JumpThreading.cpp revision b14b88a40ab12996c2982c4bc10fd35bb9a371d4
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Transforms/Utils/Local.h"
22#include "llvm/Transforms/Utils/SSAUpdater.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(NumThreads, "Number of jumps threaded");
35STATISTIC(NumFolds,   "Number of terminators folded");
36STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
37
38static cl::opt<unsigned>
39Threshold("jump-threading-threshold",
40          cl::desc("Max block size to duplicate for jump threading"),
41          cl::init(6), cl::Hidden);
42
43namespace {
44  /// This pass performs 'jump threading', which looks at blocks that have
45  /// multiple predecessors and multiple successors.  If one or more of the
46  /// predecessors of the block can be proven to always jump to one of the
47  /// successors, we forward the edge from the predecessor to the successor by
48  /// duplicating the contents of this block.
49  ///
50  /// An example of when this can occur is code like this:
51  ///
52  ///   if () { ...
53  ///     X = 4;
54  ///   }
55  ///   if (X < 3) {
56  ///
57  /// In this case, the unconditional branch at the end of the first if can be
58  /// revectored to the false side of the second if.
59  ///
60  class JumpThreading : public FunctionPass {
61    TargetData *TD;
62#ifdef NDEBUG
63    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64#else
65    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66#endif
67  public:
68    static char ID; // Pass identification
69    JumpThreading() : FunctionPass(&ID) {}
70
71    bool runOnFunction(Function &F);
72    void FindLoopHeaders(Function &F);
73
74    bool ProcessBlock(BasicBlock *BB);
75    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
76                    BasicBlock *SuccBB);
77    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
78                                          BasicBlock *PredBB);
79
80    typedef SmallVectorImpl<std::pair<ConstantInt*,
81                                      BasicBlock*> > PredValueInfo;
82
83    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
84                                         PredValueInfo &Result);
85    bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
86
87
88    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
89    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
90
91    bool ProcessJumpOnPHI(PHINode *PN);
92
93    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
94  };
95}
96
97char JumpThreading::ID = 0;
98static RegisterPass<JumpThreading>
99X("jump-threading", "Jump Threading");
100
101// Public interface to the Jump Threading pass
102FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
103
104/// runOnFunction - Top level algorithm.
105///
106bool JumpThreading::runOnFunction(Function &F) {
107  DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
108  TD = getAnalysisIfAvailable<TargetData>();
109
110  FindLoopHeaders(F);
111
112  bool AnotherIteration = true, EverChanged = false;
113  while (AnotherIteration) {
114    AnotherIteration = false;
115    bool Changed = false;
116    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
117      BasicBlock *BB = I;
118      // Thread all of the branches we can over this block.
119      while (ProcessBlock(BB))
120        Changed = true;
121
122      ++I;
123
124      // If the block is trivially dead, zap it.  This eliminates the successor
125      // edges which simplifies the CFG.
126      if (pred_begin(BB) == pred_end(BB) &&
127          BB != &BB->getParent()->getEntryBlock()) {
128        DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
129              << "' with terminator: " << *BB->getTerminator() << '\n');
130        LoopHeaders.erase(BB);
131        DeleteDeadBlock(BB);
132        Changed = true;
133      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
134        // Can't thread an unconditional jump, but if the block is "almost
135        // empty", we can replace uses of it with uses of the successor and make
136        // this dead.
137        if (BI->isUnconditional() &&
138            BB != &BB->getParent()->getEntryBlock()) {
139          BasicBlock::iterator BBI = BB->getFirstNonPHI();
140          // Ignore dbg intrinsics.
141          while (isa<DbgInfoIntrinsic>(BBI))
142            ++BBI;
143          // If the terminator is the only non-phi instruction, try to nuke it.
144          if (BBI->isTerminator()) {
145            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
146            // block, we have to make sure it isn't in the LoopHeaders set.  We
147            // reinsert afterward in the rare case when the block isn't deleted.
148            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
149
150            if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
151              Changed = true;
152            else if (ErasedFromLoopHeaders)
153              LoopHeaders.insert(BB);
154          }
155        }
156      }
157    }
158    AnotherIteration = Changed;
159    EverChanged |= Changed;
160  }
161
162  LoopHeaders.clear();
163  return EverChanged;
164}
165
166/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
167/// thread across it.
168static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
169  /// Ignore PHI nodes, these will be flattened when duplication happens.
170  BasicBlock::const_iterator I = BB->getFirstNonPHI();
171
172  // FIXME: THREADING will delete values that are just used to compute the
173  // branch, so they shouldn't count against the duplication cost.
174
175
176  // Sum up the cost of each instruction until we get to the terminator.  Don't
177  // include the terminator because the copy won't include it.
178  unsigned Size = 0;
179  for (; !isa<TerminatorInst>(I); ++I) {
180    // Debugger intrinsics don't incur code size.
181    if (isa<DbgInfoIntrinsic>(I)) continue;
182
183    // If this is a pointer->pointer bitcast, it is free.
184    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
185      continue;
186
187    // All other instructions count for at least one unit.
188    ++Size;
189
190    // Calls are more expensive.  If they are non-intrinsic calls, we model them
191    // as having cost of 4.  If they are a non-vector intrinsic, we model them
192    // as having cost of 2 total, and if they are a vector intrinsic, we model
193    // them as having cost 1.
