MemCpyOptimizer.cpp revision e922c0201916e0b980ab3cfe91e1413e68d55647
1a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
3a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//                     The LLVM Compiler Infrastructure
4a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
5a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// This file is distributed under the University of Illinois Open Source
6a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// License. See LICENSE.TXT for details.
7a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
8a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
9a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
10a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// This pass performs various transformations related to eliminating memcpy
11a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// calls, or transforming sets of stores into memset's.
12a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
13a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
14a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
15a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#define DEBUG_TYPE "memcpyopt"
16a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Transforms/Scalar.h"
17a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/IntrinsicInst.h"
18a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Instructions.h"
19fa5cbd6d0fbda23fd669c8718e07b19001b2d21aOwen Anderson#include "llvm/LLVMContext.h"
20a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/ADT/SmallVector.h"
21a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/ADT/Statistic.h"
22a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Analysis/Dominators.h"
23a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Analysis/AliasAnalysis.h"
24a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Analysis/MemoryDependenceAnalysis.h"
25a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Support/Debug.h"
26a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Support/GetElementPtrTypeIterator.h"
27a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include "llvm/Target/TargetData.h"
28a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson#include <list>
29a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonusing namespace llvm;
30a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
31a723d1e48f4a261512c28845c53eda569fa5218cOwen AndersonSTATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
32a723d1e48f4a261512c28845c53eda569fa5218cOwen AndersonSTATISTIC(NumMemSetInfer, "Number of memsets inferred");
33a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
34a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// isBytewiseValue - If the specified value can be set by repeating the same
35a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// byte in memory, return the i8 value that it is represented with.  This is
36a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
37a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
38a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// byte store (e.g. i16 0x1234), return null.
39e922c0201916e0b980ab3cfe91e1413e68d55647Owen Andersonstatic Value *isBytewiseValue(Value *V, LLVMContext& Context) {
40a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // All byte-wide stores are splatable, even of arbitrary variables.
41a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (V->getType() == Type::Int8Ty) return V;
42a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
43a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Constant float and double values can be handled as integer values if the
44a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // corresponding integer value is "byteable".  An important case is 0.0.
45a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
46a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (CFP->getType() == Type::FloatTy)
47e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson      V = Context.getConstantExprBitCast(CFP, Type::Int32Ty);
48a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (CFP->getType() == Type::DoubleTy)
49e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson      V = Context.getConstantExprBitCast(CFP, Type::Int64Ty);
50a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Don't handle long double formats, which have strange constraints.
51a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
52a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
53a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // We can handle constant integers that are power of two in size and a
54a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // multiple of 8 bits.
55a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
56a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    unsigned Width = CI->getBitWidth();
57a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (isPowerOf2_32(Width) && Width > 8) {
58a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // We can handle this value if the recursive binary decomposition is the
59a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // same at all levels.
60a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      APInt Val = CI->getValue();
61a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      APInt Val2;
62a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      while (Val.getBitWidth() != 8) {
63a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        unsigned NextWidth = Val.getBitWidth()/2;
64a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        Val2  = Val.lshr(NextWidth);
65a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        Val2.trunc(Val.getBitWidth()/2);
66a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        Val.trunc(Val.getBitWidth()/2);
67a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
68a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        // If the top/bottom halves aren't the same, reject it.
69a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        if (Val != Val2)
70a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson          return 0;
71a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      }
72e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson      return Context.getConstantInt(Val);
73a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
74a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
75a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
76a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Conceptually, we could handle things like:
77a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   %a = zext i8 %X to i16
78a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   %b = shl i16 %a, 8
79a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   %c = or i16 %a, %b
80a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // but until there is an example that actually needs this, it doesn't seem
81a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // worth worrying about.
82a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return 0;
83a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
84a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
85a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstatic int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
86a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                  bool &VariableIdxFound, TargetData &TD) {
87a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Skip over the first indices.
88a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  gep_type_iterator GTI = gep_type_begin(GEP);
89a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (unsigned i = 1; i != Idx; ++i, ++GTI)
90a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    /*skip along*/;
91a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
92a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Compute the offset implied by the rest of the indices.
93a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Offset = 0;
94a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
95a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
96a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (OpC == 0)
97a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return VariableIdxFound = true;
98a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (OpC->isZero()) continue;  // No offset.
99a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
100a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Handle struct indices, which add their field offset to the pointer.
