MemCpyOptimizer.cpp revision 5a7aeaa01904b9b0adf256108f302f8961295754
1a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
3a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//                     The LLVM Compiler Infrastructure
4a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
5a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// This file is distributed under the University of Illinois Open Source
6a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// License. See LICENSE.TXT for details.
7a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
8a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
9a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
10a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// This pass performs various transformations related to eliminating memcpy
11a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// calls, or transforming sets of stores into memset's.
12a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
13a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
14a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
15a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#define DEBUG_TYPE "memcpyopt"
16a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Transforms/Scalar.h"
17a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/IntrinsicInst.h"
18a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Instructions.h"
19fa5cbd6d0fbda23fd669c8718e07b19001b2d21aOwen Anderson#include "llvm/LLVMContext.h"
20a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/ADT/SmallVector.h"
21a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/ADT/Statistic.h"
22a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Analysis/Dominators.h"
23a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Analysis/AliasAnalysis.h"
24a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Analysis/MemoryDependenceAnalysis.h"
25a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Support/Debug.h"
26a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Support/GetElementPtrTypeIterator.h"
27bdff548e4dd577a72094d57b282de4e765643b96Chris Lattner#include "llvm/Support/raw_ostream.h"
28a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Target/TargetData.h"
29a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include <list>
30a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonusing namespace llvm;
31a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
32a723d1e48f4a261512c28845c53eda569fa5218cOwen AndersonSTATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
33a723d1e48f4a261512c28845c53eda569fa5218cOwen AndersonSTATISTIC(NumMemSetInfer, "Number of memsets inferred");
3405cd03b33559732f8ed55e5ff7554fd06d59eb6aDuncan SandsSTATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
35a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
36a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// isBytewiseValue - If the specified value can be set by repeating the same
37a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// byte in memory, return the i8 value that it is represented with.  This is
38a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
39a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
40a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// byte store (e.g. i16 0x1234), return null.
41cf0fe8d813727383d630055bb9d1cde21b00b7e7Chris Lattnerstatic Value *isBytewiseValue(Value *V) {
42cf0fe8d813727383d630055bb9d1cde21b00b7e7Chris Lattner  LLVMContext &Context = V->getContext();
43cf0fe8d813727383d630055bb9d1cde21b00b7e7Chris Lattner
44a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // All byte-wide stores are splatable, even of arbitrary variables.
45b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands  if (V->getType()->isIntegerTy(8)) return V;
46a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
47a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Constant float and double values can be handled as integer values if the
48a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // corresponding integer value is "byteable".  An important case is 0.0.
49a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
50cf0fe8d813727383d630055bb9d1cde21b00b7e7Chris Lattner    if (CFP->getType()->isFloatTy())
511d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(Context));
52cf0fe8d813727383d630055bb9d1cde21b00b7e7Chris Lattner    if (CFP->getType()->isDoubleTy())
531d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(Context));
54a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Don't handle long double formats, which have strange constraints.
55a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
56a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
57a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // We can handle constant integers that are power of two in size and a
58a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // multiple of 8 bits.
59a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
60a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    unsigned Width = CI->getBitWidth();
61a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (isPowerOf2_32(Width) && Width > 8) {
62a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // We can handle this value if the recursive binary decomposition is the
63a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // same at all levels.
64a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      APInt Val = CI->getValue();
65a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      APInt Val2;
66a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      while (Val.getBitWidth() != 8) {
67a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        unsigned NextWidth = Val.getBitWidth()/2;
68a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        Val2  = Val.lshr(NextWidth);
69a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        Val2.trunc(Val.getBitWidth()/2);
70a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        Val.trunc(Val.getBitWidth()/2);
71a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
72a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        // If the top/bottom halves aren't the same, reject it.
73a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        if (Val != Val2)
74a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson          return 0;
75a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      }
76eed707b1e6097aac2bb6b3d47271f6300ace7f2eOwen Anderson      return ConstantInt::get(Context, Val);
77a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
78a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
79a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
80a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Conceptually, we could handle things like:
81a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   %a = zext i8 %X to i16
82a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   %b = shl i16 %a, 8
83a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   %c = or i16 %a, %b
84a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // but until there is an example that actually needs this, it doesn't seem
85a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // worth worrying about.
86a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return 0;
87a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
88a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
89a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstatic int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
90a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                  bool &VariableIdxFound, TargetData &TD) {
91a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Skip over the first indices.
92a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  gep_type_iterator GTI = gep_type_begin(GEP);
93a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (unsigned i = 1; i != Idx; ++i, ++GTI)
94a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    /*skip along*/;
95a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
96a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Compute the offset implied by the rest of the indices.
97a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Offset = 0;
98a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
99a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
100a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (OpC == 0)
101a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return VariableIdxFound = true;
102a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (OpC->isZero()) continue;  // No offset.
103a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
104a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Handle struct indices, which add their field offset to the pointer.
105a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
106a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
107a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      continue;
108a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
109a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
110a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Otherwise, we have a sequential type like an array or vector.  Multiply
111a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // the index by the ElementSize.
