eval.c revision afb833d4e89c312460a4ab9ed6a7a8ca4ebbfe1c
1/* $Id: eval.c,v 1.1 1999/08/19 00:55:41 jtg Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version:  3.1
6 *
7 * Copyright (C) 1999  Brian Paul   All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28
29
30
31/*
32 * eval.c was written by
33 * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
34 * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
35 *
36 * My original implementation of evaluators was simplistic and didn't
37 * compute surface normal vectors properly.  Bernd and Volker applied
38 * used more sophisticated methods to get better results.
39 *
40 * Thanks guys!
41 */
42
43
44#ifdef PC_HEADER
45#include "all.h"
46#else
47#include <math.h>
48#include <stdlib.h>
49#include <string.h>
50#include "context.h"
51#include "eval.h"
52#include "macros.h"
53#include "mmath.h"
54#include "types.h"
55#include "vbcull.h"
56#include "vbfill.h"
57#include "vbxform.h"
58#ifdef XFree86Server
59#include "GL/xf86glx.h"
60#endif
61#endif
62
63
64static GLfloat inv_tab[MAX_EVAL_ORDER];
65
66/*
67 * Do one-time initialization for evaluators.
68 */
69void gl_init_eval( void )
70{
71  static int init_flag = 0;
72  GLuint i;
73
74  /* Compute a table of nCr (combination) values used by the
75   * Bernstein polynomial generator.
76   */
77
78  /* KW: precompute 1/x for useful x.
79   */
80  if (init_flag==0)
81  {
82     for (i = 1 ; i < MAX_EVAL_ORDER ; i++)
83	inv_tab[i] = 1.0 / i;
84  }
85
86  init_flag = 1;
87}
88
89
90
91/*
92 * Horner scheme for Bezier curves
93 *
94 * Bezier curves can be computed via a Horner scheme.
95 * Horner is numerically less stable than the de Casteljau
96 * algorithm, but it is faster. For curves of degree n
97 * the complexity of Horner is O(n) and de Casteljau is O(n^2).
98 * Since stability is not important for displaying curve
99 * points I decided to use the Horner scheme.
100 *
101 * A cubic Bezier curve with control points b0, b1, b2, b3 can be
102 * written as
103 *
104 *        (([3]        [3]     )     [3]       )     [3]
105 * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
106 *
107 *                                           [n]
108 * where s=1-t and the binomial coefficients [i]. These can
109 * be computed iteratively using the identity:
110 *
111 * [n]               [n  ]             [n]
112 * [i] = (n-i+1)/i * [i-1]     and     [0] = 1
113 */
114
115
116static void
117horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
118                    GLuint dim, GLuint order)
119{
120  GLfloat s, powert;
121  GLuint i, k, bincoeff;
122
123  if(order >= 2)
124  {
125    bincoeff = order-1;
126    s = 1.0-t;
127
128    for(k=0; k<dim; k++)
129      out[k] = s*cp[k] + bincoeff*t*cp[dim+k];
130
131    for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim)
132    {
133      bincoeff *= order-i;
134      bincoeff *= inv_tab[i];
135
136      for(k=0; k<dim; k++)
137        out[k] = s*out[k] + bincoeff*powert*cp[k];
138    }
139  }
140  else /* order=1 -> constant curve */
141  {
142    for(k=0; k<dim; k++)
143      out[k] = cp[k];
144  }
145}
146
147/*
148 * Tensor product Bezier surfaces
149 *
150 * Again the Horner scheme is used to compute a point on a
151 * TP Bezier surface. First a control polygon for a curve
152 * on the surface in one parameter direction is computed,
153 * then the point on the curve for the other parameter
154 * direction is evaluated.
155 *
156 * To store the curve control polygon additional storage
157 * for max(uorder,vorder) points is needed in the
158 * control net cn.
159 */
160
161static void
162horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
163                   GLuint dim, GLuint uorder, GLuint vorder)
164{
165  GLfloat *cp = cn + uorder*vorder*dim;
166  GLuint i, uinc = vorder*dim;
167
168  if(vorder > uorder)
169  {
170    if(uorder >= 2)
171    {
172      GLfloat s, poweru;
173      GLuint j, k, bincoeff;
174
175      /* Compute the control polygon for the surface-curve in u-direction */
176      for(j=0; j<vorder; j++)
177      {
178        GLfloat *ucp = &cn[j*dim];
179
180        /* Each control point is the point for parameter u on a */
181        /* curve defined by the control polygons in u-direction */
182	bincoeff = uorder-1;
183	s = 1.0-u;
184
185	for(k=0; k<dim; k++)
186	  cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k];
187
188	for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder;
189            i++, poweru*=u, ucp +=uinc)
190	{
191	  bincoeff *= uorder-i;
192          bincoeff *= inv_tab[i];
193
194	  for(k=0; k<dim; k++)
195	    cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k];
196	}
197      }
198
199      /* Evaluate curve point in v */
200      horner_bezier_curve(cp, out, v, dim, vorder);
201    }
202    else /* uorder=1 -> cn defines a curve in v */
203      horner_bezier_curve(cn, out, v, dim, vorder);
204  }
205  else /* vorder <= uorder */
206  {
207    if(vorder > 1)
208    {
209      GLuint i;
210
211      /* Compute the control polygon for the surface-curve in u-direction */
212      for(i=0; i<uorder; i++, cn += uinc)
213      {
214	/* For constant i all cn[i][j] (j=0..vorder) are located */
215	/* on consecutive memory locations, so we can use        */
216	/* horner_bezier_curve to compute the control points     */
217
218	horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder);
219      }
220
221      /* Evaluate curve point in u */
222      horner_bezier_curve(cp, out, u, dim, uorder);
223    }
224    else  /* vorder=1 -> cn defines a curve in u */
225      horner_bezier_curve(cn, out, u, dim, uorder);
226  }
227}
228
229/*
230 * The direct de Casteljau algorithm is used when a point on the
231 * surface and the tangent directions spanning the tangent plane
232 * should be computed (this is needed to compute normals to the
233 * surface). In this case the de Casteljau algorithm approach is
234 * nicer because a point and the partial derivatives can be computed
235 * at the same time. To get the correct tangent length du and dv
236 * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
237 * Since only the directions are needed, this scaling step is omitted.
238 *
239 * De Casteljau needs additional storage for uorder*vorder
240 * values in the control net cn.
241 */
242
243static void
244de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
245                  GLfloat u, GLfloat v, GLuint dim,
246                  GLuint uorder, GLuint vorder)
247{
248  GLfloat *dcn = cn + uorder*vorder*dim;
249  GLfloat us = 1.0-u, vs = 1.0-v;
250  GLuint h, i, j, k;
251  GLuint minorder = uorder < vorder ? uorder : vorder;
252  GLuint uinc = vorder*dim;
253  GLuint dcuinc = vorder;
254
255  /* Each component is evaluated separately to save buffer space  */
256  /* This does not drasticaly decrease the performance of the     */
257  /* algorithm. If additional storage for (uorder-1)*(vorder-1)   */
258  /* points would be available, the components could be accessed  */
259  /* in the innermost loop which could lead to less cache misses. */
260
261#define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]
262#define DCN(I, J) dcn[(I)*dcuinc+(J)]
263  if(minorder < 3)
264  {
265    if(uorder==vorder)
266    {
267      for(k=0; k<dim; k++)
268      {
269	/* Derivative direction in u */
270	du[k] = vs*(CN(1,0,k) - CN(0,0,k)) +
271	         v*(CN(1,1,k) - CN(0,1,k));
272
273	/* Derivative direction in v */
274	dv[k] = us*(CN(0,1,k) - CN(0,0,k)) +
275	         u*(CN(1,1,k) - CN(1,0,k));
276
277	/* bilinear de Casteljau step */
278        out[k] =  us*(vs*CN(0,0,k) + v*CN(0,1,k)) +
279	           u*(vs*CN(1,0,k) + v*CN(1,1,k));
280      }
281    }
282    else if(minorder == uorder)
283    {
284      for(k=0; k<dim; k++)
285      {
286	/* bilinear de Casteljau step */
287	DCN(1,0) =    CN(1,0,k) -   CN(0,0,k);
288	DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k);
289
290	for(j=0; j<vorder-1; j++)
291	{
292	  /* for the derivative in u */
293	  DCN(1,j+1) =    CN(1,j+1,k) -   CN(0,j+1,k);
294	  DCN(1,j)   = vs*DCN(1,j)    + v*DCN(1,j+1);
295
296	  /* for the `point' */
297	  DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k);
298	  DCN(0,j)   = vs*DCN(0,j)    + v*DCN(0,j+1);
299	}
300
301	/* remaining linear de Casteljau steps until the second last step */
302	for(h=minorder; h<vorder-1; h++)
303	  for(j=0; j<vorder-h; j++)
304	  {
305	    /* for the derivative in u */
306	    DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
307
308	    /* for the `point' */
309	    DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
310	  }
311
312	/* derivative direction in v */
313	dv[k] = DCN(0,1) - DCN(0,0);
314
315	/* derivative direction in u */
316	du[k] =   vs*DCN(1,0) + v*DCN(1,1);
317
318	/* last linear de Casteljau step */
319	out[k] =  vs*DCN(0,0) + v*DCN(0,1);
320      }
321    }
322    else /* minorder == vorder */
323    {
324      for(k=0; k<dim; k++)
325      {
326	/* bilinear de Casteljau step */
327	DCN(0,1) =    CN(0,1,k) -   CN(0,0,k);
328	DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k);
329	for(i=0; i<uorder-1; i++)
330	{
331	  /* for the derivative in v */
332	  DCN(i+1,1) =    CN(i+1,1,k) -   CN(i+1,0,k);
333	  DCN(i,1)   = us*DCN(i,1)    + u*DCN(i+1,1);
334
335	  /* for the `point' */
336	  DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k);
337	  DCN(i,0)   = us*DCN(i,0)    + u*DCN(i+1,0);
338	}
339
340	/* remaining linear de Casteljau steps until the second last step */
341	for(h=minorder; h<uorder-1; h++)
342	  for(i=0; i<uorder-h; i++)
343	  {
344	    /* for the derivative in v */
345	    DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
346
347	    /* for the `point' */
348	    DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
349	  }
350
351	/* derivative direction in u */
352	du[k] = DCN(1,0) - DCN(0,0);
353
354	/* derivative direction in v */
355	dv[k] =   us*DCN(0,1) + u*DCN(1,1);
356
357	/* last linear de Casteljau step */
358	out[k] =  us*DCN(0,0) + u*DCN(1,0);
359      }
360    }
361  }
362  else if(uorder == vorder)
363  {
364    for(k=0; k<dim; k++)
365    {
366      /* first bilinear de Casteljau step */
367      for(i=0; i<uorder-1; i++)
368      {
369	DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
370	for(j=0; j<vorder-1; j++)
371	{
372	  DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
373	  DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1);
374	}
375      }
376
377      /* remaining bilinear de Casteljau steps until the second last step */
378      for(h=2; h<minorder-1; h++)
379	for(i=0; i<uorder-h; i++)
380	{
381	  DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
382	  for(j=0; j<vorder-h; j++)
383	  {
384	    DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
385	    DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1);
386	  }
387	}
388
389      /* derivative direction in u */
390      du[k] = vs*(DCN(1,0) - DCN(0,0)) +
391	       v*(DCN(1,1) - DCN(0,1));
392
393      /* derivative direction in v */
394      dv[k] = us*(DCN(0,1) - DCN(0,0)) +
395	       u*(DCN(1,1) - DCN(1,0));
396
397      /* last bilinear de Casteljau step */
398      out[k] =  us*(vs*DCN(0,0) + v*DCN(0,1)) +
399	         u*(vs*DCN(1,0) + v*DCN(1,1));
400    }
401  }
402  else if(minorder == uorder)
403  {
404    for(k=0; k<dim; k++)
405    {
406      /* first bilinear de Casteljau step */
407      for(i=0; i<uorder-1; i++)
408      {
409	DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
410	for(j=0; j<vorder-1; j++)
411	{
412	  DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
413	  DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1);
414	}
415      }
416
417      /* remaining bilinear de Casteljau steps until the second last step */
418      for(h=2; h<minorder-1; h++)
419	for(i=0; i<uorder-h; i++)
420	{
421	  DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
422	  for(j=0; j<vorder-h; j++)
423	  {
424	    DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
425	    DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1);
426	  }
427	}
428
429      /* last bilinear de Casteljau step */
430      DCN(2,0) =    DCN(1,0) -   DCN(0,0);
431      DCN(0,0) = us*DCN(0,0) + u*DCN(1,0);
432      for(j=0; j<vorder-1; j++)
433      {
434	/* for the derivative in u */
435	DCN(2,j+1) =    DCN(1,j+1) -    DCN(0,j+1);
436	DCN(2,j)   = vs*DCN(2,j)    + v*DCN(2,j+1);
437
438	/* for the `point' */
439	DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1);
440	DCN(0,j)   = vs*DCN(0,j)    + v*DCN(0,j+1);
441      }
442
443      /* remaining linear de Casteljau steps until the second last step */
444      for(h=minorder; h<vorder-1; h++)
445	for(j=0; j<vorder-h; j++)
446	{
447	  /* for the derivative in u */
448	  DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
449
450	  /* for the `point' */
451	  DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
452	}
453
454      /* derivative direction in v */
455      dv[k] = DCN(0,1) - DCN(0,0);
456
457      /* derivative direction in u */
458      du[k] =   vs*DCN(2,0) + v*DCN(2,1);
459
460      /* last linear de Casteljau step */
461      out[k] =  vs*DCN(0,0) + v*DCN(0,1);
462    }
463  }
464  else /* minorder == vorder */
465  {
466    for(k=0; k<dim; k++)
467    {
468      /* first bilinear de Casteljau step */
469      for(i=0; i<uorder-1; i++)
470      {
471	DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
472	for(j=0; j<vorder-1; j++)
473	{
474	  DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
475	  DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1);
476	}
477      }
478
479      /* remaining bilinear de Casteljau steps until the second last step */
480      for(h=2; h<minorder-1; h++)
481	for(i=0; i<uorder-h; i++)
482	{
483	  DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
484	  for(j=0; j<vorder-h; j++)
485	  {
486	    DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
487	    DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1);
488	  }
489	}
490
491      /* last bilinear de Casteljau step */
492      DCN(0,2) =    DCN(0,1) -   DCN(0,0);
493      DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1);
494      for(i=0; i<uorder-1; i++)
495      {
496	/* for the derivative in v */
497	DCN(i+1,2) =    DCN(i+1,1)  -   DCN(i+1,0);
498	DCN(i,2)   = us*DCN(i,2)    + u*DCN(i+1,2);
499
500	/* for the `point' */
501	DCN(i+1,0) = vs*DCN(i+1,0)  + v*DCN(i+1,1);
502	DCN(i,0)   = us*DCN(i,0)    + u*DCN(i+1,0);
503      }
504
505      /* remaining linear de Casteljau steps until the second last step */
506      for(h=minorder; h<uorder-1; h++)
507	for(i=0; i<uorder-h; i++)
508	{
509	  /* for the derivative in v */
510	  DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
511
512	  /* for the `point' */
513	  DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
514	}
515
516      /* derivative direction in u */
517      du[k] = DCN(1,0) - DCN(0,0);
518
519      /* derivative direction in v */
520      dv[k] =   us*DCN(0,2) + u*DCN(1,2);
521
522      /* last linear de Casteljau step */
523      out[k] =  us*DCN(0,0) + u*DCN(1,0);
524    }
525  }
526#undef DCN
527#undef CN
528}
529
530/*
531 * Return the number of components per control point for any type of
532 * evaluator.  Return 0 if bad target.
