1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41//       of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#include "llvm/Transforms/Scalar.h"
57#include "llvm/ADT/DenseSet.h"
58#include "llvm/ADT/Hashing.h"
59#include "llvm/ADT/STLExtras.h"
60#include "llvm/ADT/SetVector.h"
61#include "llvm/ADT/SmallBitVector.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/LoopPass.h"
64#include "llvm/Analysis/ScalarEvolutionExpander.h"
65#include "llvm/Analysis/TargetTransformInfo.h"
66#include "llvm/IR/Constants.h"
67#include "llvm/IR/DerivedTypes.h"
68#include "llvm/IR/Dominators.h"
69#include "llvm/IR/Instructions.h"
70#include "llvm/IR/IntrinsicInst.h"
71#include "llvm/IR/Module.h"
72#include "llvm/IR/ValueHandle.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Debug.h"
75#include "llvm/Support/raw_ostream.h"
76#include "llvm/Transforms/Utils/BasicBlockUtils.h"
77#include "llvm/Transforms/Utils/Local.h"
78#include <algorithm>
79using namespace llvm;
80
81#define DEBUG_TYPE "loop-reduce"
82
83/// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
84/// bail out. This threshold is far beyond the number of users that LSR can
85/// conceivably solve, so it should not affect generated code, but catches the
86/// worst cases before LSR burns too much compile time and stack space.
87static const unsigned MaxIVUsers = 200;
88
89// Temporary flag to cleanup congruent phis after LSR phi expansion.
90// It's currently disabled until we can determine whether it's truly useful or
91// not. The flag should be removed after the v3.0 release.
92// This is now needed for ivchains.
93static cl::opt<bool> EnablePhiElim(
94  "enable-lsr-phielim", cl::Hidden, cl::init(true),
95  cl::desc("Enable LSR phi elimination"));
96
97#ifndef NDEBUG
98// Stress test IV chain generation.
99static cl::opt<bool> StressIVChain(
100  "stress-ivchain", cl::Hidden, cl::init(false),
101  cl::desc("Stress test LSR IV chains"));
102#else
103static bool StressIVChain = false;
104#endif
105
106namespace {
107
108struct MemAccessTy {
109  /// Used in situations where the accessed memory type is unknown.
110  static const unsigned UnknownAddressSpace = ~0u;
111
112  Type *MemTy;
113  unsigned AddrSpace;
114
115  MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
116
117  MemAccessTy(Type *Ty, unsigned AS) :
118    MemTy(Ty), AddrSpace(AS) {}
119
120  bool operator==(MemAccessTy Other) const {
121    return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
122  }
123
124  bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
125
126  static MemAccessTy getUnknown(LLVMContext &Ctx) {
127    return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace);
128  }
129};
130
131/// This class holds data which is used to order reuse candidates.
132class RegSortData {
133public:
134  /// This represents the set of LSRUse indices which reference
135  /// a particular register.
136  SmallBitVector UsedByIndices;
137
138  void print(raw_ostream &OS) const;
139  void dump() const;
140};
141
142}
143
144void RegSortData::print(raw_ostream &OS) const {
145  OS << "[NumUses=" << UsedByIndices.count() << ']';
146}
147
148LLVM_DUMP_METHOD
149void RegSortData::dump() const {
150  print(errs()); errs() << '\n';
151}
152
153namespace {
154
155/// Map register candidates to information about how they are used.
156class RegUseTracker {
157  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
158
159  RegUsesTy RegUsesMap;
160  SmallVector<const SCEV *, 16> RegSequence;
161
162public:
163  void countRegister(const SCEV *Reg, size_t LUIdx);
164  void dropRegister(const SCEV *Reg, size_t LUIdx);
165  void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
166
167  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
168
169  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
170
171  void clear();
172
173  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
174  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
175  iterator begin() { return RegSequence.begin(); }
176  iterator end()   { return RegSequence.end(); }
177  const_iterator begin() const { return RegSequence.begin(); }
178  const_iterator end() const   { return RegSequence.end(); }
179};
180
181}
182
183void
184RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
185  std::pair<RegUsesTy::iterator, bool> Pair =
186    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
187  RegSortData &RSD = Pair.first->second;
188  if (Pair.second)
189    RegSequence.push_back(Reg);
190  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
191  RSD.UsedByIndices.set(LUIdx);
192}
193
194void
195RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
196  RegUsesTy::iterator It = RegUsesMap.find(Reg);
197  assert(It != RegUsesMap.end());
198  RegSortData &RSD = It->second;
199  assert(RSD.UsedByIndices.size() > LUIdx);
200  RSD.UsedByIndices.reset(LUIdx);
201}
202
203void
204RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
205  assert(LUIdx <= LastLUIdx);
206
207  // Update RegUses. The data structure is not optimized for this purpose;
208  // we must iterate through it and update each of the bit vectors.
209  for (auto &Pair : RegUsesMap) {
210    SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
211    if (LUIdx < UsedByIndices.size())
212      UsedByIndices[LUIdx] =
213        LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
214    UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
215  }
216}
217
218bool
219RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
220  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
221  if (I == RegUsesMap.end())
222    return false;
223  const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
224  int i = UsedByIndices.find_first();
225  if (i == -1) return false;
226  if ((size_t)i != LUIdx) return true;
227  return UsedByIndices.find_next(i) != -1;
228}
229
230const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
231  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
232  assert(I != RegUsesMap.end() && "Unknown register!");
233  return I->second.UsedByIndices;
234}
235
236void RegUseTracker::clear() {
237  RegUsesMap.clear();
238  RegSequence.clear();
239}
240
241namespace {
242
243/// This class holds information that describes a formula for computing
244/// satisfying a use. It may include broken-out immediates and scaled registers.
245struct Formula {
246  /// Global base address used for complex addressing.
247  GlobalValue *BaseGV;
248
249  /// Base offset for complex addressing.
250  int64_t BaseOffset;
251
252  /// Whether any complex addressing has a base register.
253  bool HasBaseReg;
254
255  /// The scale of any complex addressing.
256  int64_t Scale;
257
258  /// The list of "base" registers for this use. When this is non-empty. The
259  /// canonical representation of a formula is
260  /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
261  /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
262  /// #1 enforces that the scaled register is always used when at least two
263  /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
264  /// #2 enforces that 1 * reg is reg.
265  /// This invariant can be temporarly broken while building a formula.
266  /// However, every formula inserted into the LSRInstance must be in canonical
267  /// form.
268  SmallVector<const SCEV *, 4> BaseRegs;
269
270  /// The 'scaled' register for this use. This should be non-null when Scale is
271  /// not zero.
272  const SCEV *ScaledReg;
273
274  /// An additional constant offset which added near the use. This requires a
275  /// temporary register, but the offset itself can live in an add immediate
276  /// field rather than a register.
277  int64_t UnfoldedOffset;
278
279  Formula()
280      : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
281        ScaledReg(nullptr), UnfoldedOffset(0) {}
282
283  void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
284
285  bool isCanonical() const;
286
287  void canonicalize();
288
289  bool unscale();
290
291  size_t getNumRegs() const;
292  Type *getType() const;
293
294  void deleteBaseReg(const SCEV *&S);
295
296  bool referencesReg(const SCEV *S) const;
297  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
298                                  const RegUseTracker &RegUses) const;
299
300  void print(raw_ostream &OS) const;
301  void dump() const;
302};
303
304}
305
306/// Recursion helper for initialMatch.
307static void DoInitialMatch(const SCEV *S, Loop *L,
308                           SmallVectorImpl<const SCEV *> &Good,
309                           SmallVectorImpl<const SCEV *> &Bad,
310                           ScalarEvolution &SE) {
311  // Collect expressions which properly dominate the loop header.
312  if (SE.properlyDominates(S, L->getHeader())) {
313    Good.push_back(S);
314    return;
315  }
316
317  // Look at add operands.
318  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
319    for (const SCEV *S : Add->operands())
320      DoInitialMatch(S, L, Good, Bad, SE);
321    return;
322  }
323
324  // Look at addrec operands.
325  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
326    if (!AR->getStart()->isZero()) {
327      DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
328      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
329                                      AR->getStepRecurrence(SE),
330                                      // FIXME: AR->getNoWrapFlags()
331                                      AR->getLoop(), SCEV::FlagAnyWrap),
332                     L, Good, Bad, SE);
333      return;
334    }
335
336  // Handle a multiplication by -1 (negation) if it didn't fold.
337  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
338    if (Mul->getOperand(0)->isAllOnesValue()) {
339      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
340      const SCEV *NewMul = SE.getMulExpr(Ops);
341
342      SmallVector<const SCEV *, 4> MyGood;
343      SmallVector<const SCEV *, 4> MyBad;
344      DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
345      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
346        SE.getEffectiveSCEVType(NewMul->getType())));
347      for (const SCEV *S : MyGood)
348        Good.push_back(SE.getMulExpr(NegOne, S));
349      for (const SCEV *S : MyBad)
350        Bad.push_back(SE.getMulExpr(NegOne, S));
351      return;
352    }
353
354  // Ok, we can't do anything interesting. Just stuff the whole thing into a
355  // register and hope for the best.
356  Bad.push_back(S);
357}
358
359/// Incorporate loop-variant parts of S into this Formula, attempting to keep
360/// all loop-invariant and loop-computable values in a single base register.
361void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
362  SmallVector<const SCEV *, 4> Good;
363  SmallVector<const SCEV *, 4> Bad;
364  DoInitialMatch(S, L, Good, Bad, SE);
365  if (!Good.empty()) {
366    const SCEV *Sum = SE.getAddExpr(Good);
367    if (!Sum->isZero())
368      BaseRegs.push_back(Sum);
369    HasBaseReg = true;
370  }
371  if (!Bad.empty()) {
372    const SCEV *Sum = SE.getAddExpr(Bad);
373    if (!Sum->isZero())
374      BaseRegs.push_back(Sum);
375    HasBaseReg = true;
376  }
377  canonicalize();
378}
379
380/// \brief Check whether or not this formula statisfies the canonical
381/// representation.
382/// \see Formula::BaseRegs.
383bool Formula::isCanonical() const {
384  if (ScaledReg)
385    return Scale != 1 || !BaseRegs.empty();
386  return BaseRegs.size() <= 1;
387}
388
389/// \brief Helper method to morph a formula into its canonical representation.
390/// \see Formula::BaseRegs.
391/// Every formula having more than one base register, must use the ScaledReg
392/// field. Otherwise, we would have to do special cases everywhere in LSR
393/// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
394/// On the other hand, 1*reg should be canonicalized into reg.
395void Formula::canonicalize() {
396  if (isCanonical())
397    return;
398  // So far we did not need this case. This is easy to implement but it is
399  // useless to maintain dead code. Beside it could hurt compile time.
400  assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
401  // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
402  ScaledReg = BaseRegs.back();
403  BaseRegs.pop_back();
404  Scale = 1;
405  size_t BaseRegsSize = BaseRegs.size();
406  size_t Try = 0;
407  // If ScaledReg is an invariant, try to find a variant expression.
408  while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
409    std::swap(ScaledReg, BaseRegs[Try++]);
410}
411
412/// \brief Get rid of the scale in the formula.
413/// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
414/// \return true if it was possible to get rid of the scale, false otherwise.
415/// \note After this operation the formula may not be in the canonical form.
416bool Formula::unscale() {
417  if (Scale != 1)
418    return false;
419  Scale = 0;
420  BaseRegs.push_back(ScaledReg);
421  ScaledReg = nullptr;
422  return true;
423}
424
425/// Return the total number of register operands used by this formula. This does
426/// not include register uses implied by non-constant addrec strides.
427size_t Formula::getNumRegs() const {
428  return !!ScaledReg + BaseRegs.size();
429}
430
431/// Return the type of this formula, if it has one, or null otherwise. This type
432/// is meaningless except for the bit size.
433Type *Formula::getType() const {
434  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
435         ScaledReg ? ScaledReg->getType() :
436         BaseGV ? BaseGV->getType() :
437         nullptr;
438}
439
440/// Delete the given base reg from the BaseRegs list.
441void Formula::deleteBaseReg(const SCEV *&S) {
442  if (&S != &BaseRegs.back())
443    std::swap(S, BaseRegs.back());
444  BaseRegs.pop_back();
445}
446
447/// Test if this formula references the given register.
448bool Formula::referencesReg(const SCEV *S) const {
449  return S == ScaledReg ||
450         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
451}
452
453/// Test whether this formula uses registers which are used by uses other than
454/// the use with the given index.
455bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
456                                         const RegUseTracker &RegUses) const {
457  if (ScaledReg)
458    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
459      return true;
460  for (const SCEV *BaseReg : BaseRegs)
461    if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
462      return true;
463  return false;
464}
465
466void Formula::print(raw_ostream &OS) const {
467  bool First = true;
468  if (BaseGV) {
469    if (!First) OS << " + "; else First = false;
470    BaseGV->printAsOperand(OS, /*PrintType=*/false);
471  }
472  if (BaseOffset != 0) {
473    if (!First) OS << " + "; else First = false;
474    OS << BaseOffset;
475  }
476  for (const SCEV *BaseReg : BaseRegs) {
477    if (!First) OS << " + "; else First = false;
478    OS << "reg(" << *BaseReg << ')';
479  }
480  if (HasBaseReg && BaseRegs.empty()) {
481    if (!First) OS << " + "; else First = false;
482    OS << "**error: HasBaseReg**";
483  } else if (!HasBaseReg && !BaseRegs.empty()) {
484    if (!First) OS << " + "; else First = false;
485    OS << "**error: !HasBaseReg**";
486  }
487  if (Scale != 0) {
488    if (!First) OS << " + "; else First = false;
489    OS << Scale << "*reg(";
490    if (ScaledReg)
491      OS << *ScaledReg;
492    else
493      OS << "<unknown>";
494    OS << ')';
495  }
496  if (UnfoldedOffset != 0) {
497    if (!First) OS << " + ";
498    OS << "imm(" << UnfoldedOffset << ')';
499  }
500}
501
502LLVM_DUMP_METHOD
503void Formula::dump() const {
504  print(errs()); errs() << '\n';
505}
506
507/// Return true if the given addrec can be sign-extended without changing its
508/// value.
509static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
510  Type *WideTy =
511    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
512  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
513}
514
515/// Return true if the given add can be sign-extended without changing its
516/// value.
517static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
518  Type *WideTy =
519    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
520  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
521}
522
523/// Return true if the given mul can be sign-extended without changing its
524/// value.
525static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
526  Type *WideTy =
527    IntegerType::get(SE.getContext(),
528                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
529  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
530}
531
532/// Return an expression for LHS /s RHS, if it can be determined and if the
533/// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
534/// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
535/// the multiplication may overflow, which is useful when the result will be
536/// used in a context where the most significant bits are ignored.
537static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
538                                ScalarEvolution &SE,
539                                bool IgnoreSignificantBits = false) {
540  // Handle the trivial case, which works for any SCEV type.
541  if (LHS == RHS)
542    return SE.getConstant(LHS->getType(), 1);
543
544  // Handle a few RHS special cases.
545  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
546  if (RC) {
547    const APInt &RA = RC->getAPInt();
548    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
549    // some folding.
550    if (RA.isAllOnesValue())
551      return SE.getMulExpr(LHS, RC);
552    // Handle x /s 1 as x.
553    if (RA == 1)
554      return LHS;
555  }
556
557  // Check for a division of a constant by a constant.
558  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
559    if (!RC)
560      return nullptr;
561    const APInt &LA = C->getAPInt();
562    const APInt &RA = RC->getAPInt();
563    if (LA.srem(RA) != 0)
564      return nullptr;
565    return SE.getConstant(LA.sdiv(RA));
566  }
567
568  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
569  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
570    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
571      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
572                                      IgnoreSignificantBits);
573      if (!Step) return nullptr;
574      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
575                                       IgnoreSignificantBits);
576      if (!Start) return nullptr;
577      // FlagNW is independent of the start value, step direction, and is
578      // preserved with smaller magnitude steps.
579      // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
580      return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
581    }
582    return nullptr;
583  }
584
585  // Distribute the sdiv over add operands, if the add doesn't overflow.
586  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
587    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
588      SmallVector<const SCEV *, 8> Ops;
589      for (const SCEV *S : Add->operands()) {
590        const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
591        if (!Op) return nullptr;
592        Ops.push_back(Op);
593      }
594      return SE.getAddExpr(Ops);
595    }
596    return nullptr;
597  }
598
599  // Check for a multiply operand that we can pull RHS out of.
600  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
601    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
602      SmallVector<const SCEV *, 4> Ops;
603      bool Found = false;
604      for (const SCEV *S : Mul->operands()) {
605        if (!Found)
606          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
607                                           IgnoreSignificantBits)) {
608            S = Q;
609            Found = true;
610          }
611        Ops.push_back(S);
612      }
613      return Found ? SE.getMulExpr(Ops) : nullptr;
614    }
615    return nullptr;
616  }
617
618  // Otherwise we don't know.
619  return nullptr;
620}
621
622/// If S involves the addition of a constant integer value, return that integer
623/// value, and mutate S to point to a new SCEV with that value excluded.
624static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
625  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
626    if (C->getAPInt().getMinSignedBits() <= 64) {
627      S = SE.getConstant(C->getType(), 0);
628      return C->getValue()->getSExtValue();
629    }
630  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
631    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
632    int64_t Result = ExtractImmediate(NewOps.front(), SE);
633    if (Result != 0)
634      S = SE.getAddExpr(NewOps);
635    return Result;
636  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
637    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
638    int64_t Result = ExtractImmediate(NewOps.front(), SE);
639    if (Result != 0)
640      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
641                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
642                           SCEV::FlagAnyWrap);
643    return Result;
644  }
645  return 0;
646}
647
648/// If S involves the addition of a GlobalValue address, return that symbol, and
649/// mutate S to point to a new SCEV with that value excluded.
650static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
651  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
652    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
653      S = SE.getConstant(GV->getType(), 0);
654      return GV;
655    }
656  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
657    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
658    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
659    if (Result)
660      S = SE.getAddExpr(NewOps);
661    return Result;
662  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
663    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
664    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
665    if (Result)
666      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
667                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
668                           SCEV::FlagAnyWrap);
669    return Result;
670  }
671  return nullptr;
672}
673
674/// Returns true if the specified instruction is using the specified value as an
675/// address.
676static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
677  bool isAddress = isa<LoadInst>(Inst);
678  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
679    if (SI->getOperand(1) == OperandVal)
680      isAddress = true;
681  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
682    // Addressing modes can also be folded into prefetches and a variety
683    // of intrinsics.
684    switch (II->getIntrinsicID()) {
685      default: break;
686      case Intrinsic::prefetch:
687        if (II->getArgOperand(0) == OperandVal)
688          isAddress = true;
689        break;
690    }
691  }
692  return isAddress;
693}
694
695/// Return the type of the memory being accessed.
696static MemAccessTy getAccessType(const Instruction *Inst) {
697  MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
698  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
699    AccessTy.MemTy = SI->getOperand(0)->getType();
700    AccessTy.AddrSpace = SI->getPointerAddressSpace();
701  } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
702    AccessTy.AddrSpace = LI->getPointerAddressSpace();
703  }
704
705  // All pointers have the same requirements, so canonicalize them to an
706  // arbitrary pointer type to minimize variation.
707  if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
708    AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
709                                      PTy->getAddressSpace());
710
711  return AccessTy;
712}
713
714/// Return true if this AddRec is already a phi in its loop.
715static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
716  for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
717       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
718    if (SE.isSCEVable(PN->getType()) &&
719        (SE.getEffectiveSCEVType(PN->getType()) ==
720         SE.getEffectiveSCEVType(AR->getType())) &&
721        SE.getSCEV(PN) == AR)
722      return true;
723  }
724  return false;
725}
726
727/// Check if expanding this expression is likely to incur significant cost. This
728/// is tricky because SCEV doesn't track which expressions are actually computed
729/// by the current IR.
730///
731/// We currently allow expansion of IV increments that involve adds,
732/// multiplication by constants, and AddRecs from existing phis.
733///
734/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
735/// obvious multiple of the UDivExpr.
736static bool isHighCostExpansion(const SCEV *S,
737                                SmallPtrSetImpl<const SCEV*> &Processed,
738                                ScalarEvolution &SE) {
739  // Zero/One operand expressions
740  switch (S->getSCEVType()) {
741  case scUnknown:
742  case scConstant:
743    return false;
744  case scTruncate:
745    return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
746                               Processed, SE);
747  case scZeroExtend:
748    return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
749                               Processed, SE);
750  case scSignExtend:
751    return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
752                               Processed, SE);
753  }
754
755  if (!Processed.insert(S).second)
756    return false;
757
758  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
759    for (const SCEV *S : Add->operands()) {
760      if (isHighCostExpansion(S, Processed, SE))
761        return true;
762    }
763    return false;
764  }
765
766  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
767    if (Mul->getNumOperands() == 2) {
768      // Multiplication by a constant is ok
769      if (isa<SCEVConstant>(Mul->getOperand(0)))
770        return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
771
772      // If we have the value of one operand, check if an existing
773      // multiplication already generates this expression.
