1//===- CodeGenRegisters.h - Register and RegisterClass Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines structures to encapsulate information gleaned from the
11// target register and register class definitions.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H
16#define LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SparseBitVector.h"
23#include "llvm/CodeGen/MachineValueType.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/TableGen/Record.h"
26#include "llvm/TableGen/SetTheory.h"
27#include <cstdlib>
28#include <deque>
29#include <list>
30#include <map>
31#include <string>
32#include <vector>
33
34namespace llvm {
35  class CodeGenRegBank;
36  template <typename T, typename Vector, typename Set> class SetVector;
37
38  /// Used to encode a step in a register lane mask transformation.
39  /// Mask the bits specified in Mask, then rotate them Rol bits to the left
40  /// assuming a wraparound at 32bits.
41  struct MaskRolPair {
42    unsigned Mask;
43    uint8_t RotateLeft;
44    bool operator==(const MaskRolPair Other) const {
45      return Mask == Other.Mask && RotateLeft == Other.RotateLeft;
46    }
47    bool operator!=(const MaskRolPair Other) const {
48      return Mask != Other.Mask || RotateLeft != Other.RotateLeft;
49    }
50  };
51
52  /// CodeGenSubRegIndex - Represents a sub-register index.
53  class CodeGenSubRegIndex {
54    Record *const TheDef;
55    std::string Name;
56    std::string Namespace;
57
58  public:
59    uint16_t Size;
60    uint16_t Offset;
61    const unsigned EnumValue;
62    mutable unsigned LaneMask;
63    mutable SmallVector<MaskRolPair,1> CompositionLaneMaskTransform;
64
65    // Are all super-registers containing this SubRegIndex covered by their
66    // sub-registers?
67    bool AllSuperRegsCovered;
68
69    CodeGenSubRegIndex(Record *R, unsigned Enum);
70    CodeGenSubRegIndex(StringRef N, StringRef Nspace, unsigned Enum);
71
72    const std::string &getName() const { return Name; }
73    const std::string &getNamespace() const { return Namespace; }
74    std::string getQualifiedName() const;
75
76    // Map of composite subreg indices.
77    typedef std::map<CodeGenSubRegIndex *, CodeGenSubRegIndex *,
78                     deref<llvm::less>> CompMap;
79
80    // Returns the subreg index that results from composing this with Idx.
81    // Returns NULL if this and Idx don't compose.
82    CodeGenSubRegIndex *compose(CodeGenSubRegIndex *Idx) const {
83      CompMap::const_iterator I = Composed.find(Idx);
84      return I == Composed.end() ? nullptr : I->second;
85    }
86
87    // Add a composite subreg index: this+A = B.
88    // Return a conflicting composite, or NULL
89    CodeGenSubRegIndex *addComposite(CodeGenSubRegIndex *A,
90                                     CodeGenSubRegIndex *B) {
91      assert(A && B);
92      std::pair<CompMap::iterator, bool> Ins =
93        Composed.insert(std::make_pair(A, B));
94      // Synthetic subreg indices that aren't contiguous (for instance ARM
95      // register tuples) don't have a bit range, so it's OK to let
96      // B->Offset == -1. For the other cases, accumulate the offset and set
97      // the size here. Only do so if there is no offset yet though.
98      if ((Offset != (uint16_t)-1 && A->Offset != (uint16_t)-1) &&
99          (B->Offset == (uint16_t)-1)) {
100        B->Offset = Offset + A->Offset;
101        B->Size = A->Size;
102      }
103      return (Ins.second || Ins.first->second == B) ? nullptr
104                                                    : Ins.first->second;
105    }
106
107    // Update the composite maps of components specified in 'ComposedOf'.
108    void updateComponents(CodeGenRegBank&);
109
110    // Return the map of composites.
111    const CompMap &getComposites() const { return Composed; }
112
113    // Compute LaneMask from Composed. Return LaneMask.
114    unsigned computeLaneMask() const;
115
116  private:
117    CompMap Composed;
118  };
119
120  inline bool operator<(const CodeGenSubRegIndex &A,
121                        const CodeGenSubRegIndex &B) {
122    return A.EnumValue < B.EnumValue;
123  }
124
125  /// CodeGenRegister - Represents a register definition.
