LCSSA.cpp revision 3d2aa47bd3a9e2ea5fdcf1690fa280a5199f4d81
1//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by Owen Anderson and is distributed under the 6// University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass transforms loops by placing phi nodes at the end of the loops for 11// all values that are live across the loop boundary. For example, it turns 12// the left into the right code: 13// 14// for (...) for (...) 15// if (c) if(c) 16// X1 = ... X1 = ... 17// else else 18// X2 = ... X2 = ... 19// X3 = phi(X1, X2) X3 = phi(X1, X2) 20// ... = X3 + 4 X4 = phi(X3) 21// ... = X4 + 4 22// 23// This is still valid LLVM; the extra phi nodes are purely redundant, and will 24// be trivially eliminated by InstCombine. The major benefit of this 25// transformation is that it makes many other loop optimizations, such as 26// LoopUnswitching, simpler. 27// 28//===----------------------------------------------------------------------===// 29 30#include "llvm/Transforms/Scalar.h" 31#include "llvm/Pass.h" 32#include "llvm/Function.h" 33#include "llvm/Instructions.h" 34#include "llvm/ADT/SetVector.h" 35#include "llvm/ADT/Statistic.h" 36#include "llvm/Analysis/Dominators.h" 37#include "llvm/Analysis/LoopInfo.h" 38#include "llvm/Support/CFG.h" 39#include <algorithm> 40#include <map> 41 42using namespace llvm; 43 44namespace { 45 static Statistic<> NumLCSSA("lcssa", 46 "Number of live out of a loop variables"); 47 48 class LCSSA : public FunctionPass { 49 public: 50 51 52 LoopInfo *LI; // Loop information 53 DominatorTree *DT; // Dominator Tree for the current Function... 54 DominanceFrontier *DF; // Current Dominance Frontier 55 std::vector<BasicBlock*> LoopBlocks; 56 57 virtual bool runOnFunction(Function &F); 58 bool visitSubloop(Loop* L); 59 void processInstruction(Instruction* Instr, 60 const std::vector<BasicBlock*>& exitBlocks); 61 62 /// This transformation requires natural loop information & requires that 63 /// loop preheaders be inserted into the CFG. It maintains both of these, 64 /// as well as the CFG. It also requires dominator information. 65 /// 66 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 67 AU.setPreservesCFG(); 68 AU.addRequiredID(LoopSimplifyID); 69 AU.addPreservedID(LoopSimplifyID); 70 AU.addRequired<LoopInfo>(); 71 AU.addRequired<DominatorTree>(); 72 AU.addRequired<DominanceFrontier>(); 73 } 74 private: 75 SetVector<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L); 76 Instruction *getValueDominatingBlock(BasicBlock *BB, 77 std::map<BasicBlock*, Instruction*>& PotDoms); 78 79 /// inLoop - returns true if the given block is within the current loop 80 const bool inLoop(BasicBlock* B) { 81 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); 82 } 83 }; 84 85 RegisterOpt<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); 86} 87 88FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); } 89const PassInfo *llvm::LCSSAID = X.getPassInfo(); 90 91/// runOnFunction - Process all loops in the function, inner-most out. 92bool LCSSA::runOnFunction(Function &F) { 93 bool changed = false; 94 LI = &getAnalysis<LoopInfo>(); 95 DF = &getAnalysis<DominanceFrontier>(); 96 DT = &getAnalysis<DominatorTree>(); 97 98 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) { 99 changed |= visitSubloop(*I); 100 } 101 102 return changed; 103} 104 105/// visitSubloop - Recursively process all subloops, and then process the given 106/// loop if it has live-out values. 107bool LCSSA::visitSubloop(Loop* L) { 108 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 109 visitSubloop(*I); 110 111 // Speed up queries by creating a sorted list of blocks 112 LoopBlocks.clear(); 113 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 114 std::sort(LoopBlocks.begin(), LoopBlocks.end()); 115 116 SetVector<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L); 117 118 // If no values are affected, we can save a lot of work, since we know that 119 // nothing will be changed. 120 if (AffectedValues.empty()) 121 return false; 122 123 std::vector<BasicBlock*> exitBlocks; 124 L->getExitBlocks(exitBlocks); 125 126 127 // Iterate over all affected values for this loop and insert Phi nodes 128 // for them in the appropriate exit blocks 129 130 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(), 131 E = AffectedValues.end(); I != E; ++I) { 132 processInstruction(*I, exitBlocks); 133 } 134 135 assert(L->isLCSSAForm()); 136 137 return true; 138} 139 140/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes, 141/// eliminate all out-of-loop uses. 142void LCSSA::processInstruction(Instruction* Instr, 143 const std::vector<BasicBlock*>& exitBlocks) 144{ 145 ++NumLCSSA; // We are applying the transformation 146 147 std::map<BasicBlock*, Instruction*> Phis; 148 149 // Add the base instruction to the Phis list. This makes tracking down 150 // the dominating values easier when we're filling in Phi nodes. This will 151 // be removed later, before we perform use replacement. 