112777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
113a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    Offset += Size*OpC->getSExtValue();
114a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
115a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
116a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return Offset;
117a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
118a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
119a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
120a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// constant offset, and return that constant offset.  For example, Ptr1 might
121a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
122a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstatic bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
123a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                            TargetData &TD) {
124a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
125a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // base.  After that base, they may have some number of common (and
126a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // potentially variable) indices.  After that they handle some constant
127a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // offset, which determines their offset from each other.  At this point, we
128a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // handle no other case.
129a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
130a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
131a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
132a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
133a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
134a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Skip any common indices and track the GEP types.
135a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned Idx = 1;
136a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
137a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
138a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
139a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
140a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool VariableIdxFound = false;
141a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
142a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
143a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (VariableIdxFound) return false;
144a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
145a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Offset = Offset2-Offset1;
146a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return true;
147a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
148a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
149a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
150a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
151a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// This allows us to analyze stores like:
152a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+1
153a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+0
154a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+3
155a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+2
156a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// which sometimes happens with stores to arrays of structs etc.  When we see
157a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// the first store, we make a range [1, 2).  The second store extends the range
158a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
159a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// two ranges into [0, 3) which is memset'able.
160a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonnamespace {
161a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstruct MemsetRange {
162a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Start/End - A semi range that describes the span that this range covers.
163a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // The range is closed at the start and open at the end: [Start, End).
164a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Start, End;
165a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
166a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// StartPtr - The getelementptr instruction that points to the start of the
167a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// range.
168a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Value *StartPtr;
169a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
170a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// Alignment - The known alignment of the first store.
171a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned Alignment;
172a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
173a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// TheStores - The actual stores that make up this range.
174a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  SmallVector<StoreInst*, 16> TheStores;
175a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
176a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool isProfitableToUseMemset(const TargetData &TD) const;
177a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
178a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson};
179a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson} // end anon namespace
180a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
181a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonbool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
182a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we found more than 8 stores to merge or 64 bytes, use memset.
183a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (TheStores.size() >= 8 || End-Start >= 64) return true;
184a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
185a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Assume that the code generator is capable of merging pairs of stores
186a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // together if it wants to.
187a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (TheStores.size() <= 2) return false;
188a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
189a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we have fewer than 8 stores, it can still be worthwhile to do this.
190a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // For example, merging 4 i8 stores into an i32 store is useful almost always.
191a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
192a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // memset will be split into 2 32-bit stores anyway) and doing so can
193a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // pessimize the llvm optimizer.
194a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
195a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Since we don't have perfect knowledge here, make some assumptions: assume
196a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the maximum GPR width is the same size as the pointer size and assume that
197a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // this width can be stored.  If so, check to see whether we will end up
198a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // actually reducing the number of stores used.
199a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned Bytes = unsigned(End-Start);
200a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned NumPointerStores = Bytes/TD.getPointerSize();
201a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
202a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Assume the remaining bytes if any are done a byte at a time.
203a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
204a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
205a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we will reduce the # stores (according to this heuristic), do the
206a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
207a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // etc.
208a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return TheStores.size() > NumPointerStores+NumByteStores;
209a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
210a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
211a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
212a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonnamespace {
213a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonclass MemsetRanges {
214a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// Ranges - A sorted list of the memset ranges.  We use std::list here
215a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// because each element is relatively large and expensive to copy.
216a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  std::list<MemsetRange> Ranges;
217a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  typedef std::list<MemsetRange>::iterator range_iterator;
218a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  TargetData &TD;
219a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonpublic:
220a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MemsetRanges(TargetData &td) : TD(td) {}
221a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
222a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  typedef std::list<MemsetRange>::const_iterator const_iterator;
223a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  const_iterator begin() const { return Ranges.begin(); }
224a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  const_iterator end() const { return Ranges.end(); }
225a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool empty() const { return Ranges.empty(); }
226a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
227a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  void addStore(int64_t OffsetFromFirst, StoreInst *SI);
228a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson};
229a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
230a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson} // end anon namespace
231a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
232a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
233a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// addStore - Add a new store to the MemsetRanges data structure.  This adds a
234a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// new range for the specified store at the specified offset, merging into
235a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// existing ranges as appropriate.
236a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonvoid MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
237a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
238a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
239a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Do a linear search of the ranges to see if this can be joined and/or to
240a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // find the insertion point in the list.  We keep the ranges sorted for
241a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // simplicity here.  This is a linear search of a linked list, which is ugly,
242a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // however the number of ranges is limited, so this won't get crazy slow.
243a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  range_iterator I = Ranges.begin(), E = Ranges.end();
244a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
245a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  while (I != E && Start > I->End)
246a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    ++I;
247a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
248a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // We now know that I == E, in which case we didn't find anything to merge
249a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
250a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // to insert a new range.  Handle this now.
251a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (I == E || End < I->Start) {
252a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    MemsetRange &R = *Ranges.insert(I, MemsetRange());
253a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.Start        = Start;
254a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.End          = End;
255a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.StartPtr     = SI->getPointerOperand();
256a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.Alignment    = SI->getAlignment();
257a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.TheStores.push_back(SI);
258a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return;
259a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
260a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
261a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // This store overlaps with I, add it.
262a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  I->TheStores.push_back(SI);
263a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
264a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // At this point, we may have an interval that completely contains our store.
265a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If so, just add it to the interval and return.
