DeadStoreElimination.cpp revision b401e3bd16c3d648464606d5e5b496dd61d12afc
1//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a trivial dead store elimination that only considers
11// basic-block local redundant stores.
12//
13// FIXME: This should eventually be extended to be a post-dominator tree
14// traversal.  Doing so would be pretty trivial.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "dse"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/Constants.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/CaptureTracking.h"
28#include "llvm/Analysis/Dominators.h"
29#include "llvm/Analysis/MemoryBuiltins.h"
30#include "llvm/Analysis/MemoryDependenceAnalysis.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/Local.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/ADT/STLExtras.h"
38using namespace llvm;
39
40STATISTIC(NumFastStores, "Number of stores deleted");
41STATISTIC(NumFastOther , "Number of other instrs removed");
42
43namespace {
44  struct DSE : public FunctionPass {
45    AliasAnalysis *AA;
46    MemoryDependenceAnalysis *MD;
47    DominatorTree *DT;
48
49    static char ID; // Pass identification, replacement for typeid
50    DSE() : FunctionPass(ID), AA(0), MD(0), DT(0) {
51      initializeDSEPass(*PassRegistry::getPassRegistry());
52    }
53
54    virtual bool runOnFunction(Function &F) {
55      AA = &getAnalysis<AliasAnalysis>();
56      MD = &getAnalysis<MemoryDependenceAnalysis>();
57      DT = &getAnalysis<DominatorTree>();
58
59      bool Changed = false;
60      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
61        // Only check non-dead blocks.  Dead blocks may have strange pointer
62        // cycles that will confuse alias analysis.
63        if (DT->isReachableFromEntry(I))
64          Changed |= runOnBasicBlock(*I);
65
66      AA = 0; MD = 0; DT = 0;
67      return Changed;
68    }
69
70    bool runOnBasicBlock(BasicBlock &BB);
71    bool HandleFree(CallInst *F);
72    bool handleEndBlock(BasicBlock &BB);
73    void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
74                               SmallPtrSet<Value*, 16> &DeadStackObjects);
75
76    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
77      AU.setPreservesCFG();
78      AU.addRequired<DominatorTree>();
79      AU.addRequired<AliasAnalysis>();
80      AU.addRequired<MemoryDependenceAnalysis>();
81      AU.addPreserved<AliasAnalysis>();
82      AU.addPreserved<DominatorTree>();
83      AU.addPreserved<MemoryDependenceAnalysis>();
84    }
85  };
86}
87
88char DSE::ID = 0;
89INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
90INITIALIZE_PASS_DEPENDENCY(DominatorTree)
91INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
92INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
93INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
94
95FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
96
97//===----------------------------------------------------------------------===//
98// Helper functions
99//===----------------------------------------------------------------------===//
100
101/// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
102/// and zero out all the operands of this instruction.  If any of them become
103/// dead, delete them and the computation tree that feeds them.
104///
105/// If ValueSet is non-null, remove any deleted instructions from it as well.
106///
107static void DeleteDeadInstruction(Instruction *I,
108                                  MemoryDependenceAnalysis &MD,
109                                  SmallPtrSet<Value*, 16> *ValueSet = 0) {
110  SmallVector<Instruction*, 32> NowDeadInsts;
111
112  NowDeadInsts.push_back(I);
113  --NumFastOther;
114
115  // Before we touch this instruction, remove it from memdep!
116  do {
117    Instruction *DeadInst = NowDeadInsts.pop_back_val();
118    ++NumFastOther;
119
120    // This instruction is dead, zap it, in stages.  Start by removing it from
121    // MemDep, which needs to know the operands and needs it to be in the
122    // function.
123    MD.removeInstruction(DeadInst);
124
125    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
126      Value *Op = DeadInst->getOperand(op);
127      DeadInst->setOperand(op, 0);
128
129      // If this operand just became dead, add it to the NowDeadInsts list.
130      if (!Op->use_empty()) continue;
131
132      if (Instruction *OpI = dyn_cast<Instruction>(Op))
133        if (isInstructionTriviallyDead(OpI))
134          NowDeadInsts.push_back(OpI);
135    }
136
137    DeadInst->eraseFromParent();
138
139    if (ValueSet) ValueSet->erase(DeadInst);
140  } while (!NowDeadInsts.empty());
141}
142
143
144/// hasMemoryWrite - Does this instruction write some memory?  This only returns
145/// true for things that we can analyze with other helpers below.