533 */
534
535static GLint components( GLenum target )
536{
537   switch (target) {
538      case GL_MAP1_VERTEX_3:		return 3;
539      case GL_MAP1_VERTEX_4:		return 4;
540      case GL_MAP1_INDEX:		return 1;
541      case GL_MAP1_COLOR_4:		return 4;
542      case GL_MAP1_NORMAL:		return 3;
543      case GL_MAP1_TEXTURE_COORD_1:	return 1;
544      case GL_MAP1_TEXTURE_COORD_2:	return 2;
545      case GL_MAP1_TEXTURE_COORD_3:	return 3;
546      case GL_MAP1_TEXTURE_COORD_4:	return 4;
547      case GL_MAP2_VERTEX_3:		return 3;
548      case GL_MAP2_VERTEX_4:		return 4;
549      case GL_MAP2_INDEX:		return 1;
550      case GL_MAP2_COLOR_4:		return 4;
551      case GL_MAP2_NORMAL:		return 3;
552      case GL_MAP2_TEXTURE_COORD_1:	return 1;
553      case GL_MAP2_TEXTURE_COORD_2:	return 2;
554      case GL_MAP2_TEXTURE_COORD_3:	return 3;
555      case GL_MAP2_TEXTURE_COORD_4:	return 4;
556      default:				return 0;
557   }
558}
559
560
561/**********************************************************************/
562/***            Copy and deallocate control points                  ***/
563/**********************************************************************/
564
565
566/*
567 * Copy 1-parametric evaluator control points from user-specified
568 * memory space to a buffer of contiguous control points.
569 * Input:  see glMap1f for details
570 * Return:  pointer to buffer of contiguous control points or NULL if out
571 *          of memory.
572 */
573GLfloat *gl_copy_map_points1f( GLenum target,
574                               GLint ustride, GLint uorder,
575                               const GLfloat *points )
576{
577   GLfloat *buffer, *p;
578   GLint i, k, size = components(target);
579
580   if (!points || size==0) {
581      return NULL;
582   }
583
584   buffer = (GLfloat *) malloc(uorder * size * sizeof(GLfloat));
585
586   if(buffer)
587      for(i=0, p=buffer; i<uorder; i++, points+=ustride)
588	for(k=0; k<size; k++)
589	  *p++ = points[k];
590
591   return buffer;
592}
593
594
595
596/*
597 * Same as above but convert doubles to floats.
598 */
599GLfloat *gl_copy_map_points1d( GLenum target,
600			        GLint ustride, GLint uorder,
601			        const GLdouble *points )
602{
603   GLfloat *buffer, *p;
604   GLint i, k, size = components(target);
605
606   if (!points || size==0) {
607      return NULL;
608   }
609
610   buffer = (GLfloat *) malloc(uorder * size * sizeof(GLfloat));
611
612   if(buffer)
613      for(i=0, p=buffer; i<uorder; i++, points+=ustride)
614	for(k=0; k<size; k++)
615	  *p++ = (GLfloat) points[k];
616
617   return buffer;
618}
619
620
621
622/*
623 * Copy 2-parametric evaluator control points from user-specified
624 * memory space to a buffer of contiguous control points.
625 * Additional memory is allocated to be used by the horner and
626 * de Casteljau evaluation schemes.
627 *
628 * Input:  see glMap2f for details
629 * Return:  pointer to buffer of contiguous control points or NULL if out
630 *          of memory.
631 */
632GLfloat *gl_copy_map_points2f( GLenum target,
633			        GLint ustride, GLint uorder,
634			        GLint vstride, GLint vorder,
635			        const GLfloat *points )
636{
637   GLfloat *buffer, *p;
638   GLint i, j, k, size, dsize, hsize;
639   GLint uinc;
640
641   size = components(target);
642
643   if (!points || size==0) {
644      return NULL;
645   }
646
647   /* max(uorder, vorder) additional points are used in      */
648   /* horner evaluation and uorder*vorder additional */
649   /* values are needed for de Casteljau                     */
650   dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
651   hsize = (uorder > vorder ? uorder : vorder)*size;
652
653   if(hsize>dsize)
654     buffer = (GLfloat *) malloc((uorder*vorder*size+hsize)*sizeof(GLfloat));
655   else
656     buffer = (GLfloat *) malloc((uorder*vorder*size+dsize)*sizeof(GLfloat));
657
658   /* compute the increment value for the u-loop */
659   uinc = ustride - vorder*vstride;
660
661   if (buffer)
662      for (i=0, p=buffer; i<uorder; i++, points += uinc)
663	 for (j=0; j<vorder; j++, points += vstride)
664	    for (k=0; k<size; k++)
665	       *p++ = points[k];
666
667   return buffer;
668}
669
670
671
672/*
673 * Same as above but convert doubles to floats.
674 */
675GLfloat *gl_copy_map_points2d(GLenum target,
676                              GLint ustride, GLint uorder,
677                              GLint vstride, GLint vorder,
678                              const GLdouble *points )
679{
680   GLfloat *buffer, *p;
681   GLint i, j, k, size, hsize, dsize;
682   GLint uinc;
683
684   size = components(target);
685
686   if (!points || size==0) {
687      return NULL;
688   }
689
690   /* max(uorder, vorder) additional points are used in      */
691   /* horner evaluation and uorder*vorder additional */
692   /* values are needed for de Casteljau                     */
693   dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
694   hsize = (uorder > vorder ? uorder : vorder)*size;
695
696   if(hsize>dsize)
697     buffer = (GLfloat *) malloc((uorder*vorder*size+hsize)*sizeof(GLfloat));
698   else
699     buffer = (GLfloat *) malloc((uorder*vorder*size+dsize)*sizeof(GLfloat));
700
701   /* compute the increment value for the u-loop */
702   uinc = ustride - vorder*vstride;
703
704   if (buffer)
705      for (i=0, p=buffer; i<uorder; i++, points += uinc)
706	 for (j=0; j<vorder; j++, points += vstride)
707	    for (k=0; k<size; k++)
708	       *p++ = (GLfloat) points[k];
709
710   return buffer;
711}
712
713
714/*
715 * This function is called by the display list deallocator function to
716 * specify that a given set of control points are no longer needed.
717 */
718void gl_free_control_points( GLcontext* ctx, GLenum target, GLfloat *data )
719{
720   struct gl_1d_map *map1 = NULL;
721   struct gl_2d_map *map2 = NULL;
722
723   switch (target) {
724      case GL_MAP1_VERTEX_3:
725         map1 = &ctx->EvalMap.Map1Vertex3;
726         break;
727      case GL_MAP1_VERTEX_4:
728         map1 = &ctx->EvalMap.Map1Vertex4;
729	 break;
730      case GL_MAP1_INDEX:
731         map1 = &ctx->EvalMap.Map1Index;
732         break;
733      case GL_MAP1_COLOR_4:
734         map1 = &ctx->EvalMap.Map1Color4;
735         break;
736      case GL_MAP1_NORMAL:
737         map1 = &ctx->EvalMap.Map1Normal;
738	 break;
739      case GL_MAP1_TEXTURE_COORD_1:
740         map1 = &ctx->EvalMap.Map1Texture1;
741	 break;
742      case GL_MAP1_TEXTURE_COORD_2:
743         map1 = &ctx->EvalMap.Map1Texture2;
744	 break;
745      case GL_MAP1_TEXTURE_COORD_3:
746         map1 = &ctx->EvalMap.Map1Texture3;
747	 break;
748      case GL_MAP1_TEXTURE_COORD_4:
749         map1 = &ctx->EvalMap.Map1Texture4;
750	 break;
751      case GL_MAP2_VERTEX_3:
752         map2 = &ctx->EvalMap.Map2Vertex3;
753	 break;
754      case GL_MAP2_VERTEX_4:
755         map2 = &ctx->EvalMap.Map2Vertex4;
756	 break;
757      case GL_MAP2_INDEX:
758         map2 = &ctx->EvalMap.Map2Index;
759	 break;
760      case GL_MAP2_COLOR_4:
761         map2 = &ctx->EvalMap.Map2Color4;
762         break;
763      case GL_MAP2_NORMAL:
764         map2 = &ctx->EvalMap.Map2Normal;
765	 break;
766      case GL_MAP2_TEXTURE_COORD_1:
767         map2 = &ctx->EvalMap.Map2Texture1;
768	 break;
769      case GL_MAP2_TEXTURE_COORD_2:
770         map2 = &ctx->EvalMap.Map2Texture2;
771	 break;
772      case GL_MAP2_TEXTURE_COORD_3:
773         map2 = &ctx->EvalMap.Map2Texture3;
774	 break;
775      case GL_MAP2_TEXTURE_COORD_4:
776         map2 = &ctx->EvalMap.Map2Texture4;
777	 break;
778      default:
779	 gl_error( ctx, GL_INVALID_ENUM, "gl_free_control_points" );
780         return;
781   }
782
783   if (map1) {
784      if (data==map1->Points) {
785         /* The control points in the display list are currently */
786         /* being used so we can mark them as discard-able. */
787         map1->Retain = GL_FALSE;
788      }
789      else {
790         /* The control points in the display list are not currently */
791         /* being used. */
792         free( data );
793      }
794   }
795   if (map2) {
796      if (data==map2->Points) {
797         /* The control points in the display list are currently */
798         /* being used so we can mark them as discard-able. */
799         map2->Retain = GL_FALSE;
800      }
801      else {
802         /* The control points in the display list are not currently */
803         /* being used. */
804         free( data );
805      }
806   }
807
808}
809
810
811
812/**********************************************************************/
813/***                      API entry points                          ***/
814/**********************************************************************/
815
816
817/*
818 * Note that the array of control points must be 'unpacked' at this time.
819 * Input:  retain - if TRUE, this control point data is also in a display
820 *                  list and can't be freed until the list is freed.