126  struct CodeGenRegister {
127    Record *TheDef;
128    unsigned EnumValue;
129    unsigned CostPerUse;
130    bool CoveredBySubRegs;
131    bool HasDisjunctSubRegs;
132
133    // Map SubRegIndex -> Register.
134    typedef std::map<CodeGenSubRegIndex *, CodeGenRegister *, deref<llvm::less>>
135        SubRegMap;
136
137    CodeGenRegister(Record *R, unsigned Enum);
138
139    const std::string &getName() const;
140
141    // Extract more information from TheDef. This is used to build an object
142    // graph after all CodeGenRegister objects have been created.
143    void buildObjectGraph(CodeGenRegBank&);
144
145    // Lazily compute a map of all sub-registers.
146    // This includes unique entries for all sub-sub-registers.
147    const SubRegMap &computeSubRegs(CodeGenRegBank&);
148
149    // Compute extra sub-registers by combining the existing sub-registers.
150    void computeSecondarySubRegs(CodeGenRegBank&);
151
152    // Add this as a super-register to all sub-registers after the sub-register
153    // graph has been built.
154    void computeSuperRegs(CodeGenRegBank&);
155
156    const SubRegMap &getSubRegs() const {
157      assert(SubRegsComplete && "Must precompute sub-registers");
158      return SubRegs;
159    }
160
161    // Add sub-registers to OSet following a pre-order defined by the .td file.
162    void addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
163                            CodeGenRegBank&) const;
164
165    // Return the sub-register index naming Reg as a sub-register of this
166    // register. Returns NULL if Reg is not a sub-register.
167    CodeGenSubRegIndex *getSubRegIndex(const CodeGenRegister *Reg) const {
168      return SubReg2Idx.lookup(Reg);
169    }
170
171    typedef std::vector<const CodeGenRegister*> SuperRegList;
172
173    // Get the list of super-registers in topological order, small to large.
174    // This is valid after computeSubRegs visits all registers during RegBank
175    // construction.
176    const SuperRegList &getSuperRegs() const {
177      assert(SubRegsComplete && "Must precompute sub-registers");
178      return SuperRegs;
179    }
180
181    // Get the list of ad hoc aliases. The graph is symmetric, so the list
182    // contains all registers in 'Aliases', and all registers that mention this
183    // register in 'Aliases'.
184    ArrayRef<CodeGenRegister*> getExplicitAliases() const {
185      return ExplicitAliases;
186    }
187
188    // Get the topological signature of this register. This is a small integer
189    // less than RegBank.getNumTopoSigs(). Registers with the same TopoSig have
190    // identical sub-register structure. That is, they support the same set of
191    // sub-register indices mapping to the same kind of sub-registers
192    // (TopoSig-wise).
193    unsigned getTopoSig() const {
194      assert(SuperRegsComplete && "TopoSigs haven't been computed yet.");
195      return TopoSig;
196    }
197
198    // List of register units in ascending order.
199    typedef SparseBitVector<> RegUnitList;
200    typedef SmallVector<unsigned, 16> RegUnitLaneMaskList;
201
202    // How many entries in RegUnitList are native?
203    RegUnitList NativeRegUnits;
204
205    // Get the list of register units.
206    // This is only valid after computeSubRegs() completes.
207    const RegUnitList &getRegUnits() const { return RegUnits; }
208
209    ArrayRef<unsigned> getRegUnitLaneMasks() const {
210      return makeArrayRef(RegUnitLaneMasks).slice(0, NativeRegUnits.count());
211    }
212
213    // Get the native register units. This is a prefix of getRegUnits().
214    RegUnitList getNativeRegUnits() const {
215      return NativeRegUnits;
216    }
217
218    void setRegUnitLaneMasks(const RegUnitLaneMaskList &LaneMasks) {
219      RegUnitLaneMasks = LaneMasks;
220    }
221
222    // Inherit register units from subregisters.
223    // Return true if the RegUnits changed.
224    bool inheritRegUnits(CodeGenRegBank &RegBank);
225
226    // Adopt a register unit for pressure tracking.
