const Type *Ty) {
327  // We can always evaluate constants in another type.
328  if (isa<Constant>(V))
329    return true;
330
331  Instruction *I = dyn_cast<Instruction>(V);
332  if (!I) return false;
333
334  const Type *OrigTy = V->getType();
335
336  // If this is an extension from the dest type, we can eliminate it, even if it
337  // has multiple uses.
338  if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
339      I->getOperand(0)->getType() == Ty)
340    return true;
341
342  // We can't extend or shrink something that has multiple uses: doing so would
343  // require duplicating the instruction in general, which isn't profitable.
344  if (!I->hasOneUse()) return false;
345
346  unsigned Opc = I->getOpcode();
347  switch (Opc) {
348  case Instruction::Add:
349  case Instruction::Sub:
350  case Instruction::Mul:
351  case Instruction::And:
352  case Instruction::Or:
353  case Instruction::Xor:
354    // These operators can all arbitrarily be extended or truncated.
355    return CanEvaluateTruncated(I->getOperand(0), Ty) &&
356           CanEvaluateTruncated(I->getOperand(1), Ty);
357
358  case Instruction::UDiv:
359  case Instruction::URem: {
360    // UDiv and URem can be truncated if all the truncated bits are zero.
361    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
362    uint32_t BitWidth = Ty->getScalarSizeInBits();
363    if (BitWidth < OrigBitWidth) {
364      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
365      if (MaskedValueIsZero(I->getOperand(0), Mask) &&
366          MaskedValueIsZero(I->getOperand(1), Mask)) {
367        return CanEvaluateTruncated(I->getOperand(0), Ty) &&
368               CanEvaluateTruncated(I->getOperand(1), Ty);
369      }
370    }
371    break;
372  }
373  case Instruction::Shl:
374    // If we are truncating the result of this SHL, and if it's a shift of a
375    // constant amount, we can always perform a SHL in a smaller type.
376    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
377      uint32_t BitWidth = Ty->getScalarSizeInBits();
378      if (CI->getLimitedValue(BitWidth) < BitWidth)
379        return CanEvaluateTruncated(I->getOperand(0), Ty);
380    }
381    break;
382  case Instruction::LShr:
383    // If this is a truncate of a logical shr, we can truncate it to a smaller
384    // lshr iff we know that the bits we would otherwise be shifting in are
385    // already zeros.
386    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
387      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
388      uint32_t BitWidth = Ty->getScalarSizeInBits();
389      if (MaskedValueIsZero(I->getOperand(0),
390            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
391          CI->getLimitedValue(BitWidth) < BitWidth) {
392        return CanEvaluateTruncated(I->getOperand(0), Ty);
393      }
394    }
395    break;
396  case Instruction::Trunc:
397    // trunc(trunc(x)) -> trunc(x)
398    return true;
399  case Instruction::ZExt:
400  case Instruction::SExt:
401    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
402    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
403    return true;
404  case Instruction::Select: {
405    SelectInst *SI = cast<SelectInst>(I);
406    return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
407           CanEvaluateTruncated(SI->getFalseValue(), Ty);
408  }
409  case Instruction::PHI: {
410    // We can change a phi if we can change all operands.  Note that we never
411    // get into trouble with cyclic PHIs here because we only consider
412    // instructions with a single use.
413    PHINode *PN = cast<PHINode>(I);
414    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
415      if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
416        return false;
417    return true;
418  }
419  default:
420    // TODO: Can handle more cases here.
421    break;
422  }
423
424  return false;
425}
426
427Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
428  if (Instruction *Result = commonCastTransforms(CI))
429    return Result;
430
431  // See if we can simplify any instructions used by the input whose sole
432  // purpose is to compute bits we don't care about.
433  if (SimplifyDemandedInstructionBits(CI))
434    return &CI;
435
436  Value *Src = CI.getOperand(0);
437  const Type *DestTy = CI.getType(), *SrcTy = Src->getType();
438
439  // Attempt to truncate the entire input expression tree to the destination
440  // type.   Only do this if the dest type is a simple type, don't convert the
441  // expression tree to something weird like i93 unless the source is also
442  // strange.
443  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
444      CanEvaluateTruncated(Src, DestTy)) {
445
446    // If this cast is a truncate, evaluting in a different type always
447    // eliminates the cast, so it is always a win.
448    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
449          " to avoid cast: " << CI << '\n');
450    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
451    assert(Res->getType() == DestTy);
452    return ReplaceInstUsesWith(CI, Res);
453  }
454
455  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
456  if (DestTy->getScalarSizeInBits() == 1) {
457    Constant *One = ConstantInt::get(Src->getType(), 1);
458    Src = Builder->CreateAnd(Src, One, "tmp");
459    Value *Zero = Constant::getNullValue(Src->getType());
460    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
461  }
462
463  // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
464  Value *A = 0; ConstantInt *Cst = 0;
465  if (Src->hasOneUse() &&
466      match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
467    // We have three types to worry about here, the type of A, the source of
468    // the truncate (MidSize), and the destination of the truncate. We know that
469    // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
470    // between ASize and ResultSize.
471    unsigned ASize = A->getType()->getPrimitiveSizeInBits();
472
473    // If the shift amount is larger than the size of A, then the result is
474    // known to be zero because all the input bits got shifted out.
475    if (Cst->getZExtValue() >= ASize)
476      return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
477
478    // Since we're doing an lshr and a zero extend, and know that the shift
479    // amount is smaller than ASize, it is always safe to do the shift in A's
480    // type, then zero extend or truncate to the result.
481    Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
482    Shift->takeName(Src);
483    return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
484  }
485
486  // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
487  // type isn't non-native.
