IntegerDivision.cpp revision 1c1ab8f53d91506f0590dc1d2448ae438e00b8c6
1//===-- IntegerDivision.cpp - Expand integer division ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains an implementation of 32bit scalar integer division for
11// targets that don't have native support. It's largely derived from
12// compiler-rt's implementation of __udivsi3, but hand-tuned to reduce the
13// amount of control flow
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "integer-division"
18#include "llvm/Function.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/IRBuilder.h"
22#include "llvm/Transforms/Utils/IntegerDivision.h"
23
24using namespace llvm;
25
26// Generate code to divide two signed integers. Returns the quotient, rounded
27// towards 0. Builder's insert point should be pointing at the sdiv
28// instruction. This will generate a udiv in the process, and Builder's insert
29// point will be pointing at the udiv (if present, i.e. not folded), ready to be
30// expanded if the user wishes.
31static Value* GenerateSignedDivisionCode(Value* Dividend, Value* Divisor,
32                                         IRBuilder<>& Builder) {
33  // Implementation taken from compiler-rt's __divsi3
34
35  ConstantInt* ThirtyOne = Builder.getInt32(31);
36
37  // ;   %tmp    = ashr i32 %dividend, 31
38  // ;   %tmp1   = ashr i32 %divisor, 31
39  // ;   %tmp2   = xor i32 %tmp, %dividend
40  // ;   %u_dvnd = sub nsw i32 %tmp2, %tmp
41  // ;   %tmp3   = xor i32 %tmp1, %divisor
42  // ;   %u_dvsr = sub nsw i32 %tmp3, %tmp1
43  // ;   %q_sgn  = xor i32 %tmp1, %tmp
44  // ;   %q_mag  = udiv i32 %u_dvnd, %u_dvsr
45  // ;   %tmp4   = xor i32 %q_mag, %q_sgn
46  // ;   %q      = sub i32 %tmp4, %q_sgn
47  Value* Tmp    = Builder.CreateAShr(Dividend, ThirtyOne);
48  Value* Tmp1   = Builder.CreateAShr(Divisor, ThirtyOne);
49  Value* Tmp2   = Builder.CreateXor(Tmp, Dividend);
50  Value* U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
51  Value* Tmp3   = Builder.CreateXor(Tmp1, Divisor);
52  Value* U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
53  Value* Q_Sgn  = Builder.CreateXor(Tmp1, Tmp);
54  Value* Q_Mag  = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
55  Value* Tmp4   = Builder.CreateXor(Q_Mag, Q_Sgn);
56  Value* Q      = Builder.CreateSub(Tmp4, Q_Sgn);
57
58  if (Instruction* UDiv = dyn_cast<Instruction>(Q_Mag))
59    Builder.SetInsertPoint(UDiv);
60
61  return Q;
62}
63
64// Generates code to divide two unsigned scalar 32-bit integers. Returns the
65// quotient, rounded towards 0. Builder's insert point should be pointing at the
66// udiv instruction.
67static Value* GenerateUnsignedDivisionCode(Value* Dividend, Value* Divisor,
68                                           IRBuilder<>& Builder) {
69  // The basic algorithm can be found in the compiler-rt project's
70  // implementation of __udivsi3.c. Here, we do a lower-level IR based approach
71  // that's been hand-tuned to lessen the amount of control flow involved.
72
73  // Some helper values
74  IntegerType* I32Ty = Builder.getInt32Ty();
75
76  ConstantInt* Zero      = Builder.getInt32(0);
77  ConstantInt* One       = Builder.getInt32(1);
78  ConstantInt* ThirtyOne = Builder.getInt32(31);
79  ConstantInt* NegOne    = ConstantInt::getSigned(I32Ty, -1);
80  ConstantInt* True      = Builder.getTrue();
81
82  BasicBlock* IBB = Builder.GetInsertBlock();
83  Function* F = IBB->getParent();
84  Function* CTLZi32 = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
85                                                I32Ty);
86
87  // Our CFG is going to look like:
88  // +---------------------+
89  // | special-cases       |
90  // |   ...               |
91  // +---------------------+
92  //  |       |
93  //  |   +----------+
94  //  |   |  bb1     |
95  //  |   |  ...     |
96  //  |   +----------+
97  //  |    |      |
98  //  |    |  +------------+
99  //  |    |  |  preheader |
100  //  |    |  |  ...       |
101  //  |    |  +------------+
102  //  |    |      |
103  //  |    |      |      +---+
104  //  |    |      |      |   |
105  //  |    |  +------------+ |
106  //  |    |  |  do-while  | |
107  //  |    |  |  ...       | |
108  //  |    |  +------------+ |
109  //  |    |      |      |   |
110  //  |   +-----------+  +---+
111  //  |   | loop-exit |
112  //  |   |  ...      |
113  //  |   +-----------+
114  //  |     |
115  // +-------+
116  // | ...   |
117  // | end   |
118  // +-------+
119  BasicBlock* SpecialCases = Builder.GetInsertBlock();
120  SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
121  BasicBlock* End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
122                                                  "udiv-end");
123  BasicBlock* LoopExit  = BasicBlock::Create(Builder.getContext(),
124                                             "udiv-loop-exit", F, End);
125  BasicBlock* DoWhile   = BasicBlock::Create(Builder.getContext(),
126                                             "udiv-do-while", F, End);
127  BasicBlock* Preheader = BasicBlock::Create(Builder.getContext(),
128                                             "udiv-preheader", F, End);
129  BasicBlock* BB1       = BasicBlock::Create(Builder.getContext(),
130                                             "udiv-bb1", F, End);
131
132  // We'll be overwriting the terminator to insert our extra blocks
133  SpecialCases->getTerminator()->eraseFromParent();
134
135  // First off, check for special cases: dividend or divisor is zero, divisor
136  // is greater than dividend, and divisor is 1.