227    // A unit is adopted iff its unit number is >= NativeRegUnits.count().
228    void adoptRegUnit(unsigned RUID) { RegUnits.set(RUID); }
229
230    // Get the sum of this register's register unit weights.
231    unsigned getWeight(const CodeGenRegBank &RegBank) const;
232
233    // Canonically ordered set.
234    typedef std::vector<const CodeGenRegister*> Vec;
235
236  private:
237    bool SubRegsComplete;
238    bool SuperRegsComplete;
239    unsigned TopoSig;
240
241    // The sub-registers explicit in the .td file form a tree.
242    SmallVector<CodeGenSubRegIndex*, 8> ExplicitSubRegIndices;
243    SmallVector<CodeGenRegister*, 8> ExplicitSubRegs;
244
245    // Explicit ad hoc aliases, symmetrized to form an undirected graph.
246    SmallVector<CodeGenRegister*, 8> ExplicitAliases;
247
248    // Super-registers where this is the first explicit sub-register.
249    SuperRegList LeadingSuperRegs;
250
251    SubRegMap SubRegs;
252    SuperRegList SuperRegs;
253    DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*> SubReg2Idx;
254    RegUnitList RegUnits;
255    RegUnitLaneMaskList RegUnitLaneMasks;
256  };
257
258  inline bool operator<(const CodeGenRegister &A, const CodeGenRegister &B) {
259    return A.EnumValue < B.EnumValue;
260  }
261
262  inline bool operator==(const CodeGenRegister &A, const CodeGenRegister &B) {
263    return A.EnumValue == B.EnumValue;
264  }
265
266  class CodeGenRegisterClass {
267    CodeGenRegister::Vec Members;
268    // Allocation orders. Order[0] always contains all registers in Members.
269    std::vector<SmallVector<Record*, 16> > Orders;
270    // Bit mask of sub-classes including this, indexed by their EnumValue.
271    BitVector SubClasses;
272    // List of super-classes, topologocally ordered to have the larger classes
273    // first.  This is the same as sorting by EnumValue.
274    SmallVector<CodeGenRegisterClass*, 4> SuperClasses;
275    Record *TheDef;
276    std::string Name;
277
278    // For a synthesized class, inherit missing properties from the nearest
279    // super-class.
280    void inheritProperties(CodeGenRegBank&);
281
282    // Map SubRegIndex -> sub-class.  This is the largest sub-class where all
283    // registers have a SubRegIndex sub-register.
284    DenseMap<const CodeGenSubRegIndex *, CodeGenRegisterClass *>
285        SubClassWithSubReg;
286
287    // Map SubRegIndex -> set of super-reg classes.  This is all register
288    // classes SuperRC such that:
289    //
290    //   R:SubRegIndex in this RC for all R in SuperRC.
291    //
292    DenseMap<const CodeGenSubRegIndex *, SmallPtrSet<CodeGenRegisterClass *, 8>>
293        SuperRegClasses;
294
295    // Bit vector of TopoSigs for the registers in this class. This will be
296    // very sparse on regular architectures.
297    BitVector TopoSigs;
298
299  public:
300    unsigned EnumValue;
301    std::string Namespace;
302    SmallVector<MVT::SimpleValueType, 4> VTs;
303    unsigned SpillSize;
304    unsigned SpillAlignment;
305    int CopyCost;
306    bool Allocatable;
307    std::string AltOrderSelect;
308    uint8_t AllocationPriority;
309    /// Contains the combination of the lane masks of all subregisters.
310    unsigned LaneMask;
311    /// True if there are at least 2 subregisters which do not interfere.
312    bool HasDisjunctSubRegs;
313    bool CoveredBySubRegs;
314
315    // Return the Record that defined this class, or NULL if the class was
316    // created by TableGen.
317    Record *getDef() const { return TheDef; }
318
319    const std::string &getName() const { return Name; }
320    std::string getQualifiedName() const;
321    ArrayRef<MVT::SimpleValueType> getValueTypes() const {return VTs;}
322    unsigned getNumValueTypes() const { return VTs.size(); }
323
324    MVT::SimpleValueType getValueTypeNum(unsigned VTNum) const {
325      if (VTNum < VTs.size())
326        return VTs[VTNum];
327      llvm_unreachable("VTNum greater than number of ValueTypes in RegClass!");
328    }
329
330    // Return true if this this class contains the register.