152 Phis[Instr->getParent()] = Instr; 153 154 // Phi nodes that need to be IDF-processed 155 std::vector<PHINode*> workList; 156 157 for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(), 158 BBE = exitBlocks.end(); BBI != BBE; ++BBI) { 159 Instruction*& phi = Phis[*BBI]; 160 if (phi == 0 && 161 DT->getNode(Instr->getParent())->dominates(DT->getNode(*BBI))) { 162 phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa", 163 (*BBI)->begin()); 164 workList.push_back(cast<PHINode>(phi)); 165 Phis[*BBI] = phi; 166 } 167 } 168 169 // Phi nodes that need to have their incoming values filled. 170 std::vector<PHINode*> needIncomingValues; 171 172 // Calculate the IDF of these LCSSA Phi nodes, inserting new Phi's where 173 // necessary. Keep track of these new Phi's in the "Phis" map. 174 while (!workList.empty()) { 175 PHINode *CurPHI = workList.back(); 176 workList.pop_back(); 177 178 // Even though we've removed this Phi from the work list, we still need 179 // to fill in its incoming values. 180 needIncomingValues.push_back(CurPHI); 181 182 // Get the current Phi's DF, and insert Phi nodes. Add these new 183 // nodes to our worklist. 184 DominanceFrontier::const_iterator it = DF->find(CurPHI->getParent()); 185 if (it != DF->end()) { 186 const DominanceFrontier::DomSetType &S = it->second; 187 for (DominanceFrontier::DomSetType::const_iterator P = S.begin(), 188 PE = S.end(); P != PE; ++P) { 189 if (DT->getNode(Instr->getParent())->dominates(DT->getNode(*P))) { 190 Instruction *&Phi = Phis[*P]; 191 if (Phi == 0) { 192 // Still doesn't have operands... 193 Phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa", 194 (*P)->begin()); 195 196 workList.push_back(cast<PHINode>(Phi)); 197 } 198 } 199 } 200 } 201 } 202 203 // Fill in all Phis we've inserted that need their incoming values filled in. 204 for (std::vector<PHINode*>::iterator IVI = needIncomingValues.begin(), 205 IVE = needIncomingValues.end(); IVI != IVE; ++IVI) { 206 for (pred_iterator PI = pred_begin((*IVI)->getParent()), 207 E = pred_end((*IVI)->getParent()); PI != E; ++PI) 208 (*IVI)->addIncoming(getValueDominatingBlock(*PI, Phis), 209 *PI); 210 } 211 212 // Find all uses of the affected value, and replace them with the 213 // appropriate Phi. 214 std::vector<Instruction*> Uses; 215 for (Instruction::use_iterator UI = Instr->use_begin(), UE = Instr->use_end(); 216 UI != UE; ++UI) { 217 Instruction* use = cast<Instruction>(*UI); 218 // Don't need to update uses within the loop body. 219 if (!inLoop(use->getParent())) 220 Uses.push_back(use); 221 } 222 223 for (std::vector<Instruction*>::iterator II = Uses.begin(), IE = Uses.end(); 224 II != IE; ++II) { 225 if (PHINode* phi = dyn_cast<PHINode>(*II)) { 226 for (unsigned int i = 0; i < phi->getNumIncomingValues(); ++i) { 227 if (phi->getIncomingValue(i) == Instr) { 228 Instruction* dominator = 229 getValueDominatingBlock(phi->getIncomingBlock(i), Phis); 230 phi->setIncomingValue(i, dominator); 231 } 232 } 233 } else { 234 Value *NewVal = getValueDominatingBlock((*II)->getParent(), Phis); 235 (*II)->replaceUsesOfWith(Instr, NewVal); 236 } 237 } 238} 239 240/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that 241/// are used by instructions outside of it. 242SetVector<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) { 243 244 // FIXME: For large loops, we may be able to avoid a lot of use-scanning 245 // by using dominance information. In particular, if a block does not 246 // dominate any of the loop exits, then none of the values defined in the 247 // block could be used outside the loop. 248 249 SetVector<Instruction*> AffectedValues; 250 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 251 BB != E; ++BB) { 252 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) 253 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 254 ++UI) { 255 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 256 if (!inLoop(UserBB)) { 257 AffectedValues.insert(I); 258 break; 259 } 260 } 261 } 262 return AffectedValues; 263} 264 265/// getValueDominatingBlock - Return the value within the potential dominators 266/// map that dominates the given block. 267Instruction *LCSSA::getValueDominatingBlock(BasicBlock *BB, 268 std::map<BasicBlock*, Instruction*>& PotDoms) { 269 DominatorTree::Node* bbNode = DT->getNode(BB); 270 while (bbNode != 0) { 271 std::map<BasicBlock*, Instruction*>::iterator I = 272 PotDoms.find(bbNode->getBlock()); 273 if (I != PotDoms.end()) { 274 return (*I).second; 275 } 276 bbNode = bbNode->getIDom(); 277 } 278 279 assert(0 && "No dominating value found."); 280 281 return 0; 282} 283