s_span.c revision 1c0f1dd42a50464eeb81de4aad8eecf24b3d6c89
1/*
2 * Mesa 3-D graphics library
3 * Version:  7.5
4 *
5 * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
6 * Copyright (C) 2009  VMware, Inc.  All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26
27/**
28 * \file swrast/s_span.c
29 * \brief Span processing functions used by all rasterization functions.
30 * This is where all the per-fragment tests are performed
31 * \author Brian Paul
32 */
33
34#include "main/glheader.h"
35#include "main/colormac.h"
36#include "main/format_pack.h"
37#include "main/format_unpack.h"
38#include "main/macros.h"
39#include "main/imports.h"
40#include "main/image.h"
41
42#include "s_atifragshader.h"
43#include "s_alpha.h"
44#include "s_blend.h"
45#include "s_context.h"
46#include "s_depth.h"
47#include "s_fog.h"
48#include "s_logic.h"
49#include "s_masking.h"
50#include "s_fragprog.h"
51#include "s_span.h"
52#include "s_stencil.h"
53#include "s_texcombine.h"
54
55#include <stdbool.h>
56
57/**
58 * Set default fragment attributes for the span using the
59 * current raster values.  Used prior to glDraw/CopyPixels
60 * and glBitmap.
61 */
62void
63_swrast_span_default_attribs(struct gl_context *ctx, SWspan *span)
64{
65   GLchan r, g, b, a;
66   /* Z*/
67   {
68      const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
69      if (ctx->DrawBuffer->Visual.depthBits <= 16)
70         span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
71      else {
72         GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax;
73         tmpf = MIN2(tmpf, depthMax);
74         span->z = (GLint)tmpf;
75      }
76      span->zStep = 0;
77      span->interpMask |= SPAN_Z;
78   }
79
80   /* W (for perspective correction) */
81   span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0;
82   span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0;
83   span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
84
85   /* primary color, or color index */
86   UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
87   UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
88   UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
89   UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
90#if CHAN_TYPE == GL_FLOAT
91   span->red = r;
92   span->green = g;
93   span->blue = b;
94   span->alpha = a;
95#else
96   span->red   = IntToFixed(r);
97   span->green = IntToFixed(g);
98   span->blue  = IntToFixed(b);
99   span->alpha = IntToFixed(a);
100#endif
101   span->redStep = 0;
102   span->greenStep = 0;
103   span->blueStep = 0;
104   span->alphaStep = 0;
105   span->interpMask |= SPAN_RGBA;
106
107   COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor);
108   ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
109   ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
110
111   /* Secondary color */
112   if (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled)
113   {
114      COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor);
115      ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
116      ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
117   }
118
119   /* fog */
120   {
121      const SWcontext *swrast = SWRAST_CONTEXT(ctx);
122      GLfloat fogVal; /* a coord or a blend factor */
123      if (swrast->_PreferPixelFog) {
124         /* fog blend factors will be computed from fog coordinates per pixel */
125         fogVal = ctx->Current.RasterDistance;
126      }
127      else {
128         /* fog blend factor should be computed from fogcoord now */
129         fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
130      }
131      span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal;
132      span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0;
133      span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0;
134   }
135
136   /* texcoords */
137   {
138      GLuint i;
139      for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
140         const GLuint attr = FRAG_ATTRIB_TEX0 + i;
141         const GLfloat *tc = ctx->Current.RasterTexCoords[i];
142         if (_swrast_use_fragment_program(ctx) ||
143             ctx->ATIFragmentShader._Enabled) {
144            COPY_4V(span->attrStart[attr], tc);
145         }
146         else if (tc[3] > 0.0F) {
147            /* use (s/q, t/q, r/q, 1) */
148            span->attrStart[attr][0] = tc[0] / tc[3];
149            span->attrStart[attr][1] = tc[1] / tc[3];
150            span->attrStart[attr][2] = tc[2] / tc[3];
151            span->attrStart[attr][3] = 1.0;
152         }
153         else {
154            ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
155         }
156         ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
157         ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
158      }
159   }
160}
161
162
163/**
164 * Interpolate the active attributes (and'd with attrMask) to
165 * fill in span->array->attribs[].
166 * Perspective correction will be done.  The point/line/triangle function
167 * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]!
168 */
169static inline void
170interpolate_active_attribs(struct gl_context *ctx, SWspan *span,
171                           GLbitfield64 attrMask)
172{
173   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
174
175   /*
176    * Don't overwrite existing array values, such as colors that may have
177    * been produced by glDraw/CopyPixels.
178    */
179   attrMask &= ~span->arrayAttribs;
180
181   ATTRIB_LOOP_BEGIN
182      if (attrMask & BITFIELD64_BIT(attr)) {
183         const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
184         GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
185         const GLfloat dv0dx = span->attrStepX[attr][0];
186         const GLfloat dv1dx = span->attrStepX[attr][1];
187         const GLfloat dv2dx = span->attrStepX[attr][2];
188         const GLfloat dv3dx = span->attrStepX[attr][3];
189         GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx;
190         GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx;
191         GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx;
192         GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx;
193         GLuint k;
194         for (k = 0; k < span->end; k++) {
195            const GLfloat invW = 1.0f / w;
196            span->array->attribs[attr][k][0] = v0 * invW;
197            span->array->attribs[attr][k][1] = v1 * invW;
198            span->array->attribs[attr][k][2] = v2 * invW;
199            span->array->attribs[attr][k][3] = v3 * invW;
200            v0 += dv0dx;
201            v1 += dv1dx;
202            v2 += dv2dx;
203            v3 += dv3dx;
204            w += dwdx;
205         }
206         ASSERT((span->arrayAttribs & BITFIELD64_BIT(attr)) == 0);
207         span->arrayAttribs |= BITFIELD64_BIT(attr);
208      }
209   ATTRIB_LOOP_END
210}
211
212
213/**
214 * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
215 * color array.
