JumpThreading.cpp revision a3522000ab9c821f48856d0c25ada8297c1c2914
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/Pass.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Transforms/Utils/BasicBlockUtils.h"
23#include "llvm/Transforms/Utils/Local.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/ADT/SmallPtrSet.h"
29using namespace llvm;
30
31STATISTIC(NumThreads, "Number of jumps threaded");
32STATISTIC(NumFolds,   "Number of terminators folded");
33
34static cl::opt<unsigned>
35Threshold("jump-threading-threshold",
36          cl::desc("Max block size to duplicate for jump threading"),
37          cl::init(6), cl::Hidden);
38
39namespace {
40  /// This pass performs 'jump threading', which looks at blocks that have
41  /// multiple predecessors and multiple successors.  If one or more of the
42  /// predecessors of the block can be proven to always jump to one of the
43  /// successors, we forward the edge from the predecessor to the successor by
44  /// duplicating the contents of this block.
45  ///
46  /// An example of when this can occur is code like this:
47  ///
48  ///   if () { ...
49  ///     X = 4;
50  ///   }
51  ///   if (X < 3) {
52  ///
53  /// In this case, the unconditional branch at the end of the first if can be
54  /// revectored to the false side of the second if.
55  ///
56  class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
57    TargetData *TD;
58  public:
59    static char ID; // Pass identification
60    JumpThreading() : FunctionPass(&ID) {}
61
62    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63      AU.addRequired<TargetData>();
64    }
65
66    bool runOnFunction(Function &F);
67    bool ProcessBlock(BasicBlock *BB);
68    void ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
69    BasicBlock *FactorCommonPHIPreds(PHINode *PN, Constant *CstVal);
70
71    bool ProcessJumpOnPHI(PHINode *PN);
72    bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
73    bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
74
75    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
76  };
77}
78
79char JumpThreading::ID = 0;
80static RegisterPass<JumpThreading>
81X("jump-threading", "Jump Threading");
82
83// Public interface to the Jump Threading pass
84FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
85
86/// runOnFunction - Top level algorithm.
87///
88bool JumpThreading::runOnFunction(Function &F) {
89  DOUT << "Jump threading on function '" << F.getNameStart() << "'\n";
90  TD = &getAnalysis<TargetData>();
91
92  bool AnotherIteration = true, EverChanged = false;
93  while (AnotherIteration) {
94    AnotherIteration = false;
95    bool Changed = false;
96    for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
97      while (ProcessBlock(I))
98        Changed = true;
99    AnotherIteration = Changed;
100    EverChanged |= Changed;
101  }
102  return EverChanged;
103}
104
105/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
106/// value for the PHI, factor them together so we get one block to thread for
107/// the whole group.
108/// This is important for things like "phi i1 [true, true, false, true, x]"
109/// where we only need to clone the block for the true blocks once.
110///
111BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Constant *CstVal) {
112  SmallVector<BasicBlock*, 16> CommonPreds;
113  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
114    if (PN->getIncomingValue(i) == CstVal)
115      CommonPreds.push_back(PN->getIncomingBlock(i));
116
117  if (CommonPreds.size() == 1)
118    return CommonPreds[0];
119
120  DOUT << "  Factoring out " << CommonPreds.size()
121       << " common predecessors.\n";
122  return SplitBlockPredecessors(PN->getParent(),
123                                &CommonPreds[0], CommonPreds.size(),
124                                ".thr_comm", this);
125}
126
127
128/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
129/// thread across it.
130static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
131  /// Ignore PHI nodes, these will be flattened when duplication happens.
132  BasicBlock::const_iterator I = BB->getFirstNonPHI();
133
134  // Sum up the cost of each instruction until we get to the terminator.  Don't
135  // include the terminator because the copy won't include it.
136  unsigned Size = 0;
137  for (; !isa<TerminatorInst>(I); ++I) {
138    // Debugger intrinsics don't incur code size.