137  // ; special-cases:
138  // ;   %ret0_1      = icmp eq i32 %divisor, 0
139  // ;   %ret0_2      = icmp eq i32 %dividend, 0
140  // ;   %ret0_3      = or i1 %ret0_1, %ret0_2
141  // ;   %tmp0        = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
142  // ;   %tmp1        = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
143  // ;   %sr          = sub nsw i32 %tmp0, %tmp1
144  // ;   %ret0_4      = icmp ugt i32 %sr, 31
145  // ;   %ret0        = or i1 %ret0_3, %ret0_4
146  // ;   %retDividend = icmp eq i32 %sr, 31
147  // ;   %retVal      = select i1 %ret0, i32 0, i32 %dividend
148  // ;   %earlyRet    = or i1 %ret0, %retDividend
149  // ;   br i1 %earlyRet, label %end, label %bb1
150  Builder.SetInsertPoint(SpecialCases);
151  Value* Ret0_1      = Builder.CreateICmpEQ(Divisor, Zero);
152  Value* Ret0_2      = Builder.CreateICmpEQ(Dividend, Zero);
153  Value* Ret0_3      = Builder.CreateOr(Ret0_1, Ret0_2);
154  Value* Tmp0        = Builder.CreateCall2(CTLZi32, Divisor, True);
155  Value* Tmp1        = Builder.CreateCall2(CTLZi32, Dividend, True);
156  Value* SR          = Builder.CreateSub(Tmp0, Tmp1);
157  Value* Ret0_4      = Builder.CreateICmpUGT(SR, ThirtyOne);
158  Value* Ret0        = Builder.CreateOr(Ret0_3, Ret0_4);
159  Value* RetDividend = Builder.CreateICmpEQ(SR, ThirtyOne);
160  Value* RetVal      = Builder.CreateSelect(Ret0, Zero, Dividend);
161  Value* EarlyRet    = Builder.CreateOr(Ret0, RetDividend);
162  Builder.CreateCondBr(EarlyRet, End, BB1);
163
164  // ; bb1:                                             ; preds = %special-cases
165  // ;   %sr_1     = add i32 %sr, 1
166  // ;   %tmp2     = sub i32 31, %sr
167  // ;   %q        = shl i32 %dividend, %tmp2
168  // ;   %skipLoop = icmp eq i32 %sr_1, 0
169  // ;   br i1 %skipLoop, label %loop-exit, label %preheader
170  Builder.SetInsertPoint(BB1);
171  Value* SR_1     = Builder.CreateAdd(SR, One);
172  Value* Tmp2     = Builder.CreateSub(ThirtyOne, SR);
173  Value* Q        = Builder.CreateShl(Dividend, Tmp2);
174  Value* SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
175  Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
176
177  // ; preheader:                                           ; preds = %bb1
178  // ;   %tmp3 = lshr i32 %dividend, %sr_1
179  // ;   %tmp4 = add i32 %divisor, -1
180  // ;   br label %do-while
181  Builder.SetInsertPoint(Preheader);
182  Value* Tmp3 = Builder.CreateLShr(Dividend, SR_1);
183  Value* Tmp4 = Builder.CreateAdd(Divisor, NegOne);
184  Builder.CreateBr(DoWhile);
185
186  // ; do-while:                                 ; preds = %do-while, %preheader
187  // ;   %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
188  // ;   %sr_3    = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
189  // ;   %r_1     = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
190  // ;   %q_2     = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
191  // ;   %tmp5  = shl i32 %r_1, 1
192  // ;   %tmp6  = lshr i32 %q_2, 31
193  // ;   %tmp7  = or i32 %tmp5, %tmp6
194  // ;   %tmp8  = shl i32 %q_2, 1
195  // ;   %q_1   = or i32 %carry_1, %tmp8
196  // ;   %tmp9  = sub i32 %tmp4, %tmp7
197  // ;   %tmp10 = ashr i32 %tmp9, 31
198  // ;   %carry = and i32 %tmp10, 1
199  // ;   %tmp11 = and i32 %tmp10, %divisor
200  // ;   %r     = sub i32 %tmp7, %tmp11
201  // ;   %sr_2  = add i32 %sr_3, -1
202  // ;   %tmp12 = icmp eq i32 %sr_2, 0
203  // ;   br i1 %tmp12, label %loop-exit, label %do-while
204  Builder.SetInsertPoint(DoWhile);
205  PHINode* Carry_1 = Builder.CreatePHI(I32Ty, 2);
206  PHINode* SR_3    = Builder.CreatePHI(I32Ty, 2);
207  PHINode* R_1     = Builder.CreatePHI(I32Ty, 2);
208  PHINode* Q_2     = Builder.CreatePHI(I32Ty, 2);
209  Value* Tmp5  = Builder.CreateShl(R_1, One);
210  Value* Tmp6  = Builder.CreateLShr(Q_2, ThirtyOne);
211  Value* Tmp7  = Builder.CreateOr(Tmp5, Tmp6);
212  Value* Tmp8  = Builder.CreateShl(Q_2, One);
213  Value* Q_1   = Builder.CreateOr(Carry_1, Tmp8);
