brw_vec4.cpp revision ae8b066da5862b4cfc510b3a9a0e1273f9f6edd4
1/*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "brw_vec4.h"
25#include "brw_cfg.h"
26#include "brw_vs.h"
27#include "brw_dead_control_flow.h"
28
29extern "C" {
30#include "main/macros.h"
31#include "main/shaderobj.h"
32#include "program/prog_print.h"
33#include "program/prog_parameter.h"
34}
35
36#define MAX_INSTRUCTION (1 << 30)
37
38using namespace brw;
39
40namespace brw {
41
42/**
43 * Common helper for constructing swizzles.  When only a subset of
44 * channels of a vec4 are used, we don't want to reference the other
45 * channels, as that will tell optimization passes that those other
46 * channels are used.
47 */
48unsigned
49swizzle_for_size(int size)
50{
51   static const unsigned size_swizzles[4] = {
52      BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
53      BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
54      BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
55      BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
56   };
57
58   assert((size >= 1) && (size <= 4));
59   return size_swizzles[size - 1];
60}
61
62void
63src_reg::init()
64{
65   memset(this, 0, sizeof(*this));
66
67   this->file = BAD_FILE;
68}
69
70src_reg::src_reg(register_file file, int reg, const glsl_type *type)
71{
72   init();
73
74   this->file = file;
75   this->reg = reg;
76   if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77      this->swizzle = swizzle_for_size(type->vector_elements);
78   else
79      this->swizzle = BRW_SWIZZLE_XYZW;
80}
81
82/** Generic unset register constructor. */
83src_reg::src_reg()
84{
85   init();
86}
87
88src_reg::src_reg(float f)
89{
90   init();
91
92   this->file = IMM;
93   this->type = BRW_REGISTER_TYPE_F;
94   this->imm.f = f;
95}
96
97src_reg::src_reg(uint32_t u)
98{
99   init();
100
101   this->file = IMM;
102   this->type = BRW_REGISTER_TYPE_UD;
103   this->imm.u = u;
104}
105
106src_reg::src_reg(int32_t i)
107{
108   init();
109
110   this->file = IMM;
111   this->type = BRW_REGISTER_TYPE_D;
112   this->imm.i = i;
113}
114
115src_reg::src_reg(struct brw_reg reg)
116{
117   init();
118
119   this->file = HW_REG;
120   this->fixed_hw_reg = reg;
121}
122
123src_reg::src_reg(dst_reg reg)
124{
125   init();
126
127   this->file = reg.file;
128   this->reg = reg.reg;
129   this->reg_offset = reg.reg_offset;
130   this->type = reg.type;
131   this->reladdr = reg.reladdr;
132   this->fixed_hw_reg = reg.fixed_hw_reg;
133
134   int swizzles[4];
135   int next_chan = 0;
136   int last = 0;
137
138   for (int i = 0; i < 4; i++) {
139      if (!(reg.writemask & (1 << i)))
140         continue;
141
142      swizzles[next_chan++] = last = i;
143   }
144
145   for (; next_chan < 4; next_chan++) {
146      swizzles[next_chan] = last;
147   }
148
149   this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
150                                swizzles[2], swizzles[3]);
151}
152
153void
154dst_reg::init()
155{
156   memset(this, 0, sizeof(*this));
157   this->file = BAD_FILE;
158   this->writemask = WRITEMASK_XYZW;
159}
160
161dst_reg::dst_reg()
162{
163   init();
164}
165
166dst_reg::dst_reg(register_file file, int reg)
167{
168   init();
169
170   this->file = file;
171   this->reg = reg;
172}
173
174dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
175                 int writemask)
176{
177   init();
178
179   this->file = file;
180   this->reg = reg;
181   this->type = brw_type_for_base_type(type);
182   this->writemask = writemask;
183}
184
185dst_reg::dst_reg(struct brw_reg reg)
186{
187   init();
188
189   this->file = HW_REG;
190   this->fixed_hw_reg = reg;
191}
192
193dst_reg::dst_reg(src_reg reg)
194{
195   init();
196
197   this->file = reg.file;
198   this->reg = reg.reg;
199   this->reg_offset = reg.reg_offset;
200   this->type = reg.type;
201   /* How should we do writemasking when converting from a src_reg?  It seems
202    * pretty obvious that for src.xxxx the caller wants to write to src.x, but
203    * what about for src.wx?  Just special-case src.xxxx for now.
204    */
205   if (reg.swizzle == BRW_SWIZZLE_XXXX)
206      this->writemask = WRITEMASK_X;
207   else
208      this->writemask = WRITEMASK_XYZW;
209   this->reladdr = reg.reladdr;
210   this->fixed_hw_reg = reg.fixed_hw_reg;
211}
212
213bool
214vec4_instruction::is_send_from_grf()
215{
216   switch (opcode) {
217   case SHADER_OPCODE_SHADER_TIME_ADD:
218   case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
219      return true;
220   default:
221      return false;
222   }
223}
224
225bool
226vec4_visitor::can_do_source_mods(vec4_instruction *inst)
227{
228   if (brw->gen == 6 && inst->is_math())
229      return false;
230
231   if (inst->is_send_from_grf())
232      return false;
233
234   if (!inst->can_do_source_mods())
235      return false;
236
237   return true;
238}
239
240/**
241 * Returns how many MRFs an opcode will write over.
242 *
243 * Note that this is not the 0 or 1 implied writes in an actual gen
244 * instruction -- the generate_* functions generate additional MOVs
245 * for setup.
246 */
247int
248vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
249{
250   if (inst->mlen == 0)
251      return 0;
252
253   switch (inst->opcode) {
254   case SHADER_OPCODE_RCP:
255   case SHADER_OPCODE_RSQ:
256   case SHADER_OPCODE_SQRT:
257   case SHADER_OPCODE_EXP2:
258   case SHADER_OPCODE_LOG2:
259   case SHADER_OPCODE_SIN:
260   case SHADER_OPCODE_COS:
261      return 1;
262   case SHADER_OPCODE_INT_QUOTIENT:
263   case SHADER_OPCODE_INT_REMAINDER:
264   case SHADER_OPCODE_POW:
265      return 2;
266   case VS_OPCODE_URB_WRITE:
267      return 1;
268   case VS_OPCODE_PULL_CONSTANT_LOAD:
269      return 2;
270   case SHADER_OPCODE_GEN4_SCRATCH_READ:
271      return 2;
272   case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
273      return 3;
274   case GS_OPCODE_URB_WRITE:
275   case GS_OPCODE_THREAD_END:
276      return 0;
277   case SHADER_OPCODE_SHADER_TIME_ADD:
278      return 0;
279   case SHADER_OPCODE_TEX:
280   case SHADER_OPCODE_TXL:
281   case SHADER_OPCODE_TXD:
282   case SHADER_OPCODE_TXF:
283   case SHADER_OPCODE_TXF_CMS:
284   case SHADER_OPCODE_TXF_MCS:
285   case SHADER_OPCODE_TXS:
286   case SHADER_OPCODE_TG4:
287   case SHADER_OPCODE_TG4_OFFSET:
288      return inst->header_present ? 1 : 0;
289   case SHADER_OPCODE_UNTYPED_ATOMIC:
290   case SHADER_OPCODE_UNTYPED_SURFACE_READ:
291      return 0;
292   default:
293      assert(!"not reached");
294      return inst->mlen;
295   }
296}
297
298bool
299src_reg::equals(src_reg *r)
300{
301   return (file == r->file &&
302	   reg == r->reg &&
303	   reg_offset == r->reg_offset &&
304	   type == r->type &&
305	   negate == r->negate &&
306	   abs == r->abs &&
307	   swizzle == r->swizzle &&
308	   !reladdr && !r->reladdr &&
309	   memcmp(&fixed_hw_reg, &r->fixed_hw_reg,
310		  sizeof(fixed_hw_reg)) == 0 &&
311	   imm.u == r->imm.u);
312}
313
314/**
315 * Must be called after calculate_live_intervales() to remove unused
316 * writes to registers -- register allocation will fail otherwise
317 * because something deffed but not used won't be considered to
318 * interfere with other regs.