488  if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
489      ShouldChangeType(Src->getType(), CI.getType()) &&
490      match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
491    Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
492    return BinaryOperator::CreateAnd(NewTrunc,
493                                     ConstantExpr::getTrunc(Cst, CI.getType()));
494  }
495
496  return 0;
497}
498
499/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
500/// in order to eliminate the icmp.
501Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
502                                             bool DoXform) {
503  // If we are just checking for a icmp eq of a single bit and zext'ing it
504  // to an integer, then shift the bit to the appropriate place and then
505  // cast to integer to avoid the comparison.
506  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
507    const APInt &Op1CV = Op1C->getValue();
508
509    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
510    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
511    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
512        (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
513      if (!DoXform) return ICI;
514
515      Value *In = ICI->getOperand(0);
516      Value *Sh = ConstantInt::get(In->getType(),
517                                   In->getType()->getScalarSizeInBits()-1);
518      In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
519      if (In->getType() != CI.getType())
520        In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
521
522      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
523        Constant *One = ConstantInt::get(In->getType(), 1);
524        In = Builder->CreateXor(In, One, In->getName()+".not");
525      }
526
527      return ReplaceInstUsesWith(CI, In);
528    }
529
530
531
532    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
533    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
534    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
535    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
536    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
537    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
538    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
539    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
540    if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
541        // This only works for EQ and NE
542        ICI->isEquality()) {
543      // If Op1C some other power of two, convert:
544      uint32_t BitWidth = Op1C->getType()->getBitWidth();
545      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
546      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
547      ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
548
549      APInt KnownZeroMask(~KnownZero);
550      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
551        if (!DoXform) return ICI;
552
553        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
554        if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
555          // (X&4) == 2 --> false
556          // (X&4) != 2 --> true
557          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
558                                           isNE);
559          Res = ConstantExpr::getZExt(Res, CI.getType());
560          return ReplaceInstUsesWith(CI, Res);
561        }
562
563        uint32_t ShiftAmt = KnownZeroMask.logBase2();
564        Value *In = ICI->getOperand(0);
565        if (ShiftAmt) {
566          // Perform a logical shr by shiftamt.
567          // Insert the shift to put the result in the low bit.
568          In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
569                                   In->getName()+".lobit");
570        }
571
572        if ((Op1CV != 0) == isNE) { // Toggle the low bit.
573          Constant *One = ConstantInt::get(In->getType(), 1);
574          In = Builder->CreateXor(In, One, "tmp");
575        }
576
577        if (CI.getType() == In->getType())
578          return ReplaceInstUsesWith(CI, In);
579        return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
580      }
581    }
582  }
583
584  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
585  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
586  // may lead to additional simplifications.
587  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
588    if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
589      uint32_t BitWidth = ITy->getBitWidth();
590      Value *LHS = ICI->getOperand(0);
591      Value *RHS = ICI->getOperand(1);
592
593      APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
594      APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
595      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
596      ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
597      ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
598
599      if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
600        APInt KnownBits = KnownZeroLHS | KnownOneLHS;
601        APInt UnknownBit = ~KnownBits;
602        if (UnknownBit.countPopulation() == 1) {
603          if (!DoXform) return ICI;
604
605          Value *Result = Builder->CreateXor(LHS, RHS);
606
607          // Mask off any bits that are set and won't be shifted away.
608          if (KnownOneLHS.uge(UnknownBit))
609            Result = Builder->CreateAnd(Result,
610                                        ConstantInt::get(ITy, UnknownBit));
611
612          // Shift the bit we're testing down to the lsb.
613          Result = Builder->CreateLShr(
614               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
615
616          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
617            Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
618          Result->takeName(ICI);
619          return ReplaceInstUsesWith(CI, Result);
620        }
621      }
622    }
623  }
624
625  return 0;
626}
627
628/// CanEvaluateZExtd - Determine if the specified value can be computed in the
629/// specified wider type and produce the same low bits.  If not, return false.
630///
631/// If this function returns true, it can also return a non-zero number of bits
632/// (in BitsToClear) which indicates that the value it computes is correct for
633/// the zero extend, but that the additional BitsToClear bits need to be zero'd
634/// out.  For example, to promote something like:
635///
636///   %B = trunc i64 %A to i32
637///   %C = lshr i32 %B, 8
638///   %E = zext i32 %C to i64
639///
640/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
641/// set to 8 to indicate that the promoted value needs to have bits 24-31
642/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
643/// clear the top bits anyway, doing this has no extra cost.
644///
645/// This function works on both vectors and scalars.
646static bool CanEvaluateZExtd(Value *V, const Type *Ty, unsigned &BitsToClear) {
647  BitsToClear = 0;
648  if (isa<Constant>(V))
649    return true;
650
651  Instruction *I = dyn_cast<Instruction>(V);
652  if (!I) return false;
653
654  // If the input is a truncate from the destination type, we can trivially
655  // eliminate it, even if it has multiple uses.
656  // FIXME: This is currently disabled until codegen can handle this without
657  // pessimizing code, PR5997.
658  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
659    return true;
660
661  // We can't extend or shrink something that has multiple uses: doing so would
662  // require duplicating the instruction in general, which isn't profitable.
663  if (!I->hasOneUse()) return false;
664
665  unsigned Opc = I->getOpcode(), Tmp;
666  switch (Opc) {
667  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
668  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
669  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
670    return true;
671  case Instruction::And:
672  case Instruction::Or:
673  case Instruction::Xor:
674  case Instruction::Add:
675  case Instruction::Sub:
676  case Instruction::Mul:
677  case Instruction::Shl:
678    if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
679        !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
680      return false;
681    // These can all be promoted if neither operand has 'bits to clear'.
682    if (BitsToClear == 0 && Tmp == 0)
683      return true;
684
685    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
686    // other side, BitsToClear is ok.
