LCSSA.cpp revision 9133fe28954d498fc4de13064c7d65bd811de02c
1//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by Owen Anderson and is distributed under the 6// University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass transforms loops by placing phi nodes at the end of the loops for 11// all values that are live across the loop boundary. For example, it turns 12// the left into the right code: 13// 14// for (...) for (...) 15// if (c) if(c) 16// X1 = ... X1 = ... 17// else else 18// X2 = ... X2 = ... 19// X3 = phi(X1, X2) X3 = phi(X1, X2) 20// ... = X3 + 4 X4 = phi(X3) 21// ... = X4 + 4 22// 23// This is still valid LLVM; the extra phi nodes are purely redundant, and will 24// be trivially eliminated by InstCombine. The major benefit of this 25// transformation is that it makes many other loop optimizations, such as 26// LoopUnswitching, simpler. 27// 28//===----------------------------------------------------------------------===// 29 30#define DEBUG_TYPE "lcssa" 31#include "llvm/Transforms/Scalar.h" 32#include "llvm/Constants.h" 33#include "llvm/Pass.h" 34#include "llvm/Function.h" 35#include "llvm/Instructions.h" 36#include "llvm/ADT/SetVector.h" 37#include "llvm/ADT/Statistic.h" 38#include "llvm/Analysis/Dominators.h" 39#include "llvm/Analysis/LoopInfo.h" 40#include "llvm/Support/CFG.h" 41#include "llvm/Support/Compiler.h" 42#include <algorithm> 43#include <map> 44using namespace llvm; 45 46STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 47 48namespace { 49 struct VISIBILITY_HIDDEN LCSSA : public FunctionPass { 50 // Cached analysis information for the current function. 51 LoopInfo *LI; 52 DominatorTree *DT; 53 std::vector<BasicBlock*> LoopBlocks; 54 55 virtual bool runOnFunction(Function &F); 56 bool visitSubloop(Loop* L); 57 void ProcessInstruction(Instruction* Instr, 58 const std::vector<BasicBlock*>& exitBlocks); 59 60 /// This transformation requires natural loop information & requires that 61 /// loop preheaders be inserted into the CFG. It maintains both of these, 62 /// as well as the CFG. It also requires dominator information. 63 /// 64 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 65 AU.setPreservesCFG(); 66 AU.addRequiredID(LoopSimplifyID); 67 AU.addPreservedID(LoopSimplifyID); 68 AU.addRequired<LoopInfo>(); 69 AU.addRequired<DominatorTree>(); 70 } 71 private: 72 SetVector<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L); 73 74 Value *GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst, 75 std::map<DominatorTree::Node*, Value*> &Phis); 76 77 /// inLoop - returns true if the given block is within the current loop 78 const bool inLoop(BasicBlock* B) { 79 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); 80 } 81 }; 82 83 RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); 84} 85 86FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); } 87const PassInfo *llvm::LCSSAID = X.getPassInfo(); 88 89/// runOnFunction - Process all loops in the function, inner-most out. 90bool LCSSA::runOnFunction(Function &F) { 91 bool changed = false; 92 93 LI = &getAnalysis<LoopInfo>(); 94 DT = &getAnalysis<DominatorTree>(); 95 96 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 97 changed |= visitSubloop(*I); 98 99 return changed; 100} 101 102/// visitSubloop - Recursively process all subloops, and then process the given 103/// loop if it has live-out values. 104bool LCSSA::visitSubloop(Loop* L) { 105 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 106 visitSubloop(*I); 107 108 // Speed up queries by creating a sorted list of blocks 109 LoopBlocks.clear(); 110 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 111 std::sort(LoopBlocks.begin(), LoopBlocks.end()); 112 113 SetVector<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L); 114 115 // If no values are affected, we can save a lot of work, since we know that 116 // nothing will be changed. 117 if (AffectedValues.empty()) 118 return false; 119 120 std::vector<BasicBlock*> exitBlocks; 121 L->getExitBlocks(exitBlocks); 122 123 124 // Iterate over all affected values for this loop and insert Phi nodes 125 // for them in the appropriate exit blocks 126 127 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(), 128 E = AffectedValues.end(); I != E; ++I) 129 ProcessInstruction(*I, exitBlocks); 130 131 assert(L->isLCSSAForm()); 132 133 return true; 134} 135 136/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes, 137/// eliminate all out-of-loop uses. 138void LCSSA::ProcessInstruction(Instruction *Instr, 139 const std::vector<BasicBlock*>& exitBlocks) { 140 ++NumLCSSA; // We are applying the transformation 141 142 // Keep track of the blocks that have the value available already. 