216 */
217static inline void
218interpolate_int_colors(struct gl_context *ctx, SWspan *span)
219{
220#if CHAN_BITS != 32
221   const GLuint n = span->end;
222   GLuint i;
223
224   ASSERT(!(span->arrayMask & SPAN_RGBA));
225#endif
226
227   switch (span->array->ChanType) {
228#if CHAN_BITS != 32
229   case GL_UNSIGNED_BYTE:
230      {
231         GLubyte (*rgba)[4] = span->array->rgba8;
232         if (span->interpMask & SPAN_FLAT) {
233            GLubyte color[4];
234            color[RCOMP] = FixedToInt(span->red);
235            color[GCOMP] = FixedToInt(span->green);
236            color[BCOMP] = FixedToInt(span->blue);
237            color[ACOMP] = FixedToInt(span->alpha);
238            for (i = 0; i < n; i++) {
239               COPY_4UBV(rgba[i], color);
240            }
241         }
242         else {
243            GLfixed r = span->red;
244            GLfixed g = span->green;
245            GLfixed b = span->blue;
246            GLfixed a = span->alpha;
247            GLint dr = span->redStep;
248            GLint dg = span->greenStep;
249            GLint db = span->blueStep;
250            GLint da = span->alphaStep;
251            for (i = 0; i < n; i++) {
252               rgba[i][RCOMP] = FixedToChan(r);
253               rgba[i][GCOMP] = FixedToChan(g);
254               rgba[i][BCOMP] = FixedToChan(b);
255               rgba[i][ACOMP] = FixedToChan(a);
256               r += dr;
257               g += dg;
258               b += db;
259               a += da;
260            }
261         }
262      }
263      break;
264   case GL_UNSIGNED_SHORT:
265      {
266         GLushort (*rgba)[4] = span->array->rgba16;
267         if (span->interpMask & SPAN_FLAT) {
268            GLushort color[4];
269            color[RCOMP] = FixedToInt(span->red);
270            color[GCOMP] = FixedToInt(span->green);
271            color[BCOMP] = FixedToInt(span->blue);
272            color[ACOMP] = FixedToInt(span->alpha);
273            for (i = 0; i < n; i++) {
274               COPY_4V(rgba[i], color);
275            }
276         }
277         else {
278            GLushort (*rgba)[4] = span->array->rgba16;
279            GLfixed r, g, b, a;
280            GLint dr, dg, db, da;
281            r = span->red;
282            g = span->green;
283            b = span->blue;
284            a = span->alpha;
285            dr = span->redStep;
286            dg = span->greenStep;
287            db = span->blueStep;
288            da = span->alphaStep;
289            for (i = 0; i < n; i++) {
290               rgba[i][RCOMP] = FixedToChan(r);
291               rgba[i][GCOMP] = FixedToChan(g);
292               rgba[i][BCOMP] = FixedToChan(b);
293               rgba[i][ACOMP] = FixedToChan(a);
294               r += dr;
295               g += dg;
296               b += db;
297               a += da;
298            }
299         }
300      }
301      break;
302#endif
303   case GL_FLOAT:
304      interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
305      break;
306   default:
307      _mesa_problem(ctx, "bad datatype 0x%x in interpolate_int_colors",
308                    span->array->ChanType);
309   }
310   span->arrayMask |= SPAN_RGBA;
311}
312
313
314/**
315 * Populate the FRAG_ATTRIB_COL0 array.
316 */
317static inline void
318interpolate_float_colors(SWspan *span)
319{
320   GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
321   const GLuint n = span->end;
322   GLuint i;
323
324   assert(!(span->arrayAttribs & FRAG_BIT_COL0));
325
326   if (span->arrayMask & SPAN_RGBA) {
327      /* convert array of int colors */
328      for (i = 0; i < n; i++) {
329         col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
330         col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
331         col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
332         col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
333      }
334   }
335   else {
336      /* interpolate red/green/blue/alpha to get float colors */
337      ASSERT(span->interpMask & SPAN_RGBA);
338      if (span->interpMask & SPAN_FLAT) {
339         GLfloat r = FixedToFloat(span->red);
340         GLfloat g = FixedToFloat(span->green);
341         GLfloat b = FixedToFloat(span->blue);
342         GLfloat a = FixedToFloat(span->alpha);
343         for (i = 0; i < n; i++) {
344            ASSIGN_4V(col0[i], r, g, b, a);
345         }
346      }
347      else {
348         GLfloat r = FixedToFloat(span->red);
349         GLfloat g = FixedToFloat(span->green);
350         GLfloat b = FixedToFloat(span->blue);
351         GLfloat a = FixedToFloat(span->alpha);
352         GLfloat dr = FixedToFloat(span->redStep);
353         GLfloat dg = FixedToFloat(span->greenStep);
354         GLfloat db = FixedToFloat(span->blueStep);
355         GLfloat da = FixedToFloat(span->alphaStep);
356         for (i = 0; i < n; i++) {
357            col0[i][0] = r;
358            col0[i][1] = g;
359            col0[i][2] = b;
360            col0[i][3] = a;
361            r += dr;
362            g += dg;
363            b += db;
364            a += da;
365         }
366      }
367   }
368
369   span->arrayAttribs |= FRAG_BIT_COL0;
370   span->array->ChanType = GL_FLOAT;
371}
372
373
374
375/**
376 * Fill in the span.zArray array from the span->z, zStep values.
377 */
378void
379_swrast_span_interpolate_z( const struct gl_context *ctx, SWspan *span )
380{
381   const GLuint n = span->end;
382   GLuint i;
383
384   ASSERT(!(span->arrayMask & SPAN_Z));
385
386   if (ctx->DrawBuffer->Visual.depthBits <= 16) {
387      GLfixed zval = span->z;
388      GLuint *z = span->array->z;
389      for (i = 0; i < n; i++) {
390         z[i] = FixedToInt(zval);
391         zval += span->zStep;
392      }
393   }
394   else {
395      /* Deep Z buffer, no fixed->int shift */
396      GLuint zval = span->z;
397      GLuint *z = span->array->z;
398      for (i = 0; i < n; i++) {
399         z[i] = zval;
400         zval += span->zStep;
401      }
402   }
403   span->interpMask &= ~SPAN_Z;
404   span->arrayMask |= SPAN_Z;
405}
406
407
408/**
409 * Compute mipmap LOD from partial derivatives.
410 * This the ideal solution, as given in the OpenGL spec.
411 */
412GLfloat
413_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
414                       GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
415                       GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
416{
417   GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
418   GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
419   GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
420   GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
421   GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
422   GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
423   GLfloat rho = MAX2(x, y);
424   GLfloat lambda = LOG2(rho);
425   return lambda;
426}
427
428
429/**
430 * Compute mipmap LOD from partial derivatives.
431 * This is a faster approximation than above function.
