llvm-stress.cpp revision bfb7dfa756ffa48d2c968ffcade3295938495b6e
1//===-- llvm-stress.cpp - Generate random LL files to stress-test LLVM -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This program is a utility that generates random .ll files to stress-test
11// different components in LLVM.
12//
13//===----------------------------------------------------------------------===//
14#include "llvm/LLVMContext.h"
15#include "llvm/Module.h"
16#include "llvm/PassManager.h"
17#include "llvm/Constants.h"
18#include "llvm/Instruction.h"
19#include "llvm/CallGraphSCCPass.h"
20#include "llvm/Assembly/PrintModulePass.h"
21#include "llvm/Analysis/Verifier.h"
22#include "llvm/Support/PassNameParser.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ManagedStatic.h"
25#include "llvm/Support/PluginLoader.h"
26#include "llvm/Support/PrettyStackTrace.h"
27#include "llvm/Support/ToolOutputFile.h"
28#include <memory>
29#include <sstream>
30#include <set>
31#include <vector>
32#include <algorithm>
33using namespace llvm;
34
35static cl::opt<unsigned> SeedCL("seed",
36  cl::desc("Seed used for randomness"), cl::init(0));
37static cl::opt<unsigned> SizeCL("size",
38  cl::desc("The estimated size of the generated function (# of instrs)"),
39  cl::init(100));
40static cl::opt<std::string>
41OutputFilename("o", cl::desc("Override output filename"),
42               cl::value_desc("filename"));
43
44/// A utility class to provide a pseudo-random number generator which is
45/// the same across all platforms. This is somewhat close to the libc
46/// implementation. Note: This is not a cryptographically secure pseudorandom
47/// number generator.
48class Random {
49public:
50  /// C'tor
51  Random(unsigned _seed):Seed(_seed) {}
52  /// Return the next random value.
53  unsigned Rand() {
54    unsigned Val = Seed + 0x000b07a1;
55    Seed = (Val * 0x3c7c0ac1);
56    // Only lowest 19 bits are random-ish.
57    return Seed & 0x7ffff;
58  }
59
60private:
61  unsigned Seed;
62};
63
64/// Generate an empty function with a default argument list.
65Function *GenEmptyFunction(Module *M) {
66  // Type Definitions
67  std::vector<Type*> ArgsTy;
68  // Define a few arguments
69  LLVMContext &Context = M->getContext();
70  ArgsTy.push_back(PointerType::get(IntegerType::getInt8Ty(Context), 0));
71  ArgsTy.push_back(PointerType::get(IntegerType::getInt32Ty(Context), 0));
72  ArgsTy.push_back(PointerType::get(IntegerType::getInt64Ty(Context), 0));
73  ArgsTy.push_back(IntegerType::getInt32Ty(Context));
74  ArgsTy.push_back(IntegerType::getInt64Ty(Context));
75  ArgsTy.push_back(IntegerType::getInt8Ty(Context));
76
77  FunctionType *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, 0);
78  // Pick a unique name to describe the input parameters
79  std::stringstream ss;
80  ss<<"autogen_SD"<<SeedCL;
81  Function *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage,
82                                    ss.str(), M);
83
84  Func->setCallingConv(CallingConv::C);
85  return Func;
86}
87
88/// A base class, implementing utilities needed for
89/// modifying and adding new random instructions.
90struct Modifier {
91  /// Used to store the randomly generated values.
92  typedef std::vector<Value*> PieceTable;
93
94public:
95  /// C'tor
96  Modifier(BasicBlock *Block, PieceTable *PT, Random *R):
97    BB(Block),PT(PT),Ran(R),Context(BB->getContext()) {};
98  /// Add a new instruction.
99  virtual void Act() = 0;
100  /// Add N new instructions,
101  virtual void ActN(unsigned n) {
102    for (unsigned i=0; i<n; ++i)
103      Act();
104  }
105
106protected:
107  /// Return a random value from the list of known values.
