SimplifyLibCalls.cpp revision 0c7f116bb6950ef819323d855415b2f2b0aad987
1//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is a utility pass used for testing the InstructionSimplify analysis.
11// The analysis is applied to every instruction, and if it simplifies then the
12// instruction is replaced by the simplification.  If you are looking for a pass
13// that performs serious instruction folding, use the instcombine pass instead.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/StringMap.h"
20#include "llvm/ADT/Triple.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/DiagnosticInfo.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/IRBuilder.h"
26#include "llvm/IR/IntrinsicInst.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/Module.h"
30#include "llvm/IR/PatternMatch.h"
31#include "llvm/Support/Allocator.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Analysis/TargetLibraryInfo.h"
34#include "llvm/Transforms/Utils/BuildLibCalls.h"
35
36using namespace llvm;
37using namespace PatternMatch;
38
39static cl::opt<bool>
40    ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
41                   cl::desc("Treat error-reporting calls as cold"));
42
43static cl::opt<bool>
44    EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
45                         cl::init(false),
46                         cl::desc("Enable unsafe double to float "
47                                  "shrinking for math lib calls"));
48
49
50//===----------------------------------------------------------------------===//
51// Helper Functions
52//===----------------------------------------------------------------------===//
53
54static bool ignoreCallingConv(LibFunc::Func Func) {
55  switch (Func) {
56  case LibFunc::abs:
57  case LibFunc::labs:
58  case LibFunc::llabs:
59  case LibFunc::strlen:
60    return true;
61  default:
62    return false;
63  }
64  llvm_unreachable("All cases should be covered in the switch.");
65}
66
67/// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
68/// value is equal or not-equal to zero.
69static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
70  for (User *U : V->users()) {
71    if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
72      if (IC->isEquality())
73        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
74          if (C->isNullValue())
75            continue;
76    // Unknown instruction.
77    return false;
78  }
79  return true;
80}
81
82/// isOnlyUsedInEqualityComparison - Return true if it is only used in equality
83/// comparisons with With.
84static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
85  for (User *U : V->users()) {
86    if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
87      if (IC->isEquality() && IC->getOperand(1) == With)
88        continue;
89    // Unknown instruction.
90    return false;
91  }
92  return true;
93}
94
95static bool callHasFloatingPointArgument(const CallInst *CI) {
96  for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
97       it != e; ++it) {
98    if ((*it)->getType()->isFloatingPointTy())
99      return true;
100  }
101  return false;
102}
103
104/// \brief Check whether the overloaded unary floating point function
105/// corresponing to \a Ty is available.
106static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
107                            LibFunc::Func DoubleFn, LibFunc::Func FloatFn,
108                            LibFunc::Func LongDoubleFn) {
109  switch (Ty->getTypeID()) {
110  case Type::FloatTyID:
111    return TLI->has(FloatFn);
112  case Type::DoubleTyID:
113    return TLI->has(DoubleFn);
114  default:
115    return TLI->has(LongDoubleFn);
116  }
117}
118
119/// \brief Returns whether \p F matches the signature expected for the
120/// string/memory copying library function \p Func.
121/// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset.
122/// Their fortified (_chk) counterparts are also accepted.
123static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) {
124  const DataLayout &DL = F->getParent()->getDataLayout();
125  FunctionType *FT = F->getFunctionType();
126  LLVMContext &Context = F->getContext();
127  Type *PCharTy = Type::getInt8PtrTy(Context);
128  Type *SizeTTy = DL.getIntPtrType(Context);
129  unsigned NumParams = FT->getNumParams();
130
131  // All string libfuncs return the same type as the first parameter.
132  if (FT->getReturnType() != FT->getParamType(0))
133    return false;
134
135  switch (Func) {
136  default:
137    llvm_unreachable("Can't check signature for non-string-copy libfunc.");
138  case LibFunc::stpncpy_chk:
139  case LibFunc::strncpy_chk:
140    --NumParams; // fallthrough
141  case LibFunc::stpncpy:
142  case LibFunc::strncpy: {
143    if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) ||
144        FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy())
145      return false;
146    break;
147  }
148  case LibFunc::strcpy_chk:
149  case LibFunc::stpcpy_chk:
150    --NumParams; // fallthrough
151  case LibFunc::stpcpy:
152  case LibFunc::strcpy: {
153    if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) ||
154        FT->getParamType(0) != PCharTy)
155      return false;
156    break;
157  }
158  case LibFunc::memmove_chk:
159  case LibFunc::memcpy_chk:
160    --NumParams; // fallthrough
161  case LibFunc::memmove:
162  case LibFunc::memcpy: {
163    if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
164        !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy)
165      return false;
166    break;
167  }
168  case LibFunc::memset_chk:
169    --NumParams; // fallthrough
170  case LibFunc::memset: {
171    if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
172        !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy)
173      return false;
174    break;
175  }
176  }
177  // If this is a fortified libcall, the last parameter is a size_t.
178  if (NumParams == FT->getNumParams() - 1)
179    return FT->getParamType(FT->getNumParams() - 1) == SizeTTy;
180  return true;
181}
182
183//===----------------------------------------------------------------------===//
184// String and Memory Library Call Optimizations
185//===----------------------------------------------------------------------===//
186
187Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
188  Function *Callee = CI->getCalledFunction();
189  // Verify the "strcat" function prototype.
190  FunctionType *FT = Callee->getFunctionType();
191  if (FT->getNumParams() != 2||
192      FT->getReturnType() != B.getInt8PtrTy() ||
193      FT->getParamType(0) != FT->getReturnType() ||
194      FT->getParamType(1) != FT->getReturnType())
195    return nullptr;
196
197  // Extract some information from the instruction
198  Value *Dst = CI->getArgOperand(0);
199  Value *Src = CI->getArgOperand(1);
200
201  // See if we can get the length of the input string.
202  uint64_t Len = GetStringLength(Src);
203  if (Len == 0)
204    return nullptr;
205  --Len; // Unbias length.
206
207  // Handle the simple, do-nothing case: strcat(x, "") -> x
208  if (Len == 0)
209    return Dst;
210
211  return emitStrLenMemCpy(Src, Dst, Len, B);
212}
213
214Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
215                                           IRBuilder<> &B) {
216  // We need to find the end of the destination string.  That's where the
217  // memory is to be moved to. We just generate a call to strlen.
218  Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
219  if (!DstLen)
220    return nullptr;
221
222  // Now that we have the destination's length, we must index into the
223  // destination's pointer to get the actual memcpy destination (end of
224  // the string .. we're concatenating).
225  Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
226
227  // We have enough information to now generate the memcpy call to do the
228  // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
229  B.CreateMemCpy(CpyDst, Src,
230                 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
231                 1);
232  return Dst;
233}
234
235Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
236  Function *Callee = CI->getCalledFunction();
237  // Verify the "strncat" function prototype.
238  FunctionType *FT = Callee->getFunctionType();
239  if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() ||
240      FT->getParamType(0) != FT->getReturnType() ||
241      FT->getParamType(1) != FT->getReturnType() ||
242      !FT->getParamType(2)->isIntegerTy())
243    return nullptr;
244
245  // Extract some information from the instruction
246  Value *Dst = CI->getArgOperand(0);
247  Value *Src = CI->getArgOperand(1);
248  uint64_t Len;
249
250  // We don't do anything if length is not constant
251  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
252    Len = LengthArg->getZExtValue();
253  else
254    return nullptr;
255
256  // See if we can get the length of the input string.
257  uint64_t SrcLen = GetStringLength(Src);
258  if (SrcLen == 0)
259    return nullptr;
260  --SrcLen; // Unbias length.
261
262  // Handle the simple, do-nothing cases:
263  // strncat(x, "", c) -> x
264  // strncat(x,  c, 0) -> x
265  if (SrcLen == 0 || Len == 0)
266    return Dst;
267
268  // We don't optimize this case
269  if (Len < SrcLen)
270    return nullptr;
271
272  // strncat(x, s, c) -> strcat(x, s)
273  // s is constant so the strcat can be optimized further
274  return emitStrLenMemCpy(Src, Dst, SrcLen, B);
275}
276
277Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
278  Function *Callee = CI->getCalledFunction();
279  // Verify the "strchr" function prototype.
280  FunctionType *FT = Callee->getFunctionType();
281  if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
282      FT->getParamType(0) != FT->getReturnType() ||
283      !FT->getParamType(1)->isIntegerTy(32))
284    return nullptr;
285
286  Value *SrcStr = CI->getArgOperand(0);
287
288  // If the second operand is non-constant, see if we can compute the length
289  // of the input string and turn this into memchr.
290  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
291  if (!CharC) {
292    uint64_t Len = GetStringLength(SrcStr);
293    if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
294      return nullptr;
295
296    return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
297                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
298                      B, DL, TLI);
299  }
300
301  // Otherwise, the character is a constant, see if the first argument is
302  // a string literal.  If so, we can constant fold.
303  StringRef Str;
304  if (!getConstantStringInfo(SrcStr, Str)) {
305    if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
306      return B.CreateGEP(B.getInt8Ty(), SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
307    return nullptr;
308  }
309
310  // Compute the offset, make sure to handle the case when we're searching for
311  // zero (a weird way to spell strlen).
312  size_t I = (0xFF & CharC->getSExtValue()) == 0
313                 ? Str.size()
314                 : Str.find(CharC->getSExtValue());
315  if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
316    return Constant::getNullValue(CI->getType());
317
318  // strchr(s+n,c)  -> gep(s+n+i,c)
319  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
320}
321
322Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
323  Function *Callee = CI->getCalledFunction();
324  // Verify the "strrchr" function prototype.
