JumpThreading.cpp revision c2c23d03df415d064c7789349cd82e438f9d44bb
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Transforms/Utils/Local.h"
22#include "llvm/Transforms/Utils/SSAUpdater.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(NumThreads, "Number of jumps threaded");
35STATISTIC(NumFolds,   "Number of terminators folded");
36STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
37
38static cl::opt<unsigned>
39Threshold("jump-threading-threshold",
40          cl::desc("Max block size to duplicate for jump threading"),
41          cl::init(6), cl::Hidden);
42
43namespace {
44  /// This pass performs 'jump threading', which looks at blocks that have
45  /// multiple predecessors and multiple successors.  If one or more of the
46  /// predecessors of the block can be proven to always jump to one of the
47  /// successors, we forward the edge from the predecessor to the successor by
48  /// duplicating the contents of this block.
49  ///
50  /// An example of when this can occur is code like this:
51  ///
52  ///   if () { ...
53  ///     X = 4;
54  ///   }
55  ///   if (X < 3) {
56  ///
57  /// In this case, the unconditional branch at the end of the first if can be
58  /// revectored to the false side of the second if.
59  ///
60  class JumpThreading : public FunctionPass {
61    TargetData *TD;
62#ifdef NDEBUG
63    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64#else
65    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66#endif
67  public:
68    static char ID; // Pass identification
69    JumpThreading() : FunctionPass(&ID) {}
70
71    bool runOnFunction(Function &F);
72    void FindLoopHeaders(Function &F);
73
74    bool ProcessBlock(BasicBlock *BB);
75    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
76                    BasicBlock *SuccBB);
77    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
78                                          BasicBlock *PredBB);
79
80    typedef SmallVectorImpl<std::pair<ConstantInt*,
81                                      BasicBlock*> > PredValueInfo;
82
83    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
84                                         PredValueInfo &Result);
85    bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
86
87
88    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
89    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
90
91    bool ProcessJumpOnPHI(PHINode *PN);
92
93    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
94  };
95}
96
97char JumpThreading::ID = 0;
98static RegisterPass<JumpThreading>
99X("jump-threading", "Jump Threading");
100
101// Public interface to the Jump Threading pass
102FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
103
104/// runOnFunction - Top level algorithm.
105///
106bool JumpThreading::runOnFunction(Function &F) {
107  DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
108  TD = getAnalysisIfAvailable<TargetData>();
109
110  FindLoopHeaders(F);
111
112  bool AnotherIteration = true, EverChanged = false;
113  while (AnotherIteration) {
114    AnotherIteration = false;
115    bool Changed = false;
116    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
117      BasicBlock *BB = I;
118      while (ProcessBlock(BB))
119        Changed = true;
120
121      ++I;
122
123      // If the block is trivially dead, zap it.  This eliminates the successor
124      // edges which simplifies the CFG.
125      if (pred_begin(BB) == pred_end(BB) &&
126          BB != &BB->getParent()->getEntryBlock()) {
127        DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
128              << "' with terminator: " << *BB->getTerminator() << '\n');
129        LoopHeaders.erase(BB);
130        DeleteDeadBlock(BB);
131        Changed = true;
132      }
133    }
134    AnotherIteration = Changed;
135    EverChanged |= Changed;
136  }
137
138  LoopHeaders.clear();
139  return EverChanged;
140}
141
142/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
143/// thread across it.
144static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
145  /// Ignore PHI nodes, these will be flattened when duplication happens.
146  BasicBlock::const_iterator I = BB->getFirstNonPHI();
147
148  // Sum up the cost of each instruction until we get to the terminator.  Don't
149  // include the terminator because the copy won't include it.
150  unsigned Size = 0;
151  for (; !isa<TerminatorInst>(I); ++I) {
152    // Debugger intrinsics don't incur code size.
153    if (isa<DbgInfoIntrinsic>(I)) continue;
154
155    // If this is a pointer->pointer bitcast, it is free.
156    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
157      continue;
158
159    // All other instructions count for at least one unit.
160    ++Size;
161
162    // Calls are more expensive.  If they are non-intrinsic calls, we model them
163    // as having cost of 4.  If they are a non-vector intrinsic, we model them
164    // as having cost of 2 total, and if they are a vector intrinsic, we model
165    // them as having cost 1.
166    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
167      if (!isa<IntrinsicInst>(CI))
168        Size += 3;
169      else if (!isa<VectorType>(CI->getType()))
170        Size += 1;
171    }
172  }
173
174  // Threading through a switch statement is particularly profitable.  If this
175  // block ends in a switch, decrease its cost to make it more likely to happen.
176  if (isa<SwitchInst>(I))
177    Size = Size > 6 ? Size-6 : 0;
178
179  return Size;
180}
181
182
183//===----------------------------------------------------------------------===//
184
185
186/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
187/// method is called when we're about to delete Pred as a predecessor of BB.  If
188/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
189///
190/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
191/// nodes that collapse into identity values.  For example, if we have:
192///   x = phi(1, 0, 0, 0)
193///   y = and x, z
194///
195/// .. and delete the predecessor corresponding to the '1', this will attempt to
196/// recursively fold the and to 0.
197static void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
198                                         TargetData *TD) {
199  // This only adjusts blocks with PHI nodes.
200  if (!isa<PHINode>(BB->begin()))
201    return;
202
203  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
204  // them down.  This will leave us with single entry phi nodes and other phis
205  // that can be removed.