319 */
320bool
321vec4_visitor::dead_code_eliminate()
322{
323   bool progress = false;
324   int pc = 0;
325
326   calculate_live_intervals();
327
328   foreach_list_safe(node, &this->instructions) {
329      vec4_instruction *inst = (vec4_instruction *)node;
330
331      if (inst->dst.file == GRF && !inst->has_side_effects()) {
332         assert(this->virtual_grf_end[inst->dst.reg] >= pc);
333         if (this->virtual_grf_end[inst->dst.reg] == pc) {
334            /* Don't dead code eliminate instructions that write to the
335             * accumulator as a side-effect. Instead just set the destination
336             * to the null register to free it.
337             */
338            switch (inst->opcode) {
339            case BRW_OPCODE_ADDC:
340            case BRW_OPCODE_SUBB:
341            case BRW_OPCODE_MACH:
342               inst->dst = dst_reg(retype(brw_null_reg(), inst->dst.type));
343               break;
344            default:
345               inst->remove();
346               break;
347            }
348            progress = true;
349         }
350      }
351
352      pc++;
353   }
354
355   if (progress)
356      invalidate_live_intervals();
357
358   return progress;
359}
360
361void
362vec4_visitor::split_uniform_registers()
363{
364   /* Prior to this, uniforms have been in an array sized according to
365    * the number of vector uniforms present, sparsely filled (so an
366    * aggregate results in reg indices being skipped over).  Now we're
367    * going to cut those aggregates up so each .reg index is one
368    * vector.  The goal is to make elimination of unused uniform
369    * components easier later.
370    */
371   foreach_list(node, &this->instructions) {
372      vec4_instruction *inst = (vec4_instruction *)node;
373
374      for (int i = 0 ; i < 3; i++) {
375	 if (inst->src[i].file != UNIFORM)
376	    continue;
377
378	 assert(!inst->src[i].reladdr);
379
380	 inst->src[i].reg += inst->src[i].reg_offset;
381	 inst->src[i].reg_offset = 0;
382      }
383   }
384
385   /* Update that everything is now vector-sized. */
386   for (int i = 0; i < this->uniforms; i++) {
387      this->uniform_size[i] = 1;
388   }
389}
390
391void
392vec4_visitor::pack_uniform_registers()
393{
394   bool uniform_used[this->uniforms];
395   int new_loc[this->uniforms];
396   int new_chan[this->uniforms];
397
398   memset(uniform_used, 0, sizeof(uniform_used));
399   memset(new_loc, 0, sizeof(new_loc));
400   memset(new_chan, 0, sizeof(new_chan));
401
402   /* Find which uniform vectors are actually used by the program.  We
403    * expect unused vector elements when we've moved array access out
404    * to pull constants, and from some GLSL code generators like wine.
405    */
406   foreach_list(node, &this->instructions) {
407      vec4_instruction *inst = (vec4_instruction *)node;
408
409      for (int i = 0 ; i < 3; i++) {
410	 if (inst->src[i].file != UNIFORM)
411	    continue;
412
413	 uniform_used[inst->src[i].reg] = true;
414      }
415   }
416
417   int new_uniform_count = 0;
418
419   /* Now, figure out a packing of the live uniform vectors into our
420    * push constants.
421    */
422   for (int src = 0; src < uniforms; src++) {
423      int size = this->uniform_vector_size[src];
424
425      if (!uniform_used[src]) {
426	 this->uniform_vector_size[src] = 0;
427	 continue;
428      }
429
430      int dst;
431      /* Find the lowest place we can slot this uniform in. */
432      for (dst = 0; dst < src; dst++) {
433	 if (this->uniform_vector_size[dst] + size <= 4)
434	    break;
435      }
436
437      if (src == dst) {
438	 new_loc[src] = dst;
439	 new_chan[src] = 0;
440      } else {
441	 new_loc[src] = dst;
442	 new_chan[src] = this->uniform_vector_size[dst];
443
444	 /* Move the references to the data */
445	 for (int j = 0; j < size; j++) {
446	    stage_prog_data->param[dst * 4 + new_chan[src] + j] =
447	       stage_prog_data->param[src * 4 + j];
448	 }
449
450	 this->uniform_vector_size[dst] += size;
451	 this->uniform_vector_size[src] = 0;
452      }
453
454      new_uniform_count = MAX2(new_uniform_count, dst + 1);
455   }
456
457   this->uniforms = new_uniform_count;
458
459   /* Now, update the instructions for our repacked uniforms. */
460   foreach_list(node, &this->instructions) {
461      vec4_instruction *inst = (vec4_instruction *)node;
462
463      for (int i = 0 ; i < 3; i++) {
464	 int src = inst->src[i].reg;
465
466	 if (inst->src[i].file != UNIFORM)
467	    continue;
468
469	 inst->src[i].reg = new_loc[src];
470
471	 int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
472	 int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
473	 int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
474	 int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
475	 inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
476      }
477   }
478}
479
480bool
481src_reg::is_zero() const
482{
483   if (file != IMM)
484      return false;
485
486   if (type == BRW_REGISTER_TYPE_F) {
487      return imm.f == 0.0;
488   } else {
489      return imm.i == 0;
490   }
491}
492
493bool
494src_reg::is_one() const
495{
496   if (file != IMM)
497      return false;
498
499   if (type == BRW_REGISTER_TYPE_F) {
500      return imm.f == 1.0;
501   } else {
502      return imm.i == 1;
503   }
504}
505
506/**
507 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
508 *
509 * While GLSL IR also performs this optimization, we end up with it in
510 * our instruction stream for a couple of reasons.  One is that we
511 * sometimes generate silly instructions, for example in array access
512 * where we'll generate "ADD offset, index, base" even if base is 0.