325  FunctionType *FT = Callee->getFunctionType();
326  if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
327      FT->getParamType(0) != FT->getReturnType() ||
328      !FT->getParamType(1)->isIntegerTy(32))
329    return nullptr;
330
331  Value *SrcStr = CI->getArgOperand(0);
332  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
333
334  // Cannot fold anything if we're not looking for a constant.
335  if (!CharC)
336    return nullptr;
337
338  StringRef Str;
339  if (!getConstantStringInfo(SrcStr, Str)) {
340    // strrchr(s, 0) -> strchr(s, 0)
341    if (CharC->isZero())
342      return EmitStrChr(SrcStr, '\0', B, TLI);
343    return nullptr;
344  }
345
346  // Compute the offset.
347  size_t I = (0xFF & CharC->getSExtValue()) == 0
348                 ? Str.size()
349                 : Str.rfind(CharC->getSExtValue());
350  if (I == StringRef::npos) // Didn't find the char. Return null.
351    return Constant::getNullValue(CI->getType());
352
353  // strrchr(s+n,c) -> gep(s+n+i,c)
354  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
355}
356
357Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
358  Function *Callee = CI->getCalledFunction();
359  // Verify the "strcmp" function prototype.
360  FunctionType *FT = Callee->getFunctionType();
361  if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) ||
362      FT->getParamType(0) != FT->getParamType(1) ||
363      FT->getParamType(0) != B.getInt8PtrTy())
364    return nullptr;
365
366  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
367  if (Str1P == Str2P) // strcmp(x,x)  -> 0
368    return ConstantInt::get(CI->getType(), 0);
369
370  StringRef Str1, Str2;
371  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
372  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
373
374  // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
375  if (HasStr1 && HasStr2)
376    return ConstantInt::get(CI->getType(), Str1.compare(Str2));
377
378  if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
379    return B.CreateNeg(
380        B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
381
382  if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
383    return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
384
385  // strcmp(P, "x") -> memcmp(P, "x", 2)
386  uint64_t Len1 = GetStringLength(Str1P);
387  uint64_t Len2 = GetStringLength(Str2P);
388  if (Len1 && Len2) {
389    return EmitMemCmp(Str1P, Str2P,
390                      ConstantInt::get(DL.getIntPtrType(CI->getContext()),
391                                       std::min(Len1, Len2)),
392                      B, DL, TLI);
393  }
394
395  return nullptr;
396}
397
398Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
399  Function *Callee = CI->getCalledFunction();
400  // Verify the "strncmp" function prototype.
401  FunctionType *FT = Callee->getFunctionType();
402  if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) ||
403      FT->getParamType(0) != FT->getParamType(1) ||
404      FT->getParamType(0) != B.getInt8PtrTy() ||
405      !FT->getParamType(2)->isIntegerTy())
406    return nullptr;
407
408  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
409  if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
410    return ConstantInt::get(CI->getType(), 0);
411
412  // Get the length argument if it is constant.
413  uint64_t Length;
414  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
415    Length = LengthArg->getZExtValue();
416  else
417    return nullptr;
418
419  if (Length == 0) // strncmp(x,y,0)   -> 0
420    return ConstantInt::get(CI->getType(), 0);
421
422  if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
423    return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
424
425  StringRef Str1, Str2;
426  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
427  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
428
429  // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
430  if (HasStr1 && HasStr2) {
431    StringRef SubStr1 = Str1.substr(0, Length);
432    StringRef SubStr2 = Str2.substr(0, Length);
433    return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
434  }
435
436  if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
437    return B.CreateNeg(
438        B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
439
440  if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
441    return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
442
443  return nullptr;
444}
445
446Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
447  Function *Callee = CI->getCalledFunction();
448
449  if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy))
450    return nullptr;
451
452  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
453  if (Dst == Src) // strcpy(x,x)  -> x
454    return Src;
455
456  // See if we can get the length of the input string.
457  uint64_t Len = GetStringLength(Src);
458  if (Len == 0)
459    return nullptr;
460
461  // We have enough information to now generate the memcpy call to do the
462  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
463  B.CreateMemCpy(Dst, Src,
464                 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
465  return Dst;
466}
467
468Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
469  Function *Callee = CI->getCalledFunction();
470  // Verify the "stpcpy" function prototype.
471  FunctionType *FT = Callee->getFunctionType();
472
473  if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy))
474    return nullptr;
475
476  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
477  if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
478    Value *StrLen = EmitStrLen(Src, B, DL, TLI);
479    return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
480  }
481
482  // See if we can get the length of the input string.
483  uint64_t Len = GetStringLength(Src);
484  if (Len == 0)
485    return nullptr;
486
487  Type *PT = FT->getParamType(0);
488  Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
489  Value *DstEnd =
490      B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
491
492  // We have enough information to now generate the memcpy call to do the
493  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
494  B.CreateMemCpy(Dst, Src, LenV, 1);
495  return DstEnd;
496}
497
498Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
499  Function *Callee = CI->getCalledFunction();
500  FunctionType *FT = Callee->getFunctionType();
501
502  if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy))
503    return nullptr;
504
505  Value *Dst = CI->getArgOperand(0);
506  Value *Src = CI->getArgOperand(1);
507  Value *LenOp = CI->getArgOperand(2);
508
509  // See if we can get the length of the input string.
510  uint64_t SrcLen = GetStringLength(Src);
511  if (SrcLen == 0)
512    return nullptr;
513  --SrcLen;
514
515  if (SrcLen == 0) {
516    // strncpy(x, "", y) -> memset(x, '\0', y, 1)
517    B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
518    return Dst;
519  }
520
521  uint64_t Len;
522  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
523    Len = LengthArg->getZExtValue();
524  else
525    return nullptr;
526
527  if (Len == 0)
528    return Dst; // strncpy(x, y, 0) -> x
529
530  // Let strncpy handle the zero padding
531  if (Len > SrcLen + 1)
532    return nullptr;
533
534  Type *PT = FT->getParamType(0);
535  // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
536  B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
537
538  return Dst;
539}
540
541Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
542  Function *Callee = CI->getCalledFunction();
543  FunctionType *FT = Callee->getFunctionType();
544  if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() ||
545      !FT->getReturnType()->isIntegerTy())
546    return nullptr;
547
548  Value *Src = CI->getArgOperand(0);
549
550  // Constant folding: strlen("xyz") -> 3
551  if (uint64_t Len = GetStringLength(Src))
552    return ConstantInt::get(CI->getType(), Len - 1);
553
554  // strlen(x?"foo":"bars") --> x ? 3 : 4
555  if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
556    uint64_t LenTrue = GetStringLength(SI->getTrueValue());
557    uint64_t LenFalse = GetStringLength(SI->getFalseValue());
558    if (LenTrue && LenFalse) {
559      Function *Caller = CI->getParent()->getParent();
560      emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
561                             SI->getDebugLoc(),
562                             "folded strlen(select) to select of constants");
563      return B.CreateSelect(SI->getCondition(),
564                            ConstantInt::get(CI->getType(), LenTrue - 1),
565                            ConstantInt::get(CI->getType(), LenFalse - 1));
566    }
567  }
568
569  // strlen(x) != 0 --> *x != 0
570  // strlen(x) == 0 --> *x == 0
571  if (isOnlyUsedInZeroEqualityComparison(CI))
572    return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
573
574  return nullptr;
575}
576
577Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
578  Function *Callee = CI->getCalledFunction();
579  FunctionType *FT = Callee->getFunctionType();
580  if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
581      FT->getParamType(1) != FT->getParamType(0) ||
582      FT->getReturnType() != FT->getParamType(0))
583    return nullptr;
584
585  StringRef S1, S2;
586  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
587  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
588
589  // strpbrk(s, "") -> nullptr
590  // strpbrk("", s) -> nullptr
591  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
592    return Constant::getNullValue(CI->getType());
593
594  // Constant folding.
595  if (HasS1 && HasS2) {
596    size_t I = S1.find_first_of(S2);
597    if (I == StringRef::npos) // No match.
598      return Constant::getNullValue(CI->getType());
599
600    return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), "strpbrk");
601  }
602
603  // strpbrk(s, "a") -> strchr(s, 'a')
604  if (HasS2 && S2.size() == 1)
605    return EmitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
606
607  return nullptr;
608}
609
610Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
611  Function *Callee = CI->getCalledFunction();
612  FunctionType *FT = Callee->getFunctionType();
613  if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
614      !FT->getParamType(0)->isPointerTy() ||
615      !FT->getParamType(1)->isPointerTy())
616    return nullptr;
617
618  Value *EndPtr = CI->getArgOperand(1);
619  if (isa<ConstantPointerNull>(EndPtr)) {
620    // With a null EndPtr, this function won't capture the main argument.
621    // It would be readonly too, except that it still may write to errno.
622    CI->addAttribute(1, Attribute::NoCapture);
623  }
624
625  return nullptr;
626}
627
628Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
629  Function *Callee = CI->getCalledFunction();
630  FunctionType *FT = Callee->getFunctionType();
631  if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
632      FT->getParamType(1) != FT->getParamType(0) ||
633      !FT->getReturnType()->isIntegerTy())
634    return nullptr;
635
636  StringRef S1, S2;
637  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
638  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
639
640  // strspn(s, "") -> 0
641  // strspn("", s) -> 0
642  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
643    return Constant::getNullValue(CI->getType());
644
645  // Constant folding.