206  //BB->removePredecessor(Pred, true);
207  BB->removePredecessor(Pred, true);
208
209  WeakVH PhiIt = &BB->front();
210  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
211    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
212
213    Value *PNV = PN->hasConstantValue();
214    if (PNV == 0) continue;
215
216    assert(PNV != PN && "hasConstantValue broken");
217
218    // If we're able to simplify the phi to a constant, simplify it into its
219    // uses.
220    while (!PN->use_empty()) {
221      // Update the instruction to use the new value.
222      Use &U = PN->use_begin().getUse();
223      Instruction *User = cast<Instruction>(U.getUser());
224      U = PNV;
225
226      // See if we can simplify it (constant folding).
227      if (Constant *C = ConstantFoldInstruction(User, TD)) {
228        User->replaceAllUsesWith(C);
229        User->eraseFromParent();
230      }
231    }
232
233    PN->replaceAllUsesWith(PNV);
234    PN->eraseFromParent();
235
236    // If recursive simplification ended up deleting the next PHI node we would
237    // iterate to, then our iterator is invalid, restart scanning from the top
238    // of the block.
239    if (PhiIt == 0) PhiIt = &BB->front();
240  }
241}
242
243//===----------------------------------------------------------------------===//
244
245
246/// FindLoopHeaders - We do not want jump threading to turn proper loop
247/// structures into irreducible loops.  Doing this breaks up the loop nesting
248/// hierarchy and pessimizes later transformations.  To prevent this from
249/// happening, we first have to find the loop headers.  Here we approximate this
250/// by finding targets of backedges in the CFG.
251///
252/// Note that there definitely are cases when we want to allow threading of
253/// edges across a loop header.  For example, threading a jump from outside the
254/// loop (the preheader) to an exit block of the loop is definitely profitable.
255/// It is also almost always profitable to thread backedges from within the loop
256/// to exit blocks, and is often profitable to thread backedges to other blocks
257/// within the loop (forming a nested loop).  This simple analysis is not rich
258/// enough to track all of these properties and keep it up-to-date as the CFG
259/// mutates, so we don't allow any of these transformations.
260///
261void JumpThreading::FindLoopHeaders(Function &F) {
262  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
263  FindFunctionBackedges(F, Edges);
264
265  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
266    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
267}
268
269/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
270/// hand sides of the compare instruction, try to determine the result. If the
271/// result can not be determined, a null pointer is returned.
272static Constant *GetResultOfComparison(CmpInst::Predicate pred,
273                                       Value *LHS, Value *RHS) {
274  if (Constant *CLHS = dyn_cast<Constant>(LHS))
275    if (Constant *CRHS = dyn_cast<Constant>(RHS))
276      return ConstantExpr::getCompare(pred, CLHS, CRHS);
277
278  if (LHS == RHS)
279    if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType())) {
280      if (ICmpInst::isTrueWhenEqual(pred))
281        return ConstantInt::getTrue(LHS->getContext());
282      else
283        return ConstantInt::getFalse(LHS->getContext());
284    }
285  return 0;
286}
287
288
289/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
290/// if we can infer that the value is a known ConstantInt in any of our
291/// predecessors.  If so, return the known list of value and pred BB in the
292/// result vector.  If a value is known to be undef, it is returned as null.
293///
294/// The BB basic block is known to start with a PHI node.
295///
296/// This returns true if there were any known values.
297///
298///
299/// TODO: Per PR2563, we could infer value range information about a predecessor
300/// based on its terminator.
301bool JumpThreading::
302ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
303  PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
304
305  // If V is a constantint, then it is known in all predecessors.
306  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
307    ConstantInt *CI = dyn_cast<ConstantInt>(V);
308    Result.resize(TheFirstPHI->getNumIncomingValues());
309    for (unsigned i = 0, e = Result.size(); i != e; ++i)
310      Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
311    return true;
312  }
313
314  // If V is a non-instruction value, or an instruction in a different block,
315  // then it can't be derived from a PHI.
316  Instruction *I = dyn_cast<Instruction>(V);
317  if (I == 0 || I->getParent() != BB)
318    return false;
319
320  /// If I is a PHI node, then we know the incoming values for any constants.
321  if (PHINode *PN = dyn_cast<PHINode>(I)) {
322    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
323      Value *InVal = PN->getIncomingValue(i);
324      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
325        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
326        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
327      }
328    }
329    return !Result.empty();
330  }
331
332  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
333
334  // Handle some boolean conditions.
335  if (I->getType()->getPrimitiveSizeInBits() == 1) {
336    // X | true -> true
337    // X & false -> false
338    if (I->getOpcode() == Instruction::Or ||
339        I->getOpcode() == Instruction::And) {
340      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
341      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
342
343      if (LHSVals.empty() && RHSVals.empty())
344        return false;
345
346      ConstantInt *InterestingVal;
347      if (I->getOpcode() == Instruction::Or)
348        InterestingVal = ConstantInt::getTrue(I->getContext());
349      else
350        InterestingVal = ConstantInt::getFalse(I->getContext());
351
352      // Scan for the sentinel.
353      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
354        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
355          Result.push_back(LHSVals[i]);
356      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
357        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
358          Result.push_back(RHSVals[i]);
359      return !Result.empty();
360    }
361
362    // TODO: Should handle the NOT form of XOR.
363
364  }
365
366  // Handle compare with phi operand, where the PHI is defined in this block.