687    if (Tmp == 0 &&
688        (Opc == Instruction::And || Opc == Instruction::Or ||
689         Opc == Instruction::Xor)) {
690      // We use MaskedValueIsZero here for generality, but the case we care
691      // about the most is constant RHS.
692      unsigned VSize = V->getType()->getScalarSizeInBits();
693      if (MaskedValueIsZero(I->getOperand(1),
694                            APInt::getHighBitsSet(VSize, BitsToClear)))
695        return true;
696    }
697
698    // Otherwise, we don't know how to analyze this BitsToClear case yet.
699    return false;
700
701  case Instruction::LShr:
702    // We can promote lshr(x, cst) if we can promote x.  This requires the
703    // ultimate 'and' to clear out the high zero bits we're clearing out though.
704    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
705      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
706        return false;
707      BitsToClear += Amt->getZExtValue();
708      if (BitsToClear > V->getType()->getScalarSizeInBits())
709        BitsToClear = V->getType()->getScalarSizeInBits();
710      return true;
711    }
712    // Cannot promote variable LSHR.
713    return false;
714  case Instruction::Select:
715    if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
716        !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
717        // TODO: If important, we could handle the case when the BitsToClear are
718        // known zero in the disagreeing side.
719        Tmp != BitsToClear)
720      return false;
721    return true;
722
723  case Instruction::PHI: {
724    // We can change a phi if we can change all operands.  Note that we never
725    // get into trouble with cyclic PHIs here because we only consider
726    // instructions with a single use.
727    PHINode *PN = cast<PHINode>(I);
728    if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
729      return false;
730    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
731      if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
732          // TODO: If important, we could handle the case when the BitsToClear
733          // are known zero in the disagreeing input.
734          Tmp != BitsToClear)
735        return false;
736    return true;
737  }
738  default:
739    // TODO: Can handle more cases here.
740    return false;
741  }
742}
743
744Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
745  // If this zero extend is only used by a truncate, let the truncate by
746  // eliminated before we try to optimize this zext.
747  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
748    return 0;
749
750  // If one of the common conversion will work, do it.
751  if (Instruction *Result = commonCastTransforms(CI))
752    return Result;
753
754  // See if we can simplify any instructions used by the input whose sole
755  // purpose is to compute bits we don't care about.
756  if (SimplifyDemandedInstructionBits(CI))
757    return &CI;
758
759  Value *Src = CI.getOperand(0);
760  const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
761
762  // Attempt to extend the entire input expression tree to the destination
763  // type.   Only do this if the dest type is a simple type, don't convert the
764  // expression tree to something weird like i93 unless the source is also
765  // strange.
766  unsigned BitsToClear;
767  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
768      CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
769    assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
770           "Unreasonable BitsToClear");
771
772    // Okay, we can transform this!  Insert the new expression now.
773    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
774          " to avoid zero extend: " << CI);
775    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
776    assert(Res->getType() == DestTy);
777
778    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
779    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
780
781    // If the high bits are already filled with zeros, just replace this
782    // cast with the result.
783    if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
784                                                     DestBitSize-SrcBitsKept)))
785      return ReplaceInstUsesWith(CI, Res);
786
787    // We need to emit an AND to clear the high bits.
788    Constant *C = ConstantInt::get(Res->getType(),
789                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
790    return BinaryOperator::CreateAnd(Res, C);
791  }
792
793  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
794  // types and if the sizes are just right we can convert this into a logical
795  // 'and' which will be much cheaper than the pair of casts.
796  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
797    // TODO: Subsume this into EvaluateInDifferentType.
798
799    // Get the sizes of the types involved.  We know that the intermediate type
800    // will be smaller than A or C, but don't know the relation between A and C.
801    Value *A = CSrc->getOperand(0);
802    unsigned SrcSize = A->getType()->getScalarSizeInBits();
803    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
804    unsigned DstSize = CI.getType()->getScalarSizeInBits();
805    // If we're actually extending zero bits, then if
806    // SrcSize <  DstSize: zext(a & mask)
807    // SrcSize == DstSize: a & mask
808    // SrcSize  > DstSize: trunc(a) & mask
809    if (SrcSize < DstSize) {
810      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
811      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
812      Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
813      return new ZExtInst(And, CI.getType());
814    }
815
816    if (SrcSize == DstSize) {
817      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
818      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
819                                                           AndValue));
820    }
821    if (SrcSize > DstSize) {
822      Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
823      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
824      return BinaryOperator::CreateAnd(Trunc,
825                                       ConstantInt::get(Trunc->getType(),
826                                                        AndValue));
827    }
828  }
829
830  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
831    return transformZExtICmp(ICI, CI);
832
833  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
834  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
835    // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
836    // of the (zext icmp) will be transformed.
837    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
838    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
839    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
840        (transformZExtICmp(LHS, CI, false) ||
841         transformZExtICmp(RHS, CI, false))) {
842      Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
843      Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
844      return BinaryOperator::Create(Instruction::Or, LCast, RCast);
845    }
846  }
847
848  // zext(trunc(t) & C) -> (t & zext(C)).
849  if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
850    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
851      if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
852        Value *TI0 = TI->getOperand(0);
853        if (TI0->getType() == CI.getType())
854          return
855            BinaryOperator::CreateAnd(TI0,
856                                ConstantExpr::getZExt(C, CI.getType()));
857      }
858
859  // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
860  if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
861    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
862      if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
863        if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
864            And->getOperand(1) == C)
865          if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
866            Value *TI0 = TI->getOperand(0);
867            if (TI0->getType() == CI.getType()) {
868              Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
869              Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
870              return BinaryOperator::CreateXor(NewAnd, ZC);
871            }
872          }
873
874  // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
875  Value *X;
876  if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
877      match(SrcI, m_Not(m_Value(X))) &&
878      (!X->hasOneUse() || !isa<CmpInst>(X))) {
879    Value *New = Builder->CreateZExt(X, CI.getType());
880    return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
881  }
882
883  return 0;
884}
885
886/// CanEvaluateSExtd - Return true if we can take the specified value
887/// and return it as type Ty without inserting any new casts and without
888/// changing the value of the common low bits.  This is used by code that tries
889/// to promote integer operations to a wider types will allow us to eliminate
890/// the extension.
