LCSSA.cpp revision 8fc5ad33691b2a0672a7487da1f56b6f7f675a1b
1//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass transforms loops by placing phi nodes at the end of the loops for 11// all values that are live across the loop boundary. For example, it turns 12// the left into the right code: 13// 14// for (...) for (...) 15// if (c) if (c) 16// X1 = ... X1 = ... 17// else else 18// X2 = ... X2 = ... 19// X3 = phi(X1, X2) X3 = phi(X1, X2) 20// ... = X3 + 4 X4 = phi(X3) 21// ... = X4 + 4 22// 23// This is still valid LLVM; the extra phi nodes are purely redundant, and will 24// be trivially eliminated by InstCombine. The major benefit of this 25// transformation is that it makes many other loop optimizations, such as 26// LoopUnswitching, simpler. 27// 28//===----------------------------------------------------------------------===// 29 30#define DEBUG_TYPE "lcssa" 31#include "llvm/Transforms/Scalar.h" 32#include "llvm/Constants.h" 33#include "llvm/Pass.h" 34#include "llvm/Function.h" 35#include "llvm/Instructions.h" 36#include "llvm/LLVMContext.h" 37#include "llvm/ADT/SetVector.h" 38#include "llvm/ADT/Statistic.h" 39#include "llvm/Analysis/Dominators.h" 40#include "llvm/Analysis/LoopPass.h" 41#include "llvm/Analysis/ScalarEvolution.h" 42#include "llvm/Support/CFG.h" 43#include "llvm/Support/Compiler.h" 44#include "llvm/Support/PredIteratorCache.h" 45#include <algorithm> 46#include <map> 47using namespace llvm; 48 49STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 50 51namespace { 52 struct VISIBILITY_HIDDEN LCSSA : public LoopPass { 53 static char ID; // Pass identification, replacement for typeid 54 LCSSA() : LoopPass(&ID) {} 55 56 // Cached analysis information for the current function. 57 LoopInfo *LI; 58 DominatorTree *DT; 59 std::vector<BasicBlock*> LoopBlocks; 60 PredIteratorCache PredCache; 61 Loop *L; 62 63 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 64 65 void ProcessInstruction(Instruction* Instr, 66 const SmallVector<BasicBlock*, 8>& exitBlocks); 67 68 /// This transformation requires natural loop information & requires that 69 /// loop preheaders be inserted into the CFG. It maintains both of these, 70 /// as well as the CFG. It also requires dominator information. 71 /// 72 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 73 AU.setPreservesCFG(); 74 AU.addRequiredID(LoopSimplifyID); 75 AU.addPreservedID(LoopSimplifyID); 76 AU.addRequiredTransitive<LoopInfo>(); 77 AU.addPreserved<LoopInfo>(); 78 AU.addRequiredTransitive<DominatorTree>(); 79 AU.addPreserved<ScalarEvolution>(); 80 AU.addPreserved<DominatorTree>(); 81 82 // Request DominanceFrontier now, even though LCSSA does 83 // not use it. This allows Pass Manager to schedule Dominance 84 // Frontier early enough such that one LPPassManager can handle 85 // multiple loop transformation passes. 86 AU.addRequired<DominanceFrontier>(); 87 AU.addPreserved<DominanceFrontier>(); 88 } 89 private: 90 91 /// verifyAnalysis() - Verify loop nest. 92 virtual void verifyAnalysis() const { 93#ifndef NDEBUG 94 // Sanity check: Check basic loop invariants. 95 L->verifyLoop(); 96 // Check the special guarantees that LCSSA makes. 97 assert(L->isLCSSAForm()); 98#endif 99 } 100 101 void getLoopValuesUsedOutsideLoop(Loop *L, 102 SetVector<Instruction*> &AffectedValues, 103 const SmallVector<BasicBlock*, 8>& exitBlocks); 104 105 Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst, 106 DenseMap<DomTreeNode*, Value*> &Phis); 107 108 /// inLoop - returns true if the given block is within the current loop 109 bool inLoop(BasicBlock* B) { 110 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); 111 } 112 }; 113} 114 115char LCSSA::ID = 0; 116static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); 117 118Pass *llvm::createLCSSAPass() { return new LCSSA(); } 119const PassInfo *const llvm::LCSSAID = &X; 120 121/// runOnFunction - Process all loops in the function, inner-most out. 122bool LCSSA::runOnLoop(Loop *l, LPPassManager &LPM) { 123 L = l; 124 PredCache.clear(); 125 126 LI = &LPM.getAnalysis<LoopInfo>(); 127 DT = &getAnalysis<DominatorTree>(); 128 129 // Speed up queries by creating a sorted list of blocks 130 LoopBlocks.clear(); 131 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 132 std::sort(LoopBlocks.begin(), LoopBlocks.end()); 133 134 SmallVector<BasicBlock*, 8> exitBlocks; 135 L->getExitBlocks(exitBlocks); 136 137 SetVector<Instruction*> AffectedValues; 138 getLoopValuesUsedOutsideLoop(L, AffectedValues, exitBlocks); 139 140 // If no values are affected, we can save a lot of work, since we know that 141 // nothing will be changed. 142 if (AffectedValues.empty()) 143 return false; 144 145 // Iterate over all affected values for this loop and insert Phi nodes 146 // for them in the appropriate exit blocks 147 148 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(), 149 E = AffectedValues.end(); I != E; ++I) 150 ProcessInstruction(*I, exitBlocks); 151 152 assert(L->isLCSSAForm()); 153 154 return true; 155} 156 157/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes, 158/// eliminate all out-of-loop uses. 159void LCSSA::ProcessInstruction(Instruction *Instr, 160 const SmallVector<BasicBlock*, 8>& exitBlocks) { 161 ++NumLCSSA; // We are applying the transformation 162 163 // Keep track of the blocks that have the value available already. 164 DenseMap<DomTreeNode*, Value*> Phis; 165 166 BasicBlock *DomBB = Instr->getParent(); 167 168 // Invoke instructions are special in that their result value is not available 169 // along their unwind edge. The code below tests to see whether DomBB dominates 170 // the value, so adjust DomBB to the normal destination block, which is 171 // effectively where the value is first usable. 172 if (InvokeInst *Inv = dyn_cast<InvokeInst>(Instr)) 173 DomBB = Inv->getNormalDest(); 174 175 DomTreeNode *DomNode = DT->getNode(DomBB); 176 177 // Insert the LCSSA phi's into the exit blocks (dominated by the value), and 178 // add them to the Phi's map. 179 for (SmallVector<BasicBlock*, 8>::const_iterator BBI = exitBlocks.begin(), 180 BBE = exitBlocks.end(); BBI != BBE; ++BBI) { 181 BasicBlock *BB = *BBI; 182 DomTreeNode *ExitBBNode = DT->getNode(BB); 183 Value *&Phi = Phis[ExitBBNode]; 184 if (!Phi && DT->dominates(DomNode, ExitBBNode)) { 185 PHINode *PN = PHINode::Create(Instr->getType(), Instr->getName()+".lcssa", 186 BB->begin()); 187 PN->reserveOperandSpace(PredCache.GetNumPreds(BB)); 188 189 // Remember that this phi makes the value alive in this block. 190 Phi = PN; 191 192 // Add inputs from inside the loop for this PHI. 193 for (BasicBlock** PI = PredCache.GetPreds(BB); *PI; ++PI) 194 PN->addIncoming(Instr, *PI); 195 } 196 } 197 198 199 // Record all uses of Instr outside the loop. We need to rewrite these. The 200 // LCSSA phis won't be included because they use the value in the loop. 201 for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end(); 202 UI != E;) { 203 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 204 if (PHINode *P = dyn_cast<PHINode>(*UI)) { 205 UserBB = P->getIncomingBlock(UI); 206 } 207 208 // If the user is in the loop, don't rewrite it! 209 if (UserBB == Instr->getParent() || inLoop(UserBB)) { 210 ++UI; 211 continue; 212 } 213 214 // Otherwise, patch up uses of the value with the appropriate LCSSA Phi, 215 // inserting PHI nodes into join points where needed. 216 Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis); 217 218 // Preincrement the iterator to avoid invalidating it when we change the 219 // value. 220 Use &U = UI.getUse(); 221 ++UI; 222 U.set(Val); 223 } 224} 225 226/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that 227/// are used by instructions outside of it. 228void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L, 229 SetVector<Instruction*> &AffectedValues, 230 const SmallVector<BasicBlock*, 8>& exitBlocks) { 231 // FIXME: For large loops, we may be able to avoid a lot of use-scanning 232 // by using dominance information. In particular, if a block does not 233 // dominate any of the loop exits, then none of the values defined in the 234 // block could be used outside the loop. 235 for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end(); 236 BB != BE; ++BB) { 237 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) 238 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; 239 ++UI) { 240 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 241 if (PHINode* p = dyn_cast<PHINode>(*UI)) { 242 UserBB = p->getIncomingBlock(UI); 243 } 244 245 if (*BB != UserBB && !inLoop(UserBB)) { 246 AffectedValues.insert(I); 247 break; 248 } 249 } 250 } 251} 252 253/// GetValueForBlock - Get the value to use within the specified basic block. 254/// available values are in Phis. 255Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst, 256 DenseMap<DomTreeNode*, Value*> &Phis) { 257 // If there is no dominator info for this BB, it is unreachable. 258 if (BB == 0) 259 return UndefValue::get(OrigInst->getType()); 260 261 // If we have already computed this value, return the previously computed val. 262 if (Phis.count(BB)) return Phis[BB]; 263 264 DomTreeNode *IDom = BB->getIDom(); 265 266 // Otherwise, there are two cases: we either have to insert a PHI node or we 267 // don't. We need to insert a PHI node if this block is not dominated by one 268 // of the exit nodes from the loop (the loop could have multiple exits, and 269 // though the value defined *inside* the loop dominated all its uses, each 270 // exit by itself may not dominate all the uses). 271 // 272 // The simplest way to check for this condition is by checking to see if the 273 // idom is in the loop. If so, we *know* that none of the exit blocks 274 // dominate this block. Note that we *know* that the block defining the 275 // original instruction is in the idom chain, because if it weren't, then the 276 // original value didn't dominate this use. 277 if (!inLoop(IDom->getBlock())) { 278 // Idom is not in the loop, we must still be "below" the exit block and must 279 // be fully dominated by the value live in the idom. 280 Value* val = GetValueForBlock(IDom, OrigInst, Phis); 281 Phis.insert(std::make_pair(BB, val)); 282 return val; 283 } 284 285 BasicBlock *BBN = BB->getBlock(); 286 287 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so 288 // now, then get values to fill in the incoming values for the PHI. 289 PHINode *PN = PHINode::Create(OrigInst->getType(), 290 OrigInst->getName() + ".lcssa", BBN->begin()); 291 PN->reserveOperandSpace(PredCache.GetNumPreds(BBN)); 292 Phis.insert(std::make_pair(BB, PN)); 293 294 // Fill in the incoming values for the block. 295 for (BasicBlock** PI = PredCache.GetPreds(BBN); *PI; ++PI) 296 PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI); 297 return PN; 298} 299 300