194    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
195      if (!isa<IntrinsicInst>(CI))
196        Size += 3;
197      else if (!isa<VectorType>(CI->getType()))
198        Size += 1;
199    }
200  }
201
202  // Threading through a switch statement is particularly profitable.  If this
203  // block ends in a switch, decrease its cost to make it more likely to happen.
204  if (isa<SwitchInst>(I))
205    Size = Size > 6 ? Size-6 : 0;
206
207  return Size;
208}
209
210/// FindLoopHeaders - We do not want jump threading to turn proper loop
211/// structures into irreducible loops.  Doing this breaks up the loop nesting
212/// hierarchy and pessimizes later transformations.  To prevent this from
213/// happening, we first have to find the loop headers.  Here we approximate this
214/// by finding targets of backedges in the CFG.
215///
216/// Note that there definitely are cases when we want to allow threading of
217/// edges across a loop header.  For example, threading a jump from outside the
218/// loop (the preheader) to an exit block of the loop is definitely profitable.
219/// It is also almost always profitable to thread backedges from within the loop
220/// to exit blocks, and is often profitable to thread backedges to other blocks
221/// within the loop (forming a nested loop).  This simple analysis is not rich
222/// enough to track all of these properties and keep it up-to-date as the CFG
223/// mutates, so we don't allow any of these transformations.
224///
225void JumpThreading::FindLoopHeaders(Function &F) {
226  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
227  FindFunctionBackedges(F, Edges);
228
229  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
230    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
231}
232
233/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
234/// if we can infer that the value is a known ConstantInt in any of our
235/// predecessors.  If so, return the known list of value and pred BB in the
236/// result vector.  If a value is known to be undef, it is returned as null.
237///
238/// The BB basic block is known to start with a PHI node.
239///
240/// This returns true if there were any known values.
241///
242///
243/// TODO: Per PR2563, we could infer value range information about a predecessor
244/// based on its terminator.
245bool JumpThreading::
246ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
247  PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
248
249  // If V is a constantint, then it is known in all predecessors.
250  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
251    ConstantInt *CI = dyn_cast<ConstantInt>(V);
252    Result.resize(TheFirstPHI->getNumIncomingValues());
253    for (unsigned i = 0, e = Result.size(); i != e; ++i)
254      Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
255    return true;
256  }
257
258  // If V is a non-instruction value, or an instruction in a different block,
259  // then it can't be derived from a PHI.
260  Instruction *I = dyn_cast<Instruction>(V);
261  if (I == 0 || I->getParent() != BB)
262    return false;
263
264  /// If I is a PHI node, then we know the incoming values for any constants.
265  if (PHINode *PN = dyn_cast<PHINode>(I)) {
266    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
267      Value *InVal = PN->getIncomingValue(i);
268      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
269        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
270        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
271      }
272    }
273    return !Result.empty();
274  }
275
276  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
277
278  // Handle some boolean conditions.
279  if (I->getType()->getPrimitiveSizeInBits() == 1) {
280    // X | true -> true
281    // X & false -> false
282    if (I->getOpcode() == Instruction::Or ||
283        I->getOpcode() == Instruction::And) {
284      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
285      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
286
287      if (LHSVals.empty() && RHSVals.empty())
288        return false;
289
290      ConstantInt *InterestingVal;
291      if (I->getOpcode() == Instruction::Or)
292        InterestingVal = ConstantInt::getTrue(I->getContext());
293      else
294        InterestingVal = ConstantInt::getFalse(I->getContext());
295
296      // Scan for the sentinel.
297      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
298        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
299          Result.push_back(LHSVals[i]);
300      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
301        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
302          Result.push_back(RHSVals[i]);
303      return !Result.empty();
304    }
305
306    // Handle the NOT form of XOR.
307    if (I->getOpcode() == Instruction::Xor &&
308        isa<ConstantInt>(I->getOperand(1)) &&
309        cast<ConstantInt>(I->getOperand(1))->isOne()) {
310      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
311      if (Result.empty())
312        return false;
313
314      // Invert the known values.
315      for (unsigned i = 0, e = Result.size(); i != e; ++i)
316        Result[i].first =
317          cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
318      return true;
319    }
320  }
321
322  // Handle compare with phi operand, where the PHI is defined in this block.
323  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
324    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
325    if (PN && PN->getParent() == BB) {
326      // We can do this simplification if any comparisons fold to true or false.
327      // See if any do.
328      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
329        BasicBlock *PredBB = PN->getIncomingBlock(i);
330        Value *LHS = PN->getIncomingValue(i);
331        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
332
333        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS);
334        if (Res == 0) continue;
335
336        if (isa<UndefValue>(Res))
337          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
338        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
339          Result.push_back(std::make_pair(CI, PredBB));
340      }
341
342      return !Result.empty();
343    }
344
345    // TODO: We could also recurse to see if we can determine constants another
346    // way.
347  }
348  return false;
349}
350
351
352
353/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
354/// in an undefined jump, decide which block is best to revector to.
355///
356/// Since we can pick an arbitrary destination, we pick the successor with the
357/// fewest predecessors.  This should reduce the in-degree of the others.
