DeadStoreElimination.cpp revision a116623e06d0cf833cbefd4921dbca8581f1c806
1//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a trivial dead store elimination that only considers
11// basic-block local redundant stores.
12//
13// FIXME: This should eventually be extended to be a post-dominator tree
14// traversal.  Doing so would be pretty trivial.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "dse"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/Constants.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/CaptureTracking.h"
28#include "llvm/Analysis/Dominators.h"
29#include "llvm/Analysis/MemoryBuiltins.h"
30#include "llvm/Analysis/MemoryDependenceAnalysis.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/Local.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/ADT/STLExtras.h"
38using namespace llvm;
39
40STATISTIC(NumFastStores, "Number of stores deleted");
41STATISTIC(NumFastOther , "Number of other instrs removed");
42
43namespace {
44  struct DSE : public FunctionPass {
45    AliasAnalysis *AA;
46    MemoryDependenceAnalysis *MD;
47    DominatorTree *DT;
48
49    static char ID; // Pass identification, replacement for typeid
50    DSE() : FunctionPass(ID), AA(0), MD(0), DT(0) {
51      initializeDSEPass(*PassRegistry::getPassRegistry());
52    }
53
54    virtual bool runOnFunction(Function &F) {
55      AA = &getAnalysis<AliasAnalysis>();
56      MD = &getAnalysis<MemoryDependenceAnalysis>();
57      DT = &getAnalysis<DominatorTree>();
58
59      bool Changed = false;
60      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
61        // Only check non-dead blocks.  Dead blocks may have strange pointer
62        // cycles that will confuse alias analysis.
63        if (DT->isReachableFromEntry(I))
64          Changed |= runOnBasicBlock(*I);
65
66      AA = 0; MD = 0; DT = 0;
67      return Changed;
68    }
69
70    bool runOnBasicBlock(BasicBlock &BB);
71    bool HandleFree(CallInst *F);
72    bool handleEndBlock(BasicBlock &BB);
73    void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
74                               SmallPtrSet<Value*, 16> &DeadStackObjects);
75
76    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
77      AU.setPreservesCFG();
78      AU.addRequired<DominatorTree>();
79      AU.addRequired<AliasAnalysis>();
80      AU.addRequired<MemoryDependenceAnalysis>();
81      AU.addPreserved<AliasAnalysis>();
82      AU.addPreserved<DominatorTree>();
83      AU.addPreserved<MemoryDependenceAnalysis>();
84    }
85  };
86}
87
88char DSE::ID = 0;
89INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
90INITIALIZE_PASS_DEPENDENCY(DominatorTree)
91INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
92INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
93INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
94
95FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
96
97//===----------------------------------------------------------------------===//
98// Helper functions
99//===----------------------------------------------------------------------===//
100
101/// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
102/// and zero out all the operands of this instruction.  If any of them become
103/// dead, delete them and the computation tree that feeds them.
104///
105/// If ValueSet is non-null, remove any deleted instructions from it as well.
106///
107static void DeleteDeadInstruction(Instruction *I,
108                                  MemoryDependenceAnalysis &MD,
109                                  SmallPtrSet<Value*, 16> *ValueSet = 0) {
110  SmallVector<Instruction*, 32> NowDeadInsts;
111
112  NowDeadInsts.push_back(I);
113  --NumFastOther;
114
115  // Before we touch this instruction, remove it from memdep!
116  do {
117    Instruction *DeadInst = NowDeadInsts.pop_back_val();
118    ++NumFastOther;
119
120    // This instruction is dead, zap it, in stages.  Start by removing it from
121    // MemDep, which needs to know the operands and needs it to be in the
122    // function.
123    MD.removeInstruction(DeadInst);
124
125    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
126      Value *Op = DeadInst->getOperand(op);
127      DeadInst->setOperand(op, 0);
128
129      // If this operand just became dead, add it to the NowDeadInsts list.