331    bool contains(const CodeGenRegister*) const;
332
333    // Returns true if RC is a subclass.
334    // RC is a sub-class of this class if it is a valid replacement for any
335    // instruction operand where a register of this classis required. It must
336    // satisfy these conditions:
337    //
338    // 1. All RC registers are also in this.
339    // 2. The RC spill size must not be smaller than our spill size.
340    // 3. RC spill alignment must be compatible with ours.
341    //
342    bool hasSubClass(const CodeGenRegisterClass *RC) const {
343      return SubClasses.test(RC->EnumValue);
344    }
345
346    // getSubClassWithSubReg - Returns the largest sub-class where all
347    // registers have a SubIdx sub-register.
348    CodeGenRegisterClass *
349    getSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx) const {
350      return SubClassWithSubReg.lookup(SubIdx);
351    }
352
353    void setSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx,
354                               CodeGenRegisterClass *SubRC) {
355      SubClassWithSubReg[SubIdx] = SubRC;
356    }
357
358    // getSuperRegClasses - Returns a bit vector of all register classes
359    // containing only SubIdx super-registers of this class.
360    void getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
361                            BitVector &Out) const;
362
363    // addSuperRegClass - Add a class containing only SudIdx super-registers.
364    void addSuperRegClass(CodeGenSubRegIndex *SubIdx,
365                          CodeGenRegisterClass *SuperRC) {
366      SuperRegClasses[SubIdx].insert(SuperRC);
367    }
368
369    // getSubClasses - Returns a constant BitVector of subclasses indexed by
370    // EnumValue.
371    // The SubClasses vector includes an entry for this class.
372    const BitVector &getSubClasses() const { return SubClasses; }
373
374    // getSuperClasses - Returns a list of super classes ordered by EnumValue.
375    // The array does not include an entry for this class.
376    ArrayRef<CodeGenRegisterClass*> getSuperClasses() const {
377      return SuperClasses;
378    }
379
380    // Returns an ordered list of class members.
381    // The order of registers is the same as in the .td file.
382    // No = 0 is the default allocation order, No = 1 is the first alternative.
383    ArrayRef<Record*> getOrder(unsigned No = 0) const {
384        return Orders[No];
385    }
386
387    // Return the total number of allocation orders available.
388    unsigned getNumOrders() const { return Orders.size(); }
389
390    // Get the set of registers.  This set contains the same registers as
391    // getOrder(0).
392    const CodeGenRegister::Vec &getMembers() const { return Members; }
393
394    // Get a bit vector of TopoSigs present in this register class.
395    const BitVector &getTopoSigs() const { return TopoSigs; }
396
397    // Populate a unique sorted list of units from a register set.
398    void buildRegUnitSet(std::vector<unsigned> &RegUnits) const;
399
400    CodeGenRegisterClass(CodeGenRegBank&, Record *R);
401
402    // A key representing the parts of a register class used for forming
403    // sub-classes.  Note the ordering provided by this key is not the same as
404    // the topological order used for the EnumValues.
405    struct Key {
406      const CodeGenRegister::Vec *Members;
407      unsigned SpillSize;
408      unsigned SpillAlignment;
409
410      Key(const CodeGenRegister::Vec *M, unsigned S = 0, unsigned A = 0)
411        : Members(M), SpillSize(S), SpillAlignment(A) {}
412
413      Key(const CodeGenRegisterClass &RC)
414        : Members(&RC.getMembers()),
415          SpillSize(RC.SpillSize),
416          SpillAlignment(RC.SpillAlignment) {}
417
418      // Lexicographical order of (Members, SpillSize, SpillAlignment).
419      bool operator<(const Key&) const;
420    };
421
422    // Create a non-user defined register class.
423    CodeGenRegisterClass(CodeGenRegBank&, StringRef Name, Key Props);
424
425    // Called by CodeGenRegBank::CodeGenRegBank().
426    static void computeSubClasses(CodeGenRegBank&);
427  };
428
429  // Register units are used to model interference and register pressure.