358///
359static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
360  TerminatorInst *BBTerm = BB->getTerminator();
361  unsigned MinSucc = 0;
362  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
363  // Compute the successor with the minimum number of predecessors.
364  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
365  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
366    TestBB = BBTerm->getSuccessor(i);
367    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
368    if (NumPreds < MinNumPreds)
369      MinSucc = i;
370  }
371
372  return MinSucc;
373}
374
375/// ProcessBlock - If there are any predecessors whose control can be threaded
376/// through to a successor, transform them now.
377bool JumpThreading::ProcessBlock(BasicBlock *BB) {
378  // If this block has a single predecessor, and if that pred has a single
379  // successor, merge the blocks.  This encourages recursive jump threading
380  // because now the condition in this block can be threaded through
381  // predecessors of our predecessor block.
382  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
383    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
384        SinglePred != BB) {
385      // If SinglePred was a loop header, BB becomes one.
386      if (LoopHeaders.erase(SinglePred))
387        LoopHeaders.insert(BB);
388
389      // Remember if SinglePred was the entry block of the function.  If so, we
390      // will need to move BB back to the entry position.
391      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
392      MergeBasicBlockIntoOnlyPred(BB);
393
394      if (isEntry && BB != &BB->getParent()->getEntryBlock())
395        BB->moveBefore(&BB->getParent()->getEntryBlock());
396      return true;
397    }
398  }
399
400  // Look to see if the terminator is a branch of switch, if not we can't thread
401  // it.
402  Value *Condition;
403  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
404    // Can't thread an unconditional jump.
405    if (BI->isUnconditional()) return false;
406    Condition = BI->getCondition();
407  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
408    Condition = SI->getCondition();
409  else
410    return false; // Must be an invoke.
411
412  // If the terminator of this block is branching on a constant, simplify the
413  // terminator to an unconditional branch.  This can occur due to threading in
414  // other blocks.
415  if (isa<ConstantInt>(Condition)) {
416    DEBUG(errs() << "  In block '" << BB->getName()
417          << "' folding terminator: " << *BB->getTerminator() << '\n');
418    ++NumFolds;
419    ConstantFoldTerminator(BB);
420    return true;
421  }
422
423  // If the terminator is branching on an undef, we can pick any of the
424  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
425  if (isa<UndefValue>(Condition)) {
426    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
427
428    // Fold the branch/switch.
429    TerminatorInst *BBTerm = BB->getTerminator();
430    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
431      if (i == BestSucc) continue;
432      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
433    }
434
435    DEBUG(errs() << "  In block '" << BB->getName()
436          << "' folding undef terminator: " << *BBTerm << '\n');
437    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
438    BBTerm->eraseFromParent();
439    return true;
440  }
441
442  Instruction *CondInst = dyn_cast<Instruction>(Condition);
443
444  // If the condition is an instruction defined in another block, see if a
445  // predecessor has the same condition:
446  //     br COND, BBX, BBY
447  //  BBX:
448  //     br COND, BBZ, BBW
449  if (!Condition->hasOneUse() && // Multiple uses.
450      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
451    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
452    if (isa<BranchInst>(BB->getTerminator())) {
453      for (; PI != E; ++PI)
454        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
455          if (PBI->isConditional() && PBI->getCondition() == Condition &&
456              ProcessBranchOnDuplicateCond(*PI, BB))
457            return true;
458    } else {
459      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
460      for (; PI != E; ++PI)
461        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
462          if (PSI->getCondition() == Condition &&
463              ProcessSwitchOnDuplicateCond(*PI, BB))
464            return true;
465    }
466  }
467
468  // All the rest of our checks depend on the condition being an instruction.
469  if (CondInst == 0)
470    return false;
471
472  // See if this is a phi node in the current block.
473  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
474    if (PN->getParent() == BB)
475      return ProcessJumpOnPHI(PN);
476
477  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
478    if (!isa<PHINode>(CondCmp->getOperand(0)) ||
479        cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
480      // If we have a comparison, loop over the predecessors to see if there is
481      // a condition with a lexically identical value.
482      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
483      for (; PI != E; ++PI)
484        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
485          if (PBI->isConditional() && *PI != BB) {
486            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
487              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
488                  CI->getOperand(1) == CondCmp->getOperand(1) &&
489                  CI->getPredicate() == CondCmp->getPredicate()) {
490                // TODO: Could handle things like (x != 4) --> (x == 17)
491                if (ProcessBranchOnDuplicateCond(*PI, BB))
492                  return true;
493              }
494            }
495          }
496    }
497  }
498
499  // Check for some cases that are worth simplifying.  Right now we want to look
500  // for loads that are used by a switch or by the condition for the branch.  If
501  // we see one, check to see if it's partially redundant.  If so, insert a PHI
502  // which can then be used to thread the values.
503  //
504  // This is particularly important because reg2mem inserts loads and stores all
505  // over the place, and this blocks jump threading if we don't zap them.
506  Value *SimplifyValue = CondInst;
507  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
508    if (isa<Constant>(CondCmp->getOperand(1)))
509      SimplifyValue = CondCmp->getOperand(0);
510
511  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
512    if (SimplifyPartiallyRedundantLoad(LI))
513      return true;
514
515
516  // Handle a variety of cases where we are branching on something derived from
517  // a PHI node in the current block.  If we can prove that any predecessors
518  // compute a predictable value based on a PHI node, thread those predecessors.
