LCSSA.cpp revision bde6869ef4bf1c8b1c620c570ea340c8b2d3d269
1//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Owen Anderson and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops by placing phi nodes at the end of the loops for
11// all values that are live across the loop boundary.  For example, it turns
12// the left into the right code:
13//
14// for (...)                for (...)
15//   if (c)                   if (c)
16//     X1 = ...                 X1 = ...
17//   else                     else
18//     X2 = ...                 X2 = ...
19//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20// ... = X3 + 4              X4 = phi(X3)
21//                           ... = X4 + 4
22//
23// This is still valid LLVM; the extra phi nodes are purely redundant, and will
24// be trivially eliminated by InstCombine.  The major benefit of this
25// transformation is that it makes many other loop optimizations, such as
26// LoopUnswitching, simpler.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "lcssa"
31#include "llvm/Transforms/Scalar.h"
32#include "llvm/Constants.h"
33#include "llvm/Pass.h"
34#include "llvm/Function.h"
35#include "llvm/Instructions.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Analysis/LoopPass.h"
40#include "llvm/Analysis/ScalarEvolution.h"
41#include "llvm/Support/CFG.h"
42#include "llvm/Support/Compiler.h"
43#include <algorithm>
44#include <map>
45using namespace llvm;
46
47STATISTIC(NumLCSSA, "Number of live out of a loop variables");
48
49namespace {
50  struct VISIBILITY_HIDDEN LCSSA : public LoopPass {
51    static char ID; // Pass identification, replacement for typeid
52    LCSSA() : LoopPass((intptr_t)&ID) {}
53
54    // Cached analysis information for the current function.
55    LoopInfo *LI;
56    DominatorTree *DT;
57    std::vector<BasicBlock*> LoopBlocks;
58
59    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
60
61    void ProcessInstruction(Instruction* Instr,
62                            const std::vector<BasicBlock*>& exitBlocks);
63
64    /// This transformation requires natural loop information & requires that
65    /// loop preheaders be inserted into the CFG.  It maintains both of these,
66    /// as well as the CFG.  It also requires dominator information.
67    ///
68    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69      AU.setPreservesCFG();
70      AU.addRequiredID(LoopSimplifyID);
71      AU.addPreservedID(LoopSimplifyID);
72      AU.addRequired<LoopInfo>();
73      AU.addPreserved<LoopInfo>();
74      AU.addRequired<DominatorTree>();
75      AU.addPreserved<ScalarEvolution>();
76    }
77  private:
78    void getLoopValuesUsedOutsideLoop(Loop *L,
79                                      SetVector<Instruction*> &AffectedValues);
80
81    Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
82                            std::map<DomTreeNode*, Value*> &Phis);
83
84    /// inLoop - returns true if the given block is within the current loop
85    const bool inLoop(BasicBlock* B) {
86      return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
87    }
88  };
89
90  char LCSSA::ID = 0;
91  RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
92}
93
94LoopPass *llvm::createLCSSAPass() { return new LCSSA(); }
95const PassInfo *llvm::LCSSAID = X.getPassInfo();
96
97/// runOnFunction - Process all loops in the function, inner-most out.
98bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) {
99
100  LI = &LPM.getAnalysis<LoopInfo>();
101  DT = &getAnalysis<DominatorTree>();
102
103  // Speed up queries by creating a sorted list of blocks
104  LoopBlocks.clear();
105  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
106  std::sort(LoopBlocks.begin(), LoopBlocks.end());
107
108  SetVector<Instruction*> AffectedValues;
109  getLoopValuesUsedOutsideLoop(L, AffectedValues);
110
111  // If no values are affected, we can save a lot of work, since we know that
112  // nothing will be changed.
113  if (AffectedValues.empty())
114    return false;
115
116  std::vector<BasicBlock*> exitBlocks;
117  L->getExitBlocks(exitBlocks);
118
119
120  // Iterate over all affected values for this loop and insert Phi nodes
121  // for them in the appropriate exit blocks
122
123  for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
124       E = AffectedValues.end(); I != E; ++I)
125    ProcessInstruction(*I, exitBlocks);
126
127  assert(L->isLCSSAForm());
128
129  return true;
130}
131
132/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
133/// eliminate all out-of-loop uses.
134void LCSSA::ProcessInstruction(Instruction *Instr,
135                               const std::vector<BasicBlock*>& exitBlocks) {
136  ++NumLCSSA; // We are applying the transformation
137
138  // Keep track of the blocks that have the value available already.