432 */
433#if 0
434GLfloat
435_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
436                     GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
437                     GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
438{
439   GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
440   GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
441   GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
442   GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
443   GLfloat maxU, maxV, rho, lambda;
444   dsdx2 = FABSF(dsdx2);
445   dsdy2 = FABSF(dsdy2);
446   dtdx2 = FABSF(dtdx2);
447   dtdy2 = FABSF(dtdy2);
448   maxU = MAX2(dsdx2, dsdy2) * texW;
449   maxV = MAX2(dtdx2, dtdy2) * texH;
450   rho = MAX2(maxU, maxV);
451   lambda = LOG2(rho);
452   return lambda;
453}
454#endif
455
456
457/**
458 * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the
459 * using the attrStart/Step values.
460 *
461 * This function only used during fixed-function fragment processing.
462 *
463 * Note: in the places where we divide by Q (or mult by invQ) we're
464 * really doing two things: perspective correction and texcoord
465 * projection.  Remember, for texcoord (s,t,r,q) we need to index
466 * texels with (s/q, t/q, r/q).
467 */
468static void
469interpolate_texcoords(struct gl_context *ctx, SWspan *span)
470{
471   const GLuint maxUnit
472      = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
473   GLuint u;
474
475   /* XXX CoordUnits vs. ImageUnits */
476   for (u = 0; u < maxUnit; u++) {
477      if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
478         const GLuint attr = FRAG_ATTRIB_TEX0 + u;
479         const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
480         GLfloat texW, texH;
481         GLboolean needLambda;
482         GLfloat (*texcoord)[4] = span->array->attribs[attr];
483         GLfloat *lambda = span->array->lambda[u];
484         const GLfloat dsdx = span->attrStepX[attr][0];
485         const GLfloat dsdy = span->attrStepY[attr][0];
486         const GLfloat dtdx = span->attrStepX[attr][1];
487         const GLfloat dtdy = span->attrStepY[attr][1];
488         const GLfloat drdx = span->attrStepX[attr][2];
489         const GLfloat dqdx = span->attrStepX[attr][3];
490         const GLfloat dqdy = span->attrStepY[attr][3];
491         GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx;
492         GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx;
493         GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx;
494         GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx;
495
496         if (obj) {
497            const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
498            const struct swrast_texture_image *swImg =
499               swrast_texture_image_const(img);
500
501            needLambda = (obj->Sampler.MinFilter != obj->Sampler.MagFilter)
502               || _swrast_use_fragment_program(ctx);
503            /* LOD is calculated directly in the ansiotropic filter, we can
504             * skip the normal lambda function as the result is ignored.
505             */
506            if (obj->Sampler.MaxAnisotropy > 1.0 &&
507                obj->Sampler.MinFilter == GL_LINEAR_MIPMAP_LINEAR) {
508               needLambda = GL_FALSE;
509            }
510            texW = swImg->WidthScale;
511            texH = swImg->HeightScale;
512         }
513         else {
514            /* using a fragment program */
515            texW = 1.0;
516            texH = 1.0;
517            needLambda = GL_FALSE;
518         }
519
520         if (needLambda) {
521            GLuint i;
522            if (_swrast_use_fragment_program(ctx)
523                || ctx->ATIFragmentShader._Enabled) {
524               /* do perspective correction but don't divide s, t, r by q */
525               const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
526               GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
527               for (i = 0; i < span->end; i++) {
528                  const GLfloat invW = 1.0F / w;
529                  texcoord[i][0] = s * invW;
530                  texcoord[i][1] = t * invW;
531                  texcoord[i][2] = r * invW;
532                  texcoord[i][3] = q * invW;
533                  lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
534                                                     dqdx, dqdy, texW, texH,
535                                                     s, t, q, invW);
536                  s += dsdx;
537                  t += dtdx;
538                  r += drdx;
539                  q += dqdx;
540                  w += dwdx;
541               }
542            }
543            else {
544               for (i = 0; i < span->end; i++) {
545                  const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
546                  texcoord[i][0] = s * invQ;
547                  texcoord[i][1] = t * invQ;
548                  texcoord[i][2] = r * invQ;
549                  texcoord[i][3] = q;
550                  lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
551                                                     dqdx, dqdy, texW, texH,
552                                                     s, t, q, invQ);
553                  s += dsdx;
554                  t += dtdx;
555                  r += drdx;
556                  q += dqdx;
557               }
558            }
559            span->arrayMask |= SPAN_LAMBDA;
560         }
561         else {
562            GLuint i;
563            if (_swrast_use_fragment_program(ctx) ||
564                ctx->ATIFragmentShader._Enabled) {
565               /* do perspective correction but don't divide s, t, r by q */
566               const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
567               GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
568               for (i = 0; i < span->end; i++) {
569                  const GLfloat invW = 1.0F / w;
570                  texcoord[i][0] = s * invW;
571                  texcoord[i][1] = t * invW;
572                  texcoord[i][2] = r * invW;
573                  texcoord[i][3] = q * invW;
574                  lambda[i] = 0.0;
575                  s += dsdx;
576                  t += dtdx;
577                  r += drdx;
578                  q += dqdx;
579                  w += dwdx;
580               }
581            }
582            else if (dqdx == 0.0F) {
583               /* Ortho projection or polygon's parallel to window X axis */
584               const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
585               for (i = 0; i < span->end; i++) {
586                  texcoord[i][0] = s * invQ;
587                  texcoord[i][1] = t * invQ;
588                  texcoord[i][2] = r * invQ;
589                  texcoord[i][3] = q;
590                  lambda[i] = 0.0;
591                  s += dsdx;
592                  t += dtdx;
593                  r += drdx;
594               }
595            }
596            else {
597               for (i = 0; i < span->end; i++) {
598                  const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
599                  texcoord[i][0] = s * invQ;
600                  texcoord[i][1] = t * invQ;
601                  texcoord[i][2] = r * invQ;
602                  texcoord[i][3] = q;
603                  lambda[i] = 0.0;
604                  s += dsdx;
605                  t += dtdx;
606                  r += drdx;
607                  q += dqdx;
608               }
609            }
610         } /* lambda */
611      } /* if */
612   } /* for */
613}
614
615
616/**
617 * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array.