891///
892/// This function works on both vectors and scalars.
893///
894static bool CanEvaluateSExtd(Value *V, const Type *Ty) {
895  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
896         "Can't sign extend type to a smaller type");
897  // If this is a constant, it can be trivially promoted.
898  if (isa<Constant>(V))
899    return true;
900
901  Instruction *I = dyn_cast<Instruction>(V);
902  if (!I) return false;
903
904  // If this is a truncate from the dest type, we can trivially eliminate it,
905  // even if it has multiple uses.
906  // FIXME: This is currently disabled until codegen can handle this without
907  // pessimizing code, PR5997.
908  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
909    return true;
910
911  // We can't extend or shrink something that has multiple uses: doing so would
912  // require duplicating the instruction in general, which isn't profitable.
913  if (!I->hasOneUse()) return false;
914
915  switch (I->getOpcode()) {
916  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
917  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
918  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
919    return true;
920  case Instruction::And:
921  case Instruction::Or:
922  case Instruction::Xor:
923  case Instruction::Add:
924  case Instruction::Sub:
925  case Instruction::Mul:
926    // These operators can all arbitrarily be extended if their inputs can.
927    return CanEvaluateSExtd(I->getOperand(0), Ty) &&
928           CanEvaluateSExtd(I->getOperand(1), Ty);
929
930  //case Instruction::Shl:   TODO
931  //case Instruction::LShr:  TODO
932
933  case Instruction::Select:
934    return CanEvaluateSExtd(I->getOperand(1), Ty) &&
935           CanEvaluateSExtd(I->getOperand(2), Ty);
936
937  case Instruction::PHI: {
938    // We can change a phi if we can change all operands.  Note that we never
939    // get into trouble with cyclic PHIs here because we only consider
940    // instructions with a single use.
941    PHINode *PN = cast<PHINode>(I);
942    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
943      if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
944    return true;
945  }
946  default:
947    // TODO: Can handle more cases here.
948    break;
949  }
950
951  return false;
952}
953
954Instruction *InstCombiner::visitSExt(SExtInst &CI) {
955  // If this sign extend is only used by a truncate, let the truncate by
956  // eliminated before we try to optimize this zext.
957  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
958    return 0;
959
960  if (Instruction *I = commonCastTransforms(CI))
961    return I;
962
963  // See if we can simplify any instructions used by the input whose sole
964  // purpose is to compute bits we don't care about.
965  if (SimplifyDemandedInstructionBits(CI))
966    return &CI;
967
968  Value *Src = CI.getOperand(0);
969  const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
970
971  // Attempt to extend the entire input expression tree to the destination
972  // type.   Only do this if the dest type is a simple type, don't convert the
973  // expression tree to something weird like i93 unless the source is also
974  // strange.
975  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
976      CanEvaluateSExtd(Src, DestTy)) {
977    // Okay, we can transform this!  Insert the new expression now.
978    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
979          " to avoid sign extend: " << CI);
980    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
981    assert(Res->getType() == DestTy);
982
983    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
984    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
985
986    // If the high bits are already filled with sign bit, just replace this
987    // cast with the result.
988    if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
989      return ReplaceInstUsesWith(CI, Res);
990
991    // We need to emit a shl + ashr to do the sign extend.
992    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
993    return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
994                                      ShAmt);
995  }
996
997  // If this input is a trunc from our destination, then turn sext(trunc(x))
998  // into shifts.
999  if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1000    if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1001      uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1002      uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1003
1004      // We need to emit a shl + ashr to do the sign extend.
1005      Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1006      Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1007      return BinaryOperator::CreateAShr(Res, ShAmt);
1008    }
1009
1010
1011  // (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed
1012  // (x >s -1) ? -1 : 0 -> ashr x, 31  -> all ones if not signed
1013  {
1014  ICmpInst::Predicate Pred; Value *CmpLHS; ConstantInt *CmpRHS;
1015  if (match(Src, m_ICmp(Pred, m_Value(CmpLHS), m_ConstantInt(CmpRHS)))) {
1016    // sext (x <s  0) to i32 --> x>>s31       true if signbit set.
1017    // sext (x >s -1) to i32 --> (x>>s31)^-1  true if signbit clear.
1018    if ((Pred == ICmpInst::ICMP_SLT && CmpRHS->isZero()) ||
1019        (Pred == ICmpInst::ICMP_SGT && CmpRHS->isAllOnesValue())) {
1020      Value *Sh = ConstantInt::get(CmpLHS->getType(),
1021                                   CmpLHS->getType()->getScalarSizeInBits()-1);
1022      Value *In = Builder->CreateAShr(CmpLHS, Sh, CmpLHS->getName()+".lobit");
1023      if (In->getType() != CI.getType())
1024        In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/, "tmp");
1025
1026      if (Pred == ICmpInst::ICMP_SGT)
1027        In = Builder->CreateNot(In, In->getName()+".not");
1028      return ReplaceInstUsesWith(CI, In);
1029    }
1030  }
1031  }
1032
1033  // vector (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed.