821 */
822void gl_Map1f( GLcontext* ctx, GLenum target,
823               GLfloat u1, GLfloat u2, GLint stride,
824               GLint order, const GLfloat *points, GLboolean retain )
825{
826   GLint k;
827
828   if (!points) {
829      gl_error( ctx, GL_OUT_OF_MEMORY, "glMap1f" );
830      return;
831   }
832
833   /* may be a new stride after copying control points */
834   stride = components( target );
835
836   ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap1");
837
838   if (u1==u2) {
839      gl_error( ctx, GL_INVALID_VALUE, "glMap1(u1,u2)" );
840      return;
841   }
842
843   if (order<1 || order>MAX_EVAL_ORDER) {
844      gl_error( ctx, GL_INVALID_VALUE, "glMap1(order)" );
845      return;
846   }
847
848   k = components( target );
849   if (k==0) {
850      gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
851   }
852
853   if (stride < k) {
854      gl_error( ctx, GL_INVALID_VALUE, "glMap1(stride)" );
855      return;
856   }
857
858   switch (target) {
859      case GL_MAP1_VERTEX_3:
860         ctx->EvalMap.Map1Vertex3.Order = order;
861	 ctx->EvalMap.Map1Vertex3.u1 = u1;
862	 ctx->EvalMap.Map1Vertex3.u2 = u2;
863	 ctx->EvalMap.Map1Vertex3.du = 1.0 / (u2 - u1);
864	 if (ctx->EvalMap.Map1Vertex3.Points
865             && !ctx->EvalMap.Map1Vertex3.Retain) {
866	    free( ctx->EvalMap.Map1Vertex3.Points );
867	 }
868	 ctx->EvalMap.Map1Vertex3.Points = (GLfloat *) points;
869         ctx->EvalMap.Map1Vertex3.Retain = retain;
870	 break;
871      case GL_MAP1_VERTEX_4:
872         ctx->EvalMap.Map1Vertex4.Order = order;
873	 ctx->EvalMap.Map1Vertex4.u1 = u1;
874	 ctx->EvalMap.Map1Vertex4.u2 = u2;
875	 ctx->EvalMap.Map1Vertex4.du = 1.0 / (u2 - u1);
876	 if (ctx->EvalMap.Map1Vertex4.Points
877             && !ctx->EvalMap.Map1Vertex4.Retain) {
878	    free( ctx->EvalMap.Map1Vertex4.Points );
879	 }
880	 ctx->EvalMap.Map1Vertex4.Points = (GLfloat *) points;
881	 ctx->EvalMap.Map1Vertex4.Retain = retain;
882	 break;
883      case GL_MAP1_INDEX:
884         ctx->EvalMap.Map1Index.Order = order;
885	 ctx->EvalMap.Map1Index.u1 = u1;
886	 ctx->EvalMap.Map1Index.u2 = u2;
887	 ctx->EvalMap.Map1Index.du = 1.0 / (u2 - u1);
888	 if (ctx->EvalMap.Map1Index.Points
889             && !ctx->EvalMap.Map1Index.Retain) {
890	    free( ctx->EvalMap.Map1Index.Points );
891	 }
892	 ctx->EvalMap.Map1Index.Points = (GLfloat *) points;
893	 ctx->EvalMap.Map1Index.Retain = retain;
894	 break;
895      case GL_MAP1_COLOR_4:
896         ctx->EvalMap.Map1Color4.Order = order;
897	 ctx->EvalMap.Map1Color4.u1 = u1;
898	 ctx->EvalMap.Map1Color4.u2 = u2;
899	 ctx->EvalMap.Map1Color4.du = 1.0 / (u2 - u1);
900	 if (ctx->EvalMap.Map1Color4.Points
901             && !ctx->EvalMap.Map1Color4.Retain) {
902	    free( ctx->EvalMap.Map1Color4.Points );
903	 }
904	 ctx->EvalMap.Map1Color4.Points = (GLfloat *) points;
905	 ctx->EvalMap.Map1Color4.Retain = retain;
906	 break;
907      case GL_MAP1_NORMAL:
908         ctx->EvalMap.Map1Normal.Order = order;
909	 ctx->EvalMap.Map1Normal.u1 = u1;
910	 ctx->EvalMap.Map1Normal.u2 = u2;
911	 ctx->EvalMap.Map1Normal.du = 1.0 / (u2 - u1);
912	 if (ctx->EvalMap.Map1Normal.Points
913             && !ctx->EvalMap.Map1Normal.Retain) {
914	    free( ctx->EvalMap.Map1Normal.Points );
915	 }
916	 ctx->EvalMap.Map1Normal.Points = (GLfloat *) points;
917	 ctx->EvalMap.Map1Normal.Retain = retain;
918	 break;
919      case GL_MAP1_TEXTURE_COORD_1:
920         ctx->EvalMap.Map1Texture1.Order = order;
921	 ctx->EvalMap.Map1Texture1.u1 = u1;
922	 ctx->EvalMap.Map1Texture1.u2 = u2;
923	 ctx->EvalMap.Map1Texture1.du = 1.0 / (u2 - u1);
924	 if (ctx->EvalMap.Map1Texture1.Points
925             && !ctx->EvalMap.Map1Texture1.Retain) {
926	    free( ctx->EvalMap.Map1Texture1.Points );
927	 }
928	 ctx->EvalMap.Map1Texture1.Points = (GLfloat *) points;
929	 ctx->EvalMap.Map1Texture1.Retain = retain;
930	 break;
931      case GL_MAP1_TEXTURE_COORD_2:
932         ctx->EvalMap.Map1Texture2.Order = order;
933	 ctx->EvalMap.Map1Texture2.u1 = u1;
934	 ctx->EvalMap.Map1Texture2.u2 = u2;
935	 ctx->EvalMap.Map1Texture2.du = 1.0 / (u2 - u1);
936	 if (ctx->EvalMap.Map1Texture2.Points
937             && !ctx->EvalMap.Map1Texture2.Retain) {
938	    free( ctx->EvalMap.Map1Texture2.Points );
939	 }
940	 ctx->EvalMap.Map1Texture2.Points = (GLfloat *) points;
941	 ctx->EvalMap.Map1Texture2.Retain = retain;
942	 break;
943      case GL_MAP1_TEXTURE_COORD_3:
944         ctx->EvalMap.Map1Texture3.Order = order;
945	 ctx->EvalMap.Map1Texture3.u1 = u1;
946	 ctx->EvalMap.Map1Texture3.u2 = u2;
947	 ctx->EvalMap.Map1Texture3.du = 1.0 / (u2 - u1);
948	 if (ctx->EvalMap.Map1Texture3.Points
949             && !ctx->EvalMap.Map1Texture3.Retain) {
950	    free( ctx->EvalMap.Map1Texture3.Points );
951	 }
952	 ctx->EvalMap.Map1Texture3.Points = (GLfloat *) points;
953	 ctx->EvalMap.Map1Texture3.Retain = retain;
954	 break;
955      case GL_MAP1_TEXTURE_COORD_4:
956         ctx->EvalMap.Map1Texture4.Order = order;
957	 ctx->EvalMap.Map1Texture4.u1 = u1;
958	 ctx->EvalMap.Map1Texture4.u2 = u2;
959	 ctx->EvalMap.Map1Texture4.du = 1.0 / (u2 - u1);
960	 if (ctx->EvalMap.Map1Texture4.Points
961             && !ctx->EvalMap.Map1Texture4.Retain) {
962	    free( ctx->EvalMap.Map1Texture4.Points );
963	 }
964	 ctx->EvalMap.Map1Texture4.Points = (GLfloat *) points;
965	 ctx->EvalMap.Map1Texture4.Retain = retain;
966	 break;
967      default:
968         gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
969   }
970}
971
972
973
974
975/*
976 * Note that the array of control points must be 'unpacked' at this time.
977 * Input:  retain - if TRUE, this control point data is also in a display
978 *                  list and can't be freed until the list is freed.
979 */
980void gl_Map2f( GLcontext* ctx, GLenum target,
981	      GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
982	      GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
983	      const GLfloat *points, GLboolean retain )
984{
985   GLint k;
986
987   ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap2");
988
989   if (u1==u2) {
990      gl_error( ctx, GL_INVALID_VALUE, "glMap2(u1,u2)" );
991      return;
992   }
993
994   if (v1==v2) {
995      gl_error( ctx, GL_INVALID_VALUE, "glMap2(v1,v2)" );
996      return;
997   }
998
999   if (uorder<1 || uorder>MAX_EVAL_ORDER) {
1000      gl_error( ctx, GL_INVALID_VALUE, "glMap2(uorder)" );
1001      return;
1002   }
1003
1004   if (vorder<1 || vorder>MAX_EVAL_ORDER) {
1005      gl_error( ctx, GL_INVALID_VALUE, "glMap2(vorder)" );
1006      return;
1007   }
1008
1009   k = components( target );
1010   if (k==0) {
1011      gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
1012   }
1013
1014   if (ustride < k) {
1015      gl_error( ctx, GL_INVALID_VALUE, "glMap2(ustride)" );
1016      return;
1017   }
1018   if (vstride < k) {
1019      gl_error( ctx, GL_INVALID_VALUE, "glMap2(vstride)" );
1020      return;
1021   }
1022
1023   switch (target) {
1024      case GL_MAP2_VERTEX_3:
1025         ctx->EvalMap.Map2Vertex3.Uorder = uorder;
1026	 ctx->EvalMap.Map2Vertex3.u1 = u1;
1027	 ctx->EvalMap.Map2Vertex3.u2 = u2;
1028	 ctx->EvalMap.Map2Vertex3.du = 1.0 / (u2 - u1);
1029         ctx->EvalMap.Map2Vertex3.Vorder = vorder;
1030	 ctx->EvalMap.Map2Vertex3.v1 = v1;
1031	 ctx->EvalMap.Map2Vertex3.v2 = v2;
1032	 ctx->EvalMap.Map2Vertex3.dv = 1.0 / (v2 - v1);
1033	 if (ctx->EvalMap.Map2Vertex3.Points
1034             && !ctx->EvalMap.Map2Vertex3.Retain) {
1035	    free( ctx->EvalMap.Map2Vertex3.Points );
1036	 }
1037	 ctx->EvalMap.Map2Vertex3.Retain = retain;
1038	 ctx->EvalMap.Map2Vertex3.Points = (GLfloat *) points;
1039	 break;
1040      case GL_MAP2_VERTEX_4:
1041         ctx->EvalMap.Map2Vertex4.Uorder = uorder;
1042	 ctx->EvalMap.Map2Vertex4.u1 = u1;
1043	 ctx->EvalMap.Map2Vertex4.u2 = u2;
1044	 ctx->EvalMap.Map2Vertex4.du = 1.0 / (u2 - u1);
1045         ctx->EvalMap.Map2Vertex4.Vorder = vorder;
1046	 ctx->EvalMap.Map2Vertex4.v1 = v1;
1047	 ctx->EvalMap.Map2Vertex4.v2 = v2;
1048	 ctx->EvalMap.Map2Vertex4.dv = 1.0 / (v2 - v1);
1049	 if (ctx->EvalMap.Map2Vertex4.Points
1050             && !ctx->EvalMap.Map2Vertex4.Retain) {
1051	    free( ctx->EvalMap.Map2Vertex4.Points );
1052	 }
1053	 ctx->EvalMap.Map2Vertex4.Points = (GLfloat *) points;
1054	 ctx->EvalMap.Map2Vertex4.Retain = retain;
1055	 break;
1056      case GL_MAP2_INDEX:
1057         ctx->EvalMap.Map2Index.Uorder = uorder;
1058	 ctx->EvalMap.Map2Index.u1 = u1;
1059	 ctx->EvalMap.Map2Index.u2 = u2;
1060	 ctx->EvalMap.Map2Index.du = 1.0 / (u2 - u1);
1061         ctx->EvalMap.Map2Index.Vorder = vorder;
1062	 ctx->EvalMap.Map2Index.v1 = v1;
1063	 ctx->EvalMap.Map2Index.v2 = v2;
1064	 ctx->EvalMap.Map2Index.dv = 1.0 / (v2 - v1);
1065	 if (ctx->EvalMap.Map2Index.Points
1066             && !ctx->EvalMap.Map2Index.Retain) {
1067	    free( ctx->EvalMap.Map2Index.Points );
1068	 }
1069	 ctx->EvalMap.Map2Index.Retain = retain;
1070	 ctx->EvalMap.Map2Index.Points = (GLfloat *) points;
1071	 break;
1072      case GL_MAP2_COLOR_4:
1073         ctx->EvalMap.Map2Color4.Uorder = uorder;
1074	 ctx->EvalMap.Map2Color4.u1 = u1;
1075	 ctx->EvalMap.Map2Color4.u2 = u2;
1076	 ctx->EvalMap.Map2Color4.du = 1.0 / (u2 - u1);
1077         ctx->EvalMap.Map2Color4.Vorder = vorder;
1078	 ctx->EvalMap.Map2Color4.v1 = v1;
1079	 ctx->EvalMap.Map2Color4.v2 = v2;
1080	 ctx->EvalMap.Map2Color4.dv = 1.0 / (v2 - v1);
1081	 if (ctx->EvalMap.Map2Color4.Points
1082             && !ctx->EvalMap.Map2Color4.Retain) {
1083	    free( ctx->EvalMap.Map2Color4.Points );
1084	 }
1085	 ctx->EvalMap.Map2Color4.Retain = retain;
1086	 ctx->EvalMap.Map2Color4.Points = (GLfloat *) points;
1087	 break;
1088      case GL_MAP2_NORMAL:
1089         ctx->EvalMap.Map2Normal.Uorder = uorder;
1090	 ctx->EvalMap.Map2Normal.u1 = u1;
1091	 ctx->EvalMap.Map2Normal.u2 = u2;
1092	 ctx->EvalMap.Map2Normal.du = 1.0 / (u2 - u1);
1093         ctx->EvalMap.Map2Normal.Vorder = vorder;
1094	 ctx->EvalMap.Map2Normal.v1 = v1;
1095	 ctx->EvalMap.Map2Normal.v2 = v2;
1096	 ctx->EvalMap.Map2Normal.dv = 1.0 / (v2 - v1);
1097	 if (ctx->EvalMap.Map2Normal.Points
1098             && !ctx->EvalMap.Map2Normal.Retain) {
1099	    free( ctx->EvalMap.Map2Normal.Points );
1100	 }
1101	 ctx->EvalMap.Map2Normal.Retain = retain;
1102	 ctx->EvalMap.Map2Normal.Points = (GLfloat *) points;
1103	 break;
1104      case GL_MAP2_TEXTURE_COORD_1:
1105         ctx->EvalMap.Map2Texture1.Uorder = uorder;
1106	 ctx->EvalMap.Map2Texture1.u1 = u1;
1107	 ctx->EvalMap.Map2Texture1.u2 = u2;
1108	 ctx->EvalMap.Map2Texture1.du = 1.0 / (u2 - u1);
1109         ctx->EvalMap.Map2Texture1.Vorder = vorder;
1110	 ctx->EvalMap.Map2Texture1.v1 = v1;
1111	 ctx->EvalMap.Map2Texture1.v2 = v2;
1112	 ctx->EvalMap.Map2Texture1.dv = 1.0 / (v2 - v1);
1113	 if (ctx->EvalMap.Map2Texture1.Points
1114             && !ctx->EvalMap.Map2Texture1.Retain) {
1115	    free( ctx->EvalMap.Map2Texture1.Points );
1116	 }
1117	 ctx->EvalMap.Map2Texture1.Retain = retain;
1118	 ctx->EvalMap.Map2Texture1.Points = (GLfloat *) points;
1119	 break;
