ValueMapper.cpp revision 1229c0cb10e1c3640253ece03670621d96762e75
1//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the MapValue function, which is shared by various parts of
11// the lib/Transforms/Utils library.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/ValueMapper.h"
16#include "llvm/IR/Constants.h"
17#include "llvm/IR/Function.h"
18#include "llvm/IR/InlineAsm.h"
19#include "llvm/IR/Instructions.h"
20#include "llvm/IR/Metadata.h"
21using namespace llvm;
22
23// Out of line method to get vtable etc for class.
24void ValueMapTypeRemapper::anchor() {}
25
26Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
27                      ValueMapTypeRemapper *TypeMapper) {
28  ValueToValueMapTy::iterator I = VM.find(V);
29
30  // If the value already exists in the map, use it.
31  if (I != VM.end() && I->second) return I->second;
32
33  // Global values do not need to be seeded into the VM if they
34  // are using the identity mapping.
35  if (isa<GlobalValue>(V) || isa<MDString>(V))
36    return VM[V] = const_cast<Value*>(V);
37
38  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
39    // Inline asm may need *type* remapping.
40    FunctionType *NewTy = IA->getFunctionType();
41    if (TypeMapper) {
42      NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
43
44      if (NewTy != IA->getFunctionType())
45        V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
46                           IA->hasSideEffects(), IA->isAlignStack());
47    }
48
49    return VM[V] = const_cast<Value*>(V);
50  }
51
52
53  if (const MDNode *MD = dyn_cast<MDNode>(V)) {
54    // If this is a module-level metadata and we know that nothing at the module
55    // level is changing, then use an identity mapping.
56    if (!MD->isFunctionLocal() && (Flags & RF_NoModuleLevelChanges))
57      return VM[V] = const_cast<Value*>(V);
58
59    // Create a dummy node in case we have a metadata cycle.
60    MDNode *Dummy = MDNode::getTemporary(V->getContext(), ArrayRef<Value*>());
61    VM[V] = Dummy;
62
63    // Check all operands to see if any need to be remapped.
64    for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) {
65      Value *OP = MD->getOperand(i);
66      if (OP == 0) continue;
67      Value *Mapped_OP = MapValue(OP, VM, Flags, TypeMapper);
68      // If Mapped_Op is null, we should use indentity map.
69      if (Mapped_OP == OP || Mapped_OP == 0) continue;
70
71      // Ok, at least one operand needs remapping.
72      SmallVector<Value*, 4> Elts;
73      Elts.reserve(MD->getNumOperands());
74      for (i = 0; i != e; ++i) {
75        Value *Op = MD->getOperand(i);
76        if (Op == 0)
77          Elts.push_back(0);
78        else {
79          Value *Mapped_Op = MapValue(Op, VM, Flags, TypeMapper);
80          // If Mapped_Op is null, we should use indentity map.
81          Elts.push_back(Mapped_Op ? Mapped_Op : Op);
82        }
83      }
84      MDNode *NewMD = MDNode::get(V->getContext(), Elts);
85      Dummy->replaceAllUsesWith(NewMD);
86      VM[V] = NewMD;
87      MDNode::deleteTemporary(Dummy);
88      return NewMD;
89    }
90
91    VM[V] = const_cast<Value*>(V);
92    MDNode::deleteTemporary(Dummy);
93
94    // No operands needed remapping.  Use an identity mapping.
95    return const_cast<Value*>(V);
96  }
97
98  // Okay, this either must be a constant (which may or may not be mappable) or
99  // is something that is not in the mapping table.
100  Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
101  if (C == 0)
102    return 0;
103
104  if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
105    Function *F =
106      cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper));
107    BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
108                                                       Flags, TypeMapper));
109    return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
110  }
111
112  // Otherwise, we have some other constant to remap.  Start by checking to see
113  // if all operands have an identity remapping.
114  unsigned OpNo = 0, NumOperands = C->getNumOperands();
115  Value *Mapped = 0;
116  for (; OpNo != NumOperands; ++OpNo) {
117    Value *Op = C->getOperand(OpNo);
118    Mapped = MapValue(Op, VM, Flags, TypeMapper);
119    if (Mapped != C) break;
120  }
121
122  // See if the type mapper wants to remap the type as well.
123  Type *NewTy = C->getType();
124  if (TypeMapper)
125    NewTy = TypeMapper->remapType(NewTy);
126
127  // If the result type and all operands match up, then just insert an identity
128  // mapping.
129  if (OpNo == NumOperands && NewTy == C->getType())
130    return VM[V] = C;
131
132  // Okay, we need to create a new constant.  We've already processed some or
133  // all of the operands, set them all up now.
134  SmallVector<Constant*, 8> Ops;
135  Ops.reserve(NumOperands);
136  for (unsigned j = 0; j != OpNo; ++j)
137    Ops.push_back(cast<Constant>(C->getOperand(j)));
138
139  // If one of the operands mismatch, push it and the other mapped operands.
140  if (OpNo != NumOperands) {
141    Ops.push_back(cast<Constant>(Mapped));
142
143    // Map the rest of the operands that aren't processed yet.
144    for (++OpNo; OpNo != NumOperands; ++OpNo)
145      Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM,
146                             Flags, TypeMapper));
147  }
148
149  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
150    return VM[V] = CE->getWithOperands(Ops, NewTy);
151  if (isa<ConstantArray>(C))
152    return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
153  if (isa<ConstantStruct>(C))
154    return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
155  if (isa<ConstantVector>(C))
156    return VM[V] = ConstantVector::get(Ops);
157  // If this is a no-operand constant, it must be because the type was remapped.
158  if (isa<UndefValue>(C))
159    return VM[V] = UndefValue::get(NewTy);
160  if (isa<ConstantAggregateZero>(C))
161    return VM[V] = ConstantAggregateZero::get(NewTy);
162  assert(isa<ConstantPointerNull>(C));
163  return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
164}
165
166/// RemapInstruction - Convert the instruction operands from referencing the
167/// current values into those specified by VMap.
168///
169void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
170                            RemapFlags Flags, ValueMapTypeRemapper *TypeMapper){
171  // Remap operands.
172  for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
173    Value *V = MapValue(*op, VMap, Flags, TypeMapper);
174    // If we aren't ignoring missing entries, assert that something happened.
175    if (V != 0)
176      *op = V;
177    else
178      assert((Flags & RF_IgnoreMissingEntries) &&
179             "Referenced value not in value map!");
180  }
181
182  // Remap phi nodes' incoming blocks.
183  if (PHINode *PN = dyn_cast<PHINode>(I)) {
184    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
185      Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags);
186      // If we aren't ignoring missing entries, assert that something happened.
187      if (V != 0)
188        PN->setIncomingBlock(i, cast<BasicBlock>(V));
189      else
190        assert((Flags & RF_IgnoreMissingEntries) &&
191               "Referenced block not in value map!");
192    }
193  }
194
195  // Remap attached metadata.
196  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
197  I->getAllMetadata(MDs);
198  for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator
199       MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) {
200    MDNode *Old = MI->second;
201    MDNode *New = MapValue(Old, VMap, Flags, TypeMapper);
202    if (New != Old)
203      I->setMetadata(MI->first, New);
204  }
205
206  // If the instruction's type is being remapped, do so now.
207  if (TypeMapper)
208    I->mutateType(TypeMapper->remapType(I->getType()));
209}
210