BreakCriticalEdges.cpp revision 81e480463d8bb57776d03cebfd083762909023f1
1//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11// inserting a dummy basic block.  This pass may be "required" by passes that
12// cannot deal with critical edges.  For this usage, the structure type is
13// forward declared.  This pass obviously invalidates the CFG, but can update
14// dominator trees.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "break-crit-edges"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/Analysis/Dominators.h"
24#include "llvm/Analysis/LoopInfo.h"
25#include "llvm/Analysis/ProfileInfo.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/Instructions.h"
28#include "llvm/IR/Type.h"
29#include "llvm/Support/CFG.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Transforms/Utils/BasicBlockUtils.h"
32using namespace llvm;
33
34STATISTIC(NumBroken, "Number of blocks inserted");
35
36namespace {
37  struct BreakCriticalEdges : public FunctionPass {
38    static char ID; // Pass identification, replacement for typeid
39    BreakCriticalEdges() : FunctionPass(ID) {
40      initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
41    }
42
43    virtual bool runOnFunction(Function &F);
44
45    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
46      AU.addPreserved<DominatorTree>();
47      AU.addPreserved<LoopInfo>();
48      AU.addPreserved<ProfileInfo>();
49
50      // No loop canonicalization guarantees are broken by this pass.
51      AU.addPreservedID(LoopSimplifyID);
52    }
53  };
54}
55
56char BreakCriticalEdges::ID = 0;
57INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
58                "Break critical edges in CFG", false, false)
59
60// Publicly exposed interface to pass...
61char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
62FunctionPass *llvm::createBreakCriticalEdgesPass() {
63  return new BreakCriticalEdges();
64}
65
66// runOnFunction - Loop over all of the edges in the CFG, breaking critical
67// edges as they are found.
68//
69bool BreakCriticalEdges::runOnFunction(Function &F) {
70  bool Changed = false;
71  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
72    TerminatorInst *TI = I->getTerminator();
73    if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
74      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
75        if (SplitCriticalEdge(TI, i, this)) {
76          ++NumBroken;
77          Changed = true;
78        }
79  }
80
81  return Changed;
82}
83
84//===----------------------------------------------------------------------===//
85//    Implementation of the external critical edge manipulation functions
86//===----------------------------------------------------------------------===//
87
88/// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
89/// may require new PHIs in the new exit block. This function inserts the
90/// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
91/// is the new loop exit block, and DestBB is the old loop exit, now the
92/// successor of SplitBB.
93static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
94                                       BasicBlock *SplitBB,
95                                       BasicBlock *DestBB) {
96  // SplitBB shouldn't have anything non-trivial in it yet.
97  assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
98          SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
99
100  // For each PHI in the destination block.
101  for (BasicBlock::iterator I = DestBB->begin();
102       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
103    unsigned Idx = PN->getBasicBlockIndex(SplitBB);
104    Value *V = PN->getIncomingValue(Idx);
105
106    // If the input is a PHI which already satisfies LCSSA, don't create
107    // a new one.
108    if (const PHINode *VP = dyn_cast<PHINode>(V))
109      if (VP->getParent() == SplitBB)
110        continue;
111
112    // Otherwise a new PHI is needed. Create one and populate it.
113    PHINode *NewPN =
114      PHINode::Create(PN->getType(), Preds.size(), "split",
115                      SplitBB->isLandingPad() ?
116                      SplitBB->begin() : SplitBB->getTerminator());
117    for (unsigned i = 0, e = Preds.size(); i != e; ++i)
118      NewPN->addIncoming(V, Preds[i]);
119
120    // Update the original PHI.
121    PN->setIncomingValue(Idx, NewPN);
122  }
123}
124
125/// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
126/// split the critical edge.  This will update DominatorTree information if it
127/// is available, thus calling this pass will not invalidate either of them.
128/// This returns the new block if the edge was split, null otherwise.
129///
130/// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
131/// specified successor will be merged into the same critical edge block.
132/// This is most commonly interesting with switch instructions, which may
133/// have many edges to any one destination.  This ensures that all edges to that
134/// dest go to one block instead of each going to a different block, but isn't
135/// the standard definition of a "critical edge".
136///
137/// It is invalid to call this function on a critical edge that starts at an
138/// IndirectBrInst.  Splitting these edges will almost always create an invalid
139/// program because the address of the new block won't be the one that is jumped
140/// to.