266a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (I->Start <= Start && I->End >= End)
267a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return;
268a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
269a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
270a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // but is not entirely contained within the range.
271a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
272a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // See if the range extends the start of the range.  In this case, it couldn't
273a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // possibly cause it to join the prior range, because otherwise we would have
274a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // stopped on *it*.
275a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (Start < I->Start) {
276a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    I->Start = Start;
277a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    I->StartPtr = SI->getPointerOperand();
278264d245851173bbace9281a2378a6cc51162b030Dan Gohman    I->Alignment = SI->getAlignment();
279a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
280a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
281a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
282a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
283a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // End.
284a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (End > I->End) {
285a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    I->End = End;
2869c0f146d50ccc3ba780d4854b8e14422430013efNick Lewycky    range_iterator NextI = I;
287a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    while (++NextI != E && End >= NextI->Start) {
288a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // Merge the range in.
289a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
290a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      if (NextI->End > I->End)
291a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        I->End = NextI->End;
292a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      Ranges.erase(NextI);
293a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      NextI = I;
294a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
295a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
296a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
297a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
298a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
299a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//                         MemCpyOpt Pass
300a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
301a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
302a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonnamespace {
3033e8b6631e67e01e4960a7ba4668a50c596607473Chris Lattner  class MemCpyOpt : public FunctionPass {
304a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    bool runOnFunction(Function &F);
305a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  public:
306a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    static char ID; // Pass identification, replacement for typeid
307081c34b725980f995be9080eaec24cd3dfaaf065Owen Anderson    MemCpyOpt() : FunctionPass(ID) {
308081c34b725980f995be9080eaec24cd3dfaaf065Owen Anderson      initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
309081c34b725980f995be9080eaec24cd3dfaaf065Owen Anderson    }
310a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
311a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  private:
312a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // This transformation requires dominator postdominator info
313a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
314a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.setPreservesCFG();
315a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addRequired<DominatorTree>();
316a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addRequired<MemoryDependenceAnalysis>();
317a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addRequired<AliasAnalysis>();
318a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addPreserved<AliasAnalysis>();
319a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addPreserved<MemoryDependenceAnalysis>();
320a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
321a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
322a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Helper fuctions
32361c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
32461c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    bool processMemCpy(MemCpyInst *M);
325f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner    bool processMemMove(MemMoveInst *M);
3266549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson    bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
3276549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson                              uint64_t cpyLen, CallInst *C);
32843f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner    bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
32943f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner                                       uint64_t MSize);
330a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    bool iterateOnFunction(Function &F);
331a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  };
332a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
333a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  char MemCpyOpt::ID = 0;
334a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
335a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
336a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// createMemCpyOptPass - The public interface to this file...
337a723d1e48f4a261512c28845c53eda569fa5218cOwen AndersonFunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
338a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
3392ab36d350293c77fc8941ce1023e4899df7e3a82Owen AndersonINITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
3402ab36d350293c77fc8941ce1023e4899df7e3a82Owen Anderson                      false, false)
3412ab36d350293c77fc8941ce1023e4899df7e3a82Owen AndersonINITIALIZE_PASS_DEPENDENCY(DominatorTree)
3422ab36d350293c77fc8941ce1023e4899df7e3a82Owen AndersonINITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
3432ab36d350293c77fc8941ce1023e4899df7e3a82Owen AndersonINITIALIZE_AG_DEPENDENCY(AliasAnalysis)
3442ab36d350293c77fc8941ce1023e4899df7e3a82Owen AndersonINITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
3452ab36d350293c77fc8941ce1023e4899df7e3a82Owen Anderson                    false, false)
346a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
347a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// processStore - When GVN is scanning forward over instructions, we look for
348a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// some other patterns to fold away.  In particular, this looks for stores to
349a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// neighboring locations of memory.  If it sees enough consequtive ones
350a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// (currently 4) it attempts to merge them together into a memcpy/memset.
35161c6ba85715fdcb66f746678879984151f1e5485Chris Lattnerbool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
352a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (SI->isVolatile()) return false;
353a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
3546549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson  TargetData *TD = getAnalysisIfAvailable<TargetData>();
3556549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson  if (!TD) return false;
3566549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson
3576549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson  // Detect cases where we're performing call slot forwarding, but
3586549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson  // happen to be using a load-store pair to implement it, rather than
3596549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson  // a memcpy.
3606549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson  if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
3616549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson    if (!LI->isVolatile() && LI->hasOneUse()) {
3626549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson      MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
3636549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson
3646549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson      MemDepResult dep = MD.getDependency(LI);
3656549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson      CallInst *C = 0;
3666549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson      if (dep.isClobber() && !isa<MemCpyInst>(dep.getInst()))
3676549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson        C = dyn_cast<CallInst>(dep.getInst());
3686549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson
3696549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson      if (C) {
3706549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson        bool changed = performCallSlotOptzn(LI,
3716549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson                        SI->getPointerOperand()->stripPointerCasts(),
3726549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson                        LI->getPointerOperand()->stripPointerCasts(),
3736549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson                        TD->getTypeStoreSize(SI->getOperand(0)->getType()), C);
3746549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson        if (changed) {
3756549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson          MD.removeInstruction(SI);
3766549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson          SI->eraseFromParent();
3776549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson          LI->eraseFromParent();
3786549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson          ++NumMemCpyInstr;
3796549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson          return true;
3806549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson        }
3816549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson      }
3826549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson    }
3836549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson  }
3846549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson
385ff1e98c72ae5f2aa805112925fd5c06049aa8e79Chris Lattner  LLVMContext &Context = SI->getContext();
386ff1e98c72ae5f2aa805112925fd5c06049aa8e79Chris Lattner
387a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // There are two cases that are interesting for this code to handle: memcpy
388a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // and memset.  Right now we only handle memset.