367  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
368    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
369    if (PN && PN->getParent() == BB) {
370      // We can do this simplification if any comparisons fold to true or false.
371      // See if any do.
372      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
373        BasicBlock *PredBB = PN->getIncomingBlock(i);
374        Value *LHS = PN->getIncomingValue(i);
375        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
376
377        Constant *Res = GetResultOfComparison(Cmp->getPredicate(), LHS, RHS);
378        if (Res == 0) continue;
379
380        if (isa<UndefValue>(Res))
381          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
382        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
383          Result.push_back(std::make_pair(CI, PredBB));
384      }
385
386      return !Result.empty();
387    }
388
389    // TODO: We could also recurse to see if we can determine constants another
390    // way.
391  }
392  return false;
393}
394
395
396
397/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
398/// in an undefined jump, decide which block is best to revector to.
399///
400/// Since we can pick an arbitrary destination, we pick the successor with the
401/// fewest predecessors.  This should reduce the in-degree of the others.
402///
403static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
404  TerminatorInst *BBTerm = BB->getTerminator();
405  unsigned MinSucc = 0;
406  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
407  // Compute the successor with the minimum number of predecessors.
408  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
409  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
410    TestBB = BBTerm->getSuccessor(i);
411    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
412    if (NumPreds < MinNumPreds)
413      MinSucc = i;
414  }
415
416  return MinSucc;
417}
418
419/// ProcessBlock - If there are any predecessors whose control can be threaded
420/// through to a successor, transform them now.
421bool JumpThreading::ProcessBlock(BasicBlock *BB) {
422  // If this block has a single predecessor, and if that pred has a single
423  // successor, merge the blocks.  This encourages recursive jump threading
424  // because now the condition in this block can be threaded through
425  // predecessors of our predecessor block.
426  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
427    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
428        SinglePred != BB) {
429      // If SinglePred was a loop header, BB becomes one.
430      if (LoopHeaders.erase(SinglePred))
431        LoopHeaders.insert(BB);
432
433      // Remember if SinglePred was the entry block of the function.  If so, we
434      // will need to move BB back to the entry position.
435      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
436      MergeBasicBlockIntoOnlyPred(BB);
437
438      if (isEntry && BB != &BB->getParent()->getEntryBlock())
439        BB->moveBefore(&BB->getParent()->getEntryBlock());
440      return true;
441    }
442  }
443
444  // Look to see if the terminator is a branch of switch, if not we can't thread
445  // it.
446  Value *Condition;
447  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
448    // Can't thread an unconditional jump.
449    if (BI->isUnconditional()) return false;
450    Condition = BI->getCondition();
451  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
452    Condition = SI->getCondition();
453  else
454    return false; // Must be an invoke.
455
456  // If the terminator of this block is branching on a constant, simplify the
457  // terminator to an unconditional branch.  This can occur due to threading in
458  // other blocks.
459  if (isa<ConstantInt>(Condition)) {
460    DEBUG(errs() << "  In block '" << BB->getName()
461          << "' folding terminator: " << *BB->getTerminator() << '\n');
462    ++NumFolds;
463    ConstantFoldTerminator(BB);
464    return true;
465  }
466
467  // If the terminator is branching on an undef, we can pick any of the
468  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
469  if (isa<UndefValue>(Condition)) {
470    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
471
472    // Fold the branch/switch.
473    TerminatorInst *BBTerm = BB->getTerminator();
474    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
475      if (i == BestSucc) continue;
476      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
477    }
478
479    DEBUG(errs() << "  In block '" << BB->getName()
480          << "' folding undef terminator: " << *BBTerm << '\n');
481    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
482    BBTerm->eraseFromParent();
483    return true;
484  }
485
486  Instruction *CondInst = dyn_cast<Instruction>(Condition);
487
488  // If the condition is an instruction defined in another block, see if a
489  // predecessor has the same condition:
490  //     br COND, BBX, BBY
491  //  BBX:
492  //     br COND, BBZ, BBW
493  if (!Condition->hasOneUse() && // Multiple uses.
494      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
495    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
496    if (isa<BranchInst>(BB->getTerminator())) {
497      for (; PI != E; ++PI)
498        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
499          if (PBI->isConditional() && PBI->getCondition() == Condition &&
500              ProcessBranchOnDuplicateCond(*PI, BB))
501            return true;
502    } else {
503      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
504      for (; PI != E; ++PI)
505        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
506          if (PSI->getCondition() == Condition &&
507              ProcessSwitchOnDuplicateCond(*PI, BB))
508            return true;
509    }
510  }
511
512  // All the rest of our checks depend on the condition being an instruction.
513  if (CondInst == 0)
514    return false;
515
516  // See if this is a phi node in the current block.
517  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
518    if (PN->getParent() == BB)
519      return ProcessJumpOnPHI(PN);
520
521  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
522    if (!isa<PHINode>(CondCmp->getOperand(0)) ||
523        cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
524      // If we have a comparison, loop over the predecessors to see if there is
525      // a condition with a lexically identical value.
