JumpThreading.cpp revision 7b550ccfc5a3346c17e0390a59e2d6d19bc52705
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Transforms/Utils/Local.h"
22#include "llvm/Transforms/Utils/SSAUpdater.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(NumThreads, "Number of jumps threaded");
35STATISTIC(NumFolds,   "Number of terminators folded");
36STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
37
38static cl::opt<unsigned>
39Threshold("jump-threading-threshold",
40          cl::desc("Max block size to duplicate for jump threading"),
41          cl::init(6), cl::Hidden);
42
43namespace {
44  /// This pass performs 'jump threading', which looks at blocks that have
45  /// multiple predecessors and multiple successors.  If one or more of the
46  /// predecessors of the block can be proven to always jump to one of the
47  /// successors, we forward the edge from the predecessor to the successor by
48  /// duplicating the contents of this block.
49  ///
50  /// An example of when this can occur is code like this:
51  ///
52  ///   if () { ...
53  ///     X = 4;
54  ///   }
55  ///   if (X < 3) {
56  ///
57  /// In this case, the unconditional branch at the end of the first if can be
58  /// revectored to the false side of the second if.
59  ///
60  class JumpThreading : public FunctionPass {
61    TargetData *TD;
62#ifdef NDEBUG
63    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64#else
65    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66#endif
67  public:
68    static char ID; // Pass identification
69    JumpThreading() : FunctionPass(&ID) {}
70
71    bool runOnFunction(Function &F);
72    void FindLoopHeaders(Function &F);
73
74    bool ProcessBlock(BasicBlock *BB);
75    bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
76    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
77                                          BasicBlock *PredBB);
78
79    BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
80    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
81    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
82
83    bool ProcessJumpOnPHI(PHINode *PN);
84    bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
85    bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
86
87    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
88  };
89}
90
91char JumpThreading::ID = 0;
92static RegisterPass<JumpThreading>
93X("jump-threading", "Jump Threading");
94
95// Public interface to the Jump Threading pass
96FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
97
98/// runOnFunction - Top level algorithm.
99///
100bool JumpThreading::runOnFunction(Function &F) {
101  DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
102  TD = getAnalysisIfAvailable<TargetData>();
103
104  FindLoopHeaders(F);
105
106  bool AnotherIteration = true, EverChanged = false;
107  while (AnotherIteration) {
108    AnotherIteration = false;
109    bool Changed = false;
110    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
111      BasicBlock *BB = I;
112      while (ProcessBlock(BB))
113        Changed = true;
114
115      ++I;
116
117      // If the block is trivially dead, zap it.  This eliminates the successor
118      // edges which simplifies the CFG.
119      if (pred_begin(BB) == pred_end(BB) &&
120          BB != &BB->getParent()->getEntryBlock()) {
121        DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
122              << "' with terminator: " << *BB->getTerminator() << '\n');
123        LoopHeaders.erase(BB);
124        DeleteDeadBlock(BB);
125        Changed = true;
126      }
127    }
128    AnotherIteration = Changed;
129    EverChanged |= Changed;
130  }
131
132  LoopHeaders.clear();
133  return EverChanged;
134}
135
136/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
137/// thread across it.
138static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
139  /// Ignore PHI nodes, these will be flattened when duplication happens.
140  BasicBlock::const_iterator I = BB->getFirstNonPHI();
141
142  // Sum up the cost of each instruction until we get to the terminator.  Don't
143  // include the terminator because the copy won't include it.
144  unsigned Size = 0;
145  for (; !isa<TerminatorInst>(I); ++I) {
146    // Debugger intrinsics don't incur code size.
147    if (isa<DbgInfoIntrinsic>(I)) continue;
148
149    // If this is a pointer->pointer bitcast, it is free.
150    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
151      continue;
152
153    // All other instructions count for at least one unit.
154    ++Size;
155
156    // Calls are more expensive.  If they are non-intrinsic calls, we model them
157    // as having cost of 4.  If they are a non-vector intrinsic, we model them
158    // as having cost of 2 total, and if they are a vector intrinsic, we model
159    // them as having cost 1.
160    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
161      if (!isa<IntrinsicInst>(CI))
162        Size += 3;
163      else if (!isa<VectorType>(CI->getType()))
164        Size += 1;
165    }
166  }
167
168  // Threading through a switch statement is particularly profitable.  If this
169  // block ends in a switch, decrease its cost to make it more likely to happen.
170  if (isa<SwitchInst>(I))
171    Size = Size > 6 ? Size-6 : 0;
172
173  return Size;
174}
175
176
177
178/// FindLoopHeaders - We do not want jump threading to turn proper loop
179/// structures into irreducible loops.  Doing this breaks up the loop nesting
180/// hierarchy and pessimizes later transformations.  To prevent this from
181/// happening, we first have to find the loop headers.  Here we approximate this
182/// by finding targets of backedges in the CFG.
