JumpThreading.cpp revision c69908695af9cf509bf498a492854db5f0556e0f
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/LazyValueInfo.h"
25#include "llvm/Analysis/Loads.h"
26#include "llvm/DataLayout.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ValueHandle.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetLibraryInfo.h"
35#include "llvm/Transforms/Utils/BasicBlockUtils.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/SSAUpdater.h"
38using namespace llvm;
39
40STATISTIC(NumThreads, "Number of jumps threaded");
41STATISTIC(NumFolds,   "Number of terminators folded");
42STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
43
44static cl::opt<unsigned>
45Threshold("jump-threading-threshold",
46          cl::desc("Max block size to duplicate for jump threading"),
47          cl::init(6), cl::Hidden);
48
49namespace {
50  // These are at global scope so static functions can use them too.
51  typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
52  typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
53
54  // This is used to keep track of what kind of constant we're currently hoping
55  // to find.
56  enum ConstantPreference {
57    WantInteger,
58    WantBlockAddress
59  };
60
61  /// This pass performs 'jump threading', which looks at blocks that have
62  /// multiple predecessors and multiple successors.  If one or more of the
63  /// predecessors of the block can be proven to always jump to one of the
64  /// successors, we forward the edge from the predecessor to the successor by
65  /// duplicating the contents of this block.
66  ///
67  /// An example of when this can occur is code like this:
68  ///
69  ///   if () { ...
70  ///     X = 4;
71  ///   }
72  ///   if (X < 3) {
73  ///
74  /// In this case, the unconditional branch at the end of the first if can be
75  /// revectored to the false side of the second if.
76  ///
77  class JumpThreading : public FunctionPass {
78    DataLayout *TD;
79    TargetLibraryInfo *TLI;
80    LazyValueInfo *LVI;
81#ifdef NDEBUG
82    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
83#else
84    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
85#endif
86    DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
87
88    // RAII helper for updating the recursion stack.
89    struct RecursionSetRemover {
90      DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
91      std::pair<Value*, BasicBlock*> ThePair;
92
93      RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
94                          std::pair<Value*, BasicBlock*> P)
95        : TheSet(S), ThePair(P) { }
96
97      ~RecursionSetRemover() {
98        TheSet.erase(ThePair);
99      }
100    };
101  public:
102    static char ID; // Pass identification
103    JumpThreading() : FunctionPass(ID) {
104      initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
105    }
106
107    bool runOnFunction(Function &F);
108
109    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
110      AU.addRequired<LazyValueInfo>();
111      AU.addPreserved<LazyValueInfo>();
112      AU.addRequired<TargetLibraryInfo>();
113    }
114
115    void FindLoopHeaders(Function &F);
116    bool ProcessBlock(BasicBlock *BB);
117    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
118                    BasicBlock *SuccBB);
119    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
120                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
121
122    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
123                                         PredValueInfo &Result,
124                                         ConstantPreference Preference);
125    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
126                                ConstantPreference Preference);
127
128    bool ProcessBranchOnPHI(PHINode *PN);
129    bool ProcessBranchOnXOR(BinaryOperator *BO);
130
131    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
132  };
133}
134
135char JumpThreading::ID = 0;
136INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
137                "Jump Threading", false, false)
138INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
139INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
140INITIALIZE_PASS_END(JumpThreading, "jump-threading",
141                "Jump Threading", false, false)
142
143// Public interface to the Jump Threading pass
144FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
145
146/// runOnFunction - Top level algorithm.
147///
148bool JumpThreading::runOnFunction(Function &F) {
149  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
150  TD = getAnalysisIfAvailable<DataLayout>();
151  TLI = &getAnalysis<TargetLibraryInfo>();
152  LVI = &getAnalysis<LazyValueInfo>();
153
154  FindLoopHeaders(F);
155
156  bool Changed, EverChanged = false;
157  do {
158    Changed = false;
159    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
160      BasicBlock *BB = I;
161      // Thread all of the branches we can over this block.
162      while (ProcessBlock(BB))
163        Changed = true;
164
165      ++I;
166
167      // If the block is trivially dead, zap it.  This eliminates the successor
168      // edges which simplifies the CFG.
169      if (pred_begin(BB) == pred_end(BB) &&
170          BB != &BB->getParent()->getEntryBlock()) {
171        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
172              << "' with terminator: " << *BB->getTerminator() << '\n');
173        LoopHeaders.erase(BB);
174        LVI->eraseBlock(BB);
175        DeleteDeadBlock(BB);
176        Changed = true;
177        continue;
178      }
179
180      BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
181
182      // Can't thread an unconditional jump, but if the block is "almost
183      // empty", we can replace uses of it with uses of the successor and make
184      // this dead.
185      if (BI && BI->isUnconditional() &&
186          BB != &BB->getParent()->getEntryBlock() &&
187          // If the terminator is the only non-phi instruction, try to nuke it.
188          BB->getFirstNonPHIOrDbg()->isTerminator()) {
189        // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
190        // block, we have to make sure it isn't in the LoopHeaders set.  We
191        // reinsert afterward if needed.
192        bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
193        BasicBlock *Succ = BI->getSuccessor(0);
194
195        // FIXME: It is always conservatively correct to drop the info
196        // for a block even if it doesn't get erased.  This isn't totally
197        // awesome, but it allows us to use AssertingVH to prevent nasty
198        // dangling pointer issues within LazyValueInfo.
199        LVI->eraseBlock(BB);
200        if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
201          Changed = true;
202          // If we deleted BB and BB was the header of a loop, then the
203          // successor is now the header of the loop.
204          BB = Succ;
205        }
206
207        if (ErasedFromLoopHeaders)
208          LoopHeaders.insert(BB);
209      }
210    }
211    EverChanged |= Changed;
212  } while (Changed);
213
214  LoopHeaders.clear();
215  return EverChanged;
216}
217
218/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
219/// thread across it. Stop scanning the block when passing the threshold.
220static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
221                                             unsigned Threshold) {
222  /// Ignore PHI nodes, these will be flattened when duplication happens.
223  BasicBlock::const_iterator I = BB->getFirstNonPHI();
224
225  // FIXME: THREADING will delete values that are just used to compute the
226  // branch, so they shouldn't count against the duplication cost.
227
228  // Sum up the cost of each instruction until we get to the terminator.  Don't
229  // include the terminator because the copy won't include it.
230  unsigned Size = 0;
231  for (; !isa<TerminatorInst>(I); ++I) {
232
233    // Stop scanning the block if we've reached the threshold.