146static bool hasMemoryWrite(Instruction *I) {
147  if (isa<StoreInst>(I))
148    return true;
149  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
150    switch (II->getIntrinsicID()) {
151    default:
152      return false;
153    case Intrinsic::memset:
154    case Intrinsic::memmove:
155    case Intrinsic::memcpy:
156    case Intrinsic::init_trampoline:
157    case Intrinsic::lifetime_end:
158      return true;
159    }
160  }
161  return false;
162}
163
164/// getLocForWrite - Return a Location stored to by the specified instruction.
165/// If isRemovable returns true, this function and getLocForRead completely
166/// describe the memory operations for this instruction.
167static AliasAnalysis::Location
168getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
169  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
170    return AA.getLocation(SI);
171
172  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
173    // memcpy/memmove/memset.
174    AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
175    // If we don't have target data around, an unknown size in Location means
176    // that we should use the size of the pointee type.  This isn't valid for
177    // memset/memcpy, which writes more than an i8.
178    if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
179      return AliasAnalysis::Location();
180    return Loc;
181  }
182
183  IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
184  if (II == 0) return AliasAnalysis::Location();
185
186  switch (II->getIntrinsicID()) {
187  default: return AliasAnalysis::Location(); // Unhandled intrinsic.
188  case Intrinsic::init_trampoline:
189    // If we don't have target data around, an unknown size in Location means
190    // that we should use the size of the pointee type.  This isn't valid for
191    // init.trampoline, which writes more than an i8.
192    if (AA.getTargetData() == 0) return AliasAnalysis::Location();
193
194    // FIXME: We don't know the size of the trampoline, so we can't really
195    // handle it here.
196    return AliasAnalysis::Location(II->getArgOperand(0));
197  case Intrinsic::lifetime_end: {
198    uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
199    return AliasAnalysis::Location(II->getArgOperand(1), Len);
200  }
201  }
202}
203
204/// getLocForRead - Return the location read by the specified "hasMemoryWrite"
205/// instruction if any.
206static AliasAnalysis::Location
207getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
208  assert(hasMemoryWrite(Inst) && "Unknown instruction case");
209
210  // The only instructions that both read and write are the mem transfer
211  // instructions (memcpy/memmove).
212  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
213    return AA.getLocationForSource(MTI);
214  return AliasAnalysis::Location();
215}
216
217
218/// isRemovable - If the value of this instruction and the memory it writes to
219/// is unused, may we delete this instruction?
220static bool isRemovable(Instruction *I) {
221  // Don't remove volatile/atomic stores.
222  if (StoreInst *SI = dyn_cast<StoreInst>(I))
223    return SI->isUnordered();
224
225  IntrinsicInst *II = cast<IntrinsicInst>(I);
226  switch (II->getIntrinsicID()) {
227  default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate");
228  case Intrinsic::lifetime_end:
229    // Never remove dead lifetime_end's, e.g. because it is followed by a
230    // free.
231    return false;
232  case Intrinsic::init_trampoline:
233    // Always safe to remove init_trampoline.
234    return true;
235
236  case Intrinsic::memset:
237  case Intrinsic::memmove:
238  case Intrinsic::memcpy:
239    // Don't remove volatile memory intrinsics.
240    return !cast<MemIntrinsic>(II)->isVolatile();
241  }
242}
243
244
245/// isShortenable - Returns true if this instruction can be safely shortened in
246/// length.
247static bool isShortenable(Instruction *I) {
248  // Don't shorten stores for now
249  if (isa<StoreInst>(I))
250    return false;
251
252  IntrinsicInst *II = cast<IntrinsicInst>(I);
253  switch (II->getIntrinsicID()) {
254    default: return false;
255    case Intrinsic::memset:
256    case Intrinsic::memcpy:
257      // Do shorten memory intrinsics.
258      return true;
259  }
260}
261
262/// getStoredPointerOperand - Return the pointer that is being written to.