183///
184/// Note that there definitely are cases when we want to allow threading of
185/// edges across a loop header.  For example, threading a jump from outside the
186/// loop (the preheader) to an exit block of the loop is definitely profitable.
187/// It is also almost always profitable to thread backedges from within the loop
188/// to exit blocks, and is often profitable to thread backedges to other blocks
189/// within the loop (forming a nested loop).  This simple analysis is not rich
190/// enough to track all of these properties and keep it up-to-date as the CFG
191/// mutates, so we don't allow any of these transformations.
192///
193void JumpThreading::FindLoopHeaders(Function &F) {
194  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
195  FindFunctionBackedges(F, Edges);
196
197  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
198    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
199}
200
201
202/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
203/// value for the PHI, factor them together so we get one block to thread for
204/// the whole group.
205/// This is important for things like "phi i1 [true, true, false, true, x]"
206/// where we only need to clone the block for the true blocks once.
207///
208BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
209  SmallVector<BasicBlock*, 16> CommonPreds;
210  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
211    if (PN->getIncomingValue(i) == Val)
212      CommonPreds.push_back(PN->getIncomingBlock(i));
213
214  if (CommonPreds.size() == 1)
215    return CommonPreds[0];
216
217  DEBUG(errs() << "  Factoring out " << CommonPreds.size()
218        << " common predecessors.\n");
219  return SplitBlockPredecessors(PN->getParent(),
220                                &CommonPreds[0], CommonPreds.size(),
221                                ".thr_comm", this);
222}
223
224
225/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
226/// in an undefined jump, decide which block is best to revector to.
227///
228/// Since we can pick an arbitrary destination, we pick the successor with the
229/// fewest predecessors.  This should reduce the in-degree of the others.
230///
231static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
232  TerminatorInst *BBTerm = BB->getTerminator();
233  unsigned MinSucc = 0;
234  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
235  // Compute the successor with the minimum number of predecessors.
236  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
237  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
238    TestBB = BBTerm->getSuccessor(i);
239    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
240    if (NumPreds < MinNumPreds)
241      MinSucc = i;
242  }
243
244  return MinSucc;
245}
246
247/// ProcessBlock - If there are any predecessors whose control can be threaded
248/// through to a successor, transform them now.
249bool JumpThreading::ProcessBlock(BasicBlock *BB) {
250  // If this block has a single predecessor, and if that pred has a single
251  // successor, merge the blocks.  This encourages recursive jump threading
252  // because now the condition in this block can be threaded through
253  // predecessors of our predecessor block.
254  if (BasicBlock *SinglePred = BB->getSinglePredecessor())
255    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
256        SinglePred != BB) {
257      // If SinglePred was a loop header, BB becomes one.
258      if (LoopHeaders.erase(SinglePred))
259        LoopHeaders.insert(BB);
260
261      // Remember if SinglePred was the entry block of the function.  If so, we
262      // will need to move BB back to the entry position.
263      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
264      MergeBasicBlockIntoOnlyPred(BB);
265
266      if (isEntry && BB != &BB->getParent()->getEntryBlock())
267        BB->moveBefore(&BB->getParent()->getEntryBlock());
268      return true;
269    }
270
271  // See if this block ends with a branch or switch.  If so, see if the
272  // condition is a phi node.  If so, and if an entry of the phi node is a
273  // constant, we can thread the block.
274  Value *Condition;
275  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
276    // Can't thread an unconditional jump.
277    if (BI->isUnconditional()) return false;
278    Condition = BI->getCondition();
279  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
280    Condition = SI->getCondition();
281  else
282    return false; // Must be an invoke.
283
284  // If the terminator of this block is branching on a constant, simplify the
285  // terminator to an unconditional branch.  This can occur due to threading in
286  // other blocks.
287  if (isa<ConstantInt>(Condition)) {
288    DEBUG(errs() << "  In block '" << BB->getName()
289          << "' folding terminator: " << *BB->getTerminator() << '\n');
290    ++NumFolds;
291    ConstantFoldTerminator(BB);
292    return true;
293  }
294
295  // If the terminator is branching on an undef, we can pick any of the
296  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
297  if (isa<UndefValue>(Condition)) {
298    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
299
300    // Fold the branch/switch.