618 */
619static inline void
620interpolate_wpos(struct gl_context *ctx, SWspan *span)
621{
622   GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS];
623   GLuint i;
624   const GLfloat zScale = 1.0F / ctx->DrawBuffer->_DepthMaxF;
625   GLfloat w, dw;
626
627   if (span->arrayMask & SPAN_XY) {
628      for (i = 0; i < span->end; i++) {
629         wpos[i][0] = (GLfloat) span->array->x[i];
630         wpos[i][1] = (GLfloat) span->array->y[i];
631      }
632   }
633   else {
634      for (i = 0; i < span->end; i++) {
635         wpos[i][0] = (GLfloat) span->x + i;
636         wpos[i][1] = (GLfloat) span->y;
637      }
638   }
639
640   dw = span->attrStepX[FRAG_ATTRIB_WPOS][3];
641   w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dw;
642   for (i = 0; i < span->end; i++) {
643      wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
644      wpos[i][3] = w;
645      w += dw;
646   }
647}
648
649
650/**
651 * Apply the current polygon stipple pattern to a span of pixels.
652 */
653static inline void
654stipple_polygon_span(struct gl_context *ctx, SWspan *span)
655{
656   GLubyte *mask = span->array->mask;
657
658   ASSERT(ctx->Polygon.StippleFlag);
659
660   if (span->arrayMask & SPAN_XY) {
661      /* arrays of x/y pixel coords */
662      GLuint i;
663      for (i = 0; i < span->end; i++) {
664         const GLint col = span->array->x[i] % 32;
665         const GLint row = span->array->y[i] % 32;
666         const GLuint stipple = ctx->PolygonStipple[row];
667         if (((1 << col) & stipple) == 0) {
668            mask[i] = 0;
669         }
670      }
671   }
672   else {
673      /* horizontal span of pixels */
674      const GLuint highBit = 1 << 31;
675      const GLuint stipple = ctx->PolygonStipple[span->y % 32];
676      GLuint i, m = highBit >> (GLuint) (span->x % 32);
677      for (i = 0; i < span->end; i++) {
678         if ((m & stipple) == 0) {
679            mask[i] = 0;
680         }
681         m = m >> 1;
682         if (m == 0) {
683            m = highBit;
684         }
685      }
686   }
687   span->writeAll = GL_FALSE;
688}
689
690
691/**
692 * Clip a pixel span to the current buffer/window boundaries:
693 * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax.  This will accomplish
694 * window clipping and scissoring.
695 * Return:   GL_TRUE   some pixels still visible
696 *           GL_FALSE  nothing visible
697 */
698static inline GLuint
699clip_span( struct gl_context *ctx, SWspan *span )
700{
701   const GLint xmin = ctx->DrawBuffer->_Xmin;
702   const GLint xmax = ctx->DrawBuffer->_Xmax;
703   const GLint ymin = ctx->DrawBuffer->_Ymin;
704   const GLint ymax = ctx->DrawBuffer->_Ymax;
705
706   span->leftClip = 0;
707
708   if (span->arrayMask & SPAN_XY) {
709      /* arrays of x/y pixel coords */
710      const GLint *x = span->array->x;
711      const GLint *y = span->array->y;
712      const GLint n = span->end;
713      GLubyte *mask = span->array->mask;
714      GLint i;
715      GLuint passed = 0;
716      if (span->arrayMask & SPAN_MASK) {
717         /* note: using & intead of && to reduce branches */
718         for (i = 0; i < n; i++) {
719            mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
720                     & (y[i] >= ymin) & (y[i] < ymax);
721            passed += mask[i];
722         }
723      }
724      else {
725         /* note: using & intead of && to reduce branches */
726         for (i = 0; i < n; i++) {
727            mask[i] = (x[i] >= xmin) & (x[i] < xmax)
728                    & (y[i] >= ymin) & (y[i] < ymax);
729            passed += mask[i];
730         }
731      }
732      return passed > 0;
733   }
734   else {
735      /* horizontal span of pixels */
736      const GLint x = span->x;
737      const GLint y = span->y;
738      GLint n = span->end;
739
740      /* Trivial rejection tests */
741      if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
742         span->end = 0;
743         return GL_FALSE;  /* all pixels clipped */
744      }
745
746      /* Clip to right */
747      if (x + n > xmax) {
748         ASSERT(x < xmax);
749         n = span->end = xmax - x;
750      }
751
752      /* Clip to the left */
753      if (x < xmin) {
754         const GLint leftClip = xmin - x;
755         GLuint i;
756
757         ASSERT(leftClip > 0);
758         ASSERT(x + n > xmin);
759
760         /* Clip 'leftClip' pixels from the left side.
761          * The span->leftClip field will be applied when we interpolate
762          * fragment attributes.
763          * For arrays of values, shift them left.
764          */
765         for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
766            if (span->interpMask & (1 << i)) {
767               GLuint j;
768               for (j = 0; j < 4; j++) {
769                  span->attrStart[i][j] += leftClip * span->attrStepX[i][j];
770               }
771            }
772         }
773
774         span->red += leftClip * span->redStep;
775         span->green += leftClip * span->greenStep;
776         span->blue += leftClip * span->blueStep;
777         span->alpha += leftClip * span->alphaStep;
778         span->index += leftClip * span->indexStep;
779         span->z += leftClip * span->zStep;
780         span->intTex[0] += leftClip * span->intTexStep[0];
781         span->intTex[1] += leftClip * span->intTexStep[1];
782
783#define SHIFT_ARRAY(ARRAY, SHIFT, LEN) \
784         memmove(ARRAY, ARRAY + (SHIFT), (LEN) * sizeof(ARRAY[0]))
785
786         for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
787            if (span->arrayAttribs & (1 << i)) {
788               /* shift array elements left by 'leftClip' */
789               SHIFT_ARRAY(span->array->attribs[i], leftClip, n - leftClip);
790            }
791         }
792
793         SHIFT_ARRAY(span->array->mask, leftClip, n - leftClip);
794         SHIFT_ARRAY(span->array->rgba8, leftClip, n - leftClip);
795         SHIFT_ARRAY(span->array->rgba16, leftClip, n - leftClip);
796         SHIFT_ARRAY(span->array->x, leftClip, n - leftClip);
797         SHIFT_ARRAY(span->array->y, leftClip, n - leftClip);
798         SHIFT_ARRAY(span->array->z, leftClip, n - leftClip);
799         SHIFT_ARRAY(span->array->index, leftClip, n - leftClip);
800         for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
801            SHIFT_ARRAY(span->array->lambda[i], leftClip, n - leftClip);
802         }
803         SHIFT_ARRAY(span->array->coverage, leftClip, n - leftClip);
804
805#undef SHIFT_ARRAY
806
807         span->leftClip = leftClip;
808         span->x = xmin;
809         span->end -= leftClip;
810         span->writeAll = GL_FALSE;
811      }
812
813      ASSERT(span->x >= xmin);
814      ASSERT(span->x + span->end <= xmax);
815      ASSERT(span->y >= ymin);
816      ASSERT(span->y < ymax);
817
818      return GL_TRUE;  /* some pixels visible */
819   }
820}
821
822
823/**
824 * Add specular colors to primary colors.
