LCSSA.cpp revision bde6869ef4bf1c8b1c620c570ea340c8b2d3d269
1//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by Owen Anderson and is distributed under the 6// University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass transforms loops by placing phi nodes at the end of the loops for 11// all values that are live across the loop boundary. For example, it turns 12// the left into the right code: 13// 14// for (...) for (...) 15// if (c) if (c) 16// X1 = ... X1 = ... 17// else else 18// X2 = ... X2 = ... 19// X3 = phi(X1, X2) X3 = phi(X1, X2) 20// ... = X3 + 4 X4 = phi(X3) 21// ... = X4 + 4 22// 23// This is still valid LLVM; the extra phi nodes are purely redundant, and will 24// be trivially eliminated by InstCombine. The major benefit of this 25// transformation is that it makes many other loop optimizations, such as 26// LoopUnswitching, simpler. 27// 28//===----------------------------------------------------------------------===// 29 30#define DEBUG_TYPE "lcssa" 31#include "llvm/Transforms/Scalar.h" 32#include "llvm/Constants.h" 33#include "llvm/Pass.h" 34#include "llvm/Function.h" 35#include "llvm/Instructions.h" 36#include "llvm/ADT/SetVector.h" 37#include "llvm/ADT/Statistic.h" 38#include "llvm/Analysis/Dominators.h" 39#include "llvm/Analysis/LoopPass.h" 40#include "llvm/Analysis/ScalarEvolution.h" 41#include "llvm/Support/CFG.h" 42#include "llvm/Support/Compiler.h" 43#include <algorithm> 44#include <map> 45using namespace llvm; 46 47STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 48 49namespace { 50 struct VISIBILITY_HIDDEN LCSSA : public LoopPass { 51 static char ID; // Pass identification, replacement for typeid 52 LCSSA() : LoopPass((intptr_t)&ID) {} 53 54 // Cached analysis information for the current function. 55 LoopInfo *LI; 56 DominatorTree *DT; 57 std::vector<BasicBlock*> LoopBlocks; 58 59 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 60 61 void ProcessInstruction(Instruction* Instr, 62 const std::vector<BasicBlock*>& exitBlocks); 63 64 /// This transformation requires natural loop information & requires that 65 /// loop preheaders be inserted into the CFG. It maintains both of these, 66 /// as well as the CFG. It also requires dominator information. 67 /// 68 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 69 AU.setPreservesCFG(); 70 AU.addRequiredID(LoopSimplifyID); 71 AU.addPreservedID(LoopSimplifyID); 72 AU.addRequired<LoopInfo>(); 73 AU.addPreserved<LoopInfo>(); 74 AU.addRequired<DominatorTree>(); 75 AU.addPreserved<ScalarEvolution>(); 76 } 77 private: 78 void getLoopValuesUsedOutsideLoop(Loop *L, 79 SetVector<Instruction*> &AffectedValues); 80 81 Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst, 82 std::map<DomTreeNode*, Value*> &Phis); 83 84 /// inLoop - returns true if the given block is within the current loop 85 const bool inLoop(BasicBlock* B) { 86 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); 87 } 88 }; 89 90 char LCSSA::ID = 0; 91 RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); 92} 93 94LoopPass *llvm::createLCSSAPass() { return new LCSSA(); } 95const PassInfo *llvm::LCSSAID = X.getPassInfo(); 96 97/// runOnFunction - Process all loops in the function, inner-most out. 98bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) { 99 100 LI = &LPM.getAnalysis<LoopInfo>(); 101 DT = &getAnalysis<DominatorTree>(); 102 103 // Speed up queries by creating a sorted list of blocks 104 LoopBlocks.clear(); 105 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 106 std::sort(LoopBlocks.begin(), LoopBlocks.end()); 107 108 SetVector<Instruction*> AffectedValues; 109 getLoopValuesUsedOutsideLoop(L, AffectedValues); 110 111 // If no values are affected, we can save a lot of work, since we know that 112 // nothing will be changed. 113 if (AffectedValues.empty()) 114 return false; 115 116 std::vector<BasicBlock*> exitBlocks; 117 L->getExitBlocks(exitBlocks); 118 119 120 // Iterate over all affected values for this loop and insert Phi nodes 121 // for them in the appropriate exit blocks 122 123 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(), 124 E = AffectedValues.end(); I != E; ++I) 125 ProcessInstruction(*I, exitBlocks); 126 127 assert(L->isLCSSAForm()); 128 129 return true; 130} 131 132/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes, 133/// eliminate all out-of-loop uses. 134void LCSSA::ProcessInstruction(Instruction *Instr, 135 const std::vector<BasicBlock*>& exitBlocks) { 136 ++NumLCSSA; // We are applying the transformation 137 138 // Keep track of the blocks that have the value available already. 