1034  if (const VectorType *VTy = dyn_cast<VectorType>(DestTy)) {
1035    ICmpInst::Predicate Pred; Value *CmpLHS;
1036    if (match(Src, m_ICmp(Pred, m_Value(CmpLHS), m_Zero()))) {
1037      if (Pred == ICmpInst::ICMP_SLT && CmpLHS->getType() == DestTy) {
1038        const Type *EltTy = VTy->getElementType();
1039
1040        // splat the shift constant to a cosntant vector
1041        Constant *Sh = ConstantInt::get(EltTy, EltTy->getScalarSizeInBits()-1);
1042        std::vector<Constant *> Elts(VTy->getNumElements(), Sh);
1043        Constant *VSh = ConstantVector::get(Elts);
1044
1045        Value *In = Builder->CreateAShr(CmpLHS, VSh,CmpLHS->getName()+".lobit");
1046        return ReplaceInstUsesWith(CI, In);
1047      }
1048    }
1049  }
1050
1051  // If the input is a shl/ashr pair of a same constant, then this is a sign
1052  // extension from a smaller value.  If we could trust arbitrary bitwidth
1053  // integers, we could turn this into a truncate to the smaller bit and then
1054  // use a sext for the whole extension.  Since we don't, look deeper and check
1055  // for a truncate.  If the source and dest are the same type, eliminate the
1056  // trunc and extend and just do shifts.  For example, turn:
1057  //   %a = trunc i32 %i to i8
1058  //   %b = shl i8 %a, 6
1059  //   %c = ashr i8 %b, 6
1060  //   %d = sext i8 %c to i32
1061  // into:
1062  //   %a = shl i32 %i, 30
1063  //   %d = ashr i32 %a, 30
1064  Value *A = 0;
1065  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1066  ConstantInt *BA = 0, *CA = 0;
1067  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1068                        m_ConstantInt(CA))) &&
1069      BA == CA && A->getType() == CI.getType()) {
1070    unsigned MidSize = Src->getType()->getScalarSizeInBits();
1071    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1072    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1073    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1074    A = Builder->CreateShl(A, ShAmtV, CI.getName());
1075    return BinaryOperator::CreateAShr(A, ShAmtV);
1076  }
1077
1078  return 0;
1079}
1080
1081
1082/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1083/// in the specified FP type without changing its value.
1084static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1085  bool losesInfo;
1086  APFloat F = CFP->getValueAPF();
1087  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1088  if (!losesInfo)
1089    return ConstantFP::get(CFP->getContext(), F);
1090  return 0;
1091}
1092
1093/// LookThroughFPExtensions - If this is an fp extension instruction, look
1094/// through it until we get the source value.
1095static Value *LookThroughFPExtensions(Value *V) {
1096  if (Instruction *I = dyn_cast<Instruction>(V))
1097    if (I->getOpcode() == Instruction::FPExt)
1098      return LookThroughFPExtensions(I->getOperand(0));
1099
1100  // If this value is a constant, return the constant in the smallest FP type
1101  // that can accurately represent it.  This allows us to turn
1102  // (float)((double)X+2.0) into x+2.0f.
1103  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1104    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1105      return V;  // No constant folding of this.
1106    // See if the value can be truncated to float and then reextended.
1107    if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1108      return V;
1109    if (CFP->getType()->isDoubleTy())
1110      return V;  // Won't shrink.
1111    if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1112      return V;
1113    // Don't try to shrink to various long double types.
1114  }
1115
1116  return V;
1117}
1118
1119Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1120  if (Instruction *I = commonCastTransforms(CI))
1121    return I;
1122
1123  // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
1124  // smaller than the destination type, we can eliminate the truncate by doing
1125  // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
1126  // as many builtins (sqrt, etc).
1127  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1128  if (OpI && OpI->hasOneUse()) {
1129    switch (OpI->getOpcode()) {
1130    default: break;
1131    case Instruction::FAdd:
1132    case Instruction::FSub:
1133    case Instruction::FMul:
1134    case Instruction::FDiv:
1135    case Instruction::FRem:
1136      const Type *SrcTy = OpI->getType();
1137      Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
1138      Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
1139      if (LHSTrunc->getType() != SrcTy &&
1140          RHSTrunc->getType() != SrcTy) {
1141        unsigned DstSize = CI.getType()->getScalarSizeInBits();
1142        // If the source types were both smaller than the destination type of
1143        // the cast, do this xform.
1144        if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
1145            RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
1146          LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
1147          RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
1148          return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
1149        }
1150      }
1151      break;
1152    }
1153  }
1154
1155  // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
1156  // NOTE: This should be disabled by -fno-builtin-sqrt if we ever support it.
1157  CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
1158  if (Call && Call->getCalledFunction() &&
1159      Call->getCalledFunction()->getName() == "sqrt" &&
1160      Call->getNumArgOperands() == 1) {
1161    CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1162    if (Arg && Arg->getOpcode() == Instruction::FPExt &&
1163        CI.getType()->isFloatTy() &&
1164        Call->getType()->isDoubleTy() &&
1165        Arg->getType()->isDoubleTy() &&
1166        Arg->getOperand(0)->getType()->isFloatTy()) {
1167      Function *Callee = Call->getCalledFunction();
1168      Module *M = CI.getParent()->getParent()->getParent();
1169      Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
1170                                                   Callee->getAttributes(),
1171                                                   Builder->getFloatTy(),
1172                                                   Builder->getFloatTy(),
1173                                                   NULL);
1174      CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1175                                       "sqrtfcall");
1176      ret->setAttributes(Callee->getAttributes());
1177
1178
1179      // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
1180      Call->replaceAllUsesWith(UndefValue::get(Call->getType()));
1181      EraseInstFromFunction(*Call);
1182      return ret;
1183    }
1184  }
1185
1186  return 0;
1187}
1188
1189Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1190  return commonCastTransforms(CI);
1191}
1192
1193Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1194  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1195  if (OpI == 0)
1196    return commonCastTransforms(FI);
1197
1198  // fptoui(uitofp(X)) --> X
1199  // fptoui(sitofp(X)) --> X
1200  // This is safe if the intermediate type has enough bits in its mantissa to
1201  // accurately represent all values of X.  For example, do not do this with
1202  // i64->float->i64.  This is also safe for sitofp case, because any negative
1203  // 'X' value would cause an undefined result for the fptoui.