108  Value *getRandomVal() {
109    assert(PT->size());
110    return PT->at(Ran->Rand() % PT->size());
111  }
112
113  Constant *getRandomConstant(Type *Tp) {
114    if (Tp->isIntegerTy()) {
115      if (Ran->Rand() & 1)
116        return ConstantInt::getAllOnesValue(Tp);
117      return ConstantInt::getNullValue(Tp);
118    } else if (Tp->isFloatingPointTy()) {
119      if (Ran->Rand() & 1)
120        return ConstantFP::getAllOnesValue(Tp);
121      return ConstantFP::getNullValue(Tp);
122    }
123    return UndefValue::get(Tp);
124  }
125
126  /// Return a random value with a known type.
127  Value *getRandomValue(Type *Tp) {
128    unsigned index = Ran->Rand();
129    for (unsigned i=0; i<PT->size(); ++i) {
130      Value *V = PT->at((index + i) % PT->size());
131      if (V->getType() == Tp)
132        return V;
133    }
134
135    // If the requested type was not found, generate a constant value.
136    if (Tp->isIntegerTy()) {
137      if (Ran->Rand() & 1)
138        return ConstantInt::getAllOnesValue(Tp);
139      return ConstantInt::getNullValue(Tp);
140    } else if (Tp->isFloatingPointTy()) {
141      if (Ran->Rand() & 1)
142        return ConstantFP::getAllOnesValue(Tp);
143      return ConstantFP::getNullValue(Tp);
144    } else if (Tp->isVectorTy()) {
145      VectorType *VTp = cast<VectorType>(Tp);
146
147      std::vector<Constant*> TempValues;
148      TempValues.reserve(VTp->getNumElements());
149      for (unsigned i = 0; i < VTp->getNumElements(); ++i)
150        TempValues.push_back(getRandomConstant(VTp->getScalarType()));
151
152      ArrayRef<Constant*> VectorValue(TempValues);
153      return ConstantVector::get(VectorValue);
154    }
155
156    return UndefValue::get(Tp);
157  }
158
159  /// Return a random value of any pointer type.
160  Value *getRandomPointerValue() {
161    unsigned index = Ran->Rand();
162    for (unsigned i=0; i<PT->size(); ++i) {
163      Value *V = PT->at((index + i) % PT->size());
164      if (V->getType()->isPointerTy())
165        return V;
166    }
167    return UndefValue::get(pickPointerType());
168  }
169
170  /// Return a random value of any vector type.
171  Value *getRandomVectorValue() {
172    unsigned index = Ran->Rand();
173    for (unsigned i=0; i<PT->size(); ++i) {
174      Value *V = PT->at((index + i) % PT->size());
175      if (V->getType()->isVectorTy())
176        return V;
177    }
178    return UndefValue::get(pickVectorType());
179  }
180
181  /// Pick a random type.
182  Type *pickType() {
183    return (Ran->Rand() & 1 ? pickVectorType() : pickScalarType());
184  }
185
186  /// Pick a random pointer type.
187  Type *pickPointerType() {
188    Type *Ty = pickType();
189    return PointerType::get(Ty, 0);
190  }
191
192  /// Pick a random vector type.
193  Type *pickVectorType(unsigned len = (unsigned)-1) {
194    Type *Ty = pickScalarType();
195    // Pick a random vector width in the range 2**0 to 2**4.
196    // by adding two randoms we are generating a normal-like distribution
197    // around 2**3.
198    unsigned width = 1<<((Ran->Rand() % 3) + (Ran->Rand() % 3));
199    if (len != (unsigned)-1)
200      width = len;
201    return VectorType::get(Ty, width);
202  }
203
204  /// Pick a random scalar type.