130      if (!Op->use_empty()) continue;
131
132      if (Instruction *OpI = dyn_cast<Instruction>(Op))
133        if (isInstructionTriviallyDead(OpI))
134          NowDeadInsts.push_back(OpI);
135    }
136
137    DeadInst->eraseFromParent();
138
139    if (ValueSet) ValueSet->erase(DeadInst);
140  } while (!NowDeadInsts.empty());
141}
142
143
144/// hasMemoryWrite - Does this instruction write some memory?  This only returns
145/// true for things that we can analyze with other helpers below.
146static bool hasMemoryWrite(Instruction *I) {
147  if (isa<StoreInst>(I))
148    return true;
149  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
150    switch (II->getIntrinsicID()) {
151    default:
152      return false;
153    case Intrinsic::memset:
154    case Intrinsic::memmove:
155    case Intrinsic::memcpy:
156    case Intrinsic::init_trampoline:
157    case Intrinsic::lifetime_end:
158      return true;
159    }
160  }
161  return false;
162}
163
164/// getLocForWrite - Return a Location stored to by the specified instruction.
165/// If isRemovable returns true, this function and getLocForRead completely
166/// describe the memory operations for this instruction.
167static AliasAnalysis::Location
168getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
169  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
170    return AA.getLocation(SI);
171
172  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
173    // memcpy/memmove/memset.
174    AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
175    // If we don't have target data around, an unknown size in Location means
176    // that we should use the size of the pointee type.  This isn't valid for
177    // memset/memcpy, which writes more than an i8.
178    if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
179      return AliasAnalysis::Location();
180    return Loc;
181  }
182
183  IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
184  if (II == 0) return AliasAnalysis::Location();
185
186  switch (II->getIntrinsicID()) {
187  default: return AliasAnalysis::Location(); // Unhandled intrinsic.
188  case Intrinsic::init_trampoline:
189    // If we don't have target data around, an unknown size in Location means
190    // that we should use the size of the pointee type.  This isn't valid for
191    // init.trampoline, which writes more than an i8.
192    if (AA.getTargetData() == 0) return AliasAnalysis::Location();
193
194    // FIXME: We don't know the size of the trampoline, so we can't really
195    // handle it here.
196    return AliasAnalysis::Location(II->getArgOperand(0));
197  case Intrinsic::lifetime_end: {
198    uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
199    return AliasAnalysis::Location(II->getArgOperand(1), Len);
200  }
201  }
202}
203
204/// getLocForRead - Return the location read by the specified "hasMemoryWrite"
205/// instruction if any.
206static AliasAnalysis::Location
207getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
208  assert(hasMemoryWrite(Inst) && "Unknown instruction case");
209
210  // The only instructions that both read and write are the mem transfer
211  // instructions (memcpy/memmove).
212  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
213    return AA.getLocationForSource(MTI);
214  return AliasAnalysis::Location();
215}
216
217
218/// isRemovable - If the value of this instruction and the memory it writes to
219/// is unused, may we delete this instruction?
220static bool isRemovable(Instruction *I) {
221  // Don't remove volatile/atomic stores.
222  if (StoreInst *SI = dyn_cast<StoreInst>(I))
223    return SI->isUnordered();
224
225  IntrinsicInst *II = cast<IntrinsicInst>(I);
226  switch (II->getIntrinsicID()) {
227  default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate");
228  case Intrinsic::lifetime_end:
229    // Never remove dead lifetime_end's, e.g. because it is followed by a
230    // free.
231    return false;
232  case Intrinsic::init_trampoline:
233    // Always safe to remove init_trampoline.
234    return true;
235
236  case Intrinsic::memset:
237  case Intrinsic::memmove:
238  case Intrinsic::memcpy:
239    // Don't remove volatile memory intrinsics.
240    return !cast<MemIntrinsic>(II)->isVolatile();
241  }
242}
243
244
245/// isShortenable - Returns true if this instruction can be safely shortened in
246/// length.
247static bool isShortenable(Instruction *I) {
248  // Don't shorten stores for now
249  if (isa<StoreInst>(I))
250    return false;
251
252  IntrinsicInst *II = cast<IntrinsicInst>(I);
253  switch (II->getIntrinsicID()) {
254    default: return false;
255    case Intrinsic::memset:
256    case Intrinsic::memcpy:
257      // Do shorten memory intrinsics.