234    if (Size > Threshold)
235      return Size;
236
237    // Debugger intrinsics don't incur code size.
238    if (isa<DbgInfoIntrinsic>(I)) continue;
239
240    // If this is a pointer->pointer bitcast, it is free.
241    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
242      continue;
243
244    // All other instructions count for at least one unit.
245    ++Size;
246
247    // Calls are more expensive.  If they are non-intrinsic calls, we model them
248    // as having cost of 4.  If they are a non-vector intrinsic, we model them
249    // as having cost of 2 total, and if they are a vector intrinsic, we model
250    // them as having cost 1.
251    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
252      if (!isa<IntrinsicInst>(CI))
253        Size += 3;
254      else if (!CI->getType()->isVectorTy())
255        Size += 1;
256    }
257  }
258
259  // Threading through a switch statement is particularly profitable.  If this
260  // block ends in a switch, decrease its cost to make it more likely to happen.
261  if (isa<SwitchInst>(I))
262    Size = Size > 6 ? Size-6 : 0;
263
264  // The same holds for indirect branches, but slightly more so.
265  if (isa<IndirectBrInst>(I))
266    Size = Size > 8 ? Size-8 : 0;
267
268  return Size;
269}
270
271/// FindLoopHeaders - We do not want jump threading to turn proper loop
272/// structures into irreducible loops.  Doing this breaks up the loop nesting
273/// hierarchy and pessimizes later transformations.  To prevent this from
274/// happening, we first have to find the loop headers.  Here we approximate this
275/// by finding targets of backedges in the CFG.
276///
277/// Note that there definitely are cases when we want to allow threading of
278/// edges across a loop header.  For example, threading a jump from outside the
279/// loop (the preheader) to an exit block of the loop is definitely profitable.
280/// It is also almost always profitable to thread backedges from within the loop
281/// to exit blocks, and is often profitable to thread backedges to other blocks
282/// within the loop (forming a nested loop).  This simple analysis is not rich
283/// enough to track all of these properties and keep it up-to-date as the CFG
284/// mutates, so we don't allow any of these transformations.
285///
286void JumpThreading::FindLoopHeaders(Function &F) {
287  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
288  FindFunctionBackedges(F, Edges);
289
290  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
291    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
292}
293
294/// getKnownConstant - Helper method to determine if we can thread over a
295/// terminator with the given value as its condition, and if so what value to
296/// use for that. What kind of value this is depends on whether we want an
297/// integer or a block address, but an undef is always accepted.
298/// Returns null if Val is null or not an appropriate constant.
299static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
300  if (!Val)
301    return 0;
302
303  // Undef is "known" enough.
304  if (UndefValue *U = dyn_cast<UndefValue>(Val))
305    return U;
306
307  if (Preference == WantBlockAddress)
308    return dyn_cast<BlockAddress>(Val->stripPointerCasts());
309
310  return dyn_cast<ConstantInt>(Val);
311}
312
313/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
314/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
315/// in any of our predecessors.  If so, return the known list of value and pred
316/// BB in the result vector.
317///
318/// This returns true if there were any known values.
319///
320bool JumpThreading::
321ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
322                                ConstantPreference Preference) {
323  // This method walks up use-def chains recursively.  Because of this, we could
324  // get into an infinite loop going around loops in the use-def chain.  To
325  // prevent this, keep track of what (value, block) pairs we've already visited
326  // and terminate the search if we loop back to them
327  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
328    return false;
329
330  // An RAII help to remove this pair from the recursion set once the recursion
331  // stack pops back out again.
332  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
333
334  // If V is a constant, then it is known in all predecessors.
335  if (Constant *KC = getKnownConstant(V, Preference)) {
336    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
337      Result.push_back(std::make_pair(KC, *PI));
338
339    return true;
340  }
341
342  // If V is a non-instruction value, or an instruction in a different block,
343  // then it can't be derived from a PHI.
344  Instruction *I = dyn_cast<Instruction>(V);
345  if (I == 0 || I->getParent() != BB) {
346
347    // Okay, if this is a live-in value, see if it has a known value at the end
348    // of any of our predecessors.
349    //
350    // FIXME: This should be an edge property, not a block end property.
351    /// TODO: Per PR2563, we could infer value range information about a
352    /// predecessor based on its terminator.
353    //
354    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
355    // "I" is a non-local compare-with-a-constant instruction.  This would be
356    // able to handle value inequalities better, for example if the compare is
357    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
358    // Perhaps getConstantOnEdge should be smart enough to do this?
359
360    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
361      BasicBlock *P = *PI;
362      // If the value is known by LazyValueInfo to be a constant in a
363      // predecessor, use that information to try to thread this block.
364      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
365      if (Constant *KC = getKnownConstant(PredCst, Preference))
366        Result.push_back(std::make_pair(KC, P));
367    }
368
369    return !Result.empty();
370  }
371
372  /// If I is a PHI node, then we know the incoming values for any constants.
373  if (PHINode *PN = dyn_cast<PHINode>(I)) {
374    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
375      Value *InVal = PN->getIncomingValue(i);
376      if (Constant *KC = getKnownConstant(InVal, Preference)) {
377        Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
378      } else {
379        Constant *CI = LVI->getConstantOnEdge(InVal,
380                                              PN->getIncomingBlock(i), BB);
381        if (Constant *KC = getKnownConstant(CI, Preference))
382          Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
383      }
384    }
385
386    return !Result.empty();
387  }
388
389  PredValueInfoTy LHSVals, RHSVals;
390
391  // Handle some boolean conditions.
392  if (I->getType()->getPrimitiveSizeInBits() == 1) {
393    assert(Preference == WantInteger && "One-bit non-integer type?");
394    // X | true -> true
395    // X & false -> false
396    if (I->getOpcode() == Instruction::Or ||
397        I->getOpcode() == Instruction::And) {
398      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
399                                      WantInteger);
400      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
401                                      WantInteger);
402
403      if (LHSVals.empty() && RHSVals.empty())
404        return false;
405
406      ConstantInt *InterestingVal;
407      if (I->getOpcode() == Instruction::Or)
408        InterestingVal = ConstantInt::getTrue(I->getContext());
409      else
410        InterestingVal = ConstantInt::getFalse(I->getContext());
411
412      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
413
414      // Scan for the sentinel.  If we find an undef, force it to the
415      // interesting value: x|undef -> true and x&undef -> false.