526      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
527      for (; PI != E; ++PI)
528        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
529          if (PBI->isConditional() && *PI != BB) {
530            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
531              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
532                  CI->getOperand(1) == CondCmp->getOperand(1) &&
533                  CI->getPredicate() == CondCmp->getPredicate()) {
534                // TODO: Could handle things like (x != 4) --> (x == 17)
535                if (ProcessBranchOnDuplicateCond(*PI, BB))
536                  return true;
537              }
538            }
539          }
540    }
541  }
542
543  // Check for some cases that are worth simplifying.  Right now we want to look
544  // for loads that are used by a switch or by the condition for the branch.  If
545  // we see one, check to see if it's partially redundant.  If so, insert a PHI
546  // which can then be used to thread the values.
547  //
548  // This is particularly important because reg2mem inserts loads and stores all
549  // over the place, and this blocks jump threading if we don't zap them.
550  Value *SimplifyValue = CondInst;
551  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
552    if (isa<Constant>(CondCmp->getOperand(1)))
553      SimplifyValue = CondCmp->getOperand(0);
554
555  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
556    if (SimplifyPartiallyRedundantLoad(LI))
557      return true;
558
559
560  // Handle a variety of cases where we are branching on something derived from
561  // a PHI node in the current block.  If we can prove that any predecessors
562  // compute a predictable value based on a PHI node, thread those predecessors.
563  //
564  // We only bother doing this if the current block has a PHI node and if the
565  // conditional instruction lives in the current block.  If either condition
566  // fails, this won't be a computable value anyway.
567  if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
568    if (ProcessThreadableEdges(CondInst, BB))
569      return true;
570
571
572  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
573  // "(X == 4)" thread through this block.
574
575  return false;
576}
577
578/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
579/// block that jump on exactly the same condition.  This means that we almost
580/// always know the direction of the edge in the DESTBB:
581///  PREDBB:
582///     br COND, DESTBB, BBY
583///  DESTBB:
584///     br COND, BBZ, BBW
585///
586/// If DESTBB has multiple predecessors, we can't just constant fold the branch
587/// in DESTBB, we have to thread over it.
588bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
589                                                 BasicBlock *BB) {
590  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
591
592  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
593  // fold the branch to an unconditional one, which allows other recursive
594  // simplifications.
595  bool BranchDir;
596  if (PredBI->getSuccessor(1) != BB)
597    BranchDir = true;
598  else if (PredBI->getSuccessor(0) != BB)
599    BranchDir = false;
600  else {
601    DEBUG(errs() << "  In block '" << PredBB->getName()
602          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
603    ++NumFolds;
604    ConstantFoldTerminator(PredBB);
605    return true;
606  }
607
608  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
609
610  // If the dest block has one predecessor, just fix the branch condition to a
611  // constant and fold it.
612  if (BB->getSinglePredecessor()) {
613    DEBUG(errs() << "  In block '" << BB->getName()
614          << "' folding condition to '" << BranchDir << "': "
615          << *BB->getTerminator() << '\n');
616    ++NumFolds;
617    Value *OldCond = DestBI->getCondition();
618    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
619                                          BranchDir));
620    ConstantFoldTerminator(BB);
621    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
622    return true;
623  }
624
625
626  // Next, figure out which successor we are threading to.
627  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
628
629  SmallVector<BasicBlock*, 2> Preds;
630  Preds.push_back(PredBB);
631
632  // Ok, try to thread it!
633  return ThreadEdge(BB, Preds, SuccBB);
634}
635
636/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
637/// block that switch on exactly the same condition.  This means that we almost
638/// always know the direction of the edge in the DESTBB:
639///  PREDBB:
640///     switch COND [... DESTBB, BBY ... ]
641///  DESTBB:
642///     switch COND [... BBZ, BBW ]
643///
644/// Optimizing switches like this is very important, because simplifycfg builds
645/// switches out of repeated 'if' conditions.
646bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
647                                                 BasicBlock *DestBB) {
648  // Can't thread edge to self.
649  if (PredBB == DestBB)
650    return false;
651
652  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
653  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
654
655  // There are a variety of optimizations that we can potentially do on these
656  // blocks: we order them from most to least preferable.
657
658  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
659  // directly to their destination.  This does not introduce *any* code size
660  // growth.  Skip debug info first.
661  BasicBlock::iterator BBI = DestBB->begin();
662  while (isa<DbgInfoIntrinsic>(BBI))
663    BBI++;
664
665  // FIXME: Thread if it just contains a PHI.
666  if (isa<SwitchInst>(BBI)) {
667    bool MadeChange = false;
668    // Ignore the default edge for now.
669    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
670      ConstantInt *DestVal = DestSI->getCaseValue(i);
671      BasicBlock *DestSucc = DestSI->getSuccessor(i);
672
673      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
674      // PredSI has an explicit case for it.  If so, forward.  If it is covered
675      // by the default case, we can't update PredSI.
676      unsigned PredCase = PredSI->findCaseValue(DestVal);
677      if (PredCase == 0) continue;
678
679      // If PredSI doesn't go to DestBB on this value, then it won't reach the
680      // case on this condition.
681      if (PredSI->getSuccessor(PredCase) != DestBB &&
682          DestSI->getSuccessor(i) != DestBB)
683        continue;
684
685      // Otherwise, we're safe to make the change.  Make sure that the edge from
686      // DestSI to DestSucc is not critical and has no PHI nodes.
687      DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
688      DEBUG(errs() << "THROUGH: " << *DestSI);
689
690      // If the destination has PHI nodes, just split the edge for updating
691      // simplicity.