825 * Only called during fixed-function operation.
826 * Result is float color array (FRAG_ATTRIB_COL0).
827 */
828static inline void
829add_specular(struct gl_context *ctx, SWspan *span)
830{
831   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
832   const GLubyte *mask = span->array->mask;
833   GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
834   GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1];
835   GLuint i;
836
837   ASSERT(!_swrast_use_fragment_program(ctx));
838   ASSERT(span->arrayMask & SPAN_RGBA);
839   ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1);
840   (void) swrast; /* silence warning */
841
842   if (span->array->ChanType == GL_FLOAT) {
843      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
844         interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
845      }
846   }
847   else {
848      /* need float colors */
849      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
850         interpolate_float_colors(span);
851      }
852   }
853
854   if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) {
855      /* XXX could avoid this and interpolate COL1 in the loop below */
856      interpolate_active_attribs(ctx, span, FRAG_BIT_COL1);
857   }
858
859   ASSERT(span->arrayAttribs & FRAG_BIT_COL0);
860   ASSERT(span->arrayAttribs & FRAG_BIT_COL1);
861
862   for (i = 0; i < span->end; i++) {
863      if (mask[i]) {
864         col0[i][0] += col1[i][0];
865         col0[i][1] += col1[i][1];
866         col0[i][2] += col1[i][2];
867      }
868   }
869
870   span->array->ChanType = GL_FLOAT;
871}
872
873
874/**
875 * Apply antialiasing coverage value to alpha values.
876 */
877static inline void
878apply_aa_coverage(SWspan *span)
879{
880   const GLfloat *coverage = span->array->coverage;
881   GLuint i;
882   if (span->array->ChanType == GL_UNSIGNED_BYTE) {
883      GLubyte (*rgba)[4] = span->array->rgba8;
884      for (i = 0; i < span->end; i++) {
885         const GLfloat a = rgba[i][ACOMP] * coverage[i];
886         rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
887         ASSERT(coverage[i] >= 0.0);
888         ASSERT(coverage[i] <= 1.0);
889      }
890   }
891   else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
892      GLushort (*rgba)[4] = span->array->rgba16;
893      for (i = 0; i < span->end; i++) {
894         const GLfloat a = rgba[i][ACOMP] * coverage[i];
895         rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
896      }
897   }
898   else {
899      GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
900      for (i = 0; i < span->end; i++) {
901         rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
902         /* clamp later */
903      }
904   }
905}
906
907
908/**
909 * Clamp span's float colors to [0,1]
910 */
911static inline void
912clamp_colors(SWspan *span)
913{
914   GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
915   GLuint i;
916   ASSERT(span->array->ChanType == GL_FLOAT);
917   for (i = 0; i < span->end; i++) {
918      rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
919      rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
920      rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
921      rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
922   }
923}
924
925
926/**
927 * Convert the span's color arrays to the given type.
928 * The only way 'output' can be greater than zero is when we have a fragment
929 * program that writes to gl_FragData[1] or higher.
930 * \param output  which fragment program color output is being processed
931 */
932static inline void
933convert_color_type(SWspan *span, GLenum newType, GLuint output)
934{
935   GLvoid *src, *dst;
936
937   if (output > 0 || span->array->ChanType == GL_FLOAT) {
938      src = span->array->attribs[FRAG_ATTRIB_COL0 + output];
939      span->array->ChanType = GL_FLOAT;
940   }
941   else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
942      src = span->array->rgba8;
943   }
944   else {
945      ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
946      src = span->array->rgba16;
947   }
948
949   if (newType == GL_UNSIGNED_BYTE) {
950      dst = span->array->rgba8;
951   }
952   else if (newType == GL_UNSIGNED_SHORT) {
953      dst = span->array->rgba16;
954   }
955   else {
956      dst = span->array->attribs[FRAG_ATTRIB_COL0];
957   }
958
959   _mesa_convert_colors(span->array->ChanType, src,
960                        newType, dst,
961                        span->end, span->array->mask);
962
963   span->array->ChanType = newType;
964   span->array->rgba = dst;
965}
966
967
968
969/**
970 * Apply fragment shader, fragment program or normal texturing to span.
971 */
972static inline void
973shade_texture_span(struct gl_context *ctx, SWspan *span)
974{
975   if (_swrast_use_fragment_program(ctx) ||
976       ctx->ATIFragmentShader._Enabled) {
977      /* programmable shading */
978      if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) {
979         convert_color_type(span, GL_FLOAT, 0);
980      }
981      else {
982         span->array->rgba = (void *) span->array->attribs[FRAG_ATTRIB_COL0];
983      }
984
985      if (span->primitive != GL_POINT ||
986	  (span->interpMask & SPAN_RGBA) ||
987	  ctx->Point.PointSprite) {
988         /* for single-pixel points, we populated the arrays already */
989         interpolate_active_attribs(ctx, span, ~0);
990      }
991      span->array->ChanType = GL_FLOAT;
992
993      if (!(span->arrayMask & SPAN_Z))
994         _swrast_span_interpolate_z (ctx, span);
995
996#if 0
997      if (inputsRead & FRAG_BIT_WPOS)
998#else
999      /* XXX always interpolate wpos so that DDX/DDY work */
1000#endif
1001         interpolate_wpos(ctx, span);
1002
1003      /* Run fragment program/shader now */
1004      if (_swrast_use_fragment_program(ctx)) {
1005         _swrast_exec_fragment_program(ctx, span);
1006      }
1007      else {
1008         ASSERT(ctx->ATIFragmentShader._Enabled);
1009         _swrast_exec_fragment_shader(ctx, span);
1010      }
1011   }
1012   else if (ctx->Texture._EnabledCoordUnits) {
1013      /* conventional texturing */
1014
1015#if CHAN_BITS == 32
1016      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1017         interpolate_int_colors(ctx, span);
1018      }
1019#else