101a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
102a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
103a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      continue;
104a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
105a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
106a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Otherwise, we have a sequential type like an array or vector.  Multiply
107a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // the index by the ElementSize.
108777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
109a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    Offset += Size*OpC->getSExtValue();
110a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
111a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
112a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return Offset;
113a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
114a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
115a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
116a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// constant offset, and return that constant offset.  For example, Ptr1 might
117a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
118a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstatic bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
119a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                            TargetData &TD) {
120a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
121a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // base.  After that base, they may have some number of common (and
122a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // potentially variable) indices.  After that they handle some constant
123a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // offset, which determines their offset from each other.  At this point, we
124a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // handle no other case.
125a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
126a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
127a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
128a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
129a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
130a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Skip any common indices and track the GEP types.
131a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned Idx = 1;
132a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
133a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
134a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
135a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
136a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool VariableIdxFound = false;
137a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
138a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
139a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (VariableIdxFound) return false;
140a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
141a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Offset = Offset2-Offset1;
142a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return true;
143a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
144a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
145a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
146a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
147a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// This allows us to analyze stores like:
148a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+1
149a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+0
150a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+3
151a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///   store 0 -> P+2
152a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// which sometimes happens with stores to arrays of structs etc.  When we see
153a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// the first store, we make a range [1, 2).  The second store extends the range
154a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
155a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// two ranges into [0, 3) which is memset'able.
156a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonnamespace {
157a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstruct MemsetRange {
158a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Start/End - A semi range that describes the span that this range covers.
159a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // The range is closed at the start and open at the end: [Start, End).
160a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t Start, End;
161a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
162a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// StartPtr - The getelementptr instruction that points to the start of the
163a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// range.
164a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Value *StartPtr;
165a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
166a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// Alignment - The known alignment of the first store.
167a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned Alignment;
168a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
169a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// TheStores - The actual stores that make up this range.
170a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  SmallVector<StoreInst*, 16> TheStores;
171a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
172a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool isProfitableToUseMemset(const TargetData &TD) const;
173a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
174a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson};
175a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson} // end anon namespace
176a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
177a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonbool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
178a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we found more than 8 stores to merge or 64 bytes, use memset.
179a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (TheStores.size() >= 8 || End-Start >= 64) return true;
180a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
181a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Assume that the code generator is capable of merging pairs of stores
182a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // together if it wants to.
183a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (TheStores.size() <= 2) return false;
184a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
185a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we have fewer than 8 stores, it can still be worthwhile to do this.
186a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // For example, merging 4 i8 stores into an i32 store is useful almost always.
187a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
188a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // memset will be split into 2 32-bit stores anyway) and doing so can
189a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // pessimize the llvm optimizer.
190a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
191a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Since we don't have perfect knowledge here, make some assumptions: assume
192a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the maximum GPR width is the same size as the pointer size and assume that
193a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // this width can be stored.  If so, check to see whether we will end up
194a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // actually reducing the number of stores used.
195a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned Bytes = unsigned(End-Start);
196a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned NumPointerStores = Bytes/TD.getPointerSize();
197a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
198a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Assume the remaining bytes if any are done a byte at a time.
199a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
200a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
201a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we will reduce the # stores (according to this heuristic), do the
202a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
203a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // etc.
204a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return TheStores.size() > NumPointerStores+NumByteStores;
205a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
206a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
207a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
208a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonnamespace {
209a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonclass MemsetRanges {
210a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// Ranges - A sorted list of the memset ranges.  We use std::list here
211a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  /// because each element is relatively large and expensive to copy.
212a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  std::list<MemsetRange> Ranges;
213a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  typedef std::list<MemsetRange>::iterator range_iterator;
214a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  TargetData &TD;
215a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonpublic:
216a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MemsetRanges(TargetData &td) : TD(td) {}
217a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
218a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  typedef std::list<MemsetRange>::const_iterator const_iterator;
219a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  const_iterator begin() const { return Ranges.begin(); }
220a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  const_iterator end() const { return Ranges.end(); }
221a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool empty() const { return Ranges.empty(); }
222a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
223a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  void addStore(int64_t OffsetFromFirst, StoreInst *SI);
224a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson};
225a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
226a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson} // end anon namespace
227a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
228a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
229a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// addStore - Add a new store to the MemsetRanges data structure.  This adds a
230a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// new range for the specified store at the specified offset, merging into
231a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// existing ranges as appropriate.