646  if (HasS1 && HasS2) {
647    size_t Pos = S1.find_first_not_of(S2);
648    if (Pos == StringRef::npos)
649      Pos = S1.size();
650    return ConstantInt::get(CI->getType(), Pos);
651  }
652
653  return nullptr;
654}
655
656Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
657  Function *Callee = CI->getCalledFunction();
658  FunctionType *FT = Callee->getFunctionType();
659  if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
660      FT->getParamType(1) != FT->getParamType(0) ||
661      !FT->getReturnType()->isIntegerTy())
662    return nullptr;
663
664  StringRef S1, S2;
665  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
666  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
667
668  // strcspn("", s) -> 0
669  if (HasS1 && S1.empty())
670    return Constant::getNullValue(CI->getType());
671
672  // Constant folding.
673  if (HasS1 && HasS2) {
674    size_t Pos = S1.find_first_of(S2);
675    if (Pos == StringRef::npos)
676      Pos = S1.size();
677    return ConstantInt::get(CI->getType(), Pos);
678  }
679
680  // strcspn(s, "") -> strlen(s)
681  if (HasS2 && S2.empty())
682    return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
683
684  return nullptr;
685}
686
687Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
688  Function *Callee = CI->getCalledFunction();
689  FunctionType *FT = Callee->getFunctionType();
690  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
691      !FT->getParamType(1)->isPointerTy() ||
692      !FT->getReturnType()->isPointerTy())
693    return nullptr;
694
695  // fold strstr(x, x) -> x.
696  if (CI->getArgOperand(0) == CI->getArgOperand(1))
697    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
698
699  // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
700  if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
701    Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
702    if (!StrLen)
703      return nullptr;
704    Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
705                                 StrLen, B, DL, TLI);
706    if (!StrNCmp)
707      return nullptr;
708    for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
709      ICmpInst *Old = cast<ICmpInst>(*UI++);
710      Value *Cmp =
711          B.CreateICmp(Old->getPredicate(), StrNCmp,
712                       ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
713      replaceAllUsesWith(Old, Cmp);
714    }
715    return CI;
716  }
717
718  // See if either input string is a constant string.
719  StringRef SearchStr, ToFindStr;
720  bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
721  bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
722
723  // fold strstr(x, "") -> x.
724  if (HasStr2 && ToFindStr.empty())
725    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
726
727  // If both strings are known, constant fold it.
728  if (HasStr1 && HasStr2) {
729    size_t Offset = SearchStr.find(ToFindStr);
730
731    if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
732      return Constant::getNullValue(CI->getType());
733
734    // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
735    Value *Result = CastToCStr(CI->getArgOperand(0), B);
736    Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
737    return B.CreateBitCast(Result, CI->getType());
738  }
739
740  // fold strstr(x, "y") -> strchr(x, 'y').
741  if (HasStr2 && ToFindStr.size() == 1) {
742    Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
743    return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
744  }
745  return nullptr;
746}
747
748Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
749  Function *Callee = CI->getCalledFunction();
750  FunctionType *FT = Callee->getFunctionType();
751  if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
752      !FT->getParamType(1)->isIntegerTy(32) ||
753      !FT->getParamType(2)->isIntegerTy() ||
754      !FT->getReturnType()->isPointerTy())
755    return nullptr;
756
757  Value *SrcStr = CI->getArgOperand(0);
758  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
759  ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
760
761  // memchr(x, y, 0) -> null
762  if (LenC && LenC->isNullValue())
763    return Constant::getNullValue(CI->getType());
764
765  // From now on we need at least constant length and string.
766  StringRef Str;
767  if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
768    return nullptr;
769
770  // Truncate the string to LenC. If Str is smaller than LenC we will still only
771  // scan the string, as reading past the end of it is undefined and we can just
772  // return null if we don't find the char.
773  Str = Str.substr(0, LenC->getZExtValue());
774
775  // If the char is variable but the input str and length are not we can turn
776  // this memchr call into a simple bit field test. Of course this only works
777  // when the return value is only checked against null.
778  //
779  // It would be really nice to reuse switch lowering here but we can't change
780  // the CFG at this point.
781  //
782  // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
783  //   after bounds check.
784  if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
785    unsigned char Max =
786        *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
787                          reinterpret_cast<const unsigned char *>(Str.end()));
788
789    // Make sure the bit field we're about to create fits in a register on the
790    // target.
791    // FIXME: On a 64 bit architecture this prevents us from using the
792    // interesting range of alpha ascii chars. We could do better by emitting
793    // two bitfields or shifting the range by 64 if no lower chars are used.
794    if (!DL.fitsInLegalInteger(Max + 1))
795      return nullptr;
796
797    // For the bit field use a power-of-2 type with at least 8 bits to avoid
798    // creating unnecessary illegal types.
799    unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
800
801    // Now build the bit field.
802    APInt Bitfield(Width, 0);
803    for (char C : Str)
804      Bitfield.setBit((unsigned char)C);
805    Value *BitfieldC = B.getInt(Bitfield);
806
807    // First check that the bit field access is within bounds.
808    Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
809    Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
810                                 "memchr.bounds");
811
812    // Create code that checks if the given bit is set in the field.
813    Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
814    Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
815
816    // Finally merge both checks and cast to pointer type. The inttoptr
817    // implicitly zexts the i1 to intptr type.
818    return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
819  }
820
821  // Check if all arguments are constants.  If so, we can constant fold.
822  if (!CharC)
823    return nullptr;
824
825  // Compute the offset.
826  size_t I = Str.find(CharC->getSExtValue() & 0xFF);
827  if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
828    return Constant::getNullValue(CI->getType());
829
830  // memchr(s+n,c,l) -> gep(s+n+i,c)
831  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
832}
833
834Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
835  Function *Callee = CI->getCalledFunction();
836  FunctionType *FT = Callee->getFunctionType();
837  if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
838      !FT->getParamType(1)->isPointerTy() ||
839      !FT->getReturnType()->isIntegerTy(32))
840    return nullptr;
841
842  Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
843
844  if (LHS == RHS) // memcmp(s,s,x) -> 0
845    return Constant::getNullValue(CI->getType());
846
847  // Make sure we have a constant length.
848  ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
849  if (!LenC)
850    return nullptr;
851  uint64_t Len = LenC->getZExtValue();
852
853  if (Len == 0) // memcmp(s1,s2,0) -> 0
854    return Constant::getNullValue(CI->getType());
855
856  // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
857  if (Len == 1) {
858    Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
859                               CI->getType(), "lhsv");
860    Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
861                               CI->getType(), "rhsv");
862    return B.CreateSub(LHSV, RHSV, "chardiff");
863  }
864
865  // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
866  StringRef LHSStr, RHSStr;
867  if (getConstantStringInfo(LHS, LHSStr) &&
868      getConstantStringInfo(RHS, RHSStr)) {
869    // Make sure we're not reading out-of-bounds memory.
870    if (Len > LHSStr.size() || Len > RHSStr.size())
871      return nullptr;
872    // Fold the memcmp and normalize the result.  This way we get consistent
873    // results across multiple platforms.
874    uint64_t Ret = 0;
875    int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
876    if (Cmp < 0)
877      Ret = -1;
878    else if (Cmp > 0)
879      Ret = 1;
880    return ConstantInt::get(CI->getType(), Ret);
881  }
882
883  return nullptr;
884}
885
886Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
887  Function *Callee = CI->getCalledFunction();
888
889  if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy))
890    return nullptr;
891
892  // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
893  B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
894                 CI->getArgOperand(2), 1);
895  return CI->getArgOperand(0);
896}
897
898Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
899  Function *Callee = CI->getCalledFunction();
900
901  if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove))
902    return nullptr;
903
904  // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
905  B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
906                  CI->getArgOperand(2), 1);
907  return CI->getArgOperand(0);
908}
909
910Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
911  Function *Callee = CI->getCalledFunction();
912
913  if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset))
914    return nullptr;
915
916  // memset(p, v, n) -> llvm.memset(p, v, n, 1)
917  Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
918  B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
919  return CI->getArgOperand(0);
920}
921
922//===----------------------------------------------------------------------===//
923// Math Library Optimizations
924//===----------------------------------------------------------------------===//
925
926/// Return a variant of Val with float type.
927/// Currently this works in two cases: If Val is an FPExtension of a float
928/// value to something bigger, simply return the operand.
929/// If Val is a ConstantFP but can be converted to a float ConstantFP without
930/// loss of precision do so.
931static Value *valueHasFloatPrecision(Value *Val) {
932  if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
933    Value *Op = Cast->getOperand(0);
934    if (Op->getType()->isFloatTy())
935      return Op;
936  }
937  if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
938    APFloat F = Const->getValueAPF();
939    bool losesInfo;
940    (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
941                    &losesInfo);
942    if (!losesInfo)
943      return ConstantFP::get(Const->getContext(), F);
944  }
945  return nullptr;
946}
947
948//===----------------------------------------------------------------------===//
949// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
950
951Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
952                                                bool CheckRetType) {
953  Function *Callee = CI->getCalledFunction();
954  FunctionType *FT = Callee->getFunctionType();
955  if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
956      !FT->getParamType(0)->isDoubleTy())
957    return nullptr;
958
959  if (CheckRetType) {
960    // Check if all the uses for function like 'sin' are converted to float.
961    for (User *U : CI->users()) {
962      FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
963      if (!Cast || !Cast->getType()->isFloatTy())
964        return nullptr;
965    }
966  }
967
968  // If this is something like 'floor((double)floatval)', convert to floorf.