692      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
693        SplitCriticalEdge(DestSI, i, this);
694        DestSucc = DestSI->getSuccessor(i);
695      }
696      FoldSingleEntryPHINodes(DestSucc);
697      PredSI->setSuccessor(PredCase, DestSucc);
698      MadeChange = true;
699    }
700
701    if (MadeChange)
702      return true;
703  }
704
705  return false;
706}
707
708
709/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
710/// load instruction, eliminate it by replacing it with a PHI node.  This is an
711/// important optimization that encourages jump threading, and needs to be run
712/// interlaced with other jump threading tasks.
713bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
714  // Don't hack volatile loads.
715  if (LI->isVolatile()) return false;
716
717  // If the load is defined in a block with exactly one predecessor, it can't be
718  // partially redundant.
719  BasicBlock *LoadBB = LI->getParent();
720  if (LoadBB->getSinglePredecessor())
721    return false;
722
723  Value *LoadedPtr = LI->getOperand(0);
724
725  // If the loaded operand is defined in the LoadBB, it can't be available.
726  // FIXME: Could do PHI translation, that would be fun :)
727  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
728    if (PtrOp->getParent() == LoadBB)
729      return false;
730
731  // Scan a few instructions up from the load, to see if it is obviously live at
732  // the entry to its block.
733  BasicBlock::iterator BBIt = LI;
734
735  if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
736                                                     BBIt, 6)) {
737    // If the value if the load is locally available within the block, just use
738    // it.  This frequently occurs for reg2mem'd allocas.
739    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
740
741    // If the returned value is the load itself, replace with an undef. This can
742    // only happen in dead loops.
743    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
744    LI->replaceAllUsesWith(AvailableVal);
745    LI->eraseFromParent();
746    return true;
747  }
748
749  // Otherwise, if we scanned the whole block and got to the top of the block,
750  // we know the block is locally transparent to the load.  If not, something
751  // might clobber its value.
752  if (BBIt != LoadBB->begin())
753    return false;
754
755
756  SmallPtrSet<BasicBlock*, 8> PredsScanned;
757  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
758  AvailablePredsTy AvailablePreds;
759  BasicBlock *OneUnavailablePred = 0;
760
761  // If we got here, the loaded value is transparent through to the start of the
762  // block.  Check to see if it is available in any of the predecessor blocks.
763  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
764       PI != PE; ++PI) {
765    BasicBlock *PredBB = *PI;
766
767    // If we already scanned this predecessor, skip it.
768    if (!PredsScanned.insert(PredBB))
769      continue;
770
771    // Scan the predecessor to see if the value is available in the pred.
772    BBIt = PredBB->end();
773    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
774    if (!PredAvailable) {
775      OneUnavailablePred = PredBB;
776      continue;
777    }
778
779    // If so, this load is partially redundant.  Remember this info so that we
780    // can create a PHI node.
781    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
782  }
783
784  // If the loaded value isn't available in any predecessor, it isn't partially
785  // redundant.
786  if (AvailablePreds.empty()) return false;
787
788  // Okay, the loaded value is available in at least one (and maybe all!)
789  // predecessors.  If the value is unavailable in more than one unique
790  // predecessor, we want to insert a merge block for those common predecessors.
791  // This ensures that we only have to insert one reload, thus not increasing
792  // code size.
793  BasicBlock *UnavailablePred = 0;
794
795  // If there is exactly one predecessor where the value is unavailable, the
796  // already computed 'OneUnavailablePred' block is it.  If it ends in an
797  // unconditional branch, we know that it isn't a critical edge.
798  if (PredsScanned.size() == AvailablePreds.size()+1 &&
799      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
800    UnavailablePred = OneUnavailablePred;
801  } else if (PredsScanned.size() != AvailablePreds.size()) {
802    // Otherwise, we had multiple unavailable predecessors or we had a critical
803    // edge from the one.
804    SmallVector<BasicBlock*, 8> PredsToSplit;
805    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
806
807    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
808      AvailablePredSet.insert(AvailablePreds[i].first);
809
810    // Add all the unavailable predecessors to the PredsToSplit list.
811    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
812         PI != PE; ++PI)
813      if (!AvailablePredSet.count(*PI))
814        PredsToSplit.push_back(*PI);
815
816    // Split them out to their own block.
817    UnavailablePred =
818      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
819                             "thread-split", this);
820  }
821
822  // If the value isn't available in all predecessors, then there will be
823  // exactly one where it isn't available.  Insert a load on that edge and add
824  // it to the AvailablePreds list.
825  if (UnavailablePred) {
826    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
827           "Can't handle critical edge here!");
828    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
829                                 UnavailablePred->getTerminator());
830    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
831  }
832
833  // Now we know that each predecessor of this block has a value in
834  // AvailablePreds, sort them for efficient access as we're walking the preds.
835  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
836
837  // Create a PHI node at the start of the block for the PRE'd load value.
838  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
839  PN->takeName(LI);
840
841  // Insert new entries into the PHI for each predecessor.  A single block may
842  // have multiple entries here.
843  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
844       ++PI) {
845    AvailablePredsTy::iterator I =
846      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
847                       std::make_pair(*PI, (Value*)0));
848
849    assert(I != AvailablePreds.end() && I->first == *PI &&
850           "Didn't find entry for predecessor!");
851
852    PN->addIncoming(I->second, I->first);
853  }
854
855  //cerr << "PRE: " << *LI << *PN << "\n";
856
857  LI->replaceAllUsesWith(PN);
858  LI->eraseFromParent();
859
860  return true;
861}
862
863/// FindMostPopularDest - The specified list contains multiple possible
864/// threadable destinations.  Pick the one that occurs the most frequently in
865/// the list.
