InstCombineCasts.cpp revision aa76e9e2cf50af190de90bc778b7f7e42ef9ceff
1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/DataLayout.h"
17#include "llvm/Target/TargetLibraryInfo.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
23/// expression.  If so, decompose it, returning some value X, such that Val is
24/// X*Scale+Offset.
25///
26static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
27                                        uint64_t &Offset) {
28  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
29    Offset = CI->getZExtValue();
30    Scale  = 0;
31    return ConstantInt::get(Val->getType(), 0);
32  }
33
34  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
35    // Cannot look past anything that might overflow.
36    OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
37    if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
38      Scale = 1;
39      Offset = 0;
40      return Val;
41    }
42
43    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
44      if (I->getOpcode() == Instruction::Shl) {
45        // This is a value scaled by '1 << the shift amt'.
46        Scale = UINT64_C(1) << RHS->getZExtValue();
47        Offset = 0;
48        return I->getOperand(0);
49      }
50
51      if (I->getOpcode() == Instruction::Mul) {
52        // This value is scaled by 'RHS'.
53        Scale = RHS->getZExtValue();
54        Offset = 0;
55        return I->getOperand(0);
56      }
57
58      if (I->getOpcode() == Instruction::Add) {
59        // We have X+C.  Check to see if we really have (X*C2)+C1,
60        // where C1 is divisible by C2.
61        unsigned SubScale;
62        Value *SubVal =
63          DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
64        Offset += RHS->getZExtValue();
65        Scale = SubScale;
66        return SubVal;
67      }
68    }
69  }
70
71  // Otherwise, we can't look past this.
72  Scale = 1;
73  Offset = 0;
74  return Val;
75}
76
77/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
78/// try to eliminate the cast by moving the type information into the alloc.
79Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
80                                                   AllocaInst &AI) {
81  // This requires DataLayout to get the alloca alignment and size information.
82  if (!TD) return 0;
83
84  PointerType *PTy = cast<PointerType>(CI.getType());
85
86  BuilderTy AllocaBuilder(*Builder);
87  AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
88
89  // Get the type really allocated and the type casted to.
90  Type *AllocElTy = AI.getAllocatedType();
91  Type *CastElTy = PTy->getElementType();
92  if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
93
94  unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
95  unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
96  if (CastElTyAlign < AllocElTyAlign) return 0;
97
98  // If the allocation has multiple uses, only promote it if we are strictly
99  // increasing the alignment of the resultant allocation.  If we keep it the
100  // same, we open the door to infinite loops of various kinds.
101  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
102
103  uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
104  uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
105  if (CastElTySize == 0 || AllocElTySize == 0) return 0;
106
107  // See if we can satisfy the modulus by pulling a scale out of the array
108  // size argument.
109  unsigned ArraySizeScale;
110  uint64_t ArrayOffset;
111  Value *NumElements = // See if the array size is a decomposable linear expr.
112    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
113
114  // If we can now satisfy the modulus, by using a non-1 scale, we really can
115  // do the xform.
116  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
117      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
118
119  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
120  Value *Amt = 0;
121  if (Scale == 1) {
122    Amt = NumElements;
123  } else {
124    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
125    // Insert before the alloca, not before the cast.
126    Amt = AllocaBuilder.CreateMul(Amt, NumElements);
127  }
128
129  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
130    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
131                                  Offset, true);
132    Amt = AllocaBuilder.CreateAdd(Amt, Off);
133  }
134
135  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
136  New->setAlignment(AI.getAlignment());
137  New->takeName(&AI);
138
139  // If the allocation has multiple real uses, insert a cast and change all
140  // things that used it to use the new cast.  This will also hack on CI, but it
141  // will die soon.
142  if (!AI.hasOneUse()) {
143    // New is the allocation instruction, pointer typed. AI is the original
144    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
145    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
146    ReplaceInstUsesWith(AI, NewCast);
147  }
148  return ReplaceInstUsesWith(CI, New);
149}
150
151/// EvaluateInDifferentType - Given an expression that
152/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
153/// insert the code to evaluate the expression.
154Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
155                                             bool isSigned) {
156  if (Constant *C = dyn_cast<Constant>(V)) {
157    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
158    // If we got a constantexpr back, try to simplify it with TD info.
159    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
160      C = ConstantFoldConstantExpression(CE, TD, TLI);
161    return C;
162  }
163
164  // Otherwise, it must be an instruction.
165  Instruction *I = cast<Instruction>(V);
166  Instruction *Res = 0;
167  unsigned Opc = I->getOpcode();
168  switch (Opc) {
169  case Instruction::Add:
170  case Instruction::Sub:
171  case Instruction::Mul:
172  case Instruction::And:
173  case Instruction::Or:
174  case Instruction::Xor:
175  case Instruction::AShr:
176  case Instruction::LShr:
177  case Instruction::Shl:
178  case Instruction::UDiv:
179  case Instruction::URem: {
180    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
181    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
182    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
183    break;
184  }
185  case Instruction::Trunc:
186  case Instruction::ZExt:
187  case Instruction::SExt:
188    // If the source type of the cast is the type we're trying for then we can
189    // just return the source.  There's no need to insert it because it is not
190    // new.
191    if (I->getOperand(0)->getType() == Ty)
192      return I->getOperand(0);
193
194    // Otherwise, must be the same type of cast, so just reinsert a new one.
195    // This also handles the case of zext(trunc(x)) -> zext(x).
196    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
197                                      Opc == Instruction::SExt);
198    break;
199  case Instruction::Select: {
200    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
201    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
202    Res = SelectInst::Create(I->getOperand(0), True, False);
203    break;
204  }
205  case Instruction::PHI: {
206    PHINode *OPN = cast<PHINode>(I);
207    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
208    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
209      Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
210      NPN->addIncoming(V, OPN->getIncomingBlock(i));
211    }
212    Res = NPN;
213    break;
214  }
215  default:
216    // TODO: Can handle more cases here.
217    llvm_unreachable("Unreachable!");
218  }
219
220  Res->takeName(I);
221  return InsertNewInstWith(Res, *I);
222}
223
224
225/// This function is a wrapper around CastInst::isEliminableCastPair. It
226/// simply extracts arguments and returns what that function returns.
227static Instruction::CastOps
228isEliminableCastPair(
229  const CastInst *CI, ///< The first cast instruction
230  unsigned opcode,       ///< The opcode of the second cast instruction
231  Type *DstTy,     ///< The target type for the second cast instruction
232  DataLayout *TD         ///< The target data for pointer size
233) {
234
235  Type *SrcTy = CI->getOperand(0)->getType();   // A from above
236  Type *MidTy = CI->getType();                  // B from above
237
238  // Get the opcodes of the two Cast instructions
239  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
240  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
241  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
242                                                DstTy,
243                                  TD ? TD->getIntPtrType(DstTy) : 0);
244
245  // We don't want to form an inttoptr or ptrtoint that converts to an integer
246  // type that differs from the pointer size.