430  // Every register is assigned one or more register units such that two
431  // registers overlap if and only if they have a register unit in common.
432  //
433  // Normally, one register unit is created per leaf register. Non-leaf
434  // registers inherit the units of their sub-registers.
435  struct RegUnit {
436    // Weight assigned to this RegUnit for estimating register pressure.
437    // This is useful when equalizing weights in register classes with mixed
438    // register topologies.
439    unsigned Weight;
440
441    // Each native RegUnit corresponds to one or two root registers. The full
442    // set of registers containing this unit can be computed as the union of
443    // these two registers and their super-registers.
444    const CodeGenRegister *Roots[2];
445
446    // Index into RegClassUnitSets where we can find the list of UnitSets that
447    // contain this unit.
448    unsigned RegClassUnitSetsIdx;
449
450    RegUnit() : Weight(0), RegClassUnitSetsIdx(0) {
451      Roots[0] = Roots[1] = nullptr;
452    }
453
454    ArrayRef<const CodeGenRegister*> getRoots() const {
455      assert(!(Roots[1] && !Roots[0]) && "Invalid roots array");
456      return makeArrayRef(Roots, !!Roots[0] + !!Roots[1]);
457    }
458  };
459
460  // Each RegUnitSet is a sorted vector with a name.
461  struct RegUnitSet {
462    typedef std::vector<unsigned>::const_iterator iterator;
463
464    std::string Name;
465    std::vector<unsigned> Units;
466    unsigned Weight; // Cache the sum of all unit weights.
467    unsigned Order;  // Cache the sort key.
468
469    RegUnitSet() : Weight(0), Order(0) {}
470  };
471
472  // Base vector for identifying TopoSigs. The contents uniquely identify a
473  // TopoSig, only computeSuperRegs needs to know how.
474  typedef SmallVector<unsigned, 16> TopoSigId;
475
476  // CodeGenRegBank - Represent a target's registers and the relations between
477  // them.
478  class CodeGenRegBank {
479    SetTheory Sets;
480
481    std::deque<CodeGenSubRegIndex> SubRegIndices;
482    DenseMap<Record*, CodeGenSubRegIndex*> Def2SubRegIdx;
483
484    CodeGenSubRegIndex *createSubRegIndex(StringRef Name, StringRef NameSpace);
485
486    typedef std::map<SmallVector<CodeGenSubRegIndex*, 8>,
487                     CodeGenSubRegIndex*> ConcatIdxMap;
488    ConcatIdxMap ConcatIdx;
489
490    // Registers.
491    std::deque<CodeGenRegister> Registers;
492    StringMap<CodeGenRegister*> RegistersByName;
493    DenseMap<Record*, CodeGenRegister*> Def2Reg;
494    unsigned NumNativeRegUnits;
495
496    std::map<TopoSigId, unsigned> TopoSigs;
497
498    // Includes native (0..NumNativeRegUnits-1) and adopted register units.
499    SmallVector<RegUnit, 8> RegUnits;
500
501    // Register classes.
502    std::list<CodeGenRegisterClass> RegClasses;
503    DenseMap<Record*, CodeGenRegisterClass*> Def2RC;
504    typedef std::map<CodeGenRegisterClass::Key, CodeGenRegisterClass*> RCKeyMap;
505    RCKeyMap Key2RC;
506
507    // Remember each unique set of register units. Initially, this contains a
508    // unique set for each register class. Simliar sets are coalesced with
509    // pruneUnitSets and new supersets are inferred during computeRegUnitSets.
510    std::vector<RegUnitSet> RegUnitSets;
511
512    // Map RegisterClass index to the index of the RegUnitSet that contains the
513    // class's units and any inferred RegUnit supersets.
514    //
515    // NOTE: This could grow beyond the number of register classes when we map
516    // register units to lists of unit sets. If the list of unit sets does not
517    // already exist for a register class, we create a new entry in this vector.
518    std::vector<std::vector<unsigned> > RegClassUnitSets;
519
520    // Give each register unit set an order based on sorting criteria.
521    std::vector<unsigned> RegUnitSetOrder;
522
523    // Add RC to *2RC maps.