263static Value *getStoredPointerOperand(Instruction *I) {
264  if (StoreInst *SI = dyn_cast<StoreInst>(I))
265    return SI->getPointerOperand();
266  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
267    return MI->getDest();
268
269  IntrinsicInst *II = cast<IntrinsicInst>(I);
270  switch (II->getIntrinsicID()) {
271  default: llvm_unreachable("Unexpected intrinsic!");
272  case Intrinsic::init_trampoline:
273    return II->getArgOperand(0);
274  }
275}
276
277static uint64_t getPointerSize(const Value *V, AliasAnalysis &AA) {
278  const TargetData *TD = AA.getTargetData();
279
280  if (const CallInst *CI = extractMallocCall(V)) {
281    if (const ConstantInt *C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
282      return C->getZExtValue();
283  }
284
285  if (const CallInst *CI = extractCallocCall(V)) {
286    if (const ConstantInt *C1 = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
287      if (const ConstantInt *C2 = dyn_cast<ConstantInt>(CI->getArgOperand(1)))
288       return (C1->getValue() * C2->getValue()).getZExtValue();
289  }
290
291  if (TD == 0)
292    return AliasAnalysis::UnknownSize;
293
294  if (const AllocaInst *A = dyn_cast<AllocaInst>(V)) {
295    // Get size information for the alloca
296    if (const ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
297      return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
298  }
299
300  if (const Argument *A = dyn_cast<Argument>(V)) {
301    if (A->hasByValAttr())
302      if (PointerType *PT = dyn_cast<PointerType>(A->getType()))
303        return TD->getTypeAllocSize(PT->getElementType());
304  }
305
306  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
307    if (!GV->mayBeOverridden())
308      return TD->getTypeAllocSize(GV->getType()->getElementType());
309  }
310
311  return AliasAnalysis::UnknownSize;
312}
313
314namespace {
315  enum OverwriteResult
316  {
317    OverwriteComplete,
318    OverwriteEnd,
319    OverwriteUnknown
320  };
321}
322
323/// isOverwrite - Return 'OverwriteComplete' if a store to the 'Later' location
324/// completely overwrites a store to the 'Earlier' location.
325/// 'OverwriteEnd' if the end of the 'Earlier' location is completely
326/// overwritten by 'Later', or 'OverwriteUnknown' if nothing can be determined
327static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
328                                   const AliasAnalysis::Location &Earlier,
329                                   AliasAnalysis &AA,
330                                   int64_t &EarlierOff,
331                                   int64_t &LaterOff) {
332  const Value *P1 = Earlier.Ptr->stripPointerCasts();
333  const Value *P2 = Later.Ptr->stripPointerCasts();
334
335  // If the start pointers are the same, we just have to compare sizes to see if
336  // the later store was larger than the earlier store.
337  if (P1 == P2) {
338    // If we don't know the sizes of either access, then we can't do a
339    // comparison.
340    if (Later.Size == AliasAnalysis::UnknownSize ||
341        Earlier.Size == AliasAnalysis::UnknownSize) {
342      // If we have no TargetData information around, then the size of the store
343      // is inferrable from the pointee type.  If they are the same type, then
344      // we know that the store is safe.
345      if (AA.getTargetData() == 0 &&
346          Later.Ptr->getType() == Earlier.Ptr->getType())
347        return OverwriteComplete;
348
349      return OverwriteUnknown;
350    }
351
352    // Make sure that the Later size is >= the Earlier size.
353    if (Later.Size >= Earlier.Size)
354      return OverwriteComplete;
355  }
356
357  // Otherwise, we have to have size information, and the later store has to be
358  // larger than the earlier one.
359  if (Later.Size == AliasAnalysis::UnknownSize ||
360      Earlier.Size == AliasAnalysis::UnknownSize ||
361      AA.getTargetData() == 0)
362    return OverwriteUnknown;
363
364  // Check to see if the later store is to the entire object (either a global,
365  // an alloca, or a byval argument).  If so, then it clearly overwrites any
366  // other store to the same object.
367  const TargetData &TD = *AA.getTargetData();
368
369  const Value *UO1 = GetUnderlyingObject(P1, &TD),
370              *UO2 = GetUnderlyingObject(P2, &TD);
371
372  // If we can't resolve the same pointers to the same object, then we can't
373  // analyze them at all.
374  if (UO1 != UO2)
375    return OverwriteUnknown;
376
377  // If the "Later" store is to a recognizable object, get its size.
378  uint64_t ObjectSize = getPointerSize(UO2, AA);
379  if (ObjectSize != AliasAnalysis::UnknownSize)
380    if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
381      return OverwriteComplete;
382
383  // Okay, we have stores to two completely different pointers.  Try to
384  // decompose the pointer into a "base + constant_offset" form.  If the base
385  // pointers are equal, then we can reason about the two stores.