969  Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
970  if (V == nullptr)
971    return nullptr;
972
973  // floor((double)floatval) -> (double)floorf(floatval)
974  if (Callee->isIntrinsic()) {
975    Module *M = CI->getParent()->getParent()->getParent();
976    Intrinsic::ID IID = (Intrinsic::ID) Callee->getIntrinsicID();
977    Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
978    V = B.CreateCall(F, V);
979  } else {
980    // The call is a library call rather than an intrinsic.
981    V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
982  }
983
984  return B.CreateFPExt(V, B.getDoubleTy());
985}
986
987// Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
988Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
989  Function *Callee = CI->getCalledFunction();
990  FunctionType *FT = Callee->getFunctionType();
991  // Just make sure this has 2 arguments of the same FP type, which match the
992  // result type.
993  if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
994      FT->getParamType(0) != FT->getParamType(1) ||
995      !FT->getParamType(0)->isFloatingPointTy())
996    return nullptr;
997
998  // If this is something like 'fmin((double)floatval1, (double)floatval2)',
999  // or fmin(1.0, (double)floatval), then we convert it to fminf.
1000  Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
1001  if (V1 == nullptr)
1002    return nullptr;
1003  Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
1004  if (V2 == nullptr)
1005    return nullptr;
1006
1007  // fmin((double)floatval1, (double)floatval2)
1008  //                      -> (double)fminf(floatval1, floatval2)
1009  // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
1010  Value *V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
1011                                   Callee->getAttributes());
1012  return B.CreateFPExt(V, B.getDoubleTy());
1013}
1014
1015Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
1016  Function *Callee = CI->getCalledFunction();
1017  Value *Ret = nullptr;
1018  if (UnsafeFPShrink && Callee->getName() == "cos" && TLI->has(LibFunc::cosf)) {
1019    Ret = optimizeUnaryDoubleFP(CI, B, true);
1020  }
1021
1022  FunctionType *FT = Callee->getFunctionType();
1023  // Just make sure this has 1 argument of FP type, which matches the
1024  // result type.
1025  if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1026      !FT->getParamType(0)->isFloatingPointTy())
1027    return Ret;
1028
1029  // cos(-x) -> cos(x)
1030  Value *Op1 = CI->getArgOperand(0);
1031  if (BinaryOperator::isFNeg(Op1)) {
1032    BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
1033    return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
1034  }
1035  return Ret;
1036}
1037
1038Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
1039  Function *Callee = CI->getCalledFunction();
1040
1041  Value *Ret = nullptr;
1042  if (UnsafeFPShrink && Callee->getName() == "pow" && TLI->has(LibFunc::powf)) {
1043    Ret = optimizeUnaryDoubleFP(CI, B, true);
1044  }
1045
1046  FunctionType *FT = Callee->getFunctionType();
1047  // Just make sure this has 2 arguments of the same FP type, which match the
1048  // result type.
1049  if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
1050      FT->getParamType(0) != FT->getParamType(1) ||
1051      !FT->getParamType(0)->isFloatingPointTy())
1052    return Ret;
1053
1054  Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1055  if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1056    // pow(1.0, x) -> 1.0
1057    if (Op1C->isExactlyValue(1.0))
1058      return Op1C;
1059    // pow(2.0, x) -> exp2(x)
1060    if (Op1C->isExactlyValue(2.0) &&
1061        hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
1062                        LibFunc::exp2l))
1063      return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
1064    // pow(10.0, x) -> exp10(x)
1065    if (Op1C->isExactlyValue(10.0) &&
1066        hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
1067                        LibFunc::exp10l))
1068      return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
1069                                  Callee->getAttributes());
1070  }
1071
1072  ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1073  if (!Op2C)
1074    return Ret;
1075
1076  if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1077    return ConstantFP::get(CI->getType(), 1.0);
1078
1079  if (Op2C->isExactlyValue(0.5) &&
1080      hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
1081                      LibFunc::sqrtl) &&
1082      hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
1083                      LibFunc::fabsl)) {
1084    // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1085    // This is faster than calling pow, and still handles negative zero
1086    // and negative infinity correctly.
1087    // TODO: In fast-math mode, this could be just sqrt(x).
1088    // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1089    Value *Inf = ConstantFP::getInfinity(CI->getType());
1090    Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1091    Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1092    Value *FAbs =
1093        EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
1094    Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1095    Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1096    return Sel;
1097  }
1098
1099  if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1100    return Op1;
1101  if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1102    return B.CreateFMul(Op1, Op1, "pow2");
1103  if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1104    return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1105  return nullptr;
1106}
1107
1108Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1109  Function *Callee = CI->getCalledFunction();
1110  Function *Caller = CI->getParent()->getParent();
1111
1112  Value *Ret = nullptr;
1113  if (UnsafeFPShrink && Callee->getName() == "exp2" &&
1114      TLI->has(LibFunc::exp2f)) {
1115    Ret = optimizeUnaryDoubleFP(CI, B, true);
1116  }
1117
1118  FunctionType *FT = Callee->getFunctionType();
1119  // Just make sure this has 1 argument of FP type, which matches the
1120  // result type.
1121  if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1122      !FT->getParamType(0)->isFloatingPointTy())
1123    return Ret;
1124
1125  Value *Op = CI->getArgOperand(0);
1126  // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1127  // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1128  LibFunc::Func LdExp = LibFunc::ldexpl;
1129  if (Op->getType()->isFloatTy())
1130    LdExp = LibFunc::ldexpf;
1131  else if (Op->getType()->isDoubleTy())
1132    LdExp = LibFunc::ldexp;
1133
1134  if (TLI->has(LdExp)) {
1135    Value *LdExpArg = nullptr;
1136    if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1137      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1138        LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1139    } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1140      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1141        LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1142    }
1143
1144    if (LdExpArg) {
1145      Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1146      if (!Op->getType()->isFloatTy())
1147        One = ConstantExpr::getFPExtend(One, Op->getType());
1148
1149      Module *M = Caller->getParent();
1150      Value *Callee =
1151          M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1152                                 Op->getType(), B.getInt32Ty(), nullptr);
1153      CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
1154      if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1155        CI->setCallingConv(F->getCallingConv());
1156
1157      return CI;
1158    }
1159  }
1160  return Ret;
1161}
1162
1163Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) {
1164  Function *Callee = CI->getCalledFunction();
1165
1166  Value *Ret = nullptr;
1167  if (Callee->getName() == "fabs" && TLI->has(LibFunc::fabsf)) {
1168    Ret = optimizeUnaryDoubleFP(CI, B, false);
1169  }
1170
1171  FunctionType *FT = Callee->getFunctionType();
1172  // Make sure this has 1 argument of FP type which matches the result type.
1173  if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1174      !FT->getParamType(0)->isFloatingPointTy())
1175    return Ret;
1176
1177  Value *Op = CI->getArgOperand(0);
1178  if (Instruction *I = dyn_cast<Instruction>(Op)) {
1179    // Fold fabs(x * x) -> x * x; any squared FP value must already be positive.
1180    if (I->getOpcode() == Instruction::FMul)
1181      if (I->getOperand(0) == I->getOperand(1))
1182        return Op;
1183  }
1184  return Ret;
1185}
1186
1187Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1188  Function *Callee = CI->getCalledFunction();
1189
1190  Value *Ret = nullptr;
1191  if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
1192                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1193    Ret = optimizeUnaryDoubleFP(CI, B, true);
1194
1195  // FIXME: For finer-grain optimization, we need intrinsics to have the same
1196  // fast-math flag decorations that are applied to FP instructions. For now,
1197  // we have to rely on the function-level unsafe-fp-math attribute to do this
1198  // optimization because there's no other way to express that the sqrt can be
1199  // reassociated.
1200  Function *F = CI->getParent()->getParent();
1201  if (F->hasFnAttribute("unsafe-fp-math")) {
1202    // Check for unsafe-fp-math = true.
1203    Attribute Attr = F->getFnAttribute("unsafe-fp-math");
1204    if (Attr.getValueAsString() != "true")
1205      return Ret;
1206  }
1207  Value *Op = CI->getArgOperand(0);
1208  if (Instruction *I = dyn_cast<Instruction>(Op)) {
1209    if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) {
1210      // We're looking for a repeated factor in a multiplication tree,
1211      // so we can do this fold: sqrt(x * x) -> fabs(x);
1212      // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y).
1213      Value *Op0 = I->getOperand(0);
1214      Value *Op1 = I->getOperand(1);
1215      Value *RepeatOp = nullptr;
1216      Value *OtherOp = nullptr;
1217      if (Op0 == Op1) {
1218        // Simple match: the operands of the multiply are identical.
1219        RepeatOp = Op0;
1220      } else {
1221        // Look for a more complicated pattern: one of the operands is itself
1222        // a multiply, so search for a common factor in that multiply.
1223        // Note: We don't bother looking any deeper than this first level or for
1224        // variations of this pattern because instcombine's visitFMUL and/or the
1225        // reassociation pass should give us this form.
1226        Value *OtherMul0, *OtherMul1;
1227        if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1228          // Pattern: sqrt((x * y) * z)
1229          if (OtherMul0 == OtherMul1) {
1230            // Matched: sqrt((x * x) * z)
1231            RepeatOp = OtherMul0;
1232            OtherOp = Op1;
1233          }
1234        }
1235      }
1236      if (RepeatOp) {
1237        // Fast math flags for any created instructions should match the sqrt
1238        // and multiply.
1239        // FIXME: We're not checking the sqrt because it doesn't have
1240        // fast-math-flags (see earlier comment).