1120      case GL_MAP2_TEXTURE_COORD_2:
1121         ctx->EvalMap.Map2Texture2.Uorder = uorder;
1122	 ctx->EvalMap.Map2Texture2.u1 = u1;
1123	 ctx->EvalMap.Map2Texture2.u2 = u2;
1124	 ctx->EvalMap.Map2Texture2.du = 1.0 / (u2 - u1);
1125         ctx->EvalMap.Map2Texture2.Vorder = vorder;
1126	 ctx->EvalMap.Map2Texture2.v1 = v1;
1127	 ctx->EvalMap.Map2Texture2.v2 = v2;
1128	 ctx->EvalMap.Map2Texture2.dv = 1.0 / (v2 - v1);
1129	 if (ctx->EvalMap.Map2Texture2.Points
1130             && !ctx->EvalMap.Map2Texture2.Retain) {
1131	    free( ctx->EvalMap.Map2Texture2.Points );
1132	 }
1133	 ctx->EvalMap.Map2Texture2.Retain = retain;
1134	 ctx->EvalMap.Map2Texture2.Points = (GLfloat *) points;
1135	 break;
1136      case GL_MAP2_TEXTURE_COORD_3:
1137         ctx->EvalMap.Map2Texture3.Uorder = uorder;
1138	 ctx->EvalMap.Map2Texture3.u1 = u1;
1139	 ctx->EvalMap.Map2Texture3.u2 = u2;
1140	 ctx->EvalMap.Map2Texture3.du = 1.0 / (u2 - u1);
1141         ctx->EvalMap.Map2Texture3.Vorder = vorder;
1142	 ctx->EvalMap.Map2Texture3.v1 = v1;
1143	 ctx->EvalMap.Map2Texture3.v2 = v2;
1144	 ctx->EvalMap.Map2Texture3.dv = 1.0 / (v2 - v1);
1145	 if (ctx->EvalMap.Map2Texture3.Points
1146             && !ctx->EvalMap.Map2Texture3.Retain) {
1147	    free( ctx->EvalMap.Map2Texture3.Points );
1148	 }
1149	 ctx->EvalMap.Map2Texture3.Retain = retain;
1150	 ctx->EvalMap.Map2Texture3.Points = (GLfloat *) points;
1151	 break;
1152      case GL_MAP2_TEXTURE_COORD_4:
1153         ctx->EvalMap.Map2Texture4.Uorder = uorder;
1154	 ctx->EvalMap.Map2Texture4.u1 = u1;
1155	 ctx->EvalMap.Map2Texture4.u2 = u2;
1156	 ctx->EvalMap.Map2Texture4.du = 1.0 / (u2 - u1);
1157         ctx->EvalMap.Map2Texture4.Vorder = vorder;
1158	 ctx->EvalMap.Map2Texture4.v1 = v1;
1159	 ctx->EvalMap.Map2Texture4.v2 = v2;
1160	 ctx->EvalMap.Map2Texture4.dv = 1.0 / (v2 - v1);
1161	 if (ctx->EvalMap.Map2Texture4.Points
1162             && !ctx->EvalMap.Map2Texture4.Retain) {
1163	    free( ctx->EvalMap.Map2Texture4.Points );
1164	 }
1165	 ctx->EvalMap.Map2Texture4.Retain = retain;
1166	 ctx->EvalMap.Map2Texture4.Points = (GLfloat *) points;
1167	 break;
1168      default:
1169         gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
1170   }
1171}
1172
1173
1174
1175
1176
1177void gl_GetMapdv( GLcontext* ctx, GLenum target, GLenum query, GLdouble *v )
1178{
1179   GLint i, n;
1180   GLfloat *data;
1181
1182   switch (query) {
1183      case GL_COEFF:
1184	 switch (target) {
1185	    case GL_MAP1_COLOR_4:
1186	       data = ctx->EvalMap.Map1Color4.Points;
1187	       n = ctx->EvalMap.Map1Color4.Order * 4;
1188	       break;
1189	    case GL_MAP1_INDEX:
1190	       data = ctx->EvalMap.Map1Index.Points;
1191	       n = ctx->EvalMap.Map1Index.Order;
1192	       break;
1193	    case GL_MAP1_NORMAL:
1194	       data = ctx->EvalMap.Map1Normal.Points;
1195	       n = ctx->EvalMap.Map1Normal.Order * 3;
1196	       break;
1197	    case GL_MAP1_TEXTURE_COORD_1:
1198	       data = ctx->EvalMap.Map1Texture1.Points;
1199	       n = ctx->EvalMap.Map1Texture1.Order * 1;
1200	       break;
1201	    case GL_MAP1_TEXTURE_COORD_2:
1202	       data = ctx->EvalMap.Map1Texture2.Points;
1203	       n = ctx->EvalMap.Map1Texture2.Order * 2;
1204	       break;
1205	    case GL_MAP1_TEXTURE_COORD_3:
1206	       data = ctx->EvalMap.Map1Texture3.Points;
1207	       n = ctx->EvalMap.Map1Texture3.Order * 3;
1208	       break;
1209	    case GL_MAP1_TEXTURE_COORD_4:
1210	       data = ctx->EvalMap.Map1Texture4.Points;
1211	       n = ctx->EvalMap.Map1Texture4.Order * 4;
1212	       break;
1213	    case GL_MAP1_VERTEX_3:
1214	       data = ctx->EvalMap.Map1Vertex3.Points;
1215	       n = ctx->EvalMap.Map1Vertex3.Order * 3;
1216	       break;
1217	    case GL_MAP1_VERTEX_4:
1218	       data = ctx->EvalMap.Map1Vertex4.Points;
1219	       n = ctx->EvalMap.Map1Vertex4.Order * 4;
1220	       break;
1221	    case GL_MAP2_COLOR_4:
1222	       data = ctx->EvalMap.Map2Color4.Points;
1223	       n = ctx->EvalMap.Map2Color4.Uorder
1224                 * ctx->EvalMap.Map2Color4.Vorder * 4;
1225	       break;
1226	    case GL_MAP2_INDEX:
1227	       data = ctx->EvalMap.Map2Index.Points;
1228	       n = ctx->EvalMap.Map2Index.Uorder
1229                 * ctx->EvalMap.Map2Index.Vorder;
1230	       break;
1231	    case GL_MAP2_NORMAL:
1232	       data = ctx->EvalMap.Map2Normal.Points;
1233	       n = ctx->EvalMap.Map2Normal.Uorder
1234                 * ctx->EvalMap.Map2Normal.Vorder * 3;
1235	       break;
1236	    case GL_MAP2_TEXTURE_COORD_1:
1237	       data = ctx->EvalMap.Map2Texture1.Points;
1238	       n = ctx->EvalMap.Map2Texture1.Uorder
1239                 * ctx->EvalMap.Map2Texture1.Vorder * 1;
1240	       break;
1241	    case GL_MAP2_TEXTURE_COORD_2:
1242	       data = ctx->EvalMap.Map2Texture2.Points;
1243	       n = ctx->EvalMap.Map2Texture2.Uorder
1244                 * ctx->EvalMap.Map2Texture2.Vorder * 2;
1245	       break;
1246	    case GL_MAP2_TEXTURE_COORD_3:
1247	       data = ctx->EvalMap.Map2Texture3.Points;
1248	       n = ctx->EvalMap.Map2Texture3.Uorder
1249                 * ctx->EvalMap.Map2Texture3.Vorder * 3;
1250	       break;
1251	    case GL_MAP2_TEXTURE_COORD_4:
1252	       data = ctx->EvalMap.Map2Texture4.Points;
1253	       n = ctx->EvalMap.Map2Texture4.Uorder
1254                 * ctx->EvalMap.Map2Texture4.Vorder * 4;
1255	       break;
1256	    case GL_MAP2_VERTEX_3:
1257	       data = ctx->EvalMap.Map2Vertex3.Points;
1258	       n = ctx->EvalMap.Map2Vertex3.Uorder
1259                 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
1260	       break;
1261	    case GL_MAP2_VERTEX_4:
1262	       data = ctx->EvalMap.Map2Vertex4.Points;
1263	       n = ctx->EvalMap.Map2Vertex4.Uorder
1264                 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
1265	       break;
1266	    default:
1267	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
1268	       return;
1269	 }
1270	 if (data) {
1271	    for (i=0;i<n;i++) {
1272	       v[i] = data[i];
1273	    }
1274	 }
1275         break;
1276      case GL_ORDER:
1277	 switch (target) {
1278	    case GL_MAP1_COLOR_4:
1279	       *v = ctx->EvalMap.Map1Color4.Order;
1280	       break;
1281	    case GL_MAP1_INDEX:
1282	       *v = ctx->EvalMap.Map1Index.Order;
1283	       break;
1284	    case GL_MAP1_NORMAL:
1285	       *v = ctx->EvalMap.Map1Normal.Order;
1286	       break;
1287	    case GL_MAP1_TEXTURE_COORD_1:
1288	       *v = ctx->EvalMap.Map1Texture1.Order;
1289	       break;
1290	    case GL_MAP1_TEXTURE_COORD_2:
1291	       *v = ctx->EvalMap.Map1Texture2.Order;
1292	       break;
1293	    case GL_MAP1_TEXTURE_COORD_3:
1294	       *v = ctx->EvalMap.Map1Texture3.Order;
1295	       break;
1296	    case GL_MAP1_TEXTURE_COORD_4:
1297	       *v = ctx->EvalMap.Map1Texture4.Order;
1298	       break;
1299	    case GL_MAP1_VERTEX_3:
1300	       *v = ctx->EvalMap.Map1Vertex3.Order;
1301	       break;
1302	    case GL_MAP1_VERTEX_4:
1303	       *v = ctx->EvalMap.Map1Vertex4.Order;
1304	       break;
1305	    case GL_MAP2_COLOR_4:
1306	       v[0] = ctx->EvalMap.Map2Color4.Uorder;
1307	       v[1] = ctx->EvalMap.Map2Color4.Vorder;
1308	       break;
1309	    case GL_MAP2_INDEX:
1310	       v[0] = ctx->EvalMap.Map2Index.Uorder;
1311	       v[1] = ctx->EvalMap.Map2Index.Vorder;
1312	       break;
1313	    case GL_MAP2_NORMAL:
1314	       v[0] = ctx->EvalMap.Map2Normal.Uorder;
1315	       v[1] = ctx->EvalMap.Map2Normal.Vorder;
1316	       break;
1317	    case GL_MAP2_TEXTURE_COORD_1:
1318	       v[0] = ctx->EvalMap.Map2Texture1.Uorder;
1319	       v[1] = ctx->EvalMap.Map2Texture1.Vorder;
1320	       break;
1321	    case GL_MAP2_TEXTURE_COORD_2:
1322	       v[0] = ctx->EvalMap.Map2Texture2.Uorder;
1323	       v[1] = ctx->EvalMap.Map2Texture2.Vorder;
1324	       break;
1325	    case GL_MAP2_TEXTURE_COORD_3:
1326	       v[0] = ctx->EvalMap.Map2Texture3.Uorder;
1327	       v[1] = ctx->EvalMap.Map2Texture3.Vorder;
1328	       break;
1329	    case GL_MAP2_TEXTURE_COORD_4:
1330	       v[0] = ctx->EvalMap.Map2Texture4.Uorder;
1331	       v[1] = ctx->EvalMap.Map2Texture4.Vorder;
1332	       break;
1333	    case GL_MAP2_VERTEX_3:
1334	       v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
1335	       v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
1336	       break;
1337	    case GL_MAP2_VERTEX_4:
1338	       v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
1339	       v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
1340	       break;
1341	    default:
1342	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
1343	       return;
1344	 }
1345         break;
1346      case GL_DOMAIN:
1347	 switch (target) {
1348	    case GL_MAP1_COLOR_4:
1349	       v[0] = ctx->EvalMap.Map1Color4.u1;
1350	       v[1] = ctx->EvalMap.Map1Color4.u2;
1351	       break;
1352	    case GL_MAP1_INDEX:
1353	       v[0] = ctx->EvalMap.Map1Index.u1;
1354	       v[1] = ctx->EvalMap.Map1Index.u2;
1355	       break;
1356	    case GL_MAP1_NORMAL:
1357	       v[0] = ctx->EvalMap.Map1Normal.u1;
1358	       v[1] = ctx->EvalMap.Map1Normal.u2;
1359	       break;
1360	    case GL_MAP1_TEXTURE_COORD_1:
1361	       v[0] = ctx->EvalMap.Map1Texture1.u1;
1362	       v[1] = ctx->EvalMap.Map1Texture1.u2;
1363	       break;
1364	    case GL_MAP1_TEXTURE_COORD_2:
1365	       v[0] = ctx->EvalMap.Map1Texture2.u1;
1366	       v[1] = ctx->EvalMap.Map1Texture2.u2;
1367	       break;
1368	    case GL_MAP1_TEXTURE_COORD_3:
1369	       v[0] = ctx->EvalMap.Map1Texture3.u1;
1370	       v[1] = ctx->EvalMap.Map1Texture3.u2;
1371	       break;
1372	    case GL_MAP1_TEXTURE_COORD_4:
1373	       v[0] = ctx->EvalMap.Map1Texture4.u1;
1374	       v[1] = ctx->EvalMap.Map1Texture4.u2;
1375	       break;
1376	    case GL_MAP1_VERTEX_3:
1377	       v[0] = ctx->EvalMap.Map1Vertex3.u1;
1378	       v[1] = ctx->EvalMap.Map1Vertex3.u2;
1379	       break;
1380	    case GL_MAP1_VERTEX_4:
1381	       v[0] = ctx->EvalMap.Map1Vertex4.u1;
1382	       v[1] = ctx->EvalMap.Map1Vertex4.u2;
1383	       break;
1384	    case GL_MAP2_COLOR_4:
1385	       v[0] = ctx->EvalMap.Map2Color4.u1;
1386	       v[1] = ctx->EvalMap.Map2Color4.u2;
1387	       v[2] = ctx->EvalMap.Map2Color4.v1;
1388	       v[3] = ctx->EvalMap.Map2Color4.v2;
1389	       break;
1390	    case GL_MAP2_INDEX:
1391	       v[0] = ctx->EvalMap.Map2Index.u1;
1392	       v[1] = ctx->EvalMap.Map2Index.u2;
1393	       v[2] = ctx->EvalMap.Map2Index.v1;
1394	       v[3] = ctx->EvalMap.Map2Index.v2;
1395	       break;
1396	    case GL_MAP2_NORMAL:
1397	       v[0] = ctx->EvalMap.Map2Normal.u1;
1398	       v[1] = ctx->EvalMap.Map2Normal.u2;
1399	       v[2] = ctx->EvalMap.Map2Normal.v1;
1400	       v[3] = ctx->EvalMap.Map2Normal.v2;
1401	       break;
1402	    case GL_MAP2_TEXTURE_COORD_1:
1403	       v[0] = ctx->EvalMap.Map2Texture1.u1;
1404	       v[1] = ctx->EvalMap.Map2Texture1.u2;
1405	       v[2] = ctx->EvalMap.Map2Texture1.v1;
1406	       v[3] = ctx->EvalMap.Map2Texture1.v2;
1407	       break;
1408	    case GL_MAP2_TEXTURE_COORD_2:
1409	       v[0] = ctx->EvalMap.Map2Texture2.u1;