774      if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
775        Value *UVal = U->getValue();
776        for (User *UR : UVal->users()) {
777          // If U is a constant, it may be used by a ConstantExpr.
778          Instruction *UI = dyn_cast<Instruction>(UR);
779          if (UI && UI->getOpcode() == Instruction::Mul &&
780              SE.isSCEVable(UI->getType())) {
781            return SE.getSCEV(UI) == Mul;
782          }
783        }
784      }
785    }
786  }
787
788  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
789    if (isExistingPhi(AR, SE))
790      return false;
791  }
792
793  // Fow now, consider any other type of expression (div/mul/min/max) high cost.
794  return true;
795}
796
797/// If any of the instructions is the specified set are trivially dead, delete
798/// them and see if this makes any of their operands subsequently dead.
799static bool
800DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
801  bool Changed = false;
802
803  while (!DeadInsts.empty()) {
804    Value *V = DeadInsts.pop_back_val();
805    Instruction *I = dyn_cast_or_null<Instruction>(V);
806
807    if (!I || !isInstructionTriviallyDead(I))
808      continue;
809
810    for (Use &O : I->operands())
811      if (Instruction *U = dyn_cast<Instruction>(O)) {
812        O = nullptr;
813        if (U->use_empty())
814          DeadInsts.emplace_back(U);
815      }
816
817    I->eraseFromParent();
818    Changed = true;
819  }
820
821  return Changed;
822}
823
824namespace {
825class LSRUse;
826}
827
828/// \brief Check if the addressing mode defined by \p F is completely
829/// folded in \p LU at isel time.
830/// This includes address-mode folding and special icmp tricks.
831/// This function returns true if \p LU can accommodate what \p F
832/// defines and up to 1 base + 1 scaled + offset.
833/// In other words, if \p F has several base registers, this function may
834/// still return true. Therefore, users still need to account for
835/// additional base registers and/or unfolded offsets to derive an
836/// accurate cost model.
837static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
838                                 const LSRUse &LU, const Formula &F);
839// Get the cost of the scaling factor used in F for LU.
840static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
841                                     const LSRUse &LU, const Formula &F);
842
843namespace {
844
845/// This class is used to measure and compare candidate formulae.
846class Cost {
847  /// TODO: Some of these could be merged. Also, a lexical ordering
848  /// isn't always optimal.
849  unsigned NumRegs;
850  unsigned AddRecCost;
851  unsigned NumIVMuls;
852  unsigned NumBaseAdds;
853  unsigned ImmCost;
854  unsigned SetupCost;
855  unsigned ScaleCost;
856
857public:
858  Cost()
859    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
860      SetupCost(0), ScaleCost(0) {}
861
862  bool operator<(const Cost &Other) const;
863
864  void Lose();
865
866#ifndef NDEBUG
867  // Once any of the metrics loses, they must all remain losers.
868  bool isValid() {
869    return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
870             | ImmCost | SetupCost | ScaleCost) != ~0u)
871      || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
872           & ImmCost & SetupCost & ScaleCost) == ~0u);
873  }
874#endif
875
876  bool isLoser() {
877    assert(isValid() && "invalid cost");
878    return NumRegs == ~0u;
879  }
880
881  void RateFormula(const TargetTransformInfo &TTI,
882                   const Formula &F,
883                   SmallPtrSetImpl<const SCEV *> &Regs,
884                   const DenseSet<const SCEV *> &VisitedRegs,
885                   const Loop *L,
886                   const SmallVectorImpl<int64_t> &Offsets,
887                   ScalarEvolution &SE, DominatorTree &DT,
888                   const LSRUse &LU,
889                   SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
890
891  void print(raw_ostream &OS) const;
892  void dump() const;
893
894private:
895  void RateRegister(const SCEV *Reg,
896                    SmallPtrSetImpl<const SCEV *> &Regs,
897                    const Loop *L,
898                    ScalarEvolution &SE, DominatorTree &DT);
899  void RatePrimaryRegister(const SCEV *Reg,
900                           SmallPtrSetImpl<const SCEV *> &Regs,
901                           const Loop *L,
902                           ScalarEvolution &SE, DominatorTree &DT,
903                           SmallPtrSetImpl<const SCEV *> *LoserRegs);
904};
905
906}
907
908/// Tally up interesting quantities from the given register.
909void Cost::RateRegister(const SCEV *Reg,
910                        SmallPtrSetImpl<const SCEV *> &Regs,
911                        const Loop *L,
912                        ScalarEvolution &SE, DominatorTree &DT) {
913  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
914    // If this is an addrec for another loop, don't second-guess its addrec phi
915    // nodes. LSR isn't currently smart enough to reason about more than one
916    // loop at a time. LSR has already run on inner loops, will not run on outer
917    // loops, and cannot be expected to change sibling loops.
918    if (AR->getLoop() != L) {
919      // If the AddRec exists, consider it's register free and leave it alone.
920      if (isExistingPhi(AR, SE))
921        return;
922
923      // Otherwise, do not consider this formula at all.
924      Lose();
925      return;
926    }
927    AddRecCost += 1; /// TODO: This should be a function of the stride.
928
929    // Add the step value register, if it needs one.
930    // TODO: The non-affine case isn't precisely modeled here.
931    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
932      if (!Regs.count(AR->getOperand(1))) {
933        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
934        if (isLoser())
935          return;
936      }
937    }
938  }
939  ++NumRegs;
940
941  // Rough heuristic; favor registers which don't require extra setup
942  // instructions in the preheader.
943  if (!isa<SCEVUnknown>(Reg) &&
944      !isa<SCEVConstant>(Reg) &&
945      !(isa<SCEVAddRecExpr>(Reg) &&
946        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
947         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
948    ++SetupCost;
949
950  NumIVMuls += isa<SCEVMulExpr>(Reg) &&
951               SE.hasComputableLoopEvolution(Reg, L);
952}
953
954/// Record this register in the set. If we haven't seen it before, rate
955/// it. Optional LoserRegs provides a way to declare any formula that refers to
956/// one of those regs an instant loser.
957void Cost::RatePrimaryRegister(const SCEV *Reg,
958                               SmallPtrSetImpl<const SCEV *> &Regs,
959                               const Loop *L,
960                               ScalarEvolution &SE, DominatorTree &DT,
961                               SmallPtrSetImpl<const SCEV *> *LoserRegs) {
962  if (LoserRegs && LoserRegs->count(Reg)) {
963    Lose();
964    return;
965  }
966  if (Regs.insert(Reg).second) {
967    RateRegister(Reg, Regs, L, SE, DT);
968    if (LoserRegs && isLoser())
969      LoserRegs->insert(Reg);
970  }
971}
972
973void Cost::RateFormula(const TargetTransformInfo &TTI,
974                       const Formula &F,
975                       SmallPtrSetImpl<const SCEV *> &Regs,
976                       const DenseSet<const SCEV *> &VisitedRegs,
977                       const Loop *L,
978                       const SmallVectorImpl<int64_t> &Offsets,
979                       ScalarEvolution &SE, DominatorTree &DT,
980                       const LSRUse &LU,
981                       SmallPtrSetImpl<const SCEV *> *LoserRegs) {
982  assert(F.isCanonical() && "Cost is accurate only for canonical formula");
983  // Tally up the registers.
984  if (const SCEV *ScaledReg = F.ScaledReg) {
985    if (VisitedRegs.count(ScaledReg)) {
986      Lose();
987      return;
988    }
989    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
990    if (isLoser())
991      return;
992  }
993  for (const SCEV *BaseReg : F.BaseRegs) {
994    if (VisitedRegs.count(BaseReg)) {
995      Lose();
996      return;
997    }
998    RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
999    if (isLoser())
1000      return;
1001  }
1002
1003  // Determine how many (unfolded) adds we'll need inside the loop.
1004  size_t NumBaseParts = F.getNumRegs();
1005  if (NumBaseParts > 1)
1006    // Do not count the base and a possible second register if the target
1007    // allows to fold 2 registers.
1008    NumBaseAdds +=
1009        NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1010  NumBaseAdds += (F.UnfoldedOffset != 0);
1011
1012  // Accumulate non-free scaling amounts.
1013  ScaleCost += getScalingFactorCost(TTI, LU, F);
1014
1015  // Tally up the non-zero immediates.
1016  for (int64_t O : Offsets) {
1017    int64_t Offset = (uint64_t)O + F.BaseOffset;
1018    if (F.BaseGV)
1019      ImmCost += 64; // Handle symbolic values conservatively.
1020                     // TODO: This should probably be the pointer size.
1021    else if (Offset != 0)
1022      ImmCost += APInt(64, Offset, true).getMinSignedBits();
1023  }
1024  assert(isValid() && "invalid cost");
1025}
1026
1027/// Set this cost to a losing value.
1028void Cost::Lose() {
1029  NumRegs = ~0u;
1030  AddRecCost = ~0u;
1031  NumIVMuls = ~0u;
1032  NumBaseAdds = ~0u;
1033  ImmCost = ~0u;
1034  SetupCost = ~0u;
1035  ScaleCost = ~0u;
1036}
1037
1038/// Choose the lower cost.
1039bool Cost::operator<(const Cost &Other) const {
1040  return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
1041                  ImmCost, SetupCost) <
1042         std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
1043                  Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
1044                  Other.SetupCost);
1045}
1046
1047void Cost::print(raw_ostream &OS) const {
1048  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
1049  if (AddRecCost != 0)
1050    OS << ", with addrec cost " << AddRecCost;
1051  if (NumIVMuls != 0)
1052    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
1053  if (NumBaseAdds != 0)
1054    OS << ", plus " << NumBaseAdds << " base add"
1055       << (NumBaseAdds == 1 ? "" : "s");
1056  if (ScaleCost != 0)
1057    OS << ", plus " << ScaleCost << " scale cost";
1058  if (ImmCost != 0)
1059    OS << ", plus " << ImmCost << " imm cost";
1060  if (SetupCost != 0)
1061    OS << ", plus " << SetupCost << " setup cost";
1062}
1063
1064LLVM_DUMP_METHOD
1065void Cost::dump() const {
1066  print(errs()); errs() << '\n';
1067}
1068
1069namespace {
1070
1071/// An operand value in an instruction which is to be replaced with some
1072/// equivalent, possibly strength-reduced, replacement.
1073struct LSRFixup {
1074  /// The instruction which will be updated.
1075  Instruction *UserInst;
1076
1077  /// The operand of the instruction which will be replaced. The operand may be
1078  /// used more than once; every instance will be replaced.
1079  Value *OperandValToReplace;
1080
1081  /// If this user is to use the post-incremented value of an induction
1082  /// variable, this variable is non-null and holds the loop associated with the
1083  /// induction variable.
1084  PostIncLoopSet PostIncLoops;
1085
1086  /// The index of the LSRUse describing the expression which this fixup needs,
1087  /// minus an offset (below).
1088  size_t LUIdx;
1089
1090  /// A constant offset to be added to the LSRUse expression.  This allows
1091  /// multiple fixups to share the same LSRUse with different offsets, for
1092  /// example in an unrolled loop.
1093  int64_t Offset;
1094
1095  bool isUseFullyOutsideLoop(const Loop *L) const;
1096
1097  LSRFixup();
1098
1099  void print(raw_ostream &OS) const;
1100  void dump() const;
1101};
1102
1103}
1104
1105LSRFixup::LSRFixup()
1106  : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
1107    Offset(0) {}
1108
1109/// Test whether this fixup always uses its value outside of the given loop.
1110bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1111  // PHI nodes use their value in their incoming blocks.
1112  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1113    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1114      if (PN->getIncomingValue(i) == OperandValToReplace &&
1115          L->contains(PN->getIncomingBlock(i)))
1116        return false;
1117    return true;
1118  }
1119
1120  return !L->contains(UserInst);
1121}
1122
1123void LSRFixup::print(raw_ostream &OS) const {
1124  OS << "UserInst=";
1125  // Store is common and interesting enough to be worth special-casing.
1126  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1127    OS << "store ";
1128    Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1129  } else if (UserInst->getType()->isVoidTy())
1130    OS << UserInst->getOpcodeName();
1131  else
1132    UserInst->printAsOperand(OS, /*PrintType=*/false);
1133
1134  OS << ", OperandValToReplace=";
1135  OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1136
1137  for (const Loop *PIL : PostIncLoops) {
1138    OS << ", PostIncLoop=";
1139    PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1140  }
1141
1142  if (LUIdx != ~size_t(0))
1143    OS << ", LUIdx=" << LUIdx;
1144
1145  if (Offset != 0)
1146    OS << ", Offset=" << Offset;
1147}
1148
1149LLVM_DUMP_METHOD
1150void LSRFixup::dump() const {
1151  print(errs()); errs() << '\n';
1152}
1153
1154namespace {
1155
1156/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1157/// SmallVectors of const SCEV*.
1158struct UniquifierDenseMapInfo {
1159  static SmallVector<const SCEV *, 4> getEmptyKey() {
1160    SmallVector<const SCEV *, 4>  V;
1161    V.push_back(reinterpret_cast<const SCEV *>(-1));
1162    return V;
1163  }
1164
1165  static SmallVector<const SCEV *, 4> getTombstoneKey() {
1166    SmallVector<const SCEV *, 4> V;
1167    V.push_back(reinterpret_cast<const SCEV *>(-2));
1168    return V;
1169  }
1170
1171  static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1172    return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1173  }
1174
1175  static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1176                      const SmallVector<const SCEV *, 4> &RHS) {
1177    return LHS == RHS;
1178  }
1179};
1180
1181/// This class holds the state that LSR keeps for each use in IVUsers, as well
1182/// as uses invented by LSR itself. It includes information about what kinds of
1183/// things can be folded into the user, information about the user itself, and
1184/// information about how the use may be satisfied.  TODO: Represent multiple
1185/// users of the same expression in common?
1186class LSRUse {
1187  DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1188
1189public:
1190  /// An enum for a kind of use, indicating what types of scaled and immediate
1191  /// operands it might support.
1192  enum KindType {
1193    Basic,   ///< A normal use, with no folding.
1194    Special, ///< A special case of basic, allowing -1 scales.
1195    Address, ///< An address use; folding according to TargetLowering
1196    ICmpZero ///< An equality icmp with both operands folded into one.
1197    // TODO: Add a generic icmp too?
1198  };
1199
1200  typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
1201
1202  KindType Kind;
1203  MemAccessTy AccessTy;
1204
1205  SmallVector<int64_t, 8> Offsets;
1206  int64_t MinOffset;
1207  int64_t MaxOffset;
1208
1209  /// This records whether all of the fixups using this LSRUse are outside of
1210  /// the loop, in which case some special-case heuristics may be used.
1211  bool AllFixupsOutsideLoop;
1212
1213  /// RigidFormula is set to true to guarantee that this use will be associated
1214  /// with a single formula--the one that initially matched. Some SCEV
1215  /// expressions cannot be expanded. This allows LSR to consider the registers
1216  /// used by those expressions without the need to expand them later after
1217  /// changing the formula.
1218  bool RigidFormula;
1219
1220  /// This records the widest use type for any fixup using this
1221  /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1222  /// fixup widths to be equivalent, because the narrower one may be relying on
1223  /// the implicit truncation to truncate away bogus bits.
1224  Type *WidestFixupType;
1225
1226  /// A list of ways to build a value that can satisfy this user.  After the
1227  /// list is populated, one of these is selected heuristically and used to
1228  /// formulate a replacement for OperandValToReplace in UserInst.
1229  SmallVector<Formula, 12> Formulae;
1230
1231  /// The set of register candidates used by all formulae in this LSRUse.
1232  SmallPtrSet<const SCEV *, 4> Regs;
1233
1234  LSRUse(KindType K, MemAccessTy AT)
1235      : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
1236        AllFixupsOutsideLoop(true), RigidFormula(false),
1237        WidestFixupType(nullptr) {}
1238
1239  bool HasFormulaWithSameRegs(const Formula &F) const;
1240  bool InsertFormula(const Formula &F);
1241  void DeleteFormula(Formula &F);
1242  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1243
1244  void print(raw_ostream &OS) const;
1245  void dump() const;
1246};
1247
1248}
1249
1250/// Test whether this use as a formula which has the same registers as the given
1251/// formula.
1252bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1253  SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1254  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1255  // Unstable sort by host order ok, because this is only used for uniquifying.
1256  std::sort(Key.begin(), Key.end());
1257  return Uniquifier.count(Key);
1258}
1259
1260/// If the given formula has not yet been inserted, add it to the list, and
1261/// return true. Return false otherwise.  The formula must be in canonical form.
1262bool LSRUse::InsertFormula(const Formula &F) {
1263  assert(F.isCanonical() && "Invalid canonical representation");
1264
1265  if (!Formulae.empty() && RigidFormula)
1266    return false;
1267
1268  SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1269  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1270  // Unstable sort by host order ok, because this is only used for uniquifying.
1271  std::sort(Key.begin(), Key.end());
1272
1273  if (!Uniquifier.insert(Key).second)
1274    return false;
1275
1276  // Using a register to hold the value of 0 is not profitable.
1277  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1278         "Zero allocated in a scaled register!");
1279#ifndef NDEBUG
1280  for (const SCEV *BaseReg : F.BaseRegs)
1281    assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1282#endif
1283
1284  // Add the formula to the list.
1285  Formulae.push_back(F);
1286
1287  // Record registers now being used by this use.
1288  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1289  if (F.ScaledReg)
1290    Regs.insert(F.ScaledReg);
1291
1292  return true;
1293}
1294
1295/// Remove the given formula from this use's list.
1296void LSRUse::DeleteFormula(Formula &F) {
1297  if (&F != &Formulae.back())
1298    std::swap(F, Formulae.back());
1299  Formulae.pop_back();
1300}
1301
1302/// Recompute the Regs field, and update RegUses.
1303void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1304  // Now that we've filtered out some formulae, recompute the Regs set.
1305  SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1306  Regs.clear();
1307  for (const Formula &F : Formulae) {
1308    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1309    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1310  }
1311
1312  // Update the RegTracker.
1313  for (const SCEV *S : OldRegs)
1314    if (!Regs.count(S))
1315      RegUses.dropRegister(S, LUIdx);
1316}
1317
1318void LSRUse::print(raw_ostream &OS) const {
1319  OS << "LSR Use: Kind=";
1320  switch (Kind) {
1321  case Basic:    OS << "Basic"; break;
1322  case Special:  OS << "Special"; break;
1323  case ICmpZero: OS << "ICmpZero"; break;
1324  case Address:
1325    OS << "Address of ";
1326    if (AccessTy.MemTy->isPointerTy())
1327      OS << "pointer"; // the full pointer type could be really verbose
1328    else {
1329      OS << *AccessTy.MemTy;
1330    }
1331
1332    OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1333  }
1334
1335  OS << ", Offsets={";
1336  bool NeedComma = false;
1337  for (int64_t O : Offsets) {
1338    if (NeedComma) OS << ',';
1339    OS << O;
1340    NeedComma = true;
1341  }
1342  OS << '}';
1343
1344  if (AllFixupsOutsideLoop)
1345    OS << ", all-fixups-outside-loop";
1346
1347  if (WidestFixupType)
1348    OS << ", widest fixup type: " << *WidestFixupType;
1349}
1350
1351LLVM_DUMP_METHOD
1352void LSRUse::dump() const {
1353  print(errs()); errs() << '\n';
1354}
1355
1356static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1357                                 LSRUse::KindType Kind, MemAccessTy AccessTy,
1358                                 GlobalValue *BaseGV, int64_t BaseOffset,
1359                                 bool HasBaseReg, int64_t Scale) {
1360  switch (Kind) {
1361  case LSRUse::Address:
1362    return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1363                                     HasBaseReg, Scale, AccessTy.AddrSpace);
1364
1365  case LSRUse::ICmpZero:
1366    // There's not even a target hook for querying whether it would be legal to
1367    // fold a GV into an ICmp.
1368    if (BaseGV)
1369      return false;
1370
1371    // ICmp only has two operands; don't allow more than two non-trivial parts.
1372    if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1373      return false;
1374
1375    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1376    // putting the scaled register in the other operand of the icmp.
1377    if (Scale != 0 && Scale != -1)
1378      return false;
1379
1380    // If we have low-level target information, ask the target if it can fold an
1381    // integer immediate on an icmp.