513 * The other is that GLSL IR's constant propagation doesn't track the
514 * components of aggregates, so some VS patterns (initialize matrix to
515 * 0, accumulate in vertex blending factors) end up breaking down to
516 * instructions involving 0.
517 */
518bool
519vec4_visitor::opt_algebraic()
520{
521   bool progress = false;
522
523   foreach_list(node, &this->instructions) {
524      vec4_instruction *inst = (vec4_instruction *)node;
525
526      switch (inst->opcode) {
527      case BRW_OPCODE_ADD:
528	 if (inst->src[1].is_zero()) {
529	    inst->opcode = BRW_OPCODE_MOV;
530	    inst->src[1] = src_reg();
531	    progress = true;
532	 }
533	 break;
534
535      case BRW_OPCODE_MUL:
536	 if (inst->src[1].is_zero()) {
537	    inst->opcode = BRW_OPCODE_MOV;
538	    switch (inst->src[0].type) {
539	    case BRW_REGISTER_TYPE_F:
540	       inst->src[0] = src_reg(0.0f);
541	       break;
542	    case BRW_REGISTER_TYPE_D:
543	       inst->src[0] = src_reg(0);
544	       break;
545	    case BRW_REGISTER_TYPE_UD:
546	       inst->src[0] = src_reg(0u);
547	       break;
548	    default:
549	       assert(!"not reached");
550	       inst->src[0] = src_reg(0.0f);
551	       break;
552	    }
553	    inst->src[1] = src_reg();
554	    progress = true;
555	 } else if (inst->src[1].is_one()) {
556	    inst->opcode = BRW_OPCODE_MOV;
557	    inst->src[1] = src_reg();
558	    progress = true;
559	 }
560	 break;
561      default:
562	 break;
563      }
564   }
565
566   if (progress)
567      invalidate_live_intervals();
568
569   return progress;
570}
571
572/**
573 * Only a limited number of hardware registers may be used for push
574 * constants, so this turns access to the overflowed constants into
575 * pull constants.
576 */
577void
578vec4_visitor::move_push_constants_to_pull_constants()
579{
580   int pull_constant_loc[this->uniforms];
581
582   /* Only allow 32 registers (256 uniform components) as push constants,
583    * which is the limit on gen6.
584    */
585   int max_uniform_components = 32 * 8;
586   if (this->uniforms * 4 <= max_uniform_components)
587      return;
588
589   /* Make some sort of choice as to which uniforms get sent to pull
590    * constants.  We could potentially do something clever here like
591    * look for the most infrequently used uniform vec4s, but leave
592    * that for later.
593    */
594   for (int i = 0; i < this->uniforms * 4; i += 4) {
595      pull_constant_loc[i / 4] = -1;
596
597      if (i >= max_uniform_components) {
598	 const float **values = &stage_prog_data->param[i];
599
600	 /* Try to find an existing copy of this uniform in the pull
601	  * constants if it was part of an array access already.
602	  */
603	 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
604	    int matches;
605
606	    for (matches = 0; matches < 4; matches++) {
607	       if (stage_prog_data->pull_param[j + matches] != values[matches])
608		  break;
609	    }
610
611	    if (matches == 4) {
612	       pull_constant_loc[i / 4] = j / 4;
613	       break;
614	    }
615	 }
616
617	 if (pull_constant_loc[i / 4] == -1) {
618	    assert(stage_prog_data->nr_pull_params % 4 == 0);
619	    pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
620
621	    for (int j = 0; j < 4; j++) {
622	       stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
623                  values[j];
624	    }
625	 }
626      }
627   }
628
629   /* Now actually rewrite usage of the things we've moved to pull
630    * constants.
631    */
632   foreach_list_safe(node, &this->instructions) {
633      vec4_instruction *inst = (vec4_instruction *)node;
634
635      for (int i = 0 ; i < 3; i++) {
636	 if (inst->src[i].file != UNIFORM ||
637	     pull_constant_loc[inst->src[i].reg] == -1)
638	    continue;
639
640	 int uniform = inst->src[i].reg;
641
642	 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
643
644	 emit_pull_constant_load(inst, temp, inst->src[i],
645				 pull_constant_loc[uniform]);
646
647	 inst->src[i].file = temp.file;
648	 inst->src[i].reg = temp.reg;
649	 inst->src[i].reg_offset = temp.reg_offset;
650	 inst->src[i].reladdr = NULL;
651      }
652   }
653
654   /* Repack push constants to remove the now-unused ones. */
655   pack_uniform_registers();
656}
657
658/**
659 * Sets the dependency control fields on instructions after register
660 * allocation and before the generator is run.
661 *
662 * When you have a sequence of instructions like:
663 *
664 * DP4 temp.x vertex uniform[0]
665 * DP4 temp.y vertex uniform[0]
666 * DP4 temp.z vertex uniform[0]
667 * DP4 temp.w vertex uniform[0]
668 *
669 * The hardware doesn't know that it can actually run the later instructions
670 * while the previous ones are in flight, producing stalls.  However, we have
671 * manual fields we can set in the instructions that let it do so.
672 */
673void
674vec4_visitor::opt_set_dependency_control()
675{
676   vec4_instruction *last_grf_write[BRW_MAX_GRF];
677   uint8_t grf_channels_written[BRW_MAX_GRF];
678   vec4_instruction *last_mrf_write[BRW_MAX_GRF];
679   uint8_t mrf_channels_written[BRW_MAX_GRF];
680
681   cfg_t cfg(&instructions);
682
683   assert(prog_data->total_grf ||
684          !"Must be called after register allocation");
685
686   for (int i = 0; i < cfg.num_blocks; i++) {
687      bblock_t *bblock = cfg.blocks[i];
688      vec4_instruction *inst;
689
690      memset(last_grf_write, 0, sizeof(last_grf_write));
691      memset(last_mrf_write, 0, sizeof(last_mrf_write));
692
693      for (inst = (vec4_instruction *)bblock->start;
694           inst != (vec4_instruction *)bblock->end->next;
695           inst = (vec4_instruction *)inst->next) {
696         /* If we read from a register that we were doing dependency control
697          * on, don't do dependency control across the read.
698          */
699         for (int i = 0; i < 3; i++) {
700            int reg = inst->src[i].reg + inst->src[i].reg_offset;
701            if (inst->src[i].file == GRF) {
702               last_grf_write[reg] = NULL;
703            } else if (inst->src[i].file == HW_REG) {
704               memset(last_grf_write, 0, sizeof(last_grf_write));
705               break;
706            }
707            assert(inst->src[i].file != MRF);
708         }
709
710         /* In the presence of send messages, totally interrupt dependency
711          * control.  They're long enough that the chance of dependency
712          * control around them just doesn't matter.