416      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
417        if (LHSVals[i].first == InterestingVal ||
418            isa<UndefValue>(LHSVals[i].first)) {
419          Result.push_back(LHSVals[i]);
420          Result.back().first = InterestingVal;
421          LHSKnownBBs.insert(LHSVals[i].second);
422        }
423      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
424        if (RHSVals[i].first == InterestingVal ||
425            isa<UndefValue>(RHSVals[i].first)) {
426          // If we already inferred a value for this block on the LHS, don't
427          // re-add it.
428          if (!LHSKnownBBs.count(RHSVals[i].second)) {
429            Result.push_back(RHSVals[i]);
430            Result.back().first = InterestingVal;
431          }
432        }
433
434      return !Result.empty();
435    }
436
437    // Handle the NOT form of XOR.
438    if (I->getOpcode() == Instruction::Xor &&
439        isa<ConstantInt>(I->getOperand(1)) &&
440        cast<ConstantInt>(I->getOperand(1))->isOne()) {
441      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
442                                      WantInteger);
443      if (Result.empty())
444        return false;
445
446      // Invert the known values.
447      for (unsigned i = 0, e = Result.size(); i != e; ++i)
448        Result[i].first = ConstantExpr::getNot(Result[i].first);
449
450      return true;
451    }
452
453  // Try to simplify some other binary operator values.
454  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
455    assert(Preference != WantBlockAddress
456            && "A binary operator creating a block address?");
457    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
458      PredValueInfoTy LHSVals;
459      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
460                                      WantInteger);
461
462      // Try to use constant folding to simplify the binary operator.
463      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
464        Constant *V = LHSVals[i].first;
465        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
466
467        if (Constant *KC = getKnownConstant(Folded, WantInteger))
468          Result.push_back(std::make_pair(KC, LHSVals[i].second));
469      }
470    }
471
472    return !Result.empty();
473  }
474
475  // Handle compare with phi operand, where the PHI is defined in this block.
476  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
477    assert(Preference == WantInteger && "Compares only produce integers");
478    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
479    if (PN && PN->getParent() == BB) {
480      // We can do this simplification if any comparisons fold to true or false.
481      // See if any do.
482      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
483        BasicBlock *PredBB = PN->getIncomingBlock(i);
484        Value *LHS = PN->getIncomingValue(i);
485        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
486
487        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
488        if (Res == 0) {
489          if (!isa<Constant>(RHS))
490            continue;
491
492          LazyValueInfo::Tristate
493            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
494                                           cast<Constant>(RHS), PredBB, BB);
495          if (ResT == LazyValueInfo::Unknown)
496            continue;
497          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
498        }
499
500        if (Constant *KC = getKnownConstant(Res, WantInteger))
501          Result.push_back(std::make_pair(KC, PredBB));
502      }
503
504      return !Result.empty();
505    }
506
507
508    // If comparing a live-in value against a constant, see if we know the
509    // live-in value on any predecessors.
510    if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
511      if (!isa<Instruction>(Cmp->getOperand(0)) ||
512          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
513        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
514
515        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
516          BasicBlock *P = *PI;
517          // If the value is known by LazyValueInfo to be a constant in a
518          // predecessor, use that information to try to thread this block.
519          LazyValueInfo::Tristate Res =
520            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
521                                    RHSCst, P, BB);
522          if (Res == LazyValueInfo::Unknown)
523            continue;
524
525          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
526          Result.push_back(std::make_pair(ResC, P));
527        }
528
529        return !Result.empty();
530      }
531
532      // Try to find a constant value for the LHS of a comparison,
533      // and evaluate it statically if we can.
534      if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
535        PredValueInfoTy LHSVals;
536        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
537                                        WantInteger);
538
539        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
540          Constant *V = LHSVals[i].first;
541          Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
542                                                      V, CmpConst);
543          if (Constant *KC = getKnownConstant(Folded, WantInteger))
544            Result.push_back(std::make_pair(KC, LHSVals[i].second));
545        }
546
547        return !Result.empty();
548      }
549    }
550  }
551
552  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
553    // Handle select instructions where at least one operand is a known constant
554    // and we can figure out the condition value for any predecessor block.
555    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
556    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
557    PredValueInfoTy Conds;
558    if ((TrueVal || FalseVal) &&
559        ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
560                                        WantInteger)) {
561      for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
562        Constant *Cond = Conds[i].first;
563
564        // Figure out what value to use for the condition.
565        bool KnownCond;
566        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
567          // A known boolean.
568          KnownCond = CI->isOne();
569        } else {
570          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
571          // Either operand will do, so be sure to pick the one that's a known
572          // constant.
573          // FIXME: Do this more cleverly if both values are known constants?
574          KnownCond = (TrueVal != 0);
575        }
576
577        // See if the select has a known constant value for this predecessor.
578        if (Constant *Val = KnownCond ? TrueVal : FalseVal)
579          Result.push_back(std::make_pair(Val, Conds[i].second));
580      }
581
582      return !Result.empty();
583    }
584  }
585
586  // If all else fails, see if LVI can figure out a constant value for us.
587  Constant *CI = LVI->getConstant(V, BB);
588  if (Constant *KC = getKnownConstant(CI, Preference)) {
589    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
590      Result.push_back(std::make_pair(KC, *PI));
591  }
592
593  return !Result.empty();
594}
595
596
597
598/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
599/// in an undefined jump, decide which block is best to revector to.
600///
601/// Since we can pick an arbitrary destination, we pick the successor with the
602/// fewest predecessors.  This should reduce the in-degree of the others.
603///
604static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
605  TerminatorInst *BBTerm = BB->getTerminator();
606  unsigned MinSucc = 0;
607  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
608  // Compute the successor with the minimum number of predecessors.
609  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
610  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
611    TestBB = BBTerm->getSuccessor(i);
612    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
613    if (NumPreds < MinNumPreds) {
614      MinSucc = i;
615      MinNumPreds = NumPreds;
616    }
617  }
618
619  return MinSucc;
620}
621
622static bool hasAddressTakenAndUsed(BasicBlock *BB) {
623  if (!BB->hasAddressTaken()) return false;
624
625  // If the block has its address taken, it may be a tree of dead constants
626  // hanging off of it.  These shouldn't keep the block alive.
627  BlockAddress *BA = BlockAddress::get(BB);
628  BA->removeDeadConstantUsers();
629  return !BA->use_empty();
630}
631
632/// ProcessBlock - If there are any predecessors whose control can be threaded
633/// through to a successor, transform them now.
634bool JumpThreading::ProcessBlock(BasicBlock *BB) {
635  // If the block is trivially dead, just return and let the caller nuke it.