141///
142BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
143                                    Pass *P, bool MergeIdenticalEdges,
144                                    bool DontDeleteUselessPhis,
145                                    bool SplitLandingPads) {
146  if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
147
148  assert(!isa<IndirectBrInst>(TI) &&
149         "Cannot split critical edge from IndirectBrInst");
150
151  BasicBlock *TIBB = TI->getParent();
152  BasicBlock *DestBB = TI->getSuccessor(SuccNum);
153
154  // Splitting the critical edge to a landing pad block is non-trivial. Don't do
155  // it in this generic function.
156  if (DestBB->isLandingPad()) return 0;
157
158  // Create a new basic block, linking it into the CFG.
159  BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
160                      TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
161  // Create our unconditional branch.
162  BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
163  NewBI->setDebugLoc(TI->getDebugLoc());
164
165  // Branch to the new block, breaking the edge.
166  TI->setSuccessor(SuccNum, NewBB);
167
168  // Insert the block into the function... right after the block TI lives in.
169  Function &F = *TIBB->getParent();
170  Function::iterator FBBI = TIBB;
171  F.getBasicBlockList().insert(++FBBI, NewBB);
172
173  // If there are any PHI nodes in DestBB, we need to update them so that they
174  // merge incoming values from NewBB instead of from TIBB.
175  {
176    unsigned BBIdx = 0;
177    for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
178      // We no longer enter through TIBB, now we come in through NewBB.
179      // Revector exactly one entry in the PHI node that used to come from
180      // TIBB to come from NewBB.
181      PHINode *PN = cast<PHINode>(I);
182
183      // Reuse the previous value of BBIdx if it lines up.  In cases where we
184      // have multiple phi nodes with *lots* of predecessors, this is a speed
185      // win because we don't have to scan the PHI looking for TIBB.  This
186      // happens because the BB list of PHI nodes are usually in the same
187      // order.
188      if (PN->getIncomingBlock(BBIdx) != TIBB)
189        BBIdx = PN->getBasicBlockIndex(TIBB);
190      PN->setIncomingBlock(BBIdx, NewBB);
191    }
192  }
193
194  // If there are any other edges from TIBB to DestBB, update those to go
195  // through the split block, making those edges non-critical as well (and
196  // reducing the number of phi entries in the DestBB if relevant).
197  if (MergeIdenticalEdges) {
198    for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
199      if (TI->getSuccessor(i) != DestBB) continue;
200
201      // Remove an entry for TIBB from DestBB phi nodes.
202      DestBB->removePredecessor(TIBB, DontDeleteUselessPhis);
203
204      // We found another edge to DestBB, go to NewBB instead.
205      TI->setSuccessor(i, NewBB);
206    }
207  }
208
209
210
211  // If we don't have a pass object, we can't update anything...
212  if (P == 0) return NewBB;
213
214  DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
215  LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
216  ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
217
218  // If we have nothing to update, just return.
219  if (DT == 0 && LI == 0 && PI == 0)
220    return NewBB;
221
222  // Now update analysis information.  Since the only predecessor of NewBB is
223  // the TIBB, TIBB clearly dominates NewBB.  TIBB usually doesn't dominate
224  // anything, as there are other successors of DestBB.  However, if all other
225  // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
226  // loop header) then NewBB dominates DestBB.
227  SmallVector<BasicBlock*, 8> OtherPreds;
228
229  // If there is a PHI in the block, loop over predecessors with it, which is
230  // faster than iterating pred_begin/end.
231  if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
232    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
233      if (PN->getIncomingBlock(i) != NewBB)
234        OtherPreds.push_back(PN->getIncomingBlock(i));
235  } else {
236    for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
237         I != E; ++I) {
238      BasicBlock *P = *I;
239      if (P != NewBB)
240        OtherPreds.push_back(P);
241    }
242  }
243
244  bool NewBBDominatesDestBB = true;
245
246  // Should we update DominatorTree information?
247  if (DT) {
248    DomTreeNode *TINode = DT->getNode(TIBB);
249
250    // The new block is not the immediate dominator for any other nodes, but
251    // TINode is the immediate dominator for the new node.
252    //
253    if (TINode) {       // Don't break unreachable code!
254      DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
255      DomTreeNode *DestBBNode = 0;
256
257      // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
258      if (!OtherPreds.empty()) {
259        DestBBNode = DT->getNode(DestBB);
260        while (!OtherPreds.empty() && NewBBDominatesDestBB) {
261          if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
262            NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
263          OtherPreds.pop_back();
264        }
265        OtherPreds.clear();
266      }
267
268      // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
269      // doesn't dominate anything.