1020      if (!(span->arrayMask & SPAN_RGBA))
1021         interpolate_int_colors(ctx, span);
1022#endif
1023      if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0)
1024         interpolate_texcoords(ctx, span);
1025
1026      _swrast_texture_span(ctx, span);
1027   }
1028}
1029
1030
1031/** Put colors at x/y locations into a renderbuffer */
1032static void
1033put_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
1034           GLenum datatype,
1035           GLuint count, const GLint x[], const GLint y[],
1036           const void *values, const GLubyte *mask)
1037{
1038   gl_pack_ubyte_rgba_func pack_ubyte = NULL;
1039   gl_pack_float_rgba_func pack_float = NULL;
1040   GLuint i;
1041
1042   if (datatype == GL_UNSIGNED_BYTE)
1043      pack_ubyte = _mesa_get_pack_ubyte_rgba_function(rb->Format);
1044   else
1045      pack_float = _mesa_get_pack_float_rgba_function(rb->Format);
1046
1047   for (i = 0; i < count; i++) {
1048      if (mask[i]) {
1049         GLubyte *dst = _swrast_pixel_address(rb, x[i], y[i]);
1050
1051         if (datatype == GL_UNSIGNED_BYTE) {
1052            pack_ubyte((const GLubyte *) values + 4 * i, dst);
1053         }
1054         else {
1055            assert(datatype == GL_FLOAT);
1056            pack_float((const GLfloat *) values + 4 * i, dst);
1057         }
1058      }
1059   }
1060}
1061
1062
1063/** Put row of colors into renderbuffer */
1064void
1065_swrast_put_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
1066                GLenum datatype,
1067                GLuint count, GLint x, GLint y,
1068                const void *values, const GLubyte *mask)
1069{
1070   GLubyte *dst = _swrast_pixel_address(rb, x, y);
1071
1072   if (!mask) {
1073      if (datatype == GL_UNSIGNED_BYTE) {
1074         _mesa_pack_ubyte_rgba_row(rb->Format, count,
1075                                   (const GLubyte (*)[4]) values, dst);
1076      }
1077      else {
1078         assert(datatype == GL_FLOAT);
1079         _mesa_pack_float_rgba_row(rb->Format, count,
1080                                   (const GLfloat (*)[4]) values, dst);
1081      }
1082   }
1083   else {
1084      const GLuint bpp = _mesa_get_format_bytes(rb->Format);
1085      GLuint i, runLen, runStart;
1086      /* We can't pass a 'mask' array to the _mesa_pack_rgba_row() functions
1087       * so look for runs where mask=1...
1088       */
1089      runLen = runStart = 0;
1090      for (i = 0; i < count; i++) {
1091         if (mask[i]) {
1092            if (runLen == 0)
1093               runStart = i;
1094            runLen++;
1095         }
1096
1097         if (!mask[i] || i == count - 1) {
1098            /* might be the end of a run of pixels */
1099            if (runLen > 0) {
1100               if (datatype == GL_UNSIGNED_BYTE) {
1101                  _mesa_pack_ubyte_rgba_row(rb->Format, runLen,
1102                                     (const GLubyte (*)[4]) values + runStart,
1103                                     dst + runStart * bpp);
1104               }
1105               else {
1106                  assert(datatype == GL_FLOAT);
1107                  _mesa_pack_float_rgba_row(rb->Format, runLen,
1108                                   (const GLfloat (*)[4]) values + runStart,
1109                                   dst + runStart * bpp);
1110               }
1111               runLen = 0;
1112            }
1113         }
1114      }
1115   }
1116}
1117
1118
1119
1120/**
1121 * Apply all the per-fragment operations to a span.
1122 * This now includes texturing (_swrast_write_texture_span() is history).
1123 * This function may modify any of the array values in the span.
1124 * span->interpMask and span->arrayMask may be changed but will be restored
1125 * to their original values before returning.
1126 */
1127void
1128_swrast_write_rgba_span( struct gl_context *ctx, SWspan *span)
1129{
1130   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1131   const GLuint *colorMask = (GLuint *) ctx->Color.ColorMask;
1132   const GLbitfield origInterpMask = span->interpMask;
1133   const GLbitfield origArrayMask = span->arrayMask;
1134   const GLbitfield64 origArrayAttribs = span->arrayAttribs;
1135   const GLenum origChanType = span->array->ChanType;
1136   void * const origRgba = span->array->rgba;
1137   const GLboolean shader = (_swrast_use_fragment_program(ctx)
1138                             || ctx->ATIFragmentShader._Enabled);
1139   const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits;
1140   struct gl_framebuffer *fb = ctx->DrawBuffer;
1141
1142   /*
1143   printf("%s()  interp 0x%x  array 0x%x\n", __FUNCTION__,
1144          span->interpMask, span->arrayMask);
1145   */
1146
1147   ASSERT(span->primitive == GL_POINT ||
1148          span->primitive == GL_LINE ||
1149	  span->primitive == GL_POLYGON ||
1150          span->primitive == GL_BITMAP);
1151
1152   /* Fragment write masks */
1153   if (span->arrayMask & SPAN_MASK) {
1154      /* mask was initialized by caller, probably glBitmap */
1155      span->writeAll = GL_FALSE;
1156   }
1157   else {
1158      memset(span->array->mask, 1, span->end);
1159      span->writeAll = GL_TRUE;
1160   }
1161
1162   /* Clip to window/scissor box */
1163   if (!clip_span(ctx, span)) {
1164      return;
1165   }
1166
1167   ASSERT(span->end <= MAX_WIDTH);
1168
1169   /* Depth bounds test */
1170   if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) {
1171      if (!_swrast_depth_bounds_test(ctx, span)) {
1172         return;
1173      }
1174   }
1175
1176#ifdef DEBUG
1177   /* Make sure all fragments are within window bounds */
1178   if (span->arrayMask & SPAN_XY) {
1179      /* array of pixel locations */
1180      GLuint i;
1181      for (i = 0; i < span->end; i++) {
1182         if (span->array->mask[i]) {
1183            assert(span->array->x[i] >= fb->_Xmin);
1184            assert(span->array->x[i] < fb->_Xmax);
1185            assert(span->array->y[i] >= fb->_Ymin);
1186            assert(span->array->y[i] < fb->_Ymax);
1187         }
1188      }
1189   }
1190#endif
1191
1192   /* Polygon Stippling */
1193   if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
1194      stipple_polygon_span(ctx, span);
1195   }
1196
1197   /* This is the normal place to compute the fragment color/Z
1198    * from texturing or shading.