232a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonvoid MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
233a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
234a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
235a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Do a linear search of the ranges to see if this can be joined and/or to
236a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // find the insertion point in the list.  We keep the ranges sorted for
237a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // simplicity here.  This is a linear search of a linked list, which is ugly,
238a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // however the number of ranges is limited, so this won't get crazy slow.
239a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  range_iterator I = Ranges.begin(), E = Ranges.end();
240a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
241a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  while (I != E && Start > I->End)
242a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    ++I;
243a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
244a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // We now know that I == E, in which case we didn't find anything to merge
245a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
246a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // to insert a new range.  Handle this now.
247a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (I == E || End < I->Start) {
248a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    MemsetRange &R = *Ranges.insert(I, MemsetRange());
249a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.Start        = Start;
250a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.End          = End;
251a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.StartPtr     = SI->getPointerOperand();
252a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.Alignment    = SI->getAlignment();
253a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    R.TheStores.push_back(SI);
254a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return;
255a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
256a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
257a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // This store overlaps with I, add it.
258a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  I->TheStores.push_back(SI);
259a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
260a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // At this point, we may have an interval that completely contains our store.
261a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If so, just add it to the interval and return.
262a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (I->Start <= Start && I->End >= End)
263a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return;
264a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
265a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
266a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // but is not entirely contained within the range.
267a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
268a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // See if the range extends the start of the range.  In this case, it couldn't
269a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // possibly cause it to join the prior range, because otherwise we would have
270a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // stopped on *it*.
271a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (Start < I->Start) {
272a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    I->Start = Start;
273a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    I->StartPtr = SI->getPointerOperand();
274a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
275a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
276a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
277a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
278a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // End.
279a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (End > I->End) {
280a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    I->End = End;
2819c0f146d50ccc3ba780d4854b8e14422430013efNick Lewycky    range_iterator NextI = I;
282a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    while (++NextI != E && End >= NextI->Start) {
283a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // Merge the range in.
284a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
285a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      if (NextI->End > I->End)
286a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        I->End = NextI->End;
287a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      Ranges.erase(NextI);
288a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      NextI = I;
289a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
290a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
291a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
292a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
293a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
294a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//                         MemCpyOpt Pass
295a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//===----------------------------------------------------------------------===//
296a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
297a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonnamespace {
298a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
299a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  class VISIBILITY_HIDDEN MemCpyOpt : public FunctionPass {
300a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    bool runOnFunction(Function &F);
301a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  public:
302a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    static char ID; // Pass identification, replacement for typeid
303ae73dc1448d25b02cabc7c64c86c64371453dda8Dan Gohman    MemCpyOpt() : FunctionPass(&ID) {}
304a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
305a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  private:
306a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // This transformation requires dominator postdominator info
307a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
308a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.setPreservesCFG();
309a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addRequired<DominatorTree>();
310a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addRequired<MemoryDependenceAnalysis>();
311a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addRequired<AliasAnalysis>();
312a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addRequired<TargetData>();
313a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addPreserved<AliasAnalysis>();
314a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addPreserved<MemoryDependenceAnalysis>();
315a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AU.addPreserved<TargetData>();
316a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
317a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
318a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Helper fuctions
319a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    bool processStore(StoreInst *SI, BasicBlock::iterator& BBI);
320a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    bool processMemCpy(MemCpyInst* M);
321a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C);
322a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    bool iterateOnFunction(Function &F);
323a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  };
324a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
325a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  char MemCpyOpt::ID = 0;
326a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
327a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
328a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// createMemCpyOptPass - The public interface to this file...
329a723d1e48f4a261512c28845c53eda569fa5218cOwen AndersonFunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
330a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
331a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonstatic RegisterPass<MemCpyOpt> X("memcpyopt",
332a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                 "MemCpy Optimization");
333a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
334a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
335a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
336a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// processStore - When GVN is scanning forward over instructions, we look for
337a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// some other patterns to fold away.  In particular, this looks for stores to
338a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// neighboring locations of memory.  If it sees enough consequtive ones
339a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// (currently 4) it attempts to merge them together into a memcpy/memset.
340a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Andersonbool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
341a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (SI->isVolatile()) return false;
342a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
343a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // There are two cases that are interesting for this code to handle: memcpy
344a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // and memset.  Right now we only handle memset.