524    void addToMaps(CodeGenRegisterClass*);
525
526    // Create a synthetic sub-class if it is missing.
527    CodeGenRegisterClass *getOrCreateSubClass(const CodeGenRegisterClass *RC,
528                                              const CodeGenRegister::Vec *Membs,
529                                              StringRef Name);
530
531    // Infer missing register classes.
532    void computeInferredRegisterClasses();
533    void inferCommonSubClass(CodeGenRegisterClass *RC);
534    void inferSubClassWithSubReg(CodeGenRegisterClass *RC);
535    void inferMatchingSuperRegClass(CodeGenRegisterClass *RC) {
536      inferMatchingSuperRegClass(RC, RegClasses.begin());
537    }
538
539    void inferMatchingSuperRegClass(
540        CodeGenRegisterClass *RC,
541        std::list<CodeGenRegisterClass>::iterator FirstSubRegRC);
542
543    // Iteratively prune unit sets.
544    void pruneUnitSets();
545
546    // Compute a weight for each register unit created during getSubRegs.
547    void computeRegUnitWeights();
548
549    // Create a RegUnitSet for each RegClass and infer superclasses.
550    void computeRegUnitSets();
551
552    // Populate the Composite map from sub-register relationships.
553    void computeComposites();
554
555    // Compute a lane mask for each sub-register index.
556    void computeSubRegLaneMasks();
557
558    /// Computes a lane mask for each register unit enumerated by a physical
559    /// register.
560    void computeRegUnitLaneMasks();
561
562  public:
563    CodeGenRegBank(RecordKeeper&);
564
565    SetTheory &getSets() { return Sets; }
566
567    // Sub-register indices. The first NumNamedIndices are defined by the user
568    // in the .td files. The rest are synthesized such that all sub-registers
569    // have a unique name.
570    const std::deque<CodeGenSubRegIndex> &getSubRegIndices() const {
571      return SubRegIndices;
572    }
573
574    // Find a SubRegIndex form its Record def.
575    CodeGenSubRegIndex *getSubRegIdx(Record*);
576
577    // Find or create a sub-register index representing the A+B composition.
578    CodeGenSubRegIndex *getCompositeSubRegIndex(CodeGenSubRegIndex *A,
579                                                CodeGenSubRegIndex *B);
580
581    // Find or create a sub-register index representing the concatenation of
582    // non-overlapping sibling indices.
583    CodeGenSubRegIndex *
584      getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8>&);
585
586    void
587    addConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts,
588                         CodeGenSubRegIndex *Idx) {
589      ConcatIdx.insert(std::make_pair(Parts, Idx));
590    }
591
592    const std::deque<CodeGenRegister> &getRegisters() { return Registers; }
593    const StringMap<CodeGenRegister*> &getRegistersByName() {
594      return RegistersByName;
595    }
596
597    // Find a register from its Record def.
598    CodeGenRegister *getReg(Record*);
599
600    // Get a Register's index into the Registers array.
601    unsigned getRegIndex(const CodeGenRegister *Reg) const {
602      return Reg->EnumValue - 1;
603    }
604
605    // Return the number of allocated TopoSigs. The first TopoSig representing
606    // leaf registers is allocated number 0.
607    unsigned getNumTopoSigs() const {
608      return TopoSigs.size();
609    }
610
611    // Find or create a TopoSig for the given TopoSigId.
612    // This function is only for use by CodeGenRegister::computeSuperRegs().
613    // Others should simply use Reg->getTopoSig().
614    unsigned getTopoSig(const TopoSigId &Id) {
615      return TopoSigs.insert(std::make_pair(Id, TopoSigs.size())).first->second;
616    }
617
618    // Create a native register unit that is associated with one or two root
619    // registers.
620    unsigned newRegUnit(CodeGenRegister *R0, CodeGenRegister *R1 = nullptr) {
621      RegUnits.resize(RegUnits.size() + 1);
622      RegUnits.back().Roots[0] = R0;
623      RegUnits.back().Roots[1] = R1;
624      return RegUnits.size() - 1;
625    }
626
627    // Create a new non-native register unit that can be adopted by a register
628    // to increase its pressure. Note that NumNativeRegUnits is not increased.