713          */
714         if (inst->mlen) {
715            memset(last_grf_write, 0, sizeof(last_grf_write));
716            memset(last_mrf_write, 0, sizeof(last_mrf_write));
717            continue;
718         }
719
720         /* It looks like setting dependency control on a predicated
721          * instruction hangs the GPU.
722          */
723         if (inst->predicate) {
724            memset(last_grf_write, 0, sizeof(last_grf_write));
725            memset(last_mrf_write, 0, sizeof(last_mrf_write));
726            continue;
727         }
728
729         /* Now, see if we can do dependency control for this instruction
730          * against a previous one writing to its destination.
731          */
732         int reg = inst->dst.reg + inst->dst.reg_offset;
733         if (inst->dst.file == GRF) {
734            if (last_grf_write[reg] &&
735                !(inst->dst.writemask & grf_channels_written[reg])) {
736               last_grf_write[reg]->no_dd_clear = true;
737               inst->no_dd_check = true;
738            } else {
739               grf_channels_written[reg] = 0;
740            }
741
742            last_grf_write[reg] = inst;
743            grf_channels_written[reg] |= inst->dst.writemask;
744         } else if (inst->dst.file == MRF) {
745            if (last_mrf_write[reg] &&
746                !(inst->dst.writemask & mrf_channels_written[reg])) {
747               last_mrf_write[reg]->no_dd_clear = true;
748               inst->no_dd_check = true;
749            } else {
750               mrf_channels_written[reg] = 0;
751            }
752
753            last_mrf_write[reg] = inst;
754            mrf_channels_written[reg] |= inst->dst.writemask;
755         } else if (inst->dst.reg == HW_REG) {
756            if (inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)
757               memset(last_grf_write, 0, sizeof(last_grf_write));
758            if (inst->dst.fixed_hw_reg.file == BRW_MESSAGE_REGISTER_FILE)
759               memset(last_mrf_write, 0, sizeof(last_mrf_write));
760         }
761      }
762   }
763}
764
765bool
766vec4_instruction::can_reswizzle_dst(int dst_writemask,
767                                    int swizzle,
768                                    int swizzle_mask)
769{
770   /* If this instruction sets anything not referenced by swizzle, then we'd
771    * totally break it when we reswizzle.
772    */
773   if (dst.writemask & ~swizzle_mask)
774      return false;
775
776   switch (opcode) {
777   case BRW_OPCODE_DP4:
778   case BRW_OPCODE_DP3:
779   case BRW_OPCODE_DP2:
780      return true;
781   default:
782      /* Check if there happens to be no reswizzling required. */
783      for (int c = 0; c < 4; c++) {
784         int bit = 1 << BRW_GET_SWZ(swizzle, c);
785         /* Skip components of the swizzle not used by the dst. */
786         if (!(dst_writemask & (1 << c)))
787            continue;
788
789         /* We don't do the reswizzling yet, so just sanity check that we
790          * don't have to.
791          */
792         if (bit != (1 << c))
793            return false;
794      }
795      return true;
796   }
797}
798
799/**
800 * For any channels in the swizzle's source that were populated by this
801 * instruction, rewrite the instruction to put the appropriate result directly
802 * in those channels.
803 *
804 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
805 */
806void
807vec4_instruction::reswizzle_dst(int dst_writemask, int swizzle)
808{
809   int new_writemask = 0;
810
811   switch (opcode) {
812   case BRW_OPCODE_DP4:
813   case BRW_OPCODE_DP3:
814   case BRW_OPCODE_DP2:
815      for (int c = 0; c < 4; c++) {
816         int bit = 1 << BRW_GET_SWZ(swizzle, c);
817         /* Skip components of the swizzle not used by the dst. */
818         if (!(dst_writemask & (1 << c)))
819            continue;
820         /* If we were populating this component, then populate the
821          * corresponding channel of the new dst.
822          */
823         if (dst.writemask & bit)
824            new_writemask |= (1 << c);
825      }
826      dst.writemask = new_writemask;
827      break;
828   default:
829      for (int c = 0; c < 4; c++) {
830         /* Skip components of the swizzle not used by the dst. */
831         if (!(dst_writemask & (1 << c)))
832            continue;
833
834         /* We don't do the reswizzling yet, so just sanity check that we
835          * don't have to.
836          */
837         assert((1 << BRW_GET_SWZ(swizzle, c)) == (1 << c));
838      }
839      break;
840   }
841}
842
843/*
844 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
845 * just written and then MOVed into another reg and making the original write
846 * of the GRF write directly to the final destination instead.
847 */
848bool
849vec4_visitor::opt_register_coalesce()
850{
851   bool progress = false;
852   int next_ip = 0;
853
854   calculate_live_intervals();
855
856   foreach_list_safe(node, &this->instructions) {
857      vec4_instruction *inst = (vec4_instruction *)node;
858
859      int ip = next_ip;
860      next_ip++;
861
862      if (inst->opcode != BRW_OPCODE_MOV ||
863          (inst->dst.file != GRF && inst->dst.file != MRF) ||
864	  inst->predicate ||
865	  inst->src[0].file != GRF ||
866	  inst->dst.type != inst->src[0].type ||
867	  inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
868	 continue;
869
870      bool to_mrf = (inst->dst.file == MRF);
871
872      /* Can't coalesce this GRF if someone else was going to
873       * read it later.
874       */
875      if (this->virtual_grf_end[inst->src[0].reg] > ip)
876	 continue;
877
878      /* We need to check interference with the final destination between this
879       * instruction and the earliest instruction involved in writing the GRF
880       * we're eliminating.  To do that, keep track of which of our source
881       * channels we've seen initialized.
882       */
883      bool chans_needed[4] = {false, false, false, false};
884      int chans_remaining = 0;
885      int swizzle_mask = 0;
886      for (int i = 0; i < 4; i++) {
887	 int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
888
889	 if (!(inst->dst.writemask & (1 << i)))
890	    continue;
891
892         swizzle_mask |= (1 << chan);
893
894	 if (!chans_needed[chan]) {
895	    chans_needed[chan] = true;
896	    chans_remaining++;
897	 }
898      }
899
900      /* Now walk up the instruction stream trying to see if we can rewrite
901       * everything writing to the temporary to write into the destination
902       * instead.
903       */
904      vec4_instruction *scan_inst;
905      for (scan_inst = (vec4_instruction *)inst->prev;
906	   scan_inst->prev != NULL;
907	   scan_inst = (vec4_instruction *)scan_inst->prev) {
908	 if (scan_inst->dst.file == GRF &&
909	     scan_inst->dst.reg == inst->src[0].reg &&
910	     scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
911            /* Found something writing to the reg we want to coalesce away. */
912            if (to_mrf) {
913               /* SEND instructions can't have MRF as a destination. */
914               if (scan_inst->mlen)
915                  break;
916
917               if (brw->gen == 6) {
918                  /* gen6 math instructions must have the destination be
919                   * GRF, so no compute-to-MRF for them.