139  std::map<DomTreeNode*, Value*> Phis;
140
141  DomTreeNode *InstrNode = DT->getNode(Instr->getParent());
142
143  // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
144  // add them to the Phi's map.
145  for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(),
146      BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
147    BasicBlock *BB = *BBI;
148    DomTreeNode *ExitBBNode = DT->getNode(BB);
149    Value *&Phi = Phis[ExitBBNode];
150    if (!Phi && DT->dominates(InstrNode, ExitBBNode)) {
151      PHINode *PN = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
152                                BB->begin());
153      PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
154
155      // Remember that this phi makes the value alive in this block.
156      Phi = PN;
157
158      // Add inputs from inside the loop for this PHI.
159      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
160        PN->addIncoming(Instr, *PI);
161    }
162  }
163
164
165  // Record all uses of Instr outside the loop.  We need to rewrite these.  The
166  // LCSSA phis won't be included because they use the value in the loop.
167  for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
168       UI != E;) {
169    BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
170    if (PHINode *P = dyn_cast<PHINode>(*UI)) {
171      unsigned OperandNo = UI.getOperandNo();
172      UserBB = P->getIncomingBlock(OperandNo/2);
173    }
174
175    // If the user is in the loop, don't rewrite it!
176    if (UserBB == Instr->getParent() || inLoop(UserBB)) {
177      ++UI;
178      continue;
179    }
180
181    // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
182    // inserting PHI nodes into join points where needed.
183    Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
184
185    // Preincrement the iterator to avoid invalidating it when we change the
186    // value.
187    Use &U = UI.getUse();
188    ++UI;
189    U.set(Val);
190  }
191}
192
193/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
194/// are used by instructions outside of it.
195void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
196                                      SetVector<Instruction*> &AffectedValues) {
197  // FIXME: For large loops, we may be able to avoid a lot of use-scanning
198  // by using dominance information.  In particular, if a block does not
199  // dominate any of the loop exits, then none of the values defined in the
200  // block could be used outside the loop.
201  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
202       BB != E; ++BB) {
203    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
204      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
205           ++UI) {
206        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
207        if (PHINode* p = dyn_cast<PHINode>(*UI)) {
208          unsigned OperandNo = UI.getOperandNo();
209          UserBB = p->getIncomingBlock(OperandNo/2);
210        }
211
212        if (*BB != UserBB && !inLoop(UserBB)) {
213          AffectedValues.insert(I);
214          break;
215        }
216      }
217  }
218}
219
220/// GetValueForBlock - Get the value to use within the specified basic block.
221/// available values are in Phis.
222Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
223                               std::map<DomTreeNode*, Value*> &Phis) {
224  // If there is no dominator info for this BB, it is unreachable.
225  if (BB == 0)
226    return UndefValue::get(OrigInst->getType());
227
228  // If we have already computed this value, return the previously computed val.
229  Value *&V = Phis[BB];
230  if (V) return V;
231
232  DomTreeNode *IDom = BB->getIDom();
233
234  // If the block has no dominator, bail
235  if (!IDom)
236    return V = UndefValue::get(OrigInst->getType());
237
238  // Otherwise, there are two cases: we either have to insert a PHI node or we
239  // don't.  We need to insert a PHI node if this block is not dominated by one
240  // of the exit nodes from the loop (the loop could have multiple exits, and
241  // though the value defined *inside* the loop dominated all its uses, each
242  // exit by itself may not dominate all the uses).
243  //
244  // The simplest way to check for this condition is by checking to see if the
245  // idom is in the loop.  If so, we *know* that none of the exit blocks
246  // dominate this block.  Note that we *know* that the block defining the
247  // original instruction is in the idom chain, because if it weren't, then the
248  // original value didn't dominate this use.
249  if (!inLoop(IDom->getBlock())) {
250    // Idom is not in the loop, we must still be "below" the exit block and must
251    // be fully dominated by the value live in the idom.
252    return V = GetValueForBlock(IDom, OrigInst, Phis);
253  }
254
255  BasicBlock *BBN = BB->getBlock();
256
257  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
258  // now, then get values to fill in the incoming values for the PHI.
259  PHINode *PN = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa",
260                            BBN->begin());
261  PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN)));
262  V = PN;
263
264  // Fill in the incoming values for the block.
265  for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI)
266    PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
267  return PN;
268}
269
270