1241        IRBuilder<true, ConstantFolder,
1242          IRBuilderDefaultInserter<true> >::FastMathFlagGuard Guard(B);
1243        B.SetFastMathFlags(I->getFastMathFlags());
1244        // If we found a repeated factor, hoist it out of the square root and
1245        // replace it with the fabs of that factor.
1246        Module *M = Callee->getParent();
1247        Type *ArgType = Op->getType();
1248        Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1249        Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1250        if (OtherOp) {
1251          // If we found a non-repeated factor, we still need to get its square
1252          // root. We then multiply that by the value that was simplified out
1253          // of the square root calculation.
1254          Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1255          Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1256          return B.CreateFMul(FabsCall, SqrtCall);
1257        }
1258        return FabsCall;
1259      }
1260    }
1261  }
1262  return Ret;
1263}
1264
1265static bool isTrigLibCall(CallInst *CI);
1266static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1267                             bool UseFloat, Value *&Sin, Value *&Cos,
1268                             Value *&SinCos);
1269
1270Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1271
1272  // Make sure the prototype is as expected, otherwise the rest of the
1273  // function is probably invalid and likely to abort.
1274  if (!isTrigLibCall(CI))
1275    return nullptr;
1276
1277  Value *Arg = CI->getArgOperand(0);
1278  SmallVector<CallInst *, 1> SinCalls;
1279  SmallVector<CallInst *, 1> CosCalls;
1280  SmallVector<CallInst *, 1> SinCosCalls;
1281
1282  bool IsFloat = Arg->getType()->isFloatTy();
1283
1284  // Look for all compatible sinpi, cospi and sincospi calls with the same
1285  // argument. If there are enough (in some sense) we can make the
1286  // substitution.
1287  for (User *U : Arg->users())
1288    classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
1289                   SinCosCalls);
1290
1291  // It's only worthwhile if both sinpi and cospi are actually used.
1292  if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1293    return nullptr;
1294
1295  Value *Sin, *Cos, *SinCos;
1296  insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1297
1298  replaceTrigInsts(SinCalls, Sin);
1299  replaceTrigInsts(CosCalls, Cos);
1300  replaceTrigInsts(SinCosCalls, SinCos);
1301
1302  return nullptr;
1303}
1304
1305static bool isTrigLibCall(CallInst *CI) {
1306  Function *Callee = CI->getCalledFunction();
1307  FunctionType *FT = Callee->getFunctionType();
1308
1309  // We can only hope to do anything useful if we can ignore things like errno
1310  // and floating-point exceptions.
1311  bool AttributesSafe =
1312      CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone);
1313
1314  // Other than that we need float(float) or double(double)
1315  return AttributesSafe && FT->getNumParams() == 1 &&
1316         FT->getReturnType() == FT->getParamType(0) &&
1317         (FT->getParamType(0)->isFloatTy() ||
1318          FT->getParamType(0)->isDoubleTy());
1319}
1320
1321void
1322LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
1323                                  SmallVectorImpl<CallInst *> &SinCalls,
1324                                  SmallVectorImpl<CallInst *> &CosCalls,
1325                                  SmallVectorImpl<CallInst *> &SinCosCalls) {
1326  CallInst *CI = dyn_cast<CallInst>(Val);
1327
1328  if (!CI)
1329    return;
1330
1331  Function *Callee = CI->getCalledFunction();
1332  StringRef FuncName = Callee->getName();
1333  LibFunc::Func Func;
1334  if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI))
1335    return;
1336
1337  if (IsFloat) {
1338    if (Func == LibFunc::sinpif)
1339      SinCalls.push_back(CI);
1340    else if (Func == LibFunc::cospif)
1341      CosCalls.push_back(CI);
1342    else if (Func == LibFunc::sincospif_stret)
1343      SinCosCalls.push_back(CI);
1344  } else {
1345    if (Func == LibFunc::sinpi)
1346      SinCalls.push_back(CI);
1347    else if (Func == LibFunc::cospi)
1348      CosCalls.push_back(CI);
1349    else if (Func == LibFunc::sincospi_stret)
1350      SinCosCalls.push_back(CI);
1351  }
1352}
1353
1354void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls,
1355                                         Value *Res) {
1356  for (SmallVectorImpl<CallInst *>::iterator I = Calls.begin(), E = Calls.end();
1357       I != E; ++I) {
1358    replaceAllUsesWith(*I, Res);
1359  }
1360}
1361
1362void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1363                      bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) {
1364  Type *ArgTy = Arg->getType();
1365  Type *ResTy;
1366  StringRef Name;
1367
1368  Triple T(OrigCallee->getParent()->getTargetTriple());
1369  if (UseFloat) {
1370    Name = "__sincospif_stret";
1371
1372    assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1373    // x86_64 can't use {float, float} since that would be returned in both
1374    // xmm0 and xmm1, which isn't what a real struct would do.
1375    ResTy = T.getArch() == Triple::x86_64
1376                ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1377                : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
1378  } else {
1379    Name = "__sincospi_stret";
1380    ResTy = StructType::get(ArgTy, ArgTy, nullptr);
1381  }
1382
1383  Module *M = OrigCallee->getParent();
1384  Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1385                                         ResTy, ArgTy, nullptr);
1386
1387  if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1388    // If the argument is an instruction, it must dominate all uses so put our
1389    // sincos call there.
1390    BasicBlock::iterator Loc = ArgInst;
1391    B.SetInsertPoint(ArgInst->getParent(), ++Loc);
1392  } else {
1393    // Otherwise (e.g. for a constant) the beginning of the function is as
1394    // good a place as any.
1395    BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1396    B.SetInsertPoint(&EntryBB, EntryBB.begin());
1397  }
1398
1399  SinCos = B.CreateCall(Callee, Arg, "sincospi");
1400
1401  if (SinCos->getType()->isStructTy()) {
1402    Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1403    Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1404  } else {
1405    Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1406                                 "sinpi");
1407    Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1408                                 "cospi");
1409  }
1410}
1411
1412//===----------------------------------------------------------------------===//
1413// Integer Library Call Optimizations
1414//===----------------------------------------------------------------------===//
1415
1416Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1417  Function *Callee = CI->getCalledFunction();
1418  FunctionType *FT = Callee->getFunctionType();
1419  // Just make sure this has 2 arguments of the same FP type, which match the
1420  // result type.
1421  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) ||
1422      !FT->getParamType(0)->isIntegerTy())
1423    return nullptr;
1424
1425  Value *Op = CI->getArgOperand(0);
1426
1427  // Constant fold.
1428  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1429    if (CI->isZero()) // ffs(0) -> 0.
1430      return B.getInt32(0);
1431    // ffs(c) -> cttz(c)+1
1432    return B.getInt32(CI->getValue().countTrailingZeros() + 1);
1433  }
1434
1435  // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1436  Type *ArgType = Op->getType();
1437  Value *F =
1438      Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
1439  Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
1440  V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1441  V = B.CreateIntCast(V, B.getInt32Ty(), false);
1442
1443  Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1444  return B.CreateSelect(Cond, V, B.getInt32(0));
1445}
1446
1447Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1448  Function *Callee = CI->getCalledFunction();
1449  FunctionType *FT = Callee->getFunctionType();
1450  // We require integer(integer) where the types agree.
1451  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1452      FT->getParamType(0) != FT->getReturnType())
1453    return nullptr;
1454
1455  // abs(x) -> x >s -1 ? x : -x
1456  Value *Op = CI->getArgOperand(0);
1457  Value *Pos =
1458      B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
1459  Value *Neg = B.CreateNeg(Op, "neg");
1460  return B.CreateSelect(Pos, Op, Neg);
1461}
1462
1463Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1464  Function *Callee = CI->getCalledFunction();
1465  FunctionType *FT = Callee->getFunctionType();
1466  // We require integer(i32)
1467  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1468      !FT->getParamType(0)->isIntegerTy(32))
1469    return nullptr;
1470
1471  // isdigit(c) -> (c-'0') <u 10
1472  Value *Op = CI->getArgOperand(0);
1473  Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1474  Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1475  return B.CreateZExt(Op, CI->getType());
1476}
1477
1478Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1479  Function *Callee = CI->getCalledFunction();
1480  FunctionType *FT = Callee->getFunctionType();
1481  // We require integer(i32)
1482  if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1483      !FT->getParamType(0)->isIntegerTy(32))
1484    return nullptr;
1485
1486  // isascii(c) -> c <u 128
1487  Value *Op = CI->getArgOperand(0);
1488  Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1489  return B.CreateZExt(Op, CI->getType());
1490}
1491
1492Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1493  Function *Callee = CI->getCalledFunction();
1494  FunctionType *FT = Callee->getFunctionType();
1495  // We require i32(i32)
1496  if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1497      !FT->getParamType(0)->isIntegerTy(32))
1498    return nullptr;
1499
1500  // toascii(c) -> c & 0x7f
1501  return B.CreateAnd(CI->getArgOperand(0),
1502                     ConstantInt::get(CI->getType(), 0x7F));
1503}
1504
1505//===----------------------------------------------------------------------===//
1506// Formatting and IO Library Call Optimizations
1507//===----------------------------------------------------------------------===//
1508
1509static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1510
1511Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1512                                                 int StreamArg) {
1513  // Error reporting calls should be cold, mark them as such.
1514  // This applies even to non-builtin calls: it is only a hint and applies to
1515  // functions that the frontend might not understand as builtins.
