LCSSA.cpp revision ff99366919b5909ab0ae2df6495e5de2044b938d
1//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Owen Anderson and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops by placing phi nodes at the end of the loops for
11// all values that are live across the loop boundary.  For example, it turns
12// the left into the right code:
13//
14// for (...)                for (...)
15//   if (c)                   if(c)
16//     X1 = ...                 X1 = ...
17//   else                     else
18//     X2 = ...                 X2 = ...
19//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20// ... = X3 + 4              X4 = phi(X3)
21//                           ... = X4 + 4
22//
23// This is still valid LLVM; the extra phi nodes are purely redundant, and will
24// be trivially eliminated by InstCombine.  The major benefit of this
25// transformation is that it makes many other loop optimizations, such as
26// LoopUnswitching, simpler.
27//
28//===----------------------------------------------------------------------===//
29
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Pass.h"
32#include "llvm/Function.h"
33#include "llvm/Instructions.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/LoopInfo.h"
37#include "llvm/Support/CFG.h"
38#include <algorithm>
39#include <cassert>
40#include <map>
41#include <vector>
42
43using namespace llvm;
44
45namespace {
46  static Statistic<> NumLCSSA("lcssa",
47                              "Number of live out of a loop variables");
48
49  class LCSSA : public FunctionPass {
50  public:
51
52
53    LoopInfo *LI;  // Loop information
54    DominatorTree *DT;       // Dominator Tree for the current Loop...
55    DominanceFrontier *DF;   // Current Dominance Frontier
56
57    virtual bool runOnFunction(Function &F);
58    bool visitSubloop(Loop* L);
59    void processInstruction(Instruction* Instr,
60                            const std::vector<BasicBlock*>& LoopBlocks,
61                            const std::vector<BasicBlock*>& exitBlocks);
62
63    /// This transformation requires natural loop information & requires that
64    /// loop preheaders be inserted into the CFG.  It maintains both of these,
65    /// as well as the CFG.  It also requires dominator information.
66    ///
67    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
68      AU.setPreservesCFG();
69      AU.addRequiredID(LoopSimplifyID);
70      AU.addPreservedID(LoopSimplifyID);
71      AU.addRequired<LoopInfo>();
72      AU.addPreserved<LoopInfo>();
73      AU.addRequired<DominatorTree>();
74      AU.addRequired<DominanceFrontier>();
75    }
76  private:
77    std::set<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L,
78                                    const std::vector<BasicBlock*>& LoopBlocks);
79    Instruction *getValueDominatingBlock(BasicBlock *BB,
80                                   std::map<BasicBlock*, Instruction*> PotDoms);
81  };
82
83  RegisterOpt<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
84}
85
86FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); }
87
88bool LCSSA::runOnFunction(Function &F) {
89  bool changed = false;
90  LI = &getAnalysis<LoopInfo>();
91  DF = &getAnalysis<DominanceFrontier>();
92  DT = &getAnalysis<DominatorTree>();
93
94  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
95    changed |= visitSubloop(*I);
96  }
97
98  return changed;
99}
100
101bool LCSSA::visitSubloop(Loop* L) {
102  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
103    visitSubloop(*I);
104
105  // Speed up queries by creating a sorted list of blocks
106  std::vector<BasicBlock*> LoopBlocks(L->block_begin(), L->block_end());
107  std::sort(LoopBlocks.begin(), LoopBlocks.end());
108
109  std::set<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L,
110                                           LoopBlocks);
111
112  // If no values are affected, we can save a lot of work, since we know that
113  // nothing will be changed.
114  if (AffectedValues.empty())
115    return false;
116
117  std::vector<BasicBlock*> exitBlocks;
118  L->getExitBlocks(exitBlocks);
119
120
121  // Iterate over all affected values for this loop and insert Phi nodes
122  // for them in the appropriate exit blocks
123
124  for (std::set<Instruction*>::iterator I = AffectedValues.begin(),
125       E = AffectedValues.end(); I != E; ++I) {
126    processInstruction(*I, LoopBlocks, exitBlocks);
127  }
128
129  return true; // FIXME: Should be more intelligent in our return value.