389a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
390a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Ensure that the value being stored is something that can be memset'able a
391a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // byte at a time like "0" or "-1" or any width, as well as things like
392a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // 0xA0A0A0A0 and 0.0.
393cf0fe8d813727383d630055bb9d1cde21b00b7e7Chris Lattner  Value *ByteVal = isBytewiseValue(SI->getOperand(0));
394a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!ByteVal)
395a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
396a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
397a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
398a195b7ffd6612a331751c7b6042d5cd921ee586cDan Gohman  Module *M = SI->getParent()->getParent()->getParent();
399a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
400a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Okay, so we now have a single store that can be splatable.  Scan to find
401a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // all subsequent stores of the same value to offset from the same pointer.
402a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Join these together into ranges, so we can decide whether contiguous blocks
403a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // are stored.
4048942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman  MemsetRanges Ranges(*TD);
405a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
406a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Value *StartPtr = SI->getPointerOperand();
407a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
408a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  BasicBlock::iterator BI = SI;
409a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
410a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
411a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // If the call is readnone, ignore it, otherwise bail out.  We don't even
412a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // allow readonly here because we don't want something like:
413a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
414a292b2f49f1557f234e9fa987da690c6d24118e5Gabor Greif      if (AA.getModRefBehavior(CallSite(BI)) ==
415a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson            AliasAnalysis::DoesNotAccessMemory)
416a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        continue;
417a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
418a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // TODO: If this is a memset, try to join it in.
419a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
420a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
421a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
422a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
423a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
424a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If this is a non-store instruction it is fine, ignore it.
425a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    StoreInst *NextStore = dyn_cast<StoreInst>(BI);
426a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (NextStore == 0) continue;
427a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
428a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If this is a store, see if we can merge it in.
429a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (NextStore->isVolatile()) break;
430a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
431a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Check to see if this stored value is of the same byte-splattable value.
432cf0fe8d813727383d630055bb9d1cde21b00b7e7Chris Lattner    if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
433a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
434a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
435a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Check to see if this store is to a constant offset from the start ptr.
436a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    int64_t Offset;
4378942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman    if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD))
438a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
439a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
440a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    Ranges.addStore(Offset, NextStore);
441a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
442a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
443a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we have no ranges, then we just had a single store with nothing that
444a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // could be merged in.  This is a very common case of course.
445a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (Ranges.empty())
446a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
447a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
448a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we had at least one store that could be merged in, add the starting
449a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // store as well.  We try to avoid this unless there is at least something
450a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // interesting as a small compile-time optimization.
451a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Ranges.addStore(0, SI);
452a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
453a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
454a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Now that we have full information about ranges, loop over the ranges and
455a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // emit memset's for anything big enough to be worthwhile.
456a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool MadeChange = false;
457a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
458a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson       I != E; ++I) {
459a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    const MemsetRange &Range = *I;
460a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
461a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (Range.TheStores.size() == 1) continue;
462a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
463a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If it is profitable to lower this range to memset, do so now.
4648942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman    if (!Range.isProfitableToUseMemset(*TD))
465a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      continue;
466a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
467a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Otherwise, we do want to transform this!  Create a new memset.  We put
468a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // the memset right before the first instruction that isn't part of this
469a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // memset block.  This ensure that the memset is dominated by any addressing
470a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // instruction needed by the start of the block.
471a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    BasicBlock::iterator InsertPt = BI;
47220adc9dc4650313f017b27d9818eb2176238113dMon P Wang
473a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Get the starting pointer of the block.
474a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    StartPtr = Range.StartPtr;
47520adc9dc4650313f017b27d9818eb2176238113dMon P Wang
47620adc9dc4650313f017b27d9818eb2176238113dMon P Wang    // Determine alignment
47720adc9dc4650313f017b27d9818eb2176238113dMon P Wang    unsigned Alignment = Range.Alignment;
47820adc9dc4650313f017b27d9818eb2176238113dMon P Wang    if (Alignment == 0) {
47920adc9dc4650313f017b27d9818eb2176238113dMon P Wang      const Type *EltType =
48020adc9dc4650313f017b27d9818eb2176238113dMon P Wang         cast<PointerType>(StartPtr->getType())->getElementType();
48120adc9dc4650313f017b27d9818eb2176238113dMon P Wang      Alignment = TD->getABITypeAlignment(EltType);
48220adc9dc4650313f017b27d9818eb2176238113dMon P Wang    }
48320adc9dc4650313f017b27d9818eb2176238113dMon P Wang
484a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Cast the start ptr to be i8* as memset requires.
