LCSSA.cpp revision 9133fe28954d498fc4de13064c7d65bd811de02c
1//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Owen Anderson and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops by placing phi nodes at the end of the loops for
11// all values that are live across the loop boundary.  For example, it turns
12// the left into the right code:
13//
14// for (...)                for (...)
15//   if (c)                   if(c)
16//     X1 = ...                 X1 = ...
17//   else                     else
18//     X2 = ...                 X2 = ...
19//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20// ... = X3 + 4              X4 = phi(X3)
21//                           ... = X4 + 4
22//
23// This is still valid LLVM; the extra phi nodes are purely redundant, and will
24// be trivially eliminated by InstCombine.  The major benefit of this
25// transformation is that it makes many other loop optimizations, such as
26// LoopUnswitching, simpler.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "lcssa"
31#include "llvm/Transforms/Scalar.h"
32#include "llvm/Constants.h"
33#include "llvm/Pass.h"
34#include "llvm/Function.h"
35#include "llvm/Instructions.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Analysis/LoopInfo.h"
40#include "llvm/Support/CFG.h"
41#include "llvm/Support/Compiler.h"
42#include <algorithm>
43#include <map>
44using namespace llvm;
45
46STATISTIC(NumLCSSA, "Number of live out of a loop variables");
47
48namespace {
49  struct VISIBILITY_HIDDEN LCSSA : public FunctionPass {
50    // Cached analysis information for the current function.
51    LoopInfo *LI;
52    DominatorTree *DT;
53    std::vector<BasicBlock*> LoopBlocks;
54
55    virtual bool runOnFunction(Function &F);
56    bool visitSubloop(Loop* L);
57    void ProcessInstruction(Instruction* Instr,
58                            const std::vector<BasicBlock*>& exitBlocks);
59
60    /// This transformation requires natural loop information & requires that
61    /// loop preheaders be inserted into the CFG.  It maintains both of these,
62    /// as well as the CFG.  It also requires dominator information.
63    ///
64    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
65      AU.setPreservesCFG();
66      AU.addRequiredID(LoopSimplifyID);
67      AU.addPreservedID(LoopSimplifyID);
68      AU.addRequired<LoopInfo>();
69      AU.addRequired<DominatorTree>();
70    }
71  private:
72    SetVector<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L);
73
74    Value *GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst,
75                            std::map<DominatorTree::Node*, Value*> &Phis);
76
77    /// inLoop - returns true if the given block is within the current loop
78    const bool inLoop(BasicBlock* B) {
79      return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
80    }
81  };
82
83  RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
84}
85
86FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); }
87const PassInfo *llvm::LCSSAID = X.getPassInfo();
88
89/// runOnFunction - Process all loops in the function, inner-most out.
90bool LCSSA::runOnFunction(Function &F) {
91  bool changed = false;
92
93  LI = &getAnalysis<LoopInfo>();
94  DT = &getAnalysis<DominatorTree>();
95
96  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
97    changed |= visitSubloop(*I);
98
99  return changed;
100}
101
102/// visitSubloop - Recursively process all subloops, and then process the given
103/// loop if it has live-out values.
104bool LCSSA::visitSubloop(Loop* L) {
105  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
106    visitSubloop(*I);
107
108  // Speed up queries by creating a sorted list of blocks
109  LoopBlocks.clear();
110  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
111  std::sort(LoopBlocks.begin(), LoopBlocks.end());
112
113  SetVector<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L);
114
115  // If no values are affected, we can save a lot of work, since we know that
116  // nothing will be changed.
117  if (AffectedValues.empty())
118    return false;
119
120  std::vector<BasicBlock*> exitBlocks;
121  L->getExitBlocks(exitBlocks);
122
123
124  // Iterate over all affected values for this loop and insert Phi nodes
125  // for them in the appropriate exit blocks
126
127  for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
128       E = AffectedValues.end(); I != E; ++I)
129    ProcessInstruction(*I, exitBlocks);
130
131  assert(L->isLCSSAForm());
132
133  return true;
134}
135
136/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
137/// eliminate all out-of-loop uses.
138void LCSSA::ProcessInstruction(Instruction *Instr,
139                               const std::vector<BasicBlock*>& exitBlocks) {
140  ++NumLCSSA; // We are applying the transformation
141
142  // Keep track of the blocks that have the value available already.