1204  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1205      OpI->getOperand(0)->getType() == FI.getType() &&
1206      (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1207                    OpI->getType()->getFPMantissaWidth())
1208    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1209
1210  return commonCastTransforms(FI);
1211}
1212
1213Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1214  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1215  if (OpI == 0)
1216    return commonCastTransforms(FI);
1217
1218  // fptosi(sitofp(X)) --> X
1219  // fptosi(uitofp(X)) --> X
1220  // This is safe if the intermediate type has enough bits in its mantissa to
1221  // accurately represent all values of X.  For example, do not do this with
1222  // i64->float->i64.  This is also safe for sitofp case, because any negative
1223  // 'X' value would cause an undefined result for the fptoui.
1224  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1225      OpI->getOperand(0)->getType() == FI.getType() &&
1226      (int)FI.getType()->getScalarSizeInBits() <=
1227                    OpI->getType()->getFPMantissaWidth())
1228    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1229
1230  return commonCastTransforms(FI);
1231}
1232
1233Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1234  return commonCastTransforms(CI);
1235}
1236
1237Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1238  return commonCastTransforms(CI);
1239}
1240
1241Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1242  // If the source integer type is not the intptr_t type for this target, do a
1243  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1244  // cast to be exposed to other transforms.
1245  if (TD) {
1246    if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
1247        TD->getPointerSizeInBits()) {
1248      Value *P = Builder->CreateTrunc(CI.getOperand(0),
1249                                      TD->getIntPtrType(CI.getContext()), "tmp");
1250      return new IntToPtrInst(P, CI.getType());
1251    }
1252    if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
1253        TD->getPointerSizeInBits()) {
1254      Value *P = Builder->CreateZExt(CI.getOperand(0),
1255                                     TD->getIntPtrType(CI.getContext()), "tmp");
1256      return new IntToPtrInst(P, CI.getType());
1257    }
1258  }
1259
1260  if (Instruction *I = commonCastTransforms(CI))
1261    return I;
1262
1263  return 0;
1264}
1265
1266/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1267Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1268  Value *Src = CI.getOperand(0);
1269
1270  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1271    // If casting the result of a getelementptr instruction with no offset, turn
1272    // this into a cast of the original pointer!
1273    if (GEP->hasAllZeroIndices()) {
1274      // Changing the cast operand is usually not a good idea but it is safe
1275      // here because the pointer operand is being replaced with another
1276      // pointer operand so the opcode doesn't need to change.
1277      Worklist.Add(GEP);
1278      CI.setOperand(0, GEP->getOperand(0));
1279      return &CI;
1280    }
1281
1282    // If the GEP has a single use, and the base pointer is a bitcast, and the
1283    // GEP computes a constant offset, see if we can convert these three
1284    // instructions into fewer.  This typically happens with unions and other
1285    // non-type-safe code.
1286    if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1287        GEP->hasAllConstantIndices()) {
1288      // We are guaranteed to get a constant from EmitGEPOffset.
1289      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
1290      int64_t Offset = OffsetV->getSExtValue();
1291
1292      // Get the base pointer input of the bitcast, and the type it points to.
1293      Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
1294      const Type *GEPIdxTy =
1295      cast<PointerType>(OrigBase->getType())->getElementType();
1296      SmallVector<Value*, 8> NewIndices;
1297      if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
1298        // If we were able to index down into an element, create the GEP
1299        // and bitcast the result.  This eliminates one bitcast, potentially
1300        // two.
1301        Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1302        Builder->CreateInBoundsGEP(OrigBase,
1303                                   NewIndices.begin(), NewIndices.end()) :
1304        Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
1305        NGEP->takeName(GEP);
1306
1307        if (isa<BitCastInst>(CI))
1308          return new BitCastInst(NGEP, CI.getType());
1309        assert(isa<PtrToIntInst>(CI));
1310        return new PtrToIntInst(NGEP, CI.getType());
1311      }
1312    }
1313  }
1314
1315  return commonCastTransforms(CI);
1316}
1317
1318Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1319  // If the destination integer type is not the intptr_t type for this target,
1320  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1321  // to be exposed to other transforms.
1322  if (TD) {
1323    if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1324      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1325                                         TD->getIntPtrType(CI.getContext()),
1326                                         "tmp");
1327      return new TruncInst(P, CI.getType());
1328    }
1329    if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
1330      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1331                                         TD->getIntPtrType(CI.getContext()),
1332                                         "tmp");
1333      return new ZExtInst(P, CI.getType());
1334    }
1335  }
1336
1337  return commonPointerCastTransforms(CI);
1338}
1339
1340/// OptimizeVectorResize - This input value (which is known to have vector type)
1341/// is being zero extended or truncated to the specified vector type.  Try to
1342/// replace it with a shuffle (and vector/vector bitcast) if possible.
1343///
1344/// The source and destination vector types may have different element types.
1345static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy,
1346                                         InstCombiner &IC) {
1347  // We can only do this optimization if the output is a multiple of the input
1348  // element size, or the input is a multiple of the output element size.
1349  // Convert the input type to have the same element type as the output.
1350  const VectorType *SrcTy = cast<VectorType>(InVal->getType());
1351
1352  if (SrcTy->getElementType() != DestTy->getElementType()) {
1353    // The input types don't need to be identical, but for now they must be the
1354    // same size.  There is no specific reason we couldn't handle things like
1355    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1356    // there yet.
1357    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1358        DestTy->getElementType()->getPrimitiveSizeInBits())
1359      return 0;
1360
1361    SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1362    InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1363  }
1364
1365  // Now that the element types match, get the shuffle mask and RHS of the
1366  // shuffle to use, which depends on whether we're increasing or decreasing the
1367  // size of the input.