1516
1517  // This heuristic was suggested in:
1518  // Improving Static Branch Prediction in a Compiler
1519  // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1520  // Proceedings of PACT'98, Oct. 1998, IEEE
1521  Function *Callee = CI->getCalledFunction();
1522
1523  if (!CI->hasFnAttr(Attribute::Cold) &&
1524      isReportingError(Callee, CI, StreamArg)) {
1525    CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
1526  }
1527
1528  return nullptr;
1529}
1530
1531static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1532  if (!ColdErrorCalls)
1533    return false;
1534
1535  if (!Callee || !Callee->isDeclaration())
1536    return false;
1537
1538  if (StreamArg < 0)
1539    return true;
1540
1541  // These functions might be considered cold, but only if their stream
1542  // argument is stderr.
1543
1544  if (StreamArg >= (int)CI->getNumArgOperands())
1545    return false;
1546  LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1547  if (!LI)
1548    return false;
1549  GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1550  if (!GV || !GV->isDeclaration())
1551    return false;
1552  return GV->getName() == "stderr";
1553}
1554
1555Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1556  // Check for a fixed format string.
1557  StringRef FormatStr;
1558  if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1559    return nullptr;
1560
1561  // Empty format string -> noop.
1562  if (FormatStr.empty()) // Tolerate printf's declared void.
1563    return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1564
1565  // Do not do any of the following transformations if the printf return value
1566  // is used, in general the printf return value is not compatible with either
1567  // putchar() or puts().
1568  if (!CI->use_empty())
1569    return nullptr;
1570
1571  // printf("x") -> putchar('x'), even for '%'.
1572  if (FormatStr.size() == 1) {
1573    Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1574    if (CI->use_empty() || !Res)
1575      return Res;
1576    return B.CreateIntCast(Res, CI->getType(), true);
1577  }
1578
1579  // printf("foo\n") --> puts("foo")
1580  if (FormatStr[FormatStr.size() - 1] == '\n' &&
1581      FormatStr.find('%') == StringRef::npos) { // No format characters.
1582    // Create a string literal with no \n on it.  We expect the constant merge
1583    // pass to be run after this pass, to merge duplicate strings.
1584    FormatStr = FormatStr.drop_back();
1585    Value *GV = B.CreateGlobalString(FormatStr, "str");
1586    Value *NewCI = EmitPutS(GV, B, TLI);
1587    return (CI->use_empty() || !NewCI)
1588               ? NewCI
1589               : ConstantInt::get(CI->getType(), FormatStr.size() + 1);
1590  }
1591
1592  // Optimize specific format strings.
1593  // printf("%c", chr) --> putchar(chr)
1594  if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1595      CI->getArgOperand(1)->getType()->isIntegerTy()) {
1596    Value *Res = EmitPutChar(CI->getArgOperand(1), B, TLI);
1597
1598    if (CI->use_empty() || !Res)
1599      return Res;
1600    return B.CreateIntCast(Res, CI->getType(), true);
1601  }
1602
1603  // printf("%s\n", str) --> puts(str)
1604  if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1605      CI->getArgOperand(1)->getType()->isPointerTy()) {
1606    return EmitPutS(CI->getArgOperand(1), B, TLI);
1607  }
1608  return nullptr;
1609}
1610
1611Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1612
1613  Function *Callee = CI->getCalledFunction();
1614  // Require one fixed pointer argument and an integer/void result.
1615  FunctionType *FT = Callee->getFunctionType();
1616  if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
1617      !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
1618    return nullptr;
1619
1620  if (Value *V = optimizePrintFString(CI, B)) {
1621    return V;
1622  }
1623
1624  // printf(format, ...) -> iprintf(format, ...) if no floating point
1625  // arguments.
1626  if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
1627    Module *M = B.GetInsertBlock()->getParent()->getParent();
1628    Constant *IPrintFFn =
1629        M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1630    CallInst *New = cast<CallInst>(CI->clone());
1631    New->setCalledFunction(IPrintFFn);
1632    B.Insert(New);
1633    return New;
1634  }
1635  return nullptr;
1636}
1637
1638Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1639  // Check for a fixed format string.
1640  StringRef FormatStr;
1641  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1642    return nullptr;
1643
1644  // If we just have a format string (nothing else crazy) transform it.
1645  if (CI->getNumArgOperands() == 2) {
1646    // Make sure there's no % in the constant array.  We could try to handle
1647    // %% -> % in the future if we cared.
1648    for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1649      if (FormatStr[i] == '%')
1650        return nullptr; // we found a format specifier, bail out.
1651
1652    // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1653    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1654                   ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1655                                    FormatStr.size() + 1),
1656                   1); // Copy the null byte.
1657    return ConstantInt::get(CI->getType(), FormatStr.size());
1658  }
1659
1660  // The remaining optimizations require the format string to be "%s" or "%c"
1661  // and have an extra operand.
1662  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1663      CI->getNumArgOperands() < 3)
1664    return nullptr;
1665
1666  // Decode the second character of the format string.
1667  if (FormatStr[1] == 'c') {
1668    // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1669    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1670      return nullptr;
1671    Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1672    Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
1673    B.CreateStore(V, Ptr);
1674    Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1675    B.CreateStore(B.getInt8(0), Ptr);
1676
1677    return ConstantInt::get(CI->getType(), 1);
1678  }
1679
1680  if (FormatStr[1] == 's') {
1681    // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1682    if (!CI->getArgOperand(2)->getType()->isPointerTy())
1683      return nullptr;
1684
1685    Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
1686    if (!Len)
1687      return nullptr;
1688    Value *IncLen =
1689        B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1690    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1691
1692    // The sprintf result is the unincremented number of bytes in the string.
1693    return B.CreateIntCast(Len, CI->getType(), false);
1694  }
1695  return nullptr;
1696}
1697
1698Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1699  Function *Callee = CI->getCalledFunction();
1700  // Require two fixed pointer arguments and an integer result.
1701  FunctionType *FT = Callee->getFunctionType();
1702  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1703      !FT->getParamType(1)->isPointerTy() ||
1704      !FT->getReturnType()->isIntegerTy())
1705    return nullptr;
1706
1707  if (Value *V = optimizeSPrintFString(CI, B)) {
1708    return V;
1709  }
1710
1711  // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1712  // point arguments.
1713  if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
1714    Module *M = B.GetInsertBlock()->getParent()->getParent();
1715    Constant *SIPrintFFn =
1716        M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1717    CallInst *New = cast<CallInst>(CI->clone());
1718    New->setCalledFunction(SIPrintFFn);
1719    B.Insert(New);
1720    return New;
1721  }
1722  return nullptr;
1723}
1724
1725Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
1726  optimizeErrorReporting(CI, B, 0);
1727
1728  // All the optimizations depend on the format string.
1729  StringRef FormatStr;
1730  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1731    return nullptr;
1732
1733  // Do not do any of the following transformations if the fprintf return
1734  // value is used, in general the fprintf return value is not compatible
1735  // with fwrite(), fputc() or fputs().
1736  if (!CI->use_empty())
1737    return nullptr;
1738
1739  // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1740  if (CI->getNumArgOperands() == 2) {
1741    for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1742      if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1743        return nullptr;        // We found a format specifier.
1744
1745    return EmitFWrite(
1746        CI->getArgOperand(1),
1747        ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
1748        CI->getArgOperand(0), B, DL, TLI);
1749  }
1750
1751  // The remaining optimizations require the format string to be "%s" or "%c"
1752  // and have an extra operand.
1753  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1754      CI->getNumArgOperands() < 3)
1755    return nullptr;
1756
1757  // Decode the second character of the format string.
1758  if (FormatStr[1] == 'c') {
1759    // fprintf(F, "%c", chr) --> fputc(chr, F)
1760    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1761      return nullptr;
1762    return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1763  }
1764
1765  if (FormatStr[1] == 's') {
1766    // fprintf(F, "%s", str) --> fputs(str, F)
1767    if (!CI->getArgOperand(2)->getType()->isPointerTy())
1768      return nullptr;
1769    return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1770  }
1771  return nullptr;
1772}
1773
1774Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
1775  Function *Callee = CI->getCalledFunction();
1776  // Require two fixed paramters as pointers and integer result.
1777  FunctionType *FT = Callee->getFunctionType();
1778  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1779      !FT->getParamType(1)->isPointerTy() ||
1780      !FT->getReturnType()->isIntegerTy())
1781    return nullptr;
1782
1783  if (Value *V = optimizeFPrintFString(CI, B)) {
1784    return V;
1785  }
1786
1787  // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1788  // floating point arguments.
1789  if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
1790    Module *M = B.GetInsertBlock()->getParent()->getParent();
1791    Constant *FIPrintFFn =
1792        M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1793    CallInst *New = cast<CallInst>(CI->clone());
1794    New->setCalledFunction(FIPrintFFn);
1795    B.Insert(New);
1796    return New;
1797  }
1798  return nullptr;
1799}
1800
1801Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
1802  optimizeErrorReporting(CI, B, 3);
1803
1804  Function *Callee = CI->getCalledFunction();
1805  // Require a pointer, an integer, an integer, a pointer, returning integer.
1806  FunctionType *FT = Callee->getFunctionType();
1807  if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
1808      !FT->getParamType(1)->isIntegerTy() ||
1809      !FT->getParamType(2)->isIntegerTy() ||
1810      !FT->getParamType(3)->isPointerTy() ||
1811      !FT->getReturnType()->isIntegerTy())
1812    return nullptr;
1813
1814  // Get the element size and count.
1815  ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1816  ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1817  if (!SizeC || !CountC)
1818    return nullptr;
1819  uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
1820
1821  // If this is writing zero records, remove the call (it's a noop).