636  // This simplifies other transformations.
637  if (pred_begin(BB) == pred_end(BB) &&
638      BB != &BB->getParent()->getEntryBlock())
639    return false;
640
641  // If this block has a single predecessor, and if that pred has a single
642  // successor, merge the blocks.  This encourages recursive jump threading
643  // because now the condition in this block can be threaded through
644  // predecessors of our predecessor block.
645  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
646    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
647        SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
648      // If SinglePred was a loop header, BB becomes one.
649      if (LoopHeaders.erase(SinglePred))
650        LoopHeaders.insert(BB);
651
652      // Remember if SinglePred was the entry block of the function.  If so, we
653      // will need to move BB back to the entry position.
654      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
655      LVI->eraseBlock(SinglePred);
656      MergeBasicBlockIntoOnlyPred(BB);
657
658      if (isEntry && BB != &BB->getParent()->getEntryBlock())
659        BB->moveBefore(&BB->getParent()->getEntryBlock());
660      return true;
661    }
662  }
663
664  // What kind of constant we're looking for.
665  ConstantPreference Preference = WantInteger;
666
667  // Look to see if the terminator is a conditional branch, switch or indirect
668  // branch, if not we can't thread it.
669  Value *Condition;
670  Instruction *Terminator = BB->getTerminator();
671  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
672    // Can't thread an unconditional jump.
673    if (BI->isUnconditional()) return false;
674    Condition = BI->getCondition();
675  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
676    Condition = SI->getCondition();
677  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
678    // Can't thread indirect branch with no successors.
679    if (IB->getNumSuccessors() == 0) return false;
680    Condition = IB->getAddress()->stripPointerCasts();
681    Preference = WantBlockAddress;
682  } else {
683    return false; // Must be an invoke.
684  }
685
686  // Run constant folding to see if we can reduce the condition to a simple
687  // constant.
688  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
689    Value *SimpleVal = ConstantFoldInstruction(I, TD, TLI);
690    if (SimpleVal) {
691      I->replaceAllUsesWith(SimpleVal);
692      I->eraseFromParent();
693      Condition = SimpleVal;
694    }
695  }
696
697  // If the terminator is branching on an undef, we can pick any of the
698  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
699  if (isa<UndefValue>(Condition)) {
700    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
701
702    // Fold the branch/switch.
703    TerminatorInst *BBTerm = BB->getTerminator();
704    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
705      if (i == BestSucc) continue;
706      BBTerm->getSuccessor(i)->removePredecessor(BB, true);
707    }
708
709    DEBUG(dbgs() << "  In block '" << BB->getName()
710          << "' folding undef terminator: " << *BBTerm << '\n');
711    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
712    BBTerm->eraseFromParent();
713    return true;
714  }
715
716  // If the terminator of this block is branching on a constant, simplify the
717  // terminator to an unconditional branch.  This can occur due to threading in
718  // other blocks.
719  if (getKnownConstant(Condition, Preference)) {
720    DEBUG(dbgs() << "  In block '" << BB->getName()
721          << "' folding terminator: " << *BB->getTerminator() << '\n');
722    ++NumFolds;
723    ConstantFoldTerminator(BB, true);
724    return true;
725  }
726
727  Instruction *CondInst = dyn_cast<Instruction>(Condition);
728
729  // All the rest of our checks depend on the condition being an instruction.
730  if (CondInst == 0) {
731    // FIXME: Unify this with code below.
732    if (ProcessThreadableEdges(Condition, BB, Preference))
733      return true;
734    return false;
735  }
736
737
738  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
739    // For a comparison where the LHS is outside this block, it's possible
740    // that we've branched on it before.  Used LVI to see if we can simplify
741    // the branch based on that.
742    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
743    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
744    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
745    if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
746        (!isa<Instruction>(CondCmp->getOperand(0)) ||
747         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
748      // For predecessor edge, determine if the comparison is true or false
749      // on that edge.  If they're all true or all false, we can simplify the
750      // branch.
751      // FIXME: We could handle mixed true/false by duplicating code.
752      LazyValueInfo::Tristate Baseline =
753        LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
754                                CondConst, *PI, BB);
755      if (Baseline != LazyValueInfo::Unknown) {
756        // Check that all remaining incoming values match the first one.
757        while (++PI != PE) {
758          LazyValueInfo::Tristate Ret =
759            LVI->getPredicateOnEdge(CondCmp->getPredicate(),
760                                    CondCmp->getOperand(0), CondConst, *PI, BB);
761          if (Ret != Baseline) break;
762        }
763
764        // If we terminated early, then one of the values didn't match.
765        if (PI == PE) {
766          unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
767          unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
768          CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
769          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
770          CondBr->eraseFromParent();
771          return true;
772        }
773      }
774    }
775  }
776
777  // Check for some cases that are worth simplifying.  Right now we want to look
778  // for loads that are used by a switch or by the condition for the branch.  If
779  // we see one, check to see if it's partially redundant.  If so, insert a PHI
780  // which can then be used to thread the values.
781  //
782  Value *SimplifyValue = CondInst;
783  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
784    if (isa<Constant>(CondCmp->getOperand(1)))
785      SimplifyValue = CondCmp->getOperand(0);
786
787  // TODO: There are other places where load PRE would be profitable, such as
788  // more complex comparisons.
789  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
790    if (SimplifyPartiallyRedundantLoad(LI))
791      return true;
792
793
794  // Handle a variety of cases where we are branching on something derived from
795  // a PHI node in the current block.  If we can prove that any predecessors
796  // compute a predictable value based on a PHI node, thread those predecessors.
797  //
798  if (ProcessThreadableEdges(CondInst, BB, Preference))
799    return true;
800
801  // If this is an otherwise-unfoldable branch on a phi node in the current
802  // block, see if we can simplify.
803  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
804    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
805      return ProcessBranchOnPHI(PN);
806
807
808  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
809  if (CondInst->getOpcode() == Instruction::Xor &&
810      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
811    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
812
813
814  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
815  // "(X == 4)", thread through this block.
816
817  return false;
818}
819
820
821/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
822/// load instruction, eliminate it by replacing it with a PHI node.  This is an
823/// important optimization that encourages jump threading, and needs to be run
824/// interlaced with other jump threading tasks.
825bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
826  // Don't hack volatile/atomic loads.
827  if (!LI->isSimple()) return false;
828
829  // If the load is defined in a block with exactly one predecessor, it can't be
830  // partially redundant.
