LCSSA.cpp revision 9e1c1ddd4b514731236c0c24184ae194fb4d3706
1//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by Owen Anderson and is distributed under the 6// University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass transforms loops by placing phi nodes at the end of the loops for 11// all values that are live across the loop boundary. For example, it turns 12// the left into the right code: 13// 14// for (...) for (...) 15// if (c) if(c) 16// X1 = ... X1 = ... 17// else else 18// X2 = ... X2 = ... 19// X3 = phi(X1, X2) X3 = phi(X1, X2) 20// ... = X3 + 4 X4 = phi(X3) 21// ... = X4 + 4 22// 23// This is still valid LLVM; the extra phi nodes are purely redundant, and will 24// be trivially eliminated by InstCombine. The major benefit of this 25// transformation is that it makes many other loop optimizations, such as 26// LoopUnswitching, simpler. 27// 28//===----------------------------------------------------------------------===// 29 30#include "llvm/Transforms/Scalar.h" 31#include "llvm/Pass.h" 32#include "llvm/Function.h" 33#include "llvm/Instructions.h" 34#include "llvm/ADT/SetVector.h" 35#include "llvm/ADT/Statistic.h" 36#include "llvm/Analysis/Dominators.h" 37#include "llvm/Analysis/LoopInfo.h" 38#include "llvm/Support/CFG.h" 39#include <algorithm> 40#include <map> 41 42using namespace llvm; 43 44namespace { 45 static Statistic<> NumLCSSA("lcssa", 46 "Number of live out of a loop variables"); 47 48 class LCSSA : public FunctionPass { 49 public: 50 51 52 LoopInfo *LI; // Loop information 53 DominatorTree *DT; // Dominator Tree for the current Loop... 54 DominanceFrontier *DF; // Current Dominance Frontier 55 std::vector<BasicBlock*> *LoopBlocks; 56 57 virtual bool runOnFunction(Function &F); 58 bool visitSubloop(Loop* L); 59 void processInstruction(Instruction* Instr, 60 const std::vector<BasicBlock*>& exitBlocks); 61 62 /// This transformation requires natural loop information & requires that 63 /// loop preheaders be inserted into the CFG. It maintains both of these, 64 /// as well as the CFG. It also requires dominator information. 65 /// 66 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 67 AU.setPreservesCFG(); 68 AU.addRequiredID(LoopSimplifyID); 69 AU.addPreservedID(LoopSimplifyID); 70 AU.addRequired<LoopInfo>(); 71 AU.addRequired<DominatorTree>(); 72 AU.addRequired<DominanceFrontier>(); 73 } 74 private: 75 SetVector<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L); 76 Instruction *getValueDominatingBlock(BasicBlock *BB, 77 std::map<BasicBlock*, Instruction*>& PotDoms); 78 79 bool inLoopBlocks(BasicBlock* B) { return std::binary_search( 80 LoopBlocks->begin(), LoopBlocks->end(), B); } 81 }; 82 83 RegisterOpt<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); 84} 85 86FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); } 87 88bool LCSSA::runOnFunction(Function &F) { 89 bool changed = false; 90 LI = &getAnalysis<LoopInfo>(); 91 DF = &getAnalysis<DominanceFrontier>(); 92 DT = &getAnalysis<DominatorTree>(); 93 LoopBlocks = new std::vector<BasicBlock*>; 94 95 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) { 96 changed |= visitSubloop(*I); 97 } 98 99 return changed; 100} 101 102bool LCSSA::visitSubloop(Loop* L) { 103 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 104 visitSubloop(*I); 105 106 // Speed up queries by creating a sorted list of blocks 107 LoopBlocks->clear(); 108 LoopBlocks->insert(LoopBlocks->end(), L->block_begin(), L->block_end()); 109 std::sort(LoopBlocks->begin(), LoopBlocks->end()); 110 111 SetVector<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L); 112 113 // If no values are affected, we can save a lot of work, since we know that 114 // nothing will be changed. 115 if (AffectedValues.empty()) 116 return false; 117 118 std::vector<BasicBlock*> exitBlocks; 119 L->getExitBlocks(exitBlocks); 120 121 122 // Iterate over all affected values for this loop and insert Phi nodes 123 // for them in the appropriate exit blocks 124 125 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(), 126 E = AffectedValues.end(); I != E; ++I) { 127 processInstruction(*I, exitBlocks); 128 } 129 130 return true; // FIXME: Should be more intelligent in our return value. 131} 132 133/// processInstruction - 134void LCSSA::processInstruction(Instruction* Instr, 135 const std::vector<BasicBlock*>& exitBlocks) 136{ 137 ++NumLCSSA; // We are applying the transformation 138 139 std::map<BasicBlock*, Instruction*> Phis; 140 141 // Add the base instruction to the Phis list. This makes tracking down 142 // the dominating values easier when we're filling in Phi nodes. This will 143 // be removed later, before we perform use replacement. 