258      return true;
259  }
260}
261
262
263/// isMemset - Returns true if this instruction is an intrinsic memset
264static bool isMemset(Instruction *I) {
265  IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
266  return II && II->getIntrinsicID() == Intrinsic::memset;
267}
268
269/// getStoredPointerOperand - Return the pointer that is being written to.
270static Value *getStoredPointerOperand(Instruction *I) {
271  if (StoreInst *SI = dyn_cast<StoreInst>(I))
272    return SI->getPointerOperand();
273  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
274    return MI->getDest();
275
276  IntrinsicInst *II = cast<IntrinsicInst>(I);
277  switch (II->getIntrinsicID()) {
278  default: llvm_unreachable("Unexpected intrinsic!");
279  case Intrinsic::init_trampoline:
280    return II->getArgOperand(0);
281  }
282}
283
284static uint64_t getPointerSize(const Value *V, AliasAnalysis &AA) {
285  const TargetData *TD = AA.getTargetData();
286
287  if (const CallInst *CI = extractMallocCall(V)) {
288    if (const ConstantInt *C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
289      return C->getZExtValue();
290  }
291
292  if (TD == 0)
293    return AliasAnalysis::UnknownSize;
294
295  if (const AllocaInst *A = dyn_cast<AllocaInst>(V)) {
296    // Get size information for the alloca
297    if (const ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
298      return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
299  }
300
301  if (const Argument *A = dyn_cast<Argument>(V)) {
302    if (A->hasByValAttr())
303      if (PointerType *PT = dyn_cast<PointerType>(A->getType()))
304        return TD->getTypeAllocSize(PT->getElementType());
305  }
306
307  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
308    if (!GV->mayBeOverridden())
309      return TD->getTypeAllocSize(GV->getType()->getElementType());
310  }
311
312  return AliasAnalysis::UnknownSize;
313}
314
315namespace {
316  enum OverwriteResult
317  {
318    OverwriteComplete,
319    OverwriteEnd,
320    OverwriteStart,
321    OverwriteUnknown
322  };
323}
324
325/// isOverwrite - Return 'OverwriteComplete' if a store to the 'Later' location
326/// completely overwrites a store to the 'Earlier' location.
327/// 'OverwriteEnd' if the end of the 'Earlier' location is completely
328/// overwritten by 'Later', 'OverWriteStart' if the start of 'Earlier'
329/// is completely overwritten by 'Later' or 'OverwriteUnknown' if nothing
330/// can be determined
331static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
332                                   const AliasAnalysis::Location &Earlier,
333                                   AliasAnalysis &AA,
334                                   int64_t &EarlierOff,
335                                   int64_t &LaterOff) {
336  const Value *P1 = Earlier.Ptr->stripPointerCasts();
337  const Value *P2 = Later.Ptr->stripPointerCasts();
338
339  // If the start pointers are the same, we just have to compare sizes to see if
340  // the later store was larger than the earlier store.
341  if (P1 == P2) {
342    // If we don't know the sizes of either access, then we can't do a
343    // comparison.
344    if (Later.Size == AliasAnalysis::UnknownSize ||
345        Earlier.Size == AliasAnalysis::UnknownSize) {
346      // If we have no TargetData information around, then the size of the store
347      // is inferrable from the pointee type.  If they are the same type, then
348      // we know that the store is safe.
349      if (AA.getTargetData() == 0 &&
350          Later.Ptr->getType() == Earlier.Ptr->getType())
351        return OverwriteComplete;
352
353      return OverwriteUnknown;
354    }
355
356    // Make sure that the Later size is >= the Earlier size.
357    if (Later.Size >= Earlier.Size)
358      return OverwriteComplete;
359  }
360
361  // Otherwise, we have to have size information, and the later store has to be
362  // larger than the earlier one.