1199    */
1200   if (shaderOrTexture && !swrast->_DeferredTexture) {
1201      shade_texture_span(ctx, span);
1202   }
1203
1204   /* Do the alpha test */
1205   if (ctx->Color.AlphaEnabled) {
1206      if (!_swrast_alpha_test(ctx, span)) {
1207         /* all fragments failed test */
1208         goto end;
1209      }
1210   }
1211
1212   /* Stencil and Z testing */
1213   if (ctx->Stencil._Enabled || ctx->Depth.Test) {
1214      if (!(span->arrayMask & SPAN_Z))
1215         _swrast_span_interpolate_z(ctx, span);
1216
1217      if (ctx->Transform.DepthClamp)
1218	 _swrast_depth_clamp_span(ctx, span);
1219
1220      if (ctx->Stencil._Enabled) {
1221         /* Combined Z/stencil tests */
1222         if (!_swrast_stencil_and_ztest_span(ctx, span)) {
1223            /* all fragments failed test */
1224            goto end;
1225         }
1226      }
1227      else if (fb->Visual.depthBits > 0) {
1228         /* Just regular depth testing */
1229         ASSERT(ctx->Depth.Test);
1230         ASSERT(span->arrayMask & SPAN_Z);
1231         if (!_swrast_depth_test_span(ctx, span)) {
1232            /* all fragments failed test */
1233            goto end;
1234         }
1235      }
1236   }
1237
1238   if (ctx->Query.CurrentOcclusionObject) {
1239      /* update count of 'passed' fragments */
1240      struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
1241      GLuint i;
1242      for (i = 0; i < span->end; i++)
1243         q->Result += span->array->mask[i];
1244   }
1245
1246   /* We had to wait until now to check for glColorMask(0,0,0,0) because of
1247    * the occlusion test.
1248    */
1249   if (fb->_NumColorDrawBuffers == 1 && colorMask[0] == 0x0) {
1250      /* no colors to write */
1251      goto end;
1252   }
1253
1254   /* If we were able to defer fragment color computation to now, there's
1255    * a good chance that many fragments will have already been killed by
1256    * Z/stencil testing.
1257    */
1258   if (shaderOrTexture && swrast->_DeferredTexture) {
1259      shade_texture_span(ctx, span);
1260   }
1261
1262#if CHAN_BITS == 32
1263   if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1264      interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
1265   }
1266#else
1267   if ((span->arrayMask & SPAN_RGBA) == 0) {
1268      interpolate_int_colors(ctx, span);
1269   }
1270#endif
1271
1272   ASSERT(span->arrayMask & SPAN_RGBA);
1273
1274   if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) {
1275      /* Add primary and specular (diffuse + specular) colors */
1276      if (!shader) {
1277         if (ctx->Fog.ColorSumEnabled ||
1278             (ctx->Light.Enabled &&
1279              ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
1280            add_specular(ctx, span);
1281         }
1282      }
1283   }
1284
1285   /* Fog */
1286   if (swrast->_FogEnabled) {
1287      _swrast_fog_rgba_span(ctx, span);
1288   }
1289
1290   /* Antialias coverage application */
1291   if (span->arrayMask & SPAN_COVERAGE) {
1292      apply_aa_coverage(span);
1293   }
1294
1295   /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
1296   if (ctx->Color.ClampFragmentColor == GL_TRUE &&
1297       span->array->ChanType == GL_FLOAT) {
1298      clamp_colors(span);
1299   }
1300
1301   /*
1302    * Write to renderbuffers.
1303    * Depending on glDrawBuffer() state and the which color outputs are
1304    * written by the fragment shader, we may either replicate one color to
1305    * all renderbuffers or write a different color to each renderbuffer.
1306    * multiFragOutputs=TRUE for the later case.
1307    */
1308   {
1309      const GLuint numBuffers = fb->_NumColorDrawBuffers;
1310      const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
1311      const GLboolean multiFragOutputs =
1312         _swrast_use_fragment_program(ctx)
1313         && fp->Base.OutputsWritten >= (1 << FRAG_RESULT_DATA0);
1314      GLuint buf;
1315
1316      for (buf = 0; buf < numBuffers; buf++) {
1317         struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
1318
1319         /* color[fragOutput] will be written to buffer[buf] */
1320
1321         if (rb) {
1322            GLchan rgbaSave[MAX_WIDTH][4];
1323
1324            if (span->array->ChanType == GL_UNSIGNED_BYTE) {
1325               span->array->rgba = span->array->rgba8;
1326            }
1327            else {
1328               span->array->rgba = (void *)
1329                  span->array->attribs[FRAG_ATTRIB_COL0];
1330            }
1331
1332            if (!multiFragOutputs && numBuffers > 1) {
1333               /* save colors for second, third renderbuffer writes */
1334               memcpy(rgbaSave, span->array->rgba,
1335                      4 * span->end * sizeof(GLchan));
1336            }
1337
1338            ASSERT(rb->_BaseFormat == GL_RGBA ||
1339                   rb->_BaseFormat == GL_RGB ||
1340                   rb->_BaseFormat == GL_RED ||
1341                   rb->_BaseFormat == GL_RG ||
1342		   rb->_BaseFormat == GL_ALPHA);
1343
1344            if (ctx->Color.ColorLogicOpEnabled) {
1345               _swrast_logicop_rgba_span(ctx, rb, span);
1346            }
1347            else if ((ctx->Color.BlendEnabled >> buf) & 1) {
1348               _swrast_blend_span(ctx, rb, span);
1349            }
1350
1351            if (colorMask[buf] != 0xffffffff) {
1352               _swrast_mask_rgba_span(ctx, rb, span, buf);
1353            }
1354
1355            if (span->arrayMask & SPAN_XY) {
1356               /* array of pixel coords */
1357               put_values(ctx, rb,
1358                          span->array->ChanType, span->end,
1359                          span->array->x, span->array->y,
1360                          span->array->rgba, span->array->mask);
1361            }
1362            else {
1363               /* horizontal run of pixels */
1364               _swrast_put_row(ctx, rb,
1365                               span->array->ChanType,
1366                               span->end, span->x, span->y,
1367                               span->array->rgba,
1368                               span->writeAll ? NULL: span->array->mask);
1369            }
1370
1371            if (!multiFragOutputs && numBuffers > 1) {
1372               /* restore original span values */
1373               memcpy(span->array->rgba, rgbaSave,
1374                      4 * span->end * sizeof(GLchan));
1375            }
1376
1377         } /* if rb */
1378      } /* for buf */
1379   }
1380
1381end:
1382   /* restore these values before returning */
1383   span->interpMask = origInterpMask;
1384   span->arrayMask = origArrayMask;
1385   span->arrayAttribs = origArrayAttribs;
1386   span->array->ChanType = origChanType;
1387   span->array->rgba = origRgba;
1388}
1389
1390
1391/**
1392 * Read float RGBA pixels from a renderbuffer.  Clipping will be done to
1393 * prevent reading ouside the buffer's boundaries.