205  Type *pickScalarType() {
206    switch (Ran->Rand() % 15) {
207    case 0: return Type::getInt1Ty(Context);
208    case 1: return Type::getInt8Ty(Context);
209    case 2: return Type::getInt16Ty(Context);
210    case 3: case 4:
211    case 5: return Type::getFloatTy(Context);
212    case 6: case 7:
213    case 8: return Type::getDoubleTy(Context);
214    case 9: case 10:
215    case 11: return Type::getInt32Ty(Context);
216    case 12: case 13:
217    case 14: return Type::getInt64Ty(Context);
218    }
219    llvm_unreachable("Invalid scalar value");
220  }
221
222  /// Basic block to populate
223  BasicBlock *BB;
224  /// Value table
225  PieceTable *PT;
226  /// Random number generator
227  Random *Ran;
228  /// Context
229  LLVMContext &Context;
230};
231
232struct LoadModifier: public Modifier {
233  LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {};
234  virtual void Act() {
235    // Try to use predefined pointers. If non exist, use undef pointer value;
236    Value *Ptr = getRandomPointerValue();
237    Value *V = new LoadInst(Ptr, "L", BB->getTerminator());
238    PT->push_back(V);
239  }
240};
241
242struct StoreModifier: public Modifier {
243  StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
244  virtual void Act() {
245    // Try to use predefined pointers. If non exist, use undef pointer value;
246    Value *Ptr = getRandomPointerValue();
247    Type  *Tp = Ptr->getType();
248    Value *Val = getRandomValue(Tp->getContainedType(0));
249    Type  *ValTy = Val->getType();
250
251    // Do not store vectors of i1s because they are unsupported
252    // by the codegen.
253    if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1)
254      return;
255
256    new StoreInst(Val, Ptr, BB->getTerminator());
257  }
258};
259
260struct BinModifier: public Modifier {
261  BinModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
262
263  virtual void Act() {
264    Value *Val0 = getRandomVal();
265    Value *Val1 = getRandomValue(Val0->getType());
266
267    // Don't handle pointer types.
268    if (Val0->getType()->isPointerTy() ||
269        Val1->getType()->isPointerTy())
270      return;
271
272    // Don't handle i1 types.
273    if (Val0->getType()->getScalarSizeInBits() == 1)
274      return;
275
276
277    bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy();
278    Instruction* Term = BB->getTerminator();
279    unsigned R = Ran->Rand() % (isFloat ? 7 : 13);
280    Instruction::BinaryOps Op;
281
282    switch (R) {
283    default: llvm_unreachable("Invalid BinOp");
284    case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; }
285    case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; }
286    case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; }
287    case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; }
288    case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; }
289    case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; }
290    case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; }
291    case 7: {Op = Instruction::Shl;  break; }
292    case 8: {Op = Instruction::LShr; break; }
293    case 9: {Op = Instruction::AShr; break; }
294    case 10:{Op = Instruction::And;  break; }
295    case 11:{Op = Instruction::Or;   break; }
296    case 12:{Op = Instruction::Xor;  break; }
297    }
298
299    PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term));
300  }
301};
302
303/// Generate constant values.