519  //
520  // We only bother doing this if the current block has a PHI node and if the
521  // conditional instruction lives in the current block.  If either condition
522  // fails, this won't be a computable value anyway.
523  if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
524    if (ProcessThreadableEdges(CondInst, BB))
525      return true;
526
527
528  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
529  // "(X == 4)" thread through this block.
530
531  return false;
532}
533
534/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
535/// block that jump on exactly the same condition.  This means that we almost
536/// always know the direction of the edge in the DESTBB:
537///  PREDBB:
538///     br COND, DESTBB, BBY
539///  DESTBB:
540///     br COND, BBZ, BBW
541///
542/// If DESTBB has multiple predecessors, we can't just constant fold the branch
543/// in DESTBB, we have to thread over it.
544bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
545                                                 BasicBlock *BB) {
546  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
547
548  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
549  // fold the branch to an unconditional one, which allows other recursive
550  // simplifications.
551  bool BranchDir;
552  if (PredBI->getSuccessor(1) != BB)
553    BranchDir = true;
554  else if (PredBI->getSuccessor(0) != BB)
555    BranchDir = false;
556  else {
557    DEBUG(errs() << "  In block '" << PredBB->getName()
558          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
559    ++NumFolds;
560    ConstantFoldTerminator(PredBB);
561    return true;
562  }
563
564  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
565
566  // If the dest block has one predecessor, just fix the branch condition to a
567  // constant and fold it.
568  if (BB->getSinglePredecessor()) {
569    DEBUG(errs() << "  In block '" << BB->getName()
570          << "' folding condition to '" << BranchDir << "': "
571          << *BB->getTerminator() << '\n');
572    ++NumFolds;
573    Value *OldCond = DestBI->getCondition();
574    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
575                                          BranchDir));
576    ConstantFoldTerminator(BB);
577    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
578    return true;
579  }
580
581
582  // Next, figure out which successor we are threading to.
583  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
584
585  SmallVector<BasicBlock*, 2> Preds;
586  Preds.push_back(PredBB);
587
588  // Ok, try to thread it!
589  return ThreadEdge(BB, Preds, SuccBB);
590}
591
592/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
593/// block that switch on exactly the same condition.  This means that we almost
594/// always know the direction of the edge in the DESTBB:
595///  PREDBB:
596///     switch COND [... DESTBB, BBY ... ]
597///  DESTBB:
598///     switch COND [... BBZ, BBW ]
599///
600/// Optimizing switches like this is very important, because simplifycfg builds
601/// switches out of repeated 'if' conditions.
602bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
603                                                 BasicBlock *DestBB) {
604  // Can't thread edge to self.
605  if (PredBB == DestBB)
606    return false;
607
608  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
609  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
610
611  // There are a variety of optimizations that we can potentially do on these
612  // blocks: we order them from most to least preferable.
613
614  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
615  // directly to their destination.  This does not introduce *any* code size
616  // growth.  Skip debug info first.
617  BasicBlock::iterator BBI = DestBB->begin();
618  while (isa<DbgInfoIntrinsic>(BBI))
619    BBI++;
620
621  // FIXME: Thread if it just contains a PHI.
622  if (isa<SwitchInst>(BBI)) {
623    bool MadeChange = false;
624    // Ignore the default edge for now.
625    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
626      ConstantInt *DestVal = DestSI->getCaseValue(i);
627      BasicBlock *DestSucc = DestSI->getSuccessor(i);
628
629      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
630      // PredSI has an explicit case for it.  If so, forward.  If it is covered
631      // by the default case, we can't update PredSI.
632      unsigned PredCase = PredSI->findCaseValue(DestVal);
633      if (PredCase == 0) continue;
634
635      // If PredSI doesn't go to DestBB on this value, then it won't reach the
636      // case on this condition.
637      if (PredSI->getSuccessor(PredCase) != DestBB &&
638          DestSI->getSuccessor(i) != DestBB)
639        continue;
640
641      // Otherwise, we're safe to make the change.  Make sure that the edge from
642      // DestSI to DestSucc is not critical and has no PHI nodes.
643      DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
644      DEBUG(errs() << "THROUGH: " << *DestSI);
645
646      // If the destination has PHI nodes, just split the edge for updating
647      // simplicity.
648      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
649        SplitCriticalEdge(DestSI, i, this);
650        DestSucc = DestSI->getSuccessor(i);
651      }
652      FoldSingleEntryPHINodes(DestSucc);
653      PredSI->setSuccessor(PredCase, DestSucc);
654      MadeChange = true;
655    }
656
657    if (MadeChange)
658      return true;
659  }
660
661  return false;
662}
663
664
665/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
666/// load instruction, eliminate it by replacing it with a PHI node.  This is an
667/// important optimization that encourages jump threading, and needs to be run
668/// interlaced with other jump threading tasks.
669bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
670  // Don't hack volatile loads.
671  if (LI->isVolatile()) return false;
672
673  // If the load is defined in a block with exactly one predecessor, it can't be
674  // partially redundant.