301    TerminatorInst *BBTerm = BB->getTerminator();
302    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
303      if (i == BestSucc) continue;
304      BBTerm->getSuccessor(i)->removePredecessor(BB);
305    }
306
307    DEBUG(errs() << "  In block '" << BB->getName()
308          << "' folding undef terminator: " << *BBTerm << '\n');
309    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
310    BBTerm->eraseFromParent();
311    return true;
312  }
313
314  Instruction *CondInst = dyn_cast<Instruction>(Condition);
315
316  // If the condition is an instruction defined in another block, see if a
317  // predecessor has the same condition:
318  //     br COND, BBX, BBY
319  //  BBX:
320  //     br COND, BBZ, BBW
321  if (!Condition->hasOneUse() && // Multiple uses.
322      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
323    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
324    if (isa<BranchInst>(BB->getTerminator())) {
325      for (; PI != E; ++PI)
326        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
327          if (PBI->isConditional() && PBI->getCondition() == Condition &&
328              ProcessBranchOnDuplicateCond(*PI, BB))
329            return true;
330    } else {
331      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
332      for (; PI != E; ++PI)
333        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
334          if (PSI->getCondition() == Condition &&
335              ProcessSwitchOnDuplicateCond(*PI, BB))
336            return true;
337    }
338  }
339
340  // All the rest of our checks depend on the condition being an instruction.
341  if (CondInst == 0)
342    return false;
343
344  // See if this is a phi node in the current block.
345  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
346    if (PN->getParent() == BB)
347      return ProcessJumpOnPHI(PN);
348
349  // If this is a conditional branch whose condition is and/or of a phi, try to
350  // simplify it.
351  if ((CondInst->getOpcode() == Instruction::And ||
352       CondInst->getOpcode() == Instruction::Or) &&
353      isa<BranchInst>(BB->getTerminator()) &&
354      ProcessBranchOnLogical(CondInst, BB,
355                             CondInst->getOpcode() == Instruction::And))
356    return true;
357
358  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
359    if (isa<PHINode>(CondCmp->getOperand(0))) {
360      // If we have "br (phi != 42)" and the phi node has any constant values
361      // as operands, we can thread through this block.
362      //
363      // If we have "br (cmp phi, x)" and the phi node contains x such that the
364      // comparison uniquely identifies the branch target, we can thread
365      // through this block.
366
367      if (ProcessBranchOnCompare(CondCmp, BB))
368        return true;
369    }
370
371    // If we have a comparison, loop over the predecessors to see if there is
372    // a condition with the same value.
373    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
374    for (; PI != E; ++PI)
375      if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
376        if (PBI->isConditional() && *PI != BB) {
377          if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
378            if (CI->getOperand(0) == CondCmp->getOperand(0) &&
379                CI->getOperand(1) == CondCmp->getOperand(1) &&
380                CI->getPredicate() == CondCmp->getPredicate()) {
381              // TODO: Could handle things like (x != 4) --> (x == 17)
382              if (ProcessBranchOnDuplicateCond(*PI, BB))
383                return true;
384            }
385          }
386        }
387  }
388
389  // Check for some cases that are worth simplifying.  Right now we want to look
390  // for loads that are used by a switch or by the condition for the branch.  If
391  // we see one, check to see if it's partially redundant.  If so, insert a PHI
392  // which can then be used to thread the values.
393  //
394  // This is particularly important because reg2mem inserts loads and stores all
395  // over the place, and this blocks jump threading if we don't zap them.
396  Value *SimplifyValue = CondInst;
397  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
398    if (isa<Constant>(CondCmp->getOperand(1)))
399      SimplifyValue = CondCmp->getOperand(0);
400
401  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
402    if (SimplifyPartiallyRedundantLoad(LI))
403      return true;
404
405  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
406  // "(X == 4)" thread through this block.
407
408  return false;
409}
410
411/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
412/// block that jump on exactly the same condition.  This means that we almost
413/// always know the direction of the edge in the DESTBB:
414///  PREDBB:
415///     br COND, DESTBB, BBY
416///  DESTBB:
417///     br COND, BBZ, BBW
418///
419/// If DESTBB has multiple predecessors, we can't just constant fold the branch
420/// in DESTBB, we have to thread over it.
421bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
422                                                 BasicBlock *BB) {
423  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
424
425  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
426  // fold the branch to an unconditional one, which allows other recursive
427  // simplifications.
428  bool BranchDir;
429  if (PredBI->getSuccessor(1) != BB)
430    BranchDir = true;
431  else if (PredBI->getSuccessor(0) != BB)
432    BranchDir = false;
433  else {
434    DEBUG(errs() << "  In block '" << PredBB->getName()
435          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
436    ++NumFolds;
437    ConstantFoldTerminator(PredBB);
438    return true;
439  }
440
441  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
442
443  // If the dest block has one predecessor, just fix the branch condition to a
444  // constant and fold it.