386  EarlierOff = 0;
387  LaterOff = 0;
388  const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, TD);
389  const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, TD);
390
391  // If the base pointers still differ, we have two completely different stores.
392  if (BP1 != BP2)
393    return OverwriteUnknown;
394
395  // The later store completely overlaps the earlier store if:
396  //
397  // 1. Both start at the same offset and the later one's size is greater than
398  //    or equal to the earlier one's, or
399  //
400  //      |--earlier--|
401  //      |--   later   --|
402  //
403  // 2. The earlier store has an offset greater than the later offset, but which
404  //    still lies completely within the later store.
405  //
406  //        |--earlier--|
407  //    |-----  later  ------|
408  //
409  // We have to be careful here as *Off is signed while *.Size is unsigned.
410  if (EarlierOff >= LaterOff &&
411      Later.Size > Earlier.Size &&
412      uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
413    return OverwriteComplete;
414
415  // The other interesting case is if the later store overwrites the end of
416  // the earlier store
417  //
418  //      |--earlier--|
419  //                |--   later   --|
420  //
421  // In this case we may want to trim the size of earlier to avoid generating
422  // writes to addresses which will definitely be overwritten later
423  if (LaterOff > EarlierOff &&
424      LaterOff < int64_t(EarlierOff + Earlier.Size) &&
425      int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size))
426    return OverwriteEnd;
427
428  // Otherwise, they don't completely overlap.
429  return OverwriteUnknown;
430}
431
432/// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
433/// memory region into an identical pointer) then it doesn't actually make its
434/// input dead in the traditional sense.  Consider this case:
435///
436///   memcpy(A <- B)
437///   memcpy(A <- A)
438///
439/// In this case, the second store to A does not make the first store to A dead.
440/// The usual situation isn't an explicit A<-A store like this (which can be
441/// trivially removed) but a case where two pointers may alias.
442///
443/// This function detects when it is unsafe to remove a dependent instruction
444/// because the DSE inducing instruction may be a self-read.
445static bool isPossibleSelfRead(Instruction *Inst,
446                               const AliasAnalysis::Location &InstStoreLoc,
447                               Instruction *DepWrite, AliasAnalysis &AA) {
448  // Self reads can only happen for instructions that read memory.  Get the
449  // location read.
450  AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
451  if (InstReadLoc.Ptr == 0) return false;  // Not a reading instruction.
452
453  // If the read and written loc obviously don't alias, it isn't a read.
454  if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
455
456  // Okay, 'Inst' may copy over itself.  However, we can still remove a the
457  // DepWrite instruction if we can prove that it reads from the same location
458  // as Inst.  This handles useful cases like:
459  //   memcpy(A <- B)
460  //   memcpy(A <- B)
461  // Here we don't know if A/B may alias, but we do know that B/B are must
462  // aliases, so removing the first memcpy is safe (assuming it writes <= #
463  // bytes as the second one.
464  AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
465
466  if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
467    return false;
468
469  // If DepWrite doesn't read memory or if we can't prove it is a must alias,
470  // then it can't be considered dead.
471  return true;
472}
473
474
475//===----------------------------------------------------------------------===//
476// DSE Pass
477//===----------------------------------------------------------------------===//
478
479bool DSE::runOnBasicBlock(BasicBlock &BB) {
480  bool MadeChange = false;
481
482  // Do a top-down walk on the BB.
483  for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
484    Instruction *Inst = BBI++;
485
486    // Handle 'free' calls specially.
487    if (CallInst *F = isFreeCall(Inst)) {
488      MadeChange |= HandleFree(F);
489      continue;
490    }
491
492    // If we find something that writes memory, get its memory dependence.
493    if (!hasMemoryWrite(Inst))
494      continue;
495
496    MemDepResult InstDep = MD->getDependency(Inst);
497
498    // Ignore any store where we can't find a local dependence.
499    // FIXME: cross-block DSE would be fun. :)
500    if (!InstDep.isDef() && !InstDep.isClobber())
501      continue;
502
503    // If we're storing the same value back to a pointer that we just
504    // loaded from, then the store can be removed.