247  if ((Res == Instruction::IntToPtr &&
248          (!TD || SrcTy != TD->getIntPtrType(DstTy))) ||
249      (Res == Instruction::PtrToInt &&
250          (!TD || DstTy != TD->getIntPtrType(SrcTy))))
251    Res = 0;
252
253  return Instruction::CastOps(Res);
254}
255
256/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
257/// results in any code being generated and is interesting to optimize out. If
258/// the cast can be eliminated by some other simple transformation, we prefer
259/// to do the simplification first.
260bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
261                                      Type *Ty) {
262  // Noop casts and casts of constants should be eliminated trivially.
263  if (V->getType() == Ty || isa<Constant>(V)) return false;
264
265  // If this is another cast that can be eliminated, we prefer to have it
266  // eliminated.
267  if (const CastInst *CI = dyn_cast<CastInst>(V))
268    if (isEliminableCastPair(CI, opc, Ty, TD))
269      return false;
270
271  // If this is a vector sext from a compare, then we don't want to break the
272  // idiom where each element of the extended vector is either zero or all ones.
273  if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
274    return false;
275
276  return true;
277}
278
279
280/// @brief Implement the transforms common to all CastInst visitors.
281Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
282  Value *Src = CI.getOperand(0);
283
284  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
285  // eliminate it now.
286  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
287    if (Instruction::CastOps opc =
288        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
289      // The first cast (CSrc) is eliminable so we need to fix up or replace
290      // the second cast (CI). CSrc will then have a good chance of being dead.
291      return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
292    }
293  }
294
295  // If we are casting a select then fold the cast into the select
296  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
297    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
298      return NV;
299
300  // If we are casting a PHI then fold the cast into the PHI
301  if (isa<PHINode>(Src)) {
302    // We don't do this if this would create a PHI node with an illegal type if
303    // it is currently legal.
304    if (!Src->getType()->isIntegerTy() ||
305        !CI.getType()->isIntegerTy() ||
306        ShouldChangeType(CI.getType(), Src->getType()))
307      if (Instruction *NV = FoldOpIntoPhi(CI))
308        return NV;
309  }
310
311  return 0;
312}
313
314/// CanEvaluateTruncated - Return true if we can evaluate the specified
315/// expression tree as type Ty instead of its larger type, and arrive with the
316/// same value.  This is used by code that tries to eliminate truncates.
317///
318/// Ty will always be a type smaller than V.  We should return true if trunc(V)
319/// can be computed by computing V in the smaller type.  If V is an instruction,
320/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
321/// makes sense if x and y can be efficiently truncated.
322///
323/// This function works on both vectors and scalars.
324///
325static bool CanEvaluateTruncated(Value *V, Type *Ty) {
326  // We can always evaluate constants in another type.
327  if (isa<Constant>(V))
328    return true;
329
330  Instruction *I = dyn_cast<Instruction>(V);
331  if (!I) return false;
332
333  Type *OrigTy = V->getType();
334
335  // If this is an extension from the dest type, we can eliminate it, even if it
336  // has multiple uses.
337  if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
338      I->getOperand(0)->getType() == Ty)
339    return true;
340
341  // We can't extend or shrink something that has multiple uses: doing so would
342  // require duplicating the instruction in general, which isn't profitable.
343  if (!I->hasOneUse()) return false;
344
345  unsigned Opc = I->getOpcode();
346  switch (Opc) {
347  case Instruction::Add:
348  case Instruction::Sub:
349  case Instruction::Mul:
350  case Instruction::And:
351  case Instruction::Or:
352  case Instruction::Xor:
353    // These operators can all arbitrarily be extended or truncated.
354    return CanEvaluateTruncated(I->getOperand(0), Ty) &&
355           CanEvaluateTruncated(I->getOperand(1), Ty);
356
357  case Instruction::UDiv:
358  case Instruction::URem: {
359    // UDiv and URem can be truncated if all the truncated bits are zero.
360    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
361    uint32_t BitWidth = Ty->getScalarSizeInBits();
362    if (BitWidth < OrigBitWidth) {
363      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
364      if (MaskedValueIsZero(I->getOperand(0), Mask) &&
365          MaskedValueIsZero(I->getOperand(1), Mask)) {
366        return CanEvaluateTruncated(I->getOperand(0), Ty) &&
367               CanEvaluateTruncated(I->getOperand(1), Ty);
368      }
369    }
370    break;
371  }
372  case Instruction::Shl:
373    // If we are truncating the result of this SHL, and if it's a shift of a
374    // constant amount, we can always perform a SHL in a smaller type.
375    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
376      uint32_t BitWidth = Ty->getScalarSizeInBits();
377      if (CI->getLimitedValue(BitWidth) < BitWidth)
378        return CanEvaluateTruncated(I->getOperand(0), Ty);
379    }
380    break;
381  case Instruction::LShr:
382    // If this is a truncate of a logical shr, we can truncate it to a smaller
383    // lshr iff we know that the bits we would otherwise be shifting in are
384    // already zeros.
385    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
386      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
387      uint32_t BitWidth = Ty->getScalarSizeInBits();
388      if (MaskedValueIsZero(I->getOperand(0),
389            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
390          CI->getLimitedValue(BitWidth) < BitWidth) {
391        return CanEvaluateTruncated(I->getOperand(0), Ty);
392      }
393    }
394    break;
395  case Instruction::Trunc:
396    // trunc(trunc(x)) -> trunc(x)
397    return true;
398  case Instruction::ZExt:
399  case Instruction::SExt:
400    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
401    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
402    return true;
403  case Instruction::Select: {
404    SelectInst *SI = cast<SelectInst>(I);
405    return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
406           CanEvaluateTruncated(SI->getFalseValue(), Ty);
407  }
408  case Instruction::PHI: {
409    // We can change a phi if we can change all operands.  Note that we never
410    // get into trouble with cyclic PHIs here because we only consider
411    // instructions with a single use.
412    PHINode *PN = cast<PHINode>(I);
413    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
414      if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
415        return false;
416    return true;
417  }
418  default:
419    // TODO: Can handle more cases here.
420    break;
421  }
422
423  return false;
424}
425
426Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
427  if (Instruction *Result = commonCastTransforms(CI))
428    return Result;
429
430  // See if we can simplify any instructions used by the input whose sole
431  // purpose is to compute bits we don't care about.
432  if (SimplifyDemandedInstructionBits(CI))
433    return &CI;
434
435  Value *Src = CI.getOperand(0);
436  Type *DestTy = CI.getType(), *SrcTy = Src->getType();
437
438  // Attempt to truncate the entire input expression tree to the destination
439  // type.   Only do this if the dest type is a simple type, don't convert the
440  // expression tree to something weird like i93 unless the source is also
441  // strange.
442  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
443      CanEvaluateTruncated(Src, DestTy)) {
444
445    // If this cast is a truncate, evaluting in a different type always
446    // eliminates the cast, so it is always a win.