1382    if (BaseOffset != 0) {
1383      // We have one of:
1384      // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1385      // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1386      // Offs is the ICmp immediate.
1387      if (Scale == 0)
1388        // The cast does the right thing with INT64_MIN.
1389        BaseOffset = -(uint64_t)BaseOffset;
1390      return TTI.isLegalICmpImmediate(BaseOffset);
1391    }
1392
1393    // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1394    return true;
1395
1396  case LSRUse::Basic:
1397    // Only handle single-register values.
1398    return !BaseGV && Scale == 0 && BaseOffset == 0;
1399
1400  case LSRUse::Special:
1401    // Special case Basic to handle -1 scales.
1402    return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1403  }
1404
1405  llvm_unreachable("Invalid LSRUse Kind!");
1406}
1407
1408static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1409                                 int64_t MinOffset, int64_t MaxOffset,
1410                                 LSRUse::KindType Kind, MemAccessTy AccessTy,
1411                                 GlobalValue *BaseGV, int64_t BaseOffset,
1412                                 bool HasBaseReg, int64_t Scale) {
1413  // Check for overflow.
1414  if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1415      (MinOffset > 0))
1416    return false;
1417  MinOffset = (uint64_t)BaseOffset + MinOffset;
1418  if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1419      (MaxOffset > 0))
1420    return false;
1421  MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1422
1423  return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1424                              HasBaseReg, Scale) &&
1425         isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1426                              HasBaseReg, Scale);
1427}
1428
1429static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1430                                 int64_t MinOffset, int64_t MaxOffset,
1431                                 LSRUse::KindType Kind, MemAccessTy AccessTy,
1432                                 const Formula &F) {
1433  // For the purpose of isAMCompletelyFolded either having a canonical formula
1434  // or a scale not equal to zero is correct.
1435  // Problems may arise from non canonical formulae having a scale == 0.
1436  // Strictly speaking it would best to just rely on canonical formulae.
1437  // However, when we generate the scaled formulae, we first check that the
1438  // scaling factor is profitable before computing the actual ScaledReg for
1439  // compile time sake.
1440  assert((F.isCanonical() || F.Scale != 0));
1441  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1442                              F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1443}
1444
1445/// Test whether we know how to expand the current formula.
1446static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1447                       int64_t MaxOffset, LSRUse::KindType Kind,
1448                       MemAccessTy AccessTy, GlobalValue *BaseGV,
1449                       int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1450  // We know how to expand completely foldable formulae.
1451  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1452                              BaseOffset, HasBaseReg, Scale) ||
1453         // Or formulae that use a base register produced by a sum of base
1454         // registers.
1455         (Scale == 1 &&
1456          isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1457                               BaseGV, BaseOffset, true, 0));
1458}
1459
1460static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1461                       int64_t MaxOffset, LSRUse::KindType Kind,
1462                       MemAccessTy AccessTy, const Formula &F) {
1463  return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1464                    F.BaseOffset, F.HasBaseReg, F.Scale);
1465}
1466
1467static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1468                                 const LSRUse &LU, const Formula &F) {
1469  return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1470                              LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1471                              F.Scale);
1472}
1473
1474static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1475                                     const LSRUse &LU, const Formula &F) {
1476  if (!F.Scale)
1477    return 0;
1478
1479  // If the use is not completely folded in that instruction, we will have to
1480  // pay an extra cost only for scale != 1.
1481  if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1482                            LU.AccessTy, F))
1483    return F.Scale != 1;
1484
1485  switch (LU.Kind) {
1486  case LSRUse::Address: {
1487    // Check the scaling factor cost with both the min and max offsets.
1488    int ScaleCostMinOffset = TTI.getScalingFactorCost(
1489        LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1490        F.Scale, LU.AccessTy.AddrSpace);
1491    int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1492        LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1493        F.Scale, LU.AccessTy.AddrSpace);
1494
1495    assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1496           "Legal addressing mode has an illegal cost!");
1497    return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1498  }
1499  case LSRUse::ICmpZero:
1500  case LSRUse::Basic:
1501  case LSRUse::Special:
1502    // The use is completely folded, i.e., everything is folded into the
1503    // instruction.
1504    return 0;
1505  }
1506
1507  llvm_unreachable("Invalid LSRUse Kind!");
1508}
1509
1510static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1511                             LSRUse::KindType Kind, MemAccessTy AccessTy,
1512                             GlobalValue *BaseGV, int64_t BaseOffset,
1513                             bool HasBaseReg) {
1514  // Fast-path: zero is always foldable.
1515  if (BaseOffset == 0 && !BaseGV) return true;
1516
1517  // Conservatively, create an address with an immediate and a
1518  // base and a scale.
1519  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1520
1521  // Canonicalize a scale of 1 to a base register if the formula doesn't
1522  // already have a base register.
1523  if (!HasBaseReg && Scale == 1) {
1524    Scale = 0;
1525    HasBaseReg = true;
1526  }
1527
1528  return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1529                              HasBaseReg, Scale);
1530}
1531
1532static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1533                             ScalarEvolution &SE, int64_t MinOffset,
1534                             int64_t MaxOffset, LSRUse::KindType Kind,
1535                             MemAccessTy AccessTy, const SCEV *S,
1536                             bool HasBaseReg) {
1537  // Fast-path: zero is always foldable.
1538  if (S->isZero()) return true;
1539
1540  // Conservatively, create an address with an immediate and a
1541  // base and a scale.
1542  int64_t BaseOffset = ExtractImmediate(S, SE);
1543  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1544
1545  // If there's anything else involved, it's not foldable.
1546  if (!S->isZero()) return false;
1547
1548  // Fast-path: zero is always foldable.
1549  if (BaseOffset == 0 && !BaseGV) return true;
1550
1551  // Conservatively, create an address with an immediate and a
1552  // base and a scale.
1553  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1554
1555  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1556                              BaseOffset, HasBaseReg, Scale);
1557}
1558
1559namespace {
1560
1561/// An individual increment in a Chain of IV increments.  Relate an IV user to
1562/// an expression that computes the IV it uses from the IV used by the previous
1563/// link in the Chain.
1564///
1565/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1566/// original IVOperand. The head of the chain's IVOperand is only valid during
1567/// chain collection, before LSR replaces IV users. During chain generation,
1568/// IncExpr can be used to find the new IVOperand that computes the same
1569/// expression.
1570struct IVInc {
1571  Instruction *UserInst;
1572  Value* IVOperand;
1573  const SCEV *IncExpr;
1574
1575  IVInc(Instruction *U, Value *O, const SCEV *E):
1576    UserInst(U), IVOperand(O), IncExpr(E) {}
1577};
1578
1579// The list of IV increments in program order.  We typically add the head of a
1580// chain without finding subsequent links.
1581struct IVChain {
1582  SmallVector<IVInc,1> Incs;
1583  const SCEV *ExprBase;
1584
1585  IVChain() : ExprBase(nullptr) {}
1586
1587  IVChain(const IVInc &Head, const SCEV *Base)
1588    : Incs(1, Head), ExprBase(Base) {}
1589
1590  typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1591
1592  // Return the first increment in the chain.
1593  const_iterator begin() const {
1594    assert(!Incs.empty());
1595    return std::next(Incs.begin());
1596  }
1597  const_iterator end() const {
1598    return Incs.end();
1599  }
1600
1601  // Returns true if this chain contains any increments.
1602  bool hasIncs() const { return Incs.size() >= 2; }
1603
1604  // Add an IVInc to the end of this chain.
1605  void add(const IVInc &X) { Incs.push_back(X); }
1606
1607  // Returns the last UserInst in the chain.
1608  Instruction *tailUserInst() const { return Incs.back().UserInst; }
1609
1610  // Returns true if IncExpr can be profitably added to this chain.
1611  bool isProfitableIncrement(const SCEV *OperExpr,
1612                             const SCEV *IncExpr,
1613                             ScalarEvolution&);
1614};
1615
1616/// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1617/// between FarUsers that definitely cross IV increments and NearUsers that may
1618/// be used between IV increments.
1619struct ChainUsers {
1620  SmallPtrSet<Instruction*, 4> FarUsers;
1621  SmallPtrSet<Instruction*, 4> NearUsers;
1622};
1623
1624/// This class holds state for the main loop strength reduction logic.
1625class LSRInstance {
1626  IVUsers &IU;
1627  ScalarEvolution &SE;
1628  DominatorTree &DT;
1629  LoopInfo &LI;
1630  const TargetTransformInfo &TTI;
1631  Loop *const L;
1632  bool Changed;
1633
1634  /// This is the insert position that the current loop's induction variable
1635  /// increment should be placed. In simple loops, this is the latch block's
1636  /// terminator. But in more complicated cases, this is a position which will
1637  /// dominate all the in-loop post-increment users.
1638  Instruction *IVIncInsertPos;
1639
1640  /// Interesting factors between use strides.
1641  SmallSetVector<int64_t, 8> Factors;
1642
1643  /// Interesting use types, to facilitate truncation reuse.
1644  SmallSetVector<Type *, 4> Types;
1645
1646  /// The list of operands which are to be replaced.
1647  SmallVector<LSRFixup, 16> Fixups;
1648
1649  /// The list of interesting uses.
1650  SmallVector<LSRUse, 16> Uses;
1651
1652  /// Track which uses use which register candidates.
1653  RegUseTracker RegUses;
1654
1655  // Limit the number of chains to avoid quadratic behavior. We don't expect to
1656  // have more than a few IV increment chains in a loop. Missing a Chain falls
1657  // back to normal LSR behavior for those uses.
1658  static const unsigned MaxChains = 8;
1659
1660  /// IV users can form a chain of IV increments.
1661  SmallVector<IVChain, MaxChains> IVChainVec;
1662
1663  /// IV users that belong to profitable IVChains.
1664  SmallPtrSet<Use*, MaxChains> IVIncSet;
1665
1666  void OptimizeShadowIV();
1667  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1668  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1669  void OptimizeLoopTermCond();
1670
1671  void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1672                        SmallVectorImpl<ChainUsers> &ChainUsersVec);
1673  void FinalizeChain(IVChain &Chain);
1674  void CollectChains();
1675  void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1676                       SmallVectorImpl<WeakVH> &DeadInsts);
1677
1678  void CollectInterestingTypesAndFactors();
1679  void CollectFixupsAndInitialFormulae();
1680
1681  LSRFixup &getNewFixup() {
1682    Fixups.push_back(LSRFixup());
1683    return Fixups.back();
1684  }
1685
1686  // Support for sharing of LSRUses between LSRFixups.
1687  typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1688  UseMapTy UseMap;
1689
1690  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1691                          LSRUse::KindType Kind, MemAccessTy AccessTy);
1692
1693  std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1694                                    MemAccessTy AccessTy);
1695
1696  void DeleteUse(LSRUse &LU, size_t LUIdx);
1697
1698  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1699
1700  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1701  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1702  void CountRegisters(const Formula &F, size_t LUIdx);
1703  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1704
1705  void CollectLoopInvariantFixupsAndFormulae();
1706
1707  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1708                              unsigned Depth = 0);
1709
1710  void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1711                                  const Formula &Base, unsigned Depth,
1712                                  size_t Idx, bool IsScaledReg = false);
1713  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1714  void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1715                                   const Formula &Base, size_t Idx,
1716                                   bool IsScaledReg = false);
1717  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1718  void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1719                                   const Formula &Base,
1720                                   const SmallVectorImpl<int64_t> &Worklist,
1721                                   size_t Idx, bool IsScaledReg = false);
1722  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1723  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1724  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1725  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1726  void GenerateCrossUseConstantOffsets();
1727  void GenerateAllReuseFormulae();
1728
1729  void FilterOutUndesirableDedicatedRegisters();
1730
1731  size_t EstimateSearchSpaceComplexity() const;
1732  void NarrowSearchSpaceByDetectingSupersets();
1733  void NarrowSearchSpaceByCollapsingUnrolledCode();
1734  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1735  void NarrowSearchSpaceByPickingWinnerRegs();
1736  void NarrowSearchSpaceUsingHeuristics();
1737
1738  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1739                    Cost &SolutionCost,
1740                    SmallVectorImpl<const Formula *> &Workspace,
1741                    const Cost &CurCost,
1742                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1743                    DenseSet<const SCEV *> &VisitedRegs) const;
1744  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1745
1746  BasicBlock::iterator
1747    HoistInsertPosition(BasicBlock::iterator IP,
1748                        const SmallVectorImpl<Instruction *> &Inputs) const;
1749  BasicBlock::iterator
1750    AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1751                                  const LSRFixup &LF,
1752                                  const LSRUse &LU,
1753                                  SCEVExpander &Rewriter) const;
1754
1755  Value *Expand(const LSRFixup &LF,
1756                const Formula &F,
1757                BasicBlock::iterator IP,
1758                SCEVExpander &Rewriter,
1759                SmallVectorImpl<WeakVH> &DeadInsts) const;
1760  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1761                     const Formula &F,
1762                     SCEVExpander &Rewriter,
1763                     SmallVectorImpl<WeakVH> &DeadInsts) const;
1764  void Rewrite(const LSRFixup &LF,
1765               const Formula &F,
1766               SCEVExpander &Rewriter,
1767               SmallVectorImpl<WeakVH> &DeadInsts) const;
1768  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1769
1770public:
1771  LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1772              LoopInfo &LI, const TargetTransformInfo &TTI);
1773
1774  bool getChanged() const { return Changed; }
1775
1776  void print_factors_and_types(raw_ostream &OS) const;
1777  void print_fixups(raw_ostream &OS) const;
1778  void print_uses(raw_ostream &OS) const;
1779  void print(raw_ostream &OS) const;
1780  void dump() const;
1781};
1782
1783}
1784
1785/// If IV is used in a int-to-float cast inside the loop then try to eliminate
1786/// the cast operation.
1787void LSRInstance::OptimizeShadowIV() {
1788  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1789  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1790    return;
1791
1792  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1793       UI != E; /* empty */) {
1794    IVUsers::const_iterator CandidateUI = UI;
1795    ++UI;
1796    Instruction *ShadowUse = CandidateUI->getUser();
1797    Type *DestTy = nullptr;
1798    bool IsSigned = false;
1799
1800    /* If shadow use is a int->float cast then insert a second IV
1801       to eliminate this cast.
1802
1803         for (unsigned i = 0; i < n; ++i)
1804           foo((double)i);
1805
1806       is transformed into
1807
1808         double d = 0.0;
1809         for (unsigned i = 0; i < n; ++i, ++d)
1810           foo(d);
1811    */
1812    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1813      IsSigned = false;
1814      DestTy = UCast->getDestTy();
1815    }
1816    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1817      IsSigned = true;
1818      DestTy = SCast->getDestTy();
1819    }
1820    if (!DestTy) continue;
1821
1822    // If target does not support DestTy natively then do not apply
1823    // this transformation.
1824    if (!TTI.isTypeLegal(DestTy)) continue;
1825
1826    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1827    if (!PH) continue;
1828    if (PH->getNumIncomingValues() != 2) continue;
1829
1830    Type *SrcTy = PH->getType();
1831    int Mantissa = DestTy->getFPMantissaWidth();
1832    if (Mantissa == -1) continue;
1833    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1834      continue;
1835
1836    unsigned Entry, Latch;
1837    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1838      Entry = 0;
1839      Latch = 1;
1840    } else {
1841      Entry = 1;
1842      Latch = 0;
1843    }
1844
1845    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1846    if (!Init) continue;
1847    Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1848                                        (double)Init->getSExtValue() :
1849                                        (double)Init->getZExtValue());
1850
1851    BinaryOperator *Incr =
1852      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1853    if (!Incr) continue;
1854    if (Incr->getOpcode() != Instruction::Add
1855        && Incr->getOpcode() != Instruction::Sub)
1856      continue;
1857
1858    /* Initialize new IV, double d = 0.0 in above example. */
1859    ConstantInt *C = nullptr;
1860    if (Incr->getOperand(0) == PH)
1861      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1862    else if (Incr->getOperand(1) == PH)
1863      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1864    else
1865      continue;
1866
1867    if (!C) continue;
1868
1869    // Ignore negative constants, as the code below doesn't handle them
1870    // correctly. TODO: Remove this restriction.
1871    if (!C->getValue().isStrictlyPositive()) continue;
1872
1873    /* Add new PHINode. */
1874    PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1875
1876    /* create new increment. '++d' in above example. */
1877    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1878    BinaryOperator *NewIncr =
1879      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1880                               Instruction::FAdd : Instruction::FSub,
1881                             NewPH, CFP, "IV.S.next.", Incr);
1882
1883    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1884    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1885
1886    /* Remove cast operation */
1887    ShadowUse->replaceAllUsesWith(NewPH);
1888    ShadowUse->eraseFromParent();
1889    Changed = true;
1890    break;
1891  }
1892}
1893
1894/// If Cond has an operand that is an expression of an IV, set the IV user and
1895/// stride information and return true, otherwise return false.
1896bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1897  for (IVStrideUse &U : IU)
1898    if (U.getUser() == Cond) {
1899      // NOTE: we could handle setcc instructions with multiple uses here, but
1900      // InstCombine does it as well for simple uses, it's not clear that it
1901      // occurs enough in real life to handle.
1902      CondUse = &U;
1903      return true;
1904    }
1905  return false;
1906}
1907
1908/// Rewrite the loop's terminating condition if it uses a max computation.
1909///
1910/// This is a narrow solution to a specific, but acute, problem. For loops
1911/// like this:
1912///
1913///   i = 0;
1914///   do {
1915///     p[i] = 0.0;
1916///   } while (++i < n);
1917///
1918/// the trip count isn't just 'n', because 'n' might not be positive. And
1919/// unfortunately this can come up even for loops where the user didn't use
1920/// a C do-while loop. For example, seemingly well-behaved top-test loops
1921/// will commonly be lowered like this:
1922//
1923///   if (n > 0) {
1924///     i = 0;
1925///     do {
1926///       p[i] = 0.0;
1927///     } while (++i < n);
1928///   }
1929///
1930/// and then it's possible for subsequent optimization to obscure the if
1931/// test in such a way that indvars can't find it.
1932///
1933/// When indvars can't find the if test in loops like this, it creates a
1934/// max expression, which allows it to give the loop a canonical
1935/// induction variable:
1936///
1937///   i = 0;
1938///   max = n < 1 ? 1 : n;
1939///   do {
1940///     p[i] = 0.0;
1941///   } while (++i != max);
1942///
1943/// Canonical induction variables are necessary because the loop passes
1944/// are designed around them. The most obvious example of this is the
1945/// LoopInfo analysis, which doesn't remember trip count values. It
1946/// expects to be able to rediscover the trip count each time it is
1947/// needed, and it does this using a simple analysis that only succeeds if
1948/// the loop has a canonical induction variable.
1949///
1950/// However, when it comes time to generate code, the maximum operation
1951/// can be quite costly, especially if it's inside of an outer loop.
1952///
1953/// This function solves this problem by detecting this type of loop and
1954/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1955/// the instructions for the maximum computation.
1956///
1957ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1958  // Check that the loop matches the pattern we're looking for.
1959  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1960      Cond->getPredicate() != CmpInst::ICMP_NE)
1961    return Cond;
1962
1963  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1964  if (!Sel || !Sel->hasOneUse()) return Cond;
1965
1966  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1967  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1968    return Cond;
1969  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1970
1971  // Add one to the backedge-taken count to get the trip count.
1972  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1973  if (IterationCount != SE.getSCEV(Sel)) return Cond;
1974
1975  // Check for a max calculation that matches the pattern. There's no check
1976  // for ICMP_ULE here because the comparison would be with zero, which
1977  // isn't interesting.
1978  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1979  const SCEVNAryExpr *Max = nullptr;
1980  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1981    Pred = ICmpInst::ICMP_SLE;
1982    Max = S;
1983  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1984    Pred = ICmpInst::ICMP_SLT;
1985    Max = S;
1986  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1987    Pred = ICmpInst::ICMP_ULT;
1988    Max = U;
1989  } else {
1990    // No match; bail.
1991    return Cond;
1992  }
1993
1994  // To handle a max with more than two operands, this optimization would
1995  // require additional checking and setup.
1996  if (Max->getNumOperands() != 2)
1997    return Cond;
1998
1999  const SCEV *MaxLHS = Max->getOperand(0);
2000  const SCEV *MaxRHS = Max->getOperand(1);
2001
2002  // ScalarEvolution canonicalizes constants to the left. For < and >, look
2003  // for a comparison with 1. For <= and >=, a comparison with zero.