505    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
506      if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
507        if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
508            SI->getOperand(0) == DepLoad && isRemovable(SI)) {
509          DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
510                       << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
511
512          // DeleteDeadInstruction can delete the current instruction.  Save BBI
513          // in case we need it.
514          WeakVH NextInst(BBI);
515
516          DeleteDeadInstruction(SI, *MD);
517
518          if (NextInst == 0)  // Next instruction deleted.
519            BBI = BB.begin();
520          else if (BBI != BB.begin())  // Revisit this instruction if possible.
521            --BBI;
522          ++NumFastStores;
523          MadeChange = true;
524          continue;
525        }
526      }
527    }
528
529    // Figure out what location is being stored to.
530    AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
531
532    // If we didn't get a useful location, fail.
533    if (Loc.Ptr == 0)
534      continue;
535
536    while (InstDep.isDef() || InstDep.isClobber()) {
537      // Get the memory clobbered by the instruction we depend on.  MemDep will
538      // skip any instructions that 'Loc' clearly doesn't interact with.  If we
539      // end up depending on a may- or must-aliased load, then we can't optimize
540      // away the store and we bail out.  However, if we depend on on something
541      // that overwrites the memory location we *can* potentially optimize it.
542      //
543      // Find out what memory location the dependent instruction stores.
544      Instruction *DepWrite = InstDep.getInst();
545      AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
546      // If we didn't get a useful location, or if it isn't a size, bail out.
547      if (DepLoc.Ptr == 0)
548        break;
549
550      // If we find a write that is a) removable (i.e., non-volatile), b) is
551      // completely obliterated by the store to 'Loc', and c) which we know that
552      // 'Inst' doesn't load from, then we can remove it.
553      if (isRemovable(DepWrite) &&
554          !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
555        int64_t InstWriteOffset, DepWriteOffset;
556        OverwriteResult OR = isOverwrite(Loc, DepLoc, *AA,
557                                         DepWriteOffset, InstWriteOffset);
558        if (OR == OverwriteComplete) {
559          DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
560                << *DepWrite << "\n  KILLER: " << *Inst << '\n');
561
562          // Delete the store and now-dead instructions that feed it.
563          DeleteDeadInstruction(DepWrite, *MD);
564          ++NumFastStores;
565          MadeChange = true;
566
567          // DeleteDeadInstruction can delete the current instruction in loop
568          // cases, reset BBI.
569          BBI = Inst;
570          if (BBI != BB.begin())
571            --BBI;
572          break;
573        } else if (OR == OverwriteEnd && isShortenable(DepWrite)) {
574          // TODO: base this on the target vector size so that if the earlier
575          // store was too small to get vector writes anyway then its likely
576          // a good idea to shorten it
577          // Power of 2 vector writes are probably always a bad idea to optimize
578          // as any store/memset/memcpy is likely using vector instructions so
579          // shortening it to not vector size is likely to be slower
580          MemIntrinsic* DepIntrinsic = cast<MemIntrinsic>(DepWrite);
581          unsigned DepWriteAlign = DepIntrinsic->getAlignment();
582          if (llvm::isPowerOf2_64(InstWriteOffset) ||
583              ((DepWriteAlign != 0) && InstWriteOffset % DepWriteAlign == 0)) {
584
585            DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW END: "
586                  << *DepWrite << "\n  KILLER (offset "
587                  << InstWriteOffset << ", "
588                  << DepLoc.Size << ")"
589                  << *Inst << '\n');
590
591            Value* DepWriteLength = DepIntrinsic->getLength();
592            Value* TrimmedLength = ConstantInt::get(DepWriteLength->getType(),
593                                                    InstWriteOffset -
594                                                    DepWriteOffset);
595            DepIntrinsic->setLength(TrimmedLength);
596            MadeChange = true;
597          }
598        }
599      }
600
601      // If this is a may-aliased store that is clobbering the store value, we
602      // can keep searching past it for another must-aliased pointer that stores
603      // to the same location.  For example, in:
604      //   store -> P
605      //   store -> Q
606      //   store -> P
607      // we can remove the first store to P even though we don't know if P and Q
608      // alias.
609      if (DepWrite == &BB.front()) break;
610
611      // Can't look past this instruction if it might read 'Loc'.
612      if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
613        break;
614
615      InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
616    }
617  }
618
619  // If this block ends in a return, unwind, or unreachable, all allocas are
620  // dead at its end, which means stores to them are also dead.