447    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
448          " to avoid cast: " << CI << '\n');
449    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
450    assert(Res->getType() == DestTy);
451    return ReplaceInstUsesWith(CI, Res);
452  }
453
454  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
455  if (DestTy->getScalarSizeInBits() == 1) {
456    Constant *One = ConstantInt::get(Src->getType(), 1);
457    Src = Builder->CreateAnd(Src, One);
458    Value *Zero = Constant::getNullValue(Src->getType());
459    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
460  }
461
462  // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
463  Value *A = 0; ConstantInt *Cst = 0;
464  if (Src->hasOneUse() &&
465      match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
466    // We have three types to worry about here, the type of A, the source of
467    // the truncate (MidSize), and the destination of the truncate. We know that
468    // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
469    // between ASize and ResultSize.
470    unsigned ASize = A->getType()->getPrimitiveSizeInBits();
471
472    // If the shift amount is larger than the size of A, then the result is
473    // known to be zero because all the input bits got shifted out.
474    if (Cst->getZExtValue() >= ASize)
475      return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
476
477    // Since we're doing an lshr and a zero extend, and know that the shift
478    // amount is smaller than ASize, it is always safe to do the shift in A's
479    // type, then zero extend or truncate to the result.
480    Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
481    Shift->takeName(Src);
482    return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
483  }
484
485  // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
486  // type isn't non-native.
487  if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
488      ShouldChangeType(Src->getType(), CI.getType()) &&
489      match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
490    Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
491    return BinaryOperator::CreateAnd(NewTrunc,
492                                     ConstantExpr::getTrunc(Cst, CI.getType()));
493  }
494
495  return 0;
496}
497
498/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
499/// in order to eliminate the icmp.
500Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
501                                             bool DoXform) {
502  // If we are just checking for a icmp eq of a single bit and zext'ing it
503  // to an integer, then shift the bit to the appropriate place and then
504  // cast to integer to avoid the comparison.
505  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
506    const APInt &Op1CV = Op1C->getValue();
507
508    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
509    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
510    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
511        (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
512      if (!DoXform) return ICI;
513
514      Value *In = ICI->getOperand(0);
515      Value *Sh = ConstantInt::get(In->getType(),
516                                   In->getType()->getScalarSizeInBits()-1);
517      In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
518      if (In->getType() != CI.getType())
519        In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
520
521      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
522        Constant *One = ConstantInt::get(In->getType(), 1);
523        In = Builder->CreateXor(In, One, In->getName()+".not");
524      }
525
526      return ReplaceInstUsesWith(CI, In);
527    }
528
529    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
530    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
531    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
532    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
533    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
534    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
535    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
536    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
537    if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
538        // This only works for EQ and NE
539        ICI->isEquality()) {
540      // If Op1C some other power of two, convert:
541      uint32_t BitWidth = Op1C->getType()->getBitWidth();
542      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
543      ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
544
545      APInt KnownZeroMask(~KnownZero);
546      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
547        if (!DoXform) return ICI;
548
549        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
550        if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
551          // (X&4) == 2 --> false
552          // (X&4) != 2 --> true
553          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
554                                           isNE);
555          Res = ConstantExpr::getZExt(Res, CI.getType());
556          return ReplaceInstUsesWith(CI, Res);
557        }
558
559        uint32_t ShiftAmt = KnownZeroMask.logBase2();
560        Value *In = ICI->getOperand(0);
561        if (ShiftAmt) {
562          // Perform a logical shr by shiftamt.
563          // Insert the shift to put the result in the low bit.
564          In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
565                                   In->getName()+".lobit");
566        }
567
568        if ((Op1CV != 0) == isNE) { // Toggle the low bit.
569          Constant *One = ConstantInt::get(In->getType(), 1);
570          In = Builder->CreateXor(In, One);
571        }
572
573        if (CI.getType() == In->getType())
574          return ReplaceInstUsesWith(CI, In);
575        return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
576      }
577    }
578  }
579
580  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
581  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
582  // may lead to additional simplifications.
583  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
584    if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
585      uint32_t BitWidth = ITy->getBitWidth();
586      Value *LHS = ICI->getOperand(0);
587      Value *RHS = ICI->getOperand(1);
588
589      APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
590      APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
591      ComputeMaskedBits(LHS, KnownZeroLHS, KnownOneLHS);
592      ComputeMaskedBits(RHS, KnownZeroRHS, KnownOneRHS);
593
594      if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
595        APInt KnownBits = KnownZeroLHS | KnownOneLHS;
596        APInt UnknownBit = ~KnownBits;
597        if (UnknownBit.countPopulation() == 1) {
598          if (!DoXform) return ICI;
599
600          Value *Result = Builder->CreateXor(LHS, RHS);
601
602          // Mask off any bits that are set and won't be shifted away.
603          if (KnownOneLHS.uge(UnknownBit))
604            Result = Builder->CreateAnd(Result,
605                                        ConstantInt::get(ITy, UnknownBit));
606
607          // Shift the bit we're testing down to the lsb.
608          Result = Builder->CreateLShr(
609               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
610
611          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
612            Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
613          Result->takeName(ICI);
614          return ReplaceInstUsesWith(CI, Result);
615        }
616      }
617    }
618  }
619
620  return 0;
621}
622
623/// CanEvaluateZExtd - Determine if the specified value can be computed in the
624/// specified wider type and produce the same low bits.  If not, return false.
625///
626/// If this function returns true, it can also return a non-zero number of bits
627/// (in BitsToClear) which indicates that the value it computes is correct for
628/// the zero extend, but that the additional BitsToClear bits need to be zero'd
629/// out.  For example, to promote something like:
630///
631///   %B = trunc i64 %A to i32
632///   %C = lshr i32 %B, 8
633///   %E = zext i32 %C to i64
634///
635/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
636/// set to 8 to indicate that the promoted value needs to have bits 24-31
637/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
638/// clear the top bits anyway, doing this has no extra cost.
639///
640/// This function works on both vectors and scalars.
641static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
642  BitsToClear = 0;
643  if (isa<Constant>(V))
644    return true;
645
646  Instruction *I = dyn_cast<Instruction>(V);
647  if (!I) return false;
648
649  // If the input is a truncate from the destination type, we can trivially
650  // eliminate it.
651  if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
652    return true;
653
654  // We can't extend or shrink something that has multiple uses: doing so would
655  // require duplicating the instruction in general, which isn't profitable.
656  if (!I->hasOneUse()) return false;
657
658  unsigned Opc = I->getOpcode(), Tmp;
659  switch (Opc) {
660  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
661  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
662  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
663    return true;
664  case Instruction::And:
665  case Instruction::Or:
666  case Instruction::Xor:
667  case Instruction::Add:
668  case Instruction::Sub:
669  case Instruction::Mul:
670  case Instruction::Shl:
671    if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
672        !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
673      return false;
674    // These can all be promoted if neither operand has 'bits to clear'.
675    if (BitsToClear == 0 && Tmp == 0)
676      return true;
677
678    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
679    // other side, BitsToClear is ok.
680    if (Tmp == 0 &&
681        (Opc == Instruction::And || Opc == Instruction::Or ||
682         Opc == Instruction::Xor)) {
683      // We use MaskedValueIsZero here for generality, but the case we care
684      // about the most is constant RHS.