1822  if (Bytes == 0)
1823    return ConstantInt::get(CI->getType(), 0);
1824
1825  // If this is writing one byte, turn it into fputc.
1826  // This optimisation is only valid, if the return value is unused.
1827  if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1828    Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
1829    Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TLI);
1830    return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
1831  }
1832
1833  return nullptr;
1834}
1835
1836Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
1837  optimizeErrorReporting(CI, B, 1);
1838
1839  Function *Callee = CI->getCalledFunction();
1840
1841  // Require two pointers.  Also, we can't optimize if return value is used.
1842  FunctionType *FT = Callee->getFunctionType();
1843  if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1844      !FT->getParamType(1)->isPointerTy() || !CI->use_empty())
1845    return nullptr;
1846
1847  // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1848  uint64_t Len = GetStringLength(CI->getArgOperand(0));
1849  if (!Len)
1850    return nullptr;
1851
1852  // Known to have no uses (see above).
1853  return EmitFWrite(
1854      CI->getArgOperand(0),
1855      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
1856      CI->getArgOperand(1), B, DL, TLI);
1857}
1858
1859Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
1860  Function *Callee = CI->getCalledFunction();
1861  // Require one fixed pointer argument and an integer/void result.
1862  FunctionType *FT = Callee->getFunctionType();
1863  if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
1864      !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
1865    return nullptr;
1866
1867  // Check for a constant string.
1868  StringRef Str;
1869  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1870    return nullptr;
1871
1872  if (Str.empty() && CI->use_empty()) {
1873    // puts("") -> putchar('\n')
1874    Value *Res = EmitPutChar(B.getInt32('\n'), B, TLI);
1875    if (CI->use_empty() || !Res)
1876      return Res;
1877    return B.CreateIntCast(Res, CI->getType(), true);
1878  }
1879
1880  return nullptr;
1881}
1882
1883bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
1884  LibFunc::Func Func;
1885  SmallString<20> FloatFuncName = FuncName;
1886  FloatFuncName += 'f';
1887  if (TLI->getLibFunc(FloatFuncName, Func))
1888    return TLI->has(Func);
1889  return false;
1890}
1891
1892Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
1893                                                      IRBuilder<> &Builder) {
1894  LibFunc::Func Func;
1895  Function *Callee = CI->getCalledFunction();
1896  StringRef FuncName = Callee->getName();
1897
1898  // Check for string/memory library functions.
1899  if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
1900    // Make sure we never change the calling convention.
1901    assert((ignoreCallingConv(Func) ||
1902            CI->getCallingConv() == llvm::CallingConv::C) &&
1903      "Optimizing string/memory libcall would change the calling convention");
1904    switch (Func) {
1905    case LibFunc::strcat:
1906      return optimizeStrCat(CI, Builder);
1907    case LibFunc::strncat:
1908      return optimizeStrNCat(CI, Builder);
1909    case LibFunc::strchr:
1910      return optimizeStrChr(CI, Builder);
1911    case LibFunc::strrchr:
1912      return optimizeStrRChr(CI, Builder);
1913    case LibFunc::strcmp:
1914      return optimizeStrCmp(CI, Builder);
1915    case LibFunc::strncmp:
1916      return optimizeStrNCmp(CI, Builder);
1917    case LibFunc::strcpy:
1918      return optimizeStrCpy(CI, Builder);
1919    case LibFunc::stpcpy:
1920      return optimizeStpCpy(CI, Builder);
1921    case LibFunc::strncpy:
1922      return optimizeStrNCpy(CI, Builder);
1923    case LibFunc::strlen:
1924      return optimizeStrLen(CI, Builder);
1925    case LibFunc::strpbrk:
1926      return optimizeStrPBrk(CI, Builder);
1927    case LibFunc::strtol:
1928    case LibFunc::strtod:
1929    case LibFunc::strtof:
1930    case LibFunc::strtoul:
1931    case LibFunc::strtoll:
1932    case LibFunc::strtold:
1933    case LibFunc::strtoull:
1934      return optimizeStrTo(CI, Builder);
1935    case LibFunc::strspn:
1936      return optimizeStrSpn(CI, Builder);
1937    case LibFunc::strcspn:
1938      return optimizeStrCSpn(CI, Builder);
1939    case LibFunc::strstr:
1940      return optimizeStrStr(CI, Builder);
1941    case LibFunc::memchr:
1942      return optimizeMemChr(CI, Builder);
1943    case LibFunc::memcmp:
1944      return optimizeMemCmp(CI, Builder);
1945    case LibFunc::memcpy:
1946      return optimizeMemCpy(CI, Builder);
1947    case LibFunc::memmove:
1948      return optimizeMemMove(CI, Builder);
1949    case LibFunc::memset:
1950      return optimizeMemSet(CI, Builder);
1951    default:
1952      break;
1953    }
1954  }
1955  return nullptr;
1956}
1957
1958Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
1959  if (CI->isNoBuiltin())
1960    return nullptr;
1961
1962  LibFunc::Func Func;
1963  Function *Callee = CI->getCalledFunction();
1964  StringRef FuncName = Callee->getName();
1965  IRBuilder<> Builder(CI);
1966  bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
1967
1968  // Command-line parameter overrides function attribute.
1969  if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
1970    UnsafeFPShrink = EnableUnsafeFPShrink;
1971  else if (Callee->hasFnAttribute("unsafe-fp-math")) {
1972    // FIXME: This is the same problem as described in optimizeSqrt().
1973    // If calls gain access to IR-level FMF, then use that instead of a
1974    // function attribute.
1975
1976    // Check for unsafe-fp-math = true.
1977    Attribute Attr = Callee->getFnAttribute("unsafe-fp-math");
1978    if (Attr.getValueAsString() == "true")
1979      UnsafeFPShrink = true;
1980  }
1981
1982  // First, check for intrinsics.
1983  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1984    if (!isCallingConvC)
1985      return nullptr;
1986    switch (II->getIntrinsicID()) {
1987    case Intrinsic::pow:
1988      return optimizePow(CI, Builder);
1989    case Intrinsic::exp2:
1990      return optimizeExp2(CI, Builder);
1991    case Intrinsic::fabs:
1992      return optimizeFabs(CI, Builder);
1993    case Intrinsic::sqrt:
1994      return optimizeSqrt(CI, Builder);
1995    default:
1996      return nullptr;
1997    }
1998  }
1999
2000  // Also try to simplify calls to fortified library functions.
2001  if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2002    // Try to further simplify the result.
2003    CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2004    if (SimplifiedCI && SimplifiedCI->getCalledFunction())
2005      if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
2006        // If we were able to further simplify, remove the now redundant call.
2007        SimplifiedCI->replaceAllUsesWith(V);
2008        SimplifiedCI->eraseFromParent();
2009        return V;
2010      }
2011    return SimplifiedFortifiedCI;
2012  }
2013
2014  // Then check for known library functions.
2015  if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
2016    // We never change the calling convention.
2017    if (!ignoreCallingConv(Func) && !isCallingConvC)
2018      return nullptr;
2019    if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2020      return V;
2021    switch (Func) {
2022    case LibFunc::cosf:
2023    case LibFunc::cos:
2024    case LibFunc::cosl:
2025      return optimizeCos(CI, Builder);
2026    case LibFunc::sinpif:
2027    case LibFunc::sinpi:
2028    case LibFunc::cospif:
2029    case LibFunc::cospi:
2030      return optimizeSinCosPi(CI, Builder);
2031    case LibFunc::powf:
2032    case LibFunc::pow:
2033    case LibFunc::powl:
2034      return optimizePow(CI, Builder);
2035    case LibFunc::exp2l:
2036    case LibFunc::exp2:
2037    case LibFunc::exp2f:
2038      return optimizeExp2(CI, Builder);
2039    case LibFunc::fabsf:
2040    case LibFunc::fabs:
2041    case LibFunc::fabsl:
2042      return optimizeFabs(CI, Builder);
2043    case LibFunc::sqrtf:
2044    case LibFunc::sqrt:
2045    case LibFunc::sqrtl:
2046      return optimizeSqrt(CI, Builder);
2047    case LibFunc::ffs:
2048    case LibFunc::ffsl:
2049    case LibFunc::ffsll:
2050      return optimizeFFS(CI, Builder);
2051    case LibFunc::abs:
2052    case LibFunc::labs:
2053    case LibFunc::llabs:
2054      return optimizeAbs(CI, Builder);
2055    case LibFunc::isdigit:
2056      return optimizeIsDigit(CI, Builder);
2057    case LibFunc::isascii:
2058      return optimizeIsAscii(CI, Builder);
2059    case LibFunc::toascii:
2060      return optimizeToAscii(CI, Builder);
2061    case LibFunc::printf:
2062      return optimizePrintF(CI, Builder);
2063    case LibFunc::sprintf:
2064      return optimizeSPrintF(CI, Builder);
2065    case LibFunc::fprintf:
2066      return optimizeFPrintF(CI, Builder);
2067    case LibFunc::fwrite:
2068      return optimizeFWrite(CI, Builder);
2069    case LibFunc::fputs:
2070      return optimizeFPuts(CI, Builder);
2071    case LibFunc::puts:
2072      return optimizePuts(CI, Builder);
2073    case LibFunc::perror:
2074      return optimizeErrorReporting(CI, Builder);
2075    case LibFunc::vfprintf:
2076    case LibFunc::fiprintf:
2077      return optimizeErrorReporting(CI, Builder, 0);
2078    case LibFunc::fputc:
2079      return optimizeErrorReporting(CI, Builder, 1);
2080    case LibFunc::ceil:
2081    case LibFunc::floor:
2082    case LibFunc::rint:
2083    case LibFunc::round:
2084    case LibFunc::nearbyint:
2085    case LibFunc::trunc:
2086      if (hasFloatVersion(FuncName))
2087        return optimizeUnaryDoubleFP(CI, Builder, false);
2088      return nullptr;
2089    case LibFunc::acos:
2090    case LibFunc::acosh:
2091    case LibFunc::asin:
2092    case LibFunc::asinh:
2093    case LibFunc::atan:
2094    case LibFunc::atanh:
2095    case LibFunc::cbrt:
2096    case LibFunc::cosh:
2097    case LibFunc::exp:
2098    case LibFunc::exp10:
2099    case LibFunc::expm1:
2100    case LibFunc::log:
2101    case LibFunc::log10:
2102    case LibFunc::log1p:
2103    case LibFunc::log2:
2104    case LibFunc::logb:
2105    case LibFunc::sin:
2106    case LibFunc::sinh:
2107    case LibFunc::tan:
2108    case LibFunc::tanh:
2109      if (UnsafeFPShrink && hasFloatVersion(FuncName))
2110        return optimizeUnaryDoubleFP(CI, Builder, true);
2111      return nullptr;
2112    case LibFunc::copysign:
2113    case LibFunc::fmin:
2114    case LibFunc::fmax:
2115      if (hasFloatVersion(FuncName))
2116        return optimizeBinaryDoubleFP(CI, Builder);
2117      return nullptr;
2118    default:
2119      return nullptr;
2120    }
2121  }
2122  return nullptr;
2123}
2124
2125LibCallSimplifier::LibCallSimplifier(
2126    const DataLayout &DL, const TargetLibraryInfo *TLI,
2127    function_ref<void(Instruction *, Value *)> Replacer)
2128    : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
2129      Replacer(Replacer) {}
2130
2131void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2132  // Indirect through the replacer used in this instance.