363  if (Later.Size == AliasAnalysis::UnknownSize ||
364      Earlier.Size == AliasAnalysis::UnknownSize ||
365      AA.getTargetData() == 0)
366    return OverwriteUnknown;
367
368  // Check to see if the later store is to the entire object (either a global,
369  // an alloca, or a byval argument).  If so, then it clearly overwrites any
370  // other store to the same object.
371  const TargetData &TD = *AA.getTargetData();
372
373  const Value *UO1 = GetUnderlyingObject(P1, &TD),
374              *UO2 = GetUnderlyingObject(P2, &TD);
375
376  // If we can't resolve the same pointers to the same object, then we can't
377  // analyze them at all.
378  if (UO1 != UO2)
379    return OverwriteUnknown;
380
381  // If the "Later" store is to a recognizable object, get its size.
382  uint64_t ObjectSize = getPointerSize(UO2, AA);
383  if (ObjectSize != AliasAnalysis::UnknownSize)
384    if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
385      return OverwriteComplete;
386
387  // Okay, we have stores to two completely different pointers.  Try to
388  // decompose the pointer into a "base + constant_offset" form.  If the base
389  // pointers are equal, then we can reason about the two stores.
390  EarlierOff = 0;
391  LaterOff = 0;
392  const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, TD);
393  const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, TD);
394
395  // If the base pointers still differ, we have two completely different stores.
396  if (BP1 != BP2)
397    return OverwriteUnknown;
398
399  // The later store completely overlaps the earlier store if:
400  //
401  // 1. Both start at the same offset and the later one's size is greater than
402  //    or equal to the earlier one's, or
403  //
404  //      |--earlier--|
405  //      |--   later   --|
406  //
407  // 2. The earlier store has an offset greater than the later offset, but which
408  //    still lies completely within the later store.
409  //
410  //        |--earlier--|
411  //    |-----  later  ------|
412  //
413  // We have to be careful here as *Off is signed while *.Size is unsigned.
414  if (EarlierOff >= LaterOff &&
415      Later.Size > Earlier.Size &&
416      uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
417    return OverwriteComplete;
418
419  // The other interesting case is if the later store overwrites the end of
420  // the earlier store
421  //
422  //      |--earlier--|
423  //                |--   later   --|
424  //
425  // In this case we may want to trim the size of earlier to avoid generating
426  // writes to addresses which will definitely be overwritten later
427  if (LaterOff > EarlierOff &&
428      LaterOff < int64_t(EarlierOff + Earlier.Size) &&
429      int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size))
430    return OverwriteEnd;
431
432  // The other interesting case is if the later store overwrites the end of
433  // the earlier store
434  //
435  //                    |--earlier--|
436  //      |--   later   --|
437  //
438  // In this case we may want to trim the size of earlier to avoid generating
439  // writes to addresses which will definitely be overwritten later
440  if (EarlierOff >= LaterOff &&
441      EarlierOff < int64_t(LaterOff + Later.Size) &&
442      int64_t(EarlierOff + Earlier.Size) >= int64_t(LaterOff + Later.Size)) {
443    LaterOff = LaterOff + Later.Size;
444    return OverwriteStart;
445  }
446
447  // Otherwise, they don't completely overlap.
448  return OverwriteUnknown;
449}
450
451/// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
452/// memory region into an identical pointer) then it doesn't actually make its
453/// input dead in the traditional sense.  Consider this case:
454///
455///   memcpy(A <- B)
456///   memcpy(A <- A)
457///
458/// In this case, the second store to A does not make the first store to A dead.
459/// The usual situation isn't an explicit A<-A store like this (which can be
460/// trivially removed) but a case where two pointers may alias.
461///
462/// This function detects when it is unsafe to remove a dependent instruction
463/// because the DSE inducing instruction may be a self-read.
464static bool isPossibleSelfRead(Instruction *Inst,
465                               const AliasAnalysis::Location &InstStoreLoc,
466                               Instruction *DepWrite, AliasAnalysis &AA) {
467  // Self reads can only happen for instructions that read memory.  Get the
468  // location read.
469  AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
470  if (InstReadLoc.Ptr == 0) return false;  // Not a reading instruction.
471
472  // If the read and written loc obviously don't alias, it isn't a read.