130}
131
132/// processInstruction -
133void LCSSA::processInstruction(Instruction* Instr,
134                               const std::vector<BasicBlock*>& LoopBlocks,
135                               const std::vector<BasicBlock*>& exitBlocks)
136{
137  ++NumLCSSA; // We are applying the transformation
138
139  std::map<BasicBlock*, Instruction*> Phis;
140  Phis[Instr->getParent()] = Instr;
141
142  // Phi nodes that need to be IDF-processed
143  std::vector<PHINode*> workList;
144
145  for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(),
146      BBE = exitBlocks.end(); BBI != BBE; ++BBI)
147    if (DT->getNode(Instr->getParent())->dominates(DT->getNode(*BBI))) {
148      PHINode *phi = new PHINode(Instr->getType(), "lcssa", (*BBI)->begin());
149      workList.push_back(phi);
150      Phis[*BBI] = phi;
151    }
152
153  // Calculate the IDF of these LCSSA Phi nodes, inserting new Phi's where
154  // necessary.  Keep track of these new Phi's in Phis.
155  while (!workList.empty()) {
156    PHINode *CurPHI = workList.back();
157    workList.pop_back();
158
159    // Get the current Phi's DF, and insert Phi nodes.  Add these new
160    // nodes to our worklist.
161    DominanceFrontier::const_iterator it = DF->find(CurPHI->getParent());
162    if (it != DF->end()) {
163      const DominanceFrontier::DomSetType &S = it->second;
164      for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
165           PE = S.end(); P != PE; ++P) {
166        if (Phis[*P] == 0) {
167          // Still doesn't have operands...
168          PHINode *phi = new PHINode(Instr->getType(), "lcssa", (*P)->begin());
169          Phis[*P] = phi;
170
171          workList.push_back(phi);
172        }
173      }
174    }
175
176    // Get the predecessor blocks of the current Phi, and use them to hook up
177    // the operands of the current Phi to any members of DFPhis that dominate
178    // it.  This is a nop for the Phis inserted directly in the exit blocks,
179    // since they are not dominated by any members of DFPhis.
180    for (pred_iterator PI = pred_begin(CurPHI->getParent()),
181         E = pred_end(CurPHI->getParent()); PI != E; ++PI)
182      CurPHI->addIncoming(getValueDominatingBlock(*PI, Phis),
183                          *PI);
184  }
185
186  // Find all uses of the affected value, and replace them with the
187  // appropriate Phi.
188  std::vector<Instruction*> Uses;
189  for (Instruction::use_iterator UI = Instr->use_begin(), UE = Instr->use_end();
190       UI != UE; ++UI) {
191    Instruction* use = cast<Instruction>(*UI);
192    // Don't need to update uses within the loop body
193    if (!std::binary_search(LoopBlocks.begin(), LoopBlocks.end(),
194        use->getParent()) &&
195        !(std::binary_search(exitBlocks.begin(), exitBlocks.end(),
196        use->getParent()) && isa<PHINode>(use)))
197      Uses.push_back(use);
198  }
199
200  // Deliberately remove the initial instruction from Phis set.
201  Phis.erase(Instr->getParent());
202
203  for (std::vector<Instruction*>::iterator II = Uses.begin(), IE = Uses.end();
204       II != IE; ++II) {
205    if (PHINode* phi = dyn_cast<PHINode>(*II)) {
206      for (unsigned int i = 0; i < phi->getNumIncomingValues(); ++i) {
207        Instruction* dominator =
208                        getValueDominatingBlock(phi->getIncomingBlock(i), Phis);
209
210        if (phi->getIncomingValue(i) == Instr)
211          phi->setIncomingValue(i, dominator);
212      }
213    } else {
214       (*II)->replaceUsesOfWith(Instr,
215                                getValueDominatingBlock((*II)->getParent(),
216                                Phis));
217    }
218  }
219}
220
221/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
222/// are used by instructions outside of it.
223std::set<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
224                                   const std::vector<BasicBlock*>& LoopBlocks) {
225
226  // FIXME: For large loops, we may be able to avoid a lot of use-scanning
227  // by using dominance information.  In particular, if a block does not
228  // dominate any of the loop exits, then none of the values defined in the
229  // block could be used outside the loop.
230
231  std::set<Instruction*> AffectedValues;
232  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
233       BB != E; ++BB) {
234    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
235      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
236           ++UI) {
237        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
238        if (!std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), UserBB)) {
239          AffectedValues.insert(I);
240          break;
241        }
242      }
243  }
244  return AffectedValues;
245}
246
247Instruction *LCSSA::getValueDominatingBlock(BasicBlock *BB,
248                                  std::map<BasicBlock*, Instruction*> PotDoms) {
249  DominatorTree::Node* bbNode = DT->getNode(BB);
250  while (bbNode != 0) {
251    std::map<BasicBlock*, Instruction*>::iterator I =
252                                               PotDoms.find(bbNode->getBlock());
253    if (I != PotDoms.end()) {
254      return (*I).second;
255    }
256    bbNode = bbNode->getIDom();
257  }
258
259  assert(0 && "No dominating value found.");
260
261  return 0;
262}
263