1368  SmallVector<Constant*, 16> ShuffleMask;
1369  Value *V2;
1370  const IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext());
1371
1372  if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1373    // If we're shrinking the number of elements, just shuffle in the low
1374    // elements from the input and use undef as the second shuffle input.
1375    V2 = UndefValue::get(SrcTy);
1376    for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1377      ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1378
1379  } else {
1380    // If we're increasing the number of elements, shuffle in all of the
1381    // elements from InVal and fill the rest of the result elements with zeros
1382    // from a constant zero.
1383    V2 = Constant::getNullValue(SrcTy);
1384    unsigned SrcElts = SrcTy->getNumElements();
1385    for (unsigned i = 0, e = SrcElts; i != e; ++i)
1386      ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1387
1388    // The excess elements reference the first element of the zero input.
1389    ShuffleMask.append(DestTy->getNumElements()-SrcElts,
1390                       ConstantInt::get(Int32Ty, SrcElts));
1391  }
1392
1393  Constant *Mask = ConstantVector::get(ShuffleMask.data(), ShuffleMask.size());
1394  return new ShuffleVectorInst(InVal, V2, Mask);
1395}
1396
1397static bool isMultipleOfTypeSize(unsigned Value, const Type *Ty) {
1398  return Value % Ty->getPrimitiveSizeInBits() == 0;
1399}
1400
1401static unsigned getTypeSizeIndex(unsigned Value, const Type *Ty) {
1402  return Value / Ty->getPrimitiveSizeInBits();
1403}
1404
1405/// CollectInsertionElements - V is a value which is inserted into a vector of
1406/// VecEltTy.  Look through the value to see if we can decompose it into
1407/// insertions into the vector.  See the example in the comment for
1408/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1409/// The type of V is always a non-zero multiple of VecEltTy's size.
1410///
1411/// This returns false if the pattern can't be matched or true if it can,
1412/// filling in Elements with the elements found here.
1413static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
1414                                     SmallVectorImpl<Value*> &Elements,
1415                                     const Type *VecEltTy) {
1416  // Undef values never contribute useful bits to the result.
1417  if (isa<UndefValue>(V)) return true;
1418
1419  // If we got down to a value of the right type, we win, try inserting into the
1420  // right element.
1421  if (V->getType() == VecEltTy) {
1422    // Inserting null doesn't actually insert any elements.
1423    if (Constant *C = dyn_cast<Constant>(V))
1424      if (C->isNullValue())
1425        return true;
1426
1427    // Fail if multiple elements are inserted into this slot.
1428    if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
1429      return false;
1430
1431    Elements[ElementIndex] = V;
1432    return true;
1433  }
1434
1435  if (Constant *C = dyn_cast<Constant>(V)) {
1436    // Figure out the # elements this provides, and bitcast it or slice it up
1437    // as required.
1438    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1439                                        VecEltTy);
1440    // If the constant is the size of a vector element, we just need to bitcast
1441    // it to the right type so it gets properly inserted.
1442    if (NumElts == 1)
1443      return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1444                                      ElementIndex, Elements, VecEltTy);
1445
1446    // Okay, this is a constant that covers multiple elements.  Slice it up into
1447    // pieces and insert each element-sized piece into the vector.
1448    if (!isa<IntegerType>(C->getType()))
1449      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1450                                       C->getType()->getPrimitiveSizeInBits()));
1451    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1452    const Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1453
1454    for (unsigned i = 0; i != NumElts; ++i) {
1455      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1456                                                               i*ElementSize));
1457      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1458      if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
1459        return false;
1460    }
1461    return true;
1462  }
1463
1464  if (!V->hasOneUse()) return false;
1465
1466  Instruction *I = dyn_cast<Instruction>(V);
1467  if (I == 0) return false;
1468  switch (I->getOpcode()) {
1469  default: return false; // Unhandled case.
1470  case Instruction::BitCast:
1471    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1472                                    Elements, VecEltTy);
1473  case Instruction::ZExt:
1474    if (!isMultipleOfTypeSize(
1475                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1476                              VecEltTy))
1477      return false;
1478    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1479                                    Elements, VecEltTy);
1480  case Instruction::Or:
1481    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1482                                    Elements, VecEltTy) &&
1483           CollectInsertionElements(I->getOperand(1), ElementIndex,
1484                                    Elements, VecEltTy);
1485  case Instruction::Shl: {
1486    // Must be shifting by a constant that is a multiple of the element size.
1487    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1488    if (CI == 0) return false;
1489    if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
1490    unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
1491
1492    return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
1493                                    Elements, VecEltTy);
1494  }
1495
1496  }
1497}
1498
1499
1500/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1501/// may be doing shifts and ors to assemble the elements of the vector manually.
1502/// Try to rip the code out and replace it with insertelements.  This is to
1503/// optimize code like this:
1504///
1505///    %tmp37 = bitcast float %inc to i32
1506///    %tmp38 = zext i32 %tmp37 to i64
1507///    %tmp31 = bitcast float %inc5 to i32
1508///    %tmp32 = zext i32 %tmp31 to i64
1509///    %tmp33 = shl i64 %tmp32, 32
1510///    %ins35 = or i64 %tmp33, %tmp38
1511///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1512///
1513/// Into two insertelements that do "buildvector{%inc, %inc5}".
1514static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1515                                                InstCombiner &IC) {
1516  const VectorType *DestVecTy = cast<VectorType>(CI.getType());
1517  Value *IntInput = CI.getOperand(0);
1518
1519  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1520  if (!CollectInsertionElements(IntInput, 0, Elements,
1521                                DestVecTy->getElementType()))
1522    return 0;
1523
1524  // If we succeeded, we know that all of the element are specified by Elements
1525  // or are zero if Elements has a null entry.  Recast this as a set of
1526  // insertions.