473  if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
474
475  // Okay, 'Inst' may copy over itself.  However, we can still remove a the
476  // DepWrite instruction if we can prove that it reads from the same location
477  // as Inst.  This handles useful cases like:
478  //   memcpy(A <- B)
479  //   memcpy(A <- B)
480  // Here we don't know if A/B may alias, but we do know that B/B are must
481  // aliases, so removing the first memcpy is safe (assuming it writes <= #
482  // bytes as the second one.
483  AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
484
485  if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
486    return false;
487
488  // If DepWrite doesn't read memory or if we can't prove it is a must alias,
489  // then it can't be considered dead.
490  return true;
491}
492
493
494//===----------------------------------------------------------------------===//
495// DSE Pass
496//===----------------------------------------------------------------------===//
497
498bool DSE::runOnBasicBlock(BasicBlock &BB) {
499  bool MadeChange = false;
500
501  // Do a top-down walk on the BB.
502  for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
503    Instruction *Inst = BBI++;
504
505    // Handle 'free' calls specially.
506    if (CallInst *F = isFreeCall(Inst)) {
507      MadeChange |= HandleFree(F);
508      continue;
509    }
510
511    // If we find something that writes memory, get its memory dependence.
512    if (!hasMemoryWrite(Inst))
513      continue;
514
515    MemDepResult InstDep = MD->getDependency(Inst);
516
517    // Ignore any store where we can't find a local dependence.
518    // FIXME: cross-block DSE would be fun. :)
519    if (!InstDep.isDef() && !InstDep.isClobber())
520      continue;
521
522    // If we're storing the same value back to a pointer that we just
523    // loaded from, then the store can be removed.
524    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
525      if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
526        if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
527            SI->getOperand(0) == DepLoad && isRemovable(SI)) {
528          DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
529                       << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
530
531          // DeleteDeadInstruction can delete the current instruction.  Save BBI
532          // in case we need it.
533          WeakVH NextInst(BBI);
534
535          DeleteDeadInstruction(SI, *MD);
536
537          if (NextInst == 0)  // Next instruction deleted.
538            BBI = BB.begin();
539          else if (BBI != BB.begin())  // Revisit this instruction if possible.
540            --BBI;
541          ++NumFastStores;
542          MadeChange = true;
543          continue;
544        }
545      }
546    }
547
548    // Figure out what location is being stored to.
549    AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
550
551    // If we didn't get a useful location, fail.
552    if (Loc.Ptr == 0)
553      continue;
554
555    while (InstDep.isDef() || InstDep.isClobber()) {
556      // Get the memory clobbered by the instruction we depend on.  MemDep will
557      // skip any instructions that 'Loc' clearly doesn't interact with.  If we
558      // end up depending on a may- or must-aliased load, then we can't optimize
559      // away the store and we bail out.  However, if we depend on on something
560      // that overwrites the memory location we *can* potentially optimize it.
561      //
562      // Find out what memory location the dependent instruction stores.
563      Instruction *DepWrite = InstDep.getInst();
564      AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
565      // If we didn't get a useful location, or if it isn't a size, bail out.
566      if (DepLoc.Ptr == 0)
567        break;
568
569      // If we find a write that is a) removable (i.e., non-volatile), b) is
570      // completely obliterated by the store to 'Loc', and c) which we know that
571      // 'Inst' doesn't load from, then we can remove it.
572      if (isRemovable(DepWrite) &&
573          !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
574        int64_t InstWriteOffset, DepWriteOffset;
575        OverwriteResult OR = isOverwrite(Loc, DepLoc, *AA,
576                                         DepWriteOffset, InstWriteOffset);
577        if (OR == OverwriteComplete) {
578          DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
579                << *DepWrite << "\n  KILLER: " << *Inst << '\n');
580
581          // Delete the store and now-dead instructions that feed it.
582          DeleteDeadInstruction(DepWrite, *MD);
583          ++NumFastStores;
584          MadeChange = true;
585
586          // DeleteDeadInstruction can delete the current instruction in loop
587          // cases, reset BBI.