214  Value* Tmp9  = Builder.CreateSub(Tmp4, Tmp7);
215  Value* Tmp10 = Builder.CreateAShr(Tmp9, 31);
216  Value* Carry = Builder.CreateAnd(Tmp10, One);
217  Value* Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
218  Value* R     = Builder.CreateSub(Tmp7, Tmp11);
219  Value* SR_2  = Builder.CreateAdd(SR_3, NegOne);
220  Value* Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
221  Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);
222
223  // ; loop-exit:                                      ; preds = %do-while, %bb1
224  // ;   %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
225  // ;   %q_3     = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
226  // ;   %tmp13 = shl i32 %q_3, 1
227  // ;   %q_4   = or i32 %carry_2, %tmp13
228  // ;   br label %end
229  Builder.SetInsertPoint(LoopExit);
230  PHINode* Carry_2 = Builder.CreatePHI(I32Ty, 2);
231  PHINode* Q_3     = Builder.CreatePHI(I32Ty, 2);
232  Value* Tmp13 = Builder.CreateShl(Q_3, One);
233  Value* Q_4   = Builder.CreateOr(Carry_2, Tmp13);
234  Builder.CreateBr(End);
235
236  // ; end:                                 ; preds = %loop-exit, %special-cases
237  // ;   %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
238  // ;   ret i32 %q_5
239  Builder.SetInsertPoint(End, End->begin());
240  PHINode* Q_5 = Builder.CreatePHI(I32Ty, 2);
241
242  // Populate the Phis, since all values have now been created. Our Phis were:
243  // ;   %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
244  Carry_1->addIncoming(Zero, Preheader);
245  Carry_1->addIncoming(Carry, DoWhile);
246  // ;   %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
247  SR_3->addIncoming(SR_1, Preheader);
248  SR_3->addIncoming(SR_2, DoWhile);
249  // ;   %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
250  R_1->addIncoming(Tmp3, Preheader);
251  R_1->addIncoming(R, DoWhile);
252  // ;   %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
253  Q_2->addIncoming(Q, Preheader);
254  Q_2->addIncoming(Q_1, DoWhile);
255  // ;   %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
256  Carry_2->addIncoming(Zero, BB1);
257  Carry_2->addIncoming(Carry, DoWhile);
258  // ;   %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
259  Q_3->addIncoming(Q, BB1);
260  Q_3->addIncoming(Q_1, DoWhile);
261  // ;   %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
262  Q_5->addIncoming(Q_4, LoopExit);
263  Q_5->addIncoming(RetVal, SpecialCases);
264
265  return Q_5;
266}
267
268bool llvm::expandDivision(BinaryOperator* Div) {
269  assert((Div->getOpcode() == Instruction::SDiv ||
270          Div->getOpcode() == Instruction::UDiv) &&
271         "Trying to expand division from a non-division function");
272
273  IRBuilder<> Builder(Div);
274
275  if (Div->getType()->isVectorTy())
276    llvm_unreachable("Div over vectors not supported");
277
278  // First prepare the sign if it's a signed division
279  if (Div->getOpcode() == Instruction::SDiv) {
280    // Lower the code to unsigned division, and reset Div to point to the udiv.
281    Value* Quotient = GenerateSignedDivisionCode(Div->getOperand(0),
282                                                Div->getOperand(1), Builder);
283    Div->replaceAllUsesWith(Quotient);
284    Div->dropAllReferences();
285    Div->eraseFromParent();
286
287    // If we didn't actually generate a udiv instruction, we're done
288    BinaryOperator* BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
289    if (!BO || BO->getOpcode() != Instruction::UDiv)
290      return true;
291
292    Div = BO;
293  }
294
295  // Insert the unsigned division code
296  Value* Quotient = GenerateUnsignedDivisionCode(Div->getOperand(0),
297                                                 Div->getOperand(1),
298                                                 Builder);
299  Div->replaceAllUsesWith(Quotient);
300  Div->dropAllReferences();
301  Div->eraseFromParent();
302
303  return true;
304}
305