629    unsigned newRegUnit(unsigned Weight) {
630      RegUnits.resize(RegUnits.size() + 1);
631      RegUnits.back().Weight = Weight;
632      return RegUnits.size() - 1;
633    }
634
635    // Native units are the singular unit of a leaf register. Register aliasing
636    // is completely characterized by native units. Adopted units exist to give
637    // register additional weight but don't affect aliasing.
638    bool isNativeUnit(unsigned RUID) {
639      return RUID < NumNativeRegUnits;
640    }
641
642    unsigned getNumNativeRegUnits() const {
643      return NumNativeRegUnits;
644    }
645
646    RegUnit &getRegUnit(unsigned RUID) { return RegUnits[RUID]; }
647    const RegUnit &getRegUnit(unsigned RUID) const { return RegUnits[RUID]; }
648
649    std::list<CodeGenRegisterClass> &getRegClasses() { return RegClasses; }
650
651    const std::list<CodeGenRegisterClass> &getRegClasses() const {
652      return RegClasses;
653    }
654
655    // Find a register class from its def.
656    CodeGenRegisterClass *getRegClass(Record*);
657
658    /// getRegisterClassForRegister - Find the register class that contains the
659    /// specified physical register.  If the register is not in a register
660    /// class, return null. If the register is in multiple classes, and the
661    /// classes have a superset-subset relationship and the same set of types,
662    /// return the superclass.  Otherwise return null.
663    const CodeGenRegisterClass* getRegClassForRegister(Record *R);
664
665    // Get the sum of unit weights.
666    unsigned getRegUnitSetWeight(const std::vector<unsigned> &Units) const {
667      unsigned Weight = 0;
668      for (std::vector<unsigned>::const_iterator
669             I = Units.begin(), E = Units.end(); I != E; ++I)
670        Weight += getRegUnit(*I).Weight;
671      return Weight;
672    }
673
674    unsigned getRegSetIDAt(unsigned Order) const {
675      return RegUnitSetOrder[Order];
676    }
677    const RegUnitSet &getRegSetAt(unsigned Order) const {
678      return RegUnitSets[RegUnitSetOrder[Order]];
679    }
680
681    // Increase a RegUnitWeight.
682    void increaseRegUnitWeight(unsigned RUID, unsigned Inc) {
683      getRegUnit(RUID).Weight += Inc;
684    }
685
686    // Get the number of register pressure dimensions.
687    unsigned getNumRegPressureSets() const { return RegUnitSets.size(); }
688
689    // Get a set of register unit IDs for a given dimension of pressure.
690    const RegUnitSet &getRegPressureSet(unsigned Idx) const {
691      return RegUnitSets[Idx];
692    }
693
694    // The number of pressure set lists may be larget than the number of
695    // register classes if some register units appeared in a list of sets that
696    // did not correspond to an existing register class.
697    unsigned getNumRegClassPressureSetLists() const {
698      return RegClassUnitSets.size();
699    }
700
701    // Get a list of pressure set IDs for a register class. Liveness of a
702    // register in this class impacts each pressure set in this list by the
703    // weight of the register. An exact solution requires all registers in a
704    // class to have the same class, but it is not strictly guaranteed.
705    ArrayRef<unsigned> getRCPressureSetIDs(unsigned RCIdx) const {
706      return RegClassUnitSets[RCIdx];
707    }
708
709    // Computed derived records such as missing sub-register indices.
710    void computeDerivedInfo();
711
712    // Compute the set of registers completely covered by the registers in Regs.
713    // The returned BitVector will have a bit set for each register in Regs,
714    // all sub-registers, and all super-registers that are covered by the
715    // registers in Regs.
716    //
717    // This is used to compute the mask of call-preserved registers from a list
718    // of callee-saves.
719    BitVector computeCoveredRegisters(ArrayRef<Record*> Regs);
720
721    // Bit mask of lanes that cover their registers. A sub-register index whose
722    // LaneMask is contained in CoveringLanes will be completely covered by
723    // another sub-register with the same or larger lane mask.
724    unsigned CoveringLanes;
725  };
726}
727
728#endif
729