1410	       v[1] = ctx->EvalMap.Map2Texture2.u2;
1411	       v[2] = ctx->EvalMap.Map2Texture2.v1;
1412	       v[3] = ctx->EvalMap.Map2Texture2.v2;
1413	       break;
1414	    case GL_MAP2_TEXTURE_COORD_3:
1415	       v[0] = ctx->EvalMap.Map2Texture3.u1;
1416	       v[1] = ctx->EvalMap.Map2Texture3.u2;
1417	       v[2] = ctx->EvalMap.Map2Texture3.v1;
1418	       v[3] = ctx->EvalMap.Map2Texture3.v2;
1419	       break;
1420	    case GL_MAP2_TEXTURE_COORD_4:
1421	       v[0] = ctx->EvalMap.Map2Texture4.u1;
1422	       v[1] = ctx->EvalMap.Map2Texture4.u2;
1423	       v[2] = ctx->EvalMap.Map2Texture4.v1;
1424	       v[3] = ctx->EvalMap.Map2Texture4.v2;
1425	       break;
1426	    case GL_MAP2_VERTEX_3:
1427	       v[0] = ctx->EvalMap.Map2Vertex3.u1;
1428	       v[1] = ctx->EvalMap.Map2Vertex3.u2;
1429	       v[2] = ctx->EvalMap.Map2Vertex3.v1;
1430	       v[3] = ctx->EvalMap.Map2Vertex3.v2;
1431	       break;
1432	    case GL_MAP2_VERTEX_4:
1433	       v[0] = ctx->EvalMap.Map2Vertex4.u1;
1434	       v[1] = ctx->EvalMap.Map2Vertex4.u2;
1435	       v[2] = ctx->EvalMap.Map2Vertex4.v1;
1436	       v[3] = ctx->EvalMap.Map2Vertex4.v2;
1437	       break;
1438	    default:
1439	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
1440	 }
1441         break;
1442      default:
1443         gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(query)" );
1444   }
1445}
1446
1447
1448void gl_GetMapfv( GLcontext* ctx, GLenum target, GLenum query, GLfloat *v )
1449{
1450   GLint i, n;
1451   GLfloat *data;
1452
1453   switch (query) {
1454      case GL_COEFF:
1455	 switch (target) {
1456	    case GL_MAP1_COLOR_4:
1457	       data = ctx->EvalMap.Map1Color4.Points;
1458	       n = ctx->EvalMap.Map1Color4.Order * 4;
1459	       break;
1460	    case GL_MAP1_INDEX:
1461	       data = ctx->EvalMap.Map1Index.Points;
1462	       n = ctx->EvalMap.Map1Index.Order;
1463	       break;
1464	    case GL_MAP1_NORMAL:
1465	       data = ctx->EvalMap.Map1Normal.Points;
1466	       n = ctx->EvalMap.Map1Normal.Order * 3;
1467	       break;
1468	    case GL_MAP1_TEXTURE_COORD_1:
1469	       data = ctx->EvalMap.Map1Texture1.Points;
1470	       n = ctx->EvalMap.Map1Texture1.Order * 1;
1471	       break;
1472	    case GL_MAP1_TEXTURE_COORD_2:
1473	       data = ctx->EvalMap.Map1Texture2.Points;
1474	       n = ctx->EvalMap.Map1Texture2.Order * 2;
1475	       break;
1476	    case GL_MAP1_TEXTURE_COORD_3:
1477	       data = ctx->EvalMap.Map1Texture3.Points;
1478	       n = ctx->EvalMap.Map1Texture3.Order * 3;
1479	       break;
1480	    case GL_MAP1_TEXTURE_COORD_4:
1481	       data = ctx->EvalMap.Map1Texture4.Points;
1482	       n = ctx->EvalMap.Map1Texture4.Order * 4;
1483	       break;
1484	    case GL_MAP1_VERTEX_3:
1485	       data = ctx->EvalMap.Map1Vertex3.Points;
1486	       n = ctx->EvalMap.Map1Vertex3.Order * 3;
1487	       break;
1488	    case GL_MAP1_VERTEX_4:
1489	       data = ctx->EvalMap.Map1Vertex4.Points;
1490	       n = ctx->EvalMap.Map1Vertex4.Order * 4;
1491	       break;
1492	    case GL_MAP2_COLOR_4:
1493	       data = ctx->EvalMap.Map2Color4.Points;
1494	       n = ctx->EvalMap.Map2Color4.Uorder
1495                 * ctx->EvalMap.Map2Color4.Vorder * 4;
1496	       break;
1497	    case GL_MAP2_INDEX:
1498	       data = ctx->EvalMap.Map2Index.Points;
1499	       n = ctx->EvalMap.Map2Index.Uorder
1500                 * ctx->EvalMap.Map2Index.Vorder;
1501	       break;
1502	    case GL_MAP2_NORMAL:
1503	       data = ctx->EvalMap.Map2Normal.Points;
1504	       n = ctx->EvalMap.Map2Normal.Uorder
1505                 * ctx->EvalMap.Map2Normal.Vorder * 3;
1506	       break;
1507	    case GL_MAP2_TEXTURE_COORD_1:
1508	       data = ctx->EvalMap.Map2Texture1.Points;
1509	       n = ctx->EvalMap.Map2Texture1.Uorder
1510                 * ctx->EvalMap.Map2Texture1.Vorder * 1;
1511	       break;
1512	    case GL_MAP2_TEXTURE_COORD_2:
1513	       data = ctx->EvalMap.Map2Texture2.Points;
1514	       n = ctx->EvalMap.Map2Texture2.Uorder
1515                 * ctx->EvalMap.Map2Texture2.Vorder * 2;
1516	       break;
1517	    case GL_MAP2_TEXTURE_COORD_3:
1518	       data = ctx->EvalMap.Map2Texture3.Points;
1519	       n = ctx->EvalMap.Map2Texture3.Uorder
1520                 * ctx->EvalMap.Map2Texture3.Vorder * 3;
1521	       break;
1522	    case GL_MAP2_TEXTURE_COORD_4:
1523	       data = ctx->EvalMap.Map2Texture4.Points;
1524	       n = ctx->EvalMap.Map2Texture4.Uorder
1525                 * ctx->EvalMap.Map2Texture4.Vorder * 4;
1526	       break;
1527	    case GL_MAP2_VERTEX_3:
1528	       data = ctx->EvalMap.Map2Vertex3.Points;
1529	       n = ctx->EvalMap.Map2Vertex3.Uorder
1530                 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
1531	       break;
1532	    case GL_MAP2_VERTEX_4:
1533	       data = ctx->EvalMap.Map2Vertex4.Points;
1534	       n = ctx->EvalMap.Map2Vertex4.Uorder
1535                 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
1536	       break;
1537	    default:
1538	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
1539	       return;
1540	 }
1541	 if (data) {
1542	    for (i=0;i<n;i++) {
1543	       v[i] = data[i];
1544	    }
1545	 }
1546         break;
1547      case GL_ORDER:
1548	 switch (target) {
1549	    case GL_MAP1_COLOR_4:
1550	       *v = ctx->EvalMap.Map1Color4.Order;
1551	       break;
1552	    case GL_MAP1_INDEX:
1553	       *v = ctx->EvalMap.Map1Index.Order;
1554	       break;
1555	    case GL_MAP1_NORMAL:
1556	       *v = ctx->EvalMap.Map1Normal.Order;
1557	       break;
1558	    case GL_MAP1_TEXTURE_COORD_1:
1559	       *v = ctx->EvalMap.Map1Texture1.Order;
1560	       break;
1561	    case GL_MAP1_TEXTURE_COORD_2:
1562	       *v = ctx->EvalMap.Map1Texture2.Order;
1563	       break;
1564	    case GL_MAP1_TEXTURE_COORD_3:
1565	       *v = ctx->EvalMap.Map1Texture3.Order;
1566	       break;
1567	    case GL_MAP1_TEXTURE_COORD_4:
1568	       *v = ctx->EvalMap.Map1Texture4.Order;
1569	       break;
1570	    case GL_MAP1_VERTEX_3:
1571	       *v = ctx->EvalMap.Map1Vertex3.Order;
1572	       break;
1573	    case GL_MAP1_VERTEX_4:
1574	       *v = ctx->EvalMap.Map1Vertex4.Order;
1575	       break;
1576	    case GL_MAP2_COLOR_4:
1577	       v[0] = ctx->EvalMap.Map2Color4.Uorder;
1578	       v[1] = ctx->EvalMap.Map2Color4.Vorder;
1579	       break;
1580	    case GL_MAP2_INDEX:
1581	       v[0] = ctx->EvalMap.Map2Index.Uorder;
1582	       v[1] = ctx->EvalMap.Map2Index.Vorder;
1583	       break;
1584	    case GL_MAP2_NORMAL:
1585	       v[0] = ctx->EvalMap.Map2Normal.Uorder;
1586	       v[1] = ctx->EvalMap.Map2Normal.Vorder;
1587	       break;
1588	    case GL_MAP2_TEXTURE_COORD_1:
1589	       v[0] = ctx->EvalMap.Map2Texture1.Uorder;
1590	       v[1] = ctx->EvalMap.Map2Texture1.Vorder;
1591	       break;
1592	    case GL_MAP2_TEXTURE_COORD_2:
1593	       v[0] = ctx->EvalMap.Map2Texture2.Uorder;
1594	       v[1] = ctx->EvalMap.Map2Texture2.Vorder;
1595	       break;
1596	    case GL_MAP2_TEXTURE_COORD_3:
1597	       v[0] = ctx->EvalMap.Map2Texture3.Uorder;
1598	       v[1] = ctx->EvalMap.Map2Texture3.Vorder;
1599	       break;
1600	    case GL_MAP2_TEXTURE_COORD_4:
1601	       v[0] = ctx->EvalMap.Map2Texture4.Uorder;
1602	       v[1] = ctx->EvalMap.Map2Texture4.Vorder;
1603	       break;
1604	    case GL_MAP2_VERTEX_3:
1605	       v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
1606	       v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
1607	       break;
1608	    case GL_MAP2_VERTEX_4:
1609	       v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
1610	       v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
1611	       break;
1612	    default:
1613	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
1614	       return;
1615	 }
1616         break;
1617      case GL_DOMAIN:
1618	 switch (target) {
1619	    case GL_MAP1_COLOR_4:
1620	       v[0] = ctx->EvalMap.Map1Color4.u1;
1621	       v[1] = ctx->EvalMap.Map1Color4.u2;
1622	       break;
1623	    case GL_MAP1_INDEX:
1624	       v[0] = ctx->EvalMap.Map1Index.u1;
1625	       v[1] = ctx->EvalMap.Map1Index.u2;
1626	       break;
1627	    case GL_MAP1_NORMAL:
1628	       v[0] = ctx->EvalMap.Map1Normal.u1;
1629	       v[1] = ctx->EvalMap.Map1Normal.u2;
1630	       break;
1631	    case GL_MAP1_TEXTURE_COORD_1:
1632	       v[0] = ctx->EvalMap.Map1Texture1.u1;
1633	       v[1] = ctx->EvalMap.Map1Texture1.u2;
1634	       break;
1635	    case GL_MAP1_TEXTURE_COORD_2:
1636	       v[0] = ctx->EvalMap.Map1Texture2.u1;
1637	       v[1] = ctx->EvalMap.Map1Texture2.u2;
1638	       break;
1639	    case GL_MAP1_TEXTURE_COORD_3:
1640	       v[0] = ctx->EvalMap.Map1Texture3.u1;
1641	       v[1] = ctx->EvalMap.Map1Texture3.u2;
1642	       break;
1643	    case GL_MAP1_TEXTURE_COORD_4:
1644	       v[0] = ctx->EvalMap.Map1Texture4.u1;
1645	       v[1] = ctx->EvalMap.Map1Texture4.u2;
1646	       break;
1647	    case GL_MAP1_VERTEX_3:
1648	       v[0] = ctx->EvalMap.Map1Vertex3.u1;
1649	       v[1] = ctx->EvalMap.Map1Vertex3.u2;
1650	       break;
1651	    case GL_MAP1_VERTEX_4:
1652	       v[0] = ctx->EvalMap.Map1Vertex4.u1;
1653	       v[1] = ctx->EvalMap.Map1Vertex4.u2;
1654	       break;
1655	    case GL_MAP2_COLOR_4:
1656	       v[0] = ctx->EvalMap.Map2Color4.u1;
1657	       v[1] = ctx->EvalMap.Map2Color4.u2;
1658	       v[2] = ctx->EvalMap.Map2Color4.v1;
1659	       v[3] = ctx->EvalMap.Map2Color4.v2;
1660	       break;
1661	    case GL_MAP2_INDEX:
1662	       v[0] = ctx->EvalMap.Map2Index.u1;
1663	       v[1] = ctx->EvalMap.Map2Index.u2;
1664	       v[2] = ctx->EvalMap.Map2Index.v1;
1665	       v[3] = ctx->EvalMap.Map2Index.v2;
1666	       break;
1667	    case GL_MAP2_NORMAL:
1668	       v[0] = ctx->EvalMap.Map2Normal.u1;
1669	       v[1] = ctx->EvalMap.Map2Normal.u2;
1670	       v[2] = ctx->EvalMap.Map2Normal.v1;
1671	       v[3] = ctx->EvalMap.Map2Normal.v2;
1672	       break;
1673	    case GL_MAP2_TEXTURE_COORD_1:
1674	       v[0] = ctx->EvalMap.Map2Texture1.u1;
1675	       v[1] = ctx->EvalMap.Map2Texture1.u2;
1676	       v[2] = ctx->EvalMap.Map2Texture1.v1;
1677	       v[3] = ctx->EvalMap.Map2Texture1.v2;
1678	       break;
1679	    case GL_MAP2_TEXTURE_COORD_2:
1680	       v[0] = ctx->EvalMap.Map2Texture2.u1;
1681	       v[1] = ctx->EvalMap.Map2Texture2.u2;
1682	       v[2] = ctx->EvalMap.Map2Texture2.v1;
1683	       v[3] = ctx->EvalMap.Map2Texture2.v2;
1684	       break;
1685	    case GL_MAP2_TEXTURE_COORD_3:
1686	       v[0] = ctx->EvalMap.Map2Texture3.u1;
1687	       v[1] = ctx->EvalMap.Map2Texture3.u2;
1688	       v[2] = ctx->EvalMap.Map2Texture3.v1;
1689	       v[3] = ctx->EvalMap.Map2Texture3.v2;
1690	       break;
1691	    case GL_MAP2_TEXTURE_COORD_4:
1692	       v[0] = ctx->EvalMap.Map2Texture4.u1;
1693	       v[1] = ctx->EvalMap.Map2Texture4.u2;
1694	       v[2] = ctx->EvalMap.Map2Texture4.v1;
1695	       v[3] = ctx->EvalMap.Map2Texture4.v2;
1696	       break;
1697	    case GL_MAP2_VERTEX_3:
1698	       v[0] = ctx->EvalMap.Map2Vertex3.u1;
1699	       v[1] = ctx->EvalMap.Map2Vertex3.u2;
1700	       v[2] = ctx->EvalMap.Map2Vertex3.v1;
1701	       v[3] = ctx->EvalMap.Map2Vertex3.v2;