139    if (isa<DbgInfoIntrinsic>(I)) continue;
140
141    // If this is a pointer->pointer bitcast, it is free.
142    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
143      continue;
144
145    // All other instructions count for at least one unit.
146    ++Size;
147
148    // Calls are more expensive.  If they are non-intrinsic calls, we model them
149    // as having cost of 4.  If they are a non-vector intrinsic, we model them
150    // as having cost of 2 total, and if they are a vector intrinsic, we model
151    // them as having cost 1.
152    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
153      if (!isa<IntrinsicInst>(CI))
154        Size += 3;
155      else if (isa<VectorType>(CI->getType()))
156        Size += 1;
157    }
158  }
159
160  // Threading through a switch statement is particularly profitable.  If this
161  // block ends in a switch, decrease its cost to make it more likely to happen.
162  if (isa<SwitchInst>(I))
163    Size = Size > 6 ? Size-6 : 0;
164
165  return Size;
166}
167
168/// ProcessBlock - If there are any predecessors whose control can be threaded
169/// through to a successor, transform them now.
170bool JumpThreading::ProcessBlock(BasicBlock *BB) {
171  // If this block has a single predecessor, and if that pred has a single
172  // successor, merge the blocks.  This encourages recursive jump threading
173  // because now the condition in this block can be threaded through
174  // predecessors of our predecessor block.
175  if (BasicBlock *SinglePred = BB->getSinglePredecessor())
176    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
177        SinglePred != BB) {
178      // Remember if SinglePred was the entry block of the function.  If so, we
179      // will need to move BB back to the entry position.
180      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
181      MergeBasicBlockIntoOnlyPred(BB);
182
183      if (isEntry && BB != &BB->getParent()->getEntryBlock())
184        BB->moveBefore(&BB->getParent()->getEntryBlock());
185      return true;
186    }
187
188  // See if this block ends with a branch or switch.  If so, see if the
189  // condition is a phi node.  If so, and if an entry of the phi node is a
190  // constant, we can thread the block.
191  Value *Condition;
192  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
193    // Can't thread an unconditional jump.
194    if (BI->isUnconditional()) return false;
195    Condition = BI->getCondition();
196  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
197    Condition = SI->getCondition();
198  else
199    return false; // Must be an invoke.
200
201  // If the terminator of this block is branching on a constant, simplify the
202  // terminator to an unconditional branch.  This can occur due to threading in
203  // other blocks.
204  if (isa<ConstantInt>(Condition)) {
205    DOUT << "  In block '" << BB->getNameStart()
206         << "' folding terminator: " << *BB->getTerminator();
207    ++NumFolds;
208    ConstantFoldTerminator(BB);
209    return true;
210  }
211
212  // If there is only a single predecessor of this block, nothing to fold.
213  if (BB->getSinglePredecessor())
214    return false;
215
216  // See if this is a phi node in the current block.
217  PHINode *PN = dyn_cast<PHINode>(Condition);
218  if (PN && PN->getParent() == BB)
219    return ProcessJumpOnPHI(PN);
220
221  // If this is a conditional branch whose condition is and/or of a phi, try to
222  // simplify it.
223  if (BinaryOperator *CondI = dyn_cast<BinaryOperator>(Condition)) {
224    if ((CondI->getOpcode() == Instruction::And ||
225         CondI->getOpcode() == Instruction::Or) &&
226        isa<BranchInst>(BB->getTerminator()) &&
227        ProcessBranchOnLogical(CondI, BB,
228                               CondI->getOpcode() == Instruction::And))
229      return true;
230  }
231
232  // If we have "br (phi != 42)" and the phi node has any constant values as
233  // operands, we can thread through this block.
234  if (CmpInst *CondCmp = dyn_cast<CmpInst>(Condition))
235    if (isa<PHINode>(CondCmp->getOperand(0)) &&
236        isa<Constant>(CondCmp->getOperand(1)) &&
237        ProcessBranchOnCompare(CondCmp, BB))
238      return true;
239
240  // Check for some cases that are worth simplifying.  Right now we want to look
241  // for loads that are used by a switch or by the condition for the branch.  If
242  // we see one, check to see if it's partially redundant.  If so, insert a PHI
243  // which can then be used to thread the values.