920                   */
921                  if (scan_inst->is_math()) {
922                     break;
923                  }
924               }
925            }
926
927            /* If we can't handle the swizzle, bail. */
928            if (!scan_inst->can_reswizzle_dst(inst->dst.writemask,
929                                              inst->src[0].swizzle,
930                                              swizzle_mask)) {
931               break;
932            }
933
934	    /* Mark which channels we found unconditional writes for. */
935	    if (!scan_inst->predicate) {
936	       for (int i = 0; i < 4; i++) {
937		  if (scan_inst->dst.writemask & (1 << i) &&
938		      chans_needed[i]) {
939		     chans_needed[i] = false;
940		     chans_remaining--;
941		  }
942	       }
943	    }
944
945	    if (chans_remaining == 0)
946	       break;
947	 }
948
949	 /* We don't handle flow control here.  Most computation of values
950	  * that could be coalesced happens just before their use.
951	  */
952	 if (scan_inst->opcode == BRW_OPCODE_DO ||
953	     scan_inst->opcode == BRW_OPCODE_WHILE ||
954	     scan_inst->opcode == BRW_OPCODE_ELSE ||
955	     scan_inst->opcode == BRW_OPCODE_ENDIF) {
956	    break;
957	 }
958
959         /* You can't read from an MRF, so if someone else reads our MRF's
960          * source GRF that we wanted to rewrite, that stops us.  If it's a
961          * GRF we're trying to coalesce to, we don't actually handle
962          * rewriting sources so bail in that case as well.
963          */
964	 bool interfered = false;
965	 for (int i = 0; i < 3; i++) {
966	    if (scan_inst->src[i].file == GRF &&
967		scan_inst->src[i].reg == inst->src[0].reg &&
968		scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
969	       interfered = true;
970	    }
971	 }
972	 if (interfered)
973	    break;
974
975         /* If somebody else writes our destination here, we can't coalesce
976          * before that.
977          */
978         if (scan_inst->dst.file == inst->dst.file &&
979             scan_inst->dst.reg == inst->dst.reg) {
980	    break;
981         }
982
983         /* Check for reads of the register we're trying to coalesce into.  We
984          * can't go rewriting instructions above that to put some other value
985          * in the register instead.
986          */
987         if (to_mrf && scan_inst->mlen > 0) {
988            if (inst->dst.reg >= scan_inst->base_mrf &&
989                inst->dst.reg < scan_inst->base_mrf + scan_inst->mlen) {
990               break;
991            }
992         } else {
993            for (int i = 0; i < 3; i++) {
994               if (scan_inst->src[i].file == inst->dst.file &&
995                   scan_inst->src[i].reg == inst->dst.reg &&
996                   scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
997                  interfered = true;
998               }
999            }
1000            if (interfered)
1001               break;
1002         }
1003      }
1004
1005      if (chans_remaining == 0) {
1006	 /* If we've made it here, we have an MOV we want to coalesce out, and
1007	  * a scan_inst pointing to the earliest instruction involved in
1008	  * computing the value.  Now go rewrite the instruction stream
1009	  * between the two.
1010	  */
1011
1012	 while (scan_inst != inst) {
1013	    if (scan_inst->dst.file == GRF &&
1014		scan_inst->dst.reg == inst->src[0].reg &&
1015		scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1016               scan_inst->reswizzle_dst(inst->dst.writemask,
1017                                        inst->src[0].swizzle);
1018	       scan_inst->dst.file = inst->dst.file;
1019	       scan_inst->dst.reg = inst->dst.reg;
1020	       scan_inst->dst.reg_offset = inst->dst.reg_offset;
1021	       scan_inst->saturate |= inst->saturate;
1022	    }
1023	    scan_inst = (vec4_instruction *)scan_inst->next;
1024	 }
1025	 inst->remove();
1026	 progress = true;
1027      }
1028   }
1029
1030   if (progress)
1031      invalidate_live_intervals();
1032
1033   return progress;
1034}
1035
1036/**
1037 * Splits virtual GRFs requesting more than one contiguous physical register.
1038 *
1039 * We initially create large virtual GRFs for temporary structures, arrays,
1040 * and matrices, so that the dereference visitor functions can add reg_offsets
1041 * to work their way down to the actual member being accessed.  But when it
1042 * comes to optimization, we'd like to treat each register as individual
1043 * storage if possible.
1044 *
1045 * So far, the only thing that might prevent splitting is a send message from
1046 * a GRF on IVB.
1047 */
1048void
1049vec4_visitor::split_virtual_grfs()
1050{
1051   int num_vars = this->virtual_grf_count;
1052   int new_virtual_grf[num_vars];
1053   bool split_grf[num_vars];
1054
1055   memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1056
1057   /* Try to split anything > 0 sized. */
1058   for (int i = 0; i < num_vars; i++) {
1059      split_grf[i] = this->virtual_grf_sizes[i] != 1;
1060   }
1061
1062   /* Check that the instructions are compatible with the registers we're trying
1063    * to split.
1064    */
1065   foreach_list(node, &this->instructions) {
1066      vec4_instruction *inst = (vec4_instruction *)node;
1067
1068      /* If there's a SEND message loading from a GRF on gen7+, it needs to be
1069       * contiguous.
1070       */
1071      if (inst->is_send_from_grf()) {
1072         for (int i = 0; i < 3; i++) {
1073            if (inst->src[i].file == GRF) {
1074               split_grf[inst->src[i].reg] = false;
1075            }
1076         }
1077      }
1078   }
1079
1080   /* Allocate new space for split regs.  Note that the virtual
1081    * numbers will be contiguous.