48520adc9dc4650313f017b27d9818eb2176238113dMon P Wang    const PointerType* StartPTy = cast<PointerType>(StartPtr->getType());
48620adc9dc4650313f017b27d9818eb2176238113dMon P Wang    const PointerType *i8Ptr = Type::getInt8PtrTy(Context,
48720adc9dc4650313f017b27d9818eb2176238113dMon P Wang                                                  StartPTy->getAddressSpace());
48820adc9dc4650313f017b27d9818eb2176238113dMon P Wang    if (StartPTy!= i8Ptr)
489460f656475738d1a95a6be95346908ce1597df25Daniel Dunbar      StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(),
490a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                 InsertPt);
49120adc9dc4650313f017b27d9818eb2176238113dMon P Wang
492a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    Value *Ops[] = {
493a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      StartPtr, ByteVal,   // Start, value
494e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson      // size
495ff1e98c72ae5f2aa805112925fd5c06049aa8e79Chris Lattner      ConstantInt::get(Type::getInt64Ty(Context), Range.End-Range.Start),
496e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson      // align
49720adc9dc4650313f017b27d9818eb2176238113dMon P Wang      ConstantInt::get(Type::getInt32Ty(Context), Alignment),
49820adc9dc4650313f017b27d9818eb2176238113dMon P Wang      // volatile
49920adc9dc4650313f017b27d9818eb2176238113dMon P Wang      ConstantInt::get(Type::getInt1Ty(Context), 0),
500a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    };
50120adc9dc4650313f017b27d9818eb2176238113dMon P Wang    const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
50220adc9dc4650313f017b27d9818eb2176238113dMon P Wang
50320adc9dc4650313f017b27d9818eb2176238113dMon P Wang    Function *MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
50420adc9dc4650313f017b27d9818eb2176238113dMon P Wang
50520adc9dc4650313f017b27d9818eb2176238113dMon P Wang    Value *C = CallInst::Create(MemSetF, Ops, Ops+5, "", InsertPt);
506cb33fd17cce475a1d47b2695e311b6934ad0ef86David Greene    DEBUG(dbgs() << "Replace stores:\n";
507a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
508cb33fd17cce475a1d47b2695e311b6934ad0ef86David Greene            dbgs() << *Range.TheStores[i];
509cb33fd17cce475a1d47b2695e311b6934ad0ef86David Greene          dbgs() << "With: " << *C); C=C;
510a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
511a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    // Don't invalidate the iterator
512a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    BBI = BI;
513a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson
514a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Zap all the stores.
515ff1e98c72ae5f2aa805112925fd5c06049aa8e79Chris Lattner    for (SmallVector<StoreInst*, 16>::const_iterator
516ff1e98c72ae5f2aa805112925fd5c06049aa8e79Chris Lattner         SI = Range.TheStores.begin(),
517a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson         SE = Range.TheStores.end(); SI != SE; ++SI)
518a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson      (*SI)->eraseFromParent();
519a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    ++NumMemSetInfer;
520a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    MadeChange = true;
521a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
522a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
523a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return MadeChange;
524a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
525a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
526a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
527a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
528a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// and checks for the possibility of a call slot optimization by having
529a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// the call write its result directly into the destination of the memcpy.
5306549121c660dfd18361cd3daf6c766bee80d3097Owen Andersonbool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
5316549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson                                     Value *cpyDest, Value *cpySrc,
5326549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson                                     uint64_t cpyLen, CallInst *C) {
533a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // The general transformation to keep in mind is
534a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
535a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   call @func(..., src, ...)
536a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   memcpy(dest, src, ...)
537a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
538a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // ->
539a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
540a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   memcpy(dest, src, ...)
541a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   call @func(..., dest, ...)
542a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
543a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Since moving the memcpy is technically awkward, we additionally check that
544a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // src only holds uninitialized values at the moment of the call, meaning that
545a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the memcpy can be discarded rather than moved.
546a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
547a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Deliberately get the source and destination with bitcasts stripped away,
548a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // because we'll need to do type comparisons based on the underlying type.
5497d3056b16038a6a09c452c0dfcc3c8f4e421506aGabor Greif  CallSite CS(C);
550a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
551a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Require that src be an alloca.  This simplifies the reasoning considerably.
55261c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
553a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!srcAlloca)
554a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
555a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
556a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Check that all of src is copied to dest.
55761c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  TargetData *TD = getAnalysisIfAvailable<TargetData>();
5588942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman  if (!TD) return false;
559a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
56061c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
561a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!srcArraySize)
562a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
563a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
5648942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman  uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
565a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    srcArraySize->getZExtValue();
566a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
5676549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson  if (cpyLen < srcSize)
568a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
569a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
570a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Check that accessing the first srcSize bytes of dest will not cause a
571a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // trap.  Otherwise the transform is invalid since it might cause a trap
572a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // to occur earlier than it otherwise would.
57361c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
574a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // The destination is an alloca.  Check it is larger than srcSize.
57561c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
576a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!destArraySize)
577a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
578a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
5798942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman    uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
580a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      destArraySize->getZExtValue();
581a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
582a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (destSize < srcSize)
583a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
58461c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
585a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If the destination is an sret parameter then only accesses that are
586a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // outside of the returned struct type can trap.