588          BBI = Inst;
589          if (BBI != BB.begin())
590            --BBI;
591          break;
592        } else if (OR == OverwriteEnd && isShortenable(DepWrite)) {
593          // TODO: base this on the target vector size so that if the earlier
594          // store was too small to get vector writes anyway then its likely
595          // a good idea to shorten it
596          // Power of 2 vector writes are probably always a bad idea to optimize
597          // as any store/memset/memcpy is likely using vector instructions so
598          // shortening it to not vector size is likely to be slower
599          MemIntrinsic* DepIntrinsic = cast<MemIntrinsic>(DepWrite);
600          unsigned DepWriteAlign = DepIntrinsic->getAlignment();
601          if (llvm::isPowerOf2_64(InstWriteOffset) ||
602              ((DepWriteAlign != 0) && InstWriteOffset % DepWriteAlign == 0)) {
603
604            DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW END: "
605                  << *DepWrite << "\n  KILLER (offset "
606                  << InstWriteOffset << ", "
607                  << DepLoc.Size << ")"
608                  << *Inst << '\n');
609
610            Value* DepWriteLength = DepIntrinsic->getLength();
611            Value* TrimmedLength = ConstantInt::get(DepWriteLength->getType(),
612                                                    InstWriteOffset -
613                                                    DepWriteOffset);
614            DepIntrinsic->setLength(TrimmedLength);
615            MadeChange = true;
616          }
617        } else if (OR == OverwriteStart && isMemset(DepWrite)) {
618          // TODO: base this on the target vector size so that if the earlier
619          // store was too small to get vector writes anyway then its likely
620          // a good idea to shorten it
621          // Power of 2 vector writes are probably always a bad idea to optimize
622          // as any store/memset/memcpy is likely using vector instructions so
623          // shortening it to not vector size is likely to be slower
624          // TODO: shorten memcpy and memmove by offsetting the source address.
625          MemIntrinsic* DepIntrinsic = cast<MemIntrinsic>(DepWrite);
626          unsigned DepWriteAlign = DepIntrinsic->getAlignment();
627          if (llvm::isPowerOf2_64(InstWriteOffset) ||
628              ((DepWriteAlign != 0) && InstWriteOffset % DepWriteAlign == 0)) {
629
630            DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW START: "
631                  << *DepWrite << "\n  KILLER (offset "
632                  << InstWriteOffset << ", "
633                  << DepWriteOffset << ", "
634                  << DepLoc.Size << ")"
635                  << *Inst << '\n');
636
637            Value* DepWriteLength = DepIntrinsic->getLength();
638            Value* TrimmedLength = ConstantInt::get(DepWriteLength->getType(),
639                                                    DepLoc.Size -
640                                                    (InstWriteOffset -
641                                                    DepWriteOffset));
642            DepIntrinsic->setLength(TrimmedLength);
643            const TargetData *TD = AA->getTargetData();
644            Type *IntPtrTy = TD->getIntPtrType(BB.getContext());
645            Value* Offset = ConstantInt::get(IntPtrTy,
646                                             InstWriteOffset - DepWriteOffset);
647            // Offset the start of the memset with a GEP.  As the memset type is
648            // i8* a GEP will do this without needing to use ptrtoint, etc.
649            Value *Dest = GetElementPtrInst::Create(DepIntrinsic->getRawDest(),
650                                                    Offset,
651                                                    "",
652                                                    DepWrite);
653            DepIntrinsic->setDest(Dest);
654            MadeChange = true;
655          }
656        }
657      }
658
659      // If this is a may-aliased store that is clobbering the store value, we
660      // can keep searching past it for another must-aliased pointer that stores
661      // to the same location.  For example, in:
662      //   store -> P
663      //   store -> Q
664      //   store -> P
665      // we can remove the first store to P even though we don't know if P and Q
666      // alias.
667      if (DepWrite == &BB.front()) break;
668
669      // Can't look past this instruction if it might read 'Loc'.
670      if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
671        break;
672
673      InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
674    }
675  }
676
677  // If this block ends in a return, unwind, or unreachable, all allocas are
678  // dead at its end, which means stores to them are also dead.