1082    */
1083   for (int i = 0; i < num_vars; i++) {
1084      if (!split_grf[i])
1085         continue;
1086
1087      new_virtual_grf[i] = virtual_grf_alloc(1);
1088      for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
1089         int reg = virtual_grf_alloc(1);
1090         assert(reg == new_virtual_grf[i] + j - 1);
1091         (void) reg;
1092      }
1093      this->virtual_grf_sizes[i] = 1;
1094   }
1095
1096   foreach_list(node, &this->instructions) {
1097      vec4_instruction *inst = (vec4_instruction *)node;
1098
1099      if (inst->dst.file == GRF && split_grf[inst->dst.reg] &&
1100          inst->dst.reg_offset != 0) {
1101         inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
1102                          inst->dst.reg_offset - 1);
1103         inst->dst.reg_offset = 0;
1104      }
1105      for (int i = 0; i < 3; i++) {
1106         if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] &&
1107             inst->src[i].reg_offset != 0) {
1108            inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
1109                                inst->src[i].reg_offset - 1);
1110            inst->src[i].reg_offset = 0;
1111         }
1112      }
1113   }
1114   invalidate_live_intervals();
1115}
1116
1117void
1118vec4_visitor::dump_instruction(backend_instruction *be_inst)
1119{
1120   vec4_instruction *inst = (vec4_instruction *)be_inst;
1121
1122   printf("%s", brw_instruction_name(inst->opcode));
1123   if (inst->conditional_mod) {
1124      printf("%s", conditional_modifier[inst->conditional_mod]);
1125   }
1126   printf(" ");
1127
1128   switch (inst->dst.file) {
1129   case GRF:
1130      printf("vgrf%d.%d", inst->dst.reg, inst->dst.reg_offset);
1131      break;
1132   case MRF:
1133      printf("m%d", inst->dst.reg);
1134      break;
1135   case HW_REG:
1136      if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1137         switch (inst->dst.fixed_hw_reg.nr) {
1138         case BRW_ARF_NULL:
1139            printf("null");
1140            break;
1141         case BRW_ARF_ADDRESS:
1142            printf("a0.%d", inst->dst.fixed_hw_reg.subnr);
1143            break;
1144         case BRW_ARF_ACCUMULATOR:
1145            printf("acc%d", inst->dst.fixed_hw_reg.subnr);
1146            break;
1147         case BRW_ARF_FLAG:
1148            printf("f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1149                             inst->dst.fixed_hw_reg.subnr);
1150            break;
1151         default:
1152            printf("arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1153                               inst->dst.fixed_hw_reg.subnr);
1154            break;
1155         }
1156      } else {
1157         printf("hw_reg%d", inst->dst.fixed_hw_reg.nr);
1158      }
1159      if (inst->dst.fixed_hw_reg.subnr)
1160         printf("+%d", inst->dst.fixed_hw_reg.subnr);
1161      break;
1162   case BAD_FILE:
1163      printf("(null)");
1164      break;
1165   default:
1166      printf("???");
1167      break;
1168   }
1169   if (inst->dst.writemask != WRITEMASK_XYZW) {
1170      printf(".");
1171      if (inst->dst.writemask & 1)
1172         printf("x");
1173      if (inst->dst.writemask & 2)
1174         printf("y");
1175      if (inst->dst.writemask & 4)
1176         printf("z");
1177      if (inst->dst.writemask & 8)
1178         printf("w");
1179   }
1180   printf(":%s, ", brw_reg_type_letters(inst->dst.type));
1181
1182   for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1183      if (inst->src[i].negate)
1184         printf("-");
1185      if (inst->src[i].abs)
1186         printf("|");
1187      switch (inst->src[i].file) {
1188      case GRF:
1189         printf("vgrf%d", inst->src[i].reg);
1190         break;
1191      case ATTR:
1192         printf("attr%d", inst->src[i].reg);
1193         break;
1194      case UNIFORM:
1195         printf("u%d", inst->src[i].reg);
1196         break;
1197      case IMM:
1198         switch (inst->src[i].type) {
1199         case BRW_REGISTER_TYPE_F:
1200            printf("%fF", inst->src[i].imm.f);
1201            break;
1202         case BRW_REGISTER_TYPE_D:
1203            printf("%dD", inst->src[i].imm.i);
1204            break;
1205         case BRW_REGISTER_TYPE_UD:
1206            printf("%uU", inst->src[i].imm.u);
1207            break;
1208         default:
1209            printf("???");
1210            break;
1211         }
1212         break;
1213      case HW_REG:
1214         if (inst->src[i].fixed_hw_reg.negate)
1215            printf("-");
1216         if (inst->src[i].fixed_hw_reg.abs)
1217            printf("|");
1218         if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1219            switch (inst->src[i].fixed_hw_reg.nr) {
1220            case BRW_ARF_NULL:
1221               printf("null");
1222               break;
1223            case BRW_ARF_ADDRESS:
1224               printf("a0.%d", inst->src[i].fixed_hw_reg.subnr);
1225               break;
1226            case BRW_ARF_ACCUMULATOR:
1227               printf("acc%d", inst->src[i].fixed_hw_reg.subnr);
1228               break;
1229            case BRW_ARF_FLAG:
1230               printf("f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1231                                inst->src[i].fixed_hw_reg.subnr);
1232               break;
1233            default:
1234               printf("arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1235                                  inst->src[i].fixed_hw_reg.subnr);
1236               break;
1237            }
1238         } else {
1239            printf("hw_reg%d", inst->src[i].fixed_hw_reg.nr);
1240         }
1241         if (inst->src[i].fixed_hw_reg.subnr)
1242            printf("+%d", inst->src[i].fixed_hw_reg.subnr);
1243         if (inst->src[i].fixed_hw_reg.abs)
1244            printf("|");
1245         break;
1246      case BAD_FILE:
1247         printf("(null)");
1248         break;
1249      default:
1250         printf("???");
1251         break;
1252      }
1253
1254      if (virtual_grf_sizes[inst->src[i].reg] != 1)
1255         printf(".%d", inst->src[i].reg_offset);
1256
1257      if (inst->src[i].file != IMM) {
1258         static const char *chans[4] = {"x", "y", "z", "w"};
1259         printf(".");
1260         for (int c = 0; c < 4; c++) {
1261            printf("%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1262         }
1263      }
1264
1265      if (inst->src[i].abs)
1266         printf("|");
1267
1268      if (inst->src[i].file != IMM) {
1269         printf(":%s", reg_encoding[inst->src[i].type]);
1270      }
1271
1272      if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1273         printf(", ");
1274   }
1275
1276   printf("\n");
1277}
1278
1279
1280static inline struct brw_reg
1281attribute_to_hw_reg(int attr, bool interleaved)
1282{
1283   if (interleaved)
1284      return stride(brw_vec4_grf(attr / 2, (attr % 2) * 4), 0, 4, 1);
1285   else
1286      return brw_vec8_grf(attr, 0);
1287}
1288
1289
1290/**
1291 * Replace each register of type ATTR in this->instructions with a reference
1292 * to a fixed HW register.