2004  if (!MaxLHS ||
2005      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2006    return Cond;
2007
2008  // Check the relevant induction variable for conformance to
2009  // the pattern.
2010  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2011  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2012  if (!AR || !AR->isAffine() ||
2013      AR->getStart() != One ||
2014      AR->getStepRecurrence(SE) != One)
2015    return Cond;
2016
2017  assert(AR->getLoop() == L &&
2018         "Loop condition operand is an addrec in a different loop!");
2019
2020  // Check the right operand of the select, and remember it, as it will
2021  // be used in the new comparison instruction.
2022  Value *NewRHS = nullptr;
2023  if (ICmpInst::isTrueWhenEqual(Pred)) {
2024    // Look for n+1, and grab n.
2025    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2026      if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2027         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2028           NewRHS = BO->getOperand(0);
2029    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2030      if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2031        if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2032          NewRHS = BO->getOperand(0);
2033    if (!NewRHS)
2034      return Cond;
2035  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2036    NewRHS = Sel->getOperand(1);
2037  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2038    NewRHS = Sel->getOperand(2);
2039  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2040    NewRHS = SU->getValue();
2041  else
2042    // Max doesn't match expected pattern.
2043    return Cond;
2044
2045  // Determine the new comparison opcode. It may be signed or unsigned,
2046  // and the original comparison may be either equality or inequality.
2047  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2048    Pred = CmpInst::getInversePredicate(Pred);
2049
2050  // Ok, everything looks ok to change the condition into an SLT or SGE and
2051  // delete the max calculation.
2052  ICmpInst *NewCond =
2053    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2054
2055  // Delete the max calculation instructions.
2056  Cond->replaceAllUsesWith(NewCond);
2057  CondUse->setUser(NewCond);
2058  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2059  Cond->eraseFromParent();
2060  Sel->eraseFromParent();
2061  if (Cmp->use_empty())
2062    Cmp->eraseFromParent();
2063  return NewCond;
2064}
2065
2066/// Change loop terminating condition to use the postinc iv when possible.
2067void
2068LSRInstance::OptimizeLoopTermCond() {
2069  SmallPtrSet<Instruction *, 4> PostIncs;
2070
2071  BasicBlock *LatchBlock = L->getLoopLatch();
2072  SmallVector<BasicBlock*, 8> ExitingBlocks;
2073  L->getExitingBlocks(ExitingBlocks);
2074
2075  for (BasicBlock *ExitingBlock : ExitingBlocks) {
2076
2077    // Get the terminating condition for the loop if possible.  If we
2078    // can, we want to change it to use a post-incremented version of its
2079    // induction variable, to allow coalescing the live ranges for the IV into
2080    // one register value.
2081
2082    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2083    if (!TermBr)
2084      continue;
2085    // FIXME: Overly conservative, termination condition could be an 'or' etc..
2086    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2087      continue;
2088
2089    // Search IVUsesByStride to find Cond's IVUse if there is one.
2090    IVStrideUse *CondUse = nullptr;
2091    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2092    if (!FindIVUserForCond(Cond, CondUse))
2093      continue;
2094
2095    // If the trip count is computed in terms of a max (due to ScalarEvolution
2096    // being unable to find a sufficient guard, for example), change the loop
2097    // comparison to use SLT or ULT instead of NE.
2098    // One consequence of doing this now is that it disrupts the count-down
2099    // optimization. That's not always a bad thing though, because in such
2100    // cases it may still be worthwhile to avoid a max.
2101    Cond = OptimizeMax(Cond, CondUse);
2102
2103    // If this exiting block dominates the latch block, it may also use
2104    // the post-inc value if it won't be shared with other uses.
2105    // Check for dominance.
2106    if (!DT.dominates(ExitingBlock, LatchBlock))
2107      continue;
2108
2109    // Conservatively avoid trying to use the post-inc value in non-latch
2110    // exits if there may be pre-inc users in intervening blocks.
2111    if (LatchBlock != ExitingBlock)
2112      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2113        // Test if the use is reachable from the exiting block. This dominator
2114        // query is a conservative approximation of reachability.
2115        if (&*UI != CondUse &&
2116            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2117          // Conservatively assume there may be reuse if the quotient of their
2118          // strides could be a legal scale.
2119          const SCEV *A = IU.getStride(*CondUse, L);
2120          const SCEV *B = IU.getStride(*UI, L);
2121          if (!A || !B) continue;
2122          if (SE.getTypeSizeInBits(A->getType()) !=
2123              SE.getTypeSizeInBits(B->getType())) {
2124            if (SE.getTypeSizeInBits(A->getType()) >
2125                SE.getTypeSizeInBits(B->getType()))
2126              B = SE.getSignExtendExpr(B, A->getType());
2127            else
2128              A = SE.getSignExtendExpr(A, B->getType());
2129          }
2130          if (const SCEVConstant *D =
2131                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2132            const ConstantInt *C = D->getValue();
2133            // Stride of one or negative one can have reuse with non-addresses.
2134            if (C->isOne() || C->isAllOnesValue())
2135              goto decline_post_inc;
2136            // Avoid weird situations.
2137            if (C->getValue().getMinSignedBits() >= 64 ||
2138                C->getValue().isMinSignedValue())
2139              goto decline_post_inc;
2140            // Check for possible scaled-address reuse.
2141            MemAccessTy AccessTy = getAccessType(UI->getUser());
2142            int64_t Scale = C->getSExtValue();
2143            if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2144                                          /*BaseOffset=*/0,
2145                                          /*HasBaseReg=*/false, Scale,
2146                                          AccessTy.AddrSpace))
2147              goto decline_post_inc;
2148            Scale = -Scale;
2149            if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2150                                          /*BaseOffset=*/0,
2151                                          /*HasBaseReg=*/false, Scale,
2152                                          AccessTy.AddrSpace))
2153              goto decline_post_inc;
2154          }
2155        }
2156
2157    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2158                 << *Cond << '\n');
2159
2160    // It's possible for the setcc instruction to be anywhere in the loop, and
2161    // possible for it to have multiple users.  If it is not immediately before
2162    // the exiting block branch, move it.
2163    if (&*++BasicBlock::iterator(Cond) != TermBr) {
2164      if (Cond->hasOneUse()) {
2165        Cond->moveBefore(TermBr);
2166      } else {
2167        // Clone the terminating condition and insert into the loopend.
2168        ICmpInst *OldCond = Cond;
2169        Cond = cast<ICmpInst>(Cond->clone());
2170        Cond->setName(L->getHeader()->getName() + ".termcond");
2171        ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2172
2173        // Clone the IVUse, as the old use still exists!
2174        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2175        TermBr->replaceUsesOfWith(OldCond, Cond);
2176      }
2177    }
2178
2179    // If we get to here, we know that we can transform the setcc instruction to
2180    // use the post-incremented version of the IV, allowing us to coalesce the
2181    // live ranges for the IV correctly.
2182    CondUse->transformToPostInc(L);
2183    Changed = true;
2184
2185    PostIncs.insert(Cond);
2186  decline_post_inc:;
2187  }
2188
2189  // Determine an insertion point for the loop induction variable increment. It
2190  // must dominate all the post-inc comparisons we just set up, and it must
2191  // dominate the loop latch edge.
2192  IVIncInsertPos = L->getLoopLatch()->getTerminator();
2193  for (Instruction *Inst : PostIncs) {
2194    BasicBlock *BB =
2195      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2196                                    Inst->getParent());
2197    if (BB == Inst->getParent())
2198      IVIncInsertPos = Inst;
2199    else if (BB != IVIncInsertPos->getParent())
2200      IVIncInsertPos = BB->getTerminator();
2201  }
2202}
2203
2204/// Determine if the given use can accommodate a fixup at the given offset and
2205/// other details. If so, update the use and return true.
2206bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2207                                     bool HasBaseReg, LSRUse::KindType Kind,
2208                                     MemAccessTy AccessTy) {
2209  int64_t NewMinOffset = LU.MinOffset;
2210  int64_t NewMaxOffset = LU.MaxOffset;
2211  MemAccessTy NewAccessTy = AccessTy;
2212
2213  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2214  // something conservative, however this can pessimize in the case that one of
2215  // the uses will have all its uses outside the loop, for example.
2216  if (LU.Kind != Kind)
2217    return false;
2218
2219  // Check for a mismatched access type, and fall back conservatively as needed.
2220  // TODO: Be less conservative when the type is similar and can use the same
2221  // addressing modes.
2222  if (Kind == LSRUse::Address) {
2223    if (AccessTy != LU.AccessTy)
2224      NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext());
2225  }
2226
2227  // Conservatively assume HasBaseReg is true for now.
2228  if (NewOffset < LU.MinOffset) {
2229    if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2230                          LU.MaxOffset - NewOffset, HasBaseReg))
2231      return false;
2232    NewMinOffset = NewOffset;
2233  } else if (NewOffset > LU.MaxOffset) {
2234    if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2235                          NewOffset - LU.MinOffset, HasBaseReg))
2236      return false;
2237    NewMaxOffset = NewOffset;
2238  }
2239
2240  // Update the use.
2241  LU.MinOffset = NewMinOffset;
2242  LU.MaxOffset = NewMaxOffset;
2243  LU.AccessTy = NewAccessTy;
2244  if (NewOffset != LU.Offsets.back())
2245    LU.Offsets.push_back(NewOffset);
2246  return true;
2247}
2248
2249/// Return an LSRUse index and an offset value for a fixup which needs the given
2250/// expression, with the given kind and optional access type.  Either reuse an
2251/// existing use or create a new one, as needed.
2252std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2253                                               LSRUse::KindType Kind,
2254                                               MemAccessTy AccessTy) {
2255  const SCEV *Copy = Expr;
2256  int64_t Offset = ExtractImmediate(Expr, SE);
2257
2258  // Basic uses can't accept any offset, for example.
2259  if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2260                        Offset, /*HasBaseReg=*/ true)) {
2261    Expr = Copy;
2262    Offset = 0;
2263  }
2264
2265  std::pair<UseMapTy::iterator, bool> P =
2266    UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2267  if (!P.second) {
2268    // A use already existed with this base.
2269    size_t LUIdx = P.first->second;
2270    LSRUse &LU = Uses[LUIdx];
2271    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2272      // Reuse this use.
2273      return std::make_pair(LUIdx, Offset);
2274  }
2275
2276  // Create a new use.
2277  size_t LUIdx = Uses.size();
2278  P.first->second = LUIdx;
2279  Uses.push_back(LSRUse(Kind, AccessTy));
2280  LSRUse &LU = Uses[LUIdx];
2281
2282  // We don't need to track redundant offsets, but we don't need to go out
2283  // of our way here to avoid them.
2284  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2285    LU.Offsets.push_back(Offset);
2286
2287  LU.MinOffset = Offset;
2288  LU.MaxOffset = Offset;
2289  return std::make_pair(LUIdx, Offset);
2290}
2291
2292/// Delete the given use from the Uses list.
2293void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2294  if (&LU != &Uses.back())
2295    std::swap(LU, Uses.back());
2296  Uses.pop_back();
2297
2298  // Update RegUses.
2299  RegUses.swapAndDropUse(LUIdx, Uses.size());
2300}
2301
2302/// Look for a use distinct from OrigLU which is has a formula that has the same
2303/// registers as the given formula.
2304LSRUse *
2305LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2306                                       const LSRUse &OrigLU) {
2307  // Search all uses for the formula. This could be more clever.
2308  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2309    LSRUse &LU = Uses[LUIdx];
2310    // Check whether this use is close enough to OrigLU, to see whether it's
2311    // worthwhile looking through its formulae.
2312    // Ignore ICmpZero uses because they may contain formulae generated by
2313    // GenerateICmpZeroScales, in which case adding fixup offsets may
2314    // be invalid.
2315    if (&LU != &OrigLU &&
2316        LU.Kind != LSRUse::ICmpZero &&
2317        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2318        LU.WidestFixupType == OrigLU.WidestFixupType &&
2319        LU.HasFormulaWithSameRegs(OrigF)) {
2320      // Scan through this use's formulae.
2321      for (const Formula &F : LU.Formulae) {
2322        // Check to see if this formula has the same registers and symbols
2323        // as OrigF.
2324        if (F.BaseRegs == OrigF.BaseRegs &&
2325            F.ScaledReg == OrigF.ScaledReg &&
2326            F.BaseGV == OrigF.BaseGV &&
2327            F.Scale == OrigF.Scale &&
2328            F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2329          if (F.BaseOffset == 0)
2330            return &LU;
2331          // This is the formula where all the registers and symbols matched;
2332          // there aren't going to be any others. Since we declined it, we
2333          // can skip the rest of the formulae and proceed to the next LSRUse.
2334          break;
2335        }
2336      }
2337    }
2338  }
2339
2340  // Nothing looked good.
2341  return nullptr;
2342}
2343
2344void LSRInstance::CollectInterestingTypesAndFactors() {
2345  SmallSetVector<const SCEV *, 4> Strides;
2346
2347  // Collect interesting types and strides.
2348  SmallVector<const SCEV *, 4> Worklist;
2349  for (const IVStrideUse &U : IU) {
2350    const SCEV *Expr = IU.getExpr(U);
2351
2352    // Collect interesting types.
2353    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2354
2355    // Add strides for mentioned loops.
2356    Worklist.push_back(Expr);
2357    do {
2358      const SCEV *S = Worklist.pop_back_val();
2359      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2360        if (AR->getLoop() == L)
2361          Strides.insert(AR->getStepRecurrence(SE));
2362        Worklist.push_back(AR->getStart());
2363      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2364        Worklist.append(Add->op_begin(), Add->op_end());
2365      }
2366    } while (!Worklist.empty());
2367  }
2368
2369  // Compute interesting factors from the set of interesting strides.
2370  for (SmallSetVector<const SCEV *, 4>::const_iterator
2371       I = Strides.begin(), E = Strides.end(); I != E; ++I)
2372    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2373         std::next(I); NewStrideIter != E; ++NewStrideIter) {
2374      const SCEV *OldStride = *I;
2375      const SCEV *NewStride = *NewStrideIter;
2376
2377      if (SE.getTypeSizeInBits(OldStride->getType()) !=
2378          SE.getTypeSizeInBits(NewStride->getType())) {
2379        if (SE.getTypeSizeInBits(OldStride->getType()) >
2380            SE.getTypeSizeInBits(NewStride->getType()))
2381          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2382        else
2383          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2384      }
2385      if (const SCEVConstant *Factor =
2386            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2387                                                        SE, true))) {
2388        if (Factor->getAPInt().getMinSignedBits() <= 64)
2389          Factors.insert(Factor->getAPInt().getSExtValue());
2390      } else if (const SCEVConstant *Factor =
2391                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2392                                                               NewStride,
2393                                                               SE, true))) {
2394        if (Factor->getAPInt().getMinSignedBits() <= 64)
2395          Factors.insert(Factor->getAPInt().getSExtValue());
2396      }
2397    }
2398
2399  // If all uses use the same type, don't bother looking for truncation-based
2400  // reuse.
2401  if (Types.size() == 1)
2402    Types.clear();
2403
2404  DEBUG(print_factors_and_types(dbgs()));
2405}
2406
2407/// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2408/// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2409/// IVStrideUses, we could partially skip this.
2410static User::op_iterator
2411findIVOperand(User::op_iterator OI, User::op_iterator OE,
2412              Loop *L, ScalarEvolution &SE) {
2413  for(; OI != OE; ++OI) {
2414    if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2415      if (!SE.isSCEVable(Oper->getType()))
2416        continue;
2417
2418      if (const SCEVAddRecExpr *AR =
2419          dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2420        if (AR->getLoop() == L)
2421          break;
2422      }
2423    }
2424  }
2425  return OI;
2426}
2427
2428/// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2429/// a convenient helper.
2430static Value *getWideOperand(Value *Oper) {
2431  if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2432    return Trunc->getOperand(0);
2433  return Oper;
2434}
2435
2436/// Return true if we allow an IV chain to include both types.
2437static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2438  Type *LType = LVal->getType();
2439  Type *RType = RVal->getType();
2440  return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2441}
2442
2443/// Return an approximation of this SCEV expression's "base", or NULL for any
2444/// constant. Returning the expression itself is conservative. Returning a
2445/// deeper subexpression is more precise and valid as long as it isn't less
2446/// complex than another subexpression. For expressions involving multiple
2447/// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2448/// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2449/// IVInc==b-a.
2450///
2451/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2452/// SCEVUnknown, we simply return the rightmost SCEV operand.
2453static const SCEV *getExprBase(const SCEV *S) {
2454  switch (S->getSCEVType()) {
2455  default: // uncluding scUnknown.
2456    return S;
2457  case scConstant:
2458    return nullptr;
2459  case scTruncate:
2460    return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2461  case scZeroExtend:
2462    return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2463  case scSignExtend:
2464    return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2465  case scAddExpr: {
2466    // Skip over scaled operands (scMulExpr) to follow add operands as long as
2467    // there's nothing more complex.
2468    // FIXME: not sure if we want to recognize negation.
2469    const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2470    for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2471           E(Add->op_begin()); I != E; ++I) {
2472      const SCEV *SubExpr = *I;
2473      if (SubExpr->getSCEVType() == scAddExpr)
2474        return getExprBase(SubExpr);
2475
2476      if (SubExpr->getSCEVType() != scMulExpr)
2477        return SubExpr;
2478    }
2479    return S; // all operands are scaled, be conservative.
2480  }
2481  case scAddRecExpr:
2482    return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2483  }
2484}
2485
2486/// Return true if the chain increment is profitable to expand into a loop
2487/// invariant value, which may require its own register. A profitable chain
2488/// increment will be an offset relative to the same base. We allow such offsets
2489/// to potentially be used as chain increment as long as it's not obviously
2490/// expensive to expand using real instructions.
2491bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2492                                    const SCEV *IncExpr,
2493                                    ScalarEvolution &SE) {
2494  // Aggressively form chains when -stress-ivchain.
2495  if (StressIVChain)
2496    return true;
2497
2498  // Do not replace a constant offset from IV head with a nonconstant IV
2499  // increment.
2500  if (!isa<SCEVConstant>(IncExpr)) {
2501    const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2502    if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2503      return 0;
2504  }
2505
2506  SmallPtrSet<const SCEV*, 8> Processed;
2507  return !isHighCostExpansion(IncExpr, Processed, SE);
2508}
2509
2510/// Return true if the number of registers needed for the chain is estimated to
2511/// be less than the number required for the individual IV users. First prohibit
2512/// any IV users that keep the IV live across increments (the Users set should
2513/// be empty). Next count the number and type of increments in the chain.
2514///
2515/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2516/// effectively use postinc addressing modes. Only consider it profitable it the
2517/// increments can be computed in fewer registers when chained.
2518///
2519/// TODO: Consider IVInc free if it's already used in another chains.
2520static bool
2521isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2522                  ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2523  if (StressIVChain)
2524    return true;
2525
2526  if (!Chain.hasIncs())
2527    return false;
2528
2529  if (!Users.empty()) {
2530    DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2531          for (Instruction *Inst : Users) {
2532            dbgs() << "  " << *Inst << "\n";
2533          });
2534    return false;
2535  }
2536  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2537
2538  // The chain itself may require a register, so intialize cost to 1.
2539  int cost = 1;
2540
2541  // A complete chain likely eliminates the need for keeping the original IV in
2542  // a register. LSR does not currently know how to form a complete chain unless
2543  // the header phi already exists.
2544  if (isa<PHINode>(Chain.tailUserInst())
2545      && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2546    --cost;
2547  }
2548  const SCEV *LastIncExpr = nullptr;
2549  unsigned NumConstIncrements = 0;
2550  unsigned NumVarIncrements = 0;
2551  unsigned NumReusedIncrements = 0;
2552  for (const IVInc &Inc : Chain) {
2553    if (Inc.IncExpr->isZero())
2554      continue;
2555
2556    // Incrementing by zero or some constant is neutral. We assume constants can
2557    // be folded into an addressing mode or an add's immediate operand.
2558    if (isa<SCEVConstant>(Inc.IncExpr)) {
2559      ++NumConstIncrements;
2560      continue;
2561    }
2562
2563    if (Inc.IncExpr == LastIncExpr)
2564      ++NumReusedIncrements;
2565    else
2566      ++NumVarIncrements;
2567
2568    LastIncExpr = Inc.IncExpr;
2569  }
2570  // An IV chain with a single increment is handled by LSR's postinc
2571  // uses. However, a chain with multiple increments requires keeping the IV's
2572  // value live longer than it needs to be if chained.
2573  if (NumConstIncrements > 1)
2574    --cost;
2575
2576  // Materializing increment expressions in the preheader that didn't exist in
2577  // the original code may cost a register. For example, sign-extended array
2578  // indices can produce ridiculous increments like this:
2579  // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2580  cost += NumVarIncrements;
2581
2582  // Reusing variable increments likely saves a register to hold the multiple of
2583  // the stride.