831  BasicBlock *LoadBB = LI->getParent();
832  if (LoadBB->getSinglePredecessor())
833    return false;
834
835  Value *LoadedPtr = LI->getOperand(0);
836
837  // If the loaded operand is defined in the LoadBB, it can't be available.
838  // TODO: Could do simple PHI translation, that would be fun :)
839  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
840    if (PtrOp->getParent() == LoadBB)
841      return false;
842
843  // Scan a few instructions up from the load, to see if it is obviously live at
844  // the entry to its block.
845  BasicBlock::iterator BBIt = LI;
846
847  if (Value *AvailableVal =
848        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
849    // If the value if the load is locally available within the block, just use
850    // it.  This frequently occurs for reg2mem'd allocas.
851    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
852
853    // If the returned value is the load itself, replace with an undef. This can
854    // only happen in dead loops.
855    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
856    LI->replaceAllUsesWith(AvailableVal);
857    LI->eraseFromParent();
858    return true;
859  }
860
861  // Otherwise, if we scanned the whole block and got to the top of the block,
862  // we know the block is locally transparent to the load.  If not, something
863  // might clobber its value.
864  if (BBIt != LoadBB->begin())
865    return false;
866
867  // If all of the loads and stores that feed the value have the same TBAA tag,
868  // then we can propagate it onto any newly inserted loads.
869  MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
870
871  SmallPtrSet<BasicBlock*, 8> PredsScanned;
872  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
873  AvailablePredsTy AvailablePreds;
874  BasicBlock *OneUnavailablePred = 0;
875
876  // If we got here, the loaded value is transparent through to the start of the
877  // block.  Check to see if it is available in any of the predecessor blocks.
878  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
879       PI != PE; ++PI) {
880    BasicBlock *PredBB = *PI;
881
882    // If we already scanned this predecessor, skip it.
883    if (!PredsScanned.insert(PredBB))
884      continue;
885
886    // Scan the predecessor to see if the value is available in the pred.
887    BBIt = PredBB->end();
888    MDNode *ThisTBAATag = 0;
889    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6,
890                                                    0, &ThisTBAATag);
891    if (!PredAvailable) {
892      OneUnavailablePred = PredBB;
893      continue;
894    }
895
896    // If tbaa tags disagree or are not present, forget about them.
897    if (TBAATag != ThisTBAATag) TBAATag = 0;
898
899    // If so, this load is partially redundant.  Remember this info so that we
900    // can create a PHI node.
901    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
902  }
903
904  // If the loaded value isn't available in any predecessor, it isn't partially
905  // redundant.
906  if (AvailablePreds.empty()) return false;
907
908  // Okay, the loaded value is available in at least one (and maybe all!)
909  // predecessors.  If the value is unavailable in more than one unique
910  // predecessor, we want to insert a merge block for those common predecessors.
911  // This ensures that we only have to insert one reload, thus not increasing
912  // code size.
913  BasicBlock *UnavailablePred = 0;
914
915  // If there is exactly one predecessor where the value is unavailable, the
916  // already computed 'OneUnavailablePred' block is it.  If it ends in an
917  // unconditional branch, we know that it isn't a critical edge.
918  if (PredsScanned.size() == AvailablePreds.size()+1 &&
919      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
920    UnavailablePred = OneUnavailablePred;
921  } else if (PredsScanned.size() != AvailablePreds.size()) {
922    // Otherwise, we had multiple unavailable predecessors or we had a critical
923    // edge from the one.
924    SmallVector<BasicBlock*, 8> PredsToSplit;
925    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
926
927    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
928      AvailablePredSet.insert(AvailablePreds[i].first);
929
930    // Add all the unavailable predecessors to the PredsToSplit list.
931    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
932         PI != PE; ++PI) {
933      BasicBlock *P = *PI;
934      // If the predecessor is an indirect goto, we can't split the edge.
935      if (isa<IndirectBrInst>(P->getTerminator()))
936        return false;
937
938      if (!AvailablePredSet.count(P))
939        PredsToSplit.push_back(P);
940    }
941
942    // Split them out to their own block.
943    UnavailablePred =
944      SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this);
945  }
946
947  // If the value isn't available in all predecessors, then there will be
948  // exactly one where it isn't available.  Insert a load on that edge and add
949  // it to the AvailablePreds list.
950  if (UnavailablePred) {
951    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
952           "Can't handle critical edge here!");
953    LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
954                                 LI->getAlignment(),
955                                 UnavailablePred->getTerminator());
956    NewVal->setDebugLoc(LI->getDebugLoc());
957    if (TBAATag)
958      NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag);
959
960    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
961  }
962
963  // Now we know that each predecessor of this block has a value in
964  // AvailablePreds, sort them for efficient access as we're walking the preds.
965  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
966
967  // Create a PHI node at the start of the block for the PRE'd load value.
968  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
969  PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
970                                LoadBB->begin());
971  PN->takeName(LI);
972  PN->setDebugLoc(LI->getDebugLoc());
973
974  // Insert new entries into the PHI for each predecessor.  A single block may
975  // have multiple entries here.
976  for (pred_iterator PI = PB; PI != PE; ++PI) {
977    BasicBlock *P = *PI;
978    AvailablePredsTy::iterator I =
979      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
980                       std::make_pair(P, (Value*)0));
981
982    assert(I != AvailablePreds.end() && I->first == P &&
983           "Didn't find entry for predecessor!");
984
985    PN->addIncoming(I->second, I->first);
986  }
987
988  //cerr << "PRE: " << *LI << *PN << "\n";
989
990  LI->replaceAllUsesWith(PN);
991  LI->eraseFromParent();
992
993  return true;
994}
995
996/// FindMostPopularDest - The specified list contains multiple possible
997/// threadable destinations.  Pick the one that occurs the most frequently in
998/// the list.
999static BasicBlock *
1000FindMostPopularDest(BasicBlock *BB,
1001                    const SmallVectorImpl<std::pair<BasicBlock*,
1002                                  BasicBlock*> > &PredToDestList) {
1003  assert(!PredToDestList.empty());
1004
1005  // Determine popularity.  If there are multiple possible destinations, we
1006  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1007  // blocks with known and real destinations to threading undef.  We'll handle
1008  // them later if interesting.
1009  DenseMap<BasicBlock*, unsigned> DestPopularity;
1010  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1011    if (PredToDestList[i].second)
1012      DestPopularity[PredToDestList[i].second]++;
1013
1014  // Find the most popular dest.