685      unsigned VSize = V->getType()->getScalarSizeInBits();
686      if (MaskedValueIsZero(I->getOperand(1),
687                            APInt::getHighBitsSet(VSize, BitsToClear)))
688        return true;
689    }
690
691    // Otherwise, we don't know how to analyze this BitsToClear case yet.
692    return false;
693
694  case Instruction::LShr:
695    // We can promote lshr(x, cst) if we can promote x.  This requires the
696    // ultimate 'and' to clear out the high zero bits we're clearing out though.
697    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
698      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
699        return false;
700      BitsToClear += Amt->getZExtValue();
701      if (BitsToClear > V->getType()->getScalarSizeInBits())
702        BitsToClear = V->getType()->getScalarSizeInBits();
703      return true;
704    }
705    // Cannot promote variable LSHR.
706    return false;
707  case Instruction::Select:
708    if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
709        !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
710        // TODO: If important, we could handle the case when the BitsToClear are
711        // known zero in the disagreeing side.
712        Tmp != BitsToClear)
713      return false;
714    return true;
715
716  case Instruction::PHI: {
717    // We can change a phi if we can change all operands.  Note that we never
718    // get into trouble with cyclic PHIs here because we only consider
719    // instructions with a single use.
720    PHINode *PN = cast<PHINode>(I);
721    if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
722      return false;
723    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
724      if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
725          // TODO: If important, we could handle the case when the BitsToClear
726          // are known zero in the disagreeing input.
727          Tmp != BitsToClear)
728        return false;
729    return true;
730  }
731  default:
732    // TODO: Can handle more cases here.
733    return false;
734  }
735}
736
737Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
738  // If this zero extend is only used by a truncate, let the truncate by
739  // eliminated before we try to optimize this zext.
740  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
741    return 0;
742
743  // If one of the common conversion will work, do it.
744  if (Instruction *Result = commonCastTransforms(CI))
745    return Result;
746
747  // See if we can simplify any instructions used by the input whose sole
748  // purpose is to compute bits we don't care about.
749  if (SimplifyDemandedInstructionBits(CI))
750    return &CI;
751
752  Value *Src = CI.getOperand(0);
753  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
754
755  // Attempt to extend the entire input expression tree to the destination
756  // type.   Only do this if the dest type is a simple type, don't convert the
757  // expression tree to something weird like i93 unless the source is also
758  // strange.
759  unsigned BitsToClear;
760  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
761      CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
762    assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
763           "Unreasonable BitsToClear");
764
765    // Okay, we can transform this!  Insert the new expression now.
766    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
767          " to avoid zero extend: " << CI);
768    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
769    assert(Res->getType() == DestTy);
770
771    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
772    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
773
774    // If the high bits are already filled with zeros, just replace this
775    // cast with the result.
776    if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
777                                                     DestBitSize-SrcBitsKept)))
778      return ReplaceInstUsesWith(CI, Res);
779
780    // We need to emit an AND to clear the high bits.
781    Constant *C = ConstantInt::get(Res->getType(),
782                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
783    return BinaryOperator::CreateAnd(Res, C);
784  }
785
786  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
787  // types and if the sizes are just right we can convert this into a logical
788  // 'and' which will be much cheaper than the pair of casts.
789  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
790    // TODO: Subsume this into EvaluateInDifferentType.
791
792    // Get the sizes of the types involved.  We know that the intermediate type
793    // will be smaller than A or C, but don't know the relation between A and C.
794    Value *A = CSrc->getOperand(0);
795    unsigned SrcSize = A->getType()->getScalarSizeInBits();
796    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
797    unsigned DstSize = CI.getType()->getScalarSizeInBits();
798    // If we're actually extending zero bits, then if
799    // SrcSize <  DstSize: zext(a & mask)
800    // SrcSize == DstSize: a & mask
801    // SrcSize  > DstSize: trunc(a) & mask
802    if (SrcSize < DstSize) {
803      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
804      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
805      Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
806      return new ZExtInst(And, CI.getType());
807    }
808
809    if (SrcSize == DstSize) {
810      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
811      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
812                                                           AndValue));
813    }
814    if (SrcSize > DstSize) {
815      Value *Trunc = Builder->CreateTrunc(A, CI.getType());
816      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
817      return BinaryOperator::CreateAnd(Trunc,
818                                       ConstantInt::get(Trunc->getType(),
819                                                        AndValue));
820    }
821  }
822
823  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
824    return transformZExtICmp(ICI, CI);
825
826  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
827  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
828    // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
829    // of the (zext icmp) will be transformed.
830    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
831    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
832    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
833        (transformZExtICmp(LHS, CI, false) ||
834         transformZExtICmp(RHS, CI, false))) {
835      Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
836      Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
837      return BinaryOperator::Create(Instruction::Or, LCast, RCast);
838    }
839  }
840
841  // zext(trunc(t) & C) -> (t & zext(C)).
842  if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
843    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
844      if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
845        Value *TI0 = TI->getOperand(0);
846        if (TI0->getType() == CI.getType())
847          return
848            BinaryOperator::CreateAnd(TI0,
849                                ConstantExpr::getZExt(C, CI.getType()));
850      }
851
852  // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
853  if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
854    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
855      if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
856        if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
857            And->getOperand(1) == C)
858          if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
859            Value *TI0 = TI->getOperand(0);
860            if (TI0->getType() == CI.getType()) {
861              Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
862              Value *NewAnd = Builder->CreateAnd(TI0, ZC);
863              return BinaryOperator::CreateXor(NewAnd, ZC);
864            }
865          }
866
867  // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
868  Value *X;
869  if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
870      match(SrcI, m_Not(m_Value(X))) &&
871      (!X->hasOneUse() || !isa<CmpInst>(X))) {
872    Value *New = Builder->CreateZExt(X, CI.getType());
873    return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
874  }
875
876  return 0;
877}
878
879/// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
880/// in order to eliminate the icmp.
881Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
882  Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
883  ICmpInst::Predicate Pred = ICI->getPredicate();
884
885  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
886    // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
887    // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
888    if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) ||
889        (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
890
891      Value *Sh = ConstantInt::get(Op0->getType(),
892                                   Op0->getType()->getScalarSizeInBits()-1);
893      Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
894      if (In->getType() != CI.getType())
895        In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
896
897      if (Pred == ICmpInst::ICMP_SGT)
898        In = Builder->CreateNot(In, In->getName()+".not");
899      return ReplaceInstUsesWith(CI, In);
900    }
901
902    // If we know that only one bit of the LHS of the icmp can be set and we
903    // have an equality comparison with zero or a power of 2, we can transform
904    // the icmp and sext into bitwise/integer operations.
905    if (ICI->hasOneUse() &&
906        ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
907      unsigned BitWidth = Op1C->getType()->getBitWidth();
908      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
909      ComputeMaskedBits(Op0, KnownZero, KnownOne);
910
911      APInt KnownZeroMask(~KnownZero);
912      if (KnownZeroMask.isPowerOf2()) {
913        Value *In = ICI->getOperand(0);
914
915        // If the icmp tests for a known zero bit we can constant fold it.