304struct ConstModifier: public Modifier {
305  ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
306  virtual void Act() {
307    Type *Ty = pickType();
308
309    if (Ty->isVectorTy()) {
310      switch (Ran->Rand() % 2) {
311      case 0: if (Ty->getScalarType()->isIntegerTy())
312                return PT->push_back(ConstantVector::getAllOnesValue(Ty));
313      case 1: if (Ty->getScalarType()->isIntegerTy())
314                return PT->push_back(ConstantVector::getNullValue(Ty));
315      }
316    }
317
318    if (Ty->isFloatingPointTy()) {
319      if (Ran->Rand() & 1)
320        return PT->push_back(ConstantFP::getNullValue(Ty));
321      return PT->push_back(ConstantFP::get(Ty,
322                                           static_cast<double>(1)/Ran->Rand()));
323    }
324
325    if (Ty->isIntegerTy()) {
326      switch (Ran->Rand() % 7) {
327      case 0: if (Ty->isIntegerTy())
328                return PT->push_back(ConstantInt::get(Ty,
329                  APInt::getAllOnesValue(Ty->getPrimitiveSizeInBits())));
330      case 1: if (Ty->isIntegerTy())
331                return PT->push_back(ConstantInt::get(Ty,
332                  APInt::getNullValue(Ty->getPrimitiveSizeInBits())));
333      case 2: case 3: case 4: case 5:
334      case 6: if (Ty->isIntegerTy())
335                PT->push_back(ConstantInt::get(Ty, Ran->Rand()));
336      }
337    }
338
339  }
340};
341
342struct AllocaModifier: public Modifier {
343  AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R){}
344
345  virtual void Act() {
346    Type *Tp = pickType();
347    PT->push_back(new AllocaInst(Tp, "A", BB->getFirstNonPHI()));
348  }
349};
350
351struct ExtractElementModifier: public Modifier {
352  ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R):
353    Modifier(BB, PT, R) {}
354
355  virtual void Act() {
356    Value *Val0 = getRandomVectorValue();
357    Value *V = ExtractElementInst::Create(Val0,
358             ConstantInt::get(Type::getInt32Ty(BB->getContext()),
359             Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()),
360             "E", BB->getTerminator());
361    return PT->push_back(V);
362  }
363};
364
365struct ShuffModifier: public Modifier {
366  ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
367  virtual void Act() {
368
369    Value *Val0 = getRandomVectorValue();
370    Value *Val1 = getRandomValue(Val0->getType());
371
372    unsigned Width = cast<VectorType>(Val0->getType())->getNumElements();
373    std::vector<Constant*> Idxs;
374
375    Type *I32 = Type::getInt32Ty(BB->getContext());
376    for (unsigned i=0; i<Width; ++i) {
377      Constant *CI = ConstantInt::get(I32, Ran->Rand() % (Width*2));
378      // Pick some undef values.
379      if (!(Ran->Rand() % 5))
380        CI = UndefValue::get(I32);
381      Idxs.push_back(CI);
382    }
383
384    Constant *Mask = ConstantVector::get(Idxs);
385
386    Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff",
387                                     BB->getTerminator());
388    PT->push_back(V);
389  }
390};
391
392struct InsertElementModifier: public Modifier {
393  InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R):
394    Modifier(BB, PT, R) {}
395
396  virtual void Act() {
397    Value *Val0 = getRandomVectorValue();
398    Value *Val1 = getRandomValue(Val0->getType()->getScalarType());
399
400    Value *V = InsertElementInst::Create(Val0, Val1,
401              ConstantInt::get(Type::getInt32Ty(BB->getContext()),
402              Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()),
403              "I",  BB->getTerminator());
404    return PT->push_back(V);
405  }
406
407};
408
409struct CastModifier: public Modifier {
410  CastModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
411  virtual void Act() {
412
413    Value *V = getRandomVal();
414    Type *VTy = V->getType();
415    Type *DestTy = pickScalarType();
416
417    // Handle vector casts vectors.
418    if (VTy->isVectorTy()) {
419      VectorType *VecTy = cast<VectorType>(VTy);
420      DestTy = pickVectorType(VecTy->getNumElements());
421    }
422
423    // no need to casr.
424    if (VTy == DestTy) return;
425
426    // Pointers:
427    if (VTy->isPointerTy()) {
428      if (!DestTy->isPointerTy())
429        DestTy = PointerType::get(DestTy, 0);
430      return PT->push_back(
431        new BitCastInst(V, DestTy, "PC", BB->getTerminator()));
432    }
433
434    // Generate lots of bitcasts.
435    if ((Ran->Rand() & 1) &&
436        VTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) {
437      return PT->push_back(
438        new BitCastInst(V, DestTy, "BC", BB->getTerminator()));
439    }
440
441    // Both types are integers:
442    if (VTy->getScalarType()->isIntegerTy() &&
443        DestTy->getScalarType()->isIntegerTy()) {
444      if (VTy->getScalarType()->getPrimitiveSizeInBits() >
445          DestTy->getScalarType()->getPrimitiveSizeInBits()) {
446        return PT->push_back(
447          new TruncInst(V, DestTy, "Tr", BB->getTerminator()));
448      } else {
449        if (Ran->Rand() & 1)
450          return PT->push_back(
451            new ZExtInst(V, DestTy, "ZE", BB->getTerminator()));
452        return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator()));
453      }
454    }
455
456    // Fp to int.