244  //
245  // This is particularly important because reg2mem inserts loads and stores all
246  // over the place, and this blocks jump threading if we don't zap them.
247  Value *SimplifyValue = Condition;
248  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
249    if (isa<Constant>(CondCmp->getOperand(1)))
250      SimplifyValue = CondCmp->getOperand(0);
251
252  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
253    if (SimplifyPartiallyRedundantLoad(LI))
254      return true;
255
256  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
257  // "(X == 4)" thread through this block.
258
259  return false;
260}
261
262/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
263/// load instruction, eliminate it by replacing it with a PHI node.  This is an
264/// important optimization that encourages jump threading, and needs to be run
265/// interlaced with other jump threading tasks.
266bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
267  // Don't hack volatile loads.
268  if (LI->isVolatile()) return false;
269
270  // If the load is defined in a block with exactly one predecessor, it can't be
271  // partially redundant.
272  BasicBlock *LoadBB = LI->getParent();
273  if (LoadBB->getSinglePredecessor())
274    return false;
275
276  Value *LoadedPtr = LI->getOperand(0);
277
278  // If the loaded operand is defined in the LoadBB, it can't be available.
279  // FIXME: Could do PHI translation, that would be fun :)
280  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
281    if (PtrOp->getParent() == LoadBB)
282      return false;
283
284  // Scan a few instructions up from the load, to see if it is obviously live at
285  // the entry to its block.
286  BasicBlock::iterator BBIt = LI;
287
288  if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
289                                                     BBIt, 6)) {
290    // If the value if the load is locally available within the block, just use
291    // it.  This frequently occurs for reg2mem'd allocas.
292    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
293    LI->replaceAllUsesWith(AvailableVal);
294    LI->eraseFromParent();
295    return true;
296  }
297
298  // Otherwise, if we scanned the whole block and got to the top of the block,
299  // we know the block is locally transparent to the load.  If not, something
300  // might clobber its value.
301  if (BBIt != LoadBB->begin())
302    return false;
303
304
305  SmallPtrSet<BasicBlock*, 8> PredsScanned;
306  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
307  AvailablePredsTy AvailablePreds;
308  BasicBlock *OneUnavailablePred = 0;
309
310  // If we got here, the loaded value is transparent through to the start of the
311  // block.  Check to see if it is available in any of the predecessor blocks.
312  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
313       PI != PE; ++PI) {
314    BasicBlock *PredBB = *PI;
315
316    // If we already scanned this predecessor, skip it.
317    if (!PredsScanned.insert(PredBB))
318      continue;
319
320    // Scan the predecessor to see if the value is available in the pred.
321    BBIt = PredBB->end();
322    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
323    if (!PredAvailable) {
324      OneUnavailablePred = PredBB;
325      continue;
326    }
327
328    // If so, this load is partially redundant.  Remember this info so that we
329    // can create a PHI node.
330    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
331  }
332
333  // If the loaded value isn't available in any predecessor, it isn't partially
334  // redundant.
335  if (AvailablePreds.empty()) return false;
336
337  // Okay, the loaded value is available in at least one (and maybe all!)
338  // predecessors.  If the value is unavailable in more than one unique
339  // predecessor, we want to insert a merge block for those common predecessors.
340  // This ensures that we only have to insert one reload, thus not increasing
341  // code size.
342  BasicBlock *UnavailablePred = 0;
343
344  // If there is exactly one predecessor where the value is unavailable, the
345  // already computed 'OneUnavailablePred' block is it.  If it ends in an
346  // unconditional branch, we know that it isn't a critical edge.