1015  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1016  BasicBlock *MostPopularDest = DPI->first;
1017  unsigned Popularity = DPI->second;
1018  SmallVector<BasicBlock*, 4> SamePopularity;
1019
1020  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1021    // If the popularity of this entry isn't higher than the popularity we've
1022    // seen so far, ignore it.
1023    if (DPI->second < Popularity)
1024      ; // ignore.
1025    else if (DPI->second == Popularity) {
1026      // If it is the same as what we've seen so far, keep track of it.
1027      SamePopularity.push_back(DPI->first);
1028    } else {
1029      // If it is more popular, remember it.
1030      SamePopularity.clear();
1031      MostPopularDest = DPI->first;
1032      Popularity = DPI->second;
1033    }
1034  }
1035
1036  // Okay, now we know the most popular destination.  If there is more than one
1037  // destination, we need to determine one.  This is arbitrary, but we need
1038  // to make a deterministic decision.  Pick the first one that appears in the
1039  // successor list.
1040  if (!SamePopularity.empty()) {
1041    SamePopularity.push_back(MostPopularDest);
1042    TerminatorInst *TI = BB->getTerminator();
1043    for (unsigned i = 0; ; ++i) {
1044      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1045
1046      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1047                    TI->getSuccessor(i)) == SamePopularity.end())
1048        continue;
1049
1050      MostPopularDest = TI->getSuccessor(i);
1051      break;
1052    }
1053  }
1054
1055  // Okay, we have finally picked the most popular destination.
1056  return MostPopularDest;
1057}
1058
1059bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1060                                           ConstantPreference Preference) {
1061  // If threading this would thread across a loop header, don't even try to
1062  // thread the edge.
1063  if (LoopHeaders.count(BB))
1064    return false;
1065
1066  PredValueInfoTy PredValues;
1067  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
1068    return false;
1069
1070  assert(!PredValues.empty() &&
1071         "ComputeValueKnownInPredecessors returned true with no values");
1072
1073  DEBUG(dbgs() << "IN BB: " << *BB;
1074        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1075          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1076            << *PredValues[i].first
1077            << " for pred '" << PredValues[i].second->getName() << "'.\n";
1078        });
1079
1080  // Decide what we want to thread through.  Convert our list of known values to
1081  // a list of known destinations for each pred.  This also discards duplicate
1082  // predecessors and keeps track of the undefined inputs (which are represented
1083  // as a null dest in the PredToDestList).
1084  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1085  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1086
1087  BasicBlock *OnlyDest = 0;
1088  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1089
1090  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1091    BasicBlock *Pred = PredValues[i].second;
1092    if (!SeenPreds.insert(Pred))
1093      continue;  // Duplicate predecessor entry.
1094
1095    // If the predecessor ends with an indirect goto, we can't change its
1096    // destination.
1097    if (isa<IndirectBrInst>(Pred->getTerminator()))
1098      continue;
1099
1100    Constant *Val = PredValues[i].first;
1101
1102    BasicBlock *DestBB;
1103    if (isa<UndefValue>(Val))
1104      DestBB = 0;
1105    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1106      DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1107    else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1108      DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1109    } else {
1110      assert(isa<IndirectBrInst>(BB->getTerminator())
1111              && "Unexpected terminator");
1112      DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1113    }
1114
1115    // If we have exactly one destination, remember it for efficiency below.
1116    if (PredToDestList.empty())
1117      OnlyDest = DestBB;
1118    else if (OnlyDest != DestBB)
1119      OnlyDest = MultipleDestSentinel;
1120
1121    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1122  }
1123
1124  // If all edges were unthreadable, we fail.
1125  if (PredToDestList.empty())
1126    return false;
1127
1128  // Determine which is the most common successor.  If we have many inputs and
1129  // this block is a switch, we want to start by threading the batch that goes
1130  // to the most popular destination first.  If we only know about one
1131  // threadable destination (the common case) we can avoid this.
1132  BasicBlock *MostPopularDest = OnlyDest;
1133
1134  if (MostPopularDest == MultipleDestSentinel)
1135    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1136
1137  // Now that we know what the most popular destination is, factor all
1138  // predecessors that will jump to it into a single predecessor.
1139  SmallVector<BasicBlock*, 16> PredsToFactor;
1140  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1141    if (PredToDestList[i].second == MostPopularDest) {
1142      BasicBlock *Pred = PredToDestList[i].first;
1143
1144      // This predecessor may be a switch or something else that has multiple
1145      // edges to the block.  Factor each of these edges by listing them
1146      // according to # occurrences in PredsToFactor.
1147      TerminatorInst *PredTI = Pred->getTerminator();
1148      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1149        if (PredTI->getSuccessor(i) == BB)
1150          PredsToFactor.push_back(Pred);
1151    }
1152
1153  // If the threadable edges are branching on an undefined value, we get to pick
1154  // the destination that these predecessors should get to.
1155  if (MostPopularDest == 0)
1156    MostPopularDest = BB->getTerminator()->
1157                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1158
1159  // Ok, try to thread it!
1160  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1161}
1162
1163/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1164/// a PHI node in the current block.  See if there are any simplifications we
1165/// can do based on inputs to the phi node.
1166///
1167bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1168  BasicBlock *BB = PN->getParent();
1169
1170  // TODO: We could make use of this to do it once for blocks with common PHI
1171  // values.
1172  SmallVector<BasicBlock*, 1> PredBBs;
1173  PredBBs.resize(1);
1174
1175  // If any of the predecessor blocks end in an unconditional branch, we can
1176  // *duplicate* the conditional branch into that block in order to further
1177  // encourage jump threading and to eliminate cases where we have branch on a
1178  // phi of an icmp (branch on icmp is much better).
1179  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1180    BasicBlock *PredBB = PN->getIncomingBlock(i);
1181    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1182      if (PredBr->isUnconditional()) {
1183        PredBBs[0] = PredBB;
1184        // Try to duplicate BB into PredBB.
1185        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1186          return true;
1187      }
1188  }
1189
1190  return false;
1191}
1192
1193/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1194/// a xor instruction in the current block.  See if there are any
1195/// simplifications we can do based on inputs to the xor.
1196///
1197bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1198  BasicBlock *BB = BO->getParent();
1199
1200  // If either the LHS or RHS of the xor is a constant, don't do this
1201  // optimization.
1202  if (isa<ConstantInt>(BO->getOperand(0)) ||
1203      isa<ConstantInt>(BO->getOperand(1)))
1204    return false;
1205
1206  // If the first instruction in BB isn't a phi, we won't be able to infer
1207  // anything special about any particular predecessor.