675  BasicBlock *LoadBB = LI->getParent();
676  if (LoadBB->getSinglePredecessor())
677    return false;
678
679  Value *LoadedPtr = LI->getOperand(0);
680
681  // If the loaded operand is defined in the LoadBB, it can't be available.
682  // FIXME: Could do PHI translation, that would be fun :)
683  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
684    if (PtrOp->getParent() == LoadBB)
685      return false;
686
687  // Scan a few instructions up from the load, to see if it is obviously live at
688  // the entry to its block.
689  BasicBlock::iterator BBIt = LI;
690
691  if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
692                                                     BBIt, 6)) {
693    // If the value if the load is locally available within the block, just use
694    // it.  This frequently occurs for reg2mem'd allocas.
695    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
696
697    // If the returned value is the load itself, replace with an undef. This can
698    // only happen in dead loops.
699    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
700    LI->replaceAllUsesWith(AvailableVal);
701    LI->eraseFromParent();
702    return true;
703  }
704
705  // Otherwise, if we scanned the whole block and got to the top of the block,
706  // we know the block is locally transparent to the load.  If not, something
707  // might clobber its value.
708  if (BBIt != LoadBB->begin())
709    return false;
710
711
712  SmallPtrSet<BasicBlock*, 8> PredsScanned;
713  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
714  AvailablePredsTy AvailablePreds;
715  BasicBlock *OneUnavailablePred = 0;
716
717  // If we got here, the loaded value is transparent through to the start of the
718  // block.  Check to see if it is available in any of the predecessor blocks.
719  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
720       PI != PE; ++PI) {
721    BasicBlock *PredBB = *PI;
722
723    // If we already scanned this predecessor, skip it.
724    if (!PredsScanned.insert(PredBB))
725      continue;
726
727    // Scan the predecessor to see if the value is available in the pred.
728    BBIt = PredBB->end();
729    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
730    if (!PredAvailable) {
731      OneUnavailablePred = PredBB;
732      continue;
733    }
734
735    // If so, this load is partially redundant.  Remember this info so that we
736    // can create a PHI node.
737    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
738  }
739
740  // If the loaded value isn't available in any predecessor, it isn't partially
741  // redundant.
742  if (AvailablePreds.empty()) return false;
743
744  // Okay, the loaded value is available in at least one (and maybe all!)
745  // predecessors.  If the value is unavailable in more than one unique
746  // predecessor, we want to insert a merge block for those common predecessors.
747  // This ensures that we only have to insert one reload, thus not increasing
748  // code size.
749  BasicBlock *UnavailablePred = 0;
750
751  // If there is exactly one predecessor where the value is unavailable, the
752  // already computed 'OneUnavailablePred' block is it.  If it ends in an
753  // unconditional branch, we know that it isn't a critical edge.
754  if (PredsScanned.size() == AvailablePreds.size()+1 &&
755      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
756    UnavailablePred = OneUnavailablePred;
757  } else if (PredsScanned.size() != AvailablePreds.size()) {
758    // Otherwise, we had multiple unavailable predecessors or we had a critical
759    // edge from the one.
760    SmallVector<BasicBlock*, 8> PredsToSplit;
761    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
762
763    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
764      AvailablePredSet.insert(AvailablePreds[i].first);
765
766    // Add all the unavailable predecessors to the PredsToSplit list.
767    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
768         PI != PE; ++PI)
769      if (!AvailablePredSet.count(*PI))
770        PredsToSplit.push_back(*PI);
771
772    // Split them out to their own block.
773    UnavailablePred =
774      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
775                             "thread-split", this);
776  }
777
778  // If the value isn't available in all predecessors, then there will be
779  // exactly one where it isn't available.  Insert a load on that edge and add
780  // it to the AvailablePreds list.
781  if (UnavailablePred) {
782    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
783           "Can't handle critical edge here!");
784    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
785                                 UnavailablePred->getTerminator());
786    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
787  }
788
789  // Now we know that each predecessor of this block has a value in
790  // AvailablePreds, sort them for efficient access as we're walking the preds.
791  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
792
793  // Create a PHI node at the start of the block for the PRE'd load value.
794  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
795  PN->takeName(LI);
796
797  // Insert new entries into the PHI for each predecessor.  A single block may
798  // have multiple entries here.
799  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
800       ++PI) {
801    AvailablePredsTy::iterator I =
802      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
803                       std::make_pair(*PI, (Value*)0));
804
805    assert(I != AvailablePreds.end() && I->first == *PI &&
806           "Didn't find entry for predecessor!");
807
808    PN->addIncoming(I->second, I->first);
809  }
810
811  //cerr << "PRE: " << *LI << *PN << "\n";
812
813  LI->replaceAllUsesWith(PN);
814  LI->eraseFromParent();
815
816  return true;
817}
818
819/// FindMostPopularDest - The specified list contains multiple possible
820/// threadable destinations.  Pick the one that occurs the most frequently in
821/// the list.
822static BasicBlock *
823FindMostPopularDest(BasicBlock *BB,
824                    const SmallVectorImpl<std::pair<BasicBlock*,
825                                  BasicBlock*> > &PredToDestList) {
826  assert(!PredToDestList.empty());
827
828  // Determine popularity.  If there are multiple possible destinations, we
829  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
830  // blocks with known and real destinations to threading undef.  We'll handle
831  // them later if interesting.