345a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
346a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Ensure that the value being stored is something that can be memset'able a
347a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // byte at a time like "0" or "-1" or any width, as well as things like
348a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // 0xA0A0A0A0 and 0.0.
349e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson  Value *ByteVal = isBytewiseValue(SI->getOperand(0), SI->getContext());
350a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!ByteVal)
351a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
352a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
353a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  TargetData &TD = getAnalysis<TargetData>();
354a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
355a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
356a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Okay, so we now have a single store that can be splatable.  Scan to find
357a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // all subsequent stores of the same value to offset from the same pointer.
358a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Join these together into ranges, so we can decide whether contiguous blocks
359a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // are stored.
360a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MemsetRanges Ranges(TD);
361a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
362a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Value *StartPtr = SI->getPointerOperand();
363a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
364a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  BasicBlock::iterator BI = SI;
365a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
366a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
367a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // If the call is readnone, ignore it, otherwise bail out.  We don't even
368a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // allow readonly here because we don't want something like:
369a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
370a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      if (AA.getModRefBehavior(CallSite::get(BI)) ==
371a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson            AliasAnalysis::DoesNotAccessMemory)
372a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        continue;
373a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
374a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      // TODO: If this is a memset, try to join it in.
375a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
376a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
377a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
378a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
379a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
380a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If this is a non-store instruction it is fine, ignore it.
381a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    StoreInst *NextStore = dyn_cast<StoreInst>(BI);
382a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (NextStore == 0) continue;
383a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
384a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If this is a store, see if we can merge it in.
385a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (NextStore->isVolatile()) break;
386a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
387a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Check to see if this stored value is of the same byte-splattable value.
388e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson    if (ByteVal != isBytewiseValue(NextStore->getOperand(0),
389e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson                                   NextStore->getContext()))
390a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
391a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
392a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Check to see if this store is to a constant offset from the start ptr.
393a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    int64_t Offset;
394a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, TD))
395a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      break;
396a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
397a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    Ranges.addStore(Offset, NextStore);
398a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
399a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
400a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we have no ranges, then we just had a single store with nothing that
401a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // could be merged in.  This is a very common case of course.
402a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (Ranges.empty())
403a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
404a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
405a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If we had at least one store that could be merged in, add the starting
406a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // store as well.  We try to avoid this unless there is at least something
407a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // interesting as a small compile-time optimization.
408a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Ranges.addStore(0, SI);
409a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
410a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
411a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Function *MemSetF = 0;
412a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
413a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Now that we have full information about ranges, loop over the ranges and
414a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // emit memset's for anything big enough to be worthwhile.
415a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool MadeChange = false;
416a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
417a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson       I != E; ++I) {
418a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    const MemsetRange &Range = *I;
419a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
420a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (Range.TheStores.size() == 1) continue;
421a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
422a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If it is profitable to lower this range to memset, do so now.
423a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!Range.isProfitableToUseMemset(TD))
424a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      continue;
425a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
426a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Otherwise, we do want to transform this!  Create a new memset.  We put
427a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // the memset right before the first instruction that isn't part of this
428a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // memset block.  This ensure that the memset is dominated by any addressing
429a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // instruction needed by the start of the block.
430a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    BasicBlock::iterator InsertPt = BI;
431a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
432824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner    if (MemSetF == 0) {
433824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner      const Type *Tys[] = {Type::Int64Ty};
434a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      MemSetF = Intrinsic::getDeclaration(SI->getParent()->getParent()
435824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner                                          ->getParent(), Intrinsic::memset,
436824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner                                          Tys, 1);
437824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner   }
438a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
439a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Get the starting pointer of the block.
440a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    StartPtr = Range.StartPtr;
441a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
442a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Cast the start ptr to be i8* as memset requires.
443e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson    const Type *i8Ptr = SI->getContext().getPointerTypeUnqual(Type::Int8Ty);
444a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (StartPtr->getType() != i8Ptr)
445a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getNameStart(),
446a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                 InsertPt);
447a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
448a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    Value *Ops[] = {
449a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      StartPtr, ByteVal,   // Start, value
450e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson      // size
451e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson      SI->getContext().getConstantInt(Type::Int64Ty, Range.End-Range.Start),
452e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson      // align
453e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson      SI->getContext().getConstantInt(Type::Int32Ty, Range.Alignment)
454a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    };
455a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    Value *C = CallInst::Create(MemSetF, Ops, Ops+4, "", InsertPt);
456a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    DEBUG(cerr << "Replace stores:\n";
457a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
458a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson            cerr << *Range.TheStores[i];
459a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson          cerr << "With: " << *C); C=C;
460a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
461a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    // Don't invalidate the iterator
462a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    BBI = BI;
463a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson
464a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // Zap all the stores.