1394 * \param rgba  the returned colors
1395 */
1396void
1397_swrast_read_rgba_span( struct gl_context *ctx, struct gl_renderbuffer *rb,
1398                        GLuint n, GLint x, GLint y,
1399                        GLvoid *rgba)
1400{
1401   struct swrast_renderbuffer *srb = swrast_renderbuffer(rb);
1402   GLenum dstType = GL_FLOAT;
1403   const GLint bufWidth = (GLint) rb->Width;
1404   const GLint bufHeight = (GLint) rb->Height;
1405
1406   if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1407      /* completely above, below, or right */
1408      /* XXX maybe leave rgba values undefined? */
1409      memset(rgba, 0, 4 * n * sizeof(GLchan));
1410   }
1411   else {
1412      GLint skip, length;
1413      GLubyte *src;
1414
1415      if (x < 0) {
1416         /* left edge clipping */
1417         skip = -x;
1418         length = (GLint) n - skip;
1419         if (length < 0) {
1420            /* completely left of window */
1421            return;
1422         }
1423         if (length > bufWidth) {
1424            length = bufWidth;
1425         }
1426      }
1427      else if ((GLint) (x + n) > bufWidth) {
1428         /* right edge clipping */
1429         skip = 0;
1430         length = bufWidth - x;
1431         if (length < 0) {
1432            /* completely to right of window */
1433            return;
1434         }
1435      }
1436      else {
1437         /* no clipping */
1438         skip = 0;
1439         length = (GLint) n;
1440      }
1441
1442      ASSERT(rb);
1443      ASSERT(rb->_BaseFormat == GL_RGBA ||
1444	     rb->_BaseFormat == GL_RGB ||
1445	     rb->_BaseFormat == GL_RG ||
1446	     rb->_BaseFormat == GL_RED ||
1447	     rb->_BaseFormat == GL_LUMINANCE ||
1448	     rb->_BaseFormat == GL_INTENSITY ||
1449	     rb->_BaseFormat == GL_LUMINANCE_ALPHA ||
1450	     rb->_BaseFormat == GL_ALPHA);
1451
1452      assert(srb->Map);
1453
1454      src = _swrast_pixel_address(rb, x + skip, y);
1455
1456      if (dstType == GL_UNSIGNED_BYTE) {
1457         _mesa_unpack_ubyte_rgba_row(rb->Format, length, src,
1458                                     (GLubyte (*)[4]) rgba + skip);
1459      }
1460      else if (dstType == GL_FLOAT) {
1461         _mesa_unpack_rgba_row(rb->Format, length, src,
1462                               (GLfloat (*)[4]) rgba + skip);
1463      }
1464      else {
1465         _mesa_problem(ctx, "unexpected type in _swrast_read_rgba_span()");
1466      }
1467   }
1468}
1469
1470
1471/**
1472 * Get colors at x/y positions with clipping.
1473 * \param type  type of values to return
1474 */
1475static void
1476get_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
1477           GLuint count, const GLint x[], const GLint y[],
1478           void *values, GLenum type)
1479{
1480   GLuint i;
1481
1482   for (i = 0; i < count; i++) {
1483      if (x[i] >= 0 && y[i] >= 0 &&
1484	  x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
1485         /* inside */
1486         const GLubyte *src = _swrast_pixel_address(rb, x[i], y[i]);
1487
1488         if (type == GL_UNSIGNED_BYTE) {
1489            _mesa_unpack_ubyte_rgba_row(rb->Format, 1, src,
1490                                        (GLubyte (*)[4]) values + i);
1491         }
1492         else if (type == GL_FLOAT) {
1493            _mesa_unpack_rgba_row(rb->Format, 1, src,
1494                                  (GLfloat (*)[4]) values + i);
1495         }
1496         else {
1497            _mesa_problem(ctx, "unexpected type in get_values()");
1498         }
1499      }
1500   }
1501}
1502
1503
1504/**
1505 * Get row of colors with clipping.
1506 * \param type  type of values to return
1507 */
1508static void
1509get_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
1510        GLuint count, GLint x, GLint y,
1511        GLvoid *values, GLenum type)
1512{
1513   GLint skip = 0;
1514   GLubyte *src;
1515
1516   if (y < 0 || y >= (GLint) rb->Height)
1517      return; /* above or below */
1518
1519   if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1520      return; /* entirely left or right */
1521
1522   if (x + count > rb->Width) {
1523      /* right clip */
1524      GLint clip = x + count - rb->Width;
1525      count -= clip;
1526   }
1527
1528   if (x < 0) {
1529      /* left clip */
1530      skip = -x;
1531      x = 0;
1532      count -= skip;
1533   }
1534
1535   src = _swrast_pixel_address(rb, x, y);
1536
1537   if (type == GL_UNSIGNED_BYTE) {
1538      _mesa_unpack_ubyte_rgba_row(rb->Format, count, src,
1539                                  (GLubyte (*)[4]) values + skip);
1540   }
1541   else if (type == GL_FLOAT) {
1542      _mesa_unpack_rgba_row(rb->Format, count, src,
1543                            (GLfloat (*)[4]) values + skip);
1544   }
1545   else {
1546      _mesa_problem(ctx, "unexpected type in get_row()");
1547   }
1548}
1549
1550
1551/**
1552 * Get RGBA pixels from the given renderbuffer.
1553 * Used by blending, logicop and masking functions.
1554 * \return pointer to the colors we read.
1555 */
1556void *
1557_swrast_get_dest_rgba(struct gl_context *ctx, struct gl_renderbuffer *rb,
1558                      SWspan *span)
1559{
1560   void *rbPixels;
1561
1562   /* Point rbPixels to a temporary space */
1563   rbPixels = span->array->attribs[FRAG_ATTRIB_MAX - 1];
1564
1565   /* Get destination values from renderbuffer */
1566   if (span->arrayMask & SPAN_XY) {
1567      get_values(ctx, rb, span->end, span->array->x, span->array->y,
1568                 rbPixels, span->array->ChanType);
1569   }
1570   else {
1571      get_row(ctx, rb, span->end, span->x, span->y,
1572              rbPixels, span->array->ChanType);
1573   }
1574
1575   return rbPixels;
1576}
1577