143 std::map<DominatorTree::Node*, Value*> Phis; 144 145 DominatorTree::Node *InstrNode = DT->getNode(Instr->getParent()); 146 147 // Insert the LCSSA phi's into the exit blocks (dominated by the value), and 148 // add them to the Phi's map. 149 for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(), 150 BBE = exitBlocks.end(); BBI != BBE; ++BBI) { 151 BasicBlock *BB = *BBI; 152 DominatorTree::Node *ExitBBNode = DT->getNode(BB); 153 Value *&Phi = Phis[ExitBBNode]; 154 if (!Phi && InstrNode->dominates(ExitBBNode)) { 155 PHINode *PN = new PHINode(Instr->getType(), Instr->getName()+".lcssa", 156 BB->begin()); 157 PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB))); 158 159 // Remember that this phi makes the value alive in this block. 160 Phi = PN; 161 162 // Add inputs from inside the loop for this PHI. 163 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 164 PN->addIncoming(Instr, *PI); 165 } 166 } 167 168 169 // Record all uses of Instr outside the loop. We need to rewrite these. The 170 // LCSSA phis won't be included because they use the value in the loop. 171 for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end(); 172 UI != E;) { 173 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 174 if (PHINode *P = dyn_cast<PHINode>(*UI)) { 175 unsigned OperandNo = UI.getOperandNo(); 176 UserBB = P->getIncomingBlock(OperandNo/2); 177 } 178 179 // If the user is in the loop, don't rewrite it! 180 if (UserBB == Instr->getParent() || inLoop(UserBB)) { 181 ++UI; 182 continue; 183 } 184 185 // Otherwise, patch up uses of the value with the appropriate LCSSA Phi, 186 // inserting PHI nodes into join points where needed. 187 Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis); 188 189 // Preincrement the iterator to avoid invalidating it when we change the 190 // value. 191 Use &U = UI.getUse(); 192 ++UI; 193 U.set(Val); 194 } 195} 196 197/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that 198/// are used by instructions outside of it. 199SetVector<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) { 200 201 // FIXME: For large loops, we may be able to avoid a lot of use-scanning 202 // by using dominance information. In particular, if a block does not 203 // dominate any of the loop exits, then none of the values defined in the 204 // block could be used outside the loop. 205 206 SetVector<Instruction*> AffectedValues; 207 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 208 BB != E; ++BB) { 209 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) 210 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 211 ++UI) { 212 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 213 if (PHINode* p = dyn_cast<PHINode>(*UI)) { 214 unsigned OperandNo = UI.getOperandNo(); 215 UserBB = p->getIncomingBlock(OperandNo/2); 216 } 217 218 if (*BB != UserBB && !inLoop(UserBB)) { 219 AffectedValues.insert(I); 220 break; 221 } 222 } 223 } 224 return AffectedValues; 225} 226 227/// GetValueForBlock - Get the value to use within the specified basic block. 228/// available values are in Phis. 229Value *LCSSA::GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst, 230 std::map<DominatorTree::Node*, Value*> &Phis) { 231 // If there is no dominator info for this BB, it is unreachable. 232 if (BB == 0) 233 return UndefValue::get(OrigInst->getType()); 234 235 // If we have already computed this value, return the previously computed val. 236 Value *&V = Phis[BB]; 237 if (V) return V; 238 239 DominatorTree::Node *IDom = BB->getIDom(); 240 241 // Otherwise, there are two cases: we either have to insert a PHI node or we 242 // don't. We need to insert a PHI node if this block is not dominated by one 243 // of the exit nodes from the loop (the loop could have multiple exits, and 244 // though the value defined *inside* the loop dominated all its uses, each 245 // exit by itself may not dominate all the uses). 246 // 247 // The simplest way to check for this condition is by checking to see if the 248 // idom is in the loop. If so, we *know* that none of the exit blocks 249 // dominate this block. Note that we *know* that the block defining the 250 // original instruction is in the idom chain, because if it weren't, then the 251 // original value didn't dominate this use. 252 if (!inLoop(IDom->getBlock())) { 253 // Idom is not in the loop, we must still be "below" the exit block and must 254 // be fully dominated by the value live in the idom. 255 return V = GetValueForBlock(IDom, OrigInst, Phis); 256 } 257 258 BasicBlock *BBN = BB->getBlock(); 259 260 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so 261 // now, then get values to fill in the incoming values for the PHI. 262 PHINode *PN = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa", 263 BBN->begin()); 264 PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN))); 265 V = PN; 266 267 // Fill in the incoming values for the block. 268 for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI) 269 PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI); 270 return PN; 271} 272 273