2584  cost -= NumReusedIncrements;
2585
2586  DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2587               << "\n");
2588
2589  return cost < 0;
2590}
2591
2592/// Add this IV user to an existing chain or make it the head of a new chain.
2593void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2594                                   SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2595  // When IVs are used as types of varying widths, they are generally converted
2596  // to a wider type with some uses remaining narrow under a (free) trunc.
2597  Value *const NextIV = getWideOperand(IVOper);
2598  const SCEV *const OperExpr = SE.getSCEV(NextIV);
2599  const SCEV *const OperExprBase = getExprBase(OperExpr);
2600
2601  // Visit all existing chains. Check if its IVOper can be computed as a
2602  // profitable loop invariant increment from the last link in the Chain.
2603  unsigned ChainIdx = 0, NChains = IVChainVec.size();
2604  const SCEV *LastIncExpr = nullptr;
2605  for (; ChainIdx < NChains; ++ChainIdx) {
2606    IVChain &Chain = IVChainVec[ChainIdx];
2607
2608    // Prune the solution space aggressively by checking that both IV operands
2609    // are expressions that operate on the same unscaled SCEVUnknown. This
2610    // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2611    // first avoids creating extra SCEV expressions.
2612    if (!StressIVChain && Chain.ExprBase != OperExprBase)
2613      continue;
2614
2615    Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2616    if (!isCompatibleIVType(PrevIV, NextIV))
2617      continue;
2618
2619    // A phi node terminates a chain.
2620    if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2621      continue;
2622
2623    // The increment must be loop-invariant so it can be kept in a register.
2624    const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2625    const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2626    if (!SE.isLoopInvariant(IncExpr, L))
2627      continue;
2628
2629    if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2630      LastIncExpr = IncExpr;
2631      break;
2632    }
2633  }
2634  // If we haven't found a chain, create a new one, unless we hit the max. Don't
2635  // bother for phi nodes, because they must be last in the chain.
2636  if (ChainIdx == NChains) {
2637    if (isa<PHINode>(UserInst))
2638      return;
2639    if (NChains >= MaxChains && !StressIVChain) {
2640      DEBUG(dbgs() << "IV Chain Limit\n");
2641      return;
2642    }
2643    LastIncExpr = OperExpr;
2644    // IVUsers may have skipped over sign/zero extensions. We don't currently
2645    // attempt to form chains involving extensions unless they can be hoisted
2646    // into this loop's AddRec.
2647    if (!isa<SCEVAddRecExpr>(LastIncExpr))
2648      return;
2649    ++NChains;
2650    IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2651                                 OperExprBase));
2652    ChainUsersVec.resize(NChains);
2653    DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2654                 << ") IV=" << *LastIncExpr << "\n");
2655  } else {
2656    DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2657                 << ") IV+" << *LastIncExpr << "\n");
2658    // Add this IV user to the end of the chain.
2659    IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2660  }
2661  IVChain &Chain = IVChainVec[ChainIdx];
2662
2663  SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2664  // This chain's NearUsers become FarUsers.
2665  if (!LastIncExpr->isZero()) {
2666    ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2667                                            NearUsers.end());
2668    NearUsers.clear();
2669  }
2670
2671  // All other uses of IVOperand become near uses of the chain.
2672  // We currently ignore intermediate values within SCEV expressions, assuming
2673  // they will eventually be used be the current chain, or can be computed
2674  // from one of the chain increments. To be more precise we could
2675  // transitively follow its user and only add leaf IV users to the set.
2676  for (User *U : IVOper->users()) {
2677    Instruction *OtherUse = dyn_cast<Instruction>(U);
2678    if (!OtherUse)
2679      continue;
2680    // Uses in the chain will no longer be uses if the chain is formed.
2681    // Include the head of the chain in this iteration (not Chain.begin()).
2682    IVChain::const_iterator IncIter = Chain.Incs.begin();
2683    IVChain::const_iterator IncEnd = Chain.Incs.end();
2684    for( ; IncIter != IncEnd; ++IncIter) {
2685      if (IncIter->UserInst == OtherUse)
2686        break;
2687    }
2688    if (IncIter != IncEnd)
2689      continue;
2690
2691    if (SE.isSCEVable(OtherUse->getType())
2692        && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2693        && IU.isIVUserOrOperand(OtherUse)) {
2694      continue;
2695    }
2696    NearUsers.insert(OtherUse);
2697  }
2698
2699  // Since this user is part of the chain, it's no longer considered a use
2700  // of the chain.
2701  ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2702}
2703
2704/// Populate the vector of Chains.
2705///
2706/// This decreases ILP at the architecture level. Targets with ample registers,
2707/// multiple memory ports, and no register renaming probably don't want
2708/// this. However, such targets should probably disable LSR altogether.
2709///
2710/// The job of LSR is to make a reasonable choice of induction variables across
2711/// the loop. Subsequent passes can easily "unchain" computation exposing more
2712/// ILP *within the loop* if the target wants it.
2713///
2714/// Finding the best IV chain is potentially a scheduling problem. Since LSR
2715/// will not reorder memory operations, it will recognize this as a chain, but
2716/// will generate redundant IV increments. Ideally this would be corrected later
2717/// by a smart scheduler:
2718///        = A[i]
2719///        = A[i+x]
2720/// A[i]   =
2721/// A[i+x] =
2722///
2723/// TODO: Walk the entire domtree within this loop, not just the path to the
2724/// loop latch. This will discover chains on side paths, but requires
2725/// maintaining multiple copies of the Chains state.
2726void LSRInstance::CollectChains() {
2727  DEBUG(dbgs() << "Collecting IV Chains.\n");
2728  SmallVector<ChainUsers, 8> ChainUsersVec;
2729
2730  SmallVector<BasicBlock *,8> LatchPath;
2731  BasicBlock *LoopHeader = L->getHeader();
2732  for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2733       Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2734    LatchPath.push_back(Rung->getBlock());
2735  }
2736  LatchPath.push_back(LoopHeader);
2737
2738  // Walk the instruction stream from the loop header to the loop latch.
2739  for (BasicBlock *BB : reverse(LatchPath)) {
2740    for (Instruction &I : *BB) {
2741      // Skip instructions that weren't seen by IVUsers analysis.
2742      if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
2743        continue;
2744
2745      // Ignore users that are part of a SCEV expression. This way we only
2746      // consider leaf IV Users. This effectively rediscovers a portion of
2747      // IVUsers analysis but in program order this time.
2748      if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
2749        continue;
2750
2751      // Remove this instruction from any NearUsers set it may be in.
2752      for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2753           ChainIdx < NChains; ++ChainIdx) {
2754        ChainUsersVec[ChainIdx].NearUsers.erase(&I);
2755      }
2756      // Search for operands that can be chained.
2757      SmallPtrSet<Instruction*, 4> UniqueOperands;
2758      User::op_iterator IVOpEnd = I.op_end();
2759      User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
2760      while (IVOpIter != IVOpEnd) {
2761        Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2762        if (UniqueOperands.insert(IVOpInst).second)
2763          ChainInstruction(&I, IVOpInst, ChainUsersVec);
2764        IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2765      }
2766    } // Continue walking down the instructions.
2767  } // Continue walking down the domtree.
2768  // Visit phi backedges to determine if the chain can generate the IV postinc.
2769  for (BasicBlock::iterator I = L->getHeader()->begin();
2770       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2771    if (!SE.isSCEVable(PN->getType()))
2772      continue;
2773
2774    Instruction *IncV =
2775      dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2776    if (IncV)
2777      ChainInstruction(PN, IncV, ChainUsersVec);
2778  }
2779  // Remove any unprofitable chains.
2780  unsigned ChainIdx = 0;
2781  for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2782       UsersIdx < NChains; ++UsersIdx) {
2783    if (!isProfitableChain(IVChainVec[UsersIdx],
2784                           ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2785      continue;
2786    // Preserve the chain at UsesIdx.
2787    if (ChainIdx != UsersIdx)
2788      IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2789    FinalizeChain(IVChainVec[ChainIdx]);
2790    ++ChainIdx;
2791  }
2792  IVChainVec.resize(ChainIdx);
2793}
2794
2795void LSRInstance::FinalizeChain(IVChain &Chain) {
2796  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2797  DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2798
2799  for (const IVInc &Inc : Chain) {
2800    DEBUG(dbgs() << "        Inc: " << Inc.UserInst << "\n");
2801    auto UseI = std::find(Inc.UserInst->op_begin(), Inc.UserInst->op_end(),
2802                          Inc.IVOperand);
2803    assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
2804    IVIncSet.insert(UseI);
2805  }
2806}
2807
2808/// Return true if the IVInc can be folded into an addressing mode.
2809static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2810                             Value *Operand, const TargetTransformInfo &TTI) {
2811  const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2812  if (!IncConst || !isAddressUse(UserInst, Operand))
2813    return false;
2814
2815  if (IncConst->getAPInt().getMinSignedBits() > 64)
2816    return false;
2817
2818  MemAccessTy AccessTy = getAccessType(UserInst);
2819  int64_t IncOffset = IncConst->getValue()->getSExtValue();
2820  if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
2821                        IncOffset, /*HaseBaseReg=*/false))
2822    return false;
2823
2824  return true;
2825}
2826
2827/// Generate an add or subtract for each IVInc in a chain to materialize the IV
2828/// user's operand from the previous IV user's operand.
2829void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2830                                  SmallVectorImpl<WeakVH> &DeadInsts) {
2831  // Find the new IVOperand for the head of the chain. It may have been replaced
2832  // by LSR.
2833  const IVInc &Head = Chain.Incs[0];
2834  User::op_iterator IVOpEnd = Head.UserInst->op_end();
2835  // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
2836  User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2837                                             IVOpEnd, L, SE);
2838  Value *IVSrc = nullptr;
2839  while (IVOpIter != IVOpEnd) {
2840    IVSrc = getWideOperand(*IVOpIter);
2841
2842    // If this operand computes the expression that the chain needs, we may use
2843    // it. (Check this after setting IVSrc which is used below.)
2844    //
2845    // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2846    // narrow for the chain, so we can no longer use it. We do allow using a
2847    // wider phi, assuming the LSR checked for free truncation. In that case we
2848    // should already have a truncate on this operand such that
2849    // getSCEV(IVSrc) == IncExpr.
2850    if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2851        || SE.getSCEV(IVSrc) == Head.IncExpr) {
2852      break;
2853    }
2854    IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2855  }
2856  if (IVOpIter == IVOpEnd) {
2857    // Gracefully give up on this chain.
2858    DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2859    return;
2860  }
2861
2862  DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2863  Type *IVTy = IVSrc->getType();
2864  Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2865  const SCEV *LeftOverExpr = nullptr;
2866  for (const IVInc &Inc : Chain) {
2867    Instruction *InsertPt = Inc.UserInst;
2868    if (isa<PHINode>(InsertPt))
2869      InsertPt = L->getLoopLatch()->getTerminator();
2870
2871    // IVOper will replace the current IV User's operand. IVSrc is the IV
2872    // value currently held in a register.
2873    Value *IVOper = IVSrc;
2874    if (!Inc.IncExpr->isZero()) {
2875      // IncExpr was the result of subtraction of two narrow values, so must
2876      // be signed.
2877      const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
2878      LeftOverExpr = LeftOverExpr ?
2879        SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2880    }
2881    if (LeftOverExpr && !LeftOverExpr->isZero()) {
2882      // Expand the IV increment.
2883      Rewriter.clearPostInc();
2884      Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2885      const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2886                                             SE.getUnknown(IncV));
2887      IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2888
2889      // If an IV increment can't be folded, use it as the next IV value.
2890      if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
2891        assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2892        IVSrc = IVOper;
2893        LeftOverExpr = nullptr;
2894      }
2895    }
2896    Type *OperTy = Inc.IVOperand->getType();
2897    if (IVTy != OperTy) {
2898      assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2899             "cannot extend a chained IV");
2900      IRBuilder<> Builder(InsertPt);
2901      IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2902    }
2903    Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
2904    DeadInsts.emplace_back(Inc.IVOperand);
2905  }
2906  // If LSR created a new, wider phi, we may also replace its postinc. We only
2907  // do this if we also found a wide value for the head of the chain.
2908  if (isa<PHINode>(Chain.tailUserInst())) {
2909    for (BasicBlock::iterator I = L->getHeader()->begin();
2910         PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2911      if (!isCompatibleIVType(Phi, IVSrc))
2912        continue;
2913      Instruction *PostIncV = dyn_cast<Instruction>(
2914        Phi->getIncomingValueForBlock(L->getLoopLatch()));
2915      if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2916        continue;
2917      Value *IVOper = IVSrc;
2918      Type *PostIncTy = PostIncV->getType();
2919      if (IVTy != PostIncTy) {
2920        assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2921        IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2922        Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2923        IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2924      }
2925      Phi->replaceUsesOfWith(PostIncV, IVOper);
2926      DeadInsts.emplace_back(PostIncV);
2927    }
2928  }
2929}
2930
2931void LSRInstance::CollectFixupsAndInitialFormulae() {
2932  for (const IVStrideUse &U : IU) {
2933    Instruction *UserInst = U.getUser();
2934    // Skip IV users that are part of profitable IV Chains.
2935    User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2936                                       U.getOperandValToReplace());
2937    assert(UseI != UserInst->op_end() && "cannot find IV operand");
2938    if (IVIncSet.count(UseI))
2939      continue;
2940
2941    // Record the uses.
2942    LSRFixup &LF = getNewFixup();
2943    LF.UserInst = UserInst;
2944    LF.OperandValToReplace = U.getOperandValToReplace();
2945    LF.PostIncLoops = U.getPostIncLoops();
2946
2947    LSRUse::KindType Kind = LSRUse::Basic;
2948    MemAccessTy AccessTy;
2949    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2950      Kind = LSRUse::Address;
2951      AccessTy = getAccessType(LF.UserInst);
2952    }
2953
2954    const SCEV *S = IU.getExpr(U);
2955
2956    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2957    // (N - i == 0), and this allows (N - i) to be the expression that we work
2958    // with rather than just N or i, so we can consider the register
2959    // requirements for both N and i at the same time. Limiting this code to
2960    // equality icmps is not a problem because all interesting loops use
2961    // equality icmps, thanks to IndVarSimplify.
2962    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2963      if (CI->isEquality()) {
2964        // Swap the operands if needed to put the OperandValToReplace on the
2965        // left, for consistency.
2966        Value *NV = CI->getOperand(1);
2967        if (NV == LF.OperandValToReplace) {
2968          CI->setOperand(1, CI->getOperand(0));
2969          CI->setOperand(0, NV);
2970          NV = CI->getOperand(1);
2971          Changed = true;
2972        }
2973
2974        // x == y  -->  x - y == 0
2975        const SCEV *N = SE.getSCEV(NV);
2976        if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
2977          // S is normalized, so normalize N before folding it into S
2978          // to keep the result normalized.
2979          N = TransformForPostIncUse(Normalize, N, CI, nullptr,
2980                                     LF.PostIncLoops, SE, DT);
2981          Kind = LSRUse::ICmpZero;
2982          S = SE.getMinusSCEV(N, S);
2983        }
2984
2985        // -1 and the negations of all interesting strides (except the negation
2986        // of -1) are now also interesting.
2987        for (size_t i = 0, e = Factors.size(); i != e; ++i)
2988          if (Factors[i] != -1)
2989            Factors.insert(-(uint64_t)Factors[i]);
2990        Factors.insert(-1);
2991      }
2992
2993    // Set up the initial formula for this use.
2994    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2995    LF.LUIdx = P.first;
2996    LF.Offset = P.second;
2997    LSRUse &LU = Uses[LF.LUIdx];
2998    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2999    if (!LU.WidestFixupType ||
3000        SE.getTypeSizeInBits(LU.WidestFixupType) <
3001        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3002      LU.WidestFixupType = LF.OperandValToReplace->getType();
3003
3004    // If this is the first use of this LSRUse, give it a formula.
3005    if (LU.Formulae.empty()) {
3006      InsertInitialFormula(S, LU, LF.LUIdx);
3007      CountRegisters(LU.Formulae.back(), LF.LUIdx);
3008    }
3009  }
3010
3011  DEBUG(print_fixups(dbgs()));
3012}
3013
3014/// Insert a formula for the given expression into the given use, separating out
3015/// loop-variant portions from loop-invariant and loop-computable portions.
3016void
3017LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3018  // Mark uses whose expressions cannot be expanded.
3019  if (!isSafeToExpand(S, SE))
3020    LU.RigidFormula = true;
3021
3022  Formula F;
3023  F.initialMatch(S, L, SE);
3024  bool Inserted = InsertFormula(LU, LUIdx, F);
3025  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3026}
3027
3028/// Insert a simple single-register formula for the given expression into the
3029/// given use.
3030void
3031LSRInstance::InsertSupplementalFormula(const SCEV *S,
3032                                       LSRUse &LU, size_t LUIdx) {
3033  Formula F;
3034  F.BaseRegs.push_back(S);
3035  F.HasBaseReg = true;
3036  bool Inserted = InsertFormula(LU, LUIdx, F);
3037  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3038}
3039
3040/// Note which registers are used by the given formula, updating RegUses.
3041void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3042  if (F.ScaledReg)
3043    RegUses.countRegister(F.ScaledReg, LUIdx);
3044  for (const SCEV *BaseReg : F.BaseRegs)
3045    RegUses.countRegister(BaseReg, LUIdx);
3046}
3047
3048/// If the given formula has not yet been inserted, add it to the list, and
3049/// return true. Return false otherwise.
3050bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3051  // Do not insert formula that we will not be able to expand.
3052  assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3053         "Formula is illegal");
3054  if (!LU.InsertFormula(F))
3055    return false;
3056
3057  CountRegisters(F, LUIdx);
3058  return true;
3059}
3060
3061/// Check for other uses of loop-invariant values which we're tracking. These
3062/// other uses will pin these values in registers, making them less profitable
3063/// for elimination.
3064/// TODO: This currently misses non-constant addrec step registers.
3065/// TODO: Should this give more weight to users inside the loop?
3066void
3067LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3068  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3069  SmallPtrSet<const SCEV *, 32> Visited;
3070
3071  while (!Worklist.empty()) {
3072    const SCEV *S = Worklist.pop_back_val();
3073
3074    // Don't process the same SCEV twice
3075    if (!Visited.insert(S).second)
3076      continue;
3077
3078    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3079      Worklist.append(N->op_begin(), N->op_end());
3080    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3081      Worklist.push_back(C->getOperand());
3082    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3083      Worklist.push_back(D->getLHS());
3084      Worklist.push_back(D->getRHS());
3085    } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3086      const Value *V = US->getValue();
3087      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3088        // Look for instructions defined outside the loop.
3089        if (L->contains(Inst)) continue;
3090      } else if (isa<UndefValue>(V))
3091        // Undef doesn't have a live range, so it doesn't matter.
3092        continue;
3093      for (const Use &U : V->uses()) {
3094        const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3095        // Ignore non-instructions.
3096        if (!UserInst)
3097          continue;
3098        // Ignore instructions in other functions (as can happen with
3099        // Constants).
3100        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3101          continue;
3102        // Ignore instructions not dominated by the loop.
3103        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3104          UserInst->getParent() :
3105          cast<PHINode>(UserInst)->getIncomingBlock(
3106            PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3107        if (!DT.dominates(L->getHeader(), UseBB))
3108          continue;
3109        // Don't bother if the instruction is in a BB which ends in an EHPad.
3110        if (UseBB->getTerminator()->isEHPad())
3111          continue;
3112        // Ignore uses which are part of other SCEV expressions, to avoid
3113        // analyzing them multiple times.
3114        if (SE.isSCEVable(UserInst->getType())) {
3115          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3116          // If the user is a no-op, look through to its uses.
3117          if (!isa<SCEVUnknown>(UserS))
3118            continue;
3119          if (UserS == US) {
3120            Worklist.push_back(
3121              SE.getUnknown(const_cast<Instruction *>(UserInst)));
3122            continue;
3123          }
3124        }
3125        // Ignore icmp instructions which are already being analyzed.