1208  if (!isa<PHINode>(BB->front()))
1209    return false;
1210
1211  // If we have a xor as the branch input to this block, and we know that the
1212  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1213  // the condition into the predecessor and fix that value to true, saving some
1214  // logical ops on that path and encouraging other paths to simplify.
1215  //
1216  // This copies something like this:
1217  //
1218  //  BB:
1219  //    %X = phi i1 [1],  [%X']
1220  //    %Y = icmp eq i32 %A, %B
1221  //    %Z = xor i1 %X, %Y
1222  //    br i1 %Z, ...
1223  //
1224  // Into:
1225  //  BB':
1226  //    %Y = icmp ne i32 %A, %B
1227  //    br i1 %Z, ...
1228
1229  PredValueInfoTy XorOpValues;
1230  bool isLHS = true;
1231  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1232                                       WantInteger)) {
1233    assert(XorOpValues.empty());
1234    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1235                                         WantInteger))
1236      return false;
1237    isLHS = false;
1238  }
1239
1240  assert(!XorOpValues.empty() &&
1241         "ComputeValueKnownInPredecessors returned true with no values");
1242
1243  // Scan the information to see which is most popular: true or false.  The
1244  // predecessors can be of the set true, false, or undef.
1245  unsigned NumTrue = 0, NumFalse = 0;
1246  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1247    if (isa<UndefValue>(XorOpValues[i].first))
1248      // Ignore undefs for the count.
1249      continue;
1250    if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
1251      ++NumFalse;
1252    else
1253      ++NumTrue;
1254  }
1255
1256  // Determine which value to split on, true, false, or undef if neither.
1257  ConstantInt *SplitVal = 0;
1258  if (NumTrue > NumFalse)
1259    SplitVal = ConstantInt::getTrue(BB->getContext());
1260  else if (NumTrue != 0 || NumFalse != 0)
1261    SplitVal = ConstantInt::getFalse(BB->getContext());
1262
1263  // Collect all of the blocks that this can be folded into so that we can
1264  // factor this once and clone it once.
1265  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1266  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1267    if (XorOpValues[i].first != SplitVal &&
1268        !isa<UndefValue>(XorOpValues[i].first))
1269      continue;
1270
1271    BlocksToFoldInto.push_back(XorOpValues[i].second);
1272  }
1273
1274  // If we inferred a value for all of the predecessors, then duplication won't
1275  // help us.  However, we can just replace the LHS or RHS with the constant.
1276  if (BlocksToFoldInto.size() ==
1277      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1278    if (SplitVal == 0) {
1279      // If all preds provide undef, just nuke the xor, because it is undef too.
1280      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1281      BO->eraseFromParent();
1282    } else if (SplitVal->isZero()) {
1283      // If all preds provide 0, replace the xor with the other input.
1284      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1285      BO->eraseFromParent();
1286    } else {
1287      // If all preds provide 1, set the computed value to 1.
1288      BO->setOperand(!isLHS, SplitVal);
1289    }
1290
1291    return true;
1292  }
1293
1294  // Try to duplicate BB into PredBB.
1295  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1296}
1297
1298
1299/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1300/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1301/// NewPred using the entries from OldPred (suitably mapped).
1302static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1303                                            BasicBlock *OldPred,
1304                                            BasicBlock *NewPred,
1305                                     DenseMap<Instruction*, Value*> &ValueMap) {
1306  for (BasicBlock::iterator PNI = PHIBB->begin();
1307       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1308    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1309    // DestBlock.
1310    Value *IV = PN->getIncomingValueForBlock(OldPred);
1311
1312    // Remap the value if necessary.
1313    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1314      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1315      if (I != ValueMap.end())
1316        IV = I->second;
1317    }
1318
1319    PN->addIncoming(IV, NewPred);
1320  }
1321}
1322
1323/// ThreadEdge - We have decided that it is safe and profitable to factor the
1324/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1325/// across BB.  Transform the IR to reflect this change.
1326bool JumpThreading::ThreadEdge(BasicBlock *BB,
1327                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1328                               BasicBlock *SuccBB) {
1329  // If threading to the same block as we come from, we would infinite loop.
1330  if (SuccBB == BB) {
1331    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1332          << "' - would thread to self!\n");
1333    return false;
1334  }
1335
1336  // If threading this would thread across a loop header, don't thread the edge.
1337  // See the comments above FindLoopHeaders for justifications and caveats.
1338  if (LoopHeaders.count(BB)) {
1339    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1340          << "' to dest BB '" << SuccBB->getName()
1341          << "' - it might create an irreducible loop!\n");
1342    return false;
1343  }
1344
1345  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold);
1346  if (JumpThreadCost > Threshold) {
1347    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1348          << "' - Cost is too high: " << JumpThreadCost << "\n");
1349    return false;
1350  }
1351
1352  // And finally, do it!  Start by factoring the predecessors is needed.
1353  BasicBlock *PredBB;
1354  if (PredBBs.size() == 1)
1355    PredBB = PredBBs[0];
1356  else {
1357    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1358          << " common predecessors.\n");
1359    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
1360  }
1361
1362  // And finally, do it!
1363  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1364        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1365        << ", across block:\n    "
1366        << *BB << "\n");
1367
1368  LVI->threadEdge(PredBB, BB, SuccBB);
1369
1370  // We are going to have to map operands from the original BB block to the new
1371  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1372  // account for entry from PredBB.
1373  DenseMap<Instruction*, Value*> ValueMapping;
1374
1375  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1376                                         BB->getName()+".thread",
1377                                         BB->getParent(), BB);
1378  NewBB->moveAfter(PredBB);
1379
1380  BasicBlock::iterator BI = BB->begin();
1381  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1382    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1383
1384  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1385  // mapping and using it to remap operands in the cloned instructions.
1386  for (; !isa<TerminatorInst>(BI); ++BI) {
1387    Instruction *New = BI->clone();
1388    New->setName(BI->getName());
1389    NewBB->getInstList().push_back(New);
1390    ValueMapping[BI] = New;
1391
1392    // Remap operands to patch up intra-block references.
1393    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1394      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1395        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1396        if (I != ValueMapping.end())
1397          New->setOperand(i, I->second);
1398      }
1399  }
1400
1401  // We didn't copy the terminator from BB over to NewBB, because there is now
1402  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1403  BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
1404  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1405
1406  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1407  // PHI nodes for NewBB now.