587a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!A->hasStructRetAttr())
588a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
589a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
59061c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
5918942f9bb9f8bfb0d113db6d4a1ae7203dcf4510aDan Gohman    uint64_t destSize = TD->getTypeAllocSize(StructTy);
592a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
593a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (destSize < srcSize)
594a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
595a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  } else {
596a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
597a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
598a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
599a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Check that src is not accessed except via the call and the memcpy.  This
600a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // guarantees that it holds only undefined values when passed in (so the final
601a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // memcpy can be dropped), that it is not read or written between the call and
602a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the memcpy, and that writing beyond the end of it is undefined.
603a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
604a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                   srcAlloca->use_end());
605a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  while (!srcUseList.empty()) {
606321a813c536e2f1f2f05bbe78a7fbf64046f0557Dan Gohman    User *UI = srcUseList.pop_back_val();
607a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
608009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson    if (isa<BitCastInst>(UI)) {
609a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
610a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson           I != E; ++I)
611a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        srcUseList.push_back(*I);
61261c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
613009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson      if (G->hasAllZeroIndices())
614009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson        for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
615009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson             I != E; ++I)
616009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson          srcUseList.push_back(*I);
617009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson      else
618009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson        return false;
619a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    } else if (UI != C && UI != cpy) {
620a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
621a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
622a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
623a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
624a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Since we're changing the parameter to the callsite, we need to make sure
625a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // that what would be the new parameter dominates the callsite.
62661c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  DominatorTree &DT = getAnalysis<DominatorTree>();
62761c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
628a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!DT.dominates(cpyDestInst, C))
629a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
630a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
631a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // In addition to knowing that the call does not access src in some
632a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // unexpected manner, for example via a global, which we deduce from
633a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the use analysis, we also need to know that it does not sneakily
634a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // access dest.  We rely on AA to figure this out for us.
63561c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
6366549121c660dfd18361cd3daf6c766bee80d3097Owen Anderson  if (AA.getModRefInfo(C, cpyDest, srcSize) !=
637a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AliasAnalysis::NoModRef)
638a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
639a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
640a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // All the checks have passed, so do the transformation.
64112cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson  bool changedArgument = false;
642a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (unsigned i = 0; i < CS.arg_size(); ++i)
643009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
644a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      if (cpySrc->getType() != cpyDest->getType())
6457cbd8a3e92221437048b484d5ef9c0a22d0f8c58Gabor Greif        cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
646a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                              cpyDest->getName(), C);
64712cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson      changedArgument = true;
64861c6ba85715fdcb66f746678879984151f1e5485Chris Lattner      if (CS.getArgument(i)->getType() == cpyDest->getType())
649009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson        CS.setArgument(i, cpyDest);
65061c6ba85715fdcb66f746678879984151f1e5485Chris Lattner      else
65161c6ba85715fdcb66f746678879984151f1e5485Chris Lattner        CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
65261c6ba85715fdcb66f746678879984151f1e5485Chris Lattner                          CS.getArgument(i)->getType(), cpyDest->getName(), C));
653a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
654a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
65512cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson  if (!changedArgument)
65612cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson    return false;
65712cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson
658a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Drop any cached information about the call, because we may have changed
659a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // its dependence information by changing its parameter.
66061c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
6614f8c18c7c757875cfa45383e7cf33d65d2c4d564Chris Lattner  MD.removeInstruction(C);
662a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
663a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Remove the memcpy
664a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MD.removeInstruction(cpy);
665fe60104ac97f3a8736dcfbfdf9547c7b7cc7b951Dan Gohman  ++NumMemCpyInstr;
666a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
667a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return true;
668a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
669a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
67043f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner/// processMemCpyMemCpyDependence - We've found that the (upward scanning)
67143f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner/// memory dependence of memcpy 'M' is the memcpy 'MDep'.  Try to simplify M to
67243f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner/// copy from MDep's input if we can.  MSize is the size of M's copy.
67343f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner///
67443f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattnerbool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
67543f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner                                              uint64_t MSize) {
676a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // We can only transforms memcpy's where the dest of one is the source of the
67743f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  // other.
678a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (M->getSource() != MDep->getDest())
679a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
680a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
681a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Second, the length of the memcpy's must be the same, or the preceeding one
682a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // must be larger than the following one.
68361c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
68443f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  if (!C1) return false;
685a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
686a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  uint64_t DepSize = C1->getValue().getZExtValue();
687a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
68843f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  if (DepSize < MSize)
689a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
690a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
6915a7aeaa01904b9b0adf256108f302f8961295754Chris Lattner  Intrinsic::ID ResultFn = Intrinsic::memcpy;
6925a7aeaa01904b9b0adf256108f302f8961295754Chris Lattner
6935a7aeaa01904b9b0adf256108f302f8961295754Chris Lattner  // If the dest of the second might alias the source of the first, then the
6945a7aeaa01904b9b0adf256108f302f8961295754Chris Lattner  // source and dest might overlap.  We still want to eliminate the intermediate
6955a7aeaa01904b9b0adf256108f302f8961295754Chris Lattner  // value, but we have to generate a memmove instead of memcpy.