832  DenseMap<BasicBlock*, unsigned> DestPopularity;
833  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
834    if (PredToDestList[i].second)
835      DestPopularity[PredToDestList[i].second]++;
836
837  // Find the most popular dest.
838  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
839  BasicBlock *MostPopularDest = DPI->first;
840  unsigned Popularity = DPI->second;
841  SmallVector<BasicBlock*, 4> SamePopularity;
842
843  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
844    // If the popularity of this entry isn't higher than the popularity we've
845    // seen so far, ignore it.
846    if (DPI->second < Popularity)
847      ; // ignore.
848    else if (DPI->second == Popularity) {
849      // If it is the same as what we've seen so far, keep track of it.
850      SamePopularity.push_back(DPI->first);
851    } else {
852      // If it is more popular, remember it.
853      SamePopularity.clear();
854      MostPopularDest = DPI->first;
855      Popularity = DPI->second;
856    }
857  }
858
859  // Okay, now we know the most popular destination.  If there is more than
860  // destination, we need to determine one.  This is arbitrary, but we need
861  // to make a deterministic decision.  Pick the first one that appears in the
862  // successor list.
863  if (!SamePopularity.empty()) {
864    SamePopularity.push_back(MostPopularDest);
865    TerminatorInst *TI = BB->getTerminator();
866    for (unsigned i = 0; ; ++i) {
867      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
868
869      if (std::find(SamePopularity.begin(), SamePopularity.end(),
870                    TI->getSuccessor(i)) == SamePopularity.end())
871        continue;
872
873      MostPopularDest = TI->getSuccessor(i);
874      break;
875    }
876  }
877
878  // Okay, we have finally picked the most popular destination.
879  return MostPopularDest;
880}
881
882bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
883                                           BasicBlock *BB) {
884  // If threading this would thread across a loop header, don't even try to
885  // thread the edge.
886  if (LoopHeaders.count(BB))
887    return false;
888
889  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
890  if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
891    return false;
892  assert(!PredValues.empty() &&
893         "ComputeValueKnownInPredecessors returned true with no values");
894
895  DEBUG(errs() << "IN BB: " << *BB;
896        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
897          errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
898          if (PredValues[i].first)
899            errs() << *PredValues[i].first;
900          else
901            errs() << "UNDEF";
902          errs() << " for pred '" << PredValues[i].second->getName()
903          << "'.\n";
904        });
905
906  // Decide what we want to thread through.  Convert our list of known values to
907  // a list of known destinations for each pred.  This also discards duplicate
908  // predecessors and keeps track of the undefined inputs (which are represented
909  // as a null dest in the PredToDestList).
910  SmallPtrSet<BasicBlock*, 16> SeenPreds;
911  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
912
913  BasicBlock *OnlyDest = 0;
914  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
915
916  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
917    BasicBlock *Pred = PredValues[i].second;
918    if (!SeenPreds.insert(Pred))
919      continue;  // Duplicate predecessor entry.
920
921    // If the predecessor ends with an indirect goto, we can't change its
922    // destination.
923    if (isa<IndirectBrInst>(Pred->getTerminator()))
924      continue;
925
926    ConstantInt *Val = PredValues[i].first;
927
928    BasicBlock *DestBB;
929    if (Val == 0)      // Undef.
930      DestBB = 0;
931    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
932      DestBB = BI->getSuccessor(Val->isZero());
933    else {
934      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
935      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
936    }
937
938    // If we have exactly one destination, remember it for efficiency below.
939    if (i == 0)
940      OnlyDest = DestBB;
941    else if (OnlyDest != DestBB)
942      OnlyDest = MultipleDestSentinel;
943
944    PredToDestList.push_back(std::make_pair(Pred, DestBB));
945  }
946
947  // If all edges were unthreadable, we fail.
948  if (PredToDestList.empty())
949    return false;
950
951  // Determine which is the most common successor.  If we have many inputs and
952  // this block is a switch, we want to start by threading the batch that goes
953  // to the most popular destination first.  If we only know about one
954  // threadable destination (the common case) we can avoid this.
955  BasicBlock *MostPopularDest = OnlyDest;
956
957  if (MostPopularDest == MultipleDestSentinel)
958    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
959
960  // Now that we know what the most popular destination is, factor all
961  // predecessors that will jump to it into a single predecessor.
962  SmallVector<BasicBlock*, 16> PredsToFactor;
963  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
964    if (PredToDestList[i].second == MostPopularDest) {
965      BasicBlock *Pred = PredToDestList[i].first;
966
967      // This predecessor may be a switch or something else that has multiple
968      // edges to the block.  Factor each of these edges by listing them
969      // according to # occurrences in PredsToFactor.
970      TerminatorInst *PredTI = Pred->getTerminator();
971      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
972        if (PredTI->getSuccessor(i) == BB)
973          PredsToFactor.push_back(Pred);
974    }
975
976  // If the threadable edges are branching on an undefined value, we get to pick
977  // the destination that these predecessors should get to.
978  if (MostPopularDest == 0)
979    MostPopularDest = BB->getTerminator()->
980                            getSuccessor(GetBestDestForJumpOnUndef(BB));
981
982  // Ok, try to thread it!