465a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    for (SmallVector<StoreInst*, 16>::const_iterator SI = Range.TheStores.begin(),
466a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson         SE = Range.TheStores.end(); SI != SE; ++SI)
467a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson      (*SI)->eraseFromParent();
468a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    ++NumMemSetInfer;
469a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    MadeChange = true;
470a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
471a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
472a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return MadeChange;
473a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
474a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
475a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
476a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
477a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// and checks for the possibility of a call slot optimization by having
478a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// the call write its result directly into the destination of the memcpy.
479a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Andersonbool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
480a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // The general transformation to keep in mind is
481a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
482a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   call @func(..., src, ...)
483a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   memcpy(dest, src, ...)
484a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
485a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // ->
486a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
487a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   memcpy(dest, src, ...)
488a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //   call @func(..., dest, ...)
489a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  //
490a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Since moving the memcpy is technically awkward, we additionally check that
491a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // src only holds uninitialized values at the moment of the call, meaning that
492a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the memcpy can be discarded rather than moved.
493a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
494a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Deliberately get the source and destination with bitcasts stripped away,
495a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // because we'll need to do type comparisons based on the underlying type.
496a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Value* cpyDest = cpy->getDest();
497a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Value* cpySrc = cpy->getSource();
498a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  CallSite CS = CallSite::get(C);
499a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
500a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // We need to be able to reason about the size of the memcpy, so we require
501a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // that it be a constant.
502a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  ConstantInt* cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
503a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!cpyLength)
504a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
505a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
506a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Require that src be an alloca.  This simplifies the reasoning considerably.
507a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  AllocaInst* srcAlloca = dyn_cast<AllocaInst>(cpySrc);
508a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!srcAlloca)
509a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
510a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
511a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Check that all of src is copied to dest.
512a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  TargetData& TD = getAnalysis<TargetData>();
513a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
514a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  ConstantInt* srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
515a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!srcArraySize)
516a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
517a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
518777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands  uint64_t srcSize = TD.getTypeAllocSize(srcAlloca->getAllocatedType()) *
519a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    srcArraySize->getZExtValue();
520a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
521a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (cpyLength->getZExtValue() < srcSize)
522a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
523a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
524a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Check that accessing the first srcSize bytes of dest will not cause a
525a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // trap.  Otherwise the transform is invalid since it might cause a trap
526a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // to occur earlier than it otherwise would.
527a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (AllocaInst* A = dyn_cast<AllocaInst>(cpyDest)) {
528a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // The destination is an alloca.  Check it is larger than srcSize.
529a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    ConstantInt* destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
530a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!destArraySize)
531a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
532a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
533777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands    uint64_t destSize = TD.getTypeAllocSize(A->getAllocatedType()) *
534a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      destArraySize->getZExtValue();
535a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
536a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (destSize < srcSize)
537a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
538a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  } else if (Argument* A = dyn_cast<Argument>(cpyDest)) {
539a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // If the destination is an sret parameter then only accesses that are
540a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    // outside of the returned struct type can trap.
541a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!A->hasStructRetAttr())
542a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
543a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
544a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    const Type* StructTy = cast<PointerType>(A->getType())->getElementType();
545777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands    uint64_t destSize = TD.getTypeAllocSize(StructTy);
546a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
547a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (destSize < srcSize)
548a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
549a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  } else {
550a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
551a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
552a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
553a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Check that src is not accessed except via the call and the memcpy.  This
554a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // guarantees that it holds only undefined values when passed in (so the final
555a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // memcpy can be dropped), that it is not read or written between the call and
556a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the memcpy, and that writing beyond the end of it is undefined.