3126        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3127          unsigned OtherIdx = !U.getOperandNo();
3128          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3129          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3130            continue;
3131        }
3132
3133        LSRFixup &LF = getNewFixup();
3134        LF.UserInst = const_cast<Instruction *>(UserInst);
3135        LF.OperandValToReplace = U;
3136        std::pair<size_t, int64_t> P = getUse(
3137            S, LSRUse::Basic, MemAccessTy());
3138        LF.LUIdx = P.first;
3139        LF.Offset = P.second;
3140        LSRUse &LU = Uses[LF.LUIdx];
3141        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3142        if (!LU.WidestFixupType ||
3143            SE.getTypeSizeInBits(LU.WidestFixupType) <
3144            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3145          LU.WidestFixupType = LF.OperandValToReplace->getType();
3146        InsertSupplementalFormula(US, LU, LF.LUIdx);
3147        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3148        break;
3149      }
3150    }
3151  }
3152}
3153
3154/// Split S into subexpressions which can be pulled out into separate
3155/// registers. If C is non-null, multiply each subexpression by C.
3156///
3157/// Return remainder expression after factoring the subexpressions captured by
3158/// Ops. If Ops is complete, return NULL.
3159static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3160                                   SmallVectorImpl<const SCEV *> &Ops,
3161                                   const Loop *L,
3162                                   ScalarEvolution &SE,
3163                                   unsigned Depth = 0) {
3164  // Arbitrarily cap recursion to protect compile time.
3165  if (Depth >= 3)
3166    return S;
3167
3168  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3169    // Break out add operands.
3170    for (const SCEV *S : Add->operands()) {
3171      const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3172      if (Remainder)
3173        Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3174    }
3175    return nullptr;
3176  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3177    // Split a non-zero base out of an addrec.
3178    if (AR->getStart()->isZero())
3179      return S;
3180
3181    const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3182                                            C, Ops, L, SE, Depth+1);
3183    // Split the non-zero AddRec unless it is part of a nested recurrence that
3184    // does not pertain to this loop.
3185    if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3186      Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3187      Remainder = nullptr;
3188    }
3189    if (Remainder != AR->getStart()) {
3190      if (!Remainder)
3191        Remainder = SE.getConstant(AR->getType(), 0);
3192      return SE.getAddRecExpr(Remainder,
3193                              AR->getStepRecurrence(SE),
3194                              AR->getLoop(),
3195                              //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3196                              SCEV::FlagAnyWrap);
3197    }
3198  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3199    // Break (C * (a + b + c)) into C*a + C*b + C*c.
3200    if (Mul->getNumOperands() != 2)
3201      return S;
3202    if (const SCEVConstant *Op0 =
3203        dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3204      C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3205      const SCEV *Remainder =
3206        CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3207      if (Remainder)
3208        Ops.push_back(SE.getMulExpr(C, Remainder));
3209      return nullptr;
3210    }
3211  }
3212  return S;
3213}
3214
3215/// \brief Helper function for LSRInstance::GenerateReassociations.
3216void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3217                                             const Formula &Base,
3218                                             unsigned Depth, size_t Idx,
3219                                             bool IsScaledReg) {
3220  const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3221  SmallVector<const SCEV *, 8> AddOps;
3222  const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3223  if (Remainder)
3224    AddOps.push_back(Remainder);
3225
3226  if (AddOps.size() == 1)
3227    return;
3228
3229  for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3230                                                     JE = AddOps.end();
3231       J != JE; ++J) {
3232
3233    // Loop-variant "unknown" values are uninteresting; we won't be able to
3234    // do anything meaningful with them.
3235    if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3236      continue;
3237
3238    // Don't pull a constant into a register if the constant could be folded
3239    // into an immediate field.
3240    if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3241                         LU.AccessTy, *J, Base.getNumRegs() > 1))
3242      continue;
3243
3244    // Collect all operands except *J.
3245    SmallVector<const SCEV *, 8> InnerAddOps(
3246        ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3247    InnerAddOps.append(std::next(J),
3248                       ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3249
3250    // Don't leave just a constant behind in a register if the constant could
3251    // be folded into an immediate field.
3252    if (InnerAddOps.size() == 1 &&
3253        isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3254                         LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3255      continue;
3256
3257    const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3258    if (InnerSum->isZero())
3259      continue;
3260    Formula F = Base;
3261
3262    // Add the remaining pieces of the add back into the new formula.
3263    const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3264    if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3265        TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3266                                InnerSumSC->getValue()->getZExtValue())) {
3267      F.UnfoldedOffset =
3268          (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3269      if (IsScaledReg)
3270        F.ScaledReg = nullptr;
3271      else
3272        F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3273    } else if (IsScaledReg)
3274      F.ScaledReg = InnerSum;
3275    else
3276      F.BaseRegs[Idx] = InnerSum;
3277
3278    // Add J as its own register, or an unfolded immediate.
3279    const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3280    if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3281        TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3282                                SC->getValue()->getZExtValue()))
3283      F.UnfoldedOffset =
3284          (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3285    else
3286      F.BaseRegs.push_back(*J);
3287    // We may have changed the number of register in base regs, adjust the
3288    // formula accordingly.
3289    F.canonicalize();
3290
3291    if (InsertFormula(LU, LUIdx, F))
3292      // If that formula hadn't been seen before, recurse to find more like
3293      // it.
3294      GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3295  }
3296}
3297
3298/// Split out subexpressions from adds and the bases of addrecs.
3299void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3300                                         Formula Base, unsigned Depth) {
3301  assert(Base.isCanonical() && "Input must be in the canonical form");
3302  // Arbitrarily cap recursion to protect compile time.
3303  if (Depth >= 3)
3304    return;
3305
3306  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3307    GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3308
3309  if (Base.Scale == 1)
3310    GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3311                               /* Idx */ -1, /* IsScaledReg */ true);
3312}
3313
3314///  Generate a formula consisting of all of the loop-dominating registers added
3315/// into a single register.
3316void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3317                                       Formula Base) {
3318  // This method is only interesting on a plurality of registers.
3319  if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3320    return;
3321
3322  // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3323  // processing the formula.
3324  Base.unscale();
3325  Formula F = Base;
3326  F.BaseRegs.clear();
3327  SmallVector<const SCEV *, 4> Ops;
3328  for (const SCEV *BaseReg : Base.BaseRegs) {
3329    if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3330        !SE.hasComputableLoopEvolution(BaseReg, L))
3331      Ops.push_back(BaseReg);
3332    else
3333      F.BaseRegs.push_back(BaseReg);
3334  }
3335  if (Ops.size() > 1) {
3336    const SCEV *Sum = SE.getAddExpr(Ops);
3337    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3338    // opportunity to fold something. For now, just ignore such cases
3339    // rather than proceed with zero in a register.
3340    if (!Sum->isZero()) {
3341      F.BaseRegs.push_back(Sum);
3342      F.canonicalize();
3343      (void)InsertFormula(LU, LUIdx, F);
3344    }
3345  }
3346}
3347
3348/// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3349void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3350                                              const Formula &Base, size_t Idx,
3351                                              bool IsScaledReg) {
3352  const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3353  GlobalValue *GV = ExtractSymbol(G, SE);
3354  if (G->isZero() || !GV)
3355    return;
3356  Formula F = Base;
3357  F.BaseGV = GV;
3358  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3359    return;
3360  if (IsScaledReg)
3361    F.ScaledReg = G;
3362  else
3363    F.BaseRegs[Idx] = G;
3364  (void)InsertFormula(LU, LUIdx, F);
3365}
3366
3367/// Generate reuse formulae using symbolic offsets.
3368void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3369                                          Formula Base) {
3370  // We can't add a symbolic offset if the address already contains one.
3371  if (Base.BaseGV) return;
3372
3373  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3374    GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3375  if (Base.Scale == 1)
3376    GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3377                                /* IsScaledReg */ true);
3378}
3379
3380/// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3381void LSRInstance::GenerateConstantOffsetsImpl(
3382    LSRUse &LU, unsigned LUIdx, const Formula &Base,
3383    const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3384  const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3385  for (int64_t Offset : Worklist) {
3386    Formula F = Base;
3387    F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3388    if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3389                   LU.AccessTy, F)) {
3390      // Add the offset to the base register.
3391      const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3392      // If it cancelled out, drop the base register, otherwise update it.
3393      if (NewG->isZero()) {
3394        if (IsScaledReg) {
3395          F.Scale = 0;
3396          F.ScaledReg = nullptr;
3397        } else
3398          F.deleteBaseReg(F.BaseRegs[Idx]);
3399        F.canonicalize();
3400      } else if (IsScaledReg)
3401        F.ScaledReg = NewG;
3402      else
3403        F.BaseRegs[Idx] = NewG;
3404
3405      (void)InsertFormula(LU, LUIdx, F);
3406    }
3407  }
3408
3409  int64_t Imm = ExtractImmediate(G, SE);
3410  if (G->isZero() || Imm == 0)
3411    return;
3412  Formula F = Base;
3413  F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3414  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3415    return;
3416  if (IsScaledReg)
3417    F.ScaledReg = G;
3418  else
3419    F.BaseRegs[Idx] = G;
3420  (void)InsertFormula(LU, LUIdx, F);
3421}
3422
3423/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3424void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3425                                          Formula Base) {
3426  // TODO: For now, just add the min and max offset, because it usually isn't
3427  // worthwhile looking at everything inbetween.
3428  SmallVector<int64_t, 2> Worklist;
3429  Worklist.push_back(LU.MinOffset);
3430  if (LU.MaxOffset != LU.MinOffset)
3431    Worklist.push_back(LU.MaxOffset);
3432
3433  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3434    GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3435  if (Base.Scale == 1)
3436    GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3437                                /* IsScaledReg */ true);
3438}
3439
3440/// For ICmpZero, check to see if we can scale up the comparison. For example, x
3441/// == y -> x*c == y*c.
3442void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3443                                         Formula Base) {
3444  if (LU.Kind != LSRUse::ICmpZero) return;
3445
3446  // Determine the integer type for the base formula.
3447  Type *IntTy = Base.getType();
3448  if (!IntTy) return;
3449  if (SE.getTypeSizeInBits(IntTy) > 64) return;
3450
3451  // Don't do this if there is more than one offset.
3452  if (LU.MinOffset != LU.MaxOffset) return;
3453
3454  assert(!Base.BaseGV && "ICmpZero use is not legal!");
3455
3456  // Check each interesting stride.
3457  for (int64_t Factor : Factors) {
3458    // Check that the multiplication doesn't overflow.
3459    if (Base.BaseOffset == INT64_MIN && Factor == -1)
3460      continue;
3461    int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3462    if (NewBaseOffset / Factor != Base.BaseOffset)
3463      continue;
3464    // If the offset will be truncated at this use, check that it is in bounds.
3465    if (!IntTy->isPointerTy() &&
3466        !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3467      continue;
3468
3469    // Check that multiplying with the use offset doesn't overflow.
3470    int64_t Offset = LU.MinOffset;
3471    if (Offset == INT64_MIN && Factor == -1)
3472      continue;
3473    Offset = (uint64_t)Offset * Factor;
3474    if (Offset / Factor != LU.MinOffset)
3475      continue;
3476    // If the offset will be truncated at this use, check that it is in bounds.
3477    if (!IntTy->isPointerTy() &&
3478        !ConstantInt::isValueValidForType(IntTy, Offset))
3479      continue;
3480
3481    Formula F = Base;
3482    F.BaseOffset = NewBaseOffset;
3483
3484    // Check that this scale is legal.
3485    if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3486      continue;
3487
3488    // Compensate for the use having MinOffset built into it.
3489    F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3490
3491    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3492
3493    // Check that multiplying with each base register doesn't overflow.
3494    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3495      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3496      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3497        goto next;
3498    }
3499
3500    // Check that multiplying with the scaled register doesn't overflow.
3501    if (F.ScaledReg) {
3502      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3503      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3504        continue;
3505    }
3506
3507    // Check that multiplying with the unfolded offset doesn't overflow.
3508    if (F.UnfoldedOffset != 0) {
3509      if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3510        continue;
3511      F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3512      if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3513        continue;
3514      // If the offset will be truncated, check that it is in bounds.
3515      if (!IntTy->isPointerTy() &&
3516          !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3517        continue;
3518    }
3519
3520    // If we make it here and it's legal, add it.
3521    (void)InsertFormula(LU, LUIdx, F);
3522  next:;
3523  }
3524}
3525
3526/// Generate stride factor reuse formulae by making use of scaled-offset address
3527/// modes, for example.
3528void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3529  // Determine the integer type for the base formula.
3530  Type *IntTy = Base.getType();
3531  if (!IntTy) return;
3532
3533  // If this Formula already has a scaled register, we can't add another one.
3534  // Try to unscale the formula to generate a better scale.
3535  if (Base.Scale != 0 && !Base.unscale())
3536    return;
3537
3538  assert(Base.Scale == 0 && "unscale did not did its job!");
3539
3540  // Check each interesting stride.
3541  for (int64_t Factor : Factors) {
3542    Base.Scale = Factor;
3543    Base.HasBaseReg = Base.BaseRegs.size() > 1;
3544    // Check whether this scale is going to be legal.
3545    if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3546                    Base)) {
3547      // As a special-case, handle special out-of-loop Basic users specially.
3548      // TODO: Reconsider this special case.
3549      if (LU.Kind == LSRUse::Basic &&
3550          isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3551                     LU.AccessTy, Base) &&
3552          LU.AllFixupsOutsideLoop)
3553        LU.Kind = LSRUse::Special;
3554      else
3555        continue;
3556    }
3557    // For an ICmpZero, negating a solitary base register won't lead to
3558    // new solutions.
3559    if (LU.Kind == LSRUse::ICmpZero &&
3560        !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3561      continue;
3562    // For each addrec base reg, apply the scale, if possible.
3563    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3564      if (const SCEVAddRecExpr *AR =
3565            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3566        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3567        if (FactorS->isZero())
3568          continue;
3569        // Divide out the factor, ignoring high bits, since we'll be
3570        // scaling the value back up in the end.
3571        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3572          // TODO: This could be optimized to avoid all the copying.
3573          Formula F = Base;
3574          F.ScaledReg = Quotient;
3575          F.deleteBaseReg(F.BaseRegs[i]);
3576          // The canonical representation of 1*reg is reg, which is already in
3577          // Base. In that case, do not try to insert the formula, it will be
3578          // rejected anyway.
3579          if (F.Scale == 1 && F.BaseRegs.empty())
3580            continue;
3581          (void)InsertFormula(LU, LUIdx, F);
3582        }
3583      }
3584  }
3585}
3586
3587/// Generate reuse formulae from different IV types.
3588void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3589  // Don't bother truncating symbolic values.
3590  if (Base.BaseGV) return;
3591
3592  // Determine the integer type for the base formula.
3593  Type *DstTy = Base.getType();
3594  if (!DstTy) return;
3595  DstTy = SE.getEffectiveSCEVType(DstTy);
3596
3597  for (Type *SrcTy : Types) {
3598    if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3599      Formula F = Base;
3600
3601      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3602      for (const SCEV *&BaseReg : F.BaseRegs)
3603        BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3604
3605      // TODO: This assumes we've done basic processing on all uses and
3606      // have an idea what the register usage is.
3607      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3608        continue;
3609
3610      (void)InsertFormula(LU, LUIdx, F);
3611    }
3612  }
3613}
3614
3615namespace {
3616
3617/// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3618/// modifications so that the search phase doesn't have to worry about the data
3619/// structures moving underneath it.
3620struct WorkItem {
3621  size_t LUIdx;
3622  int64_t Imm;
3623  const SCEV *OrigReg;
3624
3625  WorkItem(size_t LI, int64_t I, const SCEV *R)
3626    : LUIdx(LI), Imm(I), OrigReg(R) {}
3627
3628  void print(raw_ostream &OS) const;
3629  void dump() const;
3630};
3631
3632}
3633
3634void WorkItem::print(raw_ostream &OS) const {
3635  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3636     << " , add offset " << Imm;
3637}
3638
3639LLVM_DUMP_METHOD
3640void WorkItem::dump() const {
3641  print(errs()); errs() << '\n';
3642}
3643
3644/// Look for registers which are a constant distance apart and try to form reuse
3645/// opportunities between them.
3646void LSRInstance::GenerateCrossUseConstantOffsets() {
3647  // Group the registers by their value without any added constant offset.
3648  typedef std::map<int64_t, const SCEV *> ImmMapTy;
3649  DenseMap<const SCEV *, ImmMapTy> Map;
3650  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3651  SmallVector<const SCEV *, 8> Sequence;
3652  for (const SCEV *Use : RegUses) {
3653    const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3654    int64_t Imm = ExtractImmediate(Reg, SE);
3655    auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3656    if (Pair.second)
3657      Sequence.push_back(Reg);
3658    Pair.first->second.insert(std::make_pair(Imm, Use));
3659    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3660  }
3661
3662  // Now examine each set of registers with the same base value. Build up
3663  // a list of work to do and do the work in a separate step so that we're
3664  // not adding formulae and register counts while we're searching.
3665  SmallVector<WorkItem, 32> WorkItems;
3666  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3667  for (const SCEV *Reg : Sequence) {
3668    const ImmMapTy &Imms = Map.find(Reg)->second;
3669
3670    // It's not worthwhile looking for reuse if there's only one offset.
3671    if (Imms.size() == 1)
3672      continue;
3673
3674    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3675          for (const auto &Entry : Imms)
3676            dbgs() << ' ' << Entry.first;
3677          dbgs() << '\n');
3678
3679    // Examine each offset.
3680    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3681         J != JE; ++J) {
3682      const SCEV *OrigReg = J->second;
3683
3684      int64_t JImm = J->first;
3685      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3686
3687      if (!isa<SCEVConstant>(OrigReg) &&
3688          UsedByIndicesMap[Reg].count() == 1) {
3689        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3690        continue;
3691      }
3692
3693      // Conservatively examine offsets between this orig reg a few selected
3694      // other orig regs.
3695      ImmMapTy::const_iterator OtherImms[] = {
3696        Imms.begin(), std::prev(Imms.end()),
3697        Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3698                         2)
3699      };
3700      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3701        ImmMapTy::const_iterator M = OtherImms[i];
3702        if (M == J || M == JE) continue;
3703
3704        // Compute the difference between the two.
3705        int64_t Imm = (uint64_t)JImm - M->first;
3706        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3707             LUIdx = UsedByIndices.find_next(LUIdx))
3708          // Make a memo of this use, offset, and register tuple.
3709          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3710            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3711      }
3712    }
3713  }
3714
3715  Map.clear();
3716  Sequence.clear();
3717  UsedByIndicesMap.clear();
3718  UniqueItems.clear();
3719
3720  // Now iterate through the worklist and add new formulae.
3721  for (const WorkItem &WI : WorkItems) {
3722    size_t LUIdx = WI.LUIdx;
3723    LSRUse &LU = Uses[LUIdx];
3724    int64_t Imm = WI.Imm;
3725    const SCEV *OrigReg = WI.OrigReg;
3726
3727    Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3728    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3729    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3730
3731    // TODO: Use a more targeted data structure.
3732    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3733      Formula F = LU.Formulae[L];
3734      // FIXME: The code for the scaled and unscaled registers looks
3735      // very similar but slightly different. Investigate if they
3736      // could be merged. That way, we would not have to unscale the
3737      // Formula.
3738      F.unscale();
3739      // Use the immediate in the scaled register.
3740      if (F.ScaledReg == OrigReg) {
3741        int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3742        // Don't create 50 + reg(-50).
3743        if (F.referencesReg(SE.getSCEV(
3744                   ConstantInt::get(IntTy, -(uint64_t)Offset))))
3745          continue;
3746        Formula NewF = F;
3747        NewF.BaseOffset = Offset;
3748        if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3749                        NewF))
3750          continue;
3751        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3752
3753        // If the new scale is a constant in a register, and adding the constant
3754        // value to the immediate would produce a value closer to zero than the
3755        // immediate itself, then the formula isn't worthwhile.
3756        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3757          if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
3758              (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
3759                  .ule(std::abs(NewF.BaseOffset)))
3760            continue;
3761
3762        // OK, looks good.
3763        NewF.canonicalize();
3764        (void)InsertFormula(LU, LUIdx, NewF);
3765      } else {
3766        // Use the immediate in a base register.
3767        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3768          const SCEV *BaseReg = F.BaseRegs[N];
3769          if (BaseReg != OrigReg)
3770            continue;
3771          Formula NewF = F;
3772          NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3773          if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3774                          LU.Kind, LU.AccessTy, NewF)) {
3775            if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3776              continue;
3777            NewF = F;
3778            NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3779          }
3780          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3781
3782          // If the new formula has a constant in a register, and adding the
3783          // constant value to the immediate would produce a value closer to
3784          // zero than the immediate itself, then the formula isn't worthwhile.
3785          for (const SCEV *NewReg : NewF.BaseRegs)
3786            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
3787              if ((C->getAPInt() + NewF.BaseOffset)
3788                      .abs()
3789                      .slt(std::abs(NewF.BaseOffset)) &&
3790                  (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
3791                      countTrailingZeros<uint64_t>(NewF.BaseOffset))
3792                goto skip_formula;
3793
3794          // Ok, looks good.