983  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
984}
985
986/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
987/// the current block.  See if there are any simplifications we can do based on
988/// inputs to the phi node.
989///
990bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
991  BasicBlock *BB = PN->getParent();
992
993  // If any of the predecessor blocks end in an unconditional branch, we can
994  // *duplicate* the jump into that block in order to further encourage jump
995  // threading and to eliminate cases where we have branch on a phi of an icmp
996  // (branch on icmp is much better).
997
998  // We don't want to do this tranformation for switches, because we don't
999  // really want to duplicate a switch.
1000  if (isa<SwitchInst>(BB->getTerminator()))
1001    return false;
1002
1003  // Look for unconditional branch predecessors.
1004  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1005    BasicBlock *PredBB = PN->getIncomingBlock(i);
1006    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1007      if (PredBr->isUnconditional() &&
1008          // Try to duplicate BB into PredBB.
1009          DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1010        return true;
1011  }
1012
1013  return false;
1014}
1015
1016
1017/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1018/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1019/// NewPred using the entries from OldPred (suitably mapped).
1020static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1021                                            BasicBlock *OldPred,
1022                                            BasicBlock *NewPred,
1023                                     DenseMap<Instruction*, Value*> &ValueMap) {
1024  for (BasicBlock::iterator PNI = PHIBB->begin();
1025       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1026    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1027    // DestBlock.
1028    Value *IV = PN->getIncomingValueForBlock(OldPred);
1029
1030    // Remap the value if necessary.
1031    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1032      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1033      if (I != ValueMap.end())
1034        IV = I->second;
1035    }
1036
1037    PN->addIncoming(IV, NewPred);
1038  }
1039}
1040
1041/// ThreadEdge - We have decided that it is safe and profitable to factor the
1042/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1043/// across BB.  Transform the IR to reflect this change.
1044bool JumpThreading::ThreadEdge(BasicBlock *BB,
1045                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1046                               BasicBlock *SuccBB) {
1047  // If threading to the same block as we come from, we would infinite loop.
1048  if (SuccBB == BB) {
1049    DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1050          << "' - would thread to self!\n");
1051    return false;
1052  }
1053
1054  // If threading this would thread across a loop header, don't thread the edge.
1055  // See the comments above FindLoopHeaders for justifications and caveats.
1056  if (LoopHeaders.count(BB)) {
1057    DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
1058          << "' to dest BB '" << SuccBB->getName()
1059          << "' - it might create an irreducible loop!\n");
1060    return false;
1061  }
1062
1063  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1064  if (JumpThreadCost > Threshold) {
1065    DEBUG(errs() << "  Not threading BB '" << BB->getName()
1066          << "' - Cost is too high: " << JumpThreadCost << "\n");
1067    return false;
1068  }
1069
1070  // And finally, do it!  Start by factoring the predecessors is needed.
1071  BasicBlock *PredBB;
1072  if (PredBBs.size() == 1)
1073    PredBB = PredBBs[0];
1074  else {
1075    DEBUG(errs() << "  Factoring out " << PredBBs.size()
1076          << " common predecessors.\n");
1077    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1078                                    ".thr_comm", this);
1079  }
1080
1081  // And finally, do it!
1082  DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1083        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1084        << ", across block:\n    "
1085        << *BB << "\n");
1086
1087  // We are going to have to map operands from the original BB block to the new
1088  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1089  // account for entry from PredBB.
1090  DenseMap<Instruction*, Value*> ValueMapping;
1091
1092  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1093                                         BB->getName()+".thread",
1094                                         BB->getParent(), BB);
1095  NewBB->moveAfter(PredBB);
1096
1097  BasicBlock::iterator BI = BB->begin();
1098  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1099    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1100
1101  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1102  // mapping and using it to remap operands in the cloned instructions.
1103  for (; !isa<TerminatorInst>(BI); ++BI) {
1104    Instruction *New = BI->clone();
1105    New->setName(BI->getName());
1106    NewBB->getInstList().push_back(New);
1107    ValueMapping[BI] = New;
1108
1109    // Remap operands to patch up intra-block references.
1110    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1111      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1112        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1113        if (I != ValueMapping.end())
1114          New->setOperand(i, I->second);
1115      }
1116  }
1117
1118  // We didn't copy the terminator from BB over to NewBB, because there is now
1119  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1120  BranchInst::Create(SuccBB, NewBB);
1121
1122  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1123  // PHI nodes for NewBB now.
1124  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1125
1126  // If there were values defined in BB that are used outside the block, then we
1127  // now have to update all uses of the value to use either the original value,
1128  // the cloned value, or some PHI derived value.  This can require arbitrary
1129  // PHI insertion, of which we are prepared to do, clean these up now.
1130  SSAUpdater SSAUpdate;
1131  SmallVector<Use*, 16> UsesToRename;
1132  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1133    // Scan all uses of this instruction to see if it is used outside of its
1134    // block, and if so, record them in UsesToRename.
1135    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1136         ++UI) {
1137      Instruction *User = cast<Instruction>(*UI);
1138      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1139        if (UserPN->getIncomingBlock(UI) == BB)
1140          continue;
1141      } else if (User->getParent() == BB)
1142        continue;
1143
1144      UsesToRename.push_back(&UI.getUse());
1145    }
1146
1147    // If there are no uses outside the block, we're done with this instruction.
