LCSSA.cpp revision ff99366919b5909ab0ae2df6495e5de2044b938d
1//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by Owen Anderson and is distributed under the 6// University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass transforms loops by placing phi nodes at the end of the loops for 11// all values that are live across the loop boundary. For example, it turns 12// the left into the right code: 13// 14// for (...) for (...) 15// if (c) if(c) 16// X1 = ... X1 = ... 17// else else 18// X2 = ... X2 = ... 19// X3 = phi(X1, X2) X3 = phi(X1, X2) 20// ... = X3 + 4 X4 = phi(X3) 21// ... = X4 + 4 22// 23// This is still valid LLVM; the extra phi nodes are purely redundant, and will 24// be trivially eliminated by InstCombine. The major benefit of this 25// transformation is that it makes many other loop optimizations, such as 26// LoopUnswitching, simpler. 27// 28//===----------------------------------------------------------------------===// 29 30#include "llvm/Transforms/Scalar.h" 31#include "llvm/Pass.h" 32#include "llvm/Function.h" 33#include "llvm/Instructions.h" 34#include "llvm/ADT/Statistic.h" 35#include "llvm/Analysis/Dominators.h" 36#include "llvm/Analysis/LoopInfo.h" 37#include "llvm/Support/CFG.h" 38#include <algorithm> 39#include <cassert> 40#include <map> 41#include <vector> 42 43using namespace llvm; 44 45namespace { 46 static Statistic<> NumLCSSA("lcssa", 47 "Number of live out of a loop variables"); 48 49 class LCSSA : public FunctionPass { 50 public: 51 52 53 LoopInfo *LI; // Loop information 54 DominatorTree *DT; // Dominator Tree for the current Loop... 55 DominanceFrontier *DF; // Current Dominance Frontier 56 57 virtual bool runOnFunction(Function &F); 58 bool visitSubloop(Loop* L); 59 void processInstruction(Instruction* Instr, 60 const std::vector<BasicBlock*>& LoopBlocks, 61 const std::vector<BasicBlock*>& exitBlocks); 62 63 /// This transformation requires natural loop information & requires that 64 /// loop preheaders be inserted into the CFG. It maintains both of these, 65 /// as well as the CFG. It also requires dominator information. 66 /// 67 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 68 AU.setPreservesCFG(); 69 AU.addRequiredID(LoopSimplifyID); 70 AU.addPreservedID(LoopSimplifyID); 71 AU.addRequired<LoopInfo>(); 72 AU.addPreserved<LoopInfo>(); 73 AU.addRequired<DominatorTree>(); 74 AU.addRequired<DominanceFrontier>(); 75 } 76 private: 77 std::set<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L, 78 const std::vector<BasicBlock*>& LoopBlocks); 79 Instruction *getValueDominatingBlock(BasicBlock *BB, 80 std::map<BasicBlock*, Instruction*> PotDoms); 81 }; 82 83 RegisterOpt<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); 84} 85 86FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); } 87 88bool LCSSA::runOnFunction(Function &F) { 89 bool changed = false; 90 LI = &getAnalysis<LoopInfo>(); 91 DF = &getAnalysis<DominanceFrontier>(); 92 DT = &getAnalysis<DominatorTree>(); 93 94 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) { 95 changed |= visitSubloop(*I); 96 } 97 98 return changed; 99} 100 101bool LCSSA::visitSubloop(Loop* L) { 102 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 103 visitSubloop(*I); 104 105 // Speed up queries by creating a sorted list of blocks 106 std::vector<BasicBlock*> LoopBlocks(L->block_begin(), L->block_end()); 107 std::sort(LoopBlocks.begin(), LoopBlocks.end()); 108 109 std::set<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L, 110 LoopBlocks); 111 112 // If no values are affected, we can save a lot of work, since we know that 113 // nothing will be changed. 114 if (AffectedValues.empty()) 115 return false; 116 117 std::vector<BasicBlock*> exitBlocks; 118 L->getExitBlocks(exitBlocks); 119 120 121 // Iterate over all affected values for this loop and insert Phi nodes 122 // for them in the appropriate exit blocks 123 124 for (std::set<Instruction*>::iterator I = AffectedValues.begin(), 125 E = AffectedValues.end(); I != E; ++I) { 126 processInstruction(*I, LoopBlocks, exitBlocks); 127 } 128 129 return true; // FIXME: Should be more intelligent in our return value. 