3795          NewF.canonicalize();
3796          (void)InsertFormula(LU, LUIdx, NewF);
3797          break;
3798        skip_formula:;
3799        }
3800      }
3801    }
3802  }
3803}
3804
3805/// Generate formulae for each use.
3806void
3807LSRInstance::GenerateAllReuseFormulae() {
3808  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3809  // queries are more precise.
3810  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3811    LSRUse &LU = Uses[LUIdx];
3812    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3813      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3814    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3815      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3816  }
3817  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3818    LSRUse &LU = Uses[LUIdx];
3819    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3820      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3821    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3822      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3823    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3824      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3825    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3826      GenerateScales(LU, LUIdx, LU.Formulae[i]);
3827  }
3828  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3829    LSRUse &LU = Uses[LUIdx];
3830    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3831      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3832  }
3833
3834  GenerateCrossUseConstantOffsets();
3835
3836  DEBUG(dbgs() << "\n"
3837                  "After generating reuse formulae:\n";
3838        print_uses(dbgs()));
3839}
3840
3841/// If there are multiple formulae with the same set of registers used
3842/// by other uses, pick the best one and delete the others.
3843void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3844  DenseSet<const SCEV *> VisitedRegs;
3845  SmallPtrSet<const SCEV *, 16> Regs;
3846  SmallPtrSet<const SCEV *, 16> LoserRegs;
3847#ifndef NDEBUG
3848  bool ChangedFormulae = false;
3849#endif
3850
3851  // Collect the best formula for each unique set of shared registers. This
3852  // is reset for each use.
3853  typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
3854    BestFormulaeTy;
3855  BestFormulaeTy BestFormulae;
3856
3857  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3858    LSRUse &LU = Uses[LUIdx];
3859    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3860
3861    bool Any = false;
3862    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3863         FIdx != NumForms; ++FIdx) {
3864      Formula &F = LU.Formulae[FIdx];
3865
3866      // Some formulas are instant losers. For example, they may depend on
3867      // nonexistent AddRecs from other loops. These need to be filtered
3868      // immediately, otherwise heuristics could choose them over others leading
3869      // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3870      // avoids the need to recompute this information across formulae using the
3871      // same bad AddRec. Passing LoserRegs is also essential unless we remove
3872      // the corresponding bad register from the Regs set.
3873      Cost CostF;
3874      Regs.clear();
3875      CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
3876                        &LoserRegs);
3877      if (CostF.isLoser()) {
3878        // During initial formula generation, undesirable formulae are generated
3879        // by uses within other loops that have some non-trivial address mode or
3880        // use the postinc form of the IV. LSR needs to provide these formulae
3881        // as the basis of rediscovering the desired formula that uses an AddRec
3882        // corresponding to the existing phi. Once all formulae have been
3883        // generated, these initial losers may be pruned.
3884        DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3885              dbgs() << "\n");
3886      }
3887      else {
3888        SmallVector<const SCEV *, 4> Key;
3889        for (const SCEV *Reg : F.BaseRegs) {
3890          if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3891            Key.push_back(Reg);
3892        }
3893        if (F.ScaledReg &&
3894            RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3895          Key.push_back(F.ScaledReg);
3896        // Unstable sort by host order ok, because this is only used for
3897        // uniquifying.
3898        std::sort(Key.begin(), Key.end());
3899
3900        std::pair<BestFormulaeTy::const_iterator, bool> P =
3901          BestFormulae.insert(std::make_pair(Key, FIdx));
3902        if (P.second)
3903          continue;
3904
3905        Formula &Best = LU.Formulae[P.first->second];
3906
3907        Cost CostBest;
3908        Regs.clear();
3909        CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
3910                             DT, LU);
3911        if (CostF < CostBest)
3912          std::swap(F, Best);
3913        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3914              dbgs() << "\n"
3915                        "    in favor of formula "; Best.print(dbgs());
3916              dbgs() << '\n');
3917      }
3918#ifndef NDEBUG
3919      ChangedFormulae = true;
3920#endif
3921      LU.DeleteFormula(F);
3922      --FIdx;
3923      --NumForms;
3924      Any = true;
3925    }
3926
3927    // Now that we've filtered out some formulae, recompute the Regs set.
3928    if (Any)
3929      LU.RecomputeRegs(LUIdx, RegUses);
3930
3931    // Reset this to prepare for the next use.
3932    BestFormulae.clear();
3933  }
3934
3935  DEBUG(if (ChangedFormulae) {
3936          dbgs() << "\n"
3937                    "After filtering out undesirable candidates:\n";
3938          print_uses(dbgs());
3939        });
3940}
3941
3942// This is a rough guess that seems to work fairly well.
3943static const size_t ComplexityLimit = UINT16_MAX;
3944
3945/// Estimate the worst-case number of solutions the solver might have to
3946/// consider. It almost never considers this many solutions because it prune the
3947/// search space, but the pruning isn't always sufficient.
3948size_t LSRInstance::EstimateSearchSpaceComplexity() const {
3949  size_t Power = 1;
3950  for (const LSRUse &LU : Uses) {
3951    size_t FSize = LU.Formulae.size();
3952    if (FSize >= ComplexityLimit) {
3953      Power = ComplexityLimit;
3954      break;
3955    }
3956    Power *= FSize;
3957    if (Power >= ComplexityLimit)
3958      break;
3959  }
3960  return Power;
3961}
3962
3963/// When one formula uses a superset of the registers of another formula, it
3964/// won't help reduce register pressure (though it may not necessarily hurt
3965/// register pressure); remove it to simplify the system.
3966void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
3967  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3968    DEBUG(dbgs() << "The search space is too complex.\n");
3969
3970    DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3971                    "which use a superset of registers used by other "
3972                    "formulae.\n");
3973
3974    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3975      LSRUse &LU = Uses[LUIdx];
3976      bool Any = false;
3977      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3978        Formula &F = LU.Formulae[i];
3979        // Look for a formula with a constant or GV in a register. If the use
3980        // also has a formula with that same value in an immediate field,
3981        // delete the one that uses a register.
3982        for (SmallVectorImpl<const SCEV *>::const_iterator
3983             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
3984          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
3985            Formula NewF = F;
3986            NewF.BaseOffset += C->getValue()->getSExtValue();
3987            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3988                                (I - F.BaseRegs.begin()));
3989            if (LU.HasFormulaWithSameRegs(NewF)) {
3990              DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3991              LU.DeleteFormula(F);
3992              --i;
3993              --e;
3994              Any = true;
3995              break;
3996            }
3997          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
3998            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
3999              if (!F.BaseGV) {
4000                Formula NewF = F;
4001                NewF.BaseGV = GV;
4002                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4003                                    (I - F.BaseRegs.begin()));
4004                if (LU.HasFormulaWithSameRegs(NewF)) {
4005                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4006                        dbgs() << '\n');
4007                  LU.DeleteFormula(F);
4008                  --i;
4009                  --e;
4010                  Any = true;
4011                  break;
4012                }
4013              }
4014          }
4015        }
4016      }
4017      if (Any)
4018        LU.RecomputeRegs(LUIdx, RegUses);
4019    }
4020
4021    DEBUG(dbgs() << "After pre-selection:\n";
4022          print_uses(dbgs()));
4023  }
4024}
4025
4026/// When there are many registers for expressions like A, A+1, A+2, etc.,
4027/// allocate a single register for them.
4028void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4029  if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4030    return;
4031
4032  DEBUG(dbgs() << "The search space is too complex.\n"
4033                  "Narrowing the search space by assuming that uses separated "
4034                  "by a constant offset will use the same registers.\n");
4035
4036  // This is especially useful for unrolled loops.
4037
4038  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4039    LSRUse &LU = Uses[LUIdx];
4040    for (const Formula &F : LU.Formulae) {
4041      if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4042        continue;
4043
4044      LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4045      if (!LUThatHas)
4046        continue;
4047
4048      if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4049                              LU.Kind, LU.AccessTy))
4050        continue;
4051
4052      DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4053
4054      LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4055
4056      // Update the relocs to reference the new use.
4057      for (LSRFixup &Fixup : Fixups) {
4058        if (Fixup.LUIdx == LUIdx) {
4059          Fixup.LUIdx = LUThatHas - &Uses.front();
4060          Fixup.Offset += F.BaseOffset;
4061          // Add the new offset to LUThatHas' offset list.
4062          if (LUThatHas->Offsets.back() != Fixup.Offset) {
4063            LUThatHas->Offsets.push_back(Fixup.Offset);
4064            if (Fixup.Offset > LUThatHas->MaxOffset)
4065              LUThatHas->MaxOffset = Fixup.Offset;
4066            if (Fixup.Offset < LUThatHas->MinOffset)
4067              LUThatHas->MinOffset = Fixup.Offset;
4068          }
4069          DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4070        }
4071        if (Fixup.LUIdx == NumUses-1)
4072          Fixup.LUIdx = LUIdx;
4073      }
4074
4075      // Delete formulae from the new use which are no longer legal.
4076      bool Any = false;
4077      for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4078        Formula &F = LUThatHas->Formulae[i];
4079        if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4080                        LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4081          DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4082                dbgs() << '\n');
4083          LUThatHas->DeleteFormula(F);
4084          --i;
4085          --e;
4086          Any = true;
4087        }
4088      }
4089
4090      if (Any)
4091        LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4092
4093      // Delete the old use.
4094      DeleteUse(LU, LUIdx);
4095      --LUIdx;
4096      --NumUses;
4097      break;
4098    }
4099  }
4100
4101  DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4102}
4103
4104/// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4105/// we've done more filtering, as it may be able to find more formulae to
4106/// eliminate.
4107void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4108  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4109    DEBUG(dbgs() << "The search space is too complex.\n");
4110
4111    DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4112                    "undesirable dedicated registers.\n");
4113
4114    FilterOutUndesirableDedicatedRegisters();
4115
4116    DEBUG(dbgs() << "After pre-selection:\n";
4117          print_uses(dbgs()));
4118  }
4119}
4120
4121/// Pick a register which seems likely to be profitable, and then in any use
4122/// which has any reference to that register, delete all formulae which do not
4123/// reference that register.
4124void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4125  // With all other options exhausted, loop until the system is simple
4126  // enough to handle.
4127  SmallPtrSet<const SCEV *, 4> Taken;
4128  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4129    // Ok, we have too many of formulae on our hands to conveniently handle.
4130    // Use a rough heuristic to thin out the list.
4131    DEBUG(dbgs() << "The search space is too complex.\n");
4132
4133    // Pick the register which is used by the most LSRUses, which is likely
4134    // to be a good reuse register candidate.
4135    const SCEV *Best = nullptr;
4136    unsigned BestNum = 0;
4137    for (const SCEV *Reg : RegUses) {
4138      if (Taken.count(Reg))
4139        continue;
4140      if (!Best)
4141        Best = Reg;
4142      else {
4143        unsigned Count = RegUses.getUsedByIndices(Reg).count();
4144        if (Count > BestNum) {
4145          Best = Reg;
4146          BestNum = Count;
4147        }
4148      }
4149    }
4150
4151    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4152                 << " will yield profitable reuse.\n");
4153    Taken.insert(Best);
4154
4155    // In any use with formulae which references this register, delete formulae
4156    // which don't reference it.
4157    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4158      LSRUse &LU = Uses[LUIdx];
4159      if (!LU.Regs.count(Best)) continue;
4160
4161      bool Any = false;
4162      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4163        Formula &F = LU.Formulae[i];
4164        if (!F.referencesReg(Best)) {
4165          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4166          LU.DeleteFormula(F);
4167          --e;
4168          --i;
4169          Any = true;
4170          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4171          continue;
4172        }
4173      }
4174
4175      if (Any)
4176        LU.RecomputeRegs(LUIdx, RegUses);
4177    }
4178
4179    DEBUG(dbgs() << "After pre-selection:\n";
4180          print_uses(dbgs()));
4181  }
4182}
4183
4184/// If there are an extraordinary number of formulae to choose from, use some
4185/// rough heuristics to prune down the number of formulae. This keeps the main
4186/// solver from taking an extraordinary amount of time in some worst-case
4187/// scenarios.
4188void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4189  NarrowSearchSpaceByDetectingSupersets();
4190  NarrowSearchSpaceByCollapsingUnrolledCode();
4191  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4192  NarrowSearchSpaceByPickingWinnerRegs();
4193}
4194
4195/// This is the recursive solver.
4196void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4197                               Cost &SolutionCost,
4198                               SmallVectorImpl<const Formula *> &Workspace,
4199                               const Cost &CurCost,
4200                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
4201                               DenseSet<const SCEV *> &VisitedRegs) const {
4202  // Some ideas:
4203  //  - prune more:
4204  //    - use more aggressive filtering
4205  //    - sort the formula so that the most profitable solutions are found first
4206  //    - sort the uses too
4207  //  - search faster:
4208  //    - don't compute a cost, and then compare. compare while computing a cost
4209  //      and bail early.
4210  //    - track register sets with SmallBitVector
4211
4212  const LSRUse &LU = Uses[Workspace.size()];
4213
4214  // If this use references any register that's already a part of the
4215  // in-progress solution, consider it a requirement that a formula must
4216  // reference that register in order to be considered. This prunes out
4217  // unprofitable searching.
4218  SmallSetVector<const SCEV *, 4> ReqRegs;
4219  for (const SCEV *S : CurRegs)
4220    if (LU.Regs.count(S))
4221      ReqRegs.insert(S);
4222
4223  SmallPtrSet<const SCEV *, 16> NewRegs;
4224  Cost NewCost;
4225  for (const Formula &F : LU.Formulae) {
4226    // Ignore formulae which may not be ideal in terms of register reuse of
4227    // ReqRegs.  The formula should use all required registers before
4228    // introducing new ones.
4229    int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4230    for (const SCEV *Reg : ReqRegs) {
4231      if ((F.ScaledReg && F.ScaledReg == Reg) ||
4232          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) !=
4233          F.BaseRegs.end()) {
4234        --NumReqRegsToFind;
4235        if (NumReqRegsToFind == 0)
4236          break;
4237      }
4238    }
4239    if (NumReqRegsToFind != 0) {
4240      // If none of the formulae satisfied the required registers, then we could
4241      // clear ReqRegs and try again. Currently, we simply give up in this case.
4242      continue;
4243    }
4244
4245    // Evaluate the cost of the current formula. If it's already worse than
4246    // the current best, prune the search at that point.
4247    NewCost = CurCost;
4248    NewRegs = CurRegs;
4249    NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
4250                        LU);
4251    if (NewCost < SolutionCost) {
4252      Workspace.push_back(&F);
4253      if (Workspace.size() != Uses.size()) {
4254        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4255                     NewRegs, VisitedRegs);
4256        if (F.getNumRegs() == 1 && Workspace.size() == 1)
4257          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4258      } else {
4259        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4260              dbgs() << ".\n Regs:";
4261              for (const SCEV *S : NewRegs)
4262                dbgs() << ' ' << *S;
4263              dbgs() << '\n');
4264
4265        SolutionCost = NewCost;
4266        Solution = Workspace;
4267      }
4268      Workspace.pop_back();
4269    }
4270  }
4271}
4272
4273/// Choose one formula from each use. Return the results in the given Solution
4274/// vector.
4275void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4276  SmallVector<const Formula *, 8> Workspace;
4277  Cost SolutionCost;
4278  SolutionCost.Lose();
4279  Cost CurCost;
4280  SmallPtrSet<const SCEV *, 16> CurRegs;
4281  DenseSet<const SCEV *> VisitedRegs;
4282  Workspace.reserve(Uses.size());
4283
4284  // SolveRecurse does all the work.
4285  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4286               CurRegs, VisitedRegs);
4287  if (Solution.empty()) {
4288    DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4289    return;
4290  }
4291
4292  // Ok, we've now made all our decisions.
4293  DEBUG(dbgs() << "\n"
4294                  "The chosen solution requires "; SolutionCost.print(dbgs());
4295        dbgs() << ":\n";
4296        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4297          dbgs() << "  ";
4298          Uses[i].print(dbgs());
4299          dbgs() << "\n"
4300                    "    ";
4301          Solution[i]->print(dbgs());
4302          dbgs() << '\n';
4303        });
4304
4305  assert(Solution.size() == Uses.size() && "Malformed solution!");
4306}
4307
4308/// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4309/// we can go while still being dominated by the input positions. This helps
4310/// canonicalize the insert position, which encourages sharing.
4311BasicBlock::iterator
4312LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4313                                 const SmallVectorImpl<Instruction *> &Inputs)
4314                                                                         const {
4315  Instruction *Tentative = &*IP;
4316  for (;;) {
4317    bool AllDominate = true;
4318    Instruction *BetterPos = nullptr;
4319    // Don't bother attempting to insert before a catchswitch, their basic block
4320    // cannot have other non-PHI instructions.
4321    if (isa<CatchSwitchInst>(Tentative))
4322      return IP;
4323
4324    for (Instruction *Inst : Inputs) {
4325      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4326        AllDominate = false;
4327        break;
4328      }
4329      // Attempt to find an insert position in the middle of the block,
4330      // instead of at the end, so that it can be used for other expansions.
4331      if (Tentative->getParent() == Inst->getParent() &&
4332          (!BetterPos || !DT.dominates(Inst, BetterPos)))
4333        BetterPos = &*std::next(BasicBlock::iterator(Inst));
4334    }
4335    if (!AllDominate)
4336      break;
4337    if (BetterPos)
4338      IP = BetterPos->getIterator();
4339    else
4340      IP = Tentative->getIterator();
4341
4342    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4343    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4344
4345    BasicBlock *IDom;
4346    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4347      if (!Rung) return IP;
4348      Rung = Rung->getIDom();
4349      if (!Rung) return IP;
4350      IDom = Rung->getBlock();
4351
4352      // Don't climb into a loop though.
4353      const Loop *IDomLoop = LI.getLoopFor(IDom);
4354      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4355      if (IDomDepth <= IPLoopDepth &&
4356          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4357        break;
4358    }
4359
4360    Tentative = IDom->getTerminator();
4361  }
4362
4363  return IP;
4364}
4365
4366/// Determine an input position which will be dominated by the operands and
4367/// which will dominate the result.
4368BasicBlock::iterator
4369LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4370                                           const LSRFixup &LF,
4371                                           const LSRUse &LU,
4372                                           SCEVExpander &Rewriter) const {
4373  // Collect some instructions which must be dominated by the
4374  // expanding replacement. These must be dominated by any operands that
4375  // will be required in the expansion.
4376  SmallVector<Instruction *, 4> Inputs;
4377  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4378    Inputs.push_back(I);
4379  if (LU.Kind == LSRUse::ICmpZero)
4380    if (Instruction *I =
4381          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4382      Inputs.push_back(I);
4383  if (LF.PostIncLoops.count(L)) {
4384    if (LF.isUseFullyOutsideLoop(L))
4385      Inputs.push_back(L->getLoopLatch()->getTerminator());
4386    else
4387      Inputs.push_back(IVIncInsertPos);
4388  }
4389  // The expansion must also be dominated by the increment positions of any
4390  // loops it for which it is using post-inc mode.
4391  for (const Loop *PIL : LF.PostIncLoops) {
4392    if (PIL == L) continue;
4393
4394    // Be dominated by the loop exit.
4395    SmallVector<BasicBlock *, 4> ExitingBlocks;
4396    PIL->getExitingBlocks(ExitingBlocks);
4397    if (!ExitingBlocks.empty()) {
4398      BasicBlock *BB = ExitingBlocks[0];
4399      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4400        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4401      Inputs.push_back(BB->getTerminator());
4402    }
4403  }
4404
4405  assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4406         && !isa<DbgInfoIntrinsic>(LowestIP) &&
4407         "Insertion point must be a normal instruction");
4408
4409  // Then, climb up the immediate dominator tree as far as we can go while
4410  // still being dominated by the input positions.
4411  BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4412
4413  // Don't insert instructions before PHI nodes.
4414  while (isa<PHINode>(IP)) ++IP;
4415
4416  // Ignore landingpad instructions.
4417  while (IP->isEHPad()) ++IP;
4418
4419  // Ignore debug intrinsics.
4420  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4421
4422  // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4423  // IP consistent across expansions and allows the previously inserted
4424  // instructions to be reused by subsequent expansion.
4425  while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4426    ++IP;
4427
4428  return IP;
4429}
4430
4431/// Emit instructions for the leading candidate expression for this LSRUse (this
4432/// is called "expanding").