621  if (BB.getTerminator()->getNumSuccessors() == 0)
622    MadeChange |= handleEndBlock(BB);
623
624  return MadeChange;
625}
626
627/// Find all blocks that will unconditionally lead to the block BB and append
628/// them to F.
629static void FindUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
630                                   BasicBlock *BB, DominatorTree *DT) {
631  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
632    BasicBlock *Pred = *I;
633    if (Pred == BB) continue;
634    TerminatorInst *PredTI = Pred->getTerminator();
635    if (PredTI->getNumSuccessors() != 1)
636      continue;
637
638    if (DT->isReachableFromEntry(Pred))
639      Blocks.push_back(Pred);
640  }
641}
642
643/// HandleFree - Handle frees of entire structures whose dependency is a store
644/// to a field of that structure.
645bool DSE::HandleFree(CallInst *F) {
646  bool MadeChange = false;
647
648  AliasAnalysis::Location Loc = AliasAnalysis::Location(F->getOperand(0));
649  SmallVector<BasicBlock *, 16> Blocks;
650  Blocks.push_back(F->getParent());
651
652  while (!Blocks.empty()) {
653    BasicBlock *BB = Blocks.pop_back_val();
654    Instruction *InstPt = BB->getTerminator();
655    if (BB == F->getParent()) InstPt = F;
656
657    MemDepResult Dep = MD->getPointerDependencyFrom(Loc, false, InstPt, BB);
658    while (Dep.isDef() || Dep.isClobber()) {
659      Instruction *Dependency = Dep.getInst();
660      if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
661        break;
662
663      Value *DepPointer =
664        GetUnderlyingObject(getStoredPointerOperand(Dependency));
665
666      // Check for aliasing.
667      if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
668        break;
669
670      Instruction *Next = llvm::next(BasicBlock::iterator(Dependency));
671
672      // DCE instructions only used to calculate that store
673      DeleteDeadInstruction(Dependency, *MD);
674      ++NumFastStores;
675      MadeChange = true;
676
677      // Inst's old Dependency is now deleted. Compute the next dependency,
678      // which may also be dead, as in
679      //    s[0] = 0;
680      //    s[1] = 0; // This has just been deleted.
681      //    free(s);
682      Dep = MD->getPointerDependencyFrom(Loc, false, Next, BB);
683    }
684
685    if (Dep.isNonLocal())
686      FindUnconditionalPreds(Blocks, BB, DT);
687  }
688
689  return MadeChange;
690}
691
692/// handleEndBlock - Remove dead stores to stack-allocated locations in the
693/// function end block.  Ex:
694/// %A = alloca i32
695/// ...
696/// store i32 1, i32* %A
697/// ret void
698bool DSE::handleEndBlock(BasicBlock &BB) {
699  bool MadeChange = false;
700
701  // Keep track of all of the stack objects that are dead at the end of the
702  // function.
703  SmallPtrSet<Value*, 16> DeadStackObjects;
704
705  // Find all of the alloca'd pointers in the entry block.
706  BasicBlock *Entry = BB.getParent()->begin();
707  for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I) {
708    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
709      DeadStackObjects.insert(AI);
710
711    // Okay, so these are dead heap objects, but if the pointer never escapes
712    // then it's leaked by this function anyways.
713    CallInst *CI = extractMallocCall(I);
714    if (!CI)
715      CI = extractCallocCall(I);
716    if (CI && !PointerMayBeCaptured(CI, true, true))
717      DeadStackObjects.insert(CI);
718  }
719
720  // Treat byval arguments the same, stores to them are dead at the end of the
721  // function.
722  for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
723       AE = BB.getParent()->arg_end(); AI != AE; ++AI)
724    if (AI->hasByValAttr())
725      DeadStackObjects.insert(AI);
726
727  // Scan the basic block backwards
728  for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
729    --BBI;
730
731    // If we find a store, check to see if it points into a dead stack value.
732    if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
733      // See through pointer-to-pointer bitcasts
734      SmallVector<Value *, 4> Pointers;
735      GetUnderlyingObjects(getStoredPointerOperand(BBI), Pointers);
736
737      // Stores to stack values are valid candidates for removal.