445  if (BB->getSinglePredecessor()) {
446    DEBUG(errs() << "  In block '" << BB->getName()
447          << "' folding condition to '" << BranchDir << "': "
448          << *BB->getTerminator() << '\n');
449    ++NumFolds;
450    Value *OldCond = DestBI->getCondition();
451    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
452                                          BranchDir));
453    ConstantFoldTerminator(BB);
454    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
455    return true;
456  }
457
458
459  // Next, figure out which successor we are threading to.
460  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
461
462  // Ok, try to thread it!
463  return ThreadEdge(BB, PredBB, SuccBB);
464}
465
466/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
467/// block that switch on exactly the same condition.  This means that we almost
468/// always know the direction of the edge in the DESTBB:
469///  PREDBB:
470///     switch COND [... DESTBB, BBY ... ]
471///  DESTBB:
472///     switch COND [... BBZ, BBW ]
473///
474/// Optimizing switches like this is very important, because simplifycfg builds
475/// switches out of repeated 'if' conditions.
476bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
477                                                 BasicBlock *DestBB) {
478  // Can't thread edge to self.
479  if (PredBB == DestBB)
480    return false;
481
482  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
483  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
484
485  // There are a variety of optimizations that we can potentially do on these
486  // blocks: we order them from most to least preferable.
487
488  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
489  // directly to their destination.  This does not introduce *any* code size
490  // growth.  Skip debug info first.
491  BasicBlock::iterator BBI = DestBB->begin();
492  while (isa<DbgInfoIntrinsic>(BBI))
493    BBI++;
494
495  // FIXME: Thread if it just contains a PHI.
496  if (isa<SwitchInst>(BBI)) {
497    bool MadeChange = false;
498    // Ignore the default edge for now.
499    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
500      ConstantInt *DestVal = DestSI->getCaseValue(i);
501      BasicBlock *DestSucc = DestSI->getSuccessor(i);
502
503      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
504      // PredSI has an explicit case for it.  If so, forward.  If it is covered
505      // by the default case, we can't update PredSI.
506      unsigned PredCase = PredSI->findCaseValue(DestVal);
507      if (PredCase == 0) continue;
508
509      // If PredSI doesn't go to DestBB on this value, then it won't reach the
510      // case on this condition.
511      if (PredSI->getSuccessor(PredCase) != DestBB &&
512          DestSI->getSuccessor(i) != DestBB)
513        continue;
514
515      // Otherwise, we're safe to make the change.  Make sure that the edge from
516      // DestSI to DestSucc is not critical and has no PHI nodes.
517      DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
518      DEBUG(errs() << "THROUGH: " << *DestSI);
519
520      // If the destination has PHI nodes, just split the edge for updating
521      // simplicity.
522      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
523        SplitCriticalEdge(DestSI, i, this);
524        DestSucc = DestSI->getSuccessor(i);
525      }
526      FoldSingleEntryPHINodes(DestSucc);
527      PredSI->setSuccessor(PredCase, DestSucc);
528      MadeChange = true;
529    }
530
531    if (MadeChange)
532      return true;
533  }
534
535  return false;
536}
537
538
539/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
540/// load instruction, eliminate it by replacing it with a PHI node.  This is an
541/// important optimization that encourages jump threading, and needs to be run
542/// interlaced with other jump threading tasks.
543bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
544  // Don't hack volatile loads.
545  if (LI->isVolatile()) return false;
546
547  // If the load is defined in a block with exactly one predecessor, it can't be
548  // partially redundant.
549  BasicBlock *LoadBB = LI->getParent();
550  if (LoadBB->getSinglePredecessor())
551    return false;
552
553  Value *LoadedPtr = LI->getOperand(0);
554
555  // If the loaded operand is defined in the LoadBB, it can't be available.
556  // FIXME: Could do PHI translation, that would be fun :)
557  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
558    if (PtrOp->getParent() == LoadBB)
559      return false;
560
561  // Scan a few instructions up from the load, to see if it is obviously live at
562  // the entry to its block.
563  BasicBlock::iterator BBIt = LI;
564
565  if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
566                                                     BBIt, 6)) {
567    // If the value if the load is locally available within the block, just use
568    // it.  This frequently occurs for reg2mem'd allocas.
569    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
570
571    // If the returned value is the load itself, replace with an undef. This can
572    // only happen in dead loops.
573    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
574    LI->replaceAllUsesWith(AvailableVal);
575    LI->eraseFromParent();
576    return true;
577  }
578
579  // Otherwise, if we scanned the whole block and got to the top of the block,
580  // we know the block is locally transparent to the load.  If not, something
581  // might clobber its value.
582  if (BBIt != LoadBB->begin())
583    return false;
584
585
586  SmallPtrSet<BasicBlock*, 8> PredsScanned;
587  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
588  AvailablePredsTy AvailablePreds;
589  BasicBlock *OneUnavailablePred = 0;
590
591  // If we got here, the loaded value is transparent through to the start of the
592  // block.  Check to see if it is available in any of the predecessor blocks.