557a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
558a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                   srcAlloca->use_end());
559a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  while (!srcUseList.empty()) {
560a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    User* UI = srcUseList.back();
561a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    srcUseList.pop_back();
562a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
563009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson    if (isa<BitCastInst>(UI)) {
564a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
565a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson           I != E; ++I)
566a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson        srcUseList.push_back(*I);
567009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson    } else if (GetElementPtrInst* G = dyn_cast<GetElementPtrInst>(UI)) {
568009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson      if (G->hasAllZeroIndices())
569009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson        for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
570009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson             I != E; ++I)
571009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson          srcUseList.push_back(*I);
572009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson      else
573009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson        return false;
574a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    } else if (UI != C && UI != cpy) {
575a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
576a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
577a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
578a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
579a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Since we're changing the parameter to the callsite, we need to make sure
580a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // that what would be the new parameter dominates the callsite.
581a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  DominatorTree& DT = getAnalysis<DominatorTree>();
582a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (Instruction* cpyDestInst = dyn_cast<Instruction>(cpyDest))
583a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    if (!DT.dominates(cpyDestInst, C))
584a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      return false;
585a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
586a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // In addition to knowing that the call does not access src in some
587a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // unexpected manner, for example via a global, which we deduce from
588a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // the use analysis, we also need to know that it does not sneakily
589a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // access dest.  We rely on AA to figure this out for us.
590a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
591a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) !=
592a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AliasAnalysis::NoModRef)
593a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
594a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
595a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // All the checks have passed, so do the transformation.
59612cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson  bool changedArgument = false;
597a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  for (unsigned i = 0; i < CS.arg_size(); ++i)
598009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
599a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      if (cpySrc->getType() != cpyDest->getType())
6007cbd8a3e92221437048b484d5ef9c0a22d0f8c58Gabor Greif        cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
601a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                              cpyDest->getName(), C);
60212cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson      changedArgument = true;
603009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson      if (CS.getArgument(i)->getType() != cpyDest->getType())
604009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson        CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
605009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson                       CS.getArgument(i)->getType(), cpyDest->getName(), C));
606009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson      else
607009e4f760969e3530cc2641a9599e646a20580c2Owen Anderson        CS.setArgument(i, cpyDest);
608a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
609a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
61012cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson  if (!changedArgument)
61112cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson    return false;
61212cb36c11564e2a7cf85b4b29bddab5c5fd63cf5Owen Anderson
613a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Drop any cached information about the call, because we may have changed
614a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // its dependence information by changing its parameter.
615a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
6164f8c18c7c757875cfa45383e7cf33d65d2c4d564Chris Lattner  MD.removeInstruction(C);
617a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
618a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Remove the memcpy
619a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MD.removeInstruction(cpy);
620a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  cpy->eraseFromParent();
621a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  NumMemCpyInstr++;
622a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
623a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return true;
624a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
625a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
626a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// processMemCpy - perform simplication of memcpy's.  If we have memcpy A which
627a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
628a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson/// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
629a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson///  This allows later passes to remove the first memcpy altogether.
630a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Andersonbool MemCpyOpt::processMemCpy(MemCpyInst* M) {
631a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
632a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson
633a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  // The are two possible optimizations we can do for memcpy:
634a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  //   a) memcpy-memcpy xform which exposes redundance for DSE
635a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  //   b) call-memcpy xform for return slot optimization
6364c724006256032e827177afeae04ea62436796e7Chris Lattner  MemDepResult dep = MD.getDependency(M);
637b51deb929ca95ce62e622b0475a05d83f26ab04dChris Lattner  if (!dep.isClobber())
638a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    return false;
639b51deb929ca95ce62e622b0475a05d83f26ab04dChris Lattner  if (!isa<MemCpyInst>(dep.getInst())) {
6404c724006256032e827177afeae04ea62436796e7Chris Lattner    if (CallInst* C = dyn_cast<CallInst>(dep.getInst()))
6419dcace3cafb4da5c3d94f3b89e54ea0d7164a286Owen Anderson      return performCallSlotOptzn(M, C);
642b51deb929ca95ce62e622b0475a05d83f26ab04dChris Lattner    return false;
6439dcace3cafb4da5c3d94f3b89e54ea0d7164a286Owen Anderson  }
644a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson
6454c724006256032e827177afeae04ea62436796e7Chris Lattner  MemCpyInst* MDep = cast<MemCpyInst>(dep.getInst());
646a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson
647a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // We can only transforms memcpy's where the dest of one is the source of the
648a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // other
649a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (M->getSource() != MDep->getDest())
650a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
651a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
652a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Second, the length of the memcpy's must be the same, or the preceeding one
653a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // must be larger than the following one.