143  std::map<DominatorTree::Node*, Value*> Phis;
144
145  DominatorTree::Node *InstrNode = DT->getNode(Instr->getParent());
146
147  // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
148  // add them to the Phi's map.
149  for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(),
150      BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
151    BasicBlock *BB = *BBI;
152    DominatorTree::Node *ExitBBNode = DT->getNode(BB);
153    Value *&Phi = Phis[ExitBBNode];
154    if (!Phi && InstrNode->dominates(ExitBBNode)) {
155      PHINode *PN = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
156                                BB->begin());
157      PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
158
159      // Remember that this phi makes the value alive in this block.
160      Phi = PN;
161
162      // Add inputs from inside the loop for this PHI.
163      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
164        PN->addIncoming(Instr, *PI);
165    }
166  }
167
168
169  // Record all uses of Instr outside the loop.  We need to rewrite these.  The
170  // LCSSA phis won't be included because they use the value in the loop.
171  for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
172       UI != E;) {
173    BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
174    if (PHINode *P = dyn_cast<PHINode>(*UI)) {
175      unsigned OperandNo = UI.getOperandNo();
176      UserBB = P->getIncomingBlock(OperandNo/2);
177    }
178
179    // If the user is in the loop, don't rewrite it!
180    if (UserBB == Instr->getParent() || inLoop(UserBB)) {
181      ++UI;
182      continue;
183    }
184
185    // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
186    // inserting PHI nodes into join points where needed.
187    Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
188
189    // Preincrement the iterator to avoid invalidating it when we change the
190    // value.
191    Use &U = UI.getUse();
192    ++UI;
193    U.set(Val);
194  }
195}
196
197/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
198/// are used by instructions outside of it.
199SetVector<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) {
200
201  // FIXME: For large loops, we may be able to avoid a lot of use-scanning
202  // by using dominance information.  In particular, if a block does not
203  // dominate any of the loop exits, then none of the values defined in the
204  // block could be used outside the loop.
205
206  SetVector<Instruction*> AffectedValues;
207  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
208       BB != E; ++BB) {
209    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
210      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
211           ++UI) {
212        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
213        if (PHINode* p = dyn_cast<PHINode>(*UI)) {
214          unsigned OperandNo = UI.getOperandNo();
215          UserBB = p->getIncomingBlock(OperandNo/2);
216        }
217
218        if (*BB != UserBB && !inLoop(UserBB)) {
219          AffectedValues.insert(I);
220          break;
221        }
222      }
223  }
224  return AffectedValues;
225}
226
227/// GetValueForBlock - Get the value to use within the specified basic block.
228/// available values are in Phis.
229Value *LCSSA::GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst,
230                               std::map<DominatorTree::Node*, Value*> &Phis) {
231  // If there is no dominator info for this BB, it is unreachable.
232  if (BB == 0)
233    return UndefValue::get(OrigInst->getType());
234
235  // If we have already computed this value, return the previously computed val.
236  Value *&V = Phis[BB];
237  if (V) return V;
238
239  DominatorTree::Node *IDom = BB->getIDom();
240
241  // Otherwise, there are two cases: we either have to insert a PHI node or we
242  // don't.  We need to insert a PHI node if this block is not dominated by one
243  // of the exit nodes from the loop (the loop could have multiple exits, and
244  // though the value defined *inside* the loop dominated all its uses, each
245  // exit by itself may not dominate all the uses).
246  //
247  // The simplest way to check for this condition is by checking to see if the
248  // idom is in the loop.  If so, we *know* that none of the exit blocks
249  // dominate this block.  Note that we *know* that the block defining the
250  // original instruction is in the idom chain, because if it weren't, then the
251  // original value didn't dominate this use.
252  if (!inLoop(IDom->getBlock())) {
253    // Idom is not in the loop, we must still be "below" the exit block and must
254    // be fully dominated by the value live in the idom.
255    return V = GetValueForBlock(IDom, OrigInst, Phis);
256  }
257
258  BasicBlock *BBN = BB->getBlock();
259
260  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
261  // now, then get values to fill in the incoming values for the PHI.
262  PHINode *PN = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa",
263                            BBN->begin());
264  PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN)));
265  V = PN;
266
267  // Fill in the incoming values for the block.
268  for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI)
269    PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
270  return PN;
271}
272
273