593  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
594       PI != PE; ++PI) {
595    BasicBlock *PredBB = *PI;
596
597    // If we already scanned this predecessor, skip it.
598    if (!PredsScanned.insert(PredBB))
599      continue;
600
601    // Scan the predecessor to see if the value is available in the pred.
602    BBIt = PredBB->end();
603    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
604    if (!PredAvailable) {
605      OneUnavailablePred = PredBB;
606      continue;
607    }
608
609    // If so, this load is partially redundant.  Remember this info so that we
610    // can create a PHI node.
611    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
612  }
613
614  // If the loaded value isn't available in any predecessor, it isn't partially
615  // redundant.
616  if (AvailablePreds.empty()) return false;
617
618  // Okay, the loaded value is available in at least one (and maybe all!)
619  // predecessors.  If the value is unavailable in more than one unique
620  // predecessor, we want to insert a merge block for those common predecessors.
621  // This ensures that we only have to insert one reload, thus not increasing
622  // code size.
623  BasicBlock *UnavailablePred = 0;
624
625  // If there is exactly one predecessor where the value is unavailable, the
626  // already computed 'OneUnavailablePred' block is it.  If it ends in an
627  // unconditional branch, we know that it isn't a critical edge.
628  if (PredsScanned.size() == AvailablePreds.size()+1 &&
629      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
630    UnavailablePred = OneUnavailablePred;
631  } else if (PredsScanned.size() != AvailablePreds.size()) {
632    // Otherwise, we had multiple unavailable predecessors or we had a critical
633    // edge from the one.
634    SmallVector<BasicBlock*, 8> PredsToSplit;
635    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
636
637    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
638      AvailablePredSet.insert(AvailablePreds[i].first);
639
640    // Add all the unavailable predecessors to the PredsToSplit list.
641    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
642         PI != PE; ++PI)
643      if (!AvailablePredSet.count(*PI))
644        PredsToSplit.push_back(*PI);
645
646    // Split them out to their own block.
647    UnavailablePred =
648      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
649                             "thread-split", this);
650  }
651
652  // If the value isn't available in all predecessors, then there will be
653  // exactly one where it isn't available.  Insert a load on that edge and add
654  // it to the AvailablePreds list.
655  if (UnavailablePred) {
656    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
657           "Can't handle critical edge here!");
658    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
659                                 UnavailablePred->getTerminator());
660    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
661  }
662
663  // Now we know that each predecessor of this block has a value in
664  // AvailablePreds, sort them for efficient access as we're walking the preds.
665  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
666
667  // Create a PHI node at the start of the block for the PRE'd load value.
668  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
669  PN->takeName(LI);
670
671  // Insert new entries into the PHI for each predecessor.  A single block may
672  // have multiple entries here.
673  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
674       ++PI) {
675    AvailablePredsTy::iterator I =
676      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
677                       std::make_pair(*PI, (Value*)0));
678
679    assert(I != AvailablePreds.end() && I->first == *PI &&
680           "Didn't find entry for predecessor!");
681
682    PN->addIncoming(I->second, I->first);
683  }
684
685  //cerr << "PRE: " << *LI << *PN << "\n";
686
687  LI->replaceAllUsesWith(PN);
688  LI->eraseFromParent();
689
690  return true;
691}
692
693
694/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
695/// the current block.  See if there are any simplifications we can do based on
696/// inputs to the phi node.
697///
698bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
699  BasicBlock *BB = PN->getParent();
700
701  // See if the phi node has any constant integer or undef values.  If so, we
702  // can determine where the corresponding predecessor will branch.
703  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
704    Value *PredVal = PN->getIncomingValue(i);
705
706    // Check to see if this input is a constant integer.  If so, the direction
707    // of the branch is predictable.
708    if (ConstantInt *CI = dyn_cast<ConstantInt>(PredVal)) {
709      // Merge any common predecessors that will act the same.
710      BasicBlock *PredBB = FactorCommonPHIPreds(PN, CI);
711
712      BasicBlock *SuccBB;
713      if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
714        SuccBB = BI->getSuccessor(CI->isZero());
715      else {
716        SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
717        SuccBB = SI->getSuccessor(SI->findCaseValue(CI));
718      }
719
720      // Ok, try to thread it!
721      return ThreadEdge(BB, PredBB, SuccBB);
722    }
723
724    // If the input is an undef, then it doesn't matter which way it will go.
725    // Pick an arbitrary dest and thread the edge.
726    if (UndefValue *UV = dyn_cast<UndefValue>(PredVal)) {
727      // Merge any common predecessors that will act the same.