347  if (PredsScanned.size() == AvailablePreds.size()+1 &&
348      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
349    UnavailablePred = OneUnavailablePred;
350  } else if (PredsScanned.size() != AvailablePreds.size()) {
351    // Otherwise, we had multiple unavailable predecessors or we had a critical
352    // edge from the one.
353    SmallVector<BasicBlock*, 8> PredsToSplit;
354    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
355
356    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
357      AvailablePredSet.insert(AvailablePreds[i].first);
358
359    // Add all the unavailable predecessors to the PredsToSplit list.
360    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
361         PI != PE; ++PI)
362      if (!AvailablePredSet.count(*PI))
363        PredsToSplit.push_back(*PI);
364
365    // Split them out to their own block.
366    UnavailablePred =
367      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
368                             "thread-split", this);
369  }
370
371  // If the value isn't available in all predecessors, then there will be
372  // exactly one where it isn't available.  Insert a load on that edge and add
373  // it to the AvailablePreds list.
374  if (UnavailablePred) {
375    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
376           "Can't handle critical edge here!");
377    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
378                                 UnavailablePred->getTerminator());
379    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
380  }
381
382  // Now we know that each predecessor of this block has a value in
383  // AvailablePreds, sort them for efficient access as we're walking the preds.
384  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
385
386  // Create a PHI node at the start of the block for the PRE'd load value.
387  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
388  PN->takeName(LI);
389
390  // Insert new entries into the PHI for each predecessor.  A single block may
391  // have multiple entries here.
392  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
393       ++PI) {
394    AvailablePredsTy::iterator I =
395      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
396                       std::make_pair(*PI, (Value*)0));
397
398    assert(I != AvailablePreds.end() && I->first == *PI &&
399           "Didn't find entry for predecessor!");
400
401    PN->addIncoming(I->second, I->first);
402  }
403
404  //cerr << "PRE: " << *LI << *PN << "\n";
405
406  LI->replaceAllUsesWith(PN);
407  LI->eraseFromParent();
408
409  return true;
410}
411
412
413/// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
414/// the current block.  See if there are any simplifications we can do based on
415/// inputs to the phi node.
416///
417bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
418  // See if the phi node has any constant values.  If so, we can determine where
419  // the corresponding predecessor will branch.
420  ConstantInt *PredCst = 0;
421  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
422    if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
423      break;
424
425  // If no incoming value has a constant, we don't know the destination of any
426  // predecessors.
427  if (PredCst == 0)
428    return false;
429
430  // See if the cost of duplicating this block is low enough.
431  BasicBlock *BB = PN->getParent();
432  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
433  if (JumpThreadCost > Threshold) {
434    DOUT << "  Not threading BB '" << BB->getNameStart()
435         << "' - Cost is too high: " << JumpThreadCost << "\n";
436    return false;
437  }
438
439  // If so, we can actually do this threading.  Merge any common predecessors
440  // that will act the same.
441  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
442
443  // Next, figure out which successor we are threading to.
444  BasicBlock *SuccBB;
445  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
446    SuccBB = BI->getSuccessor(PredCst == ConstantInt::getFalse());
447  else {
448    SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
449    SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
450  }
451
452  // If threading to the same block as we come from, we would infinite loop.
453  if (SuccBB == BB) {
454    DOUT << "  Not threading BB '" << BB->getNameStart()
455         << "' - would thread to self!\n";
456    return false;
457  }
458
459  // And finally, do it!
460  DOUT << "  Threading edge from '" << PredBB->getNameStart() << "' to '"
461       << SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
462       << ", across block:\n    "
463       << *BB << "\n";
464
465  ThreadEdge(BB, PredBB, SuccBB);
466  ++NumThreads;
467  return true;
468}
469
470/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
471/// whose condition is an AND/OR where one side is PN.  If PN has constant
472/// operands that permit us to evaluate the condition for some operand, thread
473/// through the block.  For example with:
474///   br (and X, phi(Y, Z, false))
475/// the predecessor corresponding to the 'false' will always jump to the false
476/// destination of the branch.