1293 *
1294 * If interleaved is true, then each attribute takes up half a register, with
1295 * register N containing attribute 2*N in its first half and attribute 2*N+1
1296 * in its second half (this corresponds to the payload setup used by geometry
1297 * shaders in "single" or "dual instanced" dispatch mode).  If interleaved is
1298 * false, then each attribute takes up a whole register, with register N
1299 * containing attribute N (this corresponds to the payload setup used by
1300 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
1301 */
1302void
1303vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
1304                                          bool interleaved)
1305{
1306   foreach_list(node, &this->instructions) {
1307      vec4_instruction *inst = (vec4_instruction *)node;
1308
1309      /* We have to support ATTR as a destination for GL_FIXED fixup. */
1310      if (inst->dst.file == ATTR) {
1311	 int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset];
1312
1313         /* All attributes used in the shader need to have been assigned a
1314          * hardware register by the caller
1315          */
1316         assert(grf != 0);
1317
1318	 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1319	 reg.type = inst->dst.type;
1320	 reg.dw1.bits.writemask = inst->dst.writemask;
1321
1322	 inst->dst.file = HW_REG;
1323	 inst->dst.fixed_hw_reg = reg;
1324      }
1325
1326      for (int i = 0; i < 3; i++) {
1327	 if (inst->src[i].file != ATTR)
1328	    continue;
1329
1330	 int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset];
1331
1332         /* All attributes used in the shader need to have been assigned a
1333          * hardware register by the caller
1334          */
1335         assert(grf != 0);
1336
1337	 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1338	 reg.dw1.bits.swizzle = inst->src[i].swizzle;
1339         reg.type = inst->src[i].type;
1340	 if (inst->src[i].abs)
1341	    reg = brw_abs(reg);
1342	 if (inst->src[i].negate)
1343	    reg = negate(reg);
1344
1345	 inst->src[i].file = HW_REG;
1346	 inst->src[i].fixed_hw_reg = reg;
1347      }
1348   }
1349}
1350
1351int
1352vec4_vs_visitor::setup_attributes(int payload_reg)
1353{
1354   int nr_attributes;
1355   int attribute_map[VERT_ATTRIB_MAX + 1];
1356   memset(attribute_map, 0, sizeof(attribute_map));
1357
1358   nr_attributes = 0;
1359   for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
1360      if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
1361	 attribute_map[i] = payload_reg + nr_attributes;
1362	 nr_attributes++;
1363      }
1364   }
1365
1366   /* VertexID is stored by the VF as the last vertex element, but we
1367    * don't represent it with a flag in inputs_read, so we call it
1368    * VERT_ATTRIB_MAX.
1369    */
1370   if (vs_prog_data->uses_vertexid) {
1371      attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
1372      nr_attributes++;
1373   }
1374
1375   lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
1376
1377   /* The BSpec says we always have to read at least one thing from
1378    * the VF, and it appears that the hardware wedges otherwise.
1379    */
1380   if (nr_attributes == 0)
1381      nr_attributes = 1;
1382
1383   prog_data->urb_read_length = (nr_attributes + 1) / 2;
1384
1385   unsigned vue_entries =
1386      MAX2(nr_attributes, prog_data->vue_map.num_slots);
1387
1388   if (brw->gen == 6)
1389      prog_data->urb_entry_size = ALIGN(vue_entries, 8) / 8;
1390   else
1391      prog_data->urb_entry_size = ALIGN(vue_entries, 4) / 4;
1392
1393   return payload_reg + nr_attributes;
1394}
1395
1396int
1397vec4_visitor::setup_uniforms(int reg)
1398{
1399   prog_data->dispatch_grf_start_reg = reg;
1400
1401   /* The pre-gen6 VS requires that some push constants get loaded no
1402    * matter what, or the GPU would hang.
1403    */
1404   if (brw->gen < 6 && this->uniforms == 0) {
1405      this->uniform_vector_size[this->uniforms] = 1;
1406
1407      stage_prog_data->param =
1408         reralloc(NULL, stage_prog_data->param, const float *, 4);
1409      for (unsigned int i = 0; i < 4; i++) {
1410	 unsigned int slot = this->uniforms * 4 + i;
1411	 static float zero = 0.0;
1412	 stage_prog_data->param[slot] = &zero;
1413      }
1414
1415      this->uniforms++;
1416      reg++;
1417   } else {
1418      reg += ALIGN(uniforms, 2) / 2;
1419   }
1420
1421   stage_prog_data->nr_params = this->uniforms * 4;
1422
1423   prog_data->curb_read_length = reg - prog_data->dispatch_grf_start_reg;
1424
1425   return reg;
1426}
1427
1428void
1429vec4_vs_visitor::setup_payload(void)
1430{
1431   int reg = 0;
1432
1433   /* The payload always contains important data in g0, which contains
1434    * the URB handles that are passed on to the URB write at the end
1435    * of the thread.  So, we always start push constants at g1.
1436    */
1437   reg++;
1438
1439   reg = setup_uniforms(reg);
1440
1441   reg = setup_attributes(reg);
1442
1443   this->first_non_payload_grf = reg;
1444}
1445
1446src_reg
1447vec4_visitor::get_timestamp()
1448{
1449   assert(brw->gen >= 7);
1450
1451   src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1452                                BRW_ARF_TIMESTAMP,
1453                                0,
1454                                BRW_REGISTER_TYPE_UD,
1455                                BRW_VERTICAL_STRIDE_0,
1456                                BRW_WIDTH_4,
1457                                BRW_HORIZONTAL_STRIDE_4,
1458                                BRW_SWIZZLE_XYZW,
1459                                WRITEMASK_XYZW));
1460
1461   dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1462
1463   vec4_instruction *mov = emit(MOV(dst, ts));
1464   /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1465    * even if it's not enabled in the dispatch.
1466    */
1467   mov->force_writemask_all = true;
1468
1469   return src_reg(dst);
1470}
1471
1472void
1473vec4_visitor::emit_shader_time_begin()
1474{
1475   current_annotation = "shader time start";
1476   shader_start_time = get_timestamp();
1477}
1478
1479void
1480vec4_visitor::emit_shader_time_end()
1481{
1482   current_annotation = "shader time end";
1483   src_reg shader_end_time = get_timestamp();
1484
1485
1486   /* Check that there weren't any timestamp reset events (assuming these
1487    * were the only two timestamp reads that happened).
1488    */
1489   src_reg reset_end = shader_end_time;
1490   reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1491   vec4_instruction *test = emit(AND(dst_null_d(), reset_end, src_reg(1u)));
1492   test->conditional_mod = BRW_CONDITIONAL_Z;
1493
1494   emit(IF(BRW_PREDICATE_NORMAL));
1495
1496   /* Take the current timestamp and get the delta. */
1497   shader_start_time.negate = true;
1498   dst_reg diff = dst_reg(this, glsl_type::uint_type);
1499   emit(ADD(diff, shader_start_time, shader_end_time));
1500
1501   /* If there were no instructions between the two timestamp gets, the diff
1502    * is 2 cycles.  Remove that overhead, so I can forget about that when
1503    * trying to determine the time taken for single instructions.
1504    */
1505   emit(ADD(diff, src_reg(diff), src_reg(-2u)));
1506
1507   emit_shader_time_write(st_base, src_reg(diff));
1508   emit_shader_time_write(st_written, src_reg(1u));
1509   emit(BRW_OPCODE_ELSE);
1510   emit_shader_time_write(st_reset, src_reg(1u));
1511   emit(BRW_OPCODE_ENDIF);
1512}
1513
1514void
1515vec4_visitor::emit_shader_time_write(enum shader_time_shader_type type,
1516                                     src_reg value)
1517{
1518   int shader_time_index =
1519      brw_get_shader_time_index(brw, shader_prog, prog, type);
1520
1521   dst_reg dst =
1522      dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1523
1524   dst_reg offset = dst;
1525   dst_reg time = dst;
1526   time.reg_offset++;
1527
1528   offset.type = BRW_REGISTER_TYPE_UD;
1529   emit(MOV(offset, src_reg(shader_time_index * SHADER_TIME_STRIDE)));
1530
1531   time.type = BRW_REGISTER_TYPE_UD;
1532   emit(MOV(time, src_reg(value)));
1533
1534   emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1535}
1536
1537bool
1538vec4_visitor::run()
1539{
1540   sanity_param_count = prog->Parameters->NumParameters;
1541
1542   if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1543      emit_shader_time_begin();
1544
1545   assign_common_binding_table_offsets(0);
1546
1547   emit_prolog();
1548
1549   /* Generate VS IR for main().  (the visitor only descends into
1550    * functions called "main").