654a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  ConstantInt* C1 = dyn_cast<ConstantInt>(MDep->getLength());
655a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  ConstantInt* C2 = dyn_cast<ConstantInt>(M->getLength());
656a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (!C1 || !C2)
657a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
658a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
659a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  uint64_t DepSize = C1->getValue().getZExtValue();
660a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  uint64_t CpySize = C2->getValue().getZExtValue();
661a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
662a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (DepSize < CpySize)
663a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
664a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
665a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // Finally, we have to make sure that the dest of the second does not
666a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // alias the source of the first
667a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
668a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) !=
669a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson      AliasAnalysis::NoAlias)
670a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
671a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) !=
672a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson           AliasAnalysis::NoAlias)
673a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
674a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize)
675a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson           != AliasAnalysis::NoAlias)
676a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return false;
677a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
678a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  // If all checks passed, then we can transform these memcpy's
679824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner  const Type *Tys[1];
680824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner  Tys[0] = M->getLength()->getType();
681a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  Function* MemCpyFun = Intrinsic::getDeclaration(
682a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson                                 M->getParent()->getParent()->getParent(),
683824b958e6fb1236e92e4d07f3acf18fca107cdc0Chris Lattner                                 M->getIntrinsicID(), Tys, 1);
684a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
685dfe964ce8c367248e587f2d9ecc7fac5ee2c6fdcChris Lattner  Value *Args[4] = {
686dfe964ce8c367248e587f2d9ecc7fac5ee2c6fdcChris Lattner    M->getRawDest(), MDep->getRawSource(), M->getLength(), M->getAlignmentCst()
687dfe964ce8c367248e587f2d9ecc7fac5ee2c6fdcChris Lattner  };
688a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
689dfe964ce8c367248e587f2d9ecc7fac5ee2c6fdcChris Lattner  CallInst* C = CallInst::Create(MemCpyFun, Args, Args+4, "", M);
690a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
69102e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson
69202e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // If C and M don't interfere, then this is a valid transformation.  If they
69302e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // did, this would mean that the two sources overlap, which would be bad.
69439f372e23e49cecb8db2eb7120eb331173e50c74Chris Lattner  if (MD.getDependency(C) == dep) {
6954f8c18c7c757875cfa45383e7cf33d65d2c4d564Chris Lattner    MD.removeInstruction(M);
696a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson    M->eraseFromParent();
69702e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson    NumMemCpyInstr++;
698a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    return true;
699a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
700a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
70102e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // Otherwise, there was no point in doing this, so we remove the call we
70202e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  // inserted and act like nothing happened.
703a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  MD.removeInstruction(C);
704a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  C->eraseFromParent();
70502e9988020acb3e8b0271aa9ebc7c8e770c8a85fOwen Anderson  return false;
706a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
707a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
708a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
709a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// function.
710a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson//
711a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonbool MemCpyOpt::runOnFunction(Function& F) {
712a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
713a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool changed = false;
714a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool shouldContinue = true;
715a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
716a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  while (shouldContinue) {
717a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    shouldContinue = iterateOnFunction(F);
718a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    changed |= shouldContinue;
719a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
720a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
721a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return changed;
722a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
723a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
724a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
725a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN
726a723d1e48f4a261512c28845c53eda569fa5218cOwen Andersonbool MemCpyOpt::iterateOnFunction(Function &F) {
727a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  bool changed_function = false;
728a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
729a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  // Walk all instruction in the function
730a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
731a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
732a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson         BI != BE;) {
733a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson      // Avoid invalidating the iterator
734a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson      Instruction* I = BI++;
735a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
736a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson      if (StoreInst *SI = dyn_cast<StoreInst>(I))
737a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson        changed_function |= processStore(SI, BI);
738529bd53411c6f583fd8ed435adf4c0f923d185fdTorok Edwin      else if (MemCpyInst* M = dyn_cast<MemCpyInst>(I)) {
739a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson        changed_function |= processMemCpy(M);
740a8bd65835be9e1ce07f5006e92625ec4e9fa387aOwen Anderson      }
741a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson    }
742a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  }
743a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson
744a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson  return changed_function;
745a723d1e48f4a261512c28845c53eda569fa5218cOwen Anderson}
746