728      BasicBlock *PredBB = FactorCommonPHIPreds(PN, UV);
729      BasicBlock *SuccBB =
730        BB->getTerminator()->getSuccessor(GetBestDestForJumpOnUndef(BB));
731
732      // Ok, try to thread it!
733      return ThreadEdge(BB, PredBB, SuccBB);
734    }
735  }
736
737  // If the incoming values are all variables, we don't know the destination of
738  // any predecessors.  However, if any of the predecessor blocks end in an
739  // unconditional branch, we can *duplicate* the jump into that block in order
740  // to further encourage jump threading and to eliminate cases where we have
741  // branch on a phi of an icmp (branch on icmp is much better).
742
743  // We don't want to do this tranformation for switches, because we don't
744  // really want to duplicate a switch.
745  if (isa<SwitchInst>(BB->getTerminator()))
746    return false;
747
748  // Look for unconditional branch predecessors.
749  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
750    BasicBlock *PredBB = PN->getIncomingBlock(i);
751    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
752      if (PredBr->isUnconditional() &&
753          // Try to duplicate BB into PredBB.
754          DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
755        return true;
756  }
757
758  return false;
759}
760
761
762/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
763/// whose condition is an AND/OR where one side is PN.  If PN has constant
764/// operands that permit us to evaluate the condition for some operand, thread
765/// through the block.  For example with:
766///   br (and X, phi(Y, Z, false))
767/// the predecessor corresponding to the 'false' will always jump to the false
768/// destination of the branch.
769///
770bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
771                                           bool isAnd) {
772  // If this is a binary operator tree of the same AND/OR opcode, check the
773  // LHS/RHS.
774  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
775    if ((isAnd && BO->getOpcode() == Instruction::And) ||
776        (!isAnd && BO->getOpcode() == Instruction::Or)) {
777      if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
778        return true;
779      if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
780        return true;
781    }
782
783  // If this isn't a PHI node, we can't handle it.
784  PHINode *PN = dyn_cast<PHINode>(V);
785  if (!PN || PN->getParent() != BB) return false;
786
787  // We can only do the simplification for phi nodes of 'false' with AND or
788  // 'true' with OR.  See if we have any entries in the phi for this.
789  unsigned PredNo = ~0U;
790  ConstantInt *PredCst = ConstantInt::get(Type::getInt1Ty(BB->getContext()),
791                                          !isAnd);
792  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
793    if (PN->getIncomingValue(i) == PredCst) {
794      PredNo = i;
795      break;
796    }
797  }
798
799  // If no match, bail out.
800  if (PredNo == ~0U)
801    return false;
802
803  // If so, we can actually do this threading.  Merge any common predecessors
804  // that will act the same.
805  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
806
807  // Next, figure out which successor we are threading to.  If this was an AND,
808  // the constant must be FALSE, and we must be targeting the 'false' block.
809  // If this is an OR, the constant must be TRUE, and we must be targeting the
810  // 'true' block.
811  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
812
813  // Ok, try to thread it!
814  return ThreadEdge(BB, PredBB, SuccBB);
815}
816
817/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
818/// hand sides of the compare instruction, try to determine the result. If the
819/// result can not be determined, a null pointer is returned.
820static Constant *GetResultOfComparison(CmpInst::Predicate pred,
821                                       Value *LHS, Value *RHS,
822                                       LLVMContext &Context) {
823  if (Constant *CLHS = dyn_cast<Constant>(LHS))
824    if (Constant *CRHS = dyn_cast<Constant>(RHS))
825      return ConstantExpr::getCompare(pred, CLHS, CRHS);
826
827  if (LHS == RHS)
828    if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
829      return ICmpInst::isTrueWhenEqual(pred) ?
830                 ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context);
831
832  return 0;
833}
834
835/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
836/// node and a value.  If we can identify when the comparison is true between
837/// the phi inputs and the value, we can fold the compare for that edge and
838/// thread through it.
839bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
840  PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
841  Value *RHS = Cmp->getOperand(1);
842
843  // If the phi isn't in the current block, an incoming edge to this block
844  // doesn't control the destination.
845  if (PN->getParent() != BB)
846    return false;
847
848  // We can do this simplification if any comparisons fold to true or false.
849  // See if any do.
850  Value *PredVal = 0;
851  bool TrueDirection = false;
852  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
853    PredVal = PN->getIncomingValue(i);
854
855    Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
856                                          RHS, Cmp->getContext());
857    if (!Res) {
858      PredVal = 0;
859      continue;
860    }
861
862    // If this folded to a constant expr, we can't do anything.
863    if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
864      TrueDirection = ResC->getZExtValue();
865      break;
866    }
867    // If this folded to undef, just go the false way.
868    if (isa<UndefValue>(Res)) {
869      TrueDirection = false;
870      break;
871    }
872
873    // Otherwise, we can't fold this input.