1551    */
1552   if (shader) {
1553      visit_instructions(shader->base.ir);
1554   } else {
1555      emit_program_code();
1556   }
1557   base_ir = NULL;
1558
1559   if (key->userclip_active && !prog->UsesClipDistanceOut)
1560      setup_uniform_clipplane_values();
1561
1562   emit_thread_end();
1563
1564   /* Before any optimization, push array accesses out to scratch
1565    * space where we need them to be.  This pass may allocate new
1566    * virtual GRFs, so we want to do it early.  It also makes sure
1567    * that we have reladdr computations available for CSE, since we'll
1568    * often do repeated subexpressions for those.
1569    */
1570   if (shader) {
1571      move_grf_array_access_to_scratch();
1572      move_uniform_array_access_to_pull_constants();
1573   } else {
1574      /* The ARB_vertex_program frontend emits pull constant loads directly
1575       * rather than using reladdr, so we don't need to walk through all the
1576       * instructions looking for things to move.  There isn't anything.
1577       *
1578       * We do still need to split things to vec4 size.
1579       */
1580      split_uniform_registers();
1581   }
1582   pack_uniform_registers();
1583   move_push_constants_to_pull_constants();
1584   split_virtual_grfs();
1585
1586   bool progress;
1587   do {
1588      progress = false;
1589      progress = dead_code_eliminate() || progress;
1590      progress = dead_control_flow_eliminate(this) || progress;
1591      progress = opt_copy_propagation() || progress;
1592      progress = opt_algebraic() || progress;
1593      progress = opt_register_coalesce() || progress;
1594   } while (progress);
1595
1596
1597   if (failed)
1598      return false;
1599
1600   setup_payload();
1601
1602   if (false) {
1603      /* Debug of register spilling: Go spill everything. */
1604      const int grf_count = virtual_grf_count;
1605      float spill_costs[virtual_grf_count];
1606      bool no_spill[virtual_grf_count];
1607      evaluate_spill_costs(spill_costs, no_spill);
1608      for (int i = 0; i < grf_count; i++) {
1609         if (no_spill[i])
1610            continue;
1611         spill_reg(i);
1612      }
1613   }
1614
1615   while (!reg_allocate()) {
1616      if (failed)
1617         return false;
1618   }
1619
1620   opt_schedule_instructions();
1621
1622   opt_set_dependency_control();
1623
1624   /* If any state parameters were appended, then ParameterValues could have
1625    * been realloced, in which case the driver uniform storage set up by
1626    * _mesa_associate_uniform_storage() would point to freed memory.  Make
1627    * sure that didn't happen.
1628    */
1629   assert(sanity_param_count == prog->Parameters->NumParameters);
1630
1631   return !failed;
1632}
1633
1634} /* namespace brw */
1635
1636extern "C" {
1637
1638/**
1639 * Compile a vertex shader.
1640 *
1641 * Returns the final assembly and the program's size.
1642 */
1643const unsigned *
1644brw_vs_emit(struct brw_context *brw,
1645            struct gl_shader_program *prog,
1646            struct brw_vs_compile *c,
1647            struct brw_vs_prog_data *prog_data,
1648            void *mem_ctx,
1649            unsigned *final_assembly_size)
1650{
1651   bool start_busy = false;
1652   float start_time = 0;
1653
1654   if (unlikely(brw->perf_debug)) {
1655      start_busy = (brw->batch.last_bo &&
1656                    drm_intel_bo_busy(brw->batch.last_bo));
1657      start_time = get_time();
1658   }
1659
1660   struct brw_shader *shader = NULL;
1661   if (prog)
1662      shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX];
1663
1664   if (unlikely(INTEL_DEBUG & DEBUG_VS)) {
1665      if (prog) {
1666         printf("GLSL IR for native vertex shader %d:\n", prog->Name);
1667         _mesa_print_ir(shader->base.ir, NULL);
1668         printf("\n\n");
1669      } else {
1670         printf("ARB_vertex_program %d for native vertex shader\n",
1671                c->vp->program.Base.Id);
1672         _mesa_print_program(&c->vp->program.Base);
1673      }
1674   }
1675
1676   vec4_vs_visitor v(brw, c, prog_data, prog, shader, mem_ctx);
1677   if (!v.run()) {
1678      if (prog) {
1679         prog->LinkStatus = false;
1680         ralloc_strcat(&prog->InfoLog, v.fail_msg);
1681      }
1682
1683      _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1684                    v.fail_msg);
1685
1686      return NULL;
1687   }
1688
1689   const unsigned *assembly = NULL;
1690   if (brw->gen >= 8) {
1691      gen8_vec4_generator g(brw, prog, &c->vp->program.Base, &prog_data->base,
1692                            mem_ctx, INTEL_DEBUG & DEBUG_VS);
1693      assembly = g.generate_assembly(&v.instructions, final_assembly_size);
1694   } else {
1695      vec4_generator g(brw, prog, &c->vp->program.Base, &prog_data->base,
1696                       mem_ctx, INTEL_DEBUG & DEBUG_VS);
1697      assembly = g.generate_assembly(&v.instructions, final_assembly_size);
1698   }
1699
1700   if (unlikely(brw->perf_debug) && shader) {
1701      if (shader->compiled_once) {
1702         brw_vs_debug_recompile(brw, prog, &c->key);
1703      }
1704      if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
1705         perf_debug("VS compile took %.03f ms and stalled the GPU\n",
1706                    (get_time() - start_time) * 1000);
1707      }
1708      shader->compiled_once = true;
1709   }
1710
1711   return assembly;
1712}
1713
1714
1715void
1716brw_vec4_setup_prog_key_for_precompile(struct gl_context *ctx,
1717                                       struct brw_vec4_prog_key *key,
1718                                       GLuint id, struct gl_program *prog)
1719{
1720   key->program_string_id = id;
1721   key->clamp_vertex_color = ctx->API == API_OPENGL_COMPAT;
1722
1723   unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
1724   for (unsigned i = 0; i < sampler_count; i++) {
1725      if (prog->ShadowSamplers & (1 << i)) {
1726         /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
1727         key->tex.swizzles[i] =
1728            MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
1729      } else {
1730         /* Color sampler: assume no swizzling. */
1731         key->tex.swizzles[i] = SWIZZLE_XYZW;
1732      }
1733   }
1734}
1735
1736} /* extern "C" */
1737