477///
478bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
479                                           bool isAnd) {
480  // If this is a binary operator tree of the same AND/OR opcode, check the
481  // LHS/RHS.
482  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
483    if ((isAnd && BO->getOpcode() == Instruction::And) ||
484        (!isAnd && BO->getOpcode() == Instruction::Or)) {
485      if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
486        return true;
487      if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
488        return true;
489    }
490
491  // If this isn't a PHI node, we can't handle it.
492  PHINode *PN = dyn_cast<PHINode>(V);
493  if (!PN || PN->getParent() != BB) return false;
494
495  // We can only do the simplification for phi nodes of 'false' with AND or
496  // 'true' with OR.  See if we have any entries in the phi for this.
497  unsigned PredNo = ~0U;
498  ConstantInt *PredCst = ConstantInt::get(Type::Int1Ty, !isAnd);
499  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
500    if (PN->getIncomingValue(i) == PredCst) {
501      PredNo = i;
502      break;
503    }
504  }
505
506  // If no match, bail out.
507  if (PredNo == ~0U)
508    return false;
509
510  // See if the cost of duplicating this block is low enough.
511  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
512  if (JumpThreadCost > Threshold) {
513    DOUT << "  Not threading BB '" << BB->getNameStart()
514         << "' - Cost is too high: " << JumpThreadCost << "\n";
515    return false;
516  }
517
518  // If so, we can actually do this threading.  Merge any common predecessors
519  // that will act the same.
520  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
521
522  // Next, figure out which successor we are threading to.  If this was an AND,
523  // the constant must be FALSE, and we must be targeting the 'false' block.
524  // If this is an OR, the constant must be TRUE, and we must be targeting the
525  // 'true' block.
526  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
527
528  // If threading to the same block as we come from, we would infinite loop.
529  if (SuccBB == BB) {
530    DOUT << "  Not threading BB '" << BB->getNameStart()
531    << "' - would thread to self!\n";
532    return false;
533  }
534
535  // And finally, do it!
536  DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
537       << "' to '" << SuccBB->getNameStart() << "' with cost: "
538       << JumpThreadCost << ", across block:\n    "
539       << *BB << "\n";
540
541  ThreadEdge(BB, PredBB, SuccBB);
542  ++NumThreads;
543  return true;
544}
545
546/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
547/// node and a constant.  If the PHI node contains any constants as inputs, we
548/// can fold the compare for that edge and thread through it.
549bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
550  PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
551  Constant *RHS = cast<Constant>(Cmp->getOperand(1));
552
553  // If the phi isn't in the current block, an incoming edge to this block
554  // doesn't control the destination.
555  if (PN->getParent() != BB)
556    return false;
557
558  // We can do this simplification if any comparisons fold to true or false.
559  // See if any do.
560  Constant *PredCst = 0;
561  bool TrueDirection = false;
562  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
563    PredCst = dyn_cast<Constant>(PN->getIncomingValue(i));
564    if (PredCst == 0) continue;
565
566    Constant *Res;
567    if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cmp))
568      Res = ConstantExpr::getICmp(ICI->getPredicate(), PredCst, RHS);
569    else
570      Res = ConstantExpr::getFCmp(cast<FCmpInst>(Cmp)->getPredicate(),
571                                  PredCst, RHS);
572    // If this folded to a constant expr, we can't do anything.
573    if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
574      TrueDirection = ResC->getZExtValue();
575      break;
576    }
577    // If this folded to undef, just go the false way.
578    if (isa<UndefValue>(Res)) {
579      TrueDirection = false;
580      break;
581    }
582
583    // Otherwise, we can't fold this input.
584    PredCst = 0;
585  }
586
587  // If no match, bail out.
588  if (PredCst == 0)
589    return false;
590
591  // See if the cost of duplicating this block is low enough.
592  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
593  if (JumpThreadCost > Threshold) {
594    DOUT << "  Not threading BB '" << BB->getNameStart()
595         << "' - Cost is too high: " << JumpThreadCost << "\n";
596    return false;
597  }
598
599  // If so, we can actually do this threading.  Merge any common predecessors
600  // that will act the same.