1702	       break;
1703	    case GL_MAP2_VERTEX_4:
1704	       v[0] = ctx->EvalMap.Map2Vertex4.u1;
1705	       v[1] = ctx->EvalMap.Map2Vertex4.u2;
1706	       v[2] = ctx->EvalMap.Map2Vertex4.v1;
1707	       v[3] = ctx->EvalMap.Map2Vertex4.v2;
1708	       break;
1709	    default:
1710	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
1711	 }
1712         break;
1713      default:
1714         gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(query)" );
1715   }
1716}
1717
1718
1719void gl_GetMapiv( GLcontext* ctx, GLenum target, GLenum query, GLint *v )
1720{
1721   GLuint i, n;
1722   GLfloat *data;
1723
1724   switch (query) {
1725      case GL_COEFF:
1726	 switch (target) {
1727	    case GL_MAP1_COLOR_4:
1728	       data = ctx->EvalMap.Map1Color4.Points;
1729	       n = ctx->EvalMap.Map1Color4.Order * 4;
1730	       break;
1731	    case GL_MAP1_INDEX:
1732	       data = ctx->EvalMap.Map1Index.Points;
1733	       n = ctx->EvalMap.Map1Index.Order;
1734	       break;
1735	    case GL_MAP1_NORMAL:
1736	       data = ctx->EvalMap.Map1Normal.Points;
1737	       n = ctx->EvalMap.Map1Normal.Order * 3;
1738	       break;
1739	    case GL_MAP1_TEXTURE_COORD_1:
1740	       data = ctx->EvalMap.Map1Texture1.Points;
1741	       n = ctx->EvalMap.Map1Texture1.Order * 1;
1742	       break;
1743	    case GL_MAP1_TEXTURE_COORD_2:
1744	       data = ctx->EvalMap.Map1Texture2.Points;
1745	       n = ctx->EvalMap.Map1Texture2.Order * 2;
1746	       break;
1747	    case GL_MAP1_TEXTURE_COORD_3:
1748	       data = ctx->EvalMap.Map1Texture3.Points;
1749	       n = ctx->EvalMap.Map1Texture3.Order * 3;
1750	       break;
1751	    case GL_MAP1_TEXTURE_COORD_4:
1752	       data = ctx->EvalMap.Map1Texture4.Points;
1753	       n = ctx->EvalMap.Map1Texture4.Order * 4;
1754	       break;
1755	    case GL_MAP1_VERTEX_3:
1756	       data = ctx->EvalMap.Map1Vertex3.Points;
1757	       n = ctx->EvalMap.Map1Vertex3.Order * 3;
1758	       break;
1759	    case GL_MAP1_VERTEX_4:
1760	       data = ctx->EvalMap.Map1Vertex4.Points;
1761	       n = ctx->EvalMap.Map1Vertex4.Order * 4;
1762	       break;
1763	    case GL_MAP2_COLOR_4:
1764	       data = ctx->EvalMap.Map2Color4.Points;
1765	       n = ctx->EvalMap.Map2Color4.Uorder
1766                 * ctx->EvalMap.Map2Color4.Vorder * 4;
1767	       break;
1768	    case GL_MAP2_INDEX:
1769	       data = ctx->EvalMap.Map2Index.Points;
1770	       n = ctx->EvalMap.Map2Index.Uorder
1771                 * ctx->EvalMap.Map2Index.Vorder;
1772	       break;
1773	    case GL_MAP2_NORMAL:
1774	       data = ctx->EvalMap.Map2Normal.Points;
1775	       n = ctx->EvalMap.Map2Normal.Uorder
1776                 * ctx->EvalMap.Map2Normal.Vorder * 3;
1777	       break;
1778	    case GL_MAP2_TEXTURE_COORD_1:
1779	       data = ctx->EvalMap.Map2Texture1.Points;
1780	       n = ctx->EvalMap.Map2Texture1.Uorder
1781                 * ctx->EvalMap.Map2Texture1.Vorder * 1;
1782	       break;
1783	    case GL_MAP2_TEXTURE_COORD_2:
1784	       data = ctx->EvalMap.Map2Texture2.Points;
1785	       n = ctx->EvalMap.Map2Texture2.Uorder
1786                 * ctx->EvalMap.Map2Texture2.Vorder * 2;
1787	       break;
1788	    case GL_MAP2_TEXTURE_COORD_3:
1789	       data = ctx->EvalMap.Map2Texture3.Points;
1790	       n = ctx->EvalMap.Map2Texture3.Uorder
1791                 * ctx->EvalMap.Map2Texture3.Vorder * 3;
1792	       break;
1793	    case GL_MAP2_TEXTURE_COORD_4:
1794	       data = ctx->EvalMap.Map2Texture4.Points;
1795	       n = ctx->EvalMap.Map2Texture4.Uorder
1796                 * ctx->EvalMap.Map2Texture4.Vorder * 4;
1797	       break;
1798	    case GL_MAP2_VERTEX_3:
1799	       data = ctx->EvalMap.Map2Vertex3.Points;
1800	       n = ctx->EvalMap.Map2Vertex3.Uorder
1801                 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
1802	       break;
1803	    case GL_MAP2_VERTEX_4:
1804	       data = ctx->EvalMap.Map2Vertex4.Points;
1805	       n = ctx->EvalMap.Map2Vertex4.Uorder
1806                 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
1807	       break;
1808	    default:
1809	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
1810	       return;
1811	 }
1812	 if (data) {
1813	    for (i=0;i<n;i++) {
1814	       v[i] = ROUNDF(data[i]);
1815	    }
1816	 }
1817         break;
1818      case GL_ORDER:
1819	 switch (target) {
1820	    case GL_MAP1_COLOR_4:
1821	       *v = ctx->EvalMap.Map1Color4.Order;
1822	       break;
1823	    case GL_MAP1_INDEX:
1824	       *v = ctx->EvalMap.Map1Index.Order;
1825	       break;
1826	    case GL_MAP1_NORMAL:
1827	       *v = ctx->EvalMap.Map1Normal.Order;
1828	       break;
1829	    case GL_MAP1_TEXTURE_COORD_1:
1830	       *v = ctx->EvalMap.Map1Texture1.Order;
1831	       break;
1832	    case GL_MAP1_TEXTURE_COORD_2:
1833	       *v = ctx->EvalMap.Map1Texture2.Order;
1834	       break;
1835	    case GL_MAP1_TEXTURE_COORD_3:
1836	       *v = ctx->EvalMap.Map1Texture3.Order;
1837	       break;
1838	    case GL_MAP1_TEXTURE_COORD_4:
1839	       *v = ctx->EvalMap.Map1Texture4.Order;
1840	       break;
1841	    case GL_MAP1_VERTEX_3:
1842	       *v = ctx->EvalMap.Map1Vertex3.Order;
1843	       break;
1844	    case GL_MAP1_VERTEX_4:
1845	       *v = ctx->EvalMap.Map1Vertex4.Order;
1846	       break;
1847	    case GL_MAP2_COLOR_4:
1848	       v[0] = ctx->EvalMap.Map2Color4.Uorder;
1849	       v[1] = ctx->EvalMap.Map2Color4.Vorder;
1850	       break;
1851	    case GL_MAP2_INDEX:
1852	       v[0] = ctx->EvalMap.Map2Index.Uorder;
1853	       v[1] = ctx->EvalMap.Map2Index.Vorder;
1854	       break;
1855	    case GL_MAP2_NORMAL:
1856	       v[0] = ctx->EvalMap.Map2Normal.Uorder;
1857	       v[1] = ctx->EvalMap.Map2Normal.Vorder;
1858	       break;
1859	    case GL_MAP2_TEXTURE_COORD_1:
1860	       v[0] = ctx->EvalMap.Map2Texture1.Uorder;
1861	       v[1] = ctx->EvalMap.Map2Texture1.Vorder;
1862	       break;
1863	    case GL_MAP2_TEXTURE_COORD_2:
1864	       v[0] = ctx->EvalMap.Map2Texture2.Uorder;
1865	       v[1] = ctx->EvalMap.Map2Texture2.Vorder;
1866	       break;
1867	    case GL_MAP2_TEXTURE_COORD_3:
1868	       v[0] = ctx->EvalMap.Map2Texture3.Uorder;
1869	       v[1] = ctx->EvalMap.Map2Texture3.Vorder;
1870	       break;
1871	    case GL_MAP2_TEXTURE_COORD_4:
1872	       v[0] = ctx->EvalMap.Map2Texture4.Uorder;
1873	       v[1] = ctx->EvalMap.Map2Texture4.Vorder;
1874	       break;
1875	    case GL_MAP2_VERTEX_3:
1876	       v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
1877	       v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
1878	       break;
1879	    case GL_MAP2_VERTEX_4:
1880	       v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
1881	       v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
1882	       break;
1883	    default:
1884	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
1885	       return;
1886	 }
1887         break;
1888      case GL_DOMAIN:
1889	 switch (target) {
1890	    case GL_MAP1_COLOR_4:
1891	       v[0] = ROUNDF(ctx->EvalMap.Map1Color4.u1);
1892	       v[1] = ROUNDF(ctx->EvalMap.Map1Color4.u2);
1893	       break;
1894	    case GL_MAP1_INDEX:
1895	       v[0] = ROUNDF(ctx->EvalMap.Map1Index.u1);
1896	       v[1] = ROUNDF(ctx->EvalMap.Map1Index.u2);
1897	       break;
1898	    case GL_MAP1_NORMAL:
1899	       v[0] = ROUNDF(ctx->EvalMap.Map1Normal.u1);
1900	       v[1] = ROUNDF(ctx->EvalMap.Map1Normal.u2);
1901	       break;
1902	    case GL_MAP1_TEXTURE_COORD_1:
1903	       v[0] = ROUNDF(ctx->EvalMap.Map1Texture1.u1);
1904	       v[1] = ROUNDF(ctx->EvalMap.Map1Texture1.u2);
1905	       break;
1906	    case GL_MAP1_TEXTURE_COORD_2:
1907	       v[0] = ROUNDF(ctx->EvalMap.Map1Texture2.u1);
1908	       v[1] = ROUNDF(ctx->EvalMap.Map1Texture2.u2);
1909	       break;
1910	    case GL_MAP1_TEXTURE_COORD_3:
1911	       v[0] = ROUNDF(ctx->EvalMap.Map1Texture3.u1);
1912	       v[1] = ROUNDF(ctx->EvalMap.Map1Texture3.u2);
1913	       break;
1914	    case GL_MAP1_TEXTURE_COORD_4:
1915	       v[0] = ROUNDF(ctx->EvalMap.Map1Texture4.u1);
1916	       v[1] = ROUNDF(ctx->EvalMap.Map1Texture4.u2);
1917	       break;
1918	    case GL_MAP1_VERTEX_3:
1919	       v[0] = ROUNDF(ctx->EvalMap.Map1Vertex3.u1);
1920	       v[1] = ROUNDF(ctx->EvalMap.Map1Vertex3.u2);
1921	       break;
1922	    case GL_MAP1_VERTEX_4:
1923	       v[0] = ROUNDF(ctx->EvalMap.Map1Vertex4.u1);
1924	       v[1] = ROUNDF(ctx->EvalMap.Map1Vertex4.u2);
1925	       break;
1926	    case GL_MAP2_COLOR_4:
1927	       v[0] = ROUNDF(ctx->EvalMap.Map2Color4.u1);
1928	       v[1] = ROUNDF(ctx->EvalMap.Map2Color4.u2);
1929	       v[2] = ROUNDF(ctx->EvalMap.Map2Color4.v1);
1930	       v[3] = ROUNDF(ctx->EvalMap.Map2Color4.v2);
1931	       break;
1932	    case GL_MAP2_INDEX:
1933	       v[0] = ROUNDF(ctx->EvalMap.Map2Index.u1);
1934	       v[1] = ROUNDF(ctx->EvalMap.Map2Index.u2);
1935	       v[2] = ROUNDF(ctx->EvalMap.Map2Index.v1);
1936	       v[3] = ROUNDF(ctx->EvalMap.Map2Index.v2);
1937	       break;
1938	    case GL_MAP2_NORMAL:
1939	       v[0] = ROUNDF(ctx->EvalMap.Map2Normal.u1);
1940	       v[1] = ROUNDF(ctx->EvalMap.Map2Normal.u2);
1941	       v[2] = ROUNDF(ctx->EvalMap.Map2Normal.v1);
1942	       v[3] = ROUNDF(ctx->EvalMap.Map2Normal.v2);
1943	       break;
1944	    case GL_MAP2_TEXTURE_COORD_1:
1945	       v[0] = ROUNDF(ctx->EvalMap.Map2Texture1.u1);
1946	       v[1] = ROUNDF(ctx->EvalMap.Map2Texture1.u2);
1947	       v[2] = ROUNDF(ctx->EvalMap.Map2Texture1.v1);
1948	       v[3] = ROUNDF(ctx->EvalMap.Map2Texture1.v2);
1949	       break;
1950	    case GL_MAP2_TEXTURE_COORD_2:
1951	       v[0] = ROUNDF(ctx->EvalMap.Map2Texture2.u1);
1952	       v[1] = ROUNDF(ctx->EvalMap.Map2Texture2.u2);
1953	       v[2] = ROUNDF(ctx->EvalMap.Map2Texture2.v1);
1954	       v[3] = ROUNDF(ctx->EvalMap.Map2Texture2.v2);
1955	       break;
1956	    case GL_MAP2_TEXTURE_COORD_3:
1957	       v[0] = ROUNDF(ctx->EvalMap.Map2Texture3.u1);
1958	       v[1] = ROUNDF(ctx->EvalMap.Map2Texture3.u2);
1959	       v[2] = ROUNDF(ctx->EvalMap.Map2Texture3.v1);
1960	       v[3] = ROUNDF(ctx->EvalMap.Map2Texture3.v2);
1961	       break;
1962	    case GL_MAP2_TEXTURE_COORD_4:
1963	       v[0] = ROUNDF(ctx->EvalMap.Map2Texture4.u1);
1964	       v[1] = ROUNDF(ctx->EvalMap.Map2Texture4.u2);
1965	       v[2] = ROUNDF(ctx->EvalMap.Map2Texture4.v1);
1966	       v[3] = ROUNDF(ctx->EvalMap.Map2Texture4.v2);
1967	       break;
1968	    case GL_MAP2_VERTEX_3:
1969	       v[0] = ROUNDF(ctx->EvalMap.Map2Vertex3.u1);
1970	       v[1] = ROUNDF(ctx->EvalMap.Map2Vertex3.u2);
1971	       v[2] = ROUNDF(ctx->EvalMap.Map2Vertex3.v1);
1972	       v[3] = ROUNDF(ctx->EvalMap.Map2Vertex3.v2);
1973	       break;
1974	    case GL_MAP2_VERTEX_4:
1975	       v[0] = ROUNDF(ctx->EvalMap.Map2Vertex4.u1);
1976	       v[1] = ROUNDF(ctx->EvalMap.Map2Vertex4.u2);
1977	       v[2] = ROUNDF(ctx->EvalMap.Map2Vertex4.v1);
1978	       v[3] = ROUNDF(ctx->EvalMap.Map2Vertex4.v2);
1979	       break;
1980	    default:
1981	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
1982	 }
1983         break;
1984      default:
1985         gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(query)" );
1986   }
1987}
1988
1989
1990
1991void eval_points1( GLfloat outcoord[][4],
1992		   GLfloat coord[][4],
1993		   const GLuint *flags,
1994		   GLfloat du, GLfloat u1 )
1995{
1996   GLuint i;
1997   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
1998      if (flags[i] & VERT_EVAL_P1)
1999	 outcoord[i][0] = coord[i][0] * du + u1;
2000      else if (flags[i] & VERT_EVAL_ANY) {
2001	 outcoord[i][0] = coord[i][0];
2002	 outcoord[i][1] = coord[i][1];
2003      }
2004}
2005
2006void eval_points2( GLfloat outcoord[][4],
2007		   GLfloat coord[][4],
2008		   const GLuint *flags,
2009		   GLfloat du, GLfloat u1,
2010		   GLfloat dv, GLfloat v1 )
2011{
2012   GLuint i;
2013   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2014      if (flags[i] & VERT_EVAL_P2) {
2015	 outcoord[i][0] = coord[i][0] * du + u1;
2016	 outcoord[i][1] = coord[i][1] * dv + v1;
2017      } else if (flags[i] & VERT_EVAL_ANY) {
2018	 outcoord[i][0] = coord[i][0];
2019	 outcoord[i][1] = coord[i][1];
2020      }
2021}
2022
2023
2024static const GLubyte dirty_flags[5] = {
2025   0,				/* not possible */
2026   VEC_DIRTY_0,
2027   VEC_DIRTY_1,
2028   VEC_DIRTY_2,
2029   VEC_DIRTY_3
2030};
2031
2032
2033GLvector4f *eval1_4f( GLvector4f *dest,
2034		      GLfloat coord[][4],
2035		      const GLuint *flags,
2036		      GLuint dimension,
2037		      struct gl_1d_map *map )
2038{
2039   const GLfloat u1 = map->u1;
2040   const GLfloat du = map->du;
2041   GLfloat (*to)[4] = dest->data;
2042   GLuint i;
2043
2044   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2045      if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2046	 GLfloat u = (coord[i][0] - u1) * du;
2047	 ASSIGN_4V(to[i], 0,0,0,1);
2048	 horner_bezier_curve(map->Points, to[i], u, dimension, map->Order);
2049      }
2050
2051   dest->count = i;
2052   dest->size = MAX2(dest->size, dimension);
2053   dest->flags |= dirty_flags[dimension];
2054   return dest;
2055}
2056
2057
2058GLvector1ui *eval1_1ui( GLvector1ui *dest,
2059		       GLfloat coord[][4],
2060		       const GLuint *flags,
2061		       struct gl_1d_map *map )
2062{
2063   const GLfloat u1 = map->u1;
2064   const GLfloat du = map->du;
2065   GLuint *to = dest->data;
2066   GLuint i;
2067
2068   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2069      if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2070	 GLfloat u = (coord[i][0] - u1) * du;
2071	 GLfloat tmp;
2072	 horner_bezier_curve(map->Points, &tmp, u, 1, map->Order);
2073	 to[i] = (GLuint) (GLint) tmp;
2074      }
2075
2076   dest->count = i;
2077   return dest;
2078}
2079
2080GLvector3f *eval1_norm( GLvector3f *dest,
2081			GLfloat coord[][4],
2082			GLuint *flags, /* not const */
2083			struct gl_1d_map *map )
2084{
2085   const GLfloat u1 = map->u1;
2086   const GLfloat du = map->du;
2087   GLfloat (*to)[3] = dest->data;
2088   GLuint i;
2089
2090   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2091      if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2092	 GLfloat u = (coord[i][0] - u1) * du;
2093	 horner_bezier_curve(map->Points, to[i], u, 3, map->Order);
2094	 flags[i+1] |= VERT_NORM; /* reset */
2095      }
2096
2097   dest->count = i;
2098   return dest;
2099}
2100
2101GLvector4ub *eval1_color( GLvector4ub *dest,
2102			  GLfloat coord[][4],
2103			  GLuint *flags, /* not const */
2104			  struct gl_1d_map *map )
2105{
2106   const GLfloat u1 = map->u1;
2107   const GLfloat du = map->du;
2108   GLubyte (*to)[4] = dest->data;
2109   GLuint i;
2110
2111   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2112      if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2113	 GLfloat u = (coord[i][0] - u1) * du;
2114	 GLfloat fcolor[4];
2115	 horner_bezier_curve(map->Points, fcolor, u, 4, map->Order);
2116	 FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
2117	 flags[i+1] |= VERT_RGBA; /* reset */
2118      }
2119
2120   dest->count = i;
2121   return dest;
2122}
2123
2124
2125
2126
2127GLvector4f *eval2_obj_norm( GLvector4f *obj_ptr,
2128			    GLvector3f *norm_ptr,
2129			    GLfloat coord[][4],
2130			    GLuint *flags,
2131			    GLuint dimension,
2132			    struct gl_2d_map *map )
2133{
2134   const GLfloat u1 = map->u1;
2135   const GLfloat du = map->du;
2136   const GLfloat v1 = map->v1;
2137   const GLfloat dv = map->dv;
2138   GLfloat (*obj)[4] = obj_ptr->data;
2139   GLfloat (*normal)[3] = norm_ptr->data;
2140   GLuint i;
2141
2142   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2143      if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2144	 GLfloat u = (coord[i][0] - u1) * du;
2145	 GLfloat v = (coord[i][1] - v1) * dv;
2146	 GLfloat du[4], dv[4];
2147
2148	 ASSIGN_4V(obj[i], 0,0,0,1);
2149	 de_casteljau_surf(map->Points, obj[i], du, dv, u, v, dimension,
2150			   map->Uorder, map->Vorder);
2151
2152	 CROSS3(normal[i], du, dv);
2153	 NORMALIZE_3FV(normal[i]);
2154	 flags[i+1] |= VERT_NORM;
2155      }
2156
2157   obj_ptr->count = i;
2158   obj_ptr->size = MAX2(obj_ptr->size, dimension);
2159   obj_ptr->flags |= dirty_flags[dimension];
2160   return obj_ptr;
2161}
2162
2163
2164GLvector4f *eval2_4f( GLvector4f *dest,
2165		      GLfloat coord[][4],
2166		      const GLuint *flags,
2167		      GLuint dimension,
2168		      struct gl_2d_map *map )
2169{
2170   const GLfloat u1 = map->u1;
2171   const GLfloat du = map->du;
2172   const GLfloat v1 = map->v1;
2173   const GLfloat dv = map->dv;
2174   GLfloat (*to)[4] = dest->data;
2175   GLuint i;
2176
2177   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2178      if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2179	 GLfloat u = (coord[i][0] - u1) * du;
2180	 GLfloat v = (coord[i][1] - v1) * dv;
2181	 horner_bezier_surf(map->Points, to[i], u, v, dimension,
2182			    map->Uorder, map->Vorder);
2183      }
2184
2185   dest->count = i;
2186   dest->size = MAX2(dest->size, dimension);
2187   dest->flags |= dirty_flags[dimension];
2188   return dest;
2189}
2190
2191
2192GLvector3f *eval2_norm( GLvector3f *dest,
2193			GLfloat coord[][4],
2194			GLuint *flags,
2195			struct gl_2d_map *map )
2196{
2197   const GLfloat u1 = map->u1;
2198   const GLfloat du = map->du;
2199   const GLfloat v1 = map->v1;
2200   const GLfloat dv = map->dv;
2201   GLfloat (*to)[3] = dest->data;
2202   GLuint i;
2203
2204   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2205      if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2206	 GLfloat u = (coord[i][0] - u1) * du;
2207	 GLfloat v = (coord[i][1] - v1) * dv;
2208	 horner_bezier_surf(map->Points, to[i], u, v, 3,
2209			    map->Uorder, map->Vorder);
2210 	 flags[i+1] |= VERT_NORM; /* reset */
2211     }
2212
2213   dest->count = i;
2214   return dest;
2215}
2216
2217
2218GLvector1ui *eval2_1ui( GLvector1ui *dest,
2219		       GLfloat coord[][4],
2220		       const GLuint *flags,
2221		       struct gl_2d_map *map )
2222{
2223   const GLfloat u1 = map->u1;
2224   const GLfloat du = map->du;
2225   const GLfloat v1 = map->v1;
2226   const GLfloat dv = map->dv;
2227   GLuint *to = dest->data;
2228   GLuint i;
2229
2230   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2231      if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2232	 GLfloat u = (coord[i][0] - u1) * du;
2233	 GLfloat v = (coord[i][1] - v1) * dv;
2234	 GLfloat tmp;
2235	 horner_bezier_surf(map->Points, &tmp, u, v, 1,
2236			    map->Uorder, map->Vorder);
2237
2238	 to[i] = (GLuint) (GLint) tmp;
2239      }
2240
2241   dest->count = i;
2242   return dest;
2243}
2244
2245
2246
2247GLvector4ub *eval2_color( GLvector4ub *dest,
2248			  GLfloat coord[][4],
2249			  GLuint *flags,
2250			  struct gl_2d_map *map )
2251{
2252   const GLfloat u1 = map->u1;
2253   const GLfloat du = map->du;
2254   const GLfloat v1 = map->v1;
2255   const GLfloat dv = map->dv;
2256   GLubyte (*to)[4] = dest->data;
2257   GLuint i;
2258
2259   for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2260      if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2261	 GLfloat u = (coord[i][0] - u1) * du;
2262	 GLfloat v = (coord[i][1] - v1) * dv;
2263	 GLfloat fcolor[4];
2264	 horner_bezier_surf(map->Points, fcolor, u, v, 4,
2265			    map->Uorder, map->Vorder);
2266	 FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
2267	 flags[i+1] |= VERT_RGBA; /* reset */
2268      }
2269
2270   dest->count = i;
2271   return dest;
2272}
2273
2274
2275GLvector4f *copy_4f( GLvector4f *out, CONST GLvector4f *in,
2276		     const GLuint *flags)
2277{
2278   GLfloat (*to)[4] = out->data;
2279   GLfloat (*from)[4] = in->data;
2280   GLuint i;
2281
2282   for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2283      if (!(flags[i] & VERT_EVAL_ANY))
2284	 COPY_4FV( to[i], from[i] );
2285
2286   return out;
2287}
2288
2289GLvector3f *copy_3f( GLvector3f *out, CONST GLvector3f *in,
2290		     const GLuint *flags)
2291{
2292   GLfloat (*to)[3] = out->data;
2293   GLfloat (*from)[3] = in->data;
2294   GLuint i;
2295
2296   for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2297      if (!(flags[i] & VERT_EVAL_ANY))
2298	 COPY_3V( to[i], from[i] );
2299
2300   return out;
2301}
2302
2303GLvector4ub *copy_4ub( GLvector4ub *out, CONST GLvector4ub *in,
2304		       const GLuint *flags )
2305{
2306   GLubyte (*to)[4] = out->data;
2307   GLubyte (*from)[4] = in->data;
2308   GLuint i;
2309
2310   for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2311      if (!(flags[i] & VERT_EVAL_ANY))
2312	 COPY_4UBV( to[i], from[i] );
2313
2314   return out;
2315}
2316
2317GLvector1ui *copy_1ui( GLvector1ui *out, CONST GLvector1ui *in,
2318		       const GLuint *flags )
2319{
2320   GLuint *to = out->data;
2321   CONST GLuint *from = in->data;
2322   GLuint i;
2323
2324   for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2325      if (!(flags[i] & VERT_EVAL_ANY))
2326	 to[i] = from[i];
2327
2328   return out;
2329}
2330
2331
2332/* KW: Rewrote this to perform eval on a whole buffer at once.
2333 *     Only evaluates active data items, and avoids scribbling
2334 *     the source buffer if we are running from a display list.
2335 *
2336 *     If the user (in this case looser) sends eval coordinates
2337 *     or runs a display list containing eval coords with no
2338 *     vertex maps enabled, we have to either copy all non-eval
2339 *     data to a new buffer, or find a way of working around
2340 *     the eval data.  I choose the second option.
2341 *
2342 * KW: This code not reached by cva - use IM to access storage.
2343 */
2344void gl_eval_vb( struct vertex_buffer *VB )
2345{
2346   struct immediate *IM = VB->IM;
2347   GLcontext *ctx = VB->ctx;
2348   GLuint req = ctx->CVA.elt.inputs;
2349   GLfloat (*coord)[4] = VB->ObjPtr->data;
2350   GLuint *flags = VB->Flag;
2351   GLuint new_flags = 0;
2352
2353
2354   GLuint any_eval1 = VB->OrFlag & (VERT_EVAL_C1|VERT_EVAL_P1);
2355   GLuint any_eval2 = VB->OrFlag & (VERT_EVAL_C2|VERT_EVAL_P2);
2356   GLuint all_eval = VB->AndFlag & VERT_EVAL_ANY;
2357
2358   /* Handle the degenerate cases.