679  if (BB.getTerminator()->getNumSuccessors() == 0)
680    MadeChange |= handleEndBlock(BB);
681
682  return MadeChange;
683}
684
685/// Find all blocks that will unconditionally lead to the block BB and append
686/// them to F.
687static void FindUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
688                                   BasicBlock *BB, DominatorTree *DT) {
689  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
690    BasicBlock *Pred = *I;
691    if (Pred == BB) continue;
692    TerminatorInst *PredTI = Pred->getTerminator();
693    if (PredTI->getNumSuccessors() != 1)
694      continue;
695
696    if (DT->isReachableFromEntry(Pred))
697      Blocks.push_back(Pred);
698  }
699}
700
701/// HandleFree - Handle frees of entire structures whose dependency is a store
702/// to a field of that structure.
703bool DSE::HandleFree(CallInst *F) {
704  bool MadeChange = false;
705
706  AliasAnalysis::Location Loc = AliasAnalysis::Location(F->getOperand(0));
707  SmallVector<BasicBlock *, 16> Blocks;
708  Blocks.push_back(F->getParent());
709
710  while (!Blocks.empty()) {
711    BasicBlock *BB = Blocks.pop_back_val();
712    Instruction *InstPt = BB->getTerminator();
713    if (BB == F->getParent()) InstPt = F;
714
715    MemDepResult Dep = MD->getPointerDependencyFrom(Loc, false, InstPt, BB);
716    while (Dep.isDef() || Dep.isClobber()) {
717      Instruction *Dependency = Dep.getInst();
718      if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
719        break;
720
721      Value *DepPointer =
722        GetUnderlyingObject(getStoredPointerOperand(Dependency));
723
724      // Check for aliasing.
725      if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
726        break;
727
728      Instruction *Next = llvm::next(BasicBlock::iterator(Dependency));
729
730      // DCE instructions only used to calculate that store
731      DeleteDeadInstruction(Dependency, *MD);
732      ++NumFastStores;
733      MadeChange = true;
734
735      // Inst's old Dependency is now deleted. Compute the next dependency,
736      // which may also be dead, as in
737      //    s[0] = 0;
738      //    s[1] = 0; // This has just been deleted.
739      //    free(s);
740      Dep = MD->getPointerDependencyFrom(Loc, false, Next, BB);
741    }
742
743    if (Dep.isNonLocal())
744      FindUnconditionalPreds(Blocks, BB, DT);
745  }
746
747  return MadeChange;
748}
749
750/// handleEndBlock - Remove dead stores to stack-allocated locations in the
751/// function end block.  Ex:
752/// %A = alloca i32
753/// ...
754/// store i32 1, i32* %A
755/// ret void
756bool DSE::handleEndBlock(BasicBlock &BB) {
757  bool MadeChange = false;
758
759  // Keep track of all of the stack objects that are dead at the end of the
760  // function.
761  SmallPtrSet<Value*, 16> DeadStackObjects;
762
763  // Find all of the alloca'd pointers in the entry block.
764  BasicBlock *Entry = BB.getParent()->begin();
765  for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I) {
766    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
767      DeadStackObjects.insert(AI);
768
769    // Okay, so these are dead heap objects, but if the pointer never escapes
770    // then it's leaked by this function anyways.
771    if (CallInst *CI = extractMallocCall(I))
772      if (!PointerMayBeCaptured(CI, true, true))
773        DeadStackObjects.insert(CI);
774  }
775
776  // Treat byval arguments the same, stores to them are dead at the end of the
777  // function.
778  for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
779       AE = BB.getParent()->arg_end(); AI != AE; ++AI)
780    if (AI->hasByValAttr())
781      DeadStackObjects.insert(AI);
782
783  // Scan the basic block backwards
784  for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
785    --BBI;
786
787    // If we find a store, check to see if it points into a dead stack value.
788    if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
789      // See through pointer-to-pointer bitcasts
790      Value *Pointer = GetUnderlyingObject(getStoredPointerOperand(BBI));
791
792      // Stores to stack values are valid candidates for removal.