69661c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
69712f7085027657957e08aea597b5c9fed44052969Chris Lattner  if (!AA.isNoAlias(M->getRawDest(), MSize, MDep->getRawSource(), DepSize))
6985a7aeaa01904b9b0adf256108f302f8961295754Chris Lattner    ResultFn = Intrinsic::memmove;
699a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
700a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If all checks passed, then we can transform these memcpy's
701245b7f6ec26a8d27c984da4cceb7cfc27abcba6bChris Lattner  const Type *ArgTys[3] = {
702245b7f6ec26a8d27c984da4cceb7cfc27abcba6bChris Lattner    M->getRawDest()->getType(),
70343f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner    MDep->getRawSource()->getType(),
704245b7f6ec26a8d27c984da4cceb7cfc27abcba6bChris Lattner    M->getLength()->getType()
705245b7f6ec26a8d27c984da4cceb7cfc27abcba6bChris Lattner  };
70643f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  Function *MemCpyFun =
70743f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner    Intrinsic::getDeclaration(M->getParent()->getParent()->getParent(),
7085a7aeaa01904b9b0adf256108f302f8961295754Chris Lattner                              ResultFn, ArgTys, 3);
70943f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner
71004fcbf954fef6d9866b5120f406e7401dc9aa29fEric Christopher  // Make sure to use the lesser of the alignment of the source and the dest
71104fcbf954fef6d9866b5120f406e7401dc9aa29fEric Christopher  // since we're changing where we're reading from, but don't want to increase
71204fcbf954fef6d9866b5120f406e7401dc9aa29fEric Christopher  // the alignment past what can be read from or written to.
713c69a00047013a0e2e07ae44c38e013a7d905b10eEric Christopher  // TODO: Is this worth it if we're creating a less aligned memcpy? For
714c69a00047013a0e2e07ae44c38e013a7d905b10eEric Christopher  // example we could be moving from movaps -> movq on x86.
71504fcbf954fef6d9866b5120f406e7401dc9aa29fEric Christopher  unsigned Align = std::min(MDep->getAlignmentCst()->getZExtValue(),
71604fcbf954fef6d9866b5120f406e7401dc9aa29fEric Christopher                            M->getAlignmentCst()->getZExtValue());
71704fcbf954fef6d9866b5120f406e7401dc9aa29fEric Christopher  LLVMContext &Context = M->getContext();
71804fcbf954fef6d9866b5120f406e7401dc9aa29fEric Christopher  ConstantInt *AlignCI = ConstantInt::get(Type::getInt32Ty(Context), Align);
71920adc9dc4650313f017b27d9818eb2176238113dMon P Wang  Value *Args[5] = {
72020adc9dc4650313f017b27d9818eb2176238113dMon P Wang    M->getRawDest(), MDep->getRawSource(), M->getLength(),
72104fcbf954fef6d9866b5120f406e7401dc9aa29fEric Christopher    AlignCI, M->getVolatileCst()
722dfe964ce8c367248e587f2d9ecc7fac5ee2c6fdcChris Lattner  };
72320adc9dc4650313f017b27d9818eb2176238113dMon P Wang  CallInst *C = CallInst::Create(MemCpyFun, Args, Args+5, "", M);
724a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
72543f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner
72643f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
72743f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner
72802e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // If C and M don't interfere, then this is a valid transformation.  If they
72902e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // did, this would mean that the two sources overlap, which would be bad.
73043f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  MemDepResult dep = MD.getDependency(C);
73143f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  if (dep.isClobber() && dep.getInst() == MDep) {
7324f8c18c7c757875cfa45383e7cf33d65d2c4d564Chris Lattner    MD.removeInstruction(M);
733a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    M->eraseFromParent();
734fe60104ac97f3a8736dcfbfdf9547c7b7cc7b951Dan Gohman    ++NumMemCpyInstr;
735a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return true;
736a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
737a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
73802e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // Otherwise, there was no point in doing this, so we remove the call we
73902e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // inserted and act like nothing happened.
740a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MD.removeInstruction(C);
741a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  C->eraseFromParent();
74202e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  return false;
743a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
744a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
74543f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner
74643f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner/// processMemCpy - perform simplification of memcpy's.  If we have memcpy A
74743f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
74843f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner/// B to be a memcpy from X to Z (or potentially a memmove, depending on
74943f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner/// circumstances). This allows later passes to remove the first memcpy
75043f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner/// altogether.
75143f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattnerbool MemCpyOpt::processMemCpy(MemCpyInst *M) {
75243f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
75343f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner
75443f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  // We can only optimize statically-sized memcpy's.
75543f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  ConstantInt *cpyLen = dyn_cast<ConstantInt>(M->getLength());
75643f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  if (!cpyLen) return false;
75743f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner
75843f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  // The are two possible optimizations we can do for memcpy:
75943f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  //   a) memcpy-memcpy xform which exposes redundance for DSE.
76043f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  //   b) call-memcpy xform for return slot optimization.
76143f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  MemDepResult dep = MD.getDependency(M);
76243f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  if (!dep.isClobber())
76343f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner    return false;
76443f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner
76543f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(dep.getInst()))
76643f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner    return processMemCpyMemCpyDependence(M, MDep, cpyLen->getZExtValue());
76743f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner
76843f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  if (CallInst *C = dyn_cast<CallInst>(dep.getInst())) {
76943f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner    bool changed = performCallSlotOptzn(M, M->getDest(), M->getSource(),
77043f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner                                        cpyLen->getZExtValue(), C);
77143f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner    if (changed) M->eraseFromParent();
77243f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner    return changed;
77343f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  }
77443f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner  return false;
77543f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner}
77643f8e43eb2a166f50c3a077040d8bdb24104433aChris Lattner
777f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
778f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner/// are guaranteed not to alias.