916        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
917          Value *V = Pred == ICmpInst::ICMP_NE ?
918                       ConstantInt::getAllOnesValue(CI.getType()) :
919                       ConstantInt::getNullValue(CI.getType());
920          return ReplaceInstUsesWith(CI, V);
921        }
922
923        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
924          // sext ((x & 2^n) == 0)   -> (x >> n) - 1
925          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
926          unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
927          // Perform a right shift to place the desired bit in the LSB.
928          if (ShiftAmt)
929            In = Builder->CreateLShr(In,
930                                     ConstantInt::get(In->getType(), ShiftAmt));
931
932          // At this point "In" is either 1 or 0. Subtract 1 to turn
933          // {1, 0} -> {0, -1}.
934          In = Builder->CreateAdd(In,
935                                  ConstantInt::getAllOnesValue(In->getType()),
936                                  "sext");
937        } else {
938          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
939          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
940          unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
941          // Perform a left shift to place the desired bit in the MSB.
942          if (ShiftAmt)
943            In = Builder->CreateShl(In,
944                                    ConstantInt::get(In->getType(), ShiftAmt));
945
946          // Distribute the bit over the whole bit width.
947          In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
948                                                        BitWidth - 1), "sext");
949        }
950
951        if (CI.getType() == In->getType())
952          return ReplaceInstUsesWith(CI, In);
953        return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
954      }
955    }
956  }
957
958  // vector (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed.
959  if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
960    if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
961        Op0->getType() == CI.getType()) {
962      Type *EltTy = VTy->getElementType();
963
964      // splat the shift constant to a constant vector.
965      Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
966      Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit");
967      return ReplaceInstUsesWith(CI, In);
968    }
969  }
970
971  return 0;
972}
973
974/// CanEvaluateSExtd - Return true if we can take the specified value
975/// and return it as type Ty without inserting any new casts and without
976/// changing the value of the common low bits.  This is used by code that tries
977/// to promote integer operations to a wider types will allow us to eliminate
978/// the extension.
979///
980/// This function works on both vectors and scalars.
981///
982static bool CanEvaluateSExtd(Value *V, Type *Ty) {
983  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
984         "Can't sign extend type to a smaller type");
985  // If this is a constant, it can be trivially promoted.
986  if (isa<Constant>(V))
987    return true;
988
989  Instruction *I = dyn_cast<Instruction>(V);
990  if (!I) return false;
991
992  // If this is a truncate from the dest type, we can trivially eliminate it.
993  if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
994    return true;
995
996  // We can't extend or shrink something that has multiple uses: doing so would
997  // require duplicating the instruction in general, which isn't profitable.
998  if (!I->hasOneUse()) return false;
999
1000  switch (I->getOpcode()) {
1001  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1002  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1003  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1004    return true;
1005  case Instruction::And:
1006  case Instruction::Or:
1007  case Instruction::Xor:
1008  case Instruction::Add:
1009  case Instruction::Sub:
1010  case Instruction::Mul:
1011    // These operators can all arbitrarily be extended if their inputs can.
1012    return CanEvaluateSExtd(I->getOperand(0), Ty) &&
1013           CanEvaluateSExtd(I->getOperand(1), Ty);
1014
1015  //case Instruction::Shl:   TODO
1016  //case Instruction::LShr:  TODO
1017
1018  case Instruction::Select:
1019    return CanEvaluateSExtd(I->getOperand(1), Ty) &&
1020           CanEvaluateSExtd(I->getOperand(2), Ty);
1021
1022  case Instruction::PHI: {
1023    // We can change a phi if we can change all operands.  Note that we never
1024    // get into trouble with cyclic PHIs here because we only consider
1025    // instructions with a single use.
1026    PHINode *PN = cast<PHINode>(I);
1027    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1028      if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
1029    return true;
1030  }
1031  default:
1032    // TODO: Can handle more cases here.
1033    break;
1034  }
1035
1036  return false;
1037}
1038
1039Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1040  // If this sign extend is only used by a truncate, let the truncate by
1041  // eliminated before we try to optimize this zext.
1042  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
1043    return 0;
1044
1045  if (Instruction *I = commonCastTransforms(CI))
1046    return I;
1047
1048  // See if we can simplify any instructions used by the input whose sole
1049  // purpose is to compute bits we don't care about.
1050  if (SimplifyDemandedInstructionBits(CI))
1051    return &CI;
1052
1053  Value *Src = CI.getOperand(0);
1054  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1055
1056  // Attempt to extend the entire input expression tree to the destination
1057  // type.   Only do this if the dest type is a simple type, don't convert the
1058  // expression tree to something weird like i93 unless the source is also
1059  // strange.
1060  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1061      CanEvaluateSExtd(Src, DestTy)) {
1062    // Okay, we can transform this!  Insert the new expression now.
1063    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1064          " to avoid sign extend: " << CI);
1065    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1066    assert(Res->getType() == DestTy);
1067
1068    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1069    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1070
1071    // If the high bits are already filled with sign bit, just replace this
1072    // cast with the result.
1073    if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
1074      return ReplaceInstUsesWith(CI, Res);
1075
1076    // We need to emit a shl + ashr to do the sign extend.
1077    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1078    return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1079                                      ShAmt);
1080  }
1081
1082  // If this input is a trunc from our destination, then turn sext(trunc(x))
1083  // into shifts.
1084  if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1085    if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1086      uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1087      uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1088
1089      // We need to emit a shl + ashr to do the sign extend.
1090      Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1091      Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1092      return BinaryOperator::CreateAShr(Res, ShAmt);
1093    }
1094
1095  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1096    return transformSExtICmp(ICI, CI);
1097
1098  // If the input is a shl/ashr pair of a same constant, then this is a sign
1099  // extension from a smaller value.  If we could trust arbitrary bitwidth
1100  // integers, we could turn this into a truncate to the smaller bit and then
1101  // use a sext for the whole extension.  Since we don't, look deeper and check
1102  // for a truncate.  If the source and dest are the same type, eliminate the
1103  // trunc and extend and just do shifts.  For example, turn:
1104  //   %a = trunc i32 %i to i8
1105  //   %b = shl i8 %a, 6
1106  //   %c = ashr i8 %b, 6
1107  //   %d = sext i8 %c to i32
1108  // into:
1109  //   %a = shl i32 %i, 30
1110  //   %d = ashr i32 %a, 30
1111  Value *A = 0;
1112  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1113  ConstantInt *BA = 0, *CA = 0;
1114  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1115                        m_ConstantInt(CA))) &&
1116      BA == CA && A->getType() == CI.getType()) {
1117    unsigned MidSize = Src->getType()->getScalarSizeInBits();
1118    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1119    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1120    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1121    A = Builder->CreateShl(A, ShAmtV, CI.getName());
1122    return BinaryOperator::CreateAShr(A, ShAmtV);
1123  }
1124
1125  return 0;
1126}
1127
1128
1129/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1130/// in the specified FP type without changing its value.