793      if (DeadStackObjects.count(Pointer)) {
794        Instruction *Dead = BBI++;
795
796        DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
797                     << *Dead << "\n  Object: " << *Pointer << '\n');
798
799        // DCE instructions only used to calculate that store.
800        DeleteDeadInstruction(Dead, *MD, &DeadStackObjects);
801        ++NumFastStores;
802        MadeChange = true;
803        continue;
804      }
805    }
806
807    // Remove any dead non-memory-mutating instructions.
808    if (isInstructionTriviallyDead(BBI)) {
809      Instruction *Inst = BBI++;
810      DeleteDeadInstruction(Inst, *MD, &DeadStackObjects);
811      ++NumFastOther;
812      MadeChange = true;
813      continue;
814    }
815
816    if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
817      DeadStackObjects.erase(A);
818      continue;
819    }
820
821    if (CallInst *CI = extractMallocCall(BBI)) {
822      DeadStackObjects.erase(CI);
823      continue;
824    }
825
826    if (CallSite CS = cast<Value>(BBI)) {
827      // If this call does not access memory, it can't be loading any of our
828      // pointers.
829      if (AA->doesNotAccessMemory(CS))
830        continue;
831
832      // If the call might load from any of our allocas, then any store above
833      // the call is live.
834      SmallVector<Value*, 8> LiveAllocas;
835      for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
836           E = DeadStackObjects.end(); I != E; ++I) {
837        // See if the call site touches it.
838        AliasAnalysis::ModRefResult A =
839          AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
840
841        if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
842          LiveAllocas.push_back(*I);
843      }
844
845      for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
846           E = LiveAllocas.end(); I != E; ++I)
847        DeadStackObjects.erase(*I);
848
849      // If all of the allocas were clobbered by the call then we're not going
850      // to find anything else to process.
851      if (DeadStackObjects.empty())
852        return MadeChange;
853
854      continue;
855    }
856
857    AliasAnalysis::Location LoadedLoc;
858
859    // If we encounter a use of the pointer, it is no longer considered dead
860    if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
861      if (!L->isUnordered()) // Be conservative with atomic/volatile load
862        break;
863      LoadedLoc = AA->getLocation(L);
864    } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
865      LoadedLoc = AA->getLocation(V);
866    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
867      LoadedLoc = AA->getLocationForSource(MTI);
868    } else if (!BBI->mayReadFromMemory()) {
869      // Instruction doesn't read memory.  Note that stores that weren't removed
870      // above will hit this case.
871      continue;
872    } else {
873      // Unknown inst; assume it clobbers everything.
874      break;
875    }
876
877    // Remove any allocas from the DeadPointer set that are loaded, as this
878    // makes any stores above the access live.
879    RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
880
881    // If all of the allocas were clobbered by the access then we're not going
882    // to find anything else to process.
883    if (DeadStackObjects.empty())
884      break;
885  }
886
887  return MadeChange;
888}
889
890/// RemoveAccessedObjects - Check to see if the specified location may alias any
891/// of the stack objects in the DeadStackObjects set.  If so, they become live
892/// because the location is being loaded.
893void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
894                                SmallPtrSet<Value*, 16> &DeadStackObjects) {
895  const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
896
897  // A constant can't be in the dead pointer set.
898  if (isa<Constant>(UnderlyingPointer))
899    return;
900
901  // If the kill pointer can be easily reduced to an alloca, don't bother doing
902  // extraneous AA queries.
903  if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
904    DeadStackObjects.erase(const_cast<Value*>(UnderlyingPointer));
905    return;
906  }
907
908  SmallVector<Value*, 16> NowLive;
909  for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
910       E = DeadStackObjects.end(); I != E; ++I) {
911    // See if the loaded location could alias the stack location.
912    AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
913    if (!AA->isNoAlias(StackLoc, LoadedLoc))
914      NowLive.push_back(*I);
915  }
916
917  for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
918       I != E; ++I)
919    DeadStackObjects.erase(*I);
920}
921