4433Value *LSRInstance::Expand(const LSRFixup &LF,
4434                           const Formula &F,
4435                           BasicBlock::iterator IP,
4436                           SCEVExpander &Rewriter,
4437                           SmallVectorImpl<WeakVH> &DeadInsts) const {
4438  const LSRUse &LU = Uses[LF.LUIdx];
4439  if (LU.RigidFormula)
4440    return LF.OperandValToReplace;
4441
4442  // Determine an input position which will be dominated by the operands and
4443  // which will dominate the result.
4444  IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4445
4446  // Inform the Rewriter if we have a post-increment use, so that it can
4447  // perform an advantageous expansion.
4448  Rewriter.setPostInc(LF.PostIncLoops);
4449
4450  // This is the type that the user actually needs.
4451  Type *OpTy = LF.OperandValToReplace->getType();
4452  // This will be the type that we'll initially expand to.
4453  Type *Ty = F.getType();
4454  if (!Ty)
4455    // No type known; just expand directly to the ultimate type.
4456    Ty = OpTy;
4457  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4458    // Expand directly to the ultimate type if it's the right size.
4459    Ty = OpTy;
4460  // This is the type to do integer arithmetic in.
4461  Type *IntTy = SE.getEffectiveSCEVType(Ty);
4462
4463  // Build up a list of operands to add together to form the full base.
4464  SmallVector<const SCEV *, 8> Ops;
4465
4466  // Expand the BaseRegs portion.
4467  for (const SCEV *Reg : F.BaseRegs) {
4468    assert(!Reg->isZero() && "Zero allocated in a base register!");
4469
4470    // If we're expanding for a post-inc user, make the post-inc adjustment.
4471    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4472    Reg = TransformForPostIncUse(Denormalize, Reg,
4473                                 LF.UserInst, LF.OperandValToReplace,
4474                                 Loops, SE, DT);
4475
4476    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, &*IP)));
4477  }
4478
4479  // Expand the ScaledReg portion.
4480  Value *ICmpScaledV = nullptr;
4481  if (F.Scale != 0) {
4482    const SCEV *ScaledS = F.ScaledReg;
4483
4484    // If we're expanding for a post-inc user, make the post-inc adjustment.
4485    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4486    ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4487                                     LF.UserInst, LF.OperandValToReplace,
4488                                     Loops, SE, DT);
4489
4490    if (LU.Kind == LSRUse::ICmpZero) {
4491      // Expand ScaleReg as if it was part of the base regs.
4492      if (F.Scale == 1)
4493        Ops.push_back(
4494            SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP)));
4495      else {
4496        // An interesting way of "folding" with an icmp is to use a negated
4497        // scale, which we'll implement by inserting it into the other operand
4498        // of the icmp.
4499        assert(F.Scale == -1 &&
4500               "The only scale supported by ICmpZero uses is -1!");
4501        ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, &*IP);
4502      }
4503    } else {
4504      // Otherwise just expand the scaled register and an explicit scale,
4505      // which is expected to be matched as part of the address.
4506
4507      // Flush the operand list to suppress SCEVExpander hoisting address modes.
4508      // Unless the addressing mode will not be folded.
4509      if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4510          isAMCompletelyFolded(TTI, LU, F)) {
4511        Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
4512        Ops.clear();
4513        Ops.push_back(SE.getUnknown(FullV));
4514      }
4515      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP));
4516      if (F.Scale != 1)
4517        ScaledS =
4518            SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4519      Ops.push_back(ScaledS);
4520    }
4521  }
4522
4523  // Expand the GV portion.
4524  if (F.BaseGV) {
4525    // Flush the operand list to suppress SCEVExpander hoisting.
4526    if (!Ops.empty()) {
4527      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
4528      Ops.clear();
4529      Ops.push_back(SE.getUnknown(FullV));
4530    }
4531    Ops.push_back(SE.getUnknown(F.BaseGV));
4532  }
4533
4534  // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4535  // unfolded offsets. LSR assumes they both live next to their uses.
4536  if (!Ops.empty()) {
4537    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
4538    Ops.clear();
4539    Ops.push_back(SE.getUnknown(FullV));
4540  }
4541
4542  // Expand the immediate portion.
4543  int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4544  if (Offset != 0) {
4545    if (LU.Kind == LSRUse::ICmpZero) {
4546      // The other interesting way of "folding" with an ICmpZero is to use a
4547      // negated immediate.
4548      if (!ICmpScaledV)
4549        ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4550      else {
4551        Ops.push_back(SE.getUnknown(ICmpScaledV));
4552        ICmpScaledV = ConstantInt::get(IntTy, Offset);
4553      }
4554    } else {
4555      // Just add the immediate values. These again are expected to be matched
4556      // as part of the address.
4557      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4558    }
4559  }
4560
4561  // Expand the unfolded offset portion.
4562  int64_t UnfoldedOffset = F.UnfoldedOffset;
4563  if (UnfoldedOffset != 0) {
4564    // Just add the immediate values.
4565    Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4566                                                       UnfoldedOffset)));
4567  }
4568
4569  // Emit instructions summing all the operands.
4570  const SCEV *FullS = Ops.empty() ?
4571                      SE.getConstant(IntTy, 0) :
4572                      SE.getAddExpr(Ops);
4573  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, &*IP);
4574
4575  // We're done expanding now, so reset the rewriter.
4576  Rewriter.clearPostInc();
4577
4578  // An ICmpZero Formula represents an ICmp which we're handling as a
4579  // comparison against zero. Now that we've expanded an expression for that
4580  // form, update the ICmp's other operand.
4581  if (LU.Kind == LSRUse::ICmpZero) {
4582    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4583    DeadInsts.emplace_back(CI->getOperand(1));
4584    assert(!F.BaseGV && "ICmp does not support folding a global value and "
4585                           "a scale at the same time!");
4586    if (F.Scale == -1) {
4587      if (ICmpScaledV->getType() != OpTy) {
4588        Instruction *Cast =
4589          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4590                                                   OpTy, false),
4591                           ICmpScaledV, OpTy, "tmp", CI);
4592        ICmpScaledV = Cast;
4593      }
4594      CI->setOperand(1, ICmpScaledV);
4595    } else {
4596      // A scale of 1 means that the scale has been expanded as part of the
4597      // base regs.
4598      assert((F.Scale == 0 || F.Scale == 1) &&
4599             "ICmp does not support folding a global value and "
4600             "a scale at the same time!");
4601      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4602                                           -(uint64_t)Offset);
4603      if (C->getType() != OpTy)
4604        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4605                                                          OpTy, false),
4606                                  C, OpTy);
4607
4608      CI->setOperand(1, C);
4609    }
4610  }
4611
4612  return FullV;
4613}
4614
4615/// Helper for Rewrite. PHI nodes are special because the use of their operands
4616/// effectively happens in their predecessor blocks, so the expression may need
4617/// to be expanded in multiple places.
4618void LSRInstance::RewriteForPHI(PHINode *PN,
4619                                const LSRFixup &LF,
4620                                const Formula &F,
4621                                SCEVExpander &Rewriter,
4622                                SmallVectorImpl<WeakVH> &DeadInsts) const {
4623  DenseMap<BasicBlock *, Value *> Inserted;
4624  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4625    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4626      BasicBlock *BB = PN->getIncomingBlock(i);
4627
4628      // If this is a critical edge, split the edge so that we do not insert
4629      // the code on all predecessor/successor paths.  We do this unless this
4630      // is the canonical backedge for this loop, which complicates post-inc
4631      // users.
4632      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4633          !isa<IndirectBrInst>(BB->getTerminator())) {
4634        BasicBlock *Parent = PN->getParent();
4635        Loop *PNLoop = LI.getLoopFor(Parent);
4636        if (!PNLoop || Parent != PNLoop->getHeader()) {
4637          // Split the critical edge.
4638          BasicBlock *NewBB = nullptr;
4639          if (!Parent->isLandingPad()) {
4640            NewBB = SplitCriticalEdge(BB, Parent,
4641                                      CriticalEdgeSplittingOptions(&DT, &LI)
4642                                          .setMergeIdenticalEdges()
4643                                          .setDontDeleteUselessPHIs());
4644          } else {
4645            SmallVector<BasicBlock*, 2> NewBBs;
4646            SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
4647            NewBB = NewBBs[0];
4648          }
4649          // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4650          // phi predecessors are identical. The simple thing to do is skip
4651          // splitting in this case rather than complicate the API.
4652          if (NewBB) {
4653            // If PN is outside of the loop and BB is in the loop, we want to
4654            // move the block to be immediately before the PHI block, not
4655            // immediately after BB.
4656            if (L->contains(BB) && !L->contains(PN))
4657              NewBB->moveBefore(PN->getParent());
4658
4659            // Splitting the edge can reduce the number of PHI entries we have.
4660            e = PN->getNumIncomingValues();
4661            BB = NewBB;
4662            i = PN->getBasicBlockIndex(BB);
4663          }
4664        }
4665      }
4666
4667      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4668        Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
4669      if (!Pair.second)
4670        PN->setIncomingValue(i, Pair.first->second);
4671      else {
4672        Value *FullV = Expand(LF, F, BB->getTerminator()->getIterator(),
4673                              Rewriter, DeadInsts);
4674
4675        // If this is reuse-by-noop-cast, insert the noop cast.
4676        Type *OpTy = LF.OperandValToReplace->getType();
4677        if (FullV->getType() != OpTy)
4678          FullV =
4679            CastInst::Create(CastInst::getCastOpcode(FullV, false,
4680                                                     OpTy, false),
4681                             FullV, LF.OperandValToReplace->getType(),
4682                             "tmp", BB->getTerminator());
4683
4684        PN->setIncomingValue(i, FullV);
4685        Pair.first->second = FullV;
4686      }
4687    }
4688}
4689
4690/// Emit instructions for the leading candidate expression for this LSRUse (this
4691/// is called "expanding"), and update the UserInst to reference the newly
4692/// expanded value.
4693void LSRInstance::Rewrite(const LSRFixup &LF,
4694                          const Formula &F,
4695                          SCEVExpander &Rewriter,
4696                          SmallVectorImpl<WeakVH> &DeadInsts) const {
4697  // First, find an insertion point that dominates UserInst. For PHI nodes,
4698  // find the nearest block which dominates all the relevant uses.
4699  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4700    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts);
4701  } else {
4702    Value *FullV =
4703        Expand(LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
4704
4705    // If this is reuse-by-noop-cast, insert the noop cast.
4706    Type *OpTy = LF.OperandValToReplace->getType();
4707    if (FullV->getType() != OpTy) {
4708      Instruction *Cast =
4709        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4710                         FullV, OpTy, "tmp", LF.UserInst);
4711      FullV = Cast;
4712    }
4713
4714    // Update the user. ICmpZero is handled specially here (for now) because
4715    // Expand may have updated one of the operands of the icmp already, and
4716    // its new value may happen to be equal to LF.OperandValToReplace, in
4717    // which case doing replaceUsesOfWith leads to replacing both operands
4718    // with the same value. TODO: Reorganize this.
4719    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4720      LF.UserInst->setOperand(0, FullV);
4721    else
4722      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4723  }
4724
4725  DeadInsts.emplace_back(LF.OperandValToReplace);
4726}
4727
4728/// Rewrite all the fixup locations with new values, following the chosen
4729/// solution.
4730void LSRInstance::ImplementSolution(
4731    const SmallVectorImpl<const Formula *> &Solution) {
4732  // Keep track of instructions we may have made dead, so that
4733  // we can remove them after we are done working.
4734  SmallVector<WeakVH, 16> DeadInsts;
4735
4736  SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
4737                        "lsr");
4738#ifndef NDEBUG
4739  Rewriter.setDebugType(DEBUG_TYPE);
4740#endif
4741  Rewriter.disableCanonicalMode();
4742  Rewriter.enableLSRMode();
4743  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4744
4745  // Mark phi nodes that terminate chains so the expander tries to reuse them.
4746  for (const IVChain &Chain : IVChainVec) {
4747    if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
4748      Rewriter.setChainedPhi(PN);
4749  }
4750
4751  // Expand the new value definitions and update the users.
4752  for (const LSRFixup &Fixup : Fixups) {
4753    Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts);
4754
4755    Changed = true;
4756  }
4757
4758  for (const IVChain &Chain : IVChainVec) {
4759    GenerateIVChain(Chain, Rewriter, DeadInsts);
4760    Changed = true;
4761  }
4762  // Clean up after ourselves. This must be done before deleting any
4763  // instructions.
4764  Rewriter.clear();
4765
4766  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4767}
4768
4769LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
4770                         DominatorTree &DT, LoopInfo &LI,
4771                         const TargetTransformInfo &TTI)
4772    : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
4773      IVIncInsertPos(nullptr) {
4774  // If LoopSimplify form is not available, stay out of trouble.
4775  if (!L->isLoopSimplifyForm())
4776    return;
4777
4778  // If there's no interesting work to be done, bail early.
4779  if (IU.empty()) return;
4780
4781  // If there's too much analysis to be done, bail early. We won't be able to
4782  // model the problem anyway.
4783  unsigned NumUsers = 0;
4784  for (const IVStrideUse &U : IU) {
4785    if (++NumUsers > MaxIVUsers) {
4786      (void)U;
4787      DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
4788      return;
4789    }
4790    // Bail out if we have a PHI on an EHPad that gets a value from a
4791    // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
4792    // no good place to stick any instructions.
4793    if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
4794       auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
4795       if (isa<FuncletPadInst>(FirstNonPHI) ||
4796           isa<CatchSwitchInst>(FirstNonPHI))
4797         for (BasicBlock *PredBB : PN->blocks())
4798           if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
4799             return;
4800    }
4801  }
4802
4803#ifndef NDEBUG
4804  // All dominating loops must have preheaders, or SCEVExpander may not be able
4805  // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4806  //
4807  // IVUsers analysis should only create users that are dominated by simple loop
4808  // headers. Since this loop should dominate all of its users, its user list
4809  // should be empty if this loop itself is not within a simple loop nest.
4810  for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4811       Rung; Rung = Rung->getIDom()) {
4812    BasicBlock *BB = Rung->getBlock();
4813    const Loop *DomLoop = LI.getLoopFor(BB);
4814    if (DomLoop && DomLoop->getHeader() == BB) {
4815      assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4816    }
4817  }
4818#endif // DEBUG
4819
4820  DEBUG(dbgs() << "\nLSR on loop ";
4821        L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
4822        dbgs() << ":\n");
4823
4824  // First, perform some low-level loop optimizations.
4825  OptimizeShadowIV();
4826  OptimizeLoopTermCond();
4827
4828  // If loop preparation eliminates all interesting IV users, bail.
4829  if (IU.empty()) return;
4830
4831  // Skip nested loops until we can model them better with formulae.
4832  if (!L->empty()) {
4833    DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4834    return;
4835  }
4836
4837  // Start collecting data and preparing for the solver.
4838  CollectChains();
4839  CollectInterestingTypesAndFactors();
4840  CollectFixupsAndInitialFormulae();
4841  CollectLoopInvariantFixupsAndFormulae();
4842
4843  assert(!Uses.empty() && "IVUsers reported at least one use");
4844  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4845        print_uses(dbgs()));
4846
4847  // Now use the reuse data to generate a bunch of interesting ways
4848  // to formulate the values needed for the uses.
4849  GenerateAllReuseFormulae();
4850
4851  FilterOutUndesirableDedicatedRegisters();
4852  NarrowSearchSpaceUsingHeuristics();
4853
4854  SmallVector<const Formula *, 8> Solution;
4855  Solve(Solution);
4856
4857  // Release memory that is no longer needed.
4858  Factors.clear();
4859  Types.clear();
4860  RegUses.clear();
4861
4862  if (Solution.empty())
4863    return;
4864
4865#ifndef NDEBUG
4866  // Formulae should be legal.
4867  for (const LSRUse &LU : Uses) {
4868    for (const Formula &F : LU.Formulae)
4869      assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4870                        F) && "Illegal formula generated!");
4871  };
4872#endif
4873
4874  // Now that we've decided what we want, make it so.
4875  ImplementSolution(Solution);
4876}
4877
4878void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4879  if (Factors.empty() && Types.empty()) return;
4880
4881  OS << "LSR has identified the following interesting factors and types: ";
4882  bool First = true;
4883
4884  for (int64_t Factor : Factors) {
4885    if (!First) OS << ", ";
4886    First = false;
4887    OS << '*' << Factor;
4888  }
4889
4890  for (Type *Ty : Types) {
4891    if (!First) OS << ", ";
4892    First = false;
4893    OS << '(' << *Ty << ')';
4894  }
4895  OS << '\n';
4896}
4897
4898void LSRInstance::print_fixups(raw_ostream &OS) const {
4899  OS << "LSR is examining the following fixup sites:\n";
4900  for (const LSRFixup &LF : Fixups) {
4901    dbgs() << "  ";
4902    LF.print(OS);
4903    OS << '\n';
4904  }
4905}
4906
4907void LSRInstance::print_uses(raw_ostream &OS) const {
4908  OS << "LSR is examining the following uses:\n";
4909  for (const LSRUse &LU : Uses) {
4910    dbgs() << "  ";
4911    LU.print(OS);
4912    OS << '\n';
4913    for (const Formula &F : LU.Formulae) {
4914      OS << "    ";
4915      F.print(OS);
4916      OS << '\n';
4917    }
4918  }
4919}
4920
4921void LSRInstance::print(raw_ostream &OS) const {
4922  print_factors_and_types(OS);
4923  print_fixups(OS);
4924  print_uses(OS);
4925}
4926
4927LLVM_DUMP_METHOD
4928void LSRInstance::dump() const {
4929  print(errs()); errs() << '\n';
4930}
4931
4932namespace {
4933
4934class LoopStrengthReduce : public LoopPass {
4935public:
4936  static char ID; // Pass ID, replacement for typeid
4937  LoopStrengthReduce();
4938
4939private:
4940  bool runOnLoop(Loop *L, LPPassManager &LPM) override;
4941  void getAnalysisUsage(AnalysisUsage &AU) const override;
4942};
4943
4944}
4945
4946char LoopStrengthReduce::ID = 0;
4947INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
4948                "Loop Strength Reduction", false, false)
4949INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4950INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4951INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
4952INITIALIZE_PASS_DEPENDENCY(IVUsers)
4953INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
4954INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4955INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4956                "Loop Strength Reduction", false, false)
4957
4958
4959Pass *llvm::createLoopStrengthReducePass() {
4960  return new LoopStrengthReduce();
4961}
4962
4963LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
4964  initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
4965}
4966
4967void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4968  // We split critical edges, so we change the CFG.  However, we do update
4969  // many analyses if they are around.
4970  AU.addPreservedID(LoopSimplifyID);
4971
4972  AU.addRequired<LoopInfoWrapperPass>();
4973  AU.addPreserved<LoopInfoWrapperPass>();
4974  AU.addRequiredID(LoopSimplifyID);
4975  AU.addRequired<DominatorTreeWrapperPass>();
4976  AU.addPreserved<DominatorTreeWrapperPass>();
4977  AU.addRequired<ScalarEvolutionWrapperPass>();
4978  AU.addPreserved<ScalarEvolutionWrapperPass>();
4979  // Requiring LoopSimplify a second time here prevents IVUsers from running
4980  // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4981  AU.addRequiredID(LoopSimplifyID);
4982  AU.addRequired<IVUsers>();
4983  AU.addPreserved<IVUsers>();
4984  AU.addRequired<TargetTransformInfoWrapperPass>();
4985}
4986
4987bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
4988  if (skipLoop(L))
4989    return false;
4990
4991  auto &IU = getAnalysis<IVUsers>();
4992  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
4993  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4994  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
4995  const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
4996      *L->getHeader()->getParent());
4997  bool Changed = false;
4998
4999  // Run the main LSR transformation.
5000  Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5001
5002  // Remove any extra phis created by processing inner loops.
5003  Changed |= DeleteDeadPHIs(L->getHeader());
5004  if (EnablePhiElim && L->isLoopSimplifyForm()) {
5005    SmallVector<WeakVH, 16> DeadInsts;
5006    const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5007    SCEVExpander Rewriter(getAnalysis<ScalarEvolutionWrapperPass>().getSE(), DL,
5008                          "lsr");
5009#ifndef NDEBUG
5010    Rewriter.setDebugType(DEBUG_TYPE);
5011#endif
5012    unsigned numFolded = Rewriter.replaceCongruentIVs(
5013        L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts,
5014        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5015            *L->getHeader()->getParent()));
5016    if (numFolded) {
5017      Changed = true;
5018      DeleteTriviallyDeadInstructions(DeadInsts);
5019      DeleteDeadPHIs(L->getHeader());
5020    }
5021  }
5022  return Changed;
5023}
5024