1131static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1132  bool losesInfo;
1133  APFloat F = CFP->getValueAPF();
1134  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1135  if (!losesInfo)
1136    return ConstantFP::get(CFP->getContext(), F);
1137  return 0;
1138}
1139
1140/// LookThroughFPExtensions - If this is an fp extension instruction, look
1141/// through it until we get the source value.
1142static Value *LookThroughFPExtensions(Value *V) {
1143  if (Instruction *I = dyn_cast<Instruction>(V))
1144    if (I->getOpcode() == Instruction::FPExt)
1145      return LookThroughFPExtensions(I->getOperand(0));
1146
1147  // If this value is a constant, return the constant in the smallest FP type
1148  // that can accurately represent it.  This allows us to turn
1149  // (float)((double)X+2.0) into x+2.0f.
1150  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1151    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1152      return V;  // No constant folding of this.
1153    // See if the value can be truncated to half and then reextended.
1154    if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
1155      return V;
1156    // See if the value can be truncated to float and then reextended.
1157    if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1158      return V;
1159    if (CFP->getType()->isDoubleTy())
1160      return V;  // Won't shrink.
1161    if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1162      return V;
1163    // Don't try to shrink to various long double types.
1164  }
1165
1166  return V;
1167}
1168
1169Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1170  if (Instruction *I = commonCastTransforms(CI))
1171    return I;
1172
1173  // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
1174  // smaller than the destination type, we can eliminate the truncate by doing
1175  // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
1176  // as many builtins (sqrt, etc).
1177  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1178  if (OpI && OpI->hasOneUse()) {
1179    switch (OpI->getOpcode()) {
1180    default: break;
1181    case Instruction::FAdd:
1182    case Instruction::FSub:
1183    case Instruction::FMul:
1184    case Instruction::FDiv:
1185    case Instruction::FRem:
1186      Type *SrcTy = OpI->getType();
1187      Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
1188      Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
1189      if (LHSTrunc->getType() != SrcTy &&
1190          RHSTrunc->getType() != SrcTy) {
1191        unsigned DstSize = CI.getType()->getScalarSizeInBits();
1192        // If the source types were both smaller than the destination type of
1193        // the cast, do this xform.
1194        if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
1195            RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
1196          LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
1197          RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
1198          return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
1199        }
1200      }
1201      break;
1202    }
1203  }
1204
1205  // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
1206  CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
1207  if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
1208      Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) &&
1209      Call->getNumArgOperands() == 1 &&
1210      Call->hasOneUse()) {
1211    CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1212    if (Arg && Arg->getOpcode() == Instruction::FPExt &&
1213        CI.getType()->isFloatTy() &&
1214        Call->getType()->isDoubleTy() &&
1215        Arg->getType()->isDoubleTy() &&
1216        Arg->getOperand(0)->getType()->isFloatTy()) {
1217      Function *Callee = Call->getCalledFunction();
1218      Module *M = CI.getParent()->getParent()->getParent();
1219      Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
1220                                                   Callee->getAttributes(),
1221                                                   Builder->getFloatTy(),
1222                                                   Builder->getFloatTy(),
1223                                                   NULL);
1224      CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1225                                       "sqrtfcall");
1226      ret->setAttributes(Callee->getAttributes());
1227
1228
1229      // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
1230      ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
1231      EraseInstFromFunction(*Call);
1232      return ret;
1233    }
1234  }
1235
1236  return 0;
1237}
1238
1239Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1240  return commonCastTransforms(CI);
1241}
1242
1243Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1244  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1245  if (OpI == 0)
1246    return commonCastTransforms(FI);
1247
1248  // fptoui(uitofp(X)) --> X
1249  // fptoui(sitofp(X)) --> X
1250  // This is safe if the intermediate type has enough bits in its mantissa to
1251  // accurately represent all values of X.  For example, do not do this with
1252  // i64->float->i64.  This is also safe for sitofp case, because any negative
1253  // 'X' value would cause an undefined result for the fptoui.
1254  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1255      OpI->getOperand(0)->getType() == FI.getType() &&
1256      (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1257                    OpI->getType()->getFPMantissaWidth())
1258    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1259
1260  return commonCastTransforms(FI);
1261}
1262
1263Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1264  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1265  if (OpI == 0)
1266    return commonCastTransforms(FI);
1267
1268  // fptosi(sitofp(X)) --> X
1269  // fptosi(uitofp(X)) --> X
1270  // This is safe if the intermediate type has enough bits in its mantissa to
1271  // accurately represent all values of X.  For example, do not do this with
1272  // i64->float->i64.  This is also safe for sitofp case, because any negative
1273  // 'X' value would cause an undefined result for the fptoui.
1274  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1275      OpI->getOperand(0)->getType() == FI.getType() &&
1276      (int)FI.getType()->getScalarSizeInBits() <=
1277                    OpI->getType()->getFPMantissaWidth())
1278    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1279
1280  return commonCastTransforms(FI);
1281}
1282
1283Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1284  return commonCastTransforms(CI);
1285}
1286
1287Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1288  return commonCastTransforms(CI);
1289}
1290
1291Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1292  // If the source integer type is not the intptr_t type for this target, do a
1293  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1294  // cast to be exposed to other transforms.
1295  unsigned AS = CI.getAddressSpace();
1296  if (TD) {
1297    if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
1298        TD->getPointerSizeInBits(AS)) {
1299      Value *P = Builder->CreateTrunc(CI.getOperand(0),
1300                                      TD->getIntPtrType(CI.getType()));
1301      return new IntToPtrInst(P, CI.getType());
1302    }
1303    if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
1304        TD->getPointerSizeInBits(AS)) {
1305      Value *P = Builder->CreateZExt(CI.getOperand(0),
1306                                     TD->getIntPtrType(CI.getType()));
1307      return new IntToPtrInst(P, CI.getType());
1308    }
1309  }
1310
1311  if (Instruction *I = commonCastTransforms(CI))
1312    return I;
1313
1314  return 0;
1315}
1316
1317/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1318Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1319  Value *Src = CI.getOperand(0);
1320
1321  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1322    // If casting the result of a getelementptr instruction with no offset, turn
1323    // this into a cast of the original pointer!
1324    if (GEP->hasAllZeroIndices()) {
1325      // Changing the cast operand is usually not a good idea but it is safe
1326      // here because the pointer operand is being replaced with another
1327      // pointer operand so the opcode doesn't need to change.
1328      Worklist.Add(GEP);
1329      CI.setOperand(0, GEP->getOperand(0));
1330      return &CI;
1331    }
1332
1333    // If the GEP has a single use, and the base pointer is a bitcast, and the
1334    // GEP computes a constant offset, see if we can convert these three
1335    // instructions into fewer.  This typically happens with unions and other
1336    // non-type-safe code.
1337    if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1338        GEP->hasAllConstantIndices()) {
1339      SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
1340      int64_t Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
1341
1342      // Get the base pointer input of the bitcast, and the type it points to.