866static BasicBlock *
867FindMostPopularDest(BasicBlock *BB,
868                    const SmallVectorImpl<std::pair<BasicBlock*,
869                                  BasicBlock*> > &PredToDestList) {
870  assert(!PredToDestList.empty());
871
872  // Determine popularity.  If there are multiple possible destinations, we
873  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
874  // blocks with known and real destinations to threading undef.  We'll handle
875  // them later if interesting.
876  DenseMap<BasicBlock*, unsigned> DestPopularity;
877  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
878    if (PredToDestList[i].second)
879      DestPopularity[PredToDestList[i].second]++;
880
881  // Find the most popular dest.
882  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
883  BasicBlock *MostPopularDest = DPI->first;
884  unsigned Popularity = DPI->second;
885  SmallVector<BasicBlock*, 4> SamePopularity;
886
887  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
888    // If the popularity of this entry isn't higher than the popularity we've
889    // seen so far, ignore it.
890    if (DPI->second < Popularity)
891      ; // ignore.
892    else if (DPI->second == Popularity) {
893      // If it is the same as what we've seen so far, keep track of it.
894      SamePopularity.push_back(DPI->first);
895    } else {
896      // If it is more popular, remember it.
897      SamePopularity.clear();
898      MostPopularDest = DPI->first;
899      Popularity = DPI->second;
900    }
901  }
902
903  // Okay, now we know the most popular destination.  If there is more than
904  // destination, we need to determine one.  This is arbitrary, but we need
905  // to make a deterministic decision.  Pick the first one that appears in the
906  // successor list.
907  if (!SamePopularity.empty()) {
908    SamePopularity.push_back(MostPopularDest);
909    TerminatorInst *TI = BB->getTerminator();
910    for (unsigned i = 0; ; ++i) {
911      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
912
913      if (std::find(SamePopularity.begin(), SamePopularity.end(),
914                    TI->getSuccessor(i)) == SamePopularity.end())
915        continue;
916
917      MostPopularDest = TI->getSuccessor(i);
918      break;
919    }
920  }
921
922  // Okay, we have finally picked the most popular destination.
923  return MostPopularDest;
924}
925
926bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
927                                           BasicBlock *BB) {
928  // If threading this would thread across a loop header, don't even try to
929  // thread the edge.
930  if (LoopHeaders.count(BB))
931    return false;
932
933  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
934  if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
935    return false;
936  assert(!PredValues.empty() &&
937         "ComputeValueKnownInPredecessors returned true with no values");
938
939  DEBUG(errs() << "IN BB: " << *BB;
940        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
941          errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
942          if (PredValues[i].first)
943            errs() << *PredValues[i].first;
944          else
945            errs() << "UNDEF";
946          errs() << " for pred '" << PredValues[i].second->getName()
947          << "'.\n";
948        });
949
950  // Decide what we want to thread through.  Convert our list of known values to
951  // a list of known destinations for each pred.  This also discards duplicate
952  // predecessors and keeps track of the undefined inputs (which are represented
953  // as a null dest in the PredToDestList).
954  SmallPtrSet<BasicBlock*, 16> SeenPreds;
955  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
956
957  BasicBlock *OnlyDest = 0;
958  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
959
960  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
961    BasicBlock *Pred = PredValues[i].second;
962    if (!SeenPreds.insert(Pred))
963      continue;  // Duplicate predecessor entry.
964
965    // If the predecessor ends with an indirect goto, we can't change its
966    // destination.
967    if (isa<IndirectBrInst>(Pred->getTerminator()))
968      continue;
969
970    ConstantInt *Val = PredValues[i].first;
971
972    BasicBlock *DestBB;
973    if (Val == 0)      // Undef.
974      DestBB = 0;
975    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
976      DestBB = BI->getSuccessor(Val->isZero());
977    else {
978      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
979      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
980    }
981
982    // If we have exactly one destination, remember it for efficiency below.
983    if (i == 0)
984      OnlyDest = DestBB;
985    else if (OnlyDest != DestBB)
986      OnlyDest = MultipleDestSentinel;
987
988    PredToDestList.push_back(std::make_pair(Pred, DestBB));
989  }
990
991  // If all edges were unthreadable, we fail.
992  if (PredToDestList.empty())
993    return false;
994
995  // Determine which is the most common successor.  If we have many inputs and
996  // this block is a switch, we want to start by threading the batch that goes
997  // to the most popular destination first.  If we only know about one
998  // threadable destination (the common case) we can avoid this.
999  BasicBlock *MostPopularDest = OnlyDest;
1000
1001  if (MostPopularDest == MultipleDestSentinel)
1002    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1003
1004  // Now that we know what the most popular destination is, factor all
1005  // predecessors that will jump to it into a single predecessor.
1006  SmallVector<BasicBlock*, 16> PredsToFactor;
1007  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1008    if (PredToDestList[i].second == MostPopularDest) {
1009      BasicBlock *Pred = PredToDestList[i].first;
1010
1011      // This predecessor may be a switch or something else that has multiple
1012      // edges to the block.  Factor each of these edges by listing them
1013      // according to # occurrences in PredsToFactor.