457    if (VTy->getScalarType()->isFloatingPointTy() &&
458        DestTy->getScalarType()->isIntegerTy()) {
459      if (Ran->Rand() & 1)
460        return PT->push_back(
461          new FPToSIInst(V, DestTy, "FC", BB->getTerminator()));
462      return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator()));
463    }
464
465    // Int to fp.
466    if (VTy->getScalarType()->isIntegerTy() &&
467        DestTy->getScalarType()->isFloatingPointTy()) {
468      if (Ran->Rand() & 1)
469        return PT->push_back(
470          new SIToFPInst(V, DestTy, "FC", BB->getTerminator()));
471      return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator()));
472
473    }
474
475    // Both floats.
476    if (VTy->getScalarType()->isFloatingPointTy() &&
477        DestTy->getScalarType()->isFloatingPointTy()) {
478      if (VTy->getScalarType()->getPrimitiveSizeInBits() >
479          DestTy->getScalarType()->getPrimitiveSizeInBits()) {
480        return PT->push_back(
481          new FPTruncInst(V, DestTy, "Tr", BB->getTerminator()));
482      } else {
483        return PT->push_back(
484          new FPExtInst(V, DestTy, "ZE", BB->getTerminator()));
485      }
486    }
487  }
488
489};
490
491struct SelectModifier: public Modifier {
492  SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R):
493    Modifier(BB, PT, R) {}
494
495  virtual void Act() {
496    // Try a bunch of different select configuration until a valid one is found.
497      Value *Val0 = getRandomVal();
498      Value *Val1 = getRandomValue(Val0->getType());
499
500      Type *CondTy = Type::getInt1Ty(Context);
501
502      // If the value type is a vector, and we allow vector select, then in 50%
503      // of the cases generate a vector select.
504      if (Val0->getType()->isVectorTy() && (Ran->Rand() % 1)) {
505        unsigned NumElem = cast<VectorType>(Val0->getType())->getNumElements();
506        CondTy = VectorType::get(CondTy, NumElem);
507      }
508
509      Value *Cond = getRandomValue(CondTy);
510      Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator());
511      return PT->push_back(V);
512  }
513};
514
515
516struct CmpModifier: public Modifier {
517  CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
518  virtual void Act() {
519
520    Value *Val0 = getRandomVal();
521    Value *Val1 = getRandomValue(Val0->getType());
522
523    if (Val0->getType()->isPointerTy()) return;
524    bool fp = Val0->getType()->getScalarType()->isFloatingPointTy();
525
526    int op;
527    if (fp) {
528      op = Ran->Rand() %
529      (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) +
530       CmpInst::FIRST_FCMP_PREDICATE;
531    } else {
532      op = Ran->Rand() %
533      (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) +
534       CmpInst::FIRST_ICMP_PREDICATE;
535    }
536
537    Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp,
538                               op, Val0, Val1, "Cmp", BB->getTerminator());
539    return PT->push_back(V);
540  }
541};
542
543void FillFunction(Function *F) {
544  // Create a legal entry block.
545  BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F);
546  ReturnInst::Create(F->getContext(), BB);
547
548  // Create the value table.
549  Modifier::PieceTable PT;
550  // Pick an initial seed value
551  Random R(SeedCL);
552
553  // Consider arguments as legal values.
554  for (Function::arg_iterator it = F->arg_begin(), e = F->arg_end();
555       it != e; ++it)
556    PT.push_back(it);
557
558  // List of modifiers which add new random instructions.