1343      Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
1344      Type *GEPIdxTy =
1345      cast<PointerType>(OrigBase->getType())->getElementType();
1346      SmallVector<Value*, 8> NewIndices;
1347      Type *IntPtrTy = TD->getIntPtrType(OrigBase->getType());
1348      if (FindElementAtOffset(GEPIdxTy, Offset, IntPtrTy, NewIndices)) {
1349        // If we were able to index down into an element, create the GEP
1350        // and bitcast the result.  This eliminates one bitcast, potentially
1351        // two.
1352        Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1353        Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
1354        Builder->CreateGEP(OrigBase, NewIndices);
1355        NGEP->takeName(GEP);
1356
1357        if (isa<BitCastInst>(CI))
1358          return new BitCastInst(NGEP, CI.getType());
1359        assert(isa<PtrToIntInst>(CI));
1360        return new PtrToIntInst(NGEP, CI.getType());
1361      }
1362    }
1363  }
1364
1365  return commonCastTransforms(CI);
1366}
1367
1368Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1369  // If the destination integer type is not the intptr_t type for this target,
1370  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1371  // to be exposed to other transforms.
1372  unsigned AS = CI.getPointerAddressSpace();
1373  if (TD) {
1374    if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits(AS)) {
1375      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1376                                       TD->getIntPtrType(CI.getContext(), AS));
1377      return new TruncInst(P, CI.getType());
1378    }
1379    if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits(AS)) {
1380      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1381                                       TD->getIntPtrType(CI.getContext(), AS));
1382      return new ZExtInst(P, CI.getType());
1383    }
1384  }
1385
1386  return commonPointerCastTransforms(CI);
1387}
1388
1389/// OptimizeVectorResize - This input value (which is known to have vector type)
1390/// is being zero extended or truncated to the specified vector type.  Try to
1391/// replace it with a shuffle (and vector/vector bitcast) if possible.
1392///
1393/// The source and destination vector types may have different element types.
1394static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
1395                                         InstCombiner &IC) {
1396  // We can only do this optimization if the output is a multiple of the input
1397  // element size, or the input is a multiple of the output element size.
1398  // Convert the input type to have the same element type as the output.
1399  VectorType *SrcTy = cast<VectorType>(InVal->getType());
1400
1401  if (SrcTy->getElementType() != DestTy->getElementType()) {
1402    // The input types don't need to be identical, but for now they must be the
1403    // same size.  There is no specific reason we couldn't handle things like
1404    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1405    // there yet.
1406    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1407        DestTy->getElementType()->getPrimitiveSizeInBits())
1408      return 0;
1409
1410    SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1411    InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1412  }
1413
1414  // Now that the element types match, get the shuffle mask and RHS of the
1415  // shuffle to use, which depends on whether we're increasing or decreasing the
1416  // size of the input.
1417  SmallVector<uint32_t, 16> ShuffleMask;
1418  Value *V2;
1419
1420  if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1421    // If we're shrinking the number of elements, just shuffle in the low
1422    // elements from the input and use undef as the second shuffle input.
1423    V2 = UndefValue::get(SrcTy);
1424    for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1425      ShuffleMask.push_back(i);
1426
1427  } else {
1428    // If we're increasing the number of elements, shuffle in all of the
1429    // elements from InVal and fill the rest of the result elements with zeros
1430    // from a constant zero.
1431    V2 = Constant::getNullValue(SrcTy);
1432    unsigned SrcElts = SrcTy->getNumElements();
1433    for (unsigned i = 0, e = SrcElts; i != e; ++i)
1434      ShuffleMask.push_back(i);
1435
1436    // The excess elements reference the first element of the zero input.
1437    for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1438      ShuffleMask.push_back(SrcElts);
1439  }
1440
1441  return new ShuffleVectorInst(InVal, V2,
1442                               ConstantDataVector::get(V2->getContext(),
1443                                                       ShuffleMask));
1444}
1445
1446static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1447  return Value % Ty->getPrimitiveSizeInBits() == 0;
1448}
1449
1450static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1451  return Value / Ty->getPrimitiveSizeInBits();
1452}
1453
1454/// CollectInsertionElements - V is a value which is inserted into a vector of
1455/// VecEltTy.  Look through the value to see if we can decompose it into
1456/// insertions into the vector.  See the example in the comment for
1457/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1458/// The type of V is always a non-zero multiple of VecEltTy's size.
1459///
1460/// This returns false if the pattern can't be matched or true if it can,
1461/// filling in Elements with the elements found here.
1462static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
1463                                     SmallVectorImpl<Value*> &Elements,
1464                                     Type *VecEltTy) {
1465  // Undef values never contribute useful bits to the result.
1466  if (isa<UndefValue>(V)) return true;
1467
1468  // If we got down to a value of the right type, we win, try inserting into the
1469  // right element.
1470  if (V->getType() == VecEltTy) {
1471    // Inserting null doesn't actually insert any elements.
1472    if (Constant *C = dyn_cast<Constant>(V))
1473      if (C->isNullValue())
1474        return true;
1475
1476    // Fail if multiple elements are inserted into this slot.
1477    if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
1478      return false;
1479
1480    Elements[ElementIndex] = V;
1481    return true;
1482  }
1483
1484  if (Constant *C = dyn_cast<Constant>(V)) {
1485    // Figure out the # elements this provides, and bitcast it or slice it up
1486    // as required.
1487    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1488                                        VecEltTy);
1489    // If the constant is the size of a vector element, we just need to bitcast
1490    // it to the right type so it gets properly inserted.
1491    if (NumElts == 1)
1492      return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1493                                      ElementIndex, Elements, VecEltTy);
1494
1495    // Okay, this is a constant that covers multiple elements.  Slice it up into
1496    // pieces and insert each element-sized piece into the vector.
1497    if (!isa<IntegerType>(C->getType()))
1498      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1499                                       C->getType()->getPrimitiveSizeInBits()));
1500    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1501    Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1502
1503    for (unsigned i = 0; i != NumElts; ++i) {
1504      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1505                                                               i*ElementSize));
1506      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1507      if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
1508        return false;
1509    }
1510    return true;
1511  }
1512
1513  if (!V->hasOneUse()) return false;
1514
1515  Instruction *I = dyn_cast<Instruction>(V);
1516  if (I == 0) return false;
1517  switch (I->getOpcode()) {
1518  default: return false; // Unhandled case.
1519  case Instruction::BitCast:
1520    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1521                                    Elements, VecEltTy);
1522  case Instruction::ZExt:
1523    if (!isMultipleOfTypeSize(
1524                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1525                              VecEltTy))
1526      return false;
1527    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1528                                    Elements, VecEltTy);
1529  case Instruction::Or:
1530    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1531                                    Elements, VecEltTy) &&
1532           CollectInsertionElements(I->getOperand(1), ElementIndex,
1533                                    Elements, VecEltTy);
1534  case Instruction::Shl: {
1535    // Must be shifting by a constant that is a multiple of the element size.