1014      TerminatorInst *PredTI = Pred->getTerminator();
1015      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1016        if (PredTI->getSuccessor(i) == BB)
1017          PredsToFactor.push_back(Pred);
1018    }
1019
1020  // If the threadable edges are branching on an undefined value, we get to pick
1021  // the destination that these predecessors should get to.
1022  if (MostPopularDest == 0)
1023    MostPopularDest = BB->getTerminator()->
1024                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1025
1026  // Ok, try to thread it!
1027  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1028}
1029
1030/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
1031/// the current block.  See if there are any simplifications we can do based on
1032/// inputs to the phi node.
1033///
1034bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
1035  BasicBlock *BB = PN->getParent();
1036
1037  // If any of the predecessor blocks end in an unconditional branch, we can
1038  // *duplicate* the jump into that block in order to further encourage jump
1039  // threading and to eliminate cases where we have branch on a phi of an icmp
1040  // (branch on icmp is much better).
1041
1042  // We don't want to do this tranformation for switches, because we don't
1043  // really want to duplicate a switch.
1044  if (isa<SwitchInst>(BB->getTerminator()))
1045    return false;
1046
1047  // Look for unconditional branch predecessors.
1048  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1049    BasicBlock *PredBB = PN->getIncomingBlock(i);
1050    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1051      if (PredBr->isUnconditional() &&
1052          // Try to duplicate BB into PredBB.
1053          DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1054        return true;
1055  }
1056
1057  return false;
1058}
1059
1060
1061/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1062/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1063/// NewPred using the entries from OldPred (suitably mapped).
1064static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1065                                            BasicBlock *OldPred,
1066                                            BasicBlock *NewPred,
1067                                     DenseMap<Instruction*, Value*> &ValueMap) {
1068  for (BasicBlock::iterator PNI = PHIBB->begin();
1069       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1070    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1071    // DestBlock.
1072    Value *IV = PN->getIncomingValueForBlock(OldPred);
1073
1074    // Remap the value if necessary.
1075    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1076      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1077      if (I != ValueMap.end())
1078        IV = I->second;
1079    }
1080
1081    PN->addIncoming(IV, NewPred);
1082  }
1083}
1084
1085/// ThreadEdge - We have decided that it is safe and profitable to factor the
1086/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1087/// across BB.  Transform the IR to reflect this change.
1088bool JumpThreading::ThreadEdge(BasicBlock *BB,
1089                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1090                               BasicBlock *SuccBB) {
1091  // If threading to the same block as we come from, we would infinite loop.
1092  if (SuccBB == BB) {
1093    DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1094          << "' - would thread to self!\n");
1095    return false;
1096  }
1097
1098  // If threading this would thread across a loop header, don't thread the edge.
1099  // See the comments above FindLoopHeaders for justifications and caveats.
1100  if (LoopHeaders.count(BB)) {
1101    DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
1102          << "' to dest BB '" << SuccBB->getName()
1103          << "' - it might create an irreducible loop!\n");
1104    return false;
1105  }
1106
1107  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1108  if (JumpThreadCost > Threshold) {
1109    DEBUG(errs() << "  Not threading BB '" << BB->getName()
1110          << "' - Cost is too high: " << JumpThreadCost << "\n");
1111    return false;
1112  }
1113
1114  // And finally, do it!  Start by factoring the predecessors is needed.
1115  BasicBlock *PredBB;
1116  if (PredBBs.size() == 1)
1117    PredBB = PredBBs[0];
1118  else {
1119    DEBUG(errs() << "  Factoring out " << PredBBs.size()
1120          << " common predecessors.\n");
1121    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1122                                    ".thr_comm", this);
1123  }
1124
1125  // And finally, do it!
1126  DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1127        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1128        << ", across block:\n    "
1129        << *BB << "\n");
1130
1131  // We are going to have to map operands from the original BB block to the new
1132  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1133  // account for entry from PredBB.
1134  DenseMap<Instruction*, Value*> ValueMapping;
1135
1136  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1137                                         BB->getName()+".thread",
1138                                         BB->getParent(), BB);
1139  NewBB->moveAfter(PredBB);
1140
1141  BasicBlock::iterator BI = BB->begin();
1142  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1143    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1144
1145  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1146  // mapping and using it to remap operands in the cloned instructions.
1147  for (; !isa<TerminatorInst>(BI); ++BI) {
1148    Instruction *New = BI->clone();
1149    New->setName(BI->getName());
1150    NewBB->getInstList().push_back(New);
1151    ValueMapping[BI] = New;
1152
1153    // Remap operands to patch up intra-block references.
1154    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1155      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1156        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1157        if (I != ValueMapping.end())
1158          New->setOperand(i, I->second);
1159      }
1160  }
1161
1162  // We didn't copy the terminator from BB over to NewBB, because there is now
1163  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1164  BranchInst::Create(SuccBB, NewBB);
1165
1166  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1167  // PHI nodes for NewBB now.
1168  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1169
1170  // If there were values defined in BB that are used outside the block, then we
1171  // now have to update all uses of the value to use either the original value,
1172  // the cloned value, or some PHI derived value.  This can require arbitrary
1173  // PHI insertion, of which we are prepared to do, clean these up now.
1174  SSAUpdater SSAUpdate;
1175  SmallVector<Use*, 16> UsesToRename;
1176  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1177    // Scan all uses of this instruction to see if it is used outside of its
1178    // block, and if so, record them in UsesToRename.