874    PredVal = 0;
875  }
876
877  // If no match, bail out.
878  if (PredVal == 0)
879    return false;
880
881  // If so, we can actually do this threading.  Merge any common predecessors
882  // that will act the same.
883  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
884
885  // Next, get our successor.
886  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
887
888  // Ok, try to thread it!
889  return ThreadEdge(BB, PredBB, SuccBB);
890}
891
892
893/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
894/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
895/// NewPred using the entries from OldPred (suitably mapped).
896static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
897                                            BasicBlock *OldPred,
898                                            BasicBlock *NewPred,
899                                     DenseMap<Instruction*, Value*> &ValueMap) {
900  for (BasicBlock::iterator PNI = PHIBB->begin();
901       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
902    // Ok, we have a PHI node.  Figure out what the incoming value was for the
903    // DestBlock.
904    Value *IV = PN->getIncomingValueForBlock(OldPred);
905
906    // Remap the value if necessary.
907    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
908      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
909      if (I != ValueMap.end())
910        IV = I->second;
911    }
912
913    PN->addIncoming(IV, NewPred);
914  }
915}
916
917/// ThreadEdge - We have decided that it is safe and profitable to thread an
918/// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
919/// change.
920bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
921                               BasicBlock *SuccBB) {
922  // If threading to the same block as we come from, we would infinite loop.
923  if (SuccBB == BB) {
924    DEBUG(errs() << "  Not threading across BB '" << BB->getName()
925          << "' - would thread to self!\n");
926    return false;
927  }
928
929  // If threading this would thread across a loop header, don't thread the edge.
930  // See the comments above FindLoopHeaders for justifications and caveats.
931  if (LoopHeaders.count(BB)) {
932    DEBUG(errs() << "  Not threading from '" << PredBB->getName()
933          << "' across loop header BB '" << BB->getName()
934          << "' to dest BB '" << SuccBB->getName()
935          << "' - it might create an irreducible loop!\n");
936    return false;
937  }
938
939  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
940  if (JumpThreadCost > Threshold) {
941    DEBUG(errs() << "  Not threading BB '" << BB->getName()
942          << "' - Cost is too high: " << JumpThreadCost << "\n");
943    return false;
944  }
945
946  // And finally, do it!
947  DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
948        << SuccBB->getName() << "' with cost: " << JumpThreadCost
949        << ", across block:\n    "
950        << *BB << "\n");
951
952  // We are going to have to map operands from the original BB block to the new
953  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
954  // account for entry from PredBB.
955  DenseMap<Instruction*, Value*> ValueMapping;
956
957  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
958                                         BB->getName()+".thread",
959                                         BB->getParent(), BB);
960  NewBB->moveAfter(PredBB);
961
962  BasicBlock::iterator BI = BB->begin();
963  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
964    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
965
966  // Clone the non-phi instructions of BB into NewBB, keeping track of the
967  // mapping and using it to remap operands in the cloned instructions.
968  for (; !isa<TerminatorInst>(BI); ++BI) {
969    Instruction *New = BI->clone();
970    New->setName(BI->getName());
971    NewBB->getInstList().push_back(New);
972    ValueMapping[BI] = New;
973
974    // Remap operands to patch up intra-block references.
975    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
976      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
977        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
978        if (I != ValueMapping.end())
979          New->setOperand(i, I->second);
980      }
981  }
982
983  // We didn't copy the terminator from BB over to NewBB, because there is now
984  // an unconditional jump to SuccBB.  Insert the unconditional jump.
985  BranchInst::Create(SuccBB, NewBB);
986
987  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
988  // PHI nodes for NewBB now.
989  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
990
991  // If there were values defined in BB that are used outside the block, then we
992  // now have to update all uses of the value to use either the original value,
993  // the cloned value, or some PHI derived value.  This can require arbitrary
994  // PHI insertion, of which we are prepared to do, clean these up now.
995  SSAUpdater SSAUpdate;
996  SmallVector<Use*, 16> UsesToRename;
997  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
998    // Scan all uses of this instruction to see if it is used outside of its
999    // block, and if so, record them in UsesToRename.
1000    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1001         ++UI) {
1002      Instruction *User = cast<Instruction>(*UI);
1003      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1004        if (UserPN->getIncomingBlock(UI) == BB)
1005          continue;
1006      } else if (User->getParent() == BB)
1007        continue;
1008
1009      UsesToRename.push_back(&UI.getUse());
1010    }
1011
1012    // If there are no uses outside the block, we're done with this instruction.
1013    if (UsesToRename.empty())
1014      continue;
1015
1016    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1017
1018    // We found a use of I outside of BB.  Rename all uses of I that are outside
1019    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1020    // with the two values we know.