1408  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1409
1410  // If there were values defined in BB that are used outside the block, then we
1411  // now have to update all uses of the value to use either the original value,
1412  // the cloned value, or some PHI derived value.  This can require arbitrary
1413  // PHI insertion, of which we are prepared to do, clean these up now.
1414  SSAUpdater SSAUpdate;
1415  SmallVector<Use*, 16> UsesToRename;
1416  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1417    // Scan all uses of this instruction to see if it is used outside of its
1418    // block, and if so, record them in UsesToRename.
1419    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1420         ++UI) {
1421      Instruction *User = cast<Instruction>(*UI);
1422      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1423        if (UserPN->getIncomingBlock(UI) == BB)
1424          continue;
1425      } else if (User->getParent() == BB)
1426        continue;
1427
1428      UsesToRename.push_back(&UI.getUse());
1429    }
1430
1431    // If there are no uses outside the block, we're done with this instruction.
1432    if (UsesToRename.empty())
1433      continue;
1434
1435    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1436
1437    // We found a use of I outside of BB.  Rename all uses of I that are outside
1438    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1439    // with the two values we know.
1440    SSAUpdate.Initialize(I->getType(), I->getName());
1441    SSAUpdate.AddAvailableValue(BB, I);
1442    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1443
1444    while (!UsesToRename.empty())
1445      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1446    DEBUG(dbgs() << "\n");
1447  }
1448
1449
1450  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1451  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1452  // us to simplify any PHI nodes in BB.
1453  TerminatorInst *PredTerm = PredBB->getTerminator();
1454  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1455    if (PredTerm->getSuccessor(i) == BB) {
1456      BB->removePredecessor(PredBB, true);
1457      PredTerm->setSuccessor(i, NewBB);
1458    }
1459
1460  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1461  // over the new instructions and zap any that are constants or dead.  This
1462  // frequently happens because of phi translation.
1463  SimplifyInstructionsInBlock(NewBB, TD, TLI);
1464
1465  // Threaded an edge!
1466  ++NumThreads;
1467  return true;
1468}
1469
1470/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1471/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1472/// If we can duplicate the contents of BB up into PredBB do so now, this
1473/// improves the odds that the branch will be on an analyzable instruction like
1474/// a compare.
1475bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1476                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1477  assert(!PredBBs.empty() && "Can't handle an empty set");
1478
1479  // If BB is a loop header, then duplicating this block outside the loop would
1480  // cause us to transform this into an irreducible loop, don't do this.
1481  // See the comments above FindLoopHeaders for justifications and caveats.
1482  if (LoopHeaders.count(BB)) {
1483    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1484          << "' into predecessor block '" << PredBBs[0]->getName()
1485          << "' - it might create an irreducible loop!\n");
1486    return false;
1487  }
1488
1489  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold);
1490  if (DuplicationCost > Threshold) {
1491    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1492          << "' - Cost is too high: " << DuplicationCost << "\n");
1493    return false;
1494  }
1495
1496  // And finally, do it!  Start by factoring the predecessors is needed.
1497  BasicBlock *PredBB;
1498  if (PredBBs.size() == 1)
1499    PredBB = PredBBs[0];
1500  else {
1501    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1502          << " common predecessors.\n");
1503    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
1504  }
1505
1506  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1507  // of PredBB.
1508  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1509        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1510        << DuplicationCost << " block is:" << *BB << "\n");
1511
1512  // Unless PredBB ends with an unconditional branch, split the edge so that we
1513  // can just clone the bits from BB into the end of the new PredBB.
1514  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1515
1516  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1517    PredBB = SplitEdge(PredBB, BB, this);
1518    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1519  }
1520
1521  // We are going to have to map operands from the original BB block into the
1522  // PredBB block.  Evaluate PHI nodes in BB.
1523  DenseMap<Instruction*, Value*> ValueMapping;
1524
1525  BasicBlock::iterator BI = BB->begin();
1526  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1527    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1528
1529  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1530  // mapping and using it to remap operands in the cloned instructions.
1531  for (; BI != BB->end(); ++BI) {
1532    Instruction *New = BI->clone();
1533
1534    // Remap operands to patch up intra-block references.
1535    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1536      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1537        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1538        if (I != ValueMapping.end())
1539          New->setOperand(i, I->second);
1540      }
1541
1542    // If this instruction can be simplified after the operands are updated,
1543    // just use the simplified value instead.  This frequently happens due to
1544    // phi translation.
1545    if (Value *IV = SimplifyInstruction(New, TD)) {
1546      delete New;
1547      ValueMapping[BI] = IV;
1548    } else {
1549      // Otherwise, insert the new instruction into the block.
1550      New->setName(BI->getName());
1551      PredBB->getInstList().insert(OldPredBranch, New);
1552      ValueMapping[BI] = New;
1553    }
1554  }
1555
1556  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1557  // add entries to the PHI nodes for branch from PredBB now.
1558  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1559  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1560                                  ValueMapping);
1561  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1562                                  ValueMapping);
1563
1564  // If there were values defined in BB that are used outside the block, then we
1565  // now have to update all uses of the value to use either the original value,
1566  // the cloned value, or some PHI derived value.  This can require arbitrary
1567  // PHI insertion, of which we are prepared to do, clean these up now.
1568  SSAUpdater SSAUpdate;
1569  SmallVector<Use*, 16> UsesToRename;
1570  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1571    // Scan all uses of this instruction to see if it is used outside of its
1572    // block, and if so, record them in UsesToRename.
1573    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1574         ++UI) {
1575      Instruction *User = cast<Instruction>(*UI);
1576      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1577        if (UserPN->getIncomingBlock(UI) == BB)
1578          continue;
1579      } else if (User->getParent() == BB)
1580        continue;
1581
1582      UsesToRename.push_back(&UI.getUse());
1583    }
1584
1585    // If there are no uses outside the block, we're done with this instruction.
1586    if (UsesToRename.empty())
1587      continue;
1588
1589    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1590
1591    // We found a use of I outside of BB.  Rename all uses of I that are outside
1592    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1593    // with the two values we know.
1594    SSAUpdate.Initialize(I->getType(), I->getName());
1595    SSAUpdate.AddAvailableValue(BB, I);
1596    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1597
1598    while (!UsesToRename.empty())
1599      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1600    DEBUG(dbgs() << "\n");
1601  }
1602
1603  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1604  // that we nuked.
1605  BB->removePredecessor(PredBB, true);
1606
1607  // Remove the unconditional branch at the end of the PredBB block.
1608  OldPredBranch->eraseFromParent();
1609
1610  ++NumDupes;
1611  return true;
1612}
1613
1614
1615