270      if (NewBBDominatesDestBB) {
271        if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
272        DT->changeImmediateDominator(DestBBNode, NewBBNode);
273      }
274    }
275  }
276
277  // Update LoopInfo if it is around.
278  if (LI) {
279    if (Loop *TIL = LI->getLoopFor(TIBB)) {
280      // If one or the other blocks were not in a loop, the new block is not
281      // either, and thus LI doesn't need to be updated.
282      if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
283        if (TIL == DestLoop) {
284          // Both in the same loop, the NewBB joins loop.
285          DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
286        } else if (TIL->contains(DestLoop)) {
287          // Edge from an outer loop to an inner loop.  Add to the outer loop.
288          TIL->addBasicBlockToLoop(NewBB, LI->getBase());
289        } else if (DestLoop->contains(TIL)) {
290          // Edge from an inner loop to an outer loop.  Add to the outer loop.
291          DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
292        } else {
293          // Edge from two loops with no containment relation.  Because these
294          // are natural loops, we know that the destination block must be the
295          // header of its loop (adding a branch into a loop elsewhere would
296          // create an irreducible loop).
297          assert(DestLoop->getHeader() == DestBB &&
298                 "Should not create irreducible loops!");
299          if (Loop *P = DestLoop->getParentLoop())
300            P->addBasicBlockToLoop(NewBB, LI->getBase());
301        }
302      }
303      // If TIBB is in a loop and DestBB is outside of that loop, split the
304      // other exit blocks of the loop that also have predecessors outside
305      // the loop, to maintain a LoopSimplify guarantee.
306      if (!TIL->contains(DestBB) &&
307          P->mustPreserveAnalysisID(LoopSimplifyID)) {
308        assert(!TIL->contains(NewBB) &&
309               "Split point for loop exit is contained in loop!");
310
311        // Update LCSSA form in the newly created exit block.
312        if (P->mustPreserveAnalysisID(LCSSAID))
313          createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
314
315        // For each unique exit block...
316        // FIXME: This code is functionally equivalent to the corresponding
317        // loop in LoopSimplify.
318        SmallVector<BasicBlock *, 4> ExitBlocks;
319        TIL->getExitBlocks(ExitBlocks);
320        for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
321          // Collect all the preds that are inside the loop, and note
322          // whether there are any preds outside the loop.
323          SmallVector<BasicBlock *, 4> Preds;
324          bool HasPredOutsideOfLoop = false;
325          BasicBlock *Exit = ExitBlocks[i];
326          for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
327               I != E; ++I) {
328            BasicBlock *P = *I;
329            if (TIL->contains(P)) {
330              if (isa<IndirectBrInst>(P->getTerminator())) {
331                Preds.clear();
332                break;
333              }
334              Preds.push_back(P);
335            } else {
336              HasPredOutsideOfLoop = true;
337            }
338          }
339          // If there are any preds not in the loop, we'll need to split
340          // the edges. The Preds.empty() check is needed because a block
341          // may appear multiple times in the list. We can't use
342          // getUniqueExitBlocks above because that depends on LoopSimplify
343          // form, which we're in the process of restoring!
344          if (!Preds.empty() && HasPredOutsideOfLoop) {
345            if (!Exit->isLandingPad()) {
346              BasicBlock *NewExitBB =
347                SplitBlockPredecessors(Exit, Preds, "split", P);
348              if (P->mustPreserveAnalysisID(LCSSAID))
349                createPHIsForSplitLoopExit(Preds, NewExitBB, Exit);
350            } else if (SplitLandingPads) {
351              SmallVector<BasicBlock*, 8> NewBBs;
352              SplitLandingPadPredecessors(Exit, Preds,
353                                          ".split1", ".split2",
354                                          P, NewBBs);
355              if (P->mustPreserveAnalysisID(LCSSAID))
356                createPHIsForSplitLoopExit(Preds, NewBBs[0], Exit);
357            }
358          }
359        }
360      }
361      // LCSSA form was updated above for the case where LoopSimplify is
362      // available, which means that all predecessors of loop exit blocks
363      // are within the loop. Without LoopSimplify form, it would be
364      // necessary to insert a new phi.
365      assert((!P->mustPreserveAnalysisID(LCSSAID) ||
366              P->mustPreserveAnalysisID(LoopSimplifyID)) &&
367             "SplitCriticalEdge doesn't know how to update LCCSA form "
368             "without LoopSimplify!");
369    }
370  }
371
372  // Update ProfileInfo if it is around.
373  if (PI)
374    PI->splitEdge(TIBB, DestBB, NewBB, MergeIdenticalEdges);
375
376  return NewBB;
377}
378