144 Phis[Instr->getParent()] = Instr; 145 146 // Phi nodes that need to be IDF-processed 147 std::vector<PHINode*> workList; 148 149 for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(), 150 BBE = exitBlocks.end(); BBI != BBE; ++BBI) 151 if (DT->getNode(Instr->getParent())->dominates(DT->getNode(*BBI))) { 152 PHINode *phi = new PHINode(Instr->getType(), "lcssa", (*BBI)->begin()); 153 workList.push_back(phi); 154 Phis[*BBI] = phi; 155 } 156 157 // Phi nodes that need to have their incoming values filled. 158 std::vector<PHINode*> needIncomingValues; 159 160 // Calculate the IDF of these LCSSA Phi nodes, inserting new Phi's where 161 // necessary. Keep track of these new Phi's in the "Phis" map. 162 while (!workList.empty()) { 163 PHINode *CurPHI = workList.back(); 164 workList.pop_back(); 165 166 // Even though we've removed this Phi from the work list, we still need 167 // to fill in its incoming values. 168 needIncomingValues.push_back(CurPHI); 169 170 // Get the current Phi's DF, and insert Phi nodes. Add these new 171 // nodes to our worklist. 172 DominanceFrontier::const_iterator it = DF->find(CurPHI->getParent()); 173 if (it != DF->end()) { 174 const DominanceFrontier::DomSetType &S = it->second; 175 for (DominanceFrontier::DomSetType::const_iterator P = S.begin(), 176 PE = S.end(); P != PE; ++P) { 177 Instruction *&Phi = Phis[*P]; 178 if (Phi == 0) { 179 // Still doesn't have operands... 180 Phi = new PHINode(Instr->getType(), "lcssa", (*P)->begin()); 181 182 workList.push_back(cast<PHINode>(Phi)); 183 } 184 } 185 } 186 } 187 188 // Fill in all Phis we've inserted that need their incoming values filled in. 189 for (std::vector<PHINode*>::iterator IVI = needIncomingValues.begin(), 190 IVE = needIncomingValues.end(); IVI != IVE; ++IVI) { 191 for (pred_iterator PI = pred_begin((*IVI)->getParent()), 192 E = pred_end((*IVI)->getParent()); PI != E; ++PI) 193 (*IVI)->addIncoming(getValueDominatingBlock(*PI, Phis), 194 *PI); 195 } 196 197 // Find all uses of the affected value, and replace them with the 198 // appropriate Phi. 199 std::vector<Instruction*> Uses; 200 for (Instruction::use_iterator UI = Instr->use_begin(), UE = Instr->use_end(); 201 UI != UE; ++UI) { 202 Instruction* use = cast<Instruction>(*UI); 203 // Don't need to update uses within the loop body, and we don't want to 204 // overwrite the Phi nodes that we inserted into the exit blocks either. 205 if (!inLoopBlocks(use->getParent()) && 206 !(std::binary_search(exitBlocks.begin(), exitBlocks.end(), 207 use->getParent()) && isa<PHINode>(use))) 208 Uses.push_back(use); 209 } 210 211 // Deliberately remove the initial instruction from Phis set. It would mess 212 // up use-replacement. 213 Phis.erase(Instr->getParent()); 214 215 for (std::vector<Instruction*>::iterator II = Uses.begin(), IE = Uses.end(); 216 II != IE; ++II) { 217 if (PHINode* phi = dyn_cast<PHINode>(*II)) { 218 for (unsigned int i = 0; i < phi->getNumIncomingValues(); ++i) { 219 if (phi->getIncomingValue(i) == Instr) { 220 Instruction* dominator = 221 getValueDominatingBlock(phi->getIncomingBlock(i), Phis); 222 phi->setIncomingValue(i, dominator); 223 } 224 } 225 } else { 226 Value *NewVal = getValueDominatingBlock((*II)->getParent(), Phis); 227 (*II)->replaceUsesOfWith(Instr, NewVal); 228 } 229 } 230} 231 232/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that 233/// are used by instructions outside of it. 234SetVector<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) { 235 236 // FIXME: For large loops, we may be able to avoid a lot of use-scanning 237 // by using dominance information. In particular, if a block does not 238 // dominate any of the loop exits, then none of the values defined in the 239 // block could be used outside the loop. 240 241 SetVector<Instruction*> AffectedValues; 242 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 243 BB != E; ++BB) { 244 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) 245 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 246 ++UI) { 247 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 248 if (!std::binary_search(LoopBlocks->begin(), LoopBlocks->end(), UserBB)) 249 { 250 AffectedValues.insert(I); 251 break; 252 } 253 } 254 } 255 return AffectedValues; 256} 257 258Instruction *LCSSA::getValueDominatingBlock(BasicBlock *BB, 259 std::map<BasicBlock*, Instruction*>& PotDoms) { 260 DominatorTree::Node* bbNode = DT->getNode(BB); 261 while (bbNode != 0) { 262 std::map<BasicBlock*, Instruction*>::iterator I = 263 PotDoms.find(bbNode->getBlock()); 264 if (I != PotDoms.end()) { 265 return (*I).second; 266 } 267 bbNode = bbNode->getIDom(); 268 } 269 270 assert(0 && "No dominating value found."); 271 272 return 0; 273} 274