601  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
602
603  // Next, get our successor.
604  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
605
606  // If threading to the same block as we come from, we would infinite loop.
607  if (SuccBB == BB) {
608    DOUT << "  Not threading BB '" << BB->getNameStart()
609    << "' - would thread to self!\n";
610    return false;
611  }
612
613
614  // And finally, do it!
615  DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
616       << "' to '" << SuccBB->getNameStart() << "' with cost: "
617       << JumpThreadCost << ", across block:\n    "
618       << *BB << "\n";
619
620  ThreadEdge(BB, PredBB, SuccBB);
621  ++NumThreads;
622  return true;
623}
624
625
626/// ThreadEdge - We have decided that it is safe and profitable to thread an
627/// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
628/// change.
629void JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
630                               BasicBlock *SuccBB) {
631
632  // Jump Threading can not update SSA properties correctly if the values
633  // defined in the duplicated block are used outside of the block itself.  For
634  // this reason, we spill all values that are used outside of BB to the stack.
635  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
636    if (!I->isUsedOutsideOfBlock(BB))
637      continue;
638
639    // We found a use of I outside of BB.  Create a new stack slot to
640    // break this inter-block usage pattern.
641    DemoteRegToStack(*I);
642  }
643
644  // We are going to have to map operands from the original BB block to the new
645  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
646  // account for entry from PredBB.
647  DenseMap<Instruction*, Value*> ValueMapping;
648
649  BasicBlock *NewBB =
650    BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB);
651  NewBB->moveAfter(PredBB);
652
653  BasicBlock::iterator BI = BB->begin();
654  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
655    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
656
657  // Clone the non-phi instructions of BB into NewBB, keeping track of the
658  // mapping and using it to remap operands in the cloned instructions.
659  for (; !isa<TerminatorInst>(BI); ++BI) {
660    Instruction *New = BI->clone();
661    New->setName(BI->getNameStart());
662    NewBB->getInstList().push_back(New);
663    ValueMapping[BI] = New;
664
665    // Remap operands to patch up intra-block references.
666    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
667      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i)))
668        if (Value *Remapped = ValueMapping[Inst])
669          New->setOperand(i, Remapped);
670  }
671
672  // We didn't copy the terminator from BB over to NewBB, because there is now
673  // an unconditional jump to SuccBB.  Insert the unconditional jump.
674  BranchInst::Create(SuccBB, NewBB);
675
676  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
677  // PHI nodes for NewBB now.
678  for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
679    PHINode *PN = cast<PHINode>(PNI);
680    // Ok, we have a PHI node.  Figure out what the incoming value was for the
681    // DestBlock.
682    Value *IV = PN->getIncomingValueForBlock(BB);
683
684    // Remap the value if necessary.
685    if (Instruction *Inst = dyn_cast<Instruction>(IV))
686      if (Value *MappedIV = ValueMapping[Inst])
687        IV = MappedIV;
688    PN->addIncoming(IV, NewBB);
689  }
690
691  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
692  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
693  // us to simplify any PHI nodes in BB.
694  TerminatorInst *PredTerm = PredBB->getTerminator();
695  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
696    if (PredTerm->getSuccessor(i) == BB) {
697      BB->removePredecessor(PredBB);
698      PredTerm->setSuccessor(i, NewBB);
699    }
700
701  // At this point, the IR is fully up to date and consistent.  Do a quick scan
702  // over the new instructions and zap any that are constants or dead.  This
703  // frequently happens because of phi translation.
704  BI = NewBB->begin();
705  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
706    Instruction *Inst = BI++;
707    if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
708      Inst->replaceAllUsesWith(C);
709      Inst->eraseFromParent();
710      continue;
711    }
712
713    RecursivelyDeleteTriviallyDeadInstructions(Inst);
714  }
715}
716