LCSSA.cpp revision 8fc5ad33691b2a0672a7487da1f56b6f7f675a1b
1//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops by placing phi nodes at the end of the loops for
11// all values that are live across the loop boundary.  For example, it turns
12// the left into the right code:
13//
14// for (...)                for (...)
15//   if (c)                   if (c)
16//     X1 = ...                 X1 = ...
17//   else                     else
18//     X2 = ...                 X2 = ...
19//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20// ... = X3 + 4             X4 = phi(X3)
21//                          ... = X4 + 4
22//
23// This is still valid LLVM; the extra phi nodes are purely redundant, and will
24// be trivially eliminated by InstCombine.  The major benefit of this
25// transformation is that it makes many other loop optimizations, such as
26// LoopUnswitching, simpler.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "lcssa"
31#include "llvm/Transforms/Scalar.h"
32#include "llvm/Constants.h"
33#include "llvm/Pass.h"
34#include "llvm/Function.h"
35#include "llvm/Instructions.h"
36#include "llvm/LLVMContext.h"
37#include "llvm/ADT/SetVector.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/Analysis/Dominators.h"
40#include "llvm/Analysis/LoopPass.h"
41#include "llvm/Analysis/ScalarEvolution.h"
42#include "llvm/Support/CFG.h"
43#include "llvm/Support/Compiler.h"
44#include "llvm/Support/PredIteratorCache.h"
45#include <algorithm>
46#include <map>
47using namespace llvm;
48
49STATISTIC(NumLCSSA, "Number of live out of a loop variables");
50
51namespace {
52  struct VISIBILITY_HIDDEN LCSSA : public LoopPass {
53    static char ID; // Pass identification, replacement for typeid
54    LCSSA() : LoopPass(&ID) {}
55
56    // Cached analysis information for the current function.
57    LoopInfo *LI;
58    DominatorTree *DT;
59    std::vector<BasicBlock*> LoopBlocks;
60    PredIteratorCache PredCache;
61    Loop *L;
62
63    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
64
65    void ProcessInstruction(Instruction* Instr,
66                            const SmallVector<BasicBlock*, 8>& exitBlocks);
67
68    /// This transformation requires natural loop information & requires that
69    /// loop preheaders be inserted into the CFG.  It maintains both of these,
70    /// as well as the CFG.  It also requires dominator information.
71    ///
72    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
73      AU.setPreservesCFG();
74      AU.addRequiredID(LoopSimplifyID);
75      AU.addPreservedID(LoopSimplifyID);
76      AU.addRequiredTransitive<LoopInfo>();
77      AU.addPreserved<LoopInfo>();
78      AU.addRequiredTransitive<DominatorTree>();
79      AU.addPreserved<ScalarEvolution>();
80      AU.addPreserved<DominatorTree>();
81
82      // Request DominanceFrontier now, even though LCSSA does
83      // not use it. This allows Pass Manager to schedule Dominance
84      // Frontier early enough such that one LPPassManager can handle
85      // multiple loop transformation passes.
86      AU.addRequired<DominanceFrontier>();
87      AU.addPreserved<DominanceFrontier>();
88    }
89  private:
90
91    /// verifyAnalysis() - Verify loop nest.
92    virtual void verifyAnalysis() const {
93#ifndef NDEBUG
94      // Sanity check: Check basic loop invariants.
95      L->verifyLoop();
96      // Check the special guarantees that LCSSA makes.
97      assert(L->isLCSSAForm());
98#endif
99    }
100
101    void getLoopValuesUsedOutsideLoop(Loop *L,
102                                      SetVector<Instruction*> &AffectedValues,
103                                 const SmallVector<BasicBlock*, 8>& exitBlocks);
104
105    Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
106                            DenseMap<DomTreeNode*, Value*> &Phis);
107
108    /// inLoop - returns true if the given block is within the current loop
109    bool inLoop(BasicBlock* B) {
110      return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
111    }
112  };
113}
114
115char LCSSA::ID = 0;
116static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
117
118Pass *llvm::createLCSSAPass() { return new LCSSA(); }
119const PassInfo *const llvm::LCSSAID = &X;
120
121/// runOnFunction - Process all loops in the function, inner-most out.
122bool LCSSA::runOnLoop(Loop *l, LPPassManager &LPM) {
123  L = l;
124  PredCache.clear();
125
126  LI = &LPM.getAnalysis<LoopInfo>();
127  DT = &getAnalysis<DominatorTree>();
128
129  // Speed up queries by creating a sorted list of blocks
130  LoopBlocks.clear();
131  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
132  std::sort(LoopBlocks.begin(), LoopBlocks.end());
133
134  SmallVector<BasicBlock*, 8> exitBlocks;
135  L->getExitBlocks(exitBlocks);
136
137  SetVector<Instruction*> AffectedValues;
138  getLoopValuesUsedOutsideLoop(L, AffectedValues, exitBlocks);
139
140  // If no values are affected, we can save a lot of work, since we know that
141  // nothing will be changed.
142  if (AffectedValues.empty())
143    return false;
144
145  // Iterate over all affected values for this loop and insert Phi nodes
146  // for them in the appropriate exit blocks
147
148  for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
149       E = AffectedValues.end(); I != E; ++I)
150    ProcessInstruction(*I, exitBlocks);
151
152  assert(L->isLCSSAForm());
153
154  return true;
155}
156
157/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
158/// eliminate all out-of-loop uses.