1536    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1537    if (CI == 0) return false;
1538    if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
1539    unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
1540
1541    return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
1542                                    Elements, VecEltTy);
1543  }
1544
1545  }
1546}
1547
1548
1549/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1550/// may be doing shifts and ors to assemble the elements of the vector manually.
1551/// Try to rip the code out and replace it with insertelements.  This is to
1552/// optimize code like this:
1553///
1554///    %tmp37 = bitcast float %inc to i32
1555///    %tmp38 = zext i32 %tmp37 to i64
1556///    %tmp31 = bitcast float %inc5 to i32
1557///    %tmp32 = zext i32 %tmp31 to i64
1558///    %tmp33 = shl i64 %tmp32, 32
1559///    %ins35 = or i64 %tmp33, %tmp38
1560///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1561///
1562/// Into two insertelements that do "buildvector{%inc, %inc5}".
1563static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1564                                                InstCombiner &IC) {
1565  VectorType *DestVecTy = cast<VectorType>(CI.getType());
1566  Value *IntInput = CI.getOperand(0);
1567
1568  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1569  if (!CollectInsertionElements(IntInput, 0, Elements,
1570                                DestVecTy->getElementType()))
1571    return 0;
1572
1573  // If we succeeded, we know that all of the element are specified by Elements
1574  // or are zero if Elements has a null entry.  Recast this as a set of
1575  // insertions.
1576  Value *Result = Constant::getNullValue(CI.getType());
1577  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1578    if (Elements[i] == 0) continue;  // Unset element.
1579
1580    Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1581                                             IC.Builder->getInt32(i));
1582  }
1583
1584  return Result;
1585}
1586
1587
1588/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1589/// bitcast.  The various long double bitcasts can't get in here.
1590static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
1591  Value *Src = CI.getOperand(0);
1592  Type *DestTy = CI.getType();
1593
1594  // If this is a bitcast from int to float, check to see if the int is an
1595  // extraction from a vector.
1596  Value *VecInput = 0;
1597  // bitcast(trunc(bitcast(somevector)))
1598  if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1599      isa<VectorType>(VecInput->getType())) {
1600    VectorType *VecTy = cast<VectorType>(VecInput->getType());
1601    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1602
1603    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1604      // If the element type of the vector doesn't match the result type,
1605      // bitcast it to be a vector type we can extract from.
1606      if (VecTy->getElementType() != DestTy) {
1607        VecTy = VectorType::get(DestTy,
1608                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1609        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1610      }
1611
1612      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
1613    }
1614  }
1615
1616  // bitcast(trunc(lshr(bitcast(somevector), cst))
1617  ConstantInt *ShAmt = 0;
1618  if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1619                                m_ConstantInt(ShAmt)))) &&
1620      isa<VectorType>(VecInput->getType())) {
1621    VectorType *VecTy = cast<VectorType>(VecInput->getType());
1622    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1623    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1624        ShAmt->getZExtValue() % DestWidth == 0) {
1625      // If the element type of the vector doesn't match the result type,
1626      // bitcast it to be a vector type we can extract from.
1627      if (VecTy->getElementType() != DestTy) {
1628        VecTy = VectorType::get(DestTy,
1629                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1630        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1631      }
1632
1633      unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1634      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1635    }
1636  }
1637  return 0;
1638}
1639
1640Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1641  // If the operands are integer typed then apply the integer transforms,
1642  // otherwise just apply the common ones.
1643  Value *Src = CI.getOperand(0);
1644  Type *SrcTy = Src->getType();
1645  Type *DestTy = CI.getType();
1646
1647  // Get rid of casts from one type to the same type. These are useless and can
1648  // be replaced by the operand.
1649  if (DestTy == Src->getType())
1650    return ReplaceInstUsesWith(CI, Src);
1651
1652  if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1653    PointerType *SrcPTy = cast<PointerType>(SrcTy);
1654    Type *DstElTy = DstPTy->getElementType();
1655    Type *SrcElTy = SrcPTy->getElementType();
1656
1657    // If the address spaces don't match, don't eliminate the bitcast, which is
1658    // required for changing types.
1659    if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1660      return 0;
1661
1662    // If we are casting a alloca to a pointer to a type of the same
1663    // size, rewrite the allocation instruction to allocate the "right" type.
1664    // There is no need to modify malloc calls because it is their bitcast that
1665    // needs to be cleaned up.
1666    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1667      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1668        return V;
1669
1670    // If the source and destination are pointers, and this cast is equivalent
1671    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1672    // This can enhance SROA and other transforms that want type-safe pointers.
1673    Constant *ZeroUInt =
1674      Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1675    unsigned NumZeros = 0;
1676    while (SrcElTy != DstElTy &&
1677           isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1678           SrcElTy->getNumContainedTypes() /* not "{}" */) {
1679      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1680      ++NumZeros;
1681    }
1682
1683    // If we found a path from the src to dest, create the getelementptr now.
1684    if (SrcElTy == DstElTy) {
1685      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1686      return GetElementPtrInst::CreateInBounds(Src, Idxs);
1687    }
1688  }
1689
1690  // Try to optimize int -> float bitcasts.
1691  if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1692    if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1693      return I;
1694
1695  if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1696    if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1697      Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1698      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1699                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1700      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1701    }
1702
1703    if (isa<IntegerType>(SrcTy)) {
1704      // If this is a cast from an integer to vector, check to see if the input
1705      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1706      // the casts with a shuffle and (potentially) a bitcast.
1707      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1708        CastInst *SrcCast = cast<CastInst>(Src);
1709        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1710          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1711            if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
1712                                               cast<VectorType>(DestTy), *this))
1713              return I;
1714      }
1715
1716      // If the input is an 'or' instruction, we may be doing shifts and ors to
1717      // assemble the elements of the vector manually.  Try to rip the code out
1718      // and replace it with insertelements.
1719      if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1720        return ReplaceInstUsesWith(CI, V);
1721    }
1722  }
1723
1724  if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1725    if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
1726      Value *Elem =
1727        Builder->CreateExtractElement(Src,
1728                   Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1729      return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1730    }
1731  }
1732
1733  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1734    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1735    // a bitcast to a vector with the same # elts.
1736    if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1737        cast<VectorType>(DestTy)->getNumElements() ==
1738              SVI->getType()->getNumElements() &&
1739        SVI->getType()->getNumElements() ==
1740          cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1741      BitCastInst *Tmp;
1742      // If either of the operands is a cast from CI.getType(), then
1743      // evaluating the shuffle in the casted destination's type will allow
1744      // us to eliminate at least one cast.
1745      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1746           Tmp->getOperand(0)->getType() == DestTy) ||
1747          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1748           Tmp->getOperand(0)->getType() == DestTy)) {
1749        Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1750        Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1751        // Return a new shuffle vector.  Use the same element ID's, as we
1752        // know the vector types match #elts.
1753        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1754      }
1755    }
1756  }
1757
1758  if (SrcTy->isPointerTy())
1759    return commonPointerCastTransforms(CI);
1760  return commonCastTransforms(CI);
1761}
1762