139 std::map<DomTreeNode*, Value*> Phis; 140 141 DomTreeNode *InstrNode = DT->getNode(Instr->getParent()); 142 143 // Insert the LCSSA phi's into the exit blocks (dominated by the value), and 144 // add them to the Phi's map. 145 for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(), 146 BBE = exitBlocks.end(); BBI != BBE; ++BBI) { 147 BasicBlock *BB = *BBI; 148 DomTreeNode *ExitBBNode = DT->getNode(BB); 149 Value *&Phi = Phis[ExitBBNode]; 150 if (!Phi && DT->dominates(InstrNode, ExitBBNode)) { 151 PHINode *PN = new PHINode(Instr->getType(), Instr->getName()+".lcssa", 152 BB->begin()); 153 PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB))); 154 155 // Remember that this phi makes the value alive in this block. 156 Phi = PN; 157 158 // Add inputs from inside the loop for this PHI. 159 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 160 PN->addIncoming(Instr, *PI); 161 } 162 } 163 164 165 // Record all uses of Instr outside the loop. We need to rewrite these. The 166 // LCSSA phis won't be included because they use the value in the loop. 167 for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end(); 168 UI != E;) { 169 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 170 if (PHINode *P = dyn_cast<PHINode>(*UI)) { 171 unsigned OperandNo = UI.getOperandNo(); 172 UserBB = P->getIncomingBlock(OperandNo/2); 173 } 174 175 // If the user is in the loop, don't rewrite it! 176 if (UserBB == Instr->getParent() || inLoop(UserBB)) { 177 ++UI; 178 continue; 179 } 180 181 // Otherwise, patch up uses of the value with the appropriate LCSSA Phi, 182 // inserting PHI nodes into join points where needed. 183 Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis); 184 185 // Preincrement the iterator to avoid invalidating it when we change the 186 // value. 187 Use &U = UI.getUse(); 188 ++UI; 189 U.set(Val); 190 } 191} 192 193/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that 194/// are used by instructions outside of it. 195void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L, 196 SetVector<Instruction*> &AffectedValues) { 197 // FIXME: For large loops, we may be able to avoid a lot of use-scanning 198 // by using dominance information. In particular, if a block does not 199 // dominate any of the loop exits, then none of the values defined in the 200 // block could be used outside the loop. 201 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 202 BB != E; ++BB) { 203 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) 204 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 205 ++UI) { 206 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 207 if (PHINode* p = dyn_cast<PHINode>(*UI)) { 208 unsigned OperandNo = UI.getOperandNo(); 209 UserBB = p->getIncomingBlock(OperandNo/2); 210 } 211 212 if (*BB != UserBB && !inLoop(UserBB)) { 213 AffectedValues.insert(I); 214 break; 215 } 216 } 217 } 218} 219 220/// GetValueForBlock - Get the value to use within the specified basic block. 221/// available values are in Phis. 222Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst, 223 std::map<DomTreeNode*, Value*> &Phis) { 224 // If there is no dominator info for this BB, it is unreachable. 225 if (BB == 0) 226 return UndefValue::get(OrigInst->getType()); 227 228 // If we have already computed this value, return the previously computed val. 229 Value *&V = Phis[BB]; 230 if (V) return V; 231 232 DomTreeNode *IDom = BB->getIDom(); 233 234 // If the block has no dominator, bail 235 if (!IDom) 236 return V = UndefValue::get(OrigInst->getType()); 237 238 // Otherwise, there are two cases: we either have to insert a PHI node or we 239 // don't. We need to insert a PHI node if this block is not dominated by one 240 // of the exit nodes from the loop (the loop could have multiple exits, and 241 // though the value defined *inside* the loop dominated all its uses, each 242 // exit by itself may not dominate all the uses). 243 // 244 // The simplest way to check for this condition is by checking to see if the 245 // idom is in the loop. If so, we *know* that none of the exit blocks 246 // dominate this block. Note that we *know* that the block defining the 247 // original instruction is in the idom chain, because if it weren't, then the 248 // original value didn't dominate this use. 249 if (!inLoop(IDom->getBlock())) { 250 // Idom is not in the loop, we must still be "below" the exit block and must 251 // be fully dominated by the value live in the idom. 252 return V = GetValueForBlock(IDom, OrigInst, Phis); 253 } 254 255 BasicBlock *BBN = BB->getBlock(); 256 257 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so 258 // now, then get values to fill in the incoming values for the PHI. 259 PHINode *PN = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa", 260 BBN->begin()); 261 PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN))); 262 V = PN; 263 264 // Fill in the incoming values for the block. 265 for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI) 266 PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI); 267 return PN; 268} 269 270