130} 131 132/// processInstruction - 133void LCSSA::processInstruction(Instruction* Instr, 134 const std::vector<BasicBlock*>& LoopBlocks, 135 const std::vector<BasicBlock*>& exitBlocks) 136{ 137 ++NumLCSSA; // We are applying the transformation 138 139 std::map<BasicBlock*, Instruction*> Phis; 140 Phis[Instr->getParent()] = Instr; 141 142 // Phi nodes that need to be IDF-processed 143 std::vector<PHINode*> workList; 144 145 for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(), 146 BBE = exitBlocks.end(); BBI != BBE; ++BBI) 147 if (DT->getNode(Instr->getParent())->dominates(DT->getNode(*BBI))) { 148 PHINode *phi = new PHINode(Instr->getType(), "lcssa", (*BBI)->begin()); 149 workList.push_back(phi); 150 Phis[*BBI] = phi; 151 } 152 153 // Calculate the IDF of these LCSSA Phi nodes, inserting new Phi's where 154 // necessary. Keep track of these new Phi's in Phis. 155 while (!workList.empty()) { 156 PHINode *CurPHI = workList.back(); 157 workList.pop_back(); 158 159 // Get the current Phi's DF, and insert Phi nodes. Add these new 160 // nodes to our worklist. 161 DominanceFrontier::const_iterator it = DF->find(CurPHI->getParent()); 162 if (it != DF->end()) { 163 const DominanceFrontier::DomSetType &S = it->second; 164 for (DominanceFrontier::DomSetType::const_iterator P = S.begin(), 165 PE = S.end(); P != PE; ++P) { 166 if (Phis[*P] == 0) { 167 // Still doesn't have operands... 168 PHINode *phi = new PHINode(Instr->getType(), "lcssa", (*P)->begin()); 169 Phis[*P] = phi; 170 171 workList.push_back(phi); 172 } 173 } 174 } 175 176 // Get the predecessor blocks of the current Phi, and use them to hook up 177 // the operands of the current Phi to any members of DFPhis that dominate 178 // it. This is a nop for the Phis inserted directly in the exit blocks, 179 // since they are not dominated by any members of DFPhis. 180 for (pred_iterator PI = pred_begin(CurPHI->getParent()), 181 E = pred_end(CurPHI->getParent()); PI != E; ++PI) 182 CurPHI->addIncoming(getValueDominatingBlock(*PI, Phis), 183 *PI); 184 } 185 186 // Find all uses of the affected value, and replace them with the 187 // appropriate Phi. 188 std::vector<Instruction*> Uses; 189 for (Instruction::use_iterator UI = Instr->use_begin(), UE = Instr->use_end(); 190 UI != UE; ++UI) { 191 Instruction* use = cast<Instruction>(*UI); 192 // Don't need to update uses within the loop body 193 if (!std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), 194 use->getParent()) && 195 !(std::binary_search(exitBlocks.begin(), exitBlocks.end(), 196 use->getParent()) && isa<PHINode>(use))) 197 Uses.push_back(use); 198 } 199 200 // Deliberately remove the initial instruction from Phis set. 201 Phis.erase(Instr->getParent()); 202 203 for (std::vector<Instruction*>::iterator II = Uses.begin(), IE = Uses.end(); 204 II != IE; ++II) { 205 if (PHINode* phi = dyn_cast<PHINode>(*II)) { 206 for (unsigned int i = 0; i < phi->getNumIncomingValues(); ++i) { 207 Instruction* dominator = 208 getValueDominatingBlock(phi->getIncomingBlock(i), Phis); 209 210 if (phi->getIncomingValue(i) == Instr) 211 phi->setIncomingValue(i, dominator); 212 } 213 } else { 214 (*II)->replaceUsesOfWith(Instr, 215 getValueDominatingBlock((*II)->getParent(), 216 Phis)); 217 } 218 } 219} 220 221/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that 222/// are used by instructions outside of it. 223std::set<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L, 224 const std::vector<BasicBlock*>& LoopBlocks) { 225 226 // FIXME: For large loops, we may be able to avoid a lot of use-scanning 227 // by using dominance information. In particular, if a block does not 228 // dominate any of the loop exits, then none of the values defined in the 229 // block could be used outside the loop. 230 231 std::set<Instruction*> AffectedValues; 232 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 233 BB != E; ++BB) { 234 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) 235 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 236 ++UI) { 237 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 238 if (!std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), UserBB)) { 239 AffectedValues.insert(I); 240 break; 241 } 242 } 243 } 244 return AffectedValues; 245} 246 247Instruction *LCSSA::getValueDominatingBlock(BasicBlock *BB, 248 std::map<BasicBlock*, Instruction*> PotDoms) { 249 DominatorTree::Node* bbNode = DT->getNode(BB); 250 while (bbNode != 0) { 251 std::map<BasicBlock*, Instruction*>::iterator I = 252 PotDoms.find(bbNode->getBlock()); 253 if (I != PotDoms.end()) { 254 return (*I).second; 255 } 256 bbNode = bbNode->getIDom(); 257 } 258 259 assert(0 && "No dominating value found."); 260 261 return 0; 262} 263