738      bool AllDead = true;
739      for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
740           E = Pointers.end(); I != E; ++I)
741        if (!DeadStackObjects.count(*I)) {
742          AllDead = false;
743          break;
744        }
745
746      if (AllDead) {
747        Instruction *Dead = BBI++;
748
749        DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
750                     << *Dead << "\n  Objects: ";
751              for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
752                   E = Pointers.end(); I != E; ++I) {
753                dbgs() << **I;
754                if (llvm::next(I) != E)
755                  dbgs() << ", ";
756              }
757              dbgs() << '\n');
758
759        // DCE instructions only used to calculate that store.
760        DeleteDeadInstruction(Dead, *MD, &DeadStackObjects);
761        ++NumFastStores;
762        MadeChange = true;
763        continue;
764      }
765    }
766
767    // Remove any dead non-memory-mutating instructions.
768    if (isInstructionTriviallyDead(BBI)) {
769      Instruction *Inst = BBI++;
770      DeleteDeadInstruction(Inst, *MD, &DeadStackObjects);
771      ++NumFastOther;
772      MadeChange = true;
773      continue;
774    }
775
776    if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
777      DeadStackObjects.erase(A);
778      continue;
779    }
780
781    if (CallInst *CI = extractMallocCall(BBI)) {
782      DeadStackObjects.erase(CI);
783      continue;
784    }
785
786    if (CallInst *CI = extractCallocCall(BBI)) {
787      DeadStackObjects.erase(CI);
788      continue;
789    }
790
791    if (CallSite CS = cast<Value>(BBI)) {
792      // If this call does not access memory, it can't be loading any of our
793      // pointers.
794      if (AA->doesNotAccessMemory(CS))
795        continue;
796
797      // If the call might load from any of our allocas, then any store above
798      // the call is live.
799      SmallVector<Value*, 8> LiveAllocas;
800      for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
801           E = DeadStackObjects.end(); I != E; ++I) {
802        // See if the call site touches it.
803        AliasAnalysis::ModRefResult A =
804          AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
805
806        if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
807          LiveAllocas.push_back(*I);
808      }
809
810      for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
811           E = LiveAllocas.end(); I != E; ++I)
812        DeadStackObjects.erase(*I);
813
814      // If all of the allocas were clobbered by the call then we're not going
815      // to find anything else to process.
816      if (DeadStackObjects.empty())
817        return MadeChange;
818
819      continue;
820    }
821
822    AliasAnalysis::Location LoadedLoc;
823
824    // If we encounter a use of the pointer, it is no longer considered dead
825    if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
826      if (!L->isUnordered()) // Be conservative with atomic/volatile load
827        break;
828      LoadedLoc = AA->getLocation(L);
829    } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
830      LoadedLoc = AA->getLocation(V);
831    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
832      LoadedLoc = AA->getLocationForSource(MTI);
833    } else if (!BBI->mayReadFromMemory()) {
834      // Instruction doesn't read memory.  Note that stores that weren't removed
835      // above will hit this case.
836      continue;
837    } else {
838      // Unknown inst; assume it clobbers everything.
839      break;
840    }
841
842    // Remove any allocas from the DeadPointer set that are loaded, as this
843    // makes any stores above the access live.
844    RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
845
846    // If all of the allocas were clobbered by the access then we're not going
847    // to find anything else to process.
848    if (DeadStackObjects.empty())
849      break;
850  }
851
852  return MadeChange;
853}
854
855/// RemoveAccessedObjects - Check to see if the specified location may alias any
856/// of the stack objects in the DeadStackObjects set.  If so, they become live
857/// because the location is being loaded.
858void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
859                                SmallPtrSet<Value*, 16> &DeadStackObjects) {
860  const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
861
862  // A constant can't be in the dead pointer set.
863  if (isa<Constant>(UnderlyingPointer))
864    return;
865
866  // If the kill pointer can be easily reduced to an alloca, don't bother doing
867  // extraneous AA queries.
868  if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
869    DeadStackObjects.erase(const_cast<Value*>(UnderlyingPointer));
870    return;
871  }
872
873  SmallVector<Value*, 16> NowLive;
874  for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
875       E = DeadStackObjects.end(); I != E; ++I) {
876    // See if the loaded location could alias the stack location.
877    AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
878    if (!AA->isNoAlias(StackLoc, LoadedLoc))
879      NowLive.push_back(*I);
880  }
881
882  for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
883       I != E; ++I)
884    DeadStackObjects.erase(*I);
885}
886