1179    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1180         ++UI) {
1181      Instruction *User = cast<Instruction>(*UI);
1182      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1183        if (UserPN->getIncomingBlock(UI) == BB)
1184          continue;
1185      } else if (User->getParent() == BB)
1186        continue;
1187
1188      UsesToRename.push_back(&UI.getUse());
1189    }
1190
1191    // If there are no uses outside the block, we're done with this instruction.
1192    if (UsesToRename.empty())
1193      continue;
1194
1195    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1196
1197    // We found a use of I outside of BB.  Rename all uses of I that are outside
1198    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1199    // with the two values we know.
1200    SSAUpdate.Initialize(I);
1201    SSAUpdate.AddAvailableValue(BB, I);
1202    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1203
1204    while (!UsesToRename.empty())
1205      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1206    DEBUG(errs() << "\n");
1207  }
1208
1209
1210  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1211  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1212  // us to simplify any PHI nodes in BB.
1213  TerminatorInst *PredTerm = PredBB->getTerminator();
1214  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1215    if (PredTerm->getSuccessor(i) == BB) {
1216      RemovePredecessorAndSimplify(BB, PredBB, TD);
1217      PredTerm->setSuccessor(i, NewBB);
1218    }
1219
1220  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1221  // over the new instructions and zap any that are constants or dead.  This
1222  // frequently happens because of phi translation.
1223  BI = NewBB->begin();
1224  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1225    Instruction *Inst = BI++;
1226    if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
1227      Inst->replaceAllUsesWith(C);
1228      Inst->eraseFromParent();
1229      continue;
1230    }
1231
1232    RecursivelyDeleteTriviallyDeadInstructions(Inst);
1233  }
1234
1235  // Threaded an edge!
1236  ++NumThreads;
1237  return true;
1238}
1239
1240/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1241/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1242/// If we can duplicate the contents of BB up into PredBB do so now, this
1243/// improves the odds that the branch will be on an analyzable instruction like
1244/// a compare.
1245bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1246                                                     BasicBlock *PredBB) {
1247  // If BB is a loop header, then duplicating this block outside the loop would
1248  // cause us to transform this into an irreducible loop, don't do this.
1249  // See the comments above FindLoopHeaders for justifications and caveats.
1250  if (LoopHeaders.count(BB)) {
1251    DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1252          << "' into predecessor block '" << PredBB->getName()
1253          << "' - it might create an irreducible loop!\n");
1254    return false;
1255  }
1256
1257  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1258  if (DuplicationCost > Threshold) {
1259    DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1260          << "' - Cost is too high: " << DuplicationCost << "\n");
1261    return false;
1262  }
1263
1264  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1265  // of PredBB.
1266  DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1267        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1268        << DuplicationCost << " block is:" << *BB << "\n");
1269
1270  // We are going to have to map operands from the original BB block into the
1271  // PredBB block.  Evaluate PHI nodes in BB.
1272  DenseMap<Instruction*, Value*> ValueMapping;
1273
1274  BasicBlock::iterator BI = BB->begin();
1275  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1276    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1277
1278  BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1279
1280  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1281  // mapping and using it to remap operands in the cloned instructions.
1282  for (; BI != BB->end(); ++BI) {
1283    Instruction *New = BI->clone();
1284    New->setName(BI->getName());
1285    PredBB->getInstList().insert(OldPredBranch, New);
1286    ValueMapping[BI] = New;
1287
1288    // Remap operands to patch up intra-block references.
1289    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1290      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1291        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1292        if (I != ValueMapping.end())
1293          New->setOperand(i, I->second);
1294      }
1295  }
1296
1297  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1298  // add entries to the PHI nodes for branch from PredBB now.
1299  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1300  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1301                                  ValueMapping);
1302  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1303                                  ValueMapping);
1304
1305  // If there were values defined in BB that are used outside the block, then we
1306  // now have to update all uses of the value to use either the original value,
1307  // the cloned value, or some PHI derived value.  This can require arbitrary
1308  // PHI insertion, of which we are prepared to do, clean these up now.
1309  SSAUpdater SSAUpdate;
1310  SmallVector<Use*, 16> UsesToRename;
1311  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1312    // Scan all uses of this instruction to see if it is used outside of its
1313    // block, and if so, record them in UsesToRename.
1314    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1315         ++UI) {
1316      Instruction *User = cast<Instruction>(*UI);
1317      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1318        if (UserPN->getIncomingBlock(UI) == BB)
1319          continue;
1320      } else if (User->getParent() == BB)
1321        continue;
1322
1323      UsesToRename.push_back(&UI.getUse());
1324    }
1325
1326    // If there are no uses outside the block, we're done with this instruction.
1327    if (UsesToRename.empty())
1328      continue;
1329
1330    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1331
1332    // We found a use of I outside of BB.  Rename all uses of I that are outside
1333    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1334    // with the two values we know.
1335    SSAUpdate.Initialize(I);
1336    SSAUpdate.AddAvailableValue(BB, I);
1337    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1338
1339    while (!UsesToRename.empty())
1340      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1341    DEBUG(errs() << "\n");
1342  }
1343
1344  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1345  // that we nuked.
1346  RemovePredecessorAndSimplify(BB, PredBB, TD);
1347
1348  // Remove the unconditional branch at the end of the PredBB block.
1349  OldPredBranch->eraseFromParent();
1350
1351  ++NumDupes;
1352  return true;
1353}
1354
1355
1356