1148    if (UsesToRename.empty())
1149      continue;
1150
1151    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1152
1153    // We found a use of I outside of BB.  Rename all uses of I that are outside
1154    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1155    // with the two values we know.
1156    SSAUpdate.Initialize(I);
1157    SSAUpdate.AddAvailableValue(BB, I);
1158    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1159
1160    while (!UsesToRename.empty())
1161      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1162    DEBUG(errs() << "\n");
1163  }
1164
1165
1166  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1167  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1168  // us to simplify any PHI nodes in BB.
1169  TerminatorInst *PredTerm = PredBB->getTerminator();
1170  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1171    if (PredTerm->getSuccessor(i) == BB) {
1172      RemovePredecessorAndSimplify(BB, PredBB, TD);
1173      PredTerm->setSuccessor(i, NewBB);
1174    }
1175
1176  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1177  // over the new instructions and zap any that are constants or dead.  This
1178  // frequently happens because of phi translation.
1179  BI = NewBB->begin();
1180  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1181    Instruction *Inst = BI++;
1182
1183    if (Value *V = SimplifyInstruction(Inst, TD)) {
1184      WeakVH BIHandle(BI);
1185      ReplaceAndSimplifyAllUses(Inst, V, TD);
1186      if (BIHandle == 0)
1187        BI = NewBB->begin();
1188      continue;
1189    }
1190
1191    RecursivelyDeleteTriviallyDeadInstructions(Inst);
1192  }
1193
1194  // Threaded an edge!
1195  ++NumThreads;
1196  return true;
1197}
1198
1199/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1200/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1201/// If we can duplicate the contents of BB up into PredBB do so now, this
1202/// improves the odds that the branch will be on an analyzable instruction like
1203/// a compare.
1204bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1205                                                     BasicBlock *PredBB) {
1206  // If BB is a loop header, then duplicating this block outside the loop would
1207  // cause us to transform this into an irreducible loop, don't do this.
1208  // See the comments above FindLoopHeaders for justifications and caveats.
1209  if (LoopHeaders.count(BB)) {
1210    DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1211          << "' into predecessor block '" << PredBB->getName()
1212          << "' - it might create an irreducible loop!\n");
1213    return false;
1214  }
1215
1216  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1217  if (DuplicationCost > Threshold) {
1218    DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1219          << "' - Cost is too high: " << DuplicationCost << "\n");
1220    return false;
1221  }
1222
1223  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1224  // of PredBB.
1225  DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1226        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1227        << DuplicationCost << " block is:" << *BB << "\n");
1228
1229  // We are going to have to map operands from the original BB block into the
1230  // PredBB block.  Evaluate PHI nodes in BB.
1231  DenseMap<Instruction*, Value*> ValueMapping;
1232
1233  BasicBlock::iterator BI = BB->begin();
1234  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1235    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1236
1237  BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1238
1239  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1240  // mapping and using it to remap operands in the cloned instructions.
1241  for (; BI != BB->end(); ++BI) {
1242    Instruction *New = BI->clone();
1243    New->setName(BI->getName());
1244    PredBB->getInstList().insert(OldPredBranch, New);
1245    ValueMapping[BI] = New;
1246
1247    // Remap operands to patch up intra-block references.
1248    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1249      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1250        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1251        if (I != ValueMapping.end())
1252          New->setOperand(i, I->second);
1253      }
1254  }
1255
1256  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1257  // add entries to the PHI nodes for branch from PredBB now.
1258  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1259  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1260                                  ValueMapping);
1261  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1262                                  ValueMapping);
1263
1264  // If there were values defined in BB that are used outside the block, then we
1265  // now have to update all uses of the value to use either the original value,
1266  // the cloned value, or some PHI derived value.  This can require arbitrary
1267  // PHI insertion, of which we are prepared to do, clean these up now.
1268  SSAUpdater SSAUpdate;
1269  SmallVector<Use*, 16> UsesToRename;
1270  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1271    // Scan all uses of this instruction to see if it is used outside of its
1272    // block, and if so, record them in UsesToRename.
1273    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1274         ++UI) {
1275      Instruction *User = cast<Instruction>(*UI);
1276      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1277        if (UserPN->getIncomingBlock(UI) == BB)
1278          continue;
1279      } else if (User->getParent() == BB)
1280        continue;
1281
1282      UsesToRename.push_back(&UI.getUse());
1283    }
1284
1285    // If there are no uses outside the block, we're done with this instruction.
1286    if (UsesToRename.empty())
1287      continue;
1288
1289    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1290
1291    // We found a use of I outside of BB.  Rename all uses of I that are outside
1292    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1293    // with the two values we know.
1294    SSAUpdate.Initialize(I);
1295    SSAUpdate.AddAvailableValue(BB, I);
1296    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1297
1298    while (!UsesToRename.empty())
1299      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1300    DEBUG(errs() << "\n");
1301  }
1302
1303  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1304  // that we nuked.
1305  RemovePredecessorAndSimplify(BB, PredBB, TD);
1306
1307  // Remove the unconditional branch at the end of the PredBB block.
1308  OldPredBranch->eraseFromParent();
1309
1310  ++NumDupes;
1311  return true;
1312}
1313
1314
1315