559  std::vector<Modifier*> Modifiers;
560  std::auto_ptr<Modifier> LM(new LoadModifier(BB, &PT, &R));
561  std::auto_ptr<Modifier> SM(new StoreModifier(BB, &PT, &R));
562  std::auto_ptr<Modifier> EE(new ExtractElementModifier(BB, &PT, &R));
563  std::auto_ptr<Modifier> SHM(new ShuffModifier(BB, &PT, &R));
564  std::auto_ptr<Modifier> IE(new InsertElementModifier(BB, &PT, &R));
565  std::auto_ptr<Modifier> BM(new BinModifier(BB, &PT, &R));
566  std::auto_ptr<Modifier> CM(new CastModifier(BB, &PT, &R));
567  std::auto_ptr<Modifier> SLM(new SelectModifier(BB, &PT, &R));
568  std::auto_ptr<Modifier> PM(new CmpModifier(BB, &PT, &R));
569  Modifiers.push_back(LM.get());
570  Modifiers.push_back(SM.get());
571  Modifiers.push_back(EE.get());
572  Modifiers.push_back(SHM.get());
573  Modifiers.push_back(IE.get());
574  Modifiers.push_back(BM.get());
575  Modifiers.push_back(CM.get());
576  Modifiers.push_back(SLM.get());
577  Modifiers.push_back(PM.get());
578
579  // Generate the random instructions
580  AllocaModifier AM(BB, &PT, &R); AM.ActN(5); // Throw in a few allocas
581  ConstModifier COM(BB, &PT, &R);  COM.ActN(40); // Throw in a few constants
582
583  for (unsigned i=0; i< SizeCL / Modifiers.size(); ++i)
584    for (std::vector<Modifier*>::iterator it = Modifiers.begin(),
585         e = Modifiers.end(); it != e; ++it) {
586      (*it)->Act();
587    }
588
589  SM->ActN(5); // Throw in a few stores.
590}
591
592void IntroduceControlFlow(Function *F) {
593  std::set<Instruction*> BoolInst;
594  for (BasicBlock::iterator it = F->begin()->begin(),
595       e = F->begin()->end(); it != e; ++it) {
596    if (it->getType() == IntegerType::getInt1Ty(F->getContext()))
597      BoolInst.insert(it);
598  }
599
600  for (std::set<Instruction*>::iterator it = BoolInst.begin(),
601       e = BoolInst.end(); it != e; ++it) {
602    Instruction *Instr = *it;
603    BasicBlock *Curr = Instr->getParent();
604    BasicBlock::iterator Loc= Instr;
605    BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF");
606    Instr->moveBefore(Curr->getTerminator());
607    if (Curr != &F->getEntryBlock()) {
608      BranchInst::Create(Curr, Next, Instr, Curr->getTerminator());
609      Curr->getTerminator()->eraseFromParent();
610    }
611  }
612}
613
614int main(int argc, char **argv) {
615  // Init LLVM, call llvm_shutdown() on exit, parse args, etc.
616  llvm::PrettyStackTraceProgram X(argc, argv);
617  cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n");
618  llvm_shutdown_obj Y;
619
620  std::auto_ptr<Module> M(new Module("/tmp/autogen.bc", getGlobalContext()));
621  Function *F = GenEmptyFunction(M.get());
622  FillFunction(F);
623  IntroduceControlFlow(F);
624
625  // Figure out what stream we are supposed to write to...
626  OwningPtr<tool_output_file> Out;
627  // Default to standard output.
628  if (OutputFilename.empty())
629    OutputFilename = "-";
630
631  std::string ErrorInfo;
632  Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo,
633                                 raw_fd_ostream::F_Binary));
634  if (!ErrorInfo.empty()) {
635    errs() << ErrorInfo << '\n';
636    return 1;
637  }
638
639  PassManager Passes;
640  Passes.add(createVerifierPass());
641  Passes.add(createPrintModulePass(&Out->os()));
642  Passes.run(*M.get());
643  Out->keep();
644
645  return 0;
646}
647