779f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattnerbool MemCpyOpt::processMemMove(MemMoveInst *M) {
780f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
781f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner
782f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  // If the memmove is a constant size, use it for the alias query, this allows
783f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  // us to optimize things like: memmove(P, P+64, 64);
7843da848bbda62b25c12335998aaa44ab361f0bf15Dan Gohman  uint64_t MemMoveSize = AliasAnalysis::UnknownSize;
785f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  if (ConstantInt *Len = dyn_cast<ConstantInt>(M->getLength()))
786f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner    MemMoveSize = Len->getZExtValue();
787f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner
788f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  // See if the pointers alias.
789f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  if (AA.alias(M->getRawDest(), MemMoveSize, M->getRawSource(), MemMoveSize) !=
790f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner      AliasAnalysis::NoAlias)
791f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner    return false;
792f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner
793cb33fd17cce475a1d47b2695e311b6934ad0ef86David Greene  DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
794f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner
795f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  // If not, then we know we can transform this.
796f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  Module *Mod = M->getParent()->getParent()->getParent();
79720adc9dc4650313f017b27d9818eb2176238113dMon P Wang  const Type *ArgTys[3] = { M->getRawDest()->getType(),
79820adc9dc4650313f017b27d9818eb2176238113dMon P Wang                            M->getRawSource()->getType(),
79920adc9dc4650313f017b27d9818eb2176238113dMon P Wang                            M->getLength()->getType() };
800a399781289092fcdceb58b21174229f4373c4191Gabor Greif  M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
801a399781289092fcdceb58b21174229f4373c4191Gabor Greif                                                 ArgTys, 3));
80205cd03b33559732f8ed55e5ff7554fd06d59eb6aDuncan Sands
803f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  // MemDep may have over conservative information about this instruction, just
804f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  // conservatively flush it from the cache.
805f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  getAnalysis<MemoryDependenceAnalysis>().removeInstruction(M);
80605cd03b33559732f8ed55e5ff7554fd06d59eb6aDuncan Sands
80705cd03b33559732f8ed55e5ff7554fd06d59eb6aDuncan Sands  ++NumMoveToCpy;
808f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner  return true;
809f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner}
810f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner
811f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner
81261c6ba85715fdcb66f746678879984151f1e5485Chris Lattner// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN.
813a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonbool MemCpyOpt::iterateOnFunction(Function &F) {
81461c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  bool MadeChange = false;
815a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
81661c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  // Walk all instruction in the function.
817a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
818a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
819a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson         BI != BE;) {
82061c6ba85715fdcb66f746678879984151f1e5485Chris Lattner      // Avoid invalidating the iterator.
82161c6ba85715fdcb66f746678879984151f1e5485Chris Lattner      Instruction *I = BI++;
822a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
823a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson      if (StoreInst *SI = dyn_cast<StoreInst>(I))
82461c6ba85715fdcb66f746678879984151f1e5485Chris Lattner        MadeChange |= processStore(SI, BI);
82561c6ba85715fdcb66f746678879984151f1e5485Chris Lattner      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
82661c6ba85715fdcb66f746678879984151f1e5485Chris Lattner        MadeChange |= processMemCpy(M);
827f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner      else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) {
828f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner        if (processMemMove(M)) {
829f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner          --BI;         // Reprocess the new memcpy.
830f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner          MadeChange = true;
831f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner        }
832f41eaacee4a4a2d4339dd553626d98c73650c8c7Chris Lattner      }
833a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
834a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
835a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
83661c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  return MadeChange;
837a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
83861c6ba85715fdcb66f746678879984151f1e5485Chris Lattner
83961c6ba85715fdcb66f746678879984151f1e5485Chris Lattner// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
84061c6ba85715fdcb66f746678879984151f1e5485Chris Lattner// function.
84161c6ba85715fdcb66f746678879984151f1e5485Chris Lattner//
84261c6ba85715fdcb66f746678879984151f1e5485Chris Lattnerbool MemCpyOpt::runOnFunction(Function &F) {
84361c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  bool MadeChange = false;
84461c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  while (1) {
84561c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    if (!iterateOnFunction(F))
84661c6ba85715fdcb66f746678879984151f1e5485Chris Lattner      break;
84761c6ba85715fdcb66f746678879984151f1e5485Chris Lattner    MadeChange = true;
84861c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  }
84961c6ba85715fdcb66f746678879984151f1e5485Chris Lattner
85061c6ba85715fdcb66f746678879984151f1e5485Chris Lattner  return MadeChange;
85161c6ba85715fdcb66f746678879984151f1e5485Chris Lattner}
85261c6ba85715fdcb66f746678879984151f1e5485Chris Lattner
85361c6ba85715fdcb66f746678879984151f1e5485Chris Lattner
85461c6ba85715fdcb66f746678879984151f1e5485Chris Lattner
855