2359    */
2360   if (any_eval1 && !ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3) {
2361      VB->PurgeFlags |= (VERT_EVAL_C1|VERT_EVAL_P1);
2362      VB->EarlyCull = 0;
2363      any_eval1 = GL_FALSE;
2364   }
2365
2366   if (any_eval2 && !ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3) {
2367      VB->PurgeFlags |= (VERT_EVAL_C2|VERT_EVAL_P2);
2368      VB->EarlyCull = 0;
2369      any_eval2 = GL_FALSE;
2370   }
2371
2372   /* KW: This really is a degenerate case - doing this disables
2373    * culling, and causes dummy values for the missing vertices to be
2374    * transformed and clip tested.  It also forces the individual
2375    * cliptesting of each primitive in vb_render.  I wish there was a
2376    * nice alternative, but I can't say I want to put effort into
2377    * optimizing such a bad usage of the library - I'd much rather
2378    * work on useful changes.
2379    */
2380   if (VB->PurgeFlags) {
2381      if (!any_eval1 && !any_eval2 && all_eval) VB->Count = VB_START;
2382      gl_purge_vertices( VB );
2383      if (!any_eval1 && !any_eval2) return;
2384   } else
2385      VB->IndirectCount = VB->Count;
2386
2387   /* Translate points into coords.
2388    */
2389   if (any_eval1 && (VB->OrFlag & VERT_EVAL_P1))
2390   {
2391      eval_points1( IM->Obj, coord, flags,
2392		    ctx->Eval.MapGrid1du,
2393		    ctx->Eval.MapGrid1u1);
2394
2395      coord = IM->Obj;
2396   }
2397
2398   if (any_eval2 && (VB->OrFlag & VERT_EVAL_P2))
2399   {
2400      eval_points2( IM->Obj, coord, flags,
2401		    ctx->Eval.MapGrid2du,
2402		    ctx->Eval.MapGrid2u1,
2403		    ctx->Eval.MapGrid2dv,
2404		    ctx->Eval.MapGrid2v1 );
2405
2406      coord = IM->Obj;
2407   }
2408
2409   /* Perform the evaluations on active data elements.
2410    */
2411   if (req & VERT_INDEX)
2412   {
2413      GLvector1ui  *in_index = VB->IndexPtr;
2414      GLvector1ui  *out_index = &IM->v.Index;
2415
2416      if (ctx->Eval.Map1Index && any_eval1)
2417	 VB->IndexPtr = eval1_1ui( out_index, coord, flags,
2418				   &ctx->EvalMap.Map1Index );
2419
2420      if (ctx->Eval.Map2Index && any_eval2)
2421	 VB->IndexPtr = eval2_1ui( out_index, coord, flags,
2422				   &ctx->EvalMap.Map2Index );
2423
2424      if (VB->IndexPtr != in_index) {
2425	 new_flags |= VERT_INDEX;
2426	 if (!all_eval)
2427	    VB->IndexPtr = copy_1ui( out_index, in_index, flags );
2428      }
2429   }
2430
2431   if (req & VERT_RGBA)
2432   {
2433      GLvector4ub  *in_color = VB->ColorPtr;
2434      GLvector4ub  *out_color = &IM->v.Color;
2435
2436      if (ctx->Eval.Map1Color4 && any_eval1)
2437	 VB->ColorPtr = eval1_color( out_color, coord, flags,
2438				   &ctx->EvalMap.Map1Color4 );
2439
2440      if (ctx->Eval.Map2Color4 && any_eval2)
2441	 VB->ColorPtr = eval2_color( out_color, coord, flags,
2442				     &ctx->EvalMap.Map2Color4 );
2443
2444      if (VB->ColorPtr != in_color) {
2445	 new_flags |= VERT_RGBA;
2446	 if (!all_eval)
2447	    VB->ColorPtr = copy_4ub( out_color, in_color, flags );
2448      }
2449
2450      VB->Color[0] = VB->Color[1] = VB->ColorPtr;
2451   }
2452
2453
2454   if (req & VERT_NORM)
2455   {
2456      GLvector3f  *in_normal = VB->NormalPtr;
2457      GLvector3f  *out_normal = &IM->v.Normal;
2458
2459      if (ctx->Eval.Map1Normal && any_eval1)
2460	 VB->NormalPtr = eval1_norm( out_normal, coord, flags,
2461				     &ctx->EvalMap.Map1Normal );
2462
2463      if (ctx->Eval.Map2Normal && any_eval2)
2464	 VB->NormalPtr = eval2_norm( out_normal, coord, flags,
2465				     &ctx->EvalMap.Map2Normal );
2466
2467      if (VB->NormalPtr != in_normal) {
2468	 new_flags |= VERT_NORM;
2469	 if (!all_eval)
2470	    VB->NormalPtr = copy_3f( out_normal, in_normal, flags );
2471      }
2472   }
2473
2474
2475   if (req & VERT_TEX_ANY(0))
2476   {
2477      GLvector4f *tc = VB->TexCoordPtr[0];
2478      GLvector4f *in = tc;
2479      GLvector4f *out = &IM->v.TexCoord[0];
2480
2481      if (any_eval1) {
2482	 if (ctx->Eval.Map1TextureCoord4)
2483	    tc = eval1_4f( out, coord, flags, 4, &ctx->EvalMap.Map1Texture4);
2484	 else if (ctx->Eval.Map1TextureCoord3)
2485	    tc = eval1_4f( out, coord, flags, 3, &ctx->EvalMap.Map1Texture3);
2486	 else if (ctx->Eval.Map1TextureCoord2)
2487	    tc = eval1_4f( out, coord, flags, 2, &ctx->EvalMap.Map1Texture2);
2488	 else if (ctx->Eval.Map1TextureCoord1)
2489	    tc = eval1_4f( out, coord, flags, 1, &ctx->EvalMap.Map1Texture1);
2490      }
2491
2492      if (any_eval2) {
2493	 if (ctx->Eval.Map2TextureCoord4)
2494	    tc = eval2_4f( out, coord, flags, 4, &ctx->EvalMap.Map2Texture4);
2495	 else if (ctx->Eval.Map2TextureCoord3)
2496	    tc = eval2_4f( out, coord, flags, 3, &ctx->EvalMap.Map2Texture3);
2497	 else if (ctx->Eval.Map2TextureCoord2)
2498	    tc = eval2_4f( out, coord, flags, 2, &ctx->EvalMap.Map2Texture2);
2499	 else if (ctx->Eval.Map2TextureCoord1)
2500	    tc = eval2_4f( out, coord, flags, 1, &ctx->EvalMap.Map2Texture1);
2501      }
2502
2503      if (tc != in) {
2504	 new_flags |= VERT_TEX_ANY(0); /* fix for sizes.. */
2505	 if (!all_eval)
2506	    tc = copy_4f( out, in, flags );
2507      }
2508
2509      VB->TexCoordPtr[0] = tc;
2510   }
2511
2512
2513   {
2514      GLvector4f *in = VB->ObjPtr;
2515      GLvector4f *out = &IM->v.Obj;
2516      GLvector4f *obj = in;
2517
2518      if (any_eval1) {
2519	 if (ctx->Eval.Map1Vertex4)
2520	    obj = eval1_4f( out, coord, flags, 4, &ctx->EvalMap.Map1Vertex4);
2521	 else
2522	    obj = eval1_4f( out, coord, flags, 3, &ctx->EvalMap.Map1Vertex3);
2523      }
2524
2525      if (any_eval2) {
2526	 if (ctx->Eval.Map2Vertex4)
2527	 {
2528	    if (ctx->Eval.AutoNormal && (req & VERT_NORM))
2529	       obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, 4,
2530				    &ctx->EvalMap.Map2Vertex4 );
2531	    else
2532	       obj = eval2_4f( out, coord, flags, 4,
2533			       &ctx->EvalMap.Map2Vertex4);
2534	 }
2535	 else if (ctx->Eval.Map2Vertex3)
2536	 {
2537	    if (ctx->Eval.AutoNormal && (req & VERT_NORM))
2538	       obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, 3,
2539				    &ctx->EvalMap.Map2Vertex3 );
2540	    else
2541	       obj = eval2_4f( out, coord, flags, 3,
2542			       &ctx->EvalMap.Map2Vertex3 );
2543	 }
2544      }
2545
2546      if (obj != in && !all_eval)
2547	 obj = copy_4f( out, in, flags );
2548
2549      VB->ObjPtr = obj;
2550   }
2551
2552   if (new_flags) {
2553      GLuint *oldflags = VB->Flag;
2554      GLuint *flags = VB->Flag = VB->EvaluatedFlags;
2555      GLuint i;
2556      GLuint count = VB->Count;
2557
2558      if (!flags) {
2559	 VB->EvaluatedFlags = (GLuint *)malloc(VB->Size * sizeof(GLuint));
2560	 flags = VB->Flag = VB->EvaluatedFlags;
2561      }
2562
2563      if (all_eval) {
2564	 for (i = 0 ; i < count ; i++)
2565	    flags[i] = oldflags[i] | new_flags;
2566	 VB->AndFlag |= new_flags;
2567      } else {
2568	 GLuint andflag = ~0;
2569	 for (i = 0 ; i < count ; i++) {
2570	    if (oldflags[i] & VERT_EVAL_ANY)
2571	       flags[i] = oldflags[i] | new_flags;
2572	    andflag &= flags[i];
2573	 }
2574	 VB->AndFlag = andflag;
2575      }
2576   }
2577}
2578
2579
2580void gl_MapGrid1f( GLcontext* ctx, GLint un, GLfloat u1, GLfloat u2 )
2581{
2582   ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid1f");
2583
2584   if (un<1) {
2585      gl_error( ctx, GL_INVALID_VALUE, "glMapGrid1f" );
2586      return;
2587   }
2588   ctx->Eval.MapGrid1un = un;
2589   ctx->Eval.MapGrid1u1 = u1;
2590   ctx->Eval.MapGrid1u2 = u2;
2591   ctx->Eval.MapGrid1du = (u2 - u1) / (GLfloat) un;
2592}
2593
2594
2595void gl_MapGrid2f( GLcontext* ctx, GLint un, GLfloat u1, GLfloat u2,
2596		  GLint vn, GLfloat v1, GLfloat v2 )
2597{
2598   ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid2f");
2599   if (un<1) {
2600      gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(un)" );
2601      return;
2602   }
2603   if (vn<1) {
2604      gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(vn)" );
2605      return;
2606   }
2607   ctx->Eval.MapGrid2un = un;
2608   ctx->Eval.MapGrid2u1 = u1;
2609   ctx->Eval.MapGrid2u2 = u2;
2610   ctx->Eval.MapGrid2du = (u2 - u1) / (GLfloat) un;
2611   ctx->Eval.MapGrid2vn = vn;
2612   ctx->Eval.MapGrid2v1 = v1;
2613   ctx->Eval.MapGrid2v2 = v2;
2614   ctx->Eval.MapGrid2dv = (v2 - v1) / (GLfloat) vn;
2615}
2616
2617
2618
2619void gl_EvalMesh1( GLcontext* ctx, GLenum mode, GLint i1, GLint i2 )
2620{
2621   GLint i;
2622   GLfloat u, du;
2623   GLenum prim;
2624
2625   ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh1");
2626
2627   switch (mode) {
2628      case GL_POINT:
2629         prim = GL_POINTS;
2630         break;
2631      case GL_LINE:
2632         prim = GL_LINE_STRIP;
2633         break;
2634      default:
2635         gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh1(mode)" );
2636         return;
2637   }
2638
2639   /* No effect if vertex maps disabled.
2640    */
2641   if (!ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3)
2642      return;
2643
2644   du = ctx->Eval.MapGrid1du;
2645   u = ctx->Eval.MapGrid1u1 + i1 * du;
2646
2647   /* KW: Could short-circuit this to avoid the immediate mechanism.
2648    */
2649   RESET_IMMEDIATE(ctx);
2650
2651   gl_Begin( ctx, prim );
2652   for (i=i1;i<=i2;i++,u+=du) {
2653      gl_EvalCoord1f( ctx, u );
2654   }
2655   gl_End(ctx);
2656}
2657
2658
2659
2660void gl_EvalMesh2( GLcontext* ctx,
2661		   GLenum mode,
2662		   GLint i1, GLint i2,
2663		   GLint j1, GLint j2 )
2664{
2665   GLint i, j;
2666   GLfloat u, du, v, dv, v1, u1;
2667
2668   ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh2");
2669
2670   /* No effect if vertex maps disabled.
2671    */
2672   if (!ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3)
2673      return;
2674
2675   du = ctx->Eval.MapGrid2du;
2676   dv = ctx->Eval.MapGrid2dv;
2677   v1 = ctx->Eval.MapGrid2v1 + j1 * dv;
2678   u1 = ctx->Eval.MapGrid2u1 + i1 * du;
2679
2680   RESET_IMMEDIATE(ctx);
2681
2682   switch (mode) {
2683   case GL_POINT:
2684      gl_Begin( ctx, GL_POINTS );
2685      for (v=v1,j=j1;j<=j2;j++,v+=dv) {
2686	 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2687	    gl_EvalCoord2f( ctx, u, v );
2688	 }
2689      }
2690      gl_End(ctx);
2691      break;
2692   case GL_LINE:
2693      for (v=v1,j=j1;j<=j2;j++,v+=dv) {
2694	 gl_Begin( ctx, GL_LINE_STRIP );
2695	 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2696	    gl_EvalCoord2f( ctx, u, v );
2697	 }
2698	 gl_End(ctx);
2699      }
2700      for (u=u1,i=i1;i<=i2;i++,u+=du) {
2701	 gl_Begin( ctx, GL_LINE_STRIP );
2702	 for (v=v1,j=j1;j<=j2;j++,v+=dv) {
2703	    gl_EvalCoord2f( ctx, u, v );
2704	 }
2705	 gl_End(ctx);
2706      }
2707      break;
2708   case GL_FILL:
2709      for (v=v1,j=j1;j<j2;j++,v+=dv) {
2710	 /* NOTE: a quad strip can't be used because the four */
2711	 /* can't be guaranteed to be coplanar! */
2712	 gl_Begin( ctx, GL_TRIANGLE_STRIP );
2713	 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2714	    gl_EvalCoord2f( ctx, u, v );
2715	    gl_EvalCoord2f( ctx, u, v+dv );
2716	 }
2717	 gl_End(ctx);
2718      }
2719      break;
2720   default:
2721      gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh2(mode)" );
2722      return;
2723   }
2724}
2725
2726