1527  Value *Result = Constant::getNullValue(CI.getType());
1528  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1529    if (Elements[i] == 0) continue;  // Unset element.
1530
1531    Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1532                                             IC.Builder->getInt32(i));
1533  }
1534
1535  return Result;
1536}
1537
1538
1539/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1540/// bitcast.  The various long double bitcasts can't get in here.
1541static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
1542  Value *Src = CI.getOperand(0);
1543  const Type *DestTy = CI.getType();
1544
1545  // If this is a bitcast from int to float, check to see if the int is an
1546  // extraction from a vector.
1547  Value *VecInput = 0;
1548  // bitcast(trunc(bitcast(somevector)))
1549  if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1550      isa<VectorType>(VecInput->getType())) {
1551    const VectorType *VecTy = cast<VectorType>(VecInput->getType());
1552    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1553
1554    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1555      // If the element type of the vector doesn't match the result type,
1556      // bitcast it to be a vector type we can extract from.
1557      if (VecTy->getElementType() != DestTy) {
1558        VecTy = VectorType::get(DestTy,
1559                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1560        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1561      }
1562
1563      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
1564    }
1565  }
1566
1567  // bitcast(trunc(lshr(bitcast(somevector), cst))
1568  ConstantInt *ShAmt = 0;
1569  if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1570                                m_ConstantInt(ShAmt)))) &&
1571      isa<VectorType>(VecInput->getType())) {
1572    const VectorType *VecTy = cast<VectorType>(VecInput->getType());
1573    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1574    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1575        ShAmt->getZExtValue() % DestWidth == 0) {
1576      // If the element type of the vector doesn't match the result type,
1577      // bitcast it to be a vector type we can extract from.
1578      if (VecTy->getElementType() != DestTy) {
1579        VecTy = VectorType::get(DestTy,
1580                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1581        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1582      }
1583
1584      unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1585      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1586    }
1587  }
1588  return 0;
1589}
1590
1591Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1592  // If the operands are integer typed then apply the integer transforms,
1593  // otherwise just apply the common ones.
1594  Value *Src = CI.getOperand(0);
1595  const Type *SrcTy = Src->getType();
1596  const Type *DestTy = CI.getType();
1597
1598  // Get rid of casts from one type to the same type. These are useless and can
1599  // be replaced by the operand.
1600  if (DestTy == Src->getType())
1601    return ReplaceInstUsesWith(CI, Src);
1602
1603  if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1604    const PointerType *SrcPTy = cast<PointerType>(SrcTy);
1605    const Type *DstElTy = DstPTy->getElementType();
1606    const Type *SrcElTy = SrcPTy->getElementType();
1607
1608    // If the address spaces don't match, don't eliminate the bitcast, which is
1609    // required for changing types.
1610    if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1611      return 0;
1612
1613    // If we are casting a alloca to a pointer to a type of the same
1614    // size, rewrite the allocation instruction to allocate the "right" type.
1615    // There is no need to modify malloc calls because it is their bitcast that
1616    // needs to be cleaned up.
1617    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1618      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1619        return V;
1620
1621    // If the source and destination are pointers, and this cast is equivalent
1622    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1623    // This can enhance SROA and other transforms that want type-safe pointers.
1624    Constant *ZeroUInt =
1625      Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1626    unsigned NumZeros = 0;
1627    while (SrcElTy != DstElTy &&
1628           isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1629           SrcElTy->getNumContainedTypes() /* not "{}" */) {
1630      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1631      ++NumZeros;
1632    }
1633
1634    // If we found a path from the src to dest, create the getelementptr now.
1635    if (SrcElTy == DstElTy) {
1636      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1637      return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
1638                                               ((Instruction*)NULL));
1639    }
1640  }
1641
1642  // Try to optimize int -> float bitcasts.
1643  if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1644    if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1645      return I;
1646
1647  if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1648    if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1649      Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1650      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1651                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1652      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1653    }
1654
1655    if (isa<IntegerType>(SrcTy)) {
1656      // If this is a cast from an integer to vector, check to see if the input
1657      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1658      // the casts with a shuffle and (potentially) a bitcast.
1659      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1660        CastInst *SrcCast = cast<CastInst>(Src);
1661        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1662          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1663            if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
1664                                               cast<VectorType>(DestTy), *this))
1665              return I;
1666      }
1667
1668      // If the input is an 'or' instruction, we may be doing shifts and ors to
1669      // assemble the elements of the vector manually.  Try to rip the code out
1670      // and replace it with insertelements.
1671      if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1672        return ReplaceInstUsesWith(CI, V);
1673    }
1674  }
1675
1676  if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1677    if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
1678      Value *Elem =
1679        Builder->CreateExtractElement(Src,
1680                   Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1681      return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1682    }
1683  }
1684
1685  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1686    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1687    // a bitcast to a vector with the same # elts.
1688    if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1689        cast<VectorType>(DestTy)->getNumElements() ==
1690              SVI->getType()->getNumElements() &&
1691        SVI->getType()->getNumElements() ==
1692          cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1693      BitCastInst *Tmp;
1694      // If either of the operands is a cast from CI.getType(), then
1695      // evaluating the shuffle in the casted destination's type will allow
1696      // us to eliminate at least one cast.
1697      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1698           Tmp->getOperand(0)->getType() == DestTy) ||
1699          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1700           Tmp->getOperand(0)->getType() == DestTy)) {
1701        Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1702        Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1703        // Return a new shuffle vector.  Use the same element ID's, as we
1704        // know the vector types match #elts.
1705        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1706      }
1707    }
1708  }
1709
1710  if (SrcTy->isPointerTy())
1711    return commonPointerCastTransforms(CI);
1712  return commonCastTransforms(CI);
1713}
1714