2133  Replacer(I, With);
2134}
2135
2136/*static*/ void LibCallSimplifier::replaceAllUsesWithDefault(Instruction *I,
2137                                                             Value *With) {
2138  I->replaceAllUsesWith(With);
2139  I->eraseFromParent();
2140}
2141
2142// TODO:
2143//   Additional cases that we need to add to this file:
2144//
2145// cbrt:
2146//   * cbrt(expN(X))  -> expN(x/3)
2147//   * cbrt(sqrt(x))  -> pow(x,1/6)
2148//   * cbrt(sqrt(x))  -> pow(x,1/9)
2149//
2150// exp, expf, expl:
2151//   * exp(log(x))  -> x
2152//
2153// log, logf, logl:
2154//   * log(exp(x))   -> x
2155//   * log(x**y)     -> y*log(x)
2156//   * log(exp(y))   -> y*log(e)
2157//   * log(exp2(y))  -> y*log(2)
2158//   * log(exp10(y)) -> y*log(10)
2159//   * log(sqrt(x))  -> 0.5*log(x)
2160//   * log(pow(x,y)) -> y*log(x)
2161//
2162// lround, lroundf, lroundl:
2163//   * lround(cnst) -> cnst'
2164//
2165// pow, powf, powl:
2166//   * pow(exp(x),y)  -> exp(x*y)
2167//   * pow(sqrt(x),y) -> pow(x,y*0.5)
2168//   * pow(pow(x,y),z)-> pow(x,y*z)
2169//
2170// round, roundf, roundl:
2171//   * round(cnst) -> cnst'
2172//
2173// signbit:
2174//   * signbit(cnst) -> cnst'
2175//   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2176//
2177// sqrt, sqrtf, sqrtl:
2178//   * sqrt(expN(x))  -> expN(x*0.5)
2179//   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2180//   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2181//
2182// tan, tanf, tanl:
2183//   * tan(atan(x)) -> x
2184//
2185// trunc, truncf, truncl:
2186//   * trunc(cnst) -> cnst'
2187//
2188//
2189
2190//===----------------------------------------------------------------------===//
2191// Fortified Library Call Optimizations
2192//===----------------------------------------------------------------------===//
2193
2194bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2195                                                         unsigned ObjSizeOp,
2196                                                         unsigned SizeOp,
2197                                                         bool isString) {
2198  if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2199    return true;
2200  if (ConstantInt *ObjSizeCI =
2201          dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2202    if (ObjSizeCI->isAllOnesValue())
2203      return true;
2204    // If the object size wasn't -1 (unknown), bail out if we were asked to.
2205    if (OnlyLowerUnknownSize)
2206      return false;
2207    if (isString) {
2208      uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2209      // If the length is 0 we don't know how long it is and so we can't
2210      // remove the check.
2211      if (Len == 0)
2212        return false;
2213      return ObjSizeCI->getZExtValue() >= Len;
2214    }
2215    if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2216      return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2217  }
2218  return false;
2219}
2220
2221Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) {
2222  Function *Callee = CI->getCalledFunction();
2223
2224  if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk))
2225    return nullptr;
2226
2227  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2228    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2229                   CI->getArgOperand(2), 1);
2230    return CI->getArgOperand(0);
2231  }
2232  return nullptr;
2233}
2234
2235Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) {
2236  Function *Callee = CI->getCalledFunction();
2237
2238  if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk))
2239    return nullptr;
2240
2241  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2242    B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
2243                    CI->getArgOperand(2), 1);
2244    return CI->getArgOperand(0);
2245  }
2246  return nullptr;
2247}
2248
2249Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) {
2250  Function *Callee = CI->getCalledFunction();
2251
2252  if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk))
2253    return nullptr;
2254
2255  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2256    Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2257    B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2258    return CI->getArgOperand(0);
2259  }
2260  return nullptr;
2261}
2262
2263Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2264                                                      IRBuilder<> &B,
2265                                                      LibFunc::Func Func) {
2266  Function *Callee = CI->getCalledFunction();
2267  StringRef Name = Callee->getName();
2268  const DataLayout &DL = CI->getModule()->getDataLayout();
2269
2270  if (!checkStringCopyLibFuncSignature(Callee, Func))
2271    return nullptr;
2272
2273  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2274        *ObjSize = CI->getArgOperand(2);
2275
2276  // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2277  if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2278    Value *StrLen = EmitStrLen(Src, B, DL, TLI);
2279    return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2280  }
2281
2282  // If a) we don't have any length information, or b) we know this will
2283  // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2284  // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2285  // TODO: It might be nice to get a maximum length out of the possible
2286  // string lengths for varying.
2287  if (isFortifiedCallFoldable(CI, 2, 1, true))
2288    return EmitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2289
2290  if (OnlyLowerUnknownSize)
2291    return nullptr;
2292
2293  // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2294  uint64_t Len = GetStringLength(Src);
2295  if (Len == 0)
2296    return nullptr;
2297
2298  Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2299  Value *LenV = ConstantInt::get(SizeTTy, Len);
2300  Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2301  // If the function was an __stpcpy_chk, and we were able to fold it into
2302  // a __memcpy_chk, we still need to return the correct end pointer.
2303  if (Ret && Func == LibFunc::stpcpy_chk)
2304    return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2305  return Ret;
2306}
2307
2308Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2309                                                       IRBuilder<> &B,
2310                                                       LibFunc::Func Func) {
2311  Function *Callee = CI->getCalledFunction();
2312  StringRef Name = Callee->getName();
2313
2314  if (!checkStringCopyLibFuncSignature(Callee, Func))
2315    return nullptr;
2316  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2317    Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2318                             CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2319    return Ret;
2320  }
2321  return nullptr;
2322}
2323
2324Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2325  // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2326  // Some clang users checked for _chk libcall availability using:
2327  //   __has_builtin(__builtin___memcpy_chk)
2328  // When compiling with -fno-builtin, this is always true.
2329  // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2330  // end up with fortified libcalls, which isn't acceptable in a freestanding
2331  // environment which only provides their non-fortified counterparts.
2332  //
2333  // Until we change clang and/or teach external users to check for availability
2334  // differently, disregard the "nobuiltin" attribute and TLI::has.
2335  //
2336  // PR23093.
2337
2338  LibFunc::Func Func;
2339  Function *Callee = CI->getCalledFunction();
2340  StringRef FuncName = Callee->getName();
2341  IRBuilder<> Builder(CI);
2342  bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
2343
2344  // First, check that this is a known library functions.
2345  if (!TLI->getLibFunc(FuncName, Func))
2346    return nullptr;
2347
2348  // We never change the calling convention.
2349  if (!ignoreCallingConv(Func) && !isCallingConvC)
2350    return nullptr;
2351
2352  switch (Func) {
2353  case LibFunc::memcpy_chk:
2354    return optimizeMemCpyChk(CI, Builder);
2355  case LibFunc::memmove_chk:
2356    return optimizeMemMoveChk(CI, Builder);
2357  case LibFunc::memset_chk:
2358    return optimizeMemSetChk(CI, Builder);
2359  case LibFunc::stpcpy_chk:
2360  case LibFunc::strcpy_chk:
2361    return optimizeStrpCpyChk(CI, Builder, Func);
2362  case LibFunc::stpncpy_chk:
2363  case LibFunc::strncpy_chk:
2364    return optimizeStrpNCpyChk(CI, Builder, Func);
2365  default:
2366    break;
2367  }
2368  return nullptr;
2369}
2370
2371FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2372    const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2373    : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2374