1021    SSAUpdate.Initialize(I);
1022    SSAUpdate.AddAvailableValue(BB, I);
1023    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1024
1025    while (!UsesToRename.empty())
1026      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1027    DEBUG(errs() << "\n");
1028  }
1029
1030
1031  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1032  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1033  // us to simplify any PHI nodes in BB.
1034  TerminatorInst *PredTerm = PredBB->getTerminator();
1035  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1036    if (PredTerm->getSuccessor(i) == BB) {
1037      BB->removePredecessor(PredBB);
1038      PredTerm->setSuccessor(i, NewBB);
1039    }
1040
1041  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1042  // over the new instructions and zap any that are constants or dead.  This
1043  // frequently happens because of phi translation.
1044  BI = NewBB->begin();
1045  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1046    Instruction *Inst = BI++;
1047    if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
1048      Inst->replaceAllUsesWith(C);
1049      Inst->eraseFromParent();
1050      continue;
1051    }
1052
1053    RecursivelyDeleteTriviallyDeadInstructions(Inst);
1054  }
1055
1056  // Threaded an edge!
1057  ++NumThreads;
1058  return true;
1059}
1060
1061/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1062/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1063/// If we can duplicate the contents of BB up into PredBB do so now, this
1064/// improves the odds that the branch will be on an analyzable instruction like
1065/// a compare.
1066bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1067                                                     BasicBlock *PredBB) {
1068  // If BB is a loop header, then duplicating this block outside the loop would
1069  // cause us to transform this into an irreducible loop, don't do this.
1070  // See the comments above FindLoopHeaders for justifications and caveats.
1071  if (LoopHeaders.count(BB)) {
1072    DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1073          << "' into predecessor block '" << PredBB->getName()
1074          << "' - it might create an irreducible loop!\n");
1075    return false;
1076  }
1077
1078  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1079  if (DuplicationCost > Threshold) {
1080    DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1081          << "' - Cost is too high: " << DuplicationCost << "\n");
1082    return false;
1083  }
1084
1085  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1086  // of PredBB.
1087  DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1088        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1089        << DuplicationCost << " block is:" << *BB << "\n");
1090
1091  // We are going to have to map operands from the original BB block into the
1092  // PredBB block.  Evaluate PHI nodes in BB.
1093  DenseMap<Instruction*, Value*> ValueMapping;
1094
1095  BasicBlock::iterator BI = BB->begin();
1096  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1097    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1098
1099  BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1100
1101  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1102  // mapping and using it to remap operands in the cloned instructions.
1103  for (; BI != BB->end(); ++BI) {
1104    Instruction *New = BI->clone();
1105    New->setName(BI->getName());
1106    PredBB->getInstList().insert(OldPredBranch, New);
1107    ValueMapping[BI] = New;
1108
1109    // Remap operands to patch up intra-block references.
1110    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1111      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1112        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1113        if (I != ValueMapping.end())
1114          New->setOperand(i, I->second);
1115      }
1116  }
1117
1118  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1119  // add entries to the PHI nodes for branch from PredBB now.
1120  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1121  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1122                                  ValueMapping);
1123  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1124                                  ValueMapping);
1125
1126  // If there were values defined in BB that are used outside the block, then we
1127  // now have to update all uses of the value to use either the original value,
1128  // the cloned value, or some PHI derived value.  This can require arbitrary
1129  // PHI insertion, of which we are prepared to do, clean these up now.
1130  SSAUpdater SSAUpdate;
1131  SmallVector<Use*, 16> UsesToRename;
1132  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1133    // Scan all uses of this instruction to see if it is used outside of its
1134    // block, and if so, record them in UsesToRename.
1135    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1136         ++UI) {
1137      Instruction *User = cast<Instruction>(*UI);
1138      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1139        if (UserPN->getIncomingBlock(UI) == BB)
1140          continue;
1141      } else if (User->getParent() == BB)
1142        continue;
1143
1144      UsesToRename.push_back(&UI.getUse());
1145    }
1146
1147    // If there are no uses outside the block, we're done with this instruction.
1148    if (UsesToRename.empty())
1149      continue;
1150
1151    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1152
1153    // We found a use of I outside of BB.  Rename all uses of I that are outside
1154    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1155    // with the two values we know.
1156    SSAUpdate.Initialize(I);
1157    SSAUpdate.AddAvailableValue(BB, I);
1158    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1159
1160    while (!UsesToRename.empty())
1161      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1162    DEBUG(errs() << "\n");
1163  }
1164
1165  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1166  // that we nuked.
1167  BB->removePredecessor(PredBB);
1168
1169  // Remove the unconditional branch at the end of the PredBB block.
1170  OldPredBranch->eraseFromParent();
1171
1172  ++NumDupes;
1173  return true;
1174}
1175
1176
1177