159void LCSSA::ProcessInstruction(Instruction *Instr,
160                               const SmallVector<BasicBlock*, 8>& exitBlocks) {
161  ++NumLCSSA; // We are applying the transformation
162
163  // Keep track of the blocks that have the value available already.
164  DenseMap<DomTreeNode*, Value*> Phis;
165
166  BasicBlock *DomBB = Instr->getParent();
167
168  // Invoke instructions are special in that their result value is not available
169  // along their unwind edge. The code below tests to see whether DomBB dominates
170  // the value, so adjust DomBB to the normal destination block, which is
171  // effectively where the value is first usable.
172  if (InvokeInst *Inv = dyn_cast<InvokeInst>(Instr))
173    DomBB = Inv->getNormalDest();
174
175  DomTreeNode *DomNode = DT->getNode(DomBB);
176
177  // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
178  // add them to the Phi's map.
179  for (SmallVector<BasicBlock*, 8>::const_iterator BBI = exitBlocks.begin(),
180      BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
181    BasicBlock *BB = *BBI;
182    DomTreeNode *ExitBBNode = DT->getNode(BB);
183    Value *&Phi = Phis[ExitBBNode];
184    if (!Phi && DT->dominates(DomNode, ExitBBNode)) {
185      PHINode *PN = PHINode::Create(Instr->getType(), Instr->getName()+".lcssa",
186                                    BB->begin());
187      PN->reserveOperandSpace(PredCache.GetNumPreds(BB));
188
189      // Remember that this phi makes the value alive in this block.
190      Phi = PN;
191
192      // Add inputs from inside the loop for this PHI.
193      for (BasicBlock** PI = PredCache.GetPreds(BB); *PI; ++PI)
194        PN->addIncoming(Instr, *PI);
195    }
196  }
197
198
199  // Record all uses of Instr outside the loop.  We need to rewrite these.  The
200  // LCSSA phis won't be included because they use the value in the loop.
201  for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
202       UI != E;) {
203    BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
204    if (PHINode *P = dyn_cast<PHINode>(*UI)) {
205      UserBB = P->getIncomingBlock(UI);
206    }
207
208    // If the user is in the loop, don't rewrite it!
209    if (UserBB == Instr->getParent() || inLoop(UserBB)) {
210      ++UI;
211      continue;
212    }
213
214    // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
215    // inserting PHI nodes into join points where needed.
216    Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
217
218    // Preincrement the iterator to avoid invalidating it when we change the
219    // value.
220    Use &U = UI.getUse();
221    ++UI;
222    U.set(Val);
223  }
224}
225
226/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
227/// are used by instructions outside of it.
228void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
229                                      SetVector<Instruction*> &AffectedValues,
230                                const SmallVector<BasicBlock*, 8>& exitBlocks) {
231  // FIXME: For large loops, we may be able to avoid a lot of use-scanning
232  // by using dominance information.  In particular, if a block does not
233  // dominate any of the loop exits, then none of the values defined in the
234  // block could be used outside the loop.
235  for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
236       BB != BE; ++BB) {
237    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
238      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
239           ++UI) {
240        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
241        if (PHINode* p = dyn_cast<PHINode>(*UI)) {
242          UserBB = p->getIncomingBlock(UI);
243        }
244
245        if (*BB != UserBB && !inLoop(UserBB)) {
246          AffectedValues.insert(I);
247          break;
248        }
249      }
250  }
251}
252
253/// GetValueForBlock - Get the value to use within the specified basic block.
254/// available values are in Phis.
255Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
256                               DenseMap<DomTreeNode*, Value*> &Phis) {
257  // If there is no dominator info for this BB, it is unreachable.
258  if (BB == 0)
259    return UndefValue::get(OrigInst->getType());
260
261  // If we have already computed this value, return the previously computed val.
262  if (Phis.count(BB)) return Phis[BB];
263
264  DomTreeNode *IDom = BB->getIDom();
265
266  // Otherwise, there are two cases: we either have to insert a PHI node or we
267  // don't.  We need to insert a PHI node if this block is not dominated by one
268  // of the exit nodes from the loop (the loop could have multiple exits, and
269  // though the value defined *inside* the loop dominated all its uses, each
270  // exit by itself may not dominate all the uses).
271  //
272  // The simplest way to check for this condition is by checking to see if the
273  // idom is in the loop.  If so, we *know* that none of the exit blocks
274  // dominate this block.  Note that we *know* that the block defining the
275  // original instruction is in the idom chain, because if it weren't, then the
276  // original value didn't dominate this use.
277  if (!inLoop(IDom->getBlock())) {
278    // Idom is not in the loop, we must still be "below" the exit block and must
279    // be fully dominated by the value live in the idom.
280    Value* val = GetValueForBlock(IDom, OrigInst, Phis);
281    Phis.insert(std::make_pair(BB, val));
282    return val;
283  }
284
285  BasicBlock *BBN = BB->getBlock();
286
287  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
288  // now, then get values to fill in the incoming values for the PHI.
289  PHINode *PN = PHINode::Create(OrigInst->getType(),
290                                OrigInst->getName() + ".lcssa", BBN->begin());
291  PN->reserveOperandSpace(PredCache.GetNumPreds(BBN));
292  Phis.insert(std::make_pair(BB, PN));
293
294  // Fill in the incoming values for the block.
295  for (BasicBlock** PI = PredCache.GetPreds(